Sample records for activity respiratory bursts

  1. Granule Exocytosis Contributes to Priming and Activation of the Human Neutrophil Respiratory Burst

    PubMed Central

    Uriarte, Silvia M.; Rane, Madhavi J.; Luerman, Gregory C.; Barati, Michelle T.; Ward, Richard A.; Nauseef, William M.; McLeish, Kenneth R.

    2013-01-01

    The role of exocytosis in the human neutrophil respiratory burst was determined using a fusion protein (TAT–SNAP-23) containing the HIV transactivator of transcription (TAT) cell-penetrating sequence and the N-terminal SNARE domain of synaptosome-associated protein-23 (SNAP-23). This agent inhibited stimulated exocytosis of secretory vesicles and gelatinase and specific granules but not azurophil granules. GST pulldown showed that TAT–SNAP-23 bound to the combination of vesicle-associated membrane protein-2 and syntaxin-4 but not to either individually. TAT–SNAP-23 reduced phagocytosis-stimulated hydrogen peroxide production by 60% without affecting phagocytosis or generation of HOCl within phagosomes. TAT–SNAP-23 had no effect on fMLF-stimulated superoxide release but significantly inhibited priming of this response by TNF-α and platelet-activating factor. Pretreatment with TAT–SNAP-23 inhibited the increase in plasma membrane expression of gp91phox in TNF-α–primed neutrophils, whereas TNF-α activation of ERK1/2 and p38 MAPK was not affected. The data demonstrate that neutrophil granule exocytosis contributes to phagocytosis-induced respiratory burst activity and plays a critical role in priming of the respiratory burst by increasing expression of membrane components of the NADPH oxidase. PMID:21642540

  2. Mast cell granules modulate alveolar macrophage respiratory-burst activity and eicosanoid metabolism.

    PubMed

    Rock, M J; Despot, J; Lemanske, R F

    1990-10-01

    Alveolar macrophages (AMs) and mast cells reside in the airway, and both have been demonstrated to contribute independently to allergic inflammatory responses through the generation of respiratory-burst metabolites and the release of biologically active mediators, respectively. Since mast cell granules (MCGs) contain mediators that could potentially interact with the AM respiratory burst, we investigated the effects of isolated MCGs on this important inflammatory pathway of the AM. MCGs and AMs were obtained by peritoneal and tracheoalveolar lavage, respectively, of Sprague-Dawley rats. First, the overall respiratory-burst activity was measured by luminal-enhanced chemiluminescence (CL), and second, the individual oxygen species contributing to CL (superoxide anion [O2-], hydrogen peroxide [H2O2], and hypochlorous acid) were measured. MCGs alone enhanced AM CL responses to an equivalent degree compared to zymosan-stimulated AMs. However, AMs preincubated with MCGs followed by zymosan stimulation significantly and synergistically enhanced the CL responses. This enhanced CL was not due to an increased production of O2-, H2O2, or hypochlorous acid; in fact, there were decreased measured amounts of O2- and H2O2 from zymosan-stimulated AMs in the presence of MCGs, most likely caused by the content of granules of superoxide dismutase and peroxidase, respectively. The lipoxygenase inhibitor, nordihydroguaiaretic acid, completely abolished the enhanced CL of AM preincubated with MCGs and subsequently stimulated by zymosan, but O2- production was not affected by nordihydroguaiaretic acid. Taken together, these results suggest that derivatives of arachidonic acid metabolism, most likely those of the lipoxygenase pathway, are responsible for the enhanced AM CL response observed in the presence of MCGs. Thus, mast cell-macrophage interactions may be important within the airway in enhancing the generation of mediators that contribute to tissue inflammation and bronchospasm.

  3. Phagocytosis and Respiratory Burst Activity in Lumpsucker (Cyclopterus lumpus L.) Leucocytes Analysed by Flow Cytometry

    PubMed Central

    Haugland, Gyri T.; Jakobsen, Ragnhild Aakre; Vestvik, Nils; Ulven, Kristian; Stokka, Lene; Wergeland, Heidrun I.

    2012-01-01

    In the present study, we have isolated leucocytes from peripheral blood, head kidney and spleen from lumpsucker (Cyclopterus lumpus L.), and performed functional studies like phagocytosis and respiratory burst, as well as morphological and cytochemical analyses. Different leucocytes were identified, such as lymphocytes, monocytes/macrophages and polymorphonuclear cells with bean shaped or bilobed nuclei. In addition, cells with similar morphology as described for dendritic cells in trout were abundant among the isolated leucocytes. Flow cytometry was successfully used for measuring phagocytosis and respiratory burst activity. The phagocytic capacity and ability were very high, and cells with different morphology in all three leucocyte preparations phagocytised beads rapidly. Due to lack of available cell markers, the identity of the phagocytic cells could not be determined. The potent non-specific phagocytosis was in accordance with a high number of cells positive for myeloperoxidase, an enzyme involved in oxygen-dependent killing mechanism present in phagocytic cells. Further, high respiratory burst activity was present in the leucocytes samples, verifying a potent oxygen- dependent degradation. At present, the specific antibody immune response could not be measured, as immunoglobulin or B-cells have not yet been isolated. Therefore, analyses of the specific immune response in this fish species await further clarification. The present study presents the first analyses of lumpsucker immunity and also the first within the order Scopaeniformes. PMID:23112870

  4. Molecular cloning of rock bream (Oplegnathus fasciatus) tumor necrosis factor-alpha and its effect on the respiratory burst activity of phagocytes.

    PubMed

    Kim, Min Sun; Hwang, Yoon Jung; Yoon, Ki Joon; Zenke, Kosuke; Nam, Yoon Kwon; Kim, Sung Koo; Kim, Ki Hong

    2009-11-01

    Rock bream (Oplegnathus fasciatus) tumor necrosis factor-alpha (rbTNF-alpha) gene was cloned, recombinantly produced, and the effect of the recombinant rbTNF-alpha on the respiratory burst activity of rock bream phagocytes was analyzed. Structurally, genomic DNA of rbTNF-alpha was comprised with four exons and three introns, and deduced amino acid sequence of its cDNA possessed the TNF family signature, a transmembrane domain, a protease cleavage site, and two cysteine residues, which are the typical characteristics of TNF-alpha gene in mammals and fish. The chemiluminescent (CL) response of rock bream phagocytes was significantly enhanced by pre-incubation with recombinant rbTNF-alpha, when opsonized zymosan was used as a stimulant of the respiratory burst. However, CL enhancing effect of the recombinant rbTNF-alpha was very weak when the respiratory burst activity of phagocytes was triggered with phorbol-12-myristate-13-acetate (PMA) instead of zymosan. These results suggest that rock bream TNF-alpha might have an ability to prime the respiratory burst activity of phagocytes against receptor-mediated phagocytosis inducing stimulants, such as zymosan, but have little ability against stimulants not accompanying receptor-mediated phagocytosis.

  5. Exocytosis of Neutrophil Granule Subsets and Activation of Prolyl Isomerase 1 are required for Respiratory Burst Priming

    PubMed Central

    McLeish, Kenneth R.; Uriarte, Silvia M.; Tandon, Shweta; Creed, Timothy M.; Le, Junyi; Ward, Richard A.

    2013-01-01

    This study tested the hypothesis that priming the neutrophil respiratory burst requires both granule exocytosis and activation of the prolyl isomerase, Pin1. Fusion proteins containing the TAT cell permeability sequence and either the SNARE domain of syntaxin-4 or the N-terminal SNARE domain of SNAP-23 were used to examine the role of granule subsets in TNF-mediated respiratory burst priming using human neutrophils. Concentration-inhibition curves for exocytosis of individual granule subsets and for priming of fMLF-stimulated superoxide release and phagocytosis-stimulated H2O2 production were generated. Maximal inhibition of priming ranged from 72% to 88%. Linear regression lines for inhibition of priming versus inhibition of exocytosis did not differ from the line of identity for secretory vesicles and gelatinase granules, while the slopes or the y-intercepts were different from the line of identity for specific and azurophilic granules. Inhibition of Pin1 reduced priming by 56%, while exocytosis of secretory vesicles and specific granules was not affected. These findings indicate that exocytosis of secretory vesicles and gelatinase granules and activation of Pin1 are independent events required for TNF-mediated priming of neutrophil respiratory burst. PMID:23363774

  6. The effects of oral consumption of selenium nanoparticles on chemotactic and respiratory burst activities of neutrophils in comparison with sodium selenite in sheep.

    PubMed

    Kojouri, Gholam Ali; Sadeghian, Sirous; Mohebbi, Abdonnaser; Mokhber Dezfouli, Mohammad Reza

    2012-05-01

    The present study was designed to compare the effects of nano-selenium and of sodium selenite on the chemotactic and respiratory burst activities of neutrophils in sheep. Fifteen sheep were randomly divided into three groups. Groups 1 and 2 received selenium nanoparticles (1 mg/kg) or sodium selenite (1 mg/kg) orally, respectively, for ten consecutive days, and the third group was considered as the control. To determine the chemotactic and respiratory burst activities of the neutrophils, the leading front assay and the NBT test were used on heparinized blood samples that were collected at different intervals (days 0, 10th, 20th, and 30th). The results obtained showed that the chemotactic activities in groups 1 and 2 increased significantly on the 10th, 20th, and 30th day, compared to day 0, and on the 20th day in comparison with the 10th day, while in group 2, there was a significant decrease on the 30th day compared to the 20th day. The chemotactic activities in group 1 were significantly higher than in group 2 on the 10th day and in the control group on the 10th, 20th, and 30th day, but the chemotactic activities in group 2 were significantly higher than those in the control group only on the 20th day. On the 30th day into the experiment, the respiratory bursts in groups 1 and 2 were significantly stronger in comparison with those at day 0. Overall, nano-selenium increased the chemotactic and respiratory burst activities more significantly than sodium selenite, which is suggestive of a stronger stimulatory effect of the Se nanoparticles on intracellular activities.

  7. Biodegradation of Single-Walled Carbon Nanotubes in Macrophages through Respiratory Burst Modulation

    PubMed Central

    Hou, Jie; Wan, Bin; Yang, Yu; Ren, Xiao-Min; Guo, Liang-Hong; Liu, Jing-Fu

    2016-01-01

    The biodegradation of carbon nanotubes (CNTs) may be one of major determinants of the toxic outcomes in exposed individuals. In this study, we employed a macrophage/monocyte model, Raw264.7, to investigate the feasibility of regulating the biodegradation of three types of single-walled carbon nanotubes (SWCNTs) (pristine, ox-, and OH-SWCNTs) by respiratory burst modulation. An artificial fluid mimicking the enzymatic reactions of respiratory burst was constituted to reveal the role of respiratory burst played in SWCNT biodegradation. The biodegradation of SWCNTs were characterized by Raman, ultraviolet-visible-near-infrared spectroscopy, and transmission electron microscopy. Our results showed significantly accelerated biodegradation of ox-SWCNTs and OH-SWCNTs in macrophages activated by phorbol myristate acetate (PMA), which could be prevented by N-acetyl-l-cysteine (NAC), whereas p-SWCNTs were resistant to biodegradation. Similar tendencies were observed by using the in vitro enzymatic system, and the degradation rates of these SWCNTs are in the order of OH-SWCNTs > ox-SWCNTs >> p-SWCNTs, suggesting a pivotal role of respiratory burst in accelerating the biodegradation of SWCNTs and that defect sites on SWCNTs might be a prerequisite for the biodegradation to occur. Our findings might provide invaluable clues on the development of intervention measurements for relieving the side effects of SWCNTs and would help to design safer SWCNT products with higher biodegradability and less toxicity. PMID:27011169

  8. Metabolic activation and nucleic acid binding of acetaminophen and related arylamine substrates by the respiratory burst of human granulocytes.

    PubMed

    Corbett, M D; Corbett, B R; Hannothiaux, M H; Quintana, S J

    1989-01-01

    Following stimulation with phorbol myristate acetate, human granulocytes were found to incorporate acetaminophen, p-phenetidine, p-aminophenol, and p-chloroaniline into cellular DNA and RNA. Phenacetin was not incorporated into nucleic acid or metabolized by such activated granulocytes. None of the substrates gave nucleic acid binding if the granulocyte cultures were not induced to undergo the respiratory burst. Additional studies on the binding of acetaminophen to DNA and RNA were made by use of both ring-14C-labeled and carbonyl-14C-labeled forms of this substrate. The finding that equivalent amounts of these two labeled acetaminophen substrates were bound to cellular DNA demonstrated that the intact acetaminophen molecule was incorporated into DNA. On the other hand, the finding that excess ring-14C-labeled acetaminophen was incorporated into cellular RNA implies partial hydrolysis of the acetaminophen substrate prior to RNA binding. Evidence was presented which strongly indicates that the nucleic acid binding of the substrates was covalent in nature. The inability of the respiratory burst to result in the binding of phenacetin to nucleic acid suggests that arylamides are not normally activated or metabolized by activated granulocytes. Acetaminophen is an exception to the recalcitrance of arylamides to such bioactivation processes because it also possesses the phenolic functional group, which, like the arylamine group, is oxidized by certain reactive oxygen species. Myeloperoxidase appears to be much more important in the binding of acetaminophen to DNA than it is in the DNA binding of arylamines in general. The role of the respiratory burst in causing the bioactivation of certain arylamines, which are not normally genotoxic via the more usual microsomal activation pathways, was extended to include certain amide substrates such as acetaminophen.

  9. The Effects of Plantago major on the Activation of the Neutrophil Respiratory Burst

    PubMed Central

    Reina, Elaine; Al-Shibani, Nouf; Allam, Eman; Gregson, Karen S.; Kowolik, Michael; Windsor, L. Jack

    2013-01-01

    Plantago major is a common plant that grows worldwide in temperate zones and is found in fields, lawns, and on the roadsides. Its leaves and seeds have been used in almost all parts of the world for centuries as a wound healer, analgesic, antioxidant, and antibiotic, as well as an immune system modulator, antiviral, antifungal, and anti-inflammatory agent. Baicalein and aucubin are the two most biologically active components of P. major, and both have been shown to have antioxidant, anti-inflammatory, and anticancer properties. Neutrophils have a pivotal role in wound healing and inflammation. Their principal mechanism of host defense is the killing of pathogens via the production of reactive oxygen species (ROS). The aim of the present study was to determine the in vitro effects of P. major extract, baicalein, and aucubin on human neutrophil respiratory burst activity. The cytotoxicity of the agents was assessed by lactate dehydrogenase (LDH) assays. A standard luminol-dependent chemiluminescence (CL) assay was utilized to monitor the respiratory burst of the neutrophils after exposure to P. major extract and its two active ingredients, baicalein and aucubin. Three replicates per group were included in each of the three runs of the experiments and analysis of variance (ANOVA) was used for statistical analysis. P. major and baicalein were not toxic to the cells at any of the concentrations examined. Aucubin was toxic to the cells only at the highest concentration tested (P = 0.0081). However, genistein was toxic to the cells at all of the concentrations examined except for the lowest concentration of 16.9 μg/ml (P = 0.985). P. major (−0.10 ± 0.11), aucubin (0.06 ± 0.16), baicalein (−0.10 ± 0.11), and genistein (−0.18 ± 0.07) all significantly (P < 0.0001) inhibited ROS production from the neutrophils. P. major extract inhibited neutrophil ROS production, as did aucubin and baicalein. Therefore, these components should be investigated further with

  10. The Effects of Plantago major on the Activation of the Neutrophil Respiratory Burst.

    PubMed

    Reina, Elaine; Al-Shibani, Nouf; Allam, Eman; Gregson, Karen S; Kowolik, Michael; Windsor, L Jack

    2013-10-01

    Plantago major is a common plant that grows worldwide in temperate zones and is found in fields, lawns, and on the roadsides. Its leaves and seeds have been used in almost all parts of the world for centuries as a wound healer, analgesic, antioxidant, and antibiotic, as well as an immune system modulator, antiviral, antifungal, and anti-inflammatory agent. Baicalein and aucubin are the two most biologically active components of P. major, and both have been shown to have antioxidant, anti-inflammatory, and anticancer properties. Neutrophils have a pivotal role in wound healing and inflammation. Their principal mechanism of host defense is the killing of pathogens via the production of reactive oxygen species (ROS). The aim of the present study was to determine the in vitro effects of P. major extract, baicalein, and aucubin on human neutrophil respiratory burst activity. The cytotoxicity of the agents was assessed by lactate dehydrogenase (LDH) assays. A standard luminol-dependent chemiluminescence (CL) assay was utilized to monitor the respiratory burst of the neutrophils after exposure to P. major extract and its two active ingredients, baicalein and aucubin. Three replicates per group were included in each of the three runs of the experiments and analysis of variance (ANOVA) was used for statistical analysis. P. major and baicalein were not toxic to the cells at any of the concentrations examined. Aucubin was toxic to the cells only at the highest concentration tested (P = 0.0081). However, genistein was toxic to the cells at all of the concentrations examined except for the lowest concentration of 16.9 μg/ml (P = 0.985). P. major (-0.10 ± 0.11), aucubin (0.06 ± 0.16), baicalein (-0.10 ± 0.11), and genistein (-0.18 ± 0.07) all significantly (P < 0.0001) inhibited ROS production from the neutrophils. P. major extract inhibited neutrophil ROS production, as did aucubin and baicalein. Therefore, these components should be investigated further with relation to

  11. May Dietary Supplementation Augment Respiratory Burst in Wound-Site Inflammatory Cells?

    PubMed

    Das, Amitava; Dickerson, Ryan; Ghatak, Piya Das; Gordillo, Gayle M; Chaffee, Scott; Saha, Abhijoy; Khanna, Savita; Roy, Sashwati

    2018-02-10

    Persistent infection contributes to wound chronicity. At the wound site, NADPH oxidase (NOX) activity in immune cells fights infection to enable the healing process. Fermented papaya preparation (FPP) is a carbohydrate-rich nutritional supplement that has demonstrated ability to bolster respiratory burst in experimental rodent systems. In FPP, glucose coexists with fructose and maltose in addition to multiple other sugar alcohols such as inositol. We have previously reported that FPP supplementation augments wound healing in diabetic mice via improvement of respiratory burst activity of wound innate immune cells. In this clinical study ( clinicaltrials.gov : NCT02332993), chronic wound patients were orally supplemented with FPP daily. Inducible production of reactive oxygen species was significantly higher in wound-site immune cells from patients supplemented with FPP and on standard of care (SoC) for wound management compared with those patients receiving SoC alone. Wound closure in FPP-supplemented patients showed improvement. Importantly, the consumption of this mixture of carbohydrates, including significant amounts of glucose, did not increase HbA1c. These observations warrant a full-length clinical trial testing the hypothesis that FPP improves wound closure by augmenting NOX activity in immune cells at the wound site. Antioxid. Redox Signal. 28, 401-405.

  12. Early postnatal changes in respiratory activity in rat in vitro and modulatory effects of substance P.

    PubMed

    Shvarev, Y N; Lagercrantz, H

    2006-10-01

    Developmental changes in the respiratory activity and its modulation by substance P (SP) were studied in the neonatal rat brainstem-spinal cord preparation from the day of birth to day 3 (P0-P3). The respiratory network activity in the ventrolateral medulla was represented by two types of bursts: basic regular bursts with typical decrementing shape and biphasic bursts appearing after augmented biphasic discharges in inspiratory neurons. With advancing postnatal age the respiratory output was considerably modified; the basic rhythm became faster by 20%, whereas the biphasic burst rate, which was originally 15 times slower, declined further by 180% and the C4 burst duration significantly decreased by 20% due to reduced decay time without preceding changes in the central inspiratory drive. SP had an age-dependent excitatory effect on respiratory activity. In the basic rhythm, SP could induce transient rhythm cessations on P0-P2 but not on P3. For the biphasic burst frequency, the sensitivity to SP significantly decreased from P0 to P3, whereas the range of SP-induced changes increased. In both types of bursts, SP prolonged C4 burst duration due to increasing decay time. This effect was three times greater on P3 and did not depend on the central inspiratory drive. Our results suggest that the potency of SP to regulate the respiratory activity elevates during the early postnatal period. The developmental changes in the respiratory activity appear to represent the transient stage in the maturation of rhythm and pattern generation mechanisms facilitating adaptive behavior of a quickly growing organism.

  13. The temporal relationship between non-respiratory burst activity of expiratory laryngeal motoneurons and phrenic apnoea during stimulation of the superior laryngeal nerve in rat

    PubMed Central

    Sun, Qi-Jian; Bautista, Tara G; Berkowitz, Robert G; Zhao, Wen-Jing; Pilowsky, Paul M

    2011-01-01

    Abstract A striking effect of stimulating the superior laryngeal nerve (SLN) is its ability to inhibit central inspiratory activity (cause ‘phrenic apnoea’), but the mechanism underlying this inhibition remains unclear. Here we demonstrate, by stimulating the SLN at varying frequencies, that the evoked non-respiratory burst activity recorded from expiratory laryngeal motoneurons (ELMs) has an intimate temporal relationship with phrenic apnoea. During 1–5 Hz SLN stimulation, occasional absences of phrenic nerve discharge (PND) occurred such that every absent PND was preceded by an ELM burst activity. During 10–20 Hz SLN stimulation, more bursts were evoked together with more absent PNDs, leading eventually to phrenic apnoea. Interestingly, subsequent microinjections of isoguvacine (10 mm, 20–40 nl) into ipsilateral Bötzinger complex (BötC) and contralateral nucleus tractus solitarii (NTS) significantly attenuated the apnoeic response but not the ELM burst activity. Our results suggest a bifurcating projection from NTS to both the caudal nucleus ambiguus and BötC, which mediates the closely related ELM burst and apnoeic response, respectively. We believe that such an intimate timing between laryngeal behaviour and breathing is crucial for the effective elaboration of the different airway protective behaviours elicited following SLN stimulation, including the laryngeal adductor reflex, swallowing and cough. PMID:21320890

  14. Minocycline affects human neutrophil respiratory burst and transendothelial migration.

    PubMed

    Parenti, Astrid; Indorato, Boris; Paccosi, Sara

    2017-02-01

    This study aimed at investigating the in vitro activity of minocycline and doxycycline on human polymorphonuclear (h-PMN) cell function. h-PMNs were isolated from whole venous blood of healthy subjects; PMN oxidative burst was measured by monitoring ROS-induced oxidation of luminol and transendothelial migration was studied by measuring PMN migration through a monolayer of human umbilical vein endothelial cells. Differences between multiple groups were determined by ANOVA followed by Tukey's multiple comparison test; Student's t test for unpaired data for two groups. Minocycline (1-300 µM) concentration dependently and significantly inhibited oxidative burst of h-PMNs stimulated with 100 nM fMLP. Ten micromolar concentrations, which are superimposable to C max following a standard oral dose of minocycline, promoted a 29.8 ± 4 % inhibition of respiratory burst (P < 0.001; n = 6). Doxycycline inhibited ROS production with a lesser extent and at higher concentrations. 10-100 µM minocycline impaired PMN transendothelial migration, with maximal effect at 100 µM (42.5 ± 7 %, inhibition, n = 5, P < 0.001). These results added new insight into anti-inflammatory effects of minocycline exerted on innate immune h-PMN cell function.

  15. Effect of nicotine, cotinine and cigarette smoke extract on the neutrophil respiratory burst.

    PubMed

    Matthews, John B; Chen, Fa-Ming; Milward, Michael R; Wright, Helen J; Carter, Kevin; McDonagh, Anna; Chapple, Iain L C

    2011-03-01

    To determine the effect of nicotine, cotinine and cigarette smoke extract (CSE) on the neutrophil respiratory burst and their effect on activation of the nuclear factor-κB (NFκB) pathway in oral epithelium. Neutrophils from periodontally healthy individuals were treated with nicotine, cotinine and CSE before stimulation with Fusobacterium nucleatum, IgG-opsonized Staphylococcus aureus and Escherichia coli lipopolysaccharide. Total and extracellular reactive oxygen species (ROS) generation was determined by luminol/isoluminol chemiluminescence. Activation of NFκB in oral epithelial cells was determined by immunocytochemistry. Smoke extract alone caused increased neutrophil extracellular isoluminol-dependent chemiluminescence, not detectable with luminol. However, pre-treatment with smoke extract reduced both total and extracellular ROS generation in response to all stimuli. Nicotine and cotinine had no effect on the neutrophil respiratory burst. Smoke extract, nicotine and cotinine did not induce oral epithelial cell NFκB activation. These data demonstrate that smoke extract reduces the ability of neutrophils to generate ROS after stimulation with F. nucleatum and IgG-opsonized S. aureus but, at high concentrations, stimulates extracellular ROS generation. During periodontitis, cigarette smoking may differentially affect neutrophil function, generally preventing elimination of periodontal pathogens but, in heavy smokers, also stimulating ROS release and oxidative stress mediated tissue damage. © 2011 John Wiley & Sons A/S.

  16. [Relationship between HPLC fingerprint chromatogram and inhibitory effect on respiratory burst of rat PMN of leaves of crataegus].

    PubMed

    Liu, Rong-hua; Yu, Bo-yang; Chen, Lan-ying; Liu, Ji-hua; Shao, Feng; Ma, Zhi-lin; Yang, Ming

    2008-08-01

    To study the relationship between HPLC fingerprint chromatogram and inhibitory effect on respiratory burst of rat PMN of leaves of crataegus L. HPLC fingerprint peaks of different species of hawthorn leaves were isolated and used for the effective experiment on the respiratory burst of rat PMN. The mathematic models of the relationship between the area and the effect of fingerprint peaks were established. According to the mathematic models, the HPLC fingerprint were change into bioactive fingerprint (include effective fingerprint and potency fingerprint) with the helps of mathematics, chemometrics, computer program simulation and etc. The chromatogram-effect relationship of leaves of crataegus. on respiratory burst of rat PMN was established. According to this relationship, the activities of fourteen samples of leaves of crataegus. were forecasted. It was positive correlation between the expected value and the practical value. And the correlation coefficients was 0.968 (P < 0.01). An all-around evaluative system, which includes not only chemical identification but also effective evaluation for traditional Chinese medicine was established. It will provide a new idea for study on fingerprint chromatogram of traditional Chinese medicine.

  17. Comparative study of β-glucan induced respiratory burst measured by nitroblue tetrazolium assay and real-time luminol-enhanced chemiluminescence assay in common carp (Cyprinus carpio L.).

    PubMed

    Vera-Jimenez, N I; Pietretti, D; Wiegertjes, G F; Nielsen, M E

    2013-05-01

    The respiratory burst is an important feature of the immune system. The increase in cellular oxygen uptake that marks the initiation of the respiratory burst is followed by the production of reactive oxygen species (ROS) such as superoxide anion and hydrogen peroxide which plays a role in the clearance of pathogens and tissue regeneration processes. Therefore, the respiratory burst and associated ROS constitute important indicators of fish health status. This paper compares two methods for quantitation of ROS produced during the respiratory burst in common carp: the widely used, single-point measurement based on the intracellular reduction of nitroblue tetrazolium (NBT) and a real-time luminol-enhanced assay based on the detection of native chemiluminescence. Both assays allowed for detection of dose-dependent changes in magnitude of the respiratory burst response induced by β-glucans in head kidney cells of carp. However, whereas the NBT assay was shown to detect the production of only superoxide anions, the real-time luminol-enhanced assay could detect the production of both superoxide anions and hydrogen peroxide. Only the chemiluminescence assay could reliably record the production of ROS on a real-time scale at frequent and continual time intervals for time course experiments, providing more detailed information on the respiratory burst response. The real-time chemiluminescence assay was used to measure respiratory burst activity in macrophage and neutrophilic granulocyte-enriched head kidney cell fractions and total head kidney cell suspensions and proved to be a fast, reliable, automated multiwell microplate assay to quantitate fish health status modulated by β-glucans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Sympathetic network drive during water deprivation does not increase respiratory or cardiac rhythmic sympathetic nerve activity.

    PubMed

    Holbein, Walter W; Toney, Glenn M

    2013-06-15

    Effects of water deprivation on rhythmic bursting of sympathetic nerve activity (SNA) were investigated in anesthetized, bilaterally vagotomized, euhydrated (control) and 48-h water-deprived (WD) rats (n = 8/group). Control and WD rats had similar baseline values of mean arterial pressure, heart rate, end-tidal CO2, and central respiratory drive. Although integrated splanchnic SNA (sSNA) was greater in WD rats than controls (P < 0.01), analysis of respiratory rhythmic bursting of sSNA revealed that inspiratory rhythmic burst amplitude was actually smaller (P < 0.005) in WD rats (+68 ± 6%) than controls (+208 ± 20%), and amplitudes of the early expiratory (postinspiratory) trough and late expiratory burst of sSNA were not different between groups. Further analysis revealed that water deprivation had no effect on either the amplitude or periodicity of the cardiac rhythmic oscillation of sSNA. Collectively, these data indicate that the increase of sSNA produced by water deprivation is not attributable to either increased respiratory or cardiac rhythmic burst discharge. Thus the sympathetic network response to acute water deprivation appears to differ from that of chronic sympathoexcitation in neurogenic forms of arterial hypertension, where increased respiratory rhythmic bursting of SNA and baroreflex adaptations have been reported.

  19. The phagocyte respiratory burst: Historical perspectives and recent advances.

    PubMed

    Thomas, David C

    2017-12-01

    When exposed to certain stimuli, phagocytes (including neutrophils, macrophages and eosinophils) undergo marked changes in the way they handle oxygen. Firstly, their rate of oxygen uptake increases greatly. This is accompanied by (i) the production of large amounts of superoxide and hydrogen peroxide and (ii) the metabolism of large quantities of glucose through the hexose monophosphate shunt. We now know that the oxygen used is not for respiration but for the production of powerful microbiocidal agents downstream of the initial production of superoxide. Concomitantly, glucose is oxidised through the hexose monophosphate shunt to re-generate the NADPH that has been consumed through the reduction of molecular oxygen to generate superoxide. This phagocyte respiratory burst is generated by an NADPH oxidase multi-protein complex that has a catalytic core consisting of membrane-bound gp91phox (CYBB) and p22phox (CYBA) sub-units and cytosolic components p47phox (NCF1), p67phox (NCF2) and p40phox (NCF4). Finally, another cytosolic component, the small G-protein Rac (Rac2 in neutrophils and Rac1 in macrophages) is also required for full activation. The importance of the complex in host defence is underlined by chronic granulomatous disease, a severe life-limiting immunodeficiency caused by mutations in the genes encoding the individual subunits. In this review, I will discuss the experimental evidence that underlies our knowledge of the respiratory burst, outlining how elegant biochemical analysis, coupled with study of patients deficient in the various subunits has helped elucidate the function of this essential part of innate immunity. I will also discuss some exciting recent studies that shed new light on how the abundance of the various components is controlled. Finally, I will explore the emerging role of reactive oxygen species such as superoxide and hydrogen peroxide in the pathogenesis of major human diseases including auto-inflammatory diseases. Copyright © 2017

  20. Post-natal hypoxic activity of the central respiratory command is improved in transgenic mice overexpressing Epo in the brain.

    PubMed

    Caravagna, Céline; Kinkead, Richard; Soliz, Jorge

    2014-08-15

    Previous studies indicated that erythropoietin modulates central respiratory command in mice. Specifically, a one-hour incubation of the brainstems with erythropoietin attenuates hypoxia-induced central respiratory depression. Here, using transgenic mice constitutively overexpressing erythropoietin specifically in the brain (Tg21), we investigated the effect of chronic erythropoietin stimulation on central respiratory command activity during post-natal development. In vitro brainstem-spinal cord preparations from mice at 0 (P0) or 3 days of age (P3) were used to record the fictive inspiratory activity from the C4 ventral root. Our results show that erythropoietin already stimulates the hypoxic burst frequency at P0, and at P3, erythropoietin effectively stimulates the hypoxic burst frequency and amplitude. Because the maturation of the central respiratory command in mice is characterized by a decrease in the burst frequency with age, our results also suggest that erythropoietin accelerates the maturation of the newborn respiratory network and its response to hypoxia. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Neutrophil oxidative burst activation and the pattern of respiratory physiologic abnormalities in the fulminant post-traumatic adult respiratory distress syndrome.

    PubMed

    Rivkind, A I; Siegel, J H; Littleton, M; De Gaetano, A; Mamantov, T; Laghi, F; Stoklosa, J C

    1991-01-01

    The role of neutrophil oxidative burst activation (OBA) in the development of fulminant post-trauma adult respiratory distress syndrome (ARDS) was studied in 30 patients. Neutrophil (PMN) chemiluminescence (LE) was used as the index of OBA. Serially, for 8 days post-trauma, patient neutrophils (Pc) were studied in their own serum (Ps) normal serum (Ns), or Gey's solution (G). Ps was checked against normal neutrophils (Nc) for inhibition. LE was initiated by the addition of preopsonized zymosan to 1 x 10(6) PMN, the LE response monitored by luminometer, and the peak of the integral of LE recorded. Seven developed ARDS within the first 4 days; 12 patients developed sepsis (TS) but no ARDS, and 11 patients had uncomplicated trauma (TR). All ARDS showed increased LE (P less than 0.0001), at 48-96 hr. Patients without ARDS showed no significant increase in LE, although their mean injury severity (ISS) was the same. The ARDS LE response was mediated by activation of Pc [74%] with only a small but significant additional effect (6%) by ARDS serum (Ps): LE = 0.672 (Pc) + 0.24 [ARDS(Ps)] + 1343; N = 146, r2 0.733, P less than 0.0001. However, sera (Ps or Ns) was required, as incubation in G inhibited LE; [cells + s] greater than [cells + G], P less than 0.0001. LE is a biologic marker of ARDS, and the delay between injury and the LE indicated that initiation of ARDS may have therapeutic importance. Neutrophil activation in ARDS requires sera, but the ARDS effect appears mainly due to cells with only a small ARDS-specific serum-mediated role. The physiologic response to ARDS was evaluated by serial 8-hr studies of blood gases and pH; the respiratory index (RI) to pulmonary shunt (QS/QT) relationship, compliance (COMPL), and net fluid balance (DFLUID) PMN and platelet (PLAT) counts were also measured. Compared with TR and TS, the ARDS patients at 48-96 hr, showed increased RI, QS/QT, and DFluid requiring increased FiO2 and PEEP as COMPL and PLAT fell and LE rose. These changes

  2. Post-160-km race illness rates and decreases in granulocyte respiratory burst and salivary IgA output are not countered by quercetin ingestion.

    PubMed

    Henson, D; Nieman, D; Davis, J M; Dumke, C; Gross, S; Murphy, A; Carmichael, M; Jenkins, D P; Quindry, J; McAnulty, S; McAnulty, L; Utter, A; Mayer, E

    2008-10-01

    This study measured the influence of the flavonoid quercetin on immune changes and incidence rates of upper respiratory tract infections in ultramarathoners competing in the 160-km Western States Endurance Run. Sixty-three runners were randomized to quercetin and placebo groups, and under double-blinded methods ingested 1000 mg/day quercetin for 3 wks before, during, and 2 wks after the race. Thirty-nine of the 63 subjects (n = 18 for quercetin, n = 21 for placebo) finished the race and provided blood and saliva samples the morning before the race and 15 - 30 min postrace. Upper respiratory tract infections were assessed during the week before and the 2-wk period after the race using an illness symptom checklist. Race times did not differ significantly between quercetin and placebo groups. Significant pre- to postrace decreases were measured for natural killer cells (43 %), granulocyte respiratory burst activity (55 %), and salivary IgA output (48 %), and increases for neutrophil (288 %) and monocyte (211 %) cell counts, with no significant group differences. Postrace illness rates did not differ between groups. In conclusion, quercetin supplementation for 3 wks before and 2 wks after the Western States Endurance Run had no effect on illness rates, perturbations in leukocyte subset counts, or decreases in granulocyte respiratory burst activity and salivary IgA.

  3. Substance P modulation of TRPC3/7 channels improves respiratory rhythm regularity and ICAN-dependent pacemaker activity

    PubMed Central

    Ben-Mabrouk, Faiza; Tryba, Andrew Kieran

    2011-01-01

    Neuromodulators, such as Substance P (SubP) play an important role in modulating many rhythmic activities driven by central pattern generators (e.g., locomotion, respiration). However, the mechanism by which SubP enhances breathing regularity has not been determined. Here, we used mouse brainstem slices containing the pre-Bötzinger Complex (Pre-BötC) to demonstrate, for the first time, that SubP activates transient receptor protein canonical (TRPC) channels to enhance respiratory rhythm regularity. Moreover, SubP enhancement of network regularity is accomplished via selective enhancement of ICAN-dependent intrinsic bursting properties. In contrast to INaP-dependant pacemakers, ICAN-dependant pacemaker bursting activity is TRPC dependent. Western Blots reveal TRPC3 and TRPC7 channels are expressed in rhythmically active ventral respiratory group (VRG) island preparations. Taken together, these data suggest that SubP-mediated activation of TRPC3/7 channels underlies rhythmic ICAN-dependent pacemaker activity and enhances the regularity of respiratory rhythm activity. PMID:20345918

  4. Substance P modulation of TRPC3/7 channels improves respiratory rhythm regularity and ICAN-dependent pacemaker activity.

    PubMed

    Ben-Mabrouk, Faiza; Tryba, Andrew K

    2010-04-01

    Neuromodulators, such as substance P (SubP), play an important role in modulating many rhythmic activities driven by central pattern generators (e.g. locomotion, respiration). However, the mechanism by which SubP enhances breathing regularity has not been determined. Here, we used mouse brainstem slices containing the pre-Bötzinger complex to demonstrate, for the first time, that SubP activates transient receptor protein canonical (TRPC) channels to enhance respiratory rhythm regularity. Moreover, SubP enhancement of network regularity is accomplished via selective enhancement of ICAN (inward non-specific cation current)-dependent intrinsic bursting properties. In contrast to INaP (persistent sodium current)-dependent pacemakers, ICAN-dependent pacemaker bursting activity is TRPC-dependent. Western Blots reveal TRPC3 and TRPC7 channels are expressed in rhythmically active ventral respiratory group island preparations. Taken together, these data suggest that SubP-mediated activation of TRPC3/7 channels underlies rhythmic ICAN-dependent pacemaker activity and enhances the regularity of respiratory rhythm activity.

  5. Biphasic effects of substance P on respiratory activity and respiration-related neurones in ventrolateral medulla in the neonatal rat brainstem in vitro.

    PubMed

    Shvarev, Y N; Lagercrantz, H; Yamamoto, Y

    2002-01-01

    The effects of substance P (SP) on respiratory activity in the brainstem-spinal cord preparation from neonatal rats (0-4 days old) were investigated. The respiratory activity was recorded from C4 ventral roots and intracellularly from three types of respiration-related neurones, i.e. pre-inspiratory (or biphasic E), three subtypes of inspiratory; expiratory and tonic neurones in the ventrolateral medulla (VLM). After the onset of SP bath application (10 nM-1 microM) a dose-dependent decline of burst rate (by 48%) occurred, followed by a weaker dose-dependent increase (by 17.5%) in burst rate. The biphasic effect of SP on inspiratory burst rate was associated with sustained membrane depolarization (in a range of 0.5-13 mV) of respiration-related and tonic neurones. There were no significant changes in membrane resistance in any type of neurones when SP was applied alone or when synaptic transmission was blocked with tetrodotoxin (TTX). The initial depolarization was associated with an increase in inspiratory drive potential (by 25%) as well as in bursting time (by 65%) and membrane excitability in inspiratory and pre-inspiratory neurones, which corresponded to the decrease in burst rate (C4 activity). The spiking frequency of expiratory and tonic neurones was also increased (by 36 and 48%). This activation was followed by restoration of the synaptic drive potential and bursting time in inspiratory and to a less extent in pre-inspiratory neurones, which corresponded to the increase in burst rate. The discharge frequency of expiratory and tonic neurones also decreased to control values. This phase followed the peak membrane depolarization. At the peak depolarization, SP reduced the amplitude of the action potential by 4-8% in all types of neurones. Our results suggest that SP exerts a general excitatory effect on respiration-related neurones and synaptic coupling within the respiratory network in the VLM. The transient changes in neuronal activity in the VLM may

  6. Bursting Types and Bifurcation Analysis in the Pre-Bötzinger Complex Respiratory Rhythm Neuron

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Lu, Bo; Liu, Shenquan; Jiang, Xiaofang

    Many types of neurons and excitable cells could intrinsically generate bursting activity, even in an isolated case, which plays a vital role in neuronal signaling and synaptic plasticity. In this paper, we have mainly investigated bursting types and corresponding bifurcations in the pre-Bötzinger complex respiratory rhythm neuron by using fast-slow dynamical analysis. The numerical simulation results have showed that for some appropriate parameters, the neuron model could exhibit four distinct types of fast-slow bursters. We also explored the bifurcation mechanisms related to these four types of bursters through the analysis of phase plane. Moreover, the first Lyapunov coefficient of the Hopf bifurcation, which can decide whether it is supercritical or subcritical, was calculated with the aid of MAPLE software. In addition, we analyzed the codimension-two bifurcation for equilibria of the whole system and gave a detailed theoretical derivation of the Bogdanov-Takens bifurcation. Finally, we obtained expressions for a fold bifurcation curve, a nondegenerate Hopf bifurcation curve, and a saddle homoclinic bifurcation curve near the Bogdanov-Takens bifurcation point.

  7. Intracellular shunting of O{sub 2}{sup −} contributes to charge compensation and preservation of neutrophil respiratory burst in the absence of voltage-gated proton channel activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decleva, Eva; Menegazzi, Renzo, E-mail: menegazz@units.it; Fasolo, Alba

    2013-07-15

    Proton efflux via voltage-gated proton channels (Hv1) is considered to mediate the charge compensation necessary to preserve NADPH oxidase activity during the respiratory burst. Using the Hv1 inhibitor Zn{sup 2+}, we found that the PMA-induced respiratory burst of human neutrophils is inhibited when assessed as extracellular production of O{sub 2}{sup −} and H{sub 2}O{sub 2}, in accordance with literature studies, but, surprisingly, unaffected when measured as oxygen consumption or total (extracellular plus intracellular) H{sub 2}O{sub 2} production. Furthermore, we show that inhibiting Hv1 with Zn{sup 2+} results in an increased production of intracellular ROS. Similar results, i.e. decreased extracellular andmore » increased intracellular ROS production, were obtained using a human granulocyte-like cell line with severely impaired Hv1 expression. Acidic extracellular pH, which dampens proton efflux, also augmented intracellular production of H{sub 2}O{sub 2}. Zinc caused an increase in the rate but not in the extent of depolarization and cytosolic acidification indicating that mechanisms other than proton efflux take part in charge compensation. Our results suggest a hitherto unpredicted mechanism of charge compensation whereby, in the absence of proton efflux, part of O{sub 2}{sup −} generated within gp91{sup phox} in the plasma membrane is shunted intracellularly down electrochemical gradient to dampen excessive depolarization. This would preserve NADPH oxidase activity under conditions such as the inflammatory exudate in which the acidic pH hinders charge compensation by proton efflux. Highlights: • Neutrophils’ respiratory burst is not inhibited by the H{sup +} channel inhibitor Zn{sup 2+}. • Intracellular production of O{sub 2}{sup −} and H{sub 2}O{sub 2} is increased in the presence of Zn{sup 2+}. • Intracellular H{sub 2}O{sub 2} production is increased in H{sup +} channels knock-down cells. • Zn{sup 2+} increases the rate but not the

  8. Cardiorespiratory Coupling: Common Rhythms in Cardiac, Sympathetic, and Respiratory Activities

    PubMed Central

    Dick, Thomas E.; Hsieh, Yee-Hsee; Dhingra, Rishi R.; Baekey, David M.; Galán, Roberto F.; Wehrwein, Erica; Morris, Kendall F.

    2014-01-01

    Cardiorespiratory coupling is an encompassing term describing more than the well-recognized influences of respiration on heart rate and blood pressure. Our data indicate that cardiorespiratory coupling reflects a reciprocal interaction between autonomic and respiratory control systems, and the cardiovascular system modulates the ventilatory pattern as well. For example, cardioventilatory coupling refers to the influence of heart beats and arterial pulse pressure on respiration and is the tendency for the next inspiration to start at a preferred latency after the last heart beat in expiration. Multiple complementary, well-described mechanisms mediate respiration’s influence on cardiovascular function, whereas mechanisms mediating the cardiovascular system’s influence on respiration may only be through the baroreceptors but are just being identified. Our review will describe a differential effect of conditioning rats with either chronic intermittent or sustained hypoxia on sympathetic nerve activity but also on ventilatory pattern variability. Both intermittent and sustained hypoxia increase sympathetic nerve activity after 2 weeks but affect sympatho-respiratory coupling differentially. Intermittent hypoxia enhances sympatho-respiratory coupling, which is associated with low variability in the ventilatory pattern. In contrast, after constant hypobaric hypoxia, 1-to-1 coupling between bursts of sympathetic and phrenic nerve activity is replaced by 2-to-3 coupling. This change in coupling pattern is associated with increased variability of the ventilatory pattern. After baro-denervating hypobaric hypoxic-conditioned rats, splanchnic sympathetic nerve activity becomes tonic (distinct bursts are absent) with decreases during phrenic nerve bursts and ventilatory pattern becomes regular. Thus, conditioning rats to either intermittent or sustained hypoxia accentuates the reciprocal nature of cardiorespiratory coupling. Finally, identifying a compelling physiologic

  9. Does oral supplementation of a fermented papaya preparation correct respiratory burst function of innate immune cells in type 2 diabetes mellitus patients?

    PubMed

    Dickerson, Ryan; Banerjee, Jaideep; Rauckhorst, Adam; Pfeiffer, Douglas R; Gordillo, Gayle M; Khanna, Savita; Osei, Kwame; Roy, Sashwati

    2015-02-01

    Fermented papaya preparation (FPP) is a nutritional supplement reported to act as an antioxidant by scavenging reactive oxygen species (ROS) and removing "bad ROS," while inducing "respiratory burst" production of necessary "good ROS." We sought to investigate the safety of oral administration of FPP (9 g/day, 6 weeks) to T2D patients with regard to its effect on the hyperglycemia status of these patients. Peripheral blood was collected during a baseline visit, followed by subsequent collections both during and after supplementation. Induced "respiratory burst" ROS production was measured at each visit in addition to fasting blood glucose, lipid profile, glycated hemoglobin (HbA1c), and lipid/protein peroxidation. Oral FPP supplementation induced "respiratory burst" in peripheral blood mononuclear cells while not influencing other blood parameters studied. When human monocytic THP-1 cells were supplemented with sugar-based FPP, cellular ATP and NADPH concentrations were increased while matched glucose alone did not produce similar effects, suggesting a glucose-independent component of FPP to be responsible for increasing cellular energetics. THP-1 cells supplemented with FPP also exhibited higher mitochondrial membrane potential (Δψm) and oxygen consumption as compared with cells treated with glucose alone. Taken together, our observations lead to the hypothesis that FPP corrects inducible "respiratory burst" function in type 2 diabetes patients.

  10. Are pacemaker properties required for respiratory rhythm generation in adult turtle brain stems in vitro?

    PubMed

    Johnson, Stephen M; Wiegel, Liana M; Majewski, David J

    2007-08-01

    The role of pacemaker properties in vertebrate respiratory rhythm generation is not well understood. To address this question from a comparative perspective, brain stems from adult turtles were isolated in vitro, and respiratory motor bursts were recorded on hypoglossal (XII) nerve rootlets. The goal was to test whether burst frequency could be altered by conditions known to alter respiratory pacemaker neuron activity in mammals (e.g., increased bath KCl or blockade of specific inward currents). While bathed in artificial cerebrospinal fluid (aCSF), respiratory burst frequency was not correlated with changes in bath KCl (0.5-10.0 mM). Riluzole (50 microM; persistent Na(+) channel blocker) increased burst frequency by 31 +/- 5% (P < 0.05) and decreased burst amplitude by 42 +/- 4% (P < 0.05). In contrast, flufenamic acid (FFA, 20-500 microM; Ca(2+)-activated cation channel blocker) reduced and abolished burst frequency in a dose- and time-dependent manner (P < 0.05). During synaptic inhibition blockade with bicuculline (50 microM; GABA(A) channel blocker) and strychnine (50 muM; glycine receptor blocker), rhythmic motor activity persisted, and burst frequency was directly correlated with extracellular KCl (0.5-10.0 mM; P = 0.005). During synaptic inhibition blockade, riluzole (50 microM) did not alter burst frequency, whereas FFA (100 microM) abolished burst frequency (P < 0.05). These data are most consistent with the hypothesis that turtle respiratory rhythm generation requires Ca(2+)-activated cation channels but not pacemaker neurons, which thereby favors the group-pacemaker model. During synaptic inhibition blockade, however, the rhythm generator appears to be transformed into a pacemaker-driven network that requires Ca(2+)-activated cation channels.

  11. Independent prognostic importance of respiratory instability and sympathetic nerve activity in patients with chronic heart failure.

    PubMed

    Asanoi, Hidetsugu; Harada, Daisuke; Oda, Yoshitaka; Ueno, Hiroshi; Takagawa, Junya; Ishise, Hisanari; Goso, Yukiko; Joho, Shuji; Inoue, Hiroshi

    2017-11-01

    Respiratory instability in chronic heart failure (CHF) is characterized by irregularly rapid respiration or non-periodic breathing rather than by Cheyne-Stokes respiration. We developed a new quantitative measure of respiratory instability (RSI) and examined its independent prognostic impact upon CHF. In 87 patients with stable CHF, respiratory flow and muscle sympathetic nerve activity (MSNA) were simultaneously recorded. RSI was calculated from the frequency distribution of respiratory spectral components and very low frequency components. During a mean follow-up of 85±38 months, 24 patients died. Sixteen patients who died of cardiac causes had a lower RSI (16±6 vs. 30±21, p<0.01), a lower specific activity scale (4.3±1.4 Mets vs. 5.7±1.4 Mets, p<0.005), a higher MSNA burst area (16±5% vs. 11±4%, p<0.001), and a higher brain natriuretic peptide (BNP) level (514±559pg/ml vs. 234±311pg/ml, p<0.05) than 71 patients who did not die of cardiac causes. Multivariate analysis revealed that RSI (p=0.015), followed by MSNA burst area (p=0.033), was an independent predictor of subsequent all-cause deaths and that RSI (p=0.026), MSNA burst area (p=0.001), and BNP (p=0.048) were independent predictors of cardiac deaths. Patients at very high risk of fatal outcome could be identified by an RSI<20. The daytime respiratory instability quantified by a new measure of RSI has prognostic importance independent of sympathetic nerve activation in patients with clinically stable CHF. An RSI of <20 identifies patients at very high risk for subsequent all-cause and cardiovascular death. Copyright © 2017. Published by Elsevier Ltd.

  12. Bursting Transition Dynamics Within the Pre-Bötzinger Complex

    NASA Astrophysics Data System (ADS)

    Duan, Lixia; Chen, Xi; Tang, Xuhui; Su, Jianzhong

    The pre-Bötzinger complex of the mammalian brain stem plays a crucial role in the respiratory rhythms generation. Neurons within the pre-Bötzinger complex have been found experimentally to yield different firing activities. In this paper, we study the spiking and bursting activities related to the respiratory rhythms in the pre-Bötzinger complex based on a mathematical model proposed by Butera. Using the one-dimensional first recurrence map induced by dynamics, we investigate the different bursting patterns and their transition of the pre-Bötzinger complex neurons based on the Butera model, after we derived a one-dimensional map from the dynamical characters of the differential equations, and we obtained conditions for the transition of different bursting patterns. These analytical results were verified through numerical simulations. We conclude that the one-dimensional map contains similar rhythmic patterns as the Butera model and can be used as a simpler modeling tool to study fast-slow models like pre-Bötzinger complex neural circuit.

  13. Respiratory modulation of sympathetic nerve activity is enhanced in male rat offspring following uteroplacental insufficiency.

    PubMed

    Menuet, C; Wlodek, M E; Fong, A Y; Allen, A M

    2016-06-01

    Sympathetic nerve activity to the cardiovascular system displays prominent respiratory-related modulation which leads to the generation of rhythmic oscillations in blood pressure called Traube-Hering waves. An amplification of this respiratory modulation of sympathetic activity is observed in hypertension of both genetic, the spontaneously hypertensive rat, and induced, chronic intermittent hypoxia or maternal protein restriction during gestation, origin. Male offspring of mothers with uteroplacental insufficiency, induced by bilateral uterine vessel ligation at 18 days of gestation, are also hypertensive in adulthood. In this study we examined whether these male offspring display altered respiratory modulation of sympathetic activity at pre-hypertensive ages compared to controls. Respiratory, cardiovascular and sympathetic parameters were examined using the working heart-brainstem preparation in 35 day old male rats that had reduced birth weight due to uteroplacental insufficiency. Whilst all respiratory parameters were not different between groups, we observed an enhanced respiratory-related burst of thoracic sympathetic nerve activity and amplified Traube-Hering waves in the growth-restricted group. This group also showed an increased sympathetic and bradycardic response to activation of peripheral chemoreceptors. The observations add support to the view that altered respiratory modulation of sympathetic activity represents a common mechanism involved in the development of several forms of hypertension. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Timescales and Mechanisms of Sigh-Like Bursting and Spiking in Models of Rhythmic Respiratory Neurons.

    PubMed

    Wang, Yangyang; Rubin, Jonathan E

    2017-12-01

    Neural networks generate a variety of rhythmic activity patterns, often involving different timescales. One example arises in the respiratory network in the pre-Bötzinger complex of the mammalian brainstem, which can generate the eupneic rhythm associated with normal respiration as well as recurrent low-frequency, large-amplitude bursts associated with sighing. Two competing hypotheses have been proposed to explain sigh generation: the recruitment of a neuronal population distinct from the eupneic rhythm-generating subpopulation or the reconfiguration of activity within a single population. Here, we consider two recent computational models, one of which represents each of the hypotheses. We use methods of dynamical systems theory, such as fast-slow decomposition, averaging, and bifurcation analysis, to understand the multiple-timescale mechanisms underlying sigh generation in each model. In the course of our analysis, we discover that a third timescale is required to generate sighs in both models. Furthermore, we identify the similarities of the underlying mechanisms in the two models and the aspects in which they differ.

  15. Chloride ion efflux regulates adherence, spreading, and respiratory burst of neutrophils stimulated by tumor necrosis factor-alpha (TNF) on biologic surfaces

    PubMed Central

    1996-01-01

    Chloride ion efflux is an early event occurring after exposure of neutrophilic polymorphonuclear leukocytes (PMN) in suspension to several agonists, including cytokines such as tumor necrosis factor- alpha (TNF) and granulocyte/macrophage-colony stimulating factor (Shimizu, Y., R.H. Daniels, M.A. Elmore, M.J. Finnen, M.E. Hill, and J.M. Lackie. 1993. Biochem. Pharmacol. 9:1743-1751). We have studied TNF-induced Cl- movements in PMN residing on fibronectin (FN) (FN-PMN) and their relationships to adherence, spreading, and activation of the respiratory burst. Occupancy of the TNF-R55 and engagement of beta 2 integrins cosignaled for an early, marked, and prolonged Cl- efflux that was accompanied by a fall in intracellular chloride levels (Cl-i). A possible causal relationship between Cl- efflux, adherence, and respiratory burst was first suggested by kinetic studies, showing that TNF-induced Cl- efflux preceded both the adhesive and metabolic response, and was then confirmed by inhibition of all three responses by pretreating PMN with inhibitors of Cl- efflux, such as ethacrynic acid. Moreover, Cl- efflux induced by means other than TNF treatment, i.e., by using Cl(-)-free media, was followed by increased adherence, spreading, and metabolic activation, thus mimicking TNF effects. These studies provide the first evidence that a drastic decrease of Cl-i in FN-PMN may represent an essential step in the cascade of events leading to activation of proadhesive molecules, reorganization of the cytoskeleton network, and assembly of the O2(-)-forming NADPH oxidase. PMID:8896606

  16. Observations of energitic radiation bursts from thunder activities

    NASA Astrophysics Data System (ADS)

    Tsuchiya, H.; Enoto, T.; Torii, T.; Yuasa, T.; Yamada, S.; Kitacuhi, T.; Nakazawa, K.; Kato, H.; Okano, M.; Makishima, K.

    2009-04-01

    Energetic radiation bursts have been observed during strong thunderstorms by ground-based detectors as well as high-mountain ones. Those radiation bursts are thought to result from runaway electrons originating from electrons accelerated by strong electric field in lightning discharges and thunderclouds, and hence provide a valuable key to understand particle acceleration in thunder activity. Interestingly, they can be categorized into two bursts by their duration. One consists of short bursts lasting for milli-seconds or less. The other comprises long bursts having duration of a few seconds. In order to better understand both short and long bursts, we have conducted experiments at coastal area of the Japan Sea and a 2770-m altitude observatory. In this talk, we will report on those experiments, showing the two experiments has successfully observed both short and long bursts. Especially, we will focus on high-energy radiations extending over MeV energies, and then discuss a plausible model to explain how those high-energy radiations are produced in thunder activity.

  17. Abdominal expiratory activity in the rat brainstem–spinal cord in situ: patterns, origins and implications for respiratory rhythm generation

    PubMed Central

    Abdala, A P L; Rybak, I A; Smith, J C; Paton, J F R

    2009-01-01

    We studied respiratory neural activity generated during expiration. Motoneuronal activity was recorded simultaneously from abdominal (AbN), phrenic (PN), hypoglossal (HN) and central vagus nerves from neonatal and juvenile rats in situ. During eupnoeic activity, low-amplitude post-inspiratory (post-I) discharge was only present in AbN motor outflow. Expression of AbN late-expiratory (late-E) activity, preceding PN bursts, occurred during hypercapnia. Biphasic expiratory (biphasic-E) activity with pre-inspiratory (pre-I) and post-I discharges occurred only during eucapnic anoxia or hypercapnic anoxia. Late-E activity generated during hypercapnia (7–10% CO2) was abolished with pontine transections or chemical suppression of retrotrapezoid nucleus/ventrolateral parafacial (RTN/vlPF). AbN late-E activity during hypercapnia is coupled with augmented pre-I discharge in HN, truncated PN burst, and was quiescent during inspiration. Our data suggest that the pons provides a necessary excitatory drive to an additional neural oscillatory mechanism that is only activated under conditions of high respiratory drive to generate late-E activity destined for AbN motoneurones. This mechanism may arise from neurons located in the RTN/vlPF or the latter may relay late-E activity generated elsewhere. We hypothesize that this oscillatory mechanism is not a necessary component of the respiratory central pattern generator but constitutes a defensive mechanism activated under critical metabolic conditions to provide forced expiration and reduced upper airway resistance simultaneously. Possible interactions of this oscillator with components of the brainstem respiratory network are discussed. PMID:19491247

  18. Methylxanthines do not affect rhythmogenic preBötC inspiratory network activity but impair bursting of preBötC-driven motoneurons.

    PubMed

    Panaitescu, B; Kuribayashi, J; Ruangkittisakul, A; Leung, V; Iizuka, M; Ballanyi, K

    2013-01-01

    Clinical stimulation of preterm infant breathing with methylxanthines like caffeine and theophylline can evoke seizures. It is unknown whether underlying neuronal hyperexcitability involves the rhythmogenic inspiratory active pre-Bötzinger complex (preBötC) in the brainstem or preBötC-driven motor networks. Inspiratory-related preBötC interneuronal plus spinal (cervical/phrenic) or cranial hypoglossal (XII) motoneuronal bursting was studied in newborn rat en bloc brainstem-spinal cords and brainstem slices, respectively. Non-respiratory bursting perturbed inspiratory cervical nerve activity in en bloc models at >0.25mM theophylline or caffeine. Rhythm in the exposed preBötC of transected en bloc preparations was less perturbed by 10mM theophylline than cervical root bursting which was more affected than phrenic nerve activity. In the preBötC of slices, even 10mM methylxanthine did not evoke seizure-like bursting whereas >1mM masked XII rhythm via large amplitude 1-10Hz oscillations. Blocking A-type γ-aminobutyric (GABAA) receptors evoked seizure-like cervical activity whereas in slices neither XII nor preBötC rhythm was disrupted. Methylxanthines (2.5-10mM), but not blockade of adenosine receptors, phosphodiesterase-4 or the sarcoplasmatic/endoplasmatic reticulum ATPase countered inspiratory depression by muscimol-evoked GABAA receptor activation that was associated with a hyperpolarization and input resistance decrease silencing preBötC neurons in slices. The latter blockers did neither affect preBötC or cranial/spinal motor network bursting nor evoke seizure-like activity or mask corresponding methylxanthine-evoked discharges. Our findings show that methylxanthine-evoked hyperexcitability originates from motor networks, leaving preBötC activity largely unaffected, and suggest that GABAA receptors contribute to methylxanthine-evoked seizure-like perturbation of spinal motoneurons whereas non-respiratory XII motoneuron oscillations are of different

  19. Inactivity-induced respiratory plasticity: Protecting the drive to breathe in disorders that reduce respiratory neural activity☆

    PubMed Central

    Strey, K.A.; Baertsch, N.A.; Baker-Herman, T.L.

    2013-01-01

    Multiple forms of plasticity are activated following reduced respiratory neural activity. For example, in ventilated rats, a central neural apnea elicits a rebound increase in phrenic and hypoglossal burst amplitude upon resumption of respiratory neural activity, forms of plasticity called inactivity-induced phrenic and hypoglossal motor facilitation (iPMF and iHMF), respectively. Here, we provide a conceptual framework for plasticity following reduced respiratory neural activity to guide future investigations. We review mechanisms giving rise to iPMF and iHMF, present new data suggesting that inactivity-induced plasticity is observed in inspiratory intercostals (iIMF) and point out gaps in our knowledge. We then survey conditions relevant to human health characterized by reduced respiratory neural activity and discuss evidence that inactivity-induced plasticity is elicited during these conditions. Understanding the physiological impact and circumstances in which inactivity-induced respiratory plasticity is elicited may yield novel insights into the treatment of disorders characterized by reductions in respiratory neural activity. PMID:23816599

  20. Effects of coarse chalk dust particles (2.5-10 μm) on respiratory burst and oxidative stress in alveolar macrophages.

    PubMed

    Zhang, Yuexia; Yang, Zhenhua; Feng, Yan; Li, Ruijin; Zhang, Quanxi; Geng, Hong; Dong, Chuan

    2015-08-01

    The main aim of the present study was to examine in vitro responses of rat alveolar macrophages (AMs) exposed to coarse chalk dust particles (particulate matter in the size range 2.5-10 μm, PM(coarse)) by respiratory burst and oxidative stress. Chalk PM(coarse)-induced respiratory burst in AMs was measured by using a luminol-dependent chemiluminescence (CL) method. Also, the cell viability; lactate dehydrogenase (LDH) release; levels of cellular superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), malondialdehyde (MDA), and acid phosphatase (ACP); plasma membrane ATPase; and extracellular nitric oxide (NO) level were determined 4 h following the treatment with the different dosages of chalk PM(coarse). The results showed that chalk PM(coarse) initiated the respiratory burst of AMs as indicated by strong CL, which was inhibited by diphenyleneiodonium chloride and L-N-nitro-L-arginine methyl ester hydrochloride. It suggested that chalk PM(coarse) induced the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in AMs. This hypothesis was confirmed by the fact that chalk PM(coarse) resulted in a significant decrease of intracellular SOD, GSH, ACP, and ATPase levels and a notable increase of intracellular CAT, MDA content, and extracellular NO level, consequently leading to a decrease of the cell viability and a increase of LDH release. It was concluded that AMs exposed to chalk PM(coarse) can suffer from cytotoxicity which may be mediated by generation of excessive ROS/RNS. Graphical Abstract The possible mechanism of coarse chalk particles-induced adverse effects in AMs.

  1. Effects of banding or burdizzo castration of bulls on neutrophil phagocytosis and respiratory burst, CD62-L expression, and serum interleukin-8 concentration.

    PubMed

    Pang, W Y; Earley, B; Sweeney, T; Pirani, S; Gath, V; Crowe, M A

    2009-10-01

    The objective was to investigate measures of neutrophil function in response to banding or burdizzo castration of bulls. Thirty-two Holstein-Friesian bulls (14 mo old, 505 +/- 7.8 kg of BW) were assigned to 1 of 4 treatment groups: 1) sham-handled control (CON); 2) banding castration alone (BAND); 3) burdizzo castration alone (BURD); or 4) cortisol infusion (CORT) as a further control group. For each group on d -14, 8 animals (2 animals/treatment) were tied up in tie stalls (day of treatment = d 0). At -2, 2, 6, 12, 24, 48, 72, and 144 h relative to treatment time, blood samples were collected for analyses of neutrophil phagocytosis and respiratory burst, neutrophil CD62-L expression, and serum IL-8 concentration. Leukocyte counts, phagocytosis activity, and CD62-L expression were similar (P > 0.05) among the 4 treatment groups. The BURD castrates had greater burst activity compared with BAND castrates (P = 0.048) and CON (P = 0.01) at 72 h posttreatment. The BURD castrates had a greater percentage of granulocyte positive leukocytes (Gr%; P < 0.01) at 2 h posttreatment compared with CON and CORT bulls. The BURD castrates had greater (P < 0.05) Gr% compared with BAND, CON, and CORT animals at 24, 48, and 72 h posttreatment. The BURD and BAND castrates had greater Gr% (P < 0.05) compared with CORT bulls at 144 h posttreatment. In general, BAND, BURD, and CORT did not affect serum IL-8 concentration. Banding castration, BURD, and CORT did not induce leukocytosis, whereas BURD induced a modest neutrophilia. Neutrophil functioning in terms of phagocytosis and respiratory burst and serum IL-8 concentration were not compromised by BAND, BURD, and CORT. These findings indicate nonsurgical castration is unlikely to induce a severe acute systemic inflammatory response in terms of neutrophil function.

  2. The effects of emodin on cell viability, respiratory burst and gene expression of Nrf2-Keap1 signaling molecules in the peripheral blood leukocytes of blunt snout bream (Megalobrama amblycephala).

    PubMed

    Zhao, Zhenxin; Xie, Jun; Liu, Bo; Ge, Xianping; Song, Changyou; Ren, Mingchun; Zhou, Qunlan; Miao, Linghong; Zhang, Huimin; Shan, Fan; Yang, Zhenfei

    2017-03-01

    We determined the effects of emodin on the cell viability, respiratory burst activity, mRNA levels of antioxidative enzymes (Cu-Zn SOD, CAT and NOX2), and gene expressions of the Nrf2-Keap1 signaling molecules in the peripheral blood leukocytes of blunt snout bream. Triplicate groups of cultured cells were treated with different concentrations of emodin (0.04-25 μg/ml) for 24 h. Results showed that the emodin caused a dramatic loss in cell viability, and occurred in a dose-dependent manner. Emodin exposure (1-25 μg/ml) were significantly induced the ROS generation compared to the control. The respiratory burst and NADPH oxidase activities were significantly induced at a concentration of 0.20 μg/ml, and inhibited at 25 μg/ml. Besides, mRNA levels of antioxidant enzyme genes were dramatically regulated by emodin exposure for 24 h. During low concentrations of exposure, mRNA levels of Cu-Zn SOD in the cells treated with 0.04, 0.20 μg/ml, CAT, NOX2 and Nrf2 in the cells treated with 1 μg/ml were sharply increased, respectively. Whereas, high concentrations were dramatically down-regulated the gene expressions of CAT in the cells treated with 5, 25 μg/ml and NOX2 in the cells treated with 25 μg/ml. Furthermore, sharp increase in Keap1and Bach1 expression levels were observed a dose-dependent manner. In conclusion, this study demonstrated that emodin could induce antioxidant defenses which were involved in cytotoxic activities, respiratory burst and the transcriptional regulation levels of antioxidant enzymes and Nrf2-Keap1 signaling molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Influence of Rhodococcus equi on the respiratory burst of resident alveolar macrophages from horses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumbaugh, G.W.

    1986-01-01

    Rhodococcus equi is the etiologic agent of a devastating pneumonia of sporadic incidence in foals. The purpose of this study was to evaluate the influence of R. equi on the superoxide anion production, measured spectrophotometrically as the reduction of cytochrome C, and hexose monophosphate shunt activity, measured by /sup 14/CO/sub 2/ liberation from /sup 14/C-1-D-glucose, of alveolar macrophages from horses. Alveolar macrophages were harvested from 6 anesthetized, healthy, light-breed, adult horses by bronchoalveolar lavage. Following a randomized complete block design, the suspension of cells was divided into aliquots of 10/sup 6/ viable alveolar macrophages which were exposed to 1, 10more » or 100 g. of opsonized R. equi or opsonized zymosan A at 37 C for 2 hours. In this study the respiratory burst of equine alveolar macrophages was only evidenced by the hexose monophosphate shunt activity and superoxide anion was not coincidentally produced. Rhodococcus equi did not adversely affect that response. The insignificant superoxide anion production by the alveolar macrophages suggests that this may not be a significant oxygen metabolite in those cells.« less

  4. Central respiratory effects of substance P in neonatal mice: an in vitro study.

    PubMed

    Ptak, K; Hilaire, G

    1999-05-14

    Experiments were performed on neonatal mice to know whether substance P (SP) modified the rhythm and the amplitude of the phrenic bursts generated in vitro in brainstem-cervical cord preparations. In OF1 and C3H neonatal preparations, SP or the tachykinin NK1 receptor agonist [Sar9,Met(O2)11] substance P both increased significantly phrenic burst amplitude (10(-7) M) but had no significant effect on respiratory rhythm unless used at concentrations 10 times larger. In neonates from the monoamine oxidase-A deficient transgenic Tg8 line, SP increased phrenic burst amplitude but had no effect on the respiratory rhythm at the tested concentrations. The role of SP in regulating neonatal respiratory activity is discussed on the basis of rat and mouse results.

  5. The Effects of Lidocaine on Central Respiratory Neuron Activity and Nociceptive-Related Responses in the Brainstem-Spinal Cord Preparation of the Newborn Rat.

    PubMed

    Shakuo, Tomoharu; Lin, Shih-Tien; Onimaru, Hiroshi

    2016-05-01

    Lidocaine is widely used in the clinical setting as a local anesthetic and antiarrhythmic drug. Although it has been suggested that lidocaine exerts inhibitory effects on the central and peripheral neurons, there are no reports on its effects on central respiratory activity in vertebrates. In this study, we examined the effects of lidocaine on respiratory rhythm generation and nociceptive response in brainstem-spinal cord preparations from the newborn rats. Preparations were isolated from Wistar rats (postnatal day 0-3) and superfused with artificial cerebrospinal fluid equilibrated with 95% O2 and 5% CO2, pH 7.4, at 25°C to 26°C. We examined the effects of lidocaine on the fourth cervical ventral root (C4)-inspiratory activity and on the preinspiratory and inspiratory neurons in the rostral medulla. We also examined the effects on the C4/C5 reflex responses induced by ipsilateral C7/C8 dorsal root stimulation, which are thought to be related to the nociceptive response. The application of low doses of lidocaine (10-20 μM) resulted in a slight increase of the C4 burst rate, whereas high doses of lidocaine (100-400 μM) decreased the burst rate in a dose-dependent manner, eventually resulting in the complete cessation of respiratory rhythm. High doses of lidocaine decreased the burst duration and negative slope conductance of preinspiratory neurons, suggesting that lidocaine blocked persistent Na+ current. After the burst generation of the respiratory neurons ceased, depolarizing current stimulation continued to induce action potentials; however, the induction of the spike train was depressed because of strong adaptation. A low dose of lidocaine (20 μM) depressed C4/C5 spinal reflex responses. Our findings indicate that lidocaine depressed nociception-related responses at lower concentrations than those that induced respiratory depression. Our report provides the basic neuronal mechanisms to support the clinical use of lidocaine, which shows antinociceptive

  6. Identifying Crucial Parameter Correlations Maintaining Bursting Activity

    PubMed Central

    Doloc-Mihu, Anca; Calabrese, Ronald L.

    2014-01-01

    Recent experimental and computational studies suggest that linearly correlated sets of parameters (intrinsic and synaptic properties of neurons) allow central pattern-generating networks to produce and maintain their rhythmic activity regardless of changing internal and external conditions. To determine the role of correlated conductances in the robust maintenance of functional bursting activity, we used our existing database of half-center oscillator (HCO) model instances of the leech heartbeat CPG. From the database, we identified functional activity groups of burster (isolated neuron) and half-center oscillator model instances and realistic subgroups of each that showed burst characteristics (principally period and spike frequency) similar to the animal. To find linear correlations among the conductance parameters maintaining functional leech bursting activity, we applied Principal Component Analysis (PCA) to each of these four groups. PCA identified a set of three maximal conductances (leak current, Leak; a persistent K current, K2; and of a persistent Na+ current, P) that correlate linearly for the two groups of burster instances but not for the HCO groups. Visualizations of HCO instances in a reduced space suggested that there might be non-linear relationships between these parameters for these instances. Experimental studies have shown that period is a key attribute influenced by modulatory inputs and temperature variations in heart interneurons. Thus, we explored the sensitivity of period to changes in maximal conductances of Leak, K2, and P, and we found that for our realistic bursters the effect of these parameters on period could not be assessed because when varied individually bursting activity was not maintained. PMID:24945358

  7. Cellular defense of the avian respiratory system: effects of Pasteurella multocida on respiratory burst activity of avian respiratory tract phagocytes.

    PubMed

    Ochs, D L; Toth, T E; Pyle, R H; Siegel, P B

    1988-12-01

    The respiratory tract of healthy chickens contain few free-residing phagocytic cells. Intratracheal inoculation with Pasteurella multocida stimulated a significant (P less than 0.05) migration of cells to the lungs and air sacs of White Rock chickens within 2 hours after inoculation. We found the maximal number of avian respiratory tract phagocytes (22.9 +/- 14.0 x 10(6] at 8 hours after inoculation. Flow cytometric analysis of these cells revealed 2 populations on the basis of cell-size and cellular granularity. One of these was similar in size and granularity to those of blood heterophils. Only this population was capable of generating oxidative metabolites in response to phorbol myristate acetate. The ability of the heterophils to produce hydrogen peroxide, measured as the oxidation of intracellularly loaded 2',7'-dichlorofluorescein, decreased with time after inoculation. These results suggest that the migration of heterophils, which are capable of high levels of oxidative metabolism, to the lungs and air sacs may be an important defense mechanism of poultry against bacterial infections of the respiratory tract.

  8. Activation of respiratory muscles during respiratory muscle training.

    PubMed

    Walterspacher, Stephan; Pietsch, Fabian; Walker, David Johannes; Röcker, Kai; Kabitz, Hans-Joachim

    2018-01-01

    It is unknown which respiratory muscles are mainly activated by respiratory muscle training. This study evaluated Inspiratory Pressure Threshold Loading (IPTL), Inspiratory Flow Resistive Loading (IFRL) and Voluntary Isocapnic Hyperpnea (VIH) with regard to electromyographic (EMG) activation of the sternocleidomastoid muscle (SCM), parasternal muscles (PARA) and the diaphragm (DIA) in randomized order. Surface EMG were analyzed at the end of each training session and normalized using the peak EMG recorded during maximum inspiratory maneuvers (Sniff nasal pressure: SnPna, maximal inspiratory mouth occlusion pressure: PImax). 41 healthy participants were included. Maximal activation was achieved for SCM by SnPna; the PImax activated predominantly PARA and DIA. Activations of SCM and PARA were higher in IPTL and VIH than for IFRL (p<0.05). DIA was higher applying IPTL compared to IFRL or VIH (p<0.05). IPTL, IFRL and VIH differ in activation of inspiratory respiratory muscles. Whereas all methods mainly stimulate accessory respiratory muscles, diaphragm activation was predominant in IPTL. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Localization of essential rhombomeres for respiratory rhythm generation in bullfrog tadpoles using a binary search algorithm: Rhombomere 7 is essential for the gill rhythm and suppresses lung bursts before metamorphosis.

    PubMed

    Duchcherer, Maryana; Baghdadwala, Mufaddal I; Paramonov, Jenny; Wilson, Richard J A

    2013-12-01

    Frog metamorphosis includes transition from water breathing to air breathing but the extent to which such a momentous change in behavior requires fundamental changes in the organization of the brainstem respiratory circuit is unknown. Here, we combine a vertically mounted isolated brainstem preparation, "the Sheep Dip," with a search algorithm used in computer science, to identify essential rhombomeres for generation of ventilatory motor bursts in metamorphosing bullfrog tadpoles. Our data suggest that rhombomere 7, which in mammals hosts the PreBötC (PreBötzinger Complex; the likely inspiratory oscillator), is essential for gill and buccal bursts. Whereas rhombomere 5, in close proximity to a brainstem region associated with the mammalian expiratory oscillator, is essential for lung bursts at both stages. Therefore, we conclude there is no rhombomeric translocation of respiratory oscillators in bullfrogs as previously suggested. In premetamorphic tadpoles, functional ablation of rhombomere 7 caused ectopic expression of precocious lung bursts, suggesting the gill oscillator suppresses an otherwise functional lung oscillator in early development. Copyright © 2013 Wiley Periodicals, Inc.

  10. Cellular glutathione levels in HL-60 cells during respiratory burst are not correlated with ultra-weak photon emission.

    PubMed

    Burgos, Rosilene Cristina Rossetto; Zhang, Wei; van Wijk, Eduard P A; Hankemeier, Thomas; Ramautar, Rawi; van der Greef, Jan

    2017-10-01

    Recently, ultra-weak photon emission (UPE) was developed as a novel tool for measuring oxidative metabolic processes, as its generation is related to reactive oxygen species (ROS). Both an imbalance in ROS or the uncontrolled production of ROS can lead to oxidative stress, which is commonly associated with many diseases. In addition to playing several biological functions, the thiol amino acid glutathione has an important antioxidant function in the body's defense against ROS. Specifically, glutathione is an important endogenous antioxidant that helps maintain oxidant levels. At the cellular level, glutathione is present in its reduced form (GSH) at relatively high concentrations (in the millimolar range) and in its oxidized form (GSSG) at low concentrations (in the micromolar range). Thus, the GSH/GSSG ratio is often used as an indicator of cellular redox state. Here, we used the HL-60 cell line as a model system in order to determine whether UPE is correlated with intracellular GSH and GSSG levels. HL-60 cells were differentiated into neutrophil-like cells and then stimulated to undergo respiratory burst. We then recorded UPE in real time for 9000 seconds and used capillary electrophoresis coupled to mass spectrometry to measure GSH and GSSG levels in cell extracts. We found that although respiratory burst significantly decreased the GSH/GSSG ratio, this change was not significantly correlated with the UPE profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Acute morphine effects on respiratory activity in mice with target deletion of the tachykinin 1 gene (Tac1-/-).

    PubMed

    Shvarev, Yuri; Berner, Jonas; Bilkei-Gorzo, Andras; Lagercrantz, Hugo; Wickström, Ronny

    2010-01-01

    Search for physiological mechanisms which could antagonize the opioid-induced respiratory depression is of important clinical value. In this study, we investigated the acute effects of morphine on respiratory activity in genetically modified newborn (P2) mice with target deletion of the (Tac1 -/-) gene lacking substance P (SP) and neurokinin A (NKA). In vivo, as shown with whole-body flow barometric plethysmography technique, morphine induced significantly attenuated minute ventilation during intermittent hypoxia in control animals. In contrast, knockout mice revealed significant increase in minute ventilation. In vitro, in brainstem preparation, knockout mice demonstrated greater changes in burst frequency during intermittent anoxia challenge. The data suggest that hereditary deficiency in tachykinins, SP and NKA results in more robust hypoxic response in newborn Tac1-/- mice during respiratory depression induced by morphine.

  12. How long does a burst burst?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bin-Bin; Connaughton, Valerie; Briggs, Michael S.

    2014-05-20

    Several gamma-ray bursts (GRBs) last much longer (∼hours) in γ-rays than typical long GRBs (∼minutes), and it has recently been proposed that these 'ultra-long GRBs' may form a distinct population, probably with a different (e.g., blue supergiant) progenitor than typical GRBs. However, Swift observations suggest that many GRBs have extended central engine activities manifested as flares and internal plateaus in X-rays. We perform a comprehensive study on a large sample of Swift GRBs with X-Ray Telescope observations to investigate GRB central engine activity duration and to determine whether ultra-long GRBs are unusual events. We define burst duration t {sub burst}more » based on both γ-ray and X-ray light curves rather than using γ-ray observations alone. We find that t {sub burst} can be reliably measured in 343 GRBs. Within this 'good' sample, 21.9% GRBs have t {sub burst} ≳ 10{sup 3} s and 11.5% GRBs have t {sub burst} ≳ 10{sup 4} s. There is an apparent bimodal distribution of t {sub burst} in this sample. However, when we consider an 'undetermined' sample (304 GRBs) with t {sub burst} possibly falling in the gap between GRB duration T {sub 90} and the first X-ray observational time, as well as a selection effect against t {sub burst} falling into the first Swift orbital 'dead zone' due to observation constraints, the intrinsic underlying t {sub burst} distribution is consistent with being a single component distribution. We found that the existing evidence for a separate ultra-long GRB population is inconclusive, and further multi-wavelength observations are needed to draw a firmer conclusion. We also discuss the theoretical implications of our results. In particular, the central engine activity duration of GRBs is generally much longer than the γ-ray T {sub 90} duration and it does not even correlate with T {sub 90}. It would be premature to make a direct connection between T {sub 90} and the size of the progenitor star.« less

  13. Population calcium imaging of spontaneous respiratory and novel motor activity in the facial nucleus and ventral brainstem in newborn mice

    PubMed Central

    Persson, Karin; Rekling, Jens C

    2011-01-01

    Abstract The brainstem contains rhythm and pattern forming circuits, which drive cranial and spinal motor pools to produce respiratory and other motor patterns. Here we used calcium imaging combined with nerve recordings in newborn mice to reveal spontaneous population activity in the ventral brainstem and in the facial nucleus. In Fluo-8 AM loaded brainstem–spinal cord preparations, respiratory activity on cervical nerves was synchronized with calcium signals at the ventrolateral brainstem surface. Individual ventrolateral neurons at the level of the parafacial respiratory group showed perfect or partial synchrony with respiratory nerve bursts. In brainstem–spinal cord preparations, cut at the level of the mid-facial nucleus, calcium signals were recorded in the dorsal, lateral and medial facial subnuclei during respiratory activity. Strong activity initiated in the dorsal subnucleus, followed by activity in lateral and medial subnuclei. Whole-cell recordings from facial motoneurons showed weak respiratory drives, and electrical field potential recordings confirmed respiratory drive to particularly the dorsal and lateral subnuclei. Putative facial premotoneurons showed respiratory-related calcium signals, and were predominantly located dorsomedial to the facial nucleus. A novel motor activity on facial, cervical and thoracic nerves was synchronized with calcium signals at the ventromedial brainstem extending from the level of the facial nucleus to the medulla–spinal cord border. Cervical dorsal root stimulation induced similar ventromedial activity. The medial facial subnucleus showed calcium signals synchronized with this novel motor activity on cervical nerves, and cervical dorsal root stimulation induced similar medial facial subnucleus activity. In conclusion, the dorsal and lateral facial subnuclei are strongly respiratory-modulated, and the brainstem contains a novel pattern forming circuit that drives the medial facial subnucleus and cervical motor

  14. Dual Stimulus-Dependent Effect of Oenothera paradoxa Extract on the Respiratory Burst in Human Leukocytes: Suppressing for Escherichia coli and Phorbol Myristate Acetate and Stimulating for Formyl-Methionyl-Leucyl-Phenylalanine

    PubMed Central

    Burzynska-Pedziwiatr, Izabela; Bukowiecka-Matusiak, Malgorzata; Wojcik, Marzena; Machala, Waldemar; Bienkiewicz, Malgorzata; Spolnik, Grzegorz; Danikiewicz, Witold; Wozniak, Lucyna Alicja

    2014-01-01

    Although a growing body of evidence suggests that plant polyphenols can modulate human immune responses, their simultaneous action on monocyte and neutrophil oxidative burst is currently poorly understood. Based on the hypothesis that various polyphenols contained in plant extracts might affect the oxidative burst of phagocytes, we evaluated the effects of ethanolic O. paradoxa extract polyphenols on monocyte and neutrophil oxidative burst in vitro activated by different stimuli, including opsonized bacteria E. coli, phorbol 12-myristate 13-acetate (PMA), and formyl-methionyl-leucyl-phenylalanine (fMLP). Samples were analyzed by the dihydrorhodamine flow cytometry assay. Our results showed that the extract repressed significantly and dose-dependently reactive oxygen species production in both cell types stimulated with E. coli and PMA (P < 0.05) and its inhibitory efficiency was stimulus- and cell-type-dependent. Interestingly, there was significant stimulatory effect of the extract on bursting phagocytes induced by fMLP (P < 0.05). Additionally, several flavonoids and phenolic compounds as well as penta-galloyl-β-(D)-glucose (PGG), the representative of hydrolyzable tannins, were identified in the 60% extract by high-performance liquid chromatography (HPLC) coupled to electrospray ionization in negative ion mode. In summary, the ethanolic O. paradoxa extract, rich in flavonoids and phenolic compounds, exhibits dual stimulus-dependent effect on the respiratory burst in human leukocytes; hence, it might affect immune responses in humans. PMID:25298860

  15. Dual stimulus-dependent effect of Oenothera paradoxa extract on the respiratory burst in human leukocytes: suppressing for Escherichia coli and phorbol myristate acetate and stimulating for formyl-methionyl-leucyl-phenylalanine.

    PubMed

    Burzynska-Pedziwiatr, Izabela; Bukowiecka-Matusiak, Malgorzata; Wojcik, Marzena; Machala, Waldemar; Bienkiewicz, Malgorzata; Spolnik, Grzegorz; Danikiewicz, Witold; Wozniak, Lucyna Alicja

    2014-01-01

    Although a growing body of evidence suggests that plant polyphenols can modulate human immune responses, their simultaneous action on monocyte and neutrophil oxidative burst is currently poorly understood. Based on the hypothesis that various polyphenols contained in plant extracts might affect the oxidative burst of phagocytes, we evaluated the effects of ethanolic O. paradoxa extract polyphenols on monocyte and neutrophil oxidative burst in vitro activated by different stimuli, including opsonized bacteria E. coli, phorbol 12-myristate 13-acetate (PMA), and formyl-methionyl-leucyl-phenylalanine (fMLP). Samples were analyzed by the dihydrorhodamine flow cytometry assay. Our results showed that the extract repressed significantly and dose-dependently reactive oxygen species production in both cell types stimulated with E. coli and PMA (P < 0.05) and its inhibitory efficiency was stimulus- and cell-type-dependent. Interestingly, there was significant stimulatory effect of the extract on bursting phagocytes induced by fMLP (P < 0.05). Additionally, several flavonoids and phenolic compounds as well as penta-galloyl-β-(D)-glucose (PGG), the representative of hydrolyzable tannins, were identified in the 60% extract by high-performance liquid chromatography (HPLC) coupled to electrospray ionization in negative ion mode. In summary, the ethanolic O. paradoxa extract, rich in flavonoids and phenolic compounds, exhibits dual stimulus-dependent effect on the respiratory burst in human leukocytes; hence, it might affect immune responses in humans.

  16. Chasing Low Frequency Radio Bursts from Magnetically Active Stars

    NASA Astrophysics Data System (ADS)

    Lynch, Christene; Murphy, Tara; Kaplan, David

    2017-05-01

    Flaring activity is a common characteristic of magnetically active stars. These events produce emission throughout the electromagnetic spectrum, implying a range of physical processes. A number of objects exhibit short-duration, narrow band, and highly circularly polarised (reaching 100%) radio bursts. The observed polarisation and frequency-time structure of these bursts points to a coherent emission mechanism such as the electron cyclotron maser. Due to the stochastic nature of these bursts and the sensitivity of current instruments, the number of stars where coherent emission has been detected is few, with numbers limited to a few tens of objects. Observations of a wider sample of active stars are necessary in order to establish the percentage that exhibit coherent radio bursts and to relate the observed emission characteristics to stellar magnetic properties. New wide-field, low frequency radio telescopes will probe a frequency regime that is mostly unexplored for many magnetically active stars and where coherent radio emissions are expected to be more numerous. M dwarf stars are of particular interest as they are currently favoured as most likely to host habitable planets. Yet the extreme magnetic activity observed for some M dwarf stars places some doubt on the ability of orbiting planets to host life. This presentation reports the first results from a targeted Murchison Widefield Array survey of M dwarf stars that were previously detected at 100 - 200 MHz using single dish telescopes. We will discuss robust flare-rate measurements over a high dynamic range of flare properties, as well as investigate the physical mechanism(s) behind the flares.

  17. SGR J1550-5418 Bursts Detected with the Fermi Gamma-Ray Burst Monitor during Its Most Prolific Activity

    NASA Technical Reports Server (NTRS)

    vanderHorst, A. J.; Kouveliotou, C.; Gorgone, N. M.; Kaneko, Y.; Baring, M. G.; Guiriec, S.; Gogus, E,; Granot, J.; Watts, A. L.; Lin, L.; hide

    2012-01-01

    We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in 2009 January, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550-5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties.We determine the durations, emission times, duty cycles, and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J15505418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law (PL) with an exponential cutoff (Comptonized model), and two blackbody (BB) functions (BB+BB). In the spectral fits with the Comptonized model, we find a mean PL index of -0.92, close to the OTTB index of -1. We show that there is an anti-correlation between the Comptonized E(sub peak) and the burst fluence and average flux. For the BB+BBfits, we find that the fluences and emission areas of the two BB functions are correlated. The low-temperature BB has an emission area comparable to the neutron star surface area, independent of the temperature, while the high temperature BB has a much smaller area and shows an anti-correlation between emission area and temperature.We compare the properties of these bursts with bursts observed from other SGR sources during extreme activations, and discuss the implications of our results in the context of magnetar burst models.

  18. Bursts of activity in collective cell migration

    PubMed Central

    Chepizhko, Oleksandr; Giampietro, Costanza; Mastrapasqua, Eleonora; Nourazar, Mehdi; Ascagni, Miriam; Sugni, Michela; Fascio, Umberto; Leggio, Livio; Malinverno, Chiara; Scita, Giorgio; Santucci, Stéphane; Alava, Mikko J.; Zapperi, Stefano; La Porta, Caterina A. M.

    2016-01-01

    Dense monolayers of living cells display intriguing relaxation dynamics, reminiscent of soft and glassy materials close to the jamming transition, and migrate collectively when space is available, as in wound healing or in cancer invasion. Here we show that collective cell migration occurs in bursts that are similar to those recorded in the propagation of cracks, fluid fronts in porous media, and ferromagnetic domain walls. In analogy with these systems, the distribution of activity bursts displays scaling laws that are universal in different cell types and for cells moving on different substrates. The main features of the invasion dynamics are quantitatively captured by a model of interacting active particles moving in a disordered landscape. Our results illustrate that collective motion of living cells is analogous to the corresponding dynamics in driven, but inanimate, systems. PMID:27681632

  19. Phrenic and hypoglossal nerve activity during respiratory response to hypoxia in 6-OHDA unilateral model of Parkinson's disease.

    PubMed

    Andrzejewski, Kryspin; Budzińska, Krystyna; Kaczyńska, Katarzyna

    2017-07-01

    Parkinson's disease (PD) patients apart from motor dysfunctions exhibit respiratory disturbances. Their mechanism is still unknown and requires investigation. Our research was designed to examine the activity of phrenic (PHR) and hypoglossal (HG) nerves activity during a hypoxic respiratory response in the 6-hydroxydopamine (6-OHDA) model of PD. Male adult Wistar rats were injected unilaterally with 6-OHDA (20μg) or the vehicle into the right medial forebrain bundle (MFB). Two weeks after the surgery the activity of the phrenic and hypoglossal nerve was registered in anesthetized, vagotomized, paralyzed, and mechanically ventilated rats under normoxic and hypoxic conditions. Lesion effectiveness was confirmed by the cylinder test, performed before the MFB injection and 14days after, before the respiratory experiment. 6-OHDA lesioned animals showed a significant increase in normoxic inspiratory time. Expiratory time and total time of the respiratory cycle were prolonged in PD rats after hypoxia. The amplitude of the PHR activity and its minute activity were increased in comparison to the sham group at recovery time and during 30s of hypoxia. The amplitude of the HG activity was increased in response to hypoxia in 6-OHDA lesioned animals. The degeneration of dopaminergic neurons decreased the pre-inspiratory/inspiratory ratio of the hypoglossal burst amplitude during and after hypoxia. Unilateral MFB lesion changed the activity of the phrenic and hypoglossal nerves. The altered pre-inspiratory hypoglossal nerve activity indicates modifications to the central mechanisms controlling the activity of the HG nerve and may explain respiratory disorders seen in PD, i.e. apnea. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Testing the hypothesis of neurodegeneracy in respiratory network function with a priori transected arterially perfused brain stem preparation of rat

    PubMed Central

    Jones, Sarah E.

    2016-01-01

    Degeneracy of respiratory network function would imply that anatomically discrete aspects of the brain stem are capable of producing respiratory rhythm. To test this theory we a priori transected brain stem preparations before reperfusion and reoxygenation at 4 rostrocaudal levels: 1.5 mm caudal to obex (n = 5), at obex (n = 5), and 1.5 (n = 7) and 3 mm (n = 6) rostral to obex. The respiratory activity of these preparations was assessed via recordings of phrenic and vagal nerves and lumbar spinal expiratory motor output. Preparations with a priori transection at level of the caudal brain stem did not produce stable rhythmic respiratory bursting, even when the arterial chemoreceptors were stimulated with sodium cyanide (NaCN). Reperfusion of brain stems that preserved the pre-Bötzinger complex (pre-BötC) showed spontaneous and sustained rhythmic respiratory bursting at low phrenic nerve activity (PNA) amplitude that occurred simultaneously in all respiratory motor outputs. We refer to this rhythm as the pre-BötC burstlet-type rhythm. Conserving circuitry up to the pontomedullary junction consistently produced robust high-amplitude PNA at lower burst rates, whereas sequential motor patterning across the respiratory motor outputs remained absent. Some of the rostrally transected preparations expressed both burstlet-type and regular PNA amplitude rhythms. Further analysis showed that the burstlet-type rhythm and high-amplitude PNA had 1:2 quantal relation, with burstlets appearing to trigger high-amplitude bursts. We conclude that no degenerate rhythmogenic circuits are located in the caudal medulla oblongata and confirm the pre-BötC as the primary rhythmogenic kernel. The absence of sequential motor patterning in a priori transected preparations suggests that pontine circuits govern respiratory pattern formation. PMID:26888109

  1. Testing the hypothesis of neurodegeneracy in respiratory network function with a priori transected arterially perfused brain stem preparation of rat.

    PubMed

    Jones, Sarah E; Dutschmann, Mathias

    2016-05-01

    Degeneracy of respiratory network function would imply that anatomically discrete aspects of the brain stem are capable of producing respiratory rhythm. To test this theory we a priori transected brain stem preparations before reperfusion and reoxygenation at 4 rostrocaudal levels: 1.5 mm caudal to obex (n = 5), at obex (n = 5), and 1.5 (n = 7) and 3 mm (n = 6) rostral to obex. The respiratory activity of these preparations was assessed via recordings of phrenic and vagal nerves and lumbar spinal expiratory motor output. Preparations with a priori transection at level of the caudal brain stem did not produce stable rhythmic respiratory bursting, even when the arterial chemoreceptors were stimulated with sodium cyanide (NaCN). Reperfusion of brain stems that preserved the pre-Bötzinger complex (pre-BötC) showed spontaneous and sustained rhythmic respiratory bursting at low phrenic nerve activity (PNA) amplitude that occurred simultaneously in all respiratory motor outputs. We refer to this rhythm as the pre-BötC burstlet-type rhythm. Conserving circuitry up to the pontomedullary junction consistently produced robust high-amplitude PNA at lower burst rates, whereas sequential motor patterning across the respiratory motor outputs remained absent. Some of the rostrally transected preparations expressed both burstlet-type and regular PNA amplitude rhythms. Further analysis showed that the burstlet-type rhythm and high-amplitude PNA had 1:2 quantal relation, with burstlets appearing to trigger high-amplitude bursts. We conclude that no degenerate rhythmogenic circuits are located in the caudal medulla oblongata and confirm the pre-BötC as the primary rhythmogenic kernel. The absence of sequential motor patterning in a priori transected preparations suggests that pontine circuits govern respiratory pattern formation. Copyright © 2016 the American Physiological Society.

  2. Gamma-Ray Burst Precursor Activity as Observed with BATSE

    NASA Technical Reports Server (NTRS)

    Koshut, Thomas M.; Kouveliotou, Chryssa; Paciesas, William S.; vanParadijs, Jan; Pendleton, Geoffrey N.; Briggs, Michael S.; Fishman, Gerald J.; Meegan, Charles A.

    1995-01-01

    Gamma-ray burst time histories often consist of multiple episodes of emission with the count rate dropping to the background level between adjacent episodes. We define precursor activity as any case in which the first episode (referred to as the precursor episode) has a lower peak intensity than that of the remaining emission (referred to as the main episode) and is separated from the remaining burst emission by a background interval that is at least as long as the remaining emission. We find that approx. 3% of the bursts observed with the Burst and Transient Source Experiment (BATSE) on Compton Gamma Ray Observatory (CGRO) satisfy this definition. We present the results of a study of the properties of these events. The spatial distribution of these sources is consistent with that of the larger set of all BATSE gamma-ray bursts: inhomogeneous and isotropic. A correlation between the duration of the precursor emission and the duration of the main episode emission is observed at about the 3 sigma confidence level. We find no meaningful significant correlations between or among any of the other characteristics of the precursor or main episode emission. It appears that the characteristics of the main episode emission are independent of the existence of the precursor emission.

  3. A neuronal mechanism of propofol-induced central respiratory depression in newborn rats.

    PubMed

    Kashiwagi, Masanori; Okada, Yasumasa; Kuwana, Shun-Ichi; Sakuraba, Shigeki; Ochiai, Ryoichi; Takeda, Junzo

    2004-07-01

    The neural mechanisms of propofol-induced central respiratory depression remain poorly understood. In the present study, we studied these mechanisms and the involvement of gamma-aminobutyric acid (GABA)A receptors in propofol-induced central respiratory depression. The brainstem and the cervical spinal cord of 1- to 4-day-old rats were isolated, and preparations were maintained in vitro with oxygenated artificial cerebrospinal fluid. Rhythmic inspiratory burst activity was recorded from the C4 spinal ventral root. The activity of respiratory neurons in the ventrolateral medulla was recorded using a perforated patch-clamp technique. We found that bath-applied propofol decreased C4 inspiratory burst rate, which could be reversed by the administration of a GABAA antagonist, bicuculline. Propofol caused resting membrane potentials to hyperpolarize and suppressed the firing of action potentials in preinspiratory and expiratory neurons. In contrast, propofol had little effect on resting membrane potentials and action potential firing in inspiratory neurons. Our findings suggest that the depressive effects of propofol are, at least in part, mediated by the agonistic action of propofol on GABAA receptors. It is likely that the GABAA receptor-mediated hyperpolarization of preinspiratory neurons serves as the neuronal basis of propofol-induced respiratory depression in the newborn rat.

  4. Blockade of brain stem gap junctions increases phrenic burst frequency and reduces phrenic burst synchronization in adult rat.

    PubMed

    Solomon, Irene C; Chon, Ki H; Rodriguez, Melissa N

    2003-01-01

    Recent investigations have examined the influence of gap junctional communication on generation and modulation of respiratory rhythm and inspiratory motoneuron synchronization in vitro using transverse medullary slice and en bloc brain stem-spinal cord preparations obtained from neonatal (1-5 days postnatal) mice. Gap junction proteins, however, have been identified in both neurons and glia in brain stem regions implicated in respiratory control in both neonatal and adult rodents. Here, we used an in vitro arterially perfused rat preparation to examine the role of gap junctional communication on generation and modulation of respiratory rhythm and inspiratory motoneuron synchronization in adult rodents. We recorded rhythmic inspiratory motor activity from one or both phrenic nerves before and during pharmacological blockade (i.e., uncoupling) of brain stem gap junctions using carbenoxolone (100 microM), 18alpha-glycyrrhetinic acid (25-100 microM), 18beta-glycyrrhetinic acid (25-100 microM), octanol (200-300 microM), or heptanol (200 microM). During perfusion with a gap junction uncoupling agent, we observed an increase in the frequency of phrenic bursts (~95% above baseline frequency; P < 0.001) and a decrease in peak amplitude of integrated phrenic nerve discharge (P < 0.001). The increase in frequency of phrenic bursts resulted from a decrease in both T(I) (P < 0.01) and T(E) (P < 0.01). In addition, the pattern of phrenic nerve discharge shifted from an augmenting discharge pattern to a "bell-shaped" or square-wave discharge pattern in most experiments. Spectral analyses using a fast Fourier transform (FFT) algorithm revealed a reduction in the peak power of both the 40- to 50-Hz peak (corresponding to the MFO) and 90- to 110-Hz peak (corresponding to the HFO) although spurious higher frequency activity (> or =130 Hz) was observed, suggesting an overall loss or reduction in inspiratory-phase synchronization. Although additional experiments are required to

  5. Respiration in vitro: I. Spontaneous activity.

    PubMed

    Hamada, O; Garcia-Rill, E; Skinner, R D

    1992-01-01

    The present report describes respiratory-like activity recorded from intercostal muscles in the neonatal rat in vitro brain stem-spinal cord, rib-attached preparation. In this preparation from 1- to 4-day-old rats, spontaneous rhythmic and synchronized upward movements of the rib cage coincided with the recorded muscle activity. Spontaneous respiratory-like activity showed a frequency in the range of 0.05-0.2 Hz, with single-, double-, and mixed-burst patterns. Spontaneous activity declined over time, but increased in frequency as temperature increased. Multilevel recordings showed a cephalocaudal order of bursting of intercostal muscles. Brain stem transections at the prepontine level did not affect spontaneous frequency, whereas premedullary transections resulted in an increase in spontaneous respiratory frequency. High spinal transections eliminated spontaneous respiratory-like activity. These results suggest that there is a well-organized pontomedullary pattern generator for respiratory-like activity in this preparation, which can be modulated by temperature. The characteristics of these electromyographic (EMG) recordings allow comparison with previous in vitro studies of respiratory-like activity using nerve activity and in vivo studies using EMG activity. These results provide basic information on the spontaneous activity of this preparation as a prelude to the study of the effects of electrical stimulation of the spinal cord to induce respiratory-like activity, as described in the companion article.

  6. Magnetar Bursts

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2014-01-01

    The Fermi/Gamma-ray Burst Monitor (GBM) was launched in June 2008. During the last five years the instrument has observed several hundreds of bursts from 8 confirmed magnetars and 19 events from unconfirmed sources. I will discuss the results of the GBM magnetar burst catalog, expand on the different properties of their diverse source population, and compare these results with the bursting activity of past sources. I will then conclude with thoughts of how these properties fit the magnetar theoretical models.

  7. Short-term sustained hypoxia induces changes in the coupling of sympathetic and respiratory activities in rats

    PubMed Central

    Moraes, Davi J A; Bonagamba, Leni G H; Costa, Kauê M; Costa-Silva, João H; Zoccal, Daniel B; Machado, Benedito H

    2014-01-01

    Individuals experiencing sustained hypoxia (SH) exhibit adjustments in the respiratory and autonomic functions by neural mechanisms not yet elucidated. In the present study we evaluated the central mechanisms underpinning the SH-induced changes in the respiratory pattern and their impact on the sympathetic outflow. Using a decerebrated arterially perfused in situ preparation, we verified that juvenile rats exposed to SH (10% O2) for 24 h presented an active expiratory pattern, with increased abdominal, hypoglossal and vagal activities during late-expiration (late-E). SH also enhanced the activity of augmenting-expiratory neurones and depressed the activity of post-inspiratory neurones of the Bötzinger complex (BötC) by mechanisms not related to changes in their intrinsic electrophysiological properties. SH rats exhibited high thoracic sympathetic activity and arterial pressure levels associated with an augmented firing frequency of pre-sympathetic neurones of the rostral ventrolateral medulla (RVLM) during the late-E phase. The antagonism of ionotropic glutamatergic receptors in the BötC/RVLM abolished the late-E bursts in expiratory and sympathetic outputs of SH rats, indicating that glutamatergic inputs to the BötC/RVLM are essential for the changes in the expiratory and sympathetic coupling observed in SH rats. We also observed that the usually silent late-E neurones of the retrotrapezoid nucleus/parafacial respiratory group became active in SH rats, suggesting that this neuronal population may provide the excitatory drive essential to the emergence of active expiration and sympathetic overactivity. We conclude that short-term SH induces the activation of medullary expiratory neurones, which affects the pattern of expiratory motor activity and its coupling with sympathetic activity. PMID:24614747

  8. Results of the IRIS UV Burst Survey, Part I: Active Regions Tracked Limb to Limb

    NASA Astrophysics Data System (ADS)

    Madsen, C. A.; DeLuca, E.

    2017-12-01

    We present results from the first phase of an effort to thoroughly characterize UV bursts within the Interface Region Imaging Spectrograph (IRIS) data catalogue. The observational signatures of these phenomena include dramatically intensified and broadened NUV/FUV emission line profiles with absorption features from cool metallic ions. These properties suggest that UV bursts originate from plasma at transition region temperatures (≥ 80,000 K) which is deeply embedded in the cool lower chromosphere ( 5,000 K). Rigorously characterizing the energetic and dynamical properties of UV bursts is crucial since they have considerable potential to heat active region chromospheres and could provide critical constraints for models of magnetic reconnection in these regions. The survey first focuses on IRIS observations of active regions tracked from limb to limb. All observations consist of large field-of-view raster scans of 320 or 400 steps each, which allow for widespread detection of many burst profiles at the expense of having limited short-term time evolution information. We detect bursts efficiently by applying a semi-automated single-Gaussian fitting technique to Si IV 1393.8 Å emission profiles that isolates the distinct burst population in a 4-D parameter space. The robust sample of NUV/FUV burst spectra allows for precise constraints of properties critical for modeling reconnection in the chromosphere, including outflow kinetic energy, density estimates from intensity ratios of Si IV 1402.8 Å and O IV 1401.2 Å emission lines, and coincident measures of emission in other wavelengths. We also track burst properties throughout the lifetimes of their host active regions, noting changes in detection rate and preferential location as the active regions evolve. Finally, the tracked active region observations provide a unique opportunity to investigate line-of-sight effects on observed UV burst spectral properties, particularly the strength of Ni II 1393.3 Å absorption

  9. The 2006-2007 Active Phase Of Anomalous X-Ray Pulsar 4U 0142+61: Radiative and Timing Changes, Bursts, and Burst Spectral Features

    NASA Technical Reports Server (NTRS)

    Gavril, Fotis P.; Dib, Rim; Kaspi, Victoria M.

    2009-01-01

    After at least 6 years of quiescence, Anomalous X-ray Pulsar (AXP) 4U 0142+61 entered an active phase in 2006 March that lasted several months and included six X-ray bursts as well as many changes in the persistent X-ray emission. The bursts, the first seen from this AXP in >11 years of Rossi X-ray Timing Explorer monitoring, all occurred in the interval between 2006 April 6 and 2007 February 7. The burst durations ranged from 8-3x10(exp 3)s. The first five burst spectra are well modeled by blackbodies, with temperatures kT approx. 2 - 6 keV. However, the sixth burst had a complicated spectrum that is well characterized by a blackbody plus three emission features whose amplitude varied throughout the burst. The most prominent feature was at 14.0 keV. Upon entry into the active phase the pulsar showed a significant change in pulse morphology and a likely timing glitch. The glitch had a total frequency jump of (1.9+/-0.4)x10(exp -7) Hz, which recovered with a decay time of 17+/-2 days by more than the initial jump, implying a net spin-down of the pulsar. We discuss these events in the context of the magnetar model.

  10. Root respiratory burst oxidase homologue-dependent H2O2 production confers salt tolerance on a grafted cucumber by controlling Na+ exclusion and stomatal closure

    PubMed Central

    Niu, Mengliang; Huang, Yuan; Sun, Shitao; Sun, Jingyu; Cao, Haishun; Shabala, Sergey

    2018-01-01

    Abstract Plant salt tolerance can be improved by grafting onto salt-tolerant rootstocks. However, the underlying signaling mechanisms behind this phenomenon remain largely unknown. To address this issue, we used a range of physiological and molecular techniques to study responses of self-grafted and pumpkin-grafted cucumber plants exposed to 75 mM NaCl stress. Pumpkin grafting significantly increased the salt tolerance of cucumber plants, as revealed by higher plant dry weight, chlorophyll content and photochemical efficiency (Fv/Fm), and lower leaf Na+ content. Salinity stress resulted in a sharp increase in H2O2 production, reaching a peak 3 h after salt treatment in the pumpkin-grafted cucumber. This enhancement was accompanied by elevated relative expression of respiratory burst oxidase homologue (RBOH) genes RbohD and RbohF and a higher NADPH oxidase activity. However, this increase was much delayed in the self-grafted plants, and the difference between the two grafting combinations disappeared after 24 h. The decreased leaf Na+ content of pumpkin-grafted plants was achieved by higher Na+ exclusion in roots, which was driven by the Na+/H+ antiporter energized by the plasma membrane H+-ATPase, as evidenced by the higher plasma membrane H+-ATPase activity and higher transcript levels for PMA and SOS1. In addition, early stomatal closure was also observed in the pumpkin-grafted cucumber plants, reducing water loss and maintaining the plant’s hydration status. When pumpkin-grafted plants were pretreated with an NADPH oxidase inhibitor, diphenylene iodonium (DPI), the H2O2 level decreased significantly, to the level found in self-grafted plants, resulting in the loss of the salt tolerance. Inhibition of the NADPH oxidase-mediated H2O2 signaling in the root also abolished a rapid stomatal closure in the pumpkin-grafted plants. We concluded that the pumpkin-grafted cucumber plants increase their salt tolerance via a mechanism involving the root-sourced respiratory

  11. Involvement of mitogen-activated protein kinase activation in the signal-transduction pathways of the soya bean oxidative burst.

    PubMed Central

    Taylor, A T; Kim, J; Low, P S

    2001-01-01

    The oxidative burst constitutes one of the most rapid defence responses characterized in the Plant Kingdom. We have observed that four distinct elicitors of the soya bean oxidative burst activate kinases of masses approximately 44 kDa and approximately 47 kDa. Evidence that these kinases regulate production of reactive oxygen species include: (i) their rapid activation by oxidative burst elicitors, (ii) their tight temporal correlation between activation/deactivation of the kinases and activation/deactivation of the oxidative burst, (iii) the identical pharmacological profile of kinase activation and oxidant production for 13 commonly used inhibitors, and (iv) the autologous activation of both kinases and oxidant production by calyculin A and cantharidin, two phosphatase inhibitors. Immunological and biochemical studies reveal that the activated 44 kDa and 47 kDa kinases are mitogen-activated protein (MAP) kinase family members. The kinases prefer myelin basic protein as a substrate, and they phosphorylate primarily on threonine residues. The kinases are themselves phosphorylated on tyrosine residues, and this phosphorylation is required for activity. Finally, both kinases are recognized by an antibody against activated MAP kinase immediately after (but not before) cell stimulation by elicitors. Based on these and other observations, a preliminary sequence of signalling steps linking elicitor stimulation, kinase activation and Ca(2+) entry, to initiation of oxidant production, is proposed. PMID:11311144

  12. Burst and Persistent Emission Properties during the Recent Active Episode of the Anomalous X-Ray Pulsar 1E 1841-045

    NASA Technical Reports Server (NTRS)

    Lin, Lin; Kouveliotou, Chryssa; Gogus, Ersin; van der Horst, Alexander J.; Watts, Anna L.; Baring, Matthew G.; Kaneko, Yuki; Wijers, Ralph A. M. J.; Woods, Peter M.; Barthelmy, Scott; hide

    2011-01-01

    SWift/BAT detected the first burst from 1E 1841-045 in May 2010 with intermittent burst activity recorded through at least July 2011. Here we present Swift and Fermi/GBM observations of this burst activity and search for correlated changes to the persistent X-ray emission of the source. The T90 durations of the bursts range between 18 - 140 ms, comparable to other magnetar burst durations, while the energy released in each burst ranges between (0.8-25) x 1038 erg, which is in the low side of SGR bursts. We find that the bursting activity did not have a significant effect on the persistent flux level of the source. We argue that the mechanism leading to this sporadic burst activity in IE 1841-045 might not involve large scale restructuring (either crustal or magnetospheric) as seen in other magnetar sources.

  13. Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression

    NASA Astrophysics Data System (ADS)

    Chemali, Jessica; Ching, ShiNung; Purdon, Patrick L.; Solt, Ken; Brown, Emery N.

    2013-10-01

    Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily identify burst suppression periods, analysis algorithms require long intervals of data to characterize burst suppression at a given time and provide no framework for statistical inference. Approach. We introduce the concept of the burst suppression probability (BSP) to define the brain's instantaneous propensity of being in the suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space model in which the observation process is a binomial model and the state equation is a Gaussian random walk. We estimate the model using an approximate expectation maximization algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia and a patient during induction of controlled hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second time scale, and make possible formal statistical comparisons of burst suppression at different times. Significance. The state-space approach suggests a principled and informative way to analyze burst suppression that can be used to monitor, and eventually to control, the brain states of patients in the operating room and in the intensive care unit.

  14. Error signals as powerful stimuli for the operant conditioning-like process of the fictive respiratory output in a brainstem-spinal cord preparation from rats.

    PubMed

    Formenti, Alessandro; Zocchi, Luciano

    2014-10-01

    Respiratory neuromuscular activity needs to adapt to physiologic and pathologic conditions. We studied the conditioning effects of sensory fiber (putative Ia and II type from neuromuscular spindles) stimulation on the fictive respiratory output to the diaphragm, recorded from C4 phrenic ventral root, of in-vitro brainstem-spinal cord preparations from rats. The respiratory burst frequency in these preparations decreased gradually (from 0.26±0.02 to 0.09±0.003 bursts(-1)±SEM) as the age of the donor rats increased from zero to 4 days. The frequency greatly increased when the pH of the bath was lowered, and was significantly reduced by amiloride. C4 low threshold, sensory fiber stimulation, mimicking a stretched muscle, induced a short-term facilitation of the phrenic output increasing burst amplitude and frequency. When the same stimulus was applied contingently on the motor bursts, in an operant conditioning paradigm (a 500ms pulse train with a delay of 700ms from the beginning of the burst) a strong and persistent (>1h) increase in burst frequency was observed (from 0.10±0.007 to 0.20±0.018 bursts(-1)). Conversely, with random stimulation burst frequency increased only slightly and declined again within minutes to control levels after stopping stimulation. A forward model is assumed to interpret the data, and the notion of error signal, i.e. the sensory fiber activation indicating an unexpected stretched muscle, is re-considered in terms of the reward/punishment value. The signal, gaining hedonic value, is reviewed as a powerful unconditioned stimulus suitable in establishing a long-term operant conditioning-like process. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The 2006-2007 Active Phase of Anomalous X-Ray Pulsar 4U 0142+61: Radiative and Timing Changes, Bursts,and Burst Spectral Features

    NASA Technical Reports Server (NTRS)

    Gavriil, Fotis P.; Dib, Rim; Kaspi, Victoria M.

    2011-01-01

    After at least 6 years of quiescence, Anomalous X-ray Pulsar (AXP) 4U 0142+61 entered an active phase in 2006 March that lasted several months and included six X-ray bursts as well as many changes in the persistent X-ray emission. The bursts, the first seen from this AXP in > 11 years of Rossi X-ray Timing Explorer monitoring, all occurred in the interval between 2006 April 6 and 2007 February 7. The burst durations ranged from 0.4 - 1.8 x 10(exp 3) s. The first five burst spectra are well modeled by blackbodies, with temperatures kT approx 2 - 9 keV. However, the sixth burst had a complicated spectrum that is well characterized by a blackbody plus two emission features whose amplitude varied throughout the burst. The most prominent feature was at 14.0 keV. Upon entry into the active phase the pulsar showed a significant change in pulse morphology and a likely timing glitch. The glitch had a total frequency jump of (1.9+/-0.4) x 10(exp -7) Hz, which recovered with a decay time of 17+/-2 days by more than the initial jump, implying a net spin-down of the pulsar. Within the framework of the magnetar model, the net spin-down of the star could be explained by regions of the superfluid that rotate. slower than the rest. The bursts, flux enhancements, and pulse morphology changes can be explained as arising from crustal deformations due to stresses imposed by the highly twisted internal magnetic field. However, unlike other AXP outbursts, we cannot account for a major twist being implanted in the magnetosphere.

  16. Growth dynamics explain the development of spatiotemporal burst activity of young cultured neuronal networks in detail.

    PubMed

    Gritsun, Taras A; le Feber, Joost; Rutten, Wim L C

    2012-01-01

    A typical property of isolated cultured neuronal networks of dissociated rat cortical cells is synchronized spiking, called bursting, starting about one week after plating, when the dissociated cells have sufficiently sent out their neurites and formed enough synaptic connections. This paper is the third in a series of three on simulation models of cultured networks. Our two previous studies [26], [27] have shown that random recurrent network activity models generate intra- and inter-bursting patterns similar to experimental data. The networks were noise or pacemaker-driven and had Izhikevich-neuronal elements with only short-term plastic (STP) synapses (so, no long-term potentiation, LTP, or depression, LTD, was included). However, elevated pre-phases (burst leaders) and after-phases of burst main shapes, that usually arise during the development of the network, were not yet simulated in sufficient detail. This lack of detail may be due to the fact that the random models completely missed network topology .and a growth model. Therefore, the present paper adds, for the first time, a growth model to the activity model, to give the network a time dependent topology and to explain burst shapes in more detail. Again, without LTP or LTD mechanisms. The integrated growth-activity model yielded realistic bursting patterns. The automatic adjustment of various mutually interdependent network parameters is one of the major advantages of our current approach. Spatio-temporal bursting activity was validated against experiment. Depending on network size, wave reverberation mechanisms were seen along the network boundaries, which may explain the generation of phases of elevated firing before and after the main phase of the burst shape.In summary, the results show that adding topology and growth explain burst shapes in great detail and suggest that young networks still lack/do not need LTP or LTD mechanisms.

  17. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    NASA Technical Reports Server (NTRS)

    Noohi, Fatemeh; Kinnaird, Catherine; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2014-01-01

    The aim of the current study was to characterize the brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit saccular Vestibular Evoked Myogenic Potentials (VEMP) (Colebatch & Halmagyi 1992; Colebatch et al. 1994). Some researchers have reported that airconducted skull tap elicits both saccular and utricle VEMPs, while being faster and less irritating for the subjects (Curthoys et al. 2009, Wackym et al., 2012). However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying the vestibular disorders related to otolith deficits. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, pre and post central gyri, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation (Bottini et al., 1994; Dieterich et al., 2003; Emri et al., 2003; Schlindwein et al., 2008; Janzen et al., 2008). Here we hypothesized that the skull tap elicits the similar pattern of cortical activity as the auditory tone burst. Subjects put on a set of MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in supine position, with eyes closed. All subjects received both forms of the stimulation, however, the order of stimulation with auditory tone burst and air-conducted skull tap was counterbalanced across subjects. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular cortex, resulting in vestibular response (Halmagyi et al., 1995). Auditory tone bursts were also delivered for comparison. To validate

  18. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    NASA Technical Reports Server (NTRS)

    Noohi, F.; Kinnaird, C.; Wood, S.; Bloomberg, J.; Mulavara, A.; Seidler, R.

    2016-01-01

    The current study characterizes brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either the vestibulo-spinal reflex (saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)), or the ocular muscle response (utricle-mediated ocular VEMP (oVEMP)). Some researchers have reported that air-conducted skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for the subjects. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying otolith-specific deficits, including gait and balance problems that astronauts experience upon returning to earth. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that skull taps elicit similar patterns of cortical activity as the auditory tone bursts, and previous vestibular imaging studies. Subjects wore bilateral MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in the supine position, with eyes closed. Subjects received both forms of the stimulation in a counterbalanced fashion. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular system, resulting in the vestibular cortical response. Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory

  19. SIRPα controls the activity of the phagocyte NADPH oxidase by restricting the expression of gp91(phox).

    PubMed

    van Beek, Ellen M; Zarate, Julian Alvarez; van Bruggen, Robin; Schornagel, Karin; Tool, Anton T J; Matozaki, Takashi; Kraal, Georg; Roos, Dirk; van den Berg, Timo K

    2012-10-25

    The phagocyte NADPH oxidase mediates oxidative microbial killing in granulocytes and macrophages. However, because the reactive oxygen species produced by the NADPH oxidase can also be toxic to the host, it is essential to control its activity. Little is known about the endogenous mechanism(s) that limits NADPH oxidase activity. Here, we demonstrate that the myeloid-inhibitory receptor SIRPα acts as a negative regulator of the phagocyte NADPH oxidase. Phagocytes isolated from SIRPα mutant mice were shown to have an enhanced respiratory burst. Furthermore, overexpression of SIRPα in human myeloid cells prevented respiratory burst activation. The inhibitory effect required interactions between SIRPα and its natural ligand, CD47, as well as signaling through the SIRPα cytoplasmic immunoreceptor tyrosine-based inhibitory motifs. Suppression of the respiratory burst by SIRPα was caused by a selective repression of gp91(phox) expression, the catalytic component of the phagocyte NADPH oxidase complex. Thus, SIRPα can limit gp91(phox) expression during myeloid development, thereby controlling the magnitude of the respiratory burst in phagocytes. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Activation of postsynaptic GABAB receptors modulates the bursting pattern and synaptic activity of olfactory bulb juxtaglomerular neurons.

    PubMed

    Karpuk, Nikolay; Hayar, Abdallah

    2008-01-01

    Olfactory bulb glomeruli are formed by a network of three major types of neurons collectively called juxtaglomerular (JG) cells, which include external tufted (ET), periglomerular (PG), and short axon (SA) cells. There is solid evidence that gamma-aminobutyric acid (GABA) released from PG neurons presynaptically inhibits glutamate release from olfactory nerve terminals via activation of GABA(B) receptors (GABA(B)-Rs). However, it is still unclear whether ET cells have GABA(B)-Rs. We have investigated whether ET cells have functional postsynaptic GABA(B)-Rs using extracellular and whole cell recordings in olfactory bulb slices. In the presence of fast synaptic blockers (CNQX, APV, and gabazine), the GABA(B)-R agonist baclofen either completely inhibited the bursting or reduced the bursting frequency and increased the burst duration and the number of spikes/burst in ET cells. In the presence of fast synaptic blockers and tetrodotoxin, baclofen induced an outward current in ET cells, suggesting a direct postsynaptic effect. Baclofen reduced the frequency and amplitude of spontaneous EPSCs in PG and SA cells. In the presence of sodium and potassium channel blockers, baclofen reduced the frequency of miniature EPSCs, which were inhibited by the calcium channel blocker cadmium. All baclofen effects were reversed by application of the GABA(B)-R antagonist CGP55845. We suggest that activation of GABA(B)-Rs directly inhibits ET cell bursting and decreases excitatory dendrodendritic transmission from ET to PG and SA cells. Thus the postsynaptic GABA(B)-Rs on ET cells may play an important role in shaping the activation pattern of the glomeruli during olfactory coding.

  1. Neurotransmitters and neuromodulators controlling the hypoxic respiratory response in anaesthetized cats.

    PubMed

    Richter, D W; Schmidt-Garcon, P; Pierrefiche, O; Bischoff, A M; Lalley, P M

    1999-01-15

    1. The contributions of neurotransmitters and neuromodulators to the responses of the respiratory network to acute hypoxia were analysed in anaesthetized cats. 2. Samples of extracellular fluid were collected at 1-1.5 min time intervals by microdialysis in the medullary region of ventral respiratory group neurones and analysed for their content of glutamate, gamma-aminobutyric acid (GABA), serotonin and adenosine by high performance liquid chromatography. Phrenic nerve activity was correlated with these measurements. 3. Levels of glutamate and GABA increased transiently during early periods of hypoxia, coinciding with augmented phrenic nerve activity and then fell below control during central apnoea. Serotonin and adenosine increased slowly and steadily with onset of hypoxic depression of phrenic nerve activity. 4. The possibility that serotonin contributes to hypoxic respiratory depression was tested by microinjecting the 5-HT-1A receptor agonist 8-OH-DPAT into the medullary region that is important for rhythmogenesis. Hypoxic activation of respiratory neurones and phrenic nerve activity were suppressed. Microinjections of NAN-190, a 5-HT-1A receptor blocker, enhanced hypoxic augmentation resulting in apneustic prolongation of inspiratory bursts. 5. The results reveal a temporal sequence in the release of neurotransmitters and neuromodulators and suggest a specific role for each of them in the sequential development of hypoxic respiratory disturbances.

  2. Role of glutamate and substance P in the amphibian respiratory network during development

    PubMed Central

    Chen, Anna K.; Hedrick, Michael S.

    2008-01-01

    This study tested the hypothesis that glutamatergic ionotropic (AMPA/kainate) receptors and neurokinin receptors (NKR) are important in the regulation of respiratory motor output during development in the bullfrog. The roles of these receptors were studied with in vitro brainstem preparations from pre-metamorphic tadpoles and post-metamorphic frogs. Brainstems were superfused with an artificial cerebrospinal fluid at 20–22°C containing CNQX, a selective non-NMDA antagonist, or with substance P (SP), an agonist of NKR. Blockade of glutamate receptors with CNQX in both groups caused a reduction of lung burst frequency that was reversibly abolished at 5 μM (P<0.01). CNQX, but not SP, application produced a significant increase (P<0.05) in gill and buccal frequency in tadpoles and frogs, respectively. SP caused a significant increase (P<0.05) in lung burst frequency at 5 μM in both groups. These results suggest that glutamatergic activation of AMPA/kainate receptors is necessary for generation of lung burst activity and that SP is an excitatory neurotransmitter for lung burst frequency generation. Both glutamate and SP provide excitatory input for lung burst generation throughout the aquatic to terrestrial developmental transition in bullfrogs. PMID:18450524

  3. Role of glutamate and substance P in the amphibian respiratory network during development.

    PubMed

    Chen, Anna K; Hedrick, Michael S

    2008-06-30

    This study tested the hypothesis that glutamatergic ionotropic (AMPA/kainate) receptors and neurokinin receptors (NKR) are important in the regulation of respiratory motor output during development in the bullfrog. The roles of these receptors were studied with in vitro brainstem preparations from pre-metamorphic tadpoles and post-metamorphic frogs. Brainstems were superfused with an artificial cerebrospinal fluid at 20-22 degrees C containing CNQX, a selective non-NMDA antagonist, or with substance P (SP), an agonist of NKR. Blockade of glutamate receptors with CNQX in both groups caused a reduction of lung burst frequency that was reversibly abolished at 5 microM (P<0.01). CNQX, but not SP, application produced a significant increase (P<0.05) in gill and buccal frequency in tadpoles and frogs, respectively. SP caused a significant increase (P<0.05) in lung burst frequency at 5 microM in both groups. These results suggest that glutamatergic activation of AMPA/kainate receptors is necessary for generation of lung burst activity and that SP is an excitatory neurotransmitter for lung burst frequency generation. Both glutamate and SP provide excitatory input for lung burst generation throughout the aquatic to terrestrial developmental transition in bullfrogs.

  4. The role of phosphatidylinositol-3-OH-kinase (PI3-kinase) and respiratory burst enzymes in the [omim][BF4]-mediated toxic mode of action in mussel hemocytes.

    PubMed

    Belavgeni, Alexia; Dailianis, Stefanos

    2017-09-01

    The present study investigates the role of phosphatidylinositol-3-OH-kinase (PI3-kinase) and respiratory burst enzymes, NADPH oxidase and NO synthase, in the 1-methyl-3-octylimidazolium tetrafluoroborate ([omim][BF 4 ])-mediated toxic mode of action in mussel hemocytes. Specifically, cell viability (using the neutral red uptake assay) was primarily tested in hemocytes treated with different concentrations of [omim][BF 4 ] (0.1-10 mg L -1 ) and thereafter [omim][BF 4 ]-mediated oxidative (in terms of superoxide anions/O 2 - and nitric oxide/NO generation, as well as the enhancement of lipid peroxidation by-products, in terms of malondialdehyde/MDA) and genotoxic (in terms of DNA damage) effects were determined in hemocytes treated with 1 mg L -1 [omim][BF 4 ]. Moreover, in order to investigate, even indirectly and non-entirely specific, the role of PI3-kinase, NADPH oxidase and NO synthase, the [omim][BF 4 ]-mediated effects were also investigated in hemocytes pre-incubated with wortmannin (50 nM), diphenyleneiodonium chloride (DPI 10 μM) and N G -nitro- l -arginine methyl ester (l-NAME 10 μM), respectively. The results showed that [omim][BF 4 ] ability to enhance O 2 - , NO, MDA and DNA damage, via its interaction with cellular membranes, was significantly attenuated in the presence of each inhibitor in almost all cases. The current findings revealed for the first time that certain signaling molecules, such as PI3-kinase, as well as respiratory burst enzymes activation, such as NADPH oxidase and NO synthase, could merely attribute to the [omim][BF 4 ]-mediated mode of action, thus enriching our knowledge for the molecular mechanisms of ILs toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A Nontriggered Burst Supplement to the BATSE Gamma-Ray Burst Catalogs

    NASA Technical Reports Server (NTRS)

    Kommers, Jefferson M.; Lewin, Walter H. G.; Kouveliotou, Chryssa; vanParadijs, Jan; Pendleton, Geoffrey N.; Meegan, Charles A.; Fishman, Gerald J.

    2001-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory detects gamma-ray bursts (GRBs) with a real-time burst detection (or "trigger") system running onboard the spacecraft. Under some circumstances, however, a GRB may not activate the on-board burst trigger. For example, the burst may be too faint to exceed the on-board detection threshold, or it may occur while the on-board burst trigger is disabled for technical reasons. This paper describes a catalog of 873 "nontriggered" GRBs that were detected in a search of the archival continuous data from BATSE recorded between 1991 December 9.0 and 1997 December 17.0. For each burst, the catalog gives an estimated source direction, duration, peak flux, and fluence. Similar data are presented for 50 additional bursts of unknown origin that were detected in the 25-50 keV range; these events may represent the low-energy "tail" of the GRB spectral distribution. This catalog increases the number of GRBs detected with BATSE by 48% during the time period covered by the search.

  6. Decrement of uterine myometrial burst duration as a correlate to active labor: a Hilbert phase approach.

    PubMed

    Govindan, Rathinaswamy B; Vairavan, Srinivasan; Furdea, Adrian; Murphy, Pam; Preissl, Hubert; Eswaran, Hari

    2010-01-01

    We propose a novel approach based on Hilbert phase to identify the burst in the uterine myometrial activity. We apply this approach to 24 serial magnetomyographic signals recorded from four pregnant women using a 151 SQUID array system. The bursts identified with this approach are evaluated for duration and are correlated with the gestational age. In all four subjects, we find a decrease in the duration of burst as the subject approaches active labor. As was shown in animal studies, this result indicates a faster conduction time between the muscle cells which activate a larger number of muscle units in a synchronous manner.

  7. A Non-Triggered Burst Supplement to the BATSE Gamma-Ray Burst Catalogs

    NASA Technical Reports Server (NTRS)

    Kommers, J.; Lewin, W. H.; Kouveliotou, C.; vanParadijs, J.; Pendleton, G. N.; Meegan, C. A.; Fishman, G. J.

    1998-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory detects gamma-ray bursts (GRBs) with a real-time burst detection (or "trigger") system running onboard the spacecraft. Under some circumstances, however, a GRB may not activate the onboard burst trigger. For example, the burst may be too faint to exceed the onboard detection threshold, or it may occur while the onboard burst trigger is disabled for technical reasons. This paper is a catalog of such "non-triggered" GRBs that were detected in a search of the archival continuous data from BATSE. It lists 873 non-triggered bursts that were recorded between 1991 December 9.0 and 1997 December 17.0. For each burst, the catalog gives an estimated source direction, duration, peak flux, and fluence. Similar data are presented for 50 additional bursts of unknown origin that were detected in the 25-50 keV range; these events may represent the low-energy "tail" of the GRB spectral distribution. This catalog increases the number of GRBs detected with BATSE by 48% during the time period covered by the search.

  8. Different mechanisms may generate sustained hypertonic and rhythmic bursting muscle activity in idiopathic dystonia.

    PubMed

    Liu, Xuguang; Yianni, John; Wang, Shouyan; Bain, Peter G; Stein, John F; Aziz, Tipu Z

    2006-03-01

    Despite that deep brain stimulation (DBS) of the globus pallidus internus (GPi) is emerging as the favored intervention for patients with medically intractable dystonia, the pathophysiological mechanisms of dystonia are largely unclear. In eight patients with primary dystonia who were treated with bilateral chronic pallidal stimulation, we correlated symptom-related electromyogram (EMG) activity of the most affected muscles with the local field potentials (LFPs) recorded from the globus pallidus electrodes. In 5 dystonic patients with mobile involuntary movements, rhythmic EMG bursts in the contralateral muscles were coherent with the oscillations in the pallidal LFPs at the burst frequency. In contrast, no significant coherence was seen between EMG and LFPs either for the sustained activity separated out from the compound EMGs in those 5 cases, or in the EMGs in 3 other cases without mobile involuntary movements and rhythmic EMG bursts. In comparison with the resting condition, in both active and passive movements, significant modulation in the GPi LFPs was seen in the range of 8-16 Hz. The finding of significant coherence between GPi oscillations and rhythmic EMG bursts but not sustained tonic EMG activity suggests that the synchronized pallidal activity may be directly related to the rhythmic involuntary movements. In contrast, the sustained hypertonic muscle activity may be represented by less synchronized activity in the pallidum. Thus, the pallidum may play different roles in generating different components of the dystonic symptom complex.

  9. Detection of Spectral Evolution in the Bursts Emitted During the 2008-2009 Active Episode of SGR J1550 - 5418

    NASA Technical Reports Server (NTRS)

    von Kienlin, Andreas; Gruber, David; Kouveliotou, Chryssa; Granot, Jonathan; Baring, Matthew G.; Gogus, Ersin; Huppenkothen, Daniela; Kaneko, Yuki; Lin, Lin; Watts, Anna L.; hide

    2012-01-01

    In early October 2008, the Soft Gamma Repeater SGRJ1550 - 5418 (1E1547.0 - 5408, AXJ155052 - 5418, PSR J1550 - 5418) became active, emitting a series of bursts which triggered the Fermi Gamma-ray Burst Monitor (GBM) after which a second especially intense activity period commenced in 2009 January and a third, less active period was detected in 2009 March-April. Here we analyze the GBM data of all the bursts from the first and last active episodes. We performed temporal and spectral analysis for all events and found that their temporal characteristics are very similar to the ones of other SGR bursts, as well the ones reported for the bursts of the main episode (average burst durations 170ms). In addition, we used our sample of bursts to quantify the systematic uncertainties of the GBM location algorithm for soft gamma-ray transients to less than or equal to 8 degrees. Our spectral analysis indicates significant spectral evolution between the first and last set of events. Although the 2008 October events are best fit with a single blackbody function, for the 2009 bursts an Optically Thin Thermal Bremsstrahlung (OTTB) is clearly preferred. We attribute this evolution to changes in the magnetic field topology of the source, possibly due to effects following the very energetic main bursting episode.

  10. Decrement of uterine myometrial burst duration as a correlate to active labor: A Hilbert phase approach

    PubMed Central

    Govindan, Rathinaswamy B.; Vairavan, Srinivasan; Furdea, Adrian; Murphy, Pam; Preissl, Hubert; Eswaran, Hari

    2011-01-01

    We propose a novel approach based on Hilbert phase to identify the burst in the uterine myometrial activity. We apply this approach to 24 serial magnetomyographic signals recorded from four pregnant women using a 151 SQUID array system. The bursts identified with this approach are evaluated for duration and are correlated with the gestational age. In all four subjects, we find a decrease in the duration of burst as the subject approaches active labor. As was shown in animal studies, this result indicates a faster conduction time between the muscle cells which activate a larger number of muscle units in a synchronous manner. PMID:21096231

  11. Transitions to Synchrony in Coupled Bursting Neurons

    NASA Astrophysics Data System (ADS)

    Dhamala, Mukeshwar; Jirsa, Viktor K.; Ding, Mingzhou

    2004-01-01

    Certain cells in the brain, for example, thalamic neurons during sleep, show spike-burst activity. We study such spike-burst neural activity and the transitions to a synchronized state using a model of coupled bursting neurons. In an electrically coupled network, we show that the increase of coupling strength increases incoherence first and then induces two different transitions to synchronized states, one associated with bursts and the other with spikes. These sequential transitions to synchronized states are determined by the zero crossings of the maximum transverse Lyapunov exponents. These results suggest that synchronization of spike-burst activity is a multi-time-scale phenomenon and burst synchrony is a precursor to spike synchrony.

  12. Olivary subthreshold oscillations and burst activity revisited

    PubMed Central

    Bazzigaluppi, Paolo; De Gruijl, Jornt R.; van der Giessen, Ruben S.; Khosrovani, Sara; De Zeeuw, Chris I.; de Jeu, Marcel T. G.

    2012-01-01

    The inferior olive (IO) forms one of the major gateways for information that travels to the cerebellar cortex. Olivary neurons process sensory and motor signals that are subsequently relayed to Purkinje cells. The intrinsic subthreshold membrane potential oscillations of the olivary neurons are thought to be important for gating this flow of information. In vitro studies have revealed that the phase of the subthreshold oscillation determines the size of the olivary burst and may gate the information flow or encode the temporal state of the olivary network. Here, we investigated whether the same phenomenon occurred in murine olivary cells in an intact olivocerebellar system using the in vivo whole-cell recording technique. Our in vivo findings revealed that the number of wavelets within the olivary burst did not encode the timing of the spike relative to the phase of the oscillation but was related to the amplitude of the oscillation. Manipulating the oscillation amplitude by applying Harmaline confirmed the inverse relationship between the amplitude of oscillation and the number of wavelets within the olivary burst. Furthermore, we demonstrated that electrotonic coupling between olivary neurons affect this modulation of the olivary burst size. Based on these results, we suggest that the olivary burst size might reflect the “expectancy” of a spike to occur rather than the spike timing, and that this process requires the presence of gap junction coupling. PMID:23189043

  13. Cervical spinal demyelination with ethidium bromide impairs respiratory (phrenic) activity and forelimb motor behavior in rats

    PubMed Central

    Nichols, Nicole L.; Punzo, Antonio M.; Duncan, Ian D.; Mitchell, Gordon S.; Johnson, Rebecca A.

    2012-01-01

    Although respiratory complications are a major cause of morbidity/mortality in many neural injuries or diseases, little is known concerning mechanisms whereby deficient myelin impairs breathing, or how patients compensate for such changes. Here, we tested the hypothesis that respiratory and forelimb motor function are impaired in a rat model of focal dorsolateral spinal demyelination (ethidium bromide, EB). Ventilation, phrenic nerve activity and horizontal ladder walking were performed 7-14 days post-C2 injection of EB or vehicle (SHAM). EB caused dorsolateral demyelination at C2-C3 followed by signficant spontaneous remyelination at 14 days post-EB. Although ventilation did not differ between groups, ipsilateral integrated phrenic nerve burst amplitude was significantly reduced versus SHAM during chemoreceptor activation at 7 days post-EB but recovered by 14 days. The ratio of ipsi- to contralateral phrenic nerve amplitude correlated with cross-sectional lesion area. This ratio was significantly reduced 7 days post-EB versus SHAM during baseline conditions, and versus SHAM and 14 day groups during chemoreceptor activation. Limb function ipsilateral to EB was impaired 7 days post-EB and partially recovered by 14 days post-EB. EB provides a reversible model of focal, spinal demyelination, and may be a useful model to study mechanisms of functional impairment and recovery via motor plasticity, or the efficacy of new therapeutic interventions to reduce severity or duration of disease. PMID:23159317

  14. Effects of heat stress on respiratory burst, oxidative damage and SERPINH1 (HSP47) mRNA expression in rainbow trout Oncorhynchus mykiss.

    PubMed

    Wang, Yanni; Liu, Zhe; Li, Zhen; Shi, Haina; Kang, Yujun; Wang, Jianfu; Huang, Jinqiang; Jiang, Li

    2016-04-01

    For rainbow trout Oncorhynchus mykiss, high temperature is a major abiotic stress that limits its growth and productivity. In this study, spleen macrophage respiratory burst (RB), serum superoxide dismutase (SOD), serum malondialdehyde (MDA) and mRNA expression of the SERPINH1 (HSP47) gene in different tissues (liver, spleen, head kidney and heart) were measured in unstressed (18 °C) and heat-stressed (25 °C) fish. Spleen macrophage RB activity, serum SOD activity and MDA content all increased significantly (P < 0.05) during heat shock, and peaked at 8, 12 and 4 h, respectively. SERPINH1 mRNA expression responded in a time- and tissue-specific manner to heat stress, which was mainly reflected in the significant up-regulation in all tissues (P < 0.05) and greater expression in the liver than the other tissues (P < 0.05). During the heat-shock recovery period, the MDA content returned to the unstressed level. These results indicate that heat shock causes cell injury, induces oxidative damage and promotes SERPINH1 mRNA expression, which plays an important protective function during heat stress in O. mykiss. In practice, close attention should be given to temperature changes in O. mykiss production to reduce the effects of high temperature.

  15. Na(+)/K(+) pump interacts with the h-current to control bursting activity in central pattern generator neurons of leeches.

    PubMed

    Kueh, Daniel; Barnett, William H; Cymbalyuk, Gennady S; Calabrese, Ronald L

    2016-09-02

    The dynamics of different ionic currents shape the bursting activity of neurons and networks that control motor output. Despite being ubiquitous in all animal cells, the contribution of the Na(+)/K(+) pump current to such bursting activity has not been well studied. We used monensin, a Na(+)/H(+) antiporter, to examine the role of the pump on the bursting activity of oscillator heart interneurons in leeches. When we stimulated the pump with monensin, the period of these neurons decreased significantly, an effect that was prevented or reversed when the h-current was blocked by Cs(+). The decreased period could also occur if the pump was inhibited with strophanthidin or K(+)-free saline. Our monensin results were reproduced in model, which explains the pump's contributions to bursting activity based on Na(+) dynamics. Our results indicate that a dynamically oscillating pump current that interacts with the h-current can regulate the bursting activity of neurons and networks.

  16. KatG and KatE Confer Acinetobacter Resistance to Hydrogen Peroxide but Sensitize Bacteria to Killing by Phagocytic Respiratory Burst

    PubMed Central

    Sun, Daqing; Crowell, Sara A.; Harding, Christian M.; De Silva, P. Malaka; Harrison, Alistair; Fernando, Dinesh M.; Mason, Kevin M.; Santana, Estevan; Loewen, Peter C.; Kumar, Ayush; Liu, Yusen

    2016-01-01

    Aims Catalase catalyzes the degradation of H2O2. Acinetobacter species have four predicted catalase genes, katA, katE, katG, and katX. The aims of the present study seek to determine which catalase(s) plays a predominant role in determining the resistance to H2O2, and to assess the role of catalase in Acinetobacter virulence. Main Methods Mutants of A. baumannii and A. nosocomialis with deficiencies in katA, katE, katG, and katX were tested for sensitivity to H2O2, either by halo assays or by liquid culture assays. Respiratory burst of neutrophils, in response to A. nosocomialis, was assessed by chemiluminescence to examine the effects of catalase on the production of reactive oxygen species (ROS)1 in neutrophils. Bacterial virulence was assessed using a Galleria mellonella larva infection model. Key findings The capacities of A. baumannii and A. nosocomialis to degrade H2O2 are largely dependent on katE. The resistance of both A. baumannii and A. nosocomialis to H2O2 is primarily determined by the katG gene, although katE also plays a minor role in H2O2 resistance. Bacteria lacking both the katG and katE genes exhibit the highest sensitivity to H2O2. While A. nosocomialis bacteria with katE and/or katG were able to decrease ROS production by neutrophils, these cells also induced a more robust respiratory burst in neutrophils than did cells deficient in both katE and katG. We also found that A. nosocomialis deficient in both katE and katG was more virulent than the wildtype A. nosocomialis strain. Significance Our findings suggest that inhibition of Acinetobacter catalase may help to overcome the resistance of Acinetobacter species to microbicidal H2O2 and facilitate bacterial disinfection. PMID:26860891

  17. Na+/K+ pump interacts with the h-current to control bursting activity in central pattern generator neurons of leeches

    PubMed Central

    Kueh, Daniel; Barnett, William H; Cymbalyuk, Gennady S; Calabrese, Ronald L

    2016-01-01

    The dynamics of different ionic currents shape the bursting activity of neurons and networks that control motor output. Despite being ubiquitous in all animal cells, the contribution of the Na+/K+ pump current to such bursting activity has not been well studied. We used monensin, a Na+/H+ antiporter, to examine the role of the pump on the bursting activity of oscillator heart interneurons in leeches. When we stimulated the pump with monensin, the period of these neurons decreased significantly, an effect that was prevented or reversed when the h-current was blocked by Cs+. The decreased period could also occur if the pump was inhibited with strophanthidin or K+-free saline. Our monensin results were reproduced in model, which explains the pump’s contributions to bursting activity based on Na+ dynamics. Our results indicate that a dynamically oscillating pump current that interacts with the h-current can regulate the bursting activity of neurons and networks. DOI: http://dx.doi.org/10.7554/eLife.19322.001 PMID:27588351

  18. A Burst-Based “Hebbian” Learning Rule at Retinogeniculate Synapses Links Retinal Waves to Activity-Dependent Refinement

    PubMed Central

    Butts, Daniel A; Kanold, Patrick O; Shatz, Carla J

    2007-01-01

    Patterned spontaneous activity in the developing retina is necessary to drive synaptic refinement in the lateral geniculate nucleus (LGN). Using perforated patch recordings from neurons in LGN slices during the period of eye segregation, we examine how such burst-based activity can instruct this refinement. Retinogeniculate synapses have a novel learning rule that depends on the latencies between pre- and postsynaptic bursts on the order of one second: coincident bursts produce long-lasting synaptic enhancement, whereas non-overlapping bursts produce mild synaptic weakening. It is consistent with “Hebbian” development thought to exist at this synapse, and we demonstrate computationally that such a rule can robustly use retinal waves to drive eye segregation and retinotopic refinement. Thus, by measuring plasticity induced by natural activity patterns, synaptic learning rules can be linked directly to their larger role in instructing the patterning of neural connectivity. PMID:17341130

  19. Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity.

    PubMed

    Thomas, David C; Clare, Simon; Sowerby, John M; Pardo, Mercedes; Juss, Jatinder K; Goulding, David A; van der Weyden, Louise; Storisteanu, Daniel; Prakash, Ananth; Espéli, Marion; Flint, Shaun; Lee, James C; Hoenderdos, Kim; Kane, Leanne; Harcourt, Katherine; Mukhopadhyay, Subhankar; Umrania, Yagnesh; Antrobus, Robin; Nathan, James A; Adams, David J; Bateman, Alex; Choudhary, Jyoti S; Lyons, Paul A; Condliffe, Alison M; Chilvers, Edwin R; Dougan, Gordon; Smith, Kenneth G C

    2017-04-03

    The phagocyte respiratory burst is crucial for innate immunity. The transfer of electrons to oxygen is mediated by a membrane-bound heterodimer, comprising gp91 phox and p22 phox subunits. Deficiency of either subunit leads to severe immunodeficiency. We describe Eros (essential for reactive oxygen species), a protein encoded by the previously undefined mouse gene bc017643 , and show that it is essential for host defense via the phagocyte NAPDH oxidase. Eros is required for expression of the NADPH oxidase components, gp91 phox and p22 phox Consequently, Eros -deficient mice quickly succumb to infection. Eros also contributes to the formation of neutrophil extracellular traps (NETS) and impacts on the immune response to melanoma metastases. Eros is an ortholog of the plant protein Ycf4, which is necessary for expression of proteins of the photosynthetic photosystem 1 complex, itself also an NADPH oxio-reductase. We thus describe the key role of the previously uncharacterized protein Eros in host defense. © 2017 Thomas et al.

  20. Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity

    PubMed Central

    Thomas, David C.; Clare, Simon; Sowerby, John M.; Juss, Jatinder K.; Goulding, David A.; van der Weyden, Louise; Prakash, Ananth; Harcourt, Katherine; Mukhopadhyay, Subhankar; Antrobus, Robin; Bateman, Alex

    2017-01-01

    The phagocyte respiratory burst is crucial for innate immunity. The transfer of electrons to oxygen is mediated by a membrane-bound heterodimer, comprising gp91phox and p22phox subunits. Deficiency of either subunit leads to severe immunodeficiency. We describe Eros (essential for reactive oxygen species), a protein encoded by the previously undefined mouse gene bc017643, and show that it is essential for host defense via the phagocyte NAPDH oxidase. Eros is required for expression of the NADPH oxidase components, gp91phox and p22phox. Consequently, Eros-deficient mice quickly succumb to infection. Eros also contributes to the formation of neutrophil extracellular traps (NETS) and impacts on the immune response to melanoma metastases. Eros is an ortholog of the plant protein Ycf4, which is necessary for expression of proteins of the photosynthetic photosystem 1 complex, itself also an NADPH oxio-reductase. We thus describe the key role of the previously uncharacterized protein Eros in host defense. PMID:28351984

  1. Absence of regulation of human polymorphonuclear oxidative burst by interleukin-10, interleukin-4, interleukin-13 and transforming growth factor-beta in whole blood.

    PubMed

    Réglier-Poupet, H; Hakim, J; Gougerot-Pocidalo, M A; Elbim, C

    1998-12-01

    Cytokines such as IL-10, IL-4, IL-13 and TGF-beta play a major role in the regulation of immune responses and are considered as anti-inflammatory agents mainly due to their actions on monocytes. These cytokines are also known to participate in the regulation of PMN activities. However, few and contradictory results have been reported on their direct and priming effects on the PMN oxidative burst, which is essential for killing bacteria. We used a flow cytometry method to study the effects of these cytokines on the PMN oxidative burst; we also used whole blood to avoid PMN activation related to isolation procedures and in order to simulate the in vivo situation more closely. None of the cytokines tested had direct or priming effects on PMN H2O2 production. We also show for the first time that these cytokines do not modulate TNF priming of the PMN oxidative burst in response to N-formyl peptides (fMLP). These results show that the anti-bacterial activity of PMN, in terms of the PMN respiratory burst, is not down regulated by these anti-inflammatory cytokines in whole blood.

  2. Phylogenetic trends in respiratory rhythmogenesis: insights from ectothermic vertebrates.

    PubMed

    Kinkead, Richard

    2009-08-31

    Understanding the neural substrate driving breathing has puzzled physiologists for more than a century. The discovery of the pre-Bötzinger complex (preBötC) in newborn rodents as a structure with a unique physiological function in respiratory rhythm generation was an important progress in respiratory neurobiology that stimulated much research. Owing to the extensive literature describing the location, organisation, and function of the preBötC mainly in newborn rodents, this structure has become the point of reference in studies addressing respiratory rhythm generation in other mammals and various classes of vertebrates. This paper reviews recent progress made in non-mammalian vertebrates in our understanding of the location and function of the neural networks driving respiratory activity. As in newborn rodents, data from lampreys, air breathing fish, and amphibians show that the production of eupnea is the result of interactions between multiple (at least two) rhythmogenic networks. These networks are located in anatomically distinct areas and show different functional properties in terms of their ability to produce (or not) bursting activity in the absence of synaptic inputs (e.g. pacemaker neurons) and their sensitivity to specific neuromodulators such as substance P, somatostatin, and opioids. Current data indicate that respiratory rhythmogenesis is a phylogenetically ancient function that was highly conserved throughout evolution and that a comparative approach remains important to derive broader biological principles and a more comprehensive view.

  3. Metabotropic glutamate receptors activate dendritic calcium waves and TRPM channels which drive rhythmic respiratory patterns in mice

    PubMed Central

    Mironov, S L

    2008-01-01

    Respiration in vertebrates is generated by a compact network which is located in the lower brainstem but cellular mechanisms which underlie persistent oscillatory activity of the respiratory network are yet unknown. Using two-photon imaging and patch-clamp recordings in functional brainstem preparations of mice containing pre-Bötzinger complex (preBötC), we examined the actions of metabotropic glutamate receptors (mGluR1/5) on the respiratory patterns. The agonist DHPG potentiated and antagonist LY367385 depressed respiration-related activities. In the inspiratory neurons, we observed rhythmic activation of non-selective channels which had a conductance of 24 pS. Their activity was enhanced with membrane depolarization and after elevation of calcium from the cytoplasmic side of the membrane. They were activated by a non-hydrolysable PIP2 analogue and blocked by flufenamate, ATP4− and Gd3+. All these properties correspond well to those of TRPM4 channels. Calcium imaging of functional slices revealed rhythmic transients in small clusters of neurons present in a network. Calcium transients in the soma were preceded by the waves in dendrites which were dependent on mGluR activation. Initiation and propagation of waves required calcium influx and calcium release from internal stores. Calcium waves activated TPRM4-like channels in the soma and promoted generation of inspiratory bursts. Simulations of activity of neurons communicated via dendritic calcium waves showed emerging activity within neuronal clusters and its synchronization between the clusters. The experimental and theoretical data provide a subcellular basis for a recently proposed group-pacemaker hypothesis and describe a novel mechanism of rhythm generation in neuronal networks. PMID:18308826

  4. Modification of medullary respiratory-related discharge patterns by behaviors and states of arousal.

    PubMed

    Chang, F C

    1992-02-07

    The modulatory influences of behaviors and states of arousal on bulbar respiratory-related unit (RRU) discharge patterns were studied in an unanesthetized, freely behaving guinea pig respiratory model system. When fully instrumented, this model system permits concurrent monitoring and recording of (i) single units from either Bötzinger complex or nucleus para-ambiguus; (ii) electrocorticogram; and, (iii) diaphragmatic EMG. In addition to being used in surveys of RRU discharge patterns in freely behaving states, the model system also offered a unique opportunity in investigating the effects of pentobarbital on RRU discharge patterns before, throughout the course of, and during recovery from anesthesia. In anesthetized preparations, a particular RRU discharge pattern (such as tonic, incrementing or decrementing) typically displayed little, if any notable variation. The most striking development following pentobarbital was a state of progressive bradypnea attributable to a significantly augmented RRU cycle duration, burst duration and an increase in the RRU spike frequencies during anesthesia. In freely behaving states, medullary RRU activities rarely adhered to a fixed, immutable discharge pattern. More specifically, the temporal organization (such as burst duration, cycle duration, and the extent of modulation of within-burst spike frequencies) of RRU discharge patterns regularly showed complex and striking variations, not only with states of arousal (sleep/wakefulness, anesthesia) but also with discrete alterations in electrocorticogram (ECoG) activities and a multitude of on-going behavioral repertoires such as volitional movement, postural modification, phonation, mastication, deglutition, sniffing/exploratory behavior, alerting/startle reflexes. Only during sleep, and on occasions when the animal assumed a motionless, resting posture, could burst patterns of relatively invariable periodicity and uniform temporal attributes be observed. RRU activities during

  5. A Codimension-2 Bifurcation Controlling Endogenous Bursting Activity and Pulse-Triggered Responses of a Neuron Model

    PubMed Central

    Barnett, William H.; Cymbalyuk, Gennady S.

    2014-01-01

    The dynamics of individual neurons are crucial for producing functional activity in neuronal networks. An open question is how temporal characteristics can be controlled in bursting activity and in transient neuronal responses to synaptic input. Bifurcation theory provides a framework to discover generic mechanisms addressing this question. We present a family of mechanisms organized around a global codimension-2 bifurcation. The cornerstone bifurcation is located at the intersection of the border between bursting and spiking and the border between bursting and silence. These borders correspond to the blue sky catastrophe bifurcation and the saddle-node bifurcation on an invariant circle (SNIC) curves, respectively. The cornerstone bifurcation satisfies the conditions for both the blue sky catastrophe and SNIC. The burst duration and interburst interval increase as the inverse of the square root of the difference between the corresponding bifurcation parameter and its bifurcation value. For a given set of burst duration and interburst interval, one can find the parameter values supporting these temporal characteristics. The cornerstone bifurcation also determines the responses of silent and spiking neurons. In a silent neuron with parameters close to the SNIC, a pulse of current triggers a single burst. In a spiking neuron with parameters close to the blue sky catastrophe, a pulse of current temporarily silences the neuron. These responses are stereotypical: the durations of the transient intervals–the duration of the burst and the duration of latency to spiking–are governed by the inverse-square-root laws. The mechanisms described here could be used to coordinate neuromuscular control in central pattern generators. As proof of principle, we construct small networks that control metachronal-wave motor pattern exhibited in locomotion. This pattern is determined by the phase relations of bursting neurons in a simple central pattern generator modeled by a chain of

  6. Inhibition of the alveolar macrophage oxidative burst by a diffusible component from the surface of the spores of the fungus Aspergillus fumigatus.

    PubMed Central

    Slight, J.; Nicholson, W. J.; Mitchell, C. G.; Pouilly, N.; Beswick, P. H.; Seaton, A.; Donaldson, K.

    1996-01-01

    BACKGROUND: Aspergillus fumigatus is a fungus that grows on dead and decaying organic matter in the environment and whose spores are present ubiquitously in the air. The fungus causes a range of diseases in the human lung. A study was undertaken to demonstrate and partially characterise an inhibitor of the macrophage respiratory burst from the surface of A fumigatus spores that could be an important factor in allowing the fungus to colonise the lung. METHODS: The spore-derived inhibitor of the respiratory burst of rat alveolar macrophages, as measured by generation of superoxide anion, was demonstrated in Hank's balanced salt solution extracts of four clinical isolates and an environmental isolate of A fumigatus. The time course of the release of the inhibitor into aqueous solution was assessed and the cytotoxic potential of the spore-derived inhibitor towards macrophages was tested using the propidium iodide method. An oxygen electrode was used to confirm the superoxide anion measurements. Molecular weight cutoff filters were used to determine the size of the inhibitor as assessed in the respiratory burst assay and also by its ability to inhibit macrophage spreading on glass. The crude diffusate from the spore surface was fractionated by reversed phase high pressure liquid chromatography (HPLC) and the fractions analysed for inhibitory activity, protein, and carbohydrate content. RESULTS: A small molecular weight (< 10 kD) heat stable toxin was released from the spores of clinical and environmental isolates of A fumigatus within minutes of deposition in aqueous solution. The key effect of the toxin demonstrated here was its ability to inhibit the oxidative burst of macrophages as measured by superoxide anion release. The inhibition was not due to cell death or detectable loss of membrane integrity as measured by permeability to propidium iodide. The toxin was not a scavenger of superoxide anion. Oxygen electrode studies suggested indirectly that the inhibitor

  7. Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation.

    PubMed

    Barger, Steven W; Goodwin, Mary E; Porter, Mandy M; Beggs, Marjorie L

    2007-06-01

    When activated by proinflammatory stimuli, microglia release substantial levels of glutamate, and mounting evidence suggests this contributes to neuronal damage during neuroinflammation. Prior studies indicated a role for the Xc exchange system, an amino acid transporter that antiports glutamate for cystine. Because cystine is used for synthesis of glutathione (GSH) synthesis, we hypothesized that glutamate release is an indirect consequence of GSH depletion by the respiratory burst, which produces superoxide from NADPH oxidase. Microglial glutamate release triggered by lipopolysaccharide was blocked by diphenylene iodonium chloride and apocynin, inhibitors of NADPH oxidase. This glutamate release was also blocked by vitamin E and elicited by lipid peroxidation products 4-hydroxynonenal and acrolein, suggesting that lipid peroxidation makes crucial demands on GSH. Although NADPH oxidase inhibitors also suppressed nitrite accumulation, vitamin E did not; moreover, glutamate release was largely unaffected by nitric oxide donors, inhibitors of nitric oxide synthase, or changes in gene expression. These findings indicate that a considerable degree of the neurodegenerative consequences of neuroinflammation may result from conversion of oxidative stress to excitotoxic stress. This phenomenon entails a biochemical chain of events initiated by a programmed oxidative stress and resultant mass-action amino acid transport. Indeed, some of the neuroprotective effects of antioxidants may be due to interference with these events rather than direct protection against neuronal oxidation.

  8. Presynaptic modulation of tonic and respiratory inputs to cardiovagal motoneurons by substance P.

    PubMed

    Hou, Lili; Tang, Hongtai; Chen, Yonghua; Wang, Lin; Zhou, Xujiao; Rong, Weifang; Wang, Jijiang

    2009-08-11

    Substance P (SP) has been implicated in vagal control of heart rate and cardiac functions, but the mechanisms of SP actions on cardiac vagal activity remain obscure. The present study has investigated the effects of SP on the synaptic inputs of preganglionic cardiovagal motoneurons (CVNs) in brainstem slices of neonatal rat. Whole-cell voltage-clamp recordings were performed on retrogradely labeled CVNs in the nucleus ambiguus. The results show that in thin slices (400 microm thickness) without respiratory-like rhythm, globally applied SP (1 microM) significantly enhanced both the GABAergic and the glycinergic inputs, but had no effect on the glutamatergic inputs, of CVNs. Since inspiratory-related augmentation of the inhibitory inputs of CVNs in individual respiratory cycles is known to play an important role in the genesis of respiratory sinus arrhythmia, the effects of SP on the inhibitory inputs of CVNs were further examined in thick slices (500-800 microm thickness) with respiratory-like rhythm, and SP (1 microM) was focally applied to the CVNs under patch-clamp recording. Focally applied SP caused frequency increases of the GABAergic and the glycinergic inputs both during inspiratory bursts and during inspiratory intervals. However, the inspiratory-related augmentation of the GABAergic and the glycinergic inputs of CVNs, measured by the frequency increases during inspiratory bursts in percentage of the frequency during inspiratory intervals, was significantly decreased by SP. These results suggest that SP inhibits CVNs via enhancement of their inhibitory synaptic inputs, and SP diminishes the respiratory-related fluctuation of cardiac vagal activity in individual respiratory cycles. These results also indicate that SP may play a role in altering the vagal control of the heart in some cardiovascular diseases such as myocardial ischemia and hypertension, since these diseases are characterized by weakened cardiac vagal tone and heart rate variability, and have

  9. Solar microwave bursts - A review

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Vlahos, L.

    1982-01-01

    Observational and theoretical results on the physics of microwave bursts that occur in the solar atmosphere are reviewed. Special attention is given to the advances made in burst physics over the last few years with the great improvement in spatial and time resolution, especially with instruments like the NRAO three-element interferometer, the Westerbork Synthesis Radio Telescope, and more recently the Very Large Array. Observations made on the preflare build-up of an active region at centimeter wavelengths are reviewed. Three distinct phases in the evolution of cm bursts, namely the impulsive phase, the post-burst phase, and the gradual rise and fall, are discussed. Attention is also given to the flux density spectra of centimeter bursts. Descriptions are given of observations of fine structures with temporal resolution of 10-100 ms in the intensity profiles of cm-wavelength bursts. High spatial resolution observations are analyzed, with special reference to the one- and two-dimensional maps of cm burst sources.

  10. Search for optical bursts from the gamma ray burst source GBS 0526-66

    NASA Astrophysics Data System (ADS)

    Seetha, S.; Sreenivasaiah, K. V.; Marar, T. M. K.; Kasturirangan, K.; Rao, U. R.; Bhattacharyya, J. C.

    1985-08-01

    Attempts were made to detect optical bursts from the gamma-ray burst source GBS 0526-66 during Dec. 31, 1984 to Jan. 2, 1985 and Feb. 23 to Feb. 24, 1985, using the one meter reflector of the Kavalur Observatory. Jan. 1, 1985 coincided with the zero phase of the predicted 164 day period of burst activity from the source (Rothschild and Lingenfelter, 1984). A new optical burst photon counting system with adjustable trigger threshold was used in parallel with a high speed photometer for the observations. The best time resolution was 1 ms and maximum count rate capability was 255,000 counts s(-1). Details of the instrumentation and observational results are presented.

  11. Hybrid systems analysis of the control of burst duration by low-voltage-activated calcium current in leech heart interneurons.

    PubMed

    Olypher, Andrey; Cymbalyuk, Gennady; Calabrese, Ronald L

    2006-12-01

    The leech heartbeat CPG is paced by the alternating bursting of pairs of mutually inhibitory heart interneurons that form elemental half-center oscillators. We explore the control of burst duration in heart interneurons using a hybrid system, where a living, pharmacologically isolated, heart interneuron is connected with artificial synapses to a model heart interneuron running in real-time, by focusing on a low-voltage-activated (LVA) calcium current I(CaS). The transition from silence to bursting in this half-center oscillator occurs when the spike frequency of the bursting interneuron declines to a critical level, f(Final), at which the inhibited interneuron escapes owing to a build-up of the hyperpolarization-activated cation current, I(h). We varied I(CaS) inactivation time constant either in the living heart interneuron or in the model heart interneuron. In both cases, varying I(CaS) inactivation time constant did not affect f(Final) of either interneuron, but in the varied interneuron, the time constant of decline of spike frequency during bursts to f(Final) and thus the burst duration varied directly and nearly linearly with I(CaS) inactivation time constant. Bursts of the opposite, nonvaried interneuron did not change. We show also that control of burst duration by I(CaS) inactivation does not require synaptic interaction by reconstituting autonomous bursting in synaptically isolated living interneurons with injected I(CaS). Therefore inactivation of LVA calcium current is critically important for setting burst duration and thus period in a heart interneuron half-center oscillator and is potentially a general intrinsic mechanism for regulating burst duration in neurons.

  12. Organotypic slice cultures containing the preBötzinger complex generate respiratory-like rhythms

    PubMed Central

    Phillips, Wiktor S.; Herly, Mikkel; Del Negro, Christopher A.

    2015-01-01

    Study of acute brain stem slice preparations in vitro has advanced our understanding of the cellular and synaptic mechanisms of respiratory rhythm generation, but their inherent limitations preclude long-term manipulation and recording experiments. In the current study, we have developed an organotypic slice culture preparation containing the preBötzinger complex (preBötC), the core inspiratory rhythm generator of the ventrolateral brain stem. We measured bilateral synchronous network oscillations, using calcium-sensitive fluorescent dyes, in both ventrolateral (presumably the preBötC) and dorsomedial regions of slice cultures at 7–43 days in vitro. These calcium oscillations appear to be driven by periodic bursts of inspiratory neuronal activity, because whole cell recordings from ventrolateral neurons in culture revealed inspiratory-like drive potentials, and no oscillatory activity was detected from glial fibrillary associated protein-expressing astrocytes in cultures. Acute slices showed a burst frequency of 10.9 ± 4.2 bursts/min, which was not different from that of brain stem slice cultures (13.7 ± 10.6 bursts/min). However, slice cocultures that include two cerebellar explants placed along the dorsolateral border of the brainstem displayed up to 193% faster burst frequency (22.4 ± 8.3 bursts/min) and higher signal amplitude (340%) compared with acute slices. We conclude that preBötC-containing slice cultures retain inspiratory-like rhythmic function and therefore may facilitate lines of experimentation that involve extended incubation (e.g., genetic transfection or chronic drug exposure) while simultaneously being amenable to imaging and electrophysiology at cellular, synaptic, and network levels. PMID:26655824

  13. Solar Radio Bursts, Proton Events and Geomagnetic Activity

    DTIC Science & Technology

    1984-08-01

    high speed type II, the second maximum is broad and peaks on the seventh day, and the Ap value remains high even on the tenth day. VI . Type II Burst...PROTON EVENTS w 20 (SPE) 0 SPE WITH TYPE Il a20- 20 z10- 0 15SPE WITH MICROWAVE BURST 10- 00 197071 72 7374 7576 77 7879 0Fig. 14 YEAR 30 1 1 SOLAR

  14. The rotational phase dependence of magnetar bursts

    NASA Astrophysics Data System (ADS)

    Elenbaas, C.; Watts, A. L.; Huppenkothen, D.

    2018-05-01

    The trigger for the short bursts observed in γ-rays from many magnetar sources remains unknown. One particular open question in this context is the localization of burst emission to a singular active region or a larger area across the neutron star. While several observational studies have attempted to investigate this question by looking at the phase dependence of burst properties, results have been mixed. At the same time, it is not obvious a priori that bursts from a localized active region would actually give rise to a detectable phase dependence, taking into account issues such as geometry, relativistic effects, and intrinsic burst properties such brightness and duration. In this paper, we build a simple theoretical model to investigate the circumstances under which the latter effects could affect detectability of dependence of burst emission on rotational phase. We find that even for strongly phase-dependent emission, inferred burst properties may not show a rotational phase dependence, depending on the geometry of the system and the observer. Furthermore, the observed properties of bursts with durations short as 10-20 per cent of the spin period can vary strongly depending on the rotational phase at which the burst was emitted. We also show that detectability of a rotational phase dependence depends strongly on the minimum number of bursts observed, and find that existing burst samples may simply be too small to rule out a phase dependence.

  15. Nonuniform spatial patterns of respiratory activity within biofilms during disinfection.

    PubMed Central

    Huang, C T; Yu, F P; McFeters, G A; Stewart, P S

    1995-01-01

    Fluorescent stains in conjunction with cryoembedding and image analysis were applied to demonstrate spatial gradients in respiratory activity within bacterial biofilms during disinfection with monochloramine. Biofilms of Klebsiella pneumoniae and Pseudomonas aeruginosa grown together on stainless steel surfaces in continuous-flow annular reactors were treated with 2 mg of monochloramine per liter (influent concentration) for 2 h. Relatively little biofilm removal occurred as evidenced by total cell direct counts. Plate counts (of both species summed) indicated an average 1.3-log decrease after exposure to 2 mg of monochloramine per liter. The fluorogenic redox indicator 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) and the DNA stain 4',6-diamidino-2-phenylindole (DAPI) were used to differentiate respiring and nonrespiring cells in biofilms. Epifluorescence micrographs of frozen biofilm cross sections clearly revealed gradients of respiratory activity within biofilms in response to monochloramine treatment. These gradients in specific respiratory activity were quantified by calculating the ratio of CTC and DAPI intensities measured by image analysis. Cells near the biofilm-bulk fluid interface lost respiratory activity first. After 2 h of biocide treatment, greater respiratory activity persisted deep in the biofilm than near the biofilm-bulk fluid interface. PMID:7793945

  16. RhoA/ROCK downregulates FPR2-mediated NADPH oxidase activation in mouse bone marrow granulocytes.

    PubMed

    Filina, Julia V; Gabdoulkhakova, Aida G; Safronova, Valentina G

    2014-10-01

    Polymorphonuclear neutrophils (PMNs) express the high and low affinity receptors to formylated peptides (mFPR1 and mFPR2 in mice, accordingly). RhoA/ROCK (Rho activated kinase) pathway is crucial for cell motility and oxidase activity regulated via FPRs. There are contradictory data on RhoA-mediated regulation of NADPH oxidase activity in phagocytes. We have shown divergent Rho GTPases signaling via mFPR1 and mFPR2 to NADPH oxidase in PMNs from inflammatory site. The present study was aimed to find out the role of RhoA/ROCK in the respiratory burst activated via mFPR1 and mFPR2 in the bone marrow PMNs. Different kinetics of RhoA activation were detected with 0.1μM fMLF and 1μM WKYMVM operating via mFPR1 and mFPR2, accordingly. RhoA was translocated in fMLF-activated cells towards the cell center and juxtamembrane space versus uniform allocation in the resting cells. Specific inhibition of RhoA by CT04, Rho inhibitor I, weakly depressed the respiratory burst induced via mFPR1, but significantly increased the one induced via mFPR2. Inhibition of ROCK, the main effector of RhoA, by Y27632 led to the same effect on the respiratory burst. Regulation of mFPR2-induced respiratory response by ROCK was impossible under the cytoskeleton disruption by cytochalasin D, whereas it persisted in the case of mFPR1 activation. Thus we suggest RhoA to be one of the regulatory and signal transduction components in the respiratory burst through FPRs in the mouse bone marrow PMNs. Both mFPR1 and mFPR2 binding with a ligand trigger the activation of RhoA. FPR1 signaling through RhoA/ROCK increases NADPH-oxidase activity. But in FPR2 action RhoA/ROCK together with cytoskeleton-linked systems down-regulates NADPH-oxidase. This mechanism could restrain the reactive oxygen species dependent damage of own tissues during the chemotaxis of PMNs and in the resting cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Synaptic potentials in respiratory neurones during evoked phase switching after NMDA receptor blockade in the cat

    PubMed Central

    Pierrefiche, O; Haji, A; Foutz, A S; Takeda, R; Champagnat, J; Denavit-Saubié, M

    1998-01-01

    Blockade of NMDA receptors by dizocilpine impairs the inspiratory off-switch (IOS) of central origin but not the IOS evoked by stimulation of sensory afferents. To investigate whether this difference was due to the effects of different patterns of synaptic interactions on respiratory neurones, we stimulated electrically the superior laryngeal nerve (SLN) or vagus nerve in decerebrate cats before and after i.v. administration of dizocilpine, whilst recording intracellularly. Phrenic nerve responses to ipsilateral SLN or vagal stimulation were: at mid-inspiration, a transient inhibition often followed by a brief burst of activity; at late inspiration, an IOS; and at mid-expiration, a late burst of activity. In all neurones (n = 16), SLN stimulation at mid-inspiration evoked an early EPSP during phase 1 (latency to the arrest of phrenic nerve activity), followed by an IPSP in inspiratory (I) neurones (n = 8) and by a wave of EPSPs in post-inspiratory (PI) neurones (n = 8) during phase 2 (inhibition of phrenic activity). An EPSP in I neurones and an IPSP in PI neurones occurred during phase 3 (brief phrenic burst) following phase 2. Evoked IOS was associated with a fast (phase 1) activation of PI neurones, whereas during spontaneous IOS, a progressive (30-50 ms) depolarization of PI neurones preceded the arrest of phrenic activity. Phase 3 PSPs were similar to those occurring during the burst of activity seen at the start of spontaneous inspiration. Dizocilpine did not suppress the evoked phrenic inhibition and the late burst of activity. The shapes and timing of the evoked PSPs and the changes in membrane potential in I and PI neurones during the phase transition were not altered. We hypothesize that afferent sensory pathways not requiring NMDA receptors (1) terminate inspiration through a premature activation of PI neurones, and (2) evoke a late burst of phrenic activity which might be the first stage of the inspiratory on-switch. PMID:9508816

  18. Effects of glutamate, substance P and eledoisin-related peptide on solitary tract neurones involved in respiration and respiratory reflexes.

    PubMed

    Henry, J L; Sessle, B J

    1985-03-01

    Recent studies have implicated glutamate and substance P in synaptic transmission in the nuclei tractus solitarii and in central regulation of cardiorespiratory functions. Consequently, in chloralose-anaesthetized cats that were artificially ventilated, we examined the effects of the microiontophoretic application of both chemicals (and the substance P homologue, eledoisin-related peptide) on single neurones of the nuclei tractus solitarii implicated in the control of respiration and respiratory tract reflexes. These neurones were functionally identified as either respiratory neurones or presumed reflex interneurones, and showed functional properties comparable to those previously documented for each of these two types. The iontophoretic application of glutamate produced an excitation of rapid onset in 23 or 25 reflex interneurones tested, but the respiratory neurones showed a differential sensitivity: one type (n = 32) was "glutamate-sensitive" and showed rapid excitation with glutamate applications of less than 30 nA, the other type of respiratory neurone (n = 26) was termed "glutamate-insensitive" since it either showed excitation only with applications of 60 nA or more or showed no response even with currents up to 94 nA. Each neurone studied was clearly of one type or the other. Glutamate could increase the number of spikes per rhythmic burst and the burst duration of respiratory neurones, it facilitated evoked activity in the reflex interneurones and in those respiratory neurones having a superior laryngeal nerve or vagus nerve afferent input, and the magnitude of the excitatory responses to glutamate varied directly with the amount of ejecting current. Substance P and eledoisin-related peptide also had excitatory effects on respiratory neurones and reflex interneurones, but compared with glutamate-induced effects the excitation was slower in onset and more prolonged in after-discharge. Both rhythmic and evoked activity could be facilitated, and the magnitude

  19. Peripheral oxygen-sensing cells directly modulate the output of an identified respiratory central pattern generating neuron.

    PubMed

    Bell, Harold J; Inoue, Takuya; Shum, Kelly; Luk, Collin; Syed, Naweed I

    2007-06-01

    Breathing is an essential homeostatic behavior regulated by central neuronal networks, often called central pattern generators (CPGs). Despite ongoing advances in our understanding of the neural control of breathing, the basic mechanisms by which peripheral input modulates the activities of the central respiratory CPG remain elusive. This lack of fundamental knowledge vis-à-vis the role of peripheral influences in the control of the respiratory CPG is due in large part to the complexity of mammalian respiratory control centres. We have therefore developed a simpler invertebrate model to study the basic cellular and synaptic mechanisms by which a peripheral chemosensory input affects the central respiratory CPG. Here we report on the identification and characterization of peripheral chemoreceptor cells (PCRCs) that relay hypoxia-sensitive chemosensory information to the known respiratory CPG neuron right pedal dorsal 1 in the mollusk Lymnaea stagnalis. Selective perfusion of these PCRCs with hypoxic saline triggered bursting activity in these neurons and when isolated in cell culture these cells also demonstrated hypoxic sensitivity that resulted in membrane depolarization and spiking activity. When cocultured with right pedal dorsal 1, the PCRCs developed synapses that exhibited a form of short-term synaptic plasticity in response to hypoxia. Finally, osphradial denervation in intact animals significantly perturbed respiratory activity compared with their sham counterparts. This study provides evidence for direct synaptic connectivity between a peripheral regulatory element and a central respiratory CPG neuron, revealing a potential locus for hypoxia-induced synaptic plasticity underlying breathing behavior.

  20. Activation of β-noradrenergic receptors enhances rhythmic bursting in mouse olfactory bulb external tufted cells.

    PubMed

    Zhou, Fu-Wen; Dong, Hong-Wei; Ennis, Matthew

    2016-12-01

    The main olfactory bulb (MOB) receives a rich noradrenergic innervation from the nucleus locus coeruleus. Despite the well-documented role of norepinephrine and β-adrenergic receptors in neonatal odor preference learning, identified cellular physiological actions of β-receptors in the MOB have remained elusive. β-Receptors are expressed at relatively high levels in the MOB glomeruli, the location of external tufted (ET) cells that exert an excitatory drive on mitral and other cell types. The present study investigated the effects of β-receptor activation on the excitability of ET cells with patch-clamp electrophysiology in mature mouse MOB slices. Isoproterenol and selective β 2 -, but not β 1 -, receptor agonists were found to enhance two key intrinsic currents involved in ET burst initiation: persistent sodium (I NaP ) and hyperpolarization-activated inward (I h ) currents. Together, the positive modulation of these currents increased the frequency and strength of ET cell rhythmic bursting. Rodent sniff frequency and locus coeruleus neuronal firing increase in response to novel stimuli or environments. The increase in ET excitability by β-receptor activation may better enable ET cell rhythmic bursting, and hence glomerular network activity, to pace faster sniff rates during heightened norepinephrine release associated with arousal. Copyright © 2016 the American Physiological Society.

  1. Motor unit recruitment and bursts of activity in the surface electromyogram during a sustained contraction.

    PubMed

    Riley, Zachary A; Terry, Mary E; Mendez-Villanueva, Alberto; Litsey, Jane C; Enoka, Roger M

    2008-06-01

    Bursts of activity in the surface electromyogram (EMG) during a sustained contraction have been interpreted as corresponding to the transient recruitment of motor units, but this association has never been confirmed. The current study compared the timing of trains of action potentials discharged by single motor units during a sustained contraction with the bursts of activity detected in the surface EMG signal. The 20 motor units from 6 subjects [recruitment threshold, 35.3 +/- 11.3% maximal voluntary contraction (MVC) force] that were detected with fine wire electrodes discharged 2-9 trains of action potentials (7.2 +/- 5.6 s in duration) when recruited during a contraction that was sustained at a force below its recruitment threshold (target force, 25.4 +/- 10.6% MVC force). High-pass filtering the bipolar surface EMG signal improved its correlation with the single motor unit signal. An algorithm applied to the surface EMG was able to detect 75% of the trains of motor unit action potentials. The results indicate that bursts of activity in the surface EMG during a constant-force contraction correspond to the transient recruitment of higher-threshold motor units in healthy individuals, and these results could assist in the diagnosis and design of treatment in individuals who demonstrate deficits in motor unit activation.

  2. Cardiac-locked bursts of muscle sympathetic nerve activity are absent in familial dysautonomia

    PubMed Central

    Macefield, Vaughan G; Norcliffe-Kaufmann, Lucy; Axelrod, Felicia B; Kaufmann, Horacio

    2013-01-01

    Familial dysautonomia (Riley–Day syndrome) is an hereditary sensory and autonomic neuropathy (HSAN type III), expressed at birth, that is associated with reduced pain and temperature sensibilities and absent baroreflexes, causing orthostatic hypotension as well as labile blood pressure that increases markedly during emotional excitement. Given the apparent absence of functional baroreceptor afferents, we tested the hypothesis that the normal cardiac-locked bursts of muscle sympathetic nerve activity (MSNA) are absent in patients with familial dysautonomia. Tungsten microelectrodes were inserted percutaneously into muscle or cutaneous fascicles of the common peroneal nerve in 12 patients with familial dysautonomia. Spontaneous bursts of MSNA were absent in all patients, but in five patients we found evidence of tonically firing sympathetic neurones, with no cardiac rhythmicity, that increased their spontaneous discharge during emotional arousal but not during a manoeuvre that unloads the baroreceptors. Conversely, skin sympathetic nerve activity (SSNA), recorded in four patients, appeared normal. We conclude that the loss of phasic bursts of MSNA and the loss of baroreflex modulation of muscle vasoconstrictor drive contributes to the poor control of blood pressure in familial dysautonomia, and that the increase in tonic firing of muscle vasoconstrictor neurones contributes to the increase in blood pressure during emotional excitement. PMID:23165765

  3. Activity of respiratory system during laser irradiation of brain structures

    NASA Astrophysics Data System (ADS)

    Merkulova, N. A.; Sergeyeva, L. I.

    1984-06-01

    The performance of one of the principal links of the respiratory system, the respiratory center, was studied as a function of the exposure of the medulla oblongata and the sensomotor zone of the cerebral hemisphere cortex to low level laser irradiation in the red wavelength of the spectrum. Experiments were done on white rats under barbital anesthesia. Under such conditions a substantial effect was observed on the activity of the respiratory center. Laser light may display activating or inhibitory influences, in some cases the bilateral symmetry of the activity of the respiratory center is affected indicating deep changes in the integrative mechanism of the functioning of the right and left sides of the hemispheres. The laser beam effect depends on many factors: specific light properties, duration of the exposure, repetition of exposures, initial functional state of the CNS, etc.

  4. Type III Radio Burst Duration and SEP Events

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Makela, P.; Xie, H.

    2010-01-01

    Long-duration (>15 min), low-frequency (<14 MHz) type III radio bursts have been reported to be indicative of solar energetic particle events. We measured the durations of type III bursts associated with large SEP events of solar cycle 23. The Type III durations are distributed symmetrically at 1 MHz yielding a mean value of approximately 33 min (median = 32 min) for the large SEP events. When the SEP events with ground level enhancement (GLE,) are considered, the distribution is essentially unchanged (mean = 32 min, median = 30 min). To test the importance of type III bursts in indicating SEP events, we considered a set of six type III bursts from the same active region (AR 10588) whose durations fit the "long duration" criterion. We analyzed the coronal mass ejections (CMEs), flares, and type II radio bursts associated with the type III bursts. The CMEs were of similar speeds and the flares are also of similar size and duration. All but one of the type III bursts was not associated with a type II burst in the metric or longer wavelength domains. The burst without type II burst also lacked a solar energetic particle (SEP) event at energies >25 MeV. The 1-MHz duration of the type III burst (28 rein) is near the median value of type III durations found for gradual SEP events and ground level enhancement (GLE) events. Yet, there was no sign of SEP events. On the other hand, two other type III bursts from the same active region had similar duration but accompanied by WAVES type 11 bursts; these bursts were also accompanied by SEP events detected by SOHO/ERNE. This study suggests that the type III burst duration may not be a good indicator of an SEP event, consistent with the statistical study of Cliver and Ling (2009, ApJ ).

  5. Evidence of early systemic activation and transendothelial migration of neutrophils in neonates with severe respiratory distress syndrome.

    PubMed

    Sarafidis, K; Drossou-Agakidou, V; Kanakoudi-Tsakalidou, F; Taparkou, A; Tsakalidis, C; Tsandali, C; Kremenopoulos, G

    2001-03-01

    Several observations imply that the early inflammatory response involving activated neutrophils, tissue macrophages, and cytokines plays an important role in the pathogenesis of neonatal respiratory distress syndrome (RDS) and progression to bronchopulmonary dysplasia (BPD). The aim of this study was to test the hypothesis that changes in circulating neutrophil number and function and plasma levels of cytokines, consistent with neutrophil activation and migration to the tissues, occur during the early stages of neonatal RDS. For this purpose we measured peripheral blood levels of certain immunological parameters that promote neutrophil activation and transendothelial migration. Twenty preterm neonates with severe RDS and 20 healthy infants matched for gestational age were the subjects. The absolute neutrophil count (ANC), and plasma levels of interleukin-6 (IL-6), granulocyte colony-stimulating factor (G-CSF), and sL-selectin using an enzyme-linked immunosorbent assay (ELISA), neutrophil CD11b expression, and respiratory burst activity (RBA) using flow cytometry, were measured within 24 h after birth. The two groups were comparable regarding perinatal characteristics. None of the neonates studied had any clinical or laboratory evidence of infection by the time of blood sampling. The immunological investigation showed that the RDS neonates had significantly lower ANC (P = 0.032), higher expression of the CD11b on neutrophils (P = 0.0065), and higher G-CSF and IL-6 plasma levels (P = 0.0047 and P < 0.0001, respectively) in comparison to healthy preterm neonates. The neutrophil RBA and plasma sL-selectin levels did not differ significantly between the two groups. We conclude that in neonates with severe RDS, there is evidence of a systemic neutrophil activation early in the course of the disease, supporting the view of a contributing role of activated neutrophils in the pathogenesis of RDS. Copyright 2001 Wiley-Liss, Inc.

  6. Activation of multiple pH-regulatory pathways in granulocytes by a phosphotyrosine phosphatase antagonist.

    PubMed Central

    Bianchini, L; Nanda, A; Wasan, S; Grinstein, S

    1994-01-01

    Activated phagocytes undergo a massive burst of metabolic acid generation, yet must be able to maintain their cytosolic pH (pHi) within physiological limits. Peroxides of vanadate (V(4+)-OOH), potent inhibitors of phosphotyrosine phosphatases, have recently been shown to produce activation of the respiratory burst in HL60 granulocytes. We therefore investigated the effects of V(4+)-OOH on pHi homoeostasis in HL60 granulocytes, using a pH-sensitive fluorescent dye. V(4+)-OOH stimulation induced a biphasic pH change: a transient cytosolic acidification followed by a significant alkalinization. The initial acidification was prevented by inhibition of the NADPH oxidase and was absent in undifferentiated cells lacking oxidase activity. Analysis of the alkalinization phase demonstrated the involvement of the Na+/H+ antiporter, and also provided evidence for activation of two alternative H(+)-extrusion pathways: a bafilomycin-sensitive component, likely reflecting vacuolar-type H(+)-ATPase activity, and a Zn(2+)-sensitive H(+)-conductive pathway. Our results indicate that V(4+)-OOH stimulation not only activated the NADPH oxidase but concomitantly stimulated H(+)-extrusion pathways, enabling the cells to compensate for the massive production of intracellular H+ associated with the respiratory burst. PMID:8043000

  7. Oscillation patterns are enhanced and firing threshold is lowered in medullary respiratory neuron discharges by threshold doses of a μ-opioid receptor agonist

    PubMed Central

    Mifflin, Steve W.

    2017-01-01

    μ-Opioid receptors are distributed widely in the brain stem respiratory network, and opioids with selectivity for μ-type receptors slow in vivo respiratory rhythm in lowest effective doses. Several studies have reported μ-opioid receptor effects on the three-phase rhythm of respiratory neurons, but there are until now no reports of opioid effects on oscillatory activity within respiratory discharges. In this study, effects of the μ-opioid receptor agonist fentanyl on spike train discharge properties of several different types of rhythm-modulating medullary respiratory neuron discharges were analyzed. Doses of fentanyl that were just sufficient for prolongation of discharges and slowing of the three-phase respiratory rhythm also produced pronounced enhancement of spike train properties. Oscillation and burst patterns detected by autocorrelation measurements were greatly enhanced, and interspike intervals were prolonged. Spike train properties under control conditions and after fentanyl were uniform within each experiment, but varied considerably between experiments, which might be related to variability in acid-base balance in the brain stem extracellular fluid. Discharge threshold was shifted to more negative levels of membrane potential. The effects on threshold are postulated to result from opioid-mediated disinhibition and postsynaptic enhancement of N-methyl-d- aspartate receptor current. Lowering of firing threshold, enhancement of spike train oscillations and bursts and prolongation of discharges by lowest effective doses of fentanyl could represent compensatory adjustments in the brain stem respiratory network to override opioid blunting of CO2/pH chemosensitivity. PMID:28202437

  8. Optical recording from respiratory pattern generator of fetal mouse brainstem reveals a distributed network.

    PubMed

    Eugenin, J; Nicholls, J G; Cohen, L B; Muller, K J

    2006-01-01

    Unfailing respiration depends on neural mechanisms already present in mammals before birth. Experiments were made to determine how inspiratory and expiratory neurons are grouped in the brainstem of fetal mice. A further aim was to assess whether rhythmicity arises from a single pacemaker or is generated by multiple sites in the brainstem. To measure neuronal firing, a fluorescent calcium indicator dye was applied to embryonic central nervous systems isolated from mice. While respiratory commands were monitored electrically from third to fifth cervical ventral roots, activity was measured optically over areas containing groups of respiratory neurones, or single neurones, along the medulla from the facial nucleus to the pre-Bötzinger complex. Large optical signals allowed recordings to be made during individual respiratory cycles. Inspiratory and expiratory neurones were intermingled. A novel finding was that bursts of activity arose in a discrete area intermittently, occurring during some breaths, but failing in others. Raised CO2 partial pressure or lowered pH increased the frequency of respiration; neurons then fired reliably with every cycle. Movies of activity revealed patterns of activation of inspiratory and expiratory neurones during successive respiratory cycles; there was no evidence for waves spreading systematically from region to region. Our results suggest that firing of neurons in immature respiratory circuits is a stochastic process, and that the rhythm does not depend on a single pacemaker. Respiratory circuits in fetal mouse brainstem appear to possess a high safety factor for generating rhythmicity, which may or may not persist as development proceeds.

  9. U-Shape Suppressive Effect of Phenol Red on the Epileptiform Burst Activity via Activation of Estrogen Receptors in Primary Hippocampal Culture

    PubMed Central

    Liu, Xu; Chen, Ben; Chen, Lulan; Ren, Wan-Ting; Liu, Juan; Wang, Guoxiang; Fan, Wei; Wang, Xin; Wang, Yun

    2013-01-01

    Phenol red is widely used in cell culture as a pH indicator. Recently, it also has been reported to have estrogen-like bioactivity and be capable of promoting cell proliferation in different cell lines. However, the effect of phenol red on primary neuronal culture has never been investigated. By using patch clamp technique, we demonstrated that hippocampal pyramidal neurons cultured in neurobasal medium containing no phenol red had large depolarization-associated epileptiform bursting activities, which were rarely seen in neurons cultured in phenol red-containing medium. Further experiment data indicate that the suppressive effect of the phenol red on the abnormal epileptiform burst neuronal activities was U-shape dose related, with the most effective concentration at 28 µM. In addition, this concentration related inhibitory effect of phenol red on the epileptiform neuronal discharges was mimicked by 17-β-estradiol, an estrogen receptor agonist, and inhibited by ICI-182,780, an estrogen receptor antagonist. Our results suggest that estrogen receptor activation by phenol red in the culture medium prevents formation of abnormal, epileptiform burst activity. These studies highlight the importance of phenol red as estrogen receptor stimulator and cautions of careful use of phenol red in cell culture media. PMID:23560076

  10. The 2001 April Burst Activation of SGR 1900-14: Pulse Properties and Torque

    NASA Technical Reports Server (NTRS)

    Woods, P. M.; Kouveliotou, C.; Goegues, E.; Finger, M. H.; Feroci, M.; Mereghetti, S.; Swank, J. H.; Hurley, K.; Heise, J.; Smith D.

    2003-01-01

    We report on observations of SGR 1900+14 made with the Rossi X-Ray Timing Explorer (RXTE) and BeppoSAXduring the 2001 April burst activation of the source. Using these data, we measure the spin-down torque on the star and confirm earlier findings that the torque and burst activity are not directly correlated. We compare the X-ray pulse profile to the gamma-ray profile during the April 18 intermediate flare and show that (1) their shapes are similar and (1) the gamma-ray profile aligns closely in phase with the X-ray pulsations. The good phase alignment of the gamma-ray and X-ray profiles suggests that there was no rapid spin-down following this flare of the magnitude inferred for the August 27 giant flare. We discuss how these observations further constrain magnetic field reconfiguration models for the large flares of SGRs.

  11. Role of a respiratory burst oxidase of Lepidium sativum (cress) seedlings in root development and auxin signalling

    PubMed Central

    Müller, Kerstin; Linkies, Ada; Kermode, Allison R.

    2012-01-01

    Reactive oxygen species are increasingly perceived as players in plant development and plant hormone signalling pathways. One of these species, superoxide, is produced in the apoplast by respiratory burst oxidase homologues (rbohs), a family of proteins that is conserved throughout the plant kingdom. Because of the availability of mutants, the focus of research into plant rbohs has been on Arabidopsis thaliana, mainly on AtrbohD and AtrbohF. This study investigates: (i) a different member of the Atrboh family, AtrbohB, and (ii) several rbohs from the close relative of A. thaliana, Lepidium sativum (‘cress’). Five cress rbohs (Lesarbohs) were sequenced and it was found that their expression patterns were similar to their Arabidopsis orthologues throughout the life cycle. Cress plants in which LesarbohB expression was knocked down showed a strong seedling root phenotype that resembles phenotypes associated with defective auxin-related genes. These transgenic plants further displayed altered expression of auxin marker genes including those encoding the auxin responsive proteins 14 and 5 (IAA14 and IAA5), and LBD16 (LATERAL ORGAN BOUNDARIES DOMAIN16), an auxin-responsive protein implicated in lateral root initiation. It is speculated that ROS produced by rbohs play a role in root development via auxin signalling. PMID:23095998

  12. Critical Bursts in Filtration

    NASA Astrophysics Data System (ADS)

    Bianchi, Filippo; Thielmann, Marcel; de Arcangelis, Lucilla; Herrmann, Hans Jürgen

    2018-01-01

    Particle detachment bursts during the flow of suspensions through porous media are a phenomenon that can severely affect the efficiency of deep bed filters. Despite the relevance in several industrial fields, little is known about the statistical properties and the temporal organization of these events. We present experiments of suspensions of deionized water carrying quartz particles pushed with a peristaltic pump through a filter of glass beads measuring simultaneously the pressure drop, flux, and suspension solid fraction. We find that the burst size distribution scales consistently with a power law, suggesting that we are in the presence of a novel experimental realization of a self-organized critical system. Temporal correlations are present in the time series, like in other phenomena such as earthquakes or neuronal activity bursts, and also an analog to Omori's law can be shown. The understanding of burst statistics could provide novel insights in different fields, e.g., in the filter and petroleum industries.

  13. Pressure vessel burst test program - Initial program paper

    NASA Technical Reports Server (NTRS)

    Cain, Maurice R.; Sharp, Douglas E.; Coleman, Michael D.; Webb, Bobby L.

    1990-01-01

    The current status of a pressure vessel burst test program, aimed at the study of the blast waves and fragmentation characteristics of ruptured gas-filled pressure vessels, is reported. The program includes a series of test plans, each involving multiple bursts with burst pressures ranging to 7500 psig. The discussion covers the identification of concerns and hazards, application of the data generated, and a brief review of the current methods for assessing vessel safety and burst parameters. Attention is also given to pretest activities, including completed vessel and facility/instrumentation preparation and results of completed preliminary burst tests.

  14. Statistical Properties of SGR J1550-5418 Bursts

    NASA Technical Reports Server (NTRS)

    Gorgone, Nicholas M.

    2010-01-01

    Magnetars are slowly rotating neutron stars with extreme magnetic fields, over 10(exp 15) Gauss. Only few have been discovered in the last 30 years. These sources are dormant most of their lifetimes and become randomly active emitting multiple soft gamma-ray bursts. We present here our results on the temporal analysis of 300 bursts from Soft Gamma Repeater SGR J1550-5418 recorded with the Gamma-ray Burst Monitor (GBM) onboard the Fermi Observatory during its activation on January 22-29, 2009. We employed an un-triggered burst search in the energy range 8-100keV to collect all events from the source, besides the ones that triggered GBM. For the entire sample of bursts we determined their durations, rise and decay times. We study here the statistical properties of these characteristics and discuss how these may help us better understand the physical characteristics of the magnetar model.

  15. Mechanisms of CO2/H+ chemoreception by respiratory rhythm generator neurons in the medulla from newborn rats in vitro.

    PubMed

    Kawai, Akira; Onimaru, Hiroshi; Homma, Ikuo

    2006-04-15

    We investigated mechanisms of CO(2)/H(+) chemoreception in the respiratory centre of the medulla by measuring membrane potentials of pre-inspiratory neurons, which are putative respiratory rhythm generators, in the brainstem-spinal cord preparation of the neonatal rat. Neuronal response was tested by changing superfusate CO(2) concentration from 2% to 8% at constant HCO(3)(-) concentration (26 mm) or by changing pH from 7.8 to 7.2 by reducing HCO(3)(-) concentration at constant CO(2) (5%). Both respiratory and metabolic acidosis lead to depolarization of neurons with increased excitatory synaptic input and increased burst rate. Respiratory acidosis potentiated the amplitude of the neuronal drive potential. In the presence of tetrodotoxin (TTX), membrane depolarization persisted during respiratory and metabolic acidosis. However, the depolarization was smaller than that before application of TTX, which suggests that some neurons are intrinsically, and others synaptically, chemosensitive to CO(2)/H(+). Application of Ba(2+) blocked membrane depolarization by respiratory acidosis, whereas significant depolarization in response to metabolic acidosis still remained after application of Cd(2+) and Ba(2+). We concluded that the intrinsic responses to CO(2)/H(+)changes were mediated by potassium channels during respiratory acidosis, and that some other mechanisms operate during metabolic acidosis. In low-Ca(2+), high-Mg(2+) solution, an increased CO(2) concentration induced a membrane depolarization with a simultaneous increase of the burst rate. Pre-inspiratory neurons could adapt their baseline membrane potential to external CO(2)/H(+) changes by integration of these mechanisms to modulate their burst rates. Thus, pre-inspiratory neurons might play an important role in modulation of respiratory rhythm by central chemoreception in the brainstem-spinal cord preparation.

  16. Evaluation of endotoxin (LPS) activity in bovine blood using neutrophil dependent chemiluminescence

    USDA-ARS?s Scientific Manuscript database

    The purpose of this study was to evaluate the applicability of a neutrophil chemiluminescence-based assay for the measurement of LPS stimulatory activity in bovine whole blood. The assay is based on the capacity for LPS to trigger the respiratory oxidative burst activity (RBA) of autologous neutroph...

  17. Oscillation patterns are enhanced and firing threshold is lowered in medullary respiratory neuron discharges by threshold doses of a μ-opioid receptor agonist.

    PubMed

    Lalley, Peter M; Mifflin, Steve W

    2017-05-01

    μ-Opioid receptors are distributed widely in the brain stem respiratory network, and opioids with selectivity for μ-type receptors slow in vivo respiratory rhythm in lowest effective doses. Several studies have reported μ-opioid receptor effects on the three-phase rhythm of respiratory neurons, but there are until now no reports of opioid effects on oscillatory activity within respiratory discharges. In this study, effects of the μ-opioid receptor agonist fentanyl on spike train discharge properties of several different types of rhythm-modulating medullary respiratory neuron discharges were analyzed. Doses of fentanyl that were just sufficient for prolongation of discharges and slowing of the three-phase respiratory rhythm also produced pronounced enhancement of spike train properties. Oscillation and burst patterns detected by autocorrelation measurements were greatly enhanced, and interspike intervals were prolonged. Spike train properties under control conditions and after fentanyl were uniform within each experiment, but varied considerably between experiments, which might be related to variability in acid-base balance in the brain stem extracellular fluid. Discharge threshold was shifted to more negative levels of membrane potential. The effects on threshold are postulated to result from opioid-mediated disinhibition and postsynaptic enhancement of N -methyl-d- aspartate receptor current. Lowering of firing threshold, enhancement of spike train oscillations and bursts and prolongation of discharges by lowest effective doses of fentanyl could represent compensatory adjustments in the brain stem respiratory network to override opioid blunting of CO 2 /pH chemosensitivity. Copyright © 2017 the American Physiological Society.

  18. EUV and Magnetic Activities Associated with Type-I Solar Radio Bursts

    NASA Astrophysics Data System (ADS)

    Li, C. Y.; Chen, Y.; Wang, B.; Ruan, G. P.; Feng, S. W.; Du, G. H.; Kong, X. L.

    2017-06-01

    Type-I bursts ( i.e. noise storms) are the earliest-known type of solar radio emission at the meter wavelength. They are believed to be excited by non-thermal energetic electrons accelerated in the corona. The underlying dynamic process and exact emission mechanism still remain unresolved. Here, with a combined analysis of extreme ultraviolet (EUV), radio and photospheric magnetic field data of unprecedented quality recorded during a type-I storm on 30 July 2011, we identify a good correlation between the radio bursts and the co-spatial EUV and magnetic activities. The EUV activities manifest themselves as three major brightening stripes above a region adjacent to a compact sunspot, while the magnetic field there presents multiple moving magnetic features (MMFs) with persistent coalescence or cancelation and a morphologically similar three-part distribution. We find that the type-I intensities are correlated with those of the EUV emissions at various wavelengths with a correlation coefficient of 0.7 - 0.8. In addition, in the region between the brightening EUV stripes and the radio sources there appear consistent dynamic motions with a series of bi-directional flows, suggesting ongoing small-scale reconnection there. Mainly based on the induced connection between the magnetic motion at the photosphere and the EUV and radio activities in the corona, we suggest that the observed type-I noise storms and the EUV brightening activities are the consequence of small-scale magnetic reconnection driven by MMFs. This is in support of the original proposal made by Bentley et al. ( Solar Phys. 193, 227, 2000).

  19. BURST AND OUTBURST CHARACTERISTICS OF MAGNETAR 4U 0142+61

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Göğüş, Ersin; Chakraborty, Manoneeta; Kaneko, Yuki

    2017-01-20

    We have compiled the most comprehensive burst sample from magnetar 4U 0142+61, comprising 27 bursts from its three burst-active episodes in 2011, 2012 and the latest one in 2015 observed with Swift /Burst Alert Telescope and Fermi /Gamma-ray Burst Monitor. Bursts from 4U 0142+61 morphologically resemble typical short bursts from other magnetars. However, 4U 0142+61 bursts are less energetic compared to the bulk of magnetar bursts. We uncovered an extended tail emission following a burst on 2015 February 28, with a thermal nature, cooling over a timescale of several minutes. During this tail emission, we also uncovered pulse peak phasemore » aligned X-ray bursts, which could originate from the same underlying mechanism as that of the extended burst tail, or an associated and spatially coincident but different mechanism.« less

  20. Reflection of the State of Hunger in Impulse Activity of Nose Wing Muscles and Upper Esophageal Sphincter during Search behavior in Rabbits.

    PubMed

    Kromin, A A; Dvoenko, E E; Zenina, O Yu

    2016-07-01

    Reflection of the state of hunger in impulse activity of nose wing muscles and upper esophageal sphincter muscles was studied in chronic experiments on rabbits subjected to 24-h food deprivation in the absence of locomotion and during search behavior. In the absence of apparent behavioral activity, including sniffing, alai nasi muscles of hungry rabbits constantly generated bursts of action potentials synchronous with breathing, while upper esophageal sphincter muscles exhibited regular aperiodic low-amplitude impulse activity of tonic type. Latent form of food motivation was reflected in the structure of temporal organization of impulse activity of alai nasi muscles in the form of bimodal distribution of interpulse intervals and in temporal structure of impulse activity of upper esophageal sphincter muscles in the form of monomodal distribution. The latent form of food motivation was manifested in the structure of temporal organization of periods of the action potentials burst-like rhythm, generated by alai nasi muscles, in the form of monomodal distribution, characterized by a high degree of dispersion of respiratory cycle periods. In the absence of physical activity hungry animals sporadically exhibited sniffing activity, manifested in the change from the burst-like impulse activity of alai nasi muscles to the single-burst activity type with bimodal distribution of interpulse intervals and monomodal distribution of the burst-like action potentials rhythm periods, the maximum of which was shifted towards lower values, which was the cause of increased respiratory rate. At the same time, the monomodal temporal structure of impulse activity of the upper esophageal sphincter muscles was not changed. With increasing food motivation in the process of search behavior temporal structure of periods of the burst-like action potentials rhythm, generated by alai nasi muscles, became similar to that observed during sniffing, not accompanied by animal's locomotion, which is

  1. Activity of long-lead burst neurons in pontine reticular formation during head-unrestrained gaze shifts.

    PubMed

    Walton, Mark M G; Freedman, Edward G

    2014-01-01

    Primates explore a visual scene through a succession of saccades. Much of what is known about the neural circuitry that generates these movements has come from neurophysiological studies using subjects with their heads restrained. Horizontal saccades and the horizontal components of oblique saccades are associated with high-frequency bursts of spikes in medium-lead burst neurons (MLBs) and long-lead burst neurons (LLBNs) in the paramedian pontine reticular formation. For LLBNs, the high-frequency burst is preceded by a low-frequency prelude that begins 12-150 ms before saccade onset. In terms of the lead time between the onset of prelude activity and saccade onset, the anatomical projections, and the movement field characteristics, LLBNs are a heterogeneous group of neurons. Whether this heterogeneity is endemic of multiple functional subclasses is an open question. One possibility is that some may carry signals related to head movement. We recorded from LLBNs while monkeys performed head-unrestrained gaze shifts, during which the kinematics of the eye and head components were dissociable. Many cells had peak firing rates that never exceeded 200 spikes/s for gaze shifts of any vector. The activity of these low-frequency cells often persisted beyond the end of the gaze shift and was usually related to head-movement kinematics. A subset was tested during head-unrestrained pursuit and showed clear modulation in the absence of saccades. These "low-frequency" cells were intermingled with MLBs and traditional LLBNs and may represent a separate functional class carrying signals related to head movement.

  2. Beta burst dynamics in Parkinson's disease OFF and ON dopaminergic medication.

    PubMed

    Tinkhauser, Gerd; Pogosyan, Alek; Tan, Huiling; Herz, Damian M; Kühn, Andrea A; Brown, Peter

    2017-11-01

    Exaggerated basal ganglia beta activity (13-35 Hz) is commonly found in patients with Parkinson's disease and can be suppressed by dopaminergic medication, with the degree of suppression being correlated with the improvement in motor symptoms. Importantly, beta activity is not continuously elevated, but fluctuates to give beta bursts. The percentage number of longer beta bursts in a given interval is positively correlated with clinical impairment in Parkinson's disease patients. Here we determine whether the characteristics of beta bursts are dependent on dopaminergic state. Local field potentials were recorded from the subthalamic nucleus of eight Parkinson's disease patients during temporary lead externalization during surgery for deep brain stimulation. The recordings took place with the patient quietly seated following overnight withdrawal of levodopa and after administration of levodopa. Beta bursts were defined by applying a common amplitude threshold and burst characteristics were compared between the two drug conditions. The amplitude of beta bursts, indicative of the degree of local neural synchronization, progressively increased with burst duration. Treatment with levodopa limited this evolution leading to a relative increase of shorter, lower amplitude bursts. Synchronization, however, was not limited to local neural populations during bursts, but also, when such bursts were cotemporaneous across the hemispheres, was evidenced by bilateral phase synchronization. The probability of beta bursts and the proportion of cotemporaneous bursts were reduced by levodopa. The percentage number of longer beta bursts in a given interval was positively related to motor impairment, while the opposite was true for the percentage number of short duration beta bursts. Importantly, the decrease in burst duration was also correlated with the motor improvement. In conclusion, we demonstrate that long duration beta bursts are associated with an increase in local and

  3. Limits of the memory coefficient in measuring correlated bursts

    NASA Astrophysics Data System (ADS)

    Jo, Hang-Hyun; Hiraoka, Takayuki

    2018-03-01

    Temporal inhomogeneities in event sequences of natural and social phenomena have been characterized in terms of interevent times and correlations between interevent times. The inhomogeneities of interevent times have been extensively studied, while the correlations between interevent times, often called correlated bursts, are far from being fully understood. For measuring the correlated bursts, two relevant approaches were suggested, i.e., memory coefficient and burst size distribution. Here a burst size denotes the number of events in a bursty train detected for a given time window. Empirical analyses have revealed that the larger memory coefficient tends to be associated with the heavier tail of the burst size distribution. In particular, empirical findings in human activities appear inconsistent, such that the memory coefficient is close to 0, while burst size distributions follow a power law. In order to comprehend these observations, by assuming the conditional independence between consecutive interevent times, we derive the analytical form of the memory coefficient as a function of parameters describing interevent time and burst size distributions. Our analytical result can explain the general tendency of the larger memory coefficient being associated with the heavier tail of burst size distribution. We also find that the apparently inconsistent observations in human activities are compatible with each other, indicating that the memory coefficient has limits to measure the correlated bursts.

  4. Burst-by-burst laser frequency monitor

    NASA Technical Reports Server (NTRS)

    Esproles, Carlos (Inventor)

    1994-01-01

    The invention is a system for real-time frequency monitoring and display of an RF burst where the burst frequency is analyzed and displayed on a burst-by-burst basis in order to allow for frequency control. Although the invention was made for monitoring the laser frequency of a LIDAR system, it has other applications where realtime monitoring is required. The novelty of the invention resides in the use of a counter that is reset at the beginning of each unit time of monitoring and then gated for a unit of time. The invention also has an LED bar graph for displaying the measure of frequency at the end of each unit time in either a bar length mode or a moving dot mode. In the latter mode, the operator makes necessary adjustments to maintain the dot at the center of the bar graph.

  5. Active Learning Improves Student Performance in a Respiratory Physiology Lab

    ERIC Educational Resources Information Center

    Wolf, Alex M.; Liachovitzky, Carlos; Abdullahi, Abass S.

    2015-01-01

    This study assessed the effectiveness of the introduction of active learning exercises into the anatomy and physiology curriculum in a community college setting. Specifically, the incorporation of a spirometry-based respiratory physiology lab resulted in improved student performance in two concepts (respiratory volumes and the hallmarks of…

  6. Detailed correlation of type III radio bursts with H alpha activity. I - Active region of 22 May 1970.

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.; Pasachoff, J. M.

    1973-01-01

    Comparison of observations of type III impulsive radio bursts made at the Clark Lake Radio Observatory with high-spatial-resolution cinematographic observations taken at the Big Bear Solar Observatory. Use of the log-periodic radio interferometer makes it possible to localize the radio emission uniquely. This study concentrates on the particularly active region close to the limb on May 22, 1970. Sixteen of the 17 groups were associated with some H alpha activity, 11 of them with the start of such activity.

  7. Reconfiguration of the pontomedullary respiratory network: a computational modeling study with coordinated in vivo experiments.

    PubMed

    Rybak, I A; O'Connor, R; Ross, A; Shevtsova, N A; Nuding, S C; Segers, L S; Shannon, R; Dick, T E; Dunin-Barkowski, W L; Orem, J M; Solomon, I C; Morris, K F; Lindsey, B G

    2008-10-01

    A large body of data suggests that the pontine respiratory group (PRG) is involved in respiratory phase-switching and the reconfiguration of the brain stem respiratory network. However, connectivity between the PRG and ventral respiratory column (VRC) in computational models has been largely ad hoc. We developed a network model with PRG-VRC connectivity inferred from coordinated in vivo experiments. Neurons were modeled in the "integrate-and-fire" style; some neurons had pacemaker properties derived from the model of Breen et al. We recapitulated earlier modeling results, including reproduction of activity profiles of different respiratory neurons and motor outputs, and their changes under different conditions (vagotomy, pontine lesions, etc.). The model also reproduced characteristic changes in neuronal and motor patterns observed in vivo during fictive cough and during hypoxia in non-rapid eye movement sleep. Our simulations suggested possible mechanisms for respiratory pattern reorganization during these behaviors. The model predicted that network- and pacemaker-generated rhythms could be co-expressed during the transition from gasping to eupnea, producing a combined "burst-ramp" pattern of phrenic discharges. To test this prediction, phrenic activity and multiple single neuron spike trains were monitored in vagotomized, decerebrate, immobilized, thoracotomized, and artificially ventilated cats during hypoxia and recovery. In most experiments, phrenic discharge patterns during recovery from hypoxia were similar to those predicted by the model. We conclude that under certain conditions, e.g., during recovery from severe brain hypoxia, components of a distributed network activity present during eupnea can be co-expressed with gasp patterns generated by a distinct, functionally "simplified" mechanism.

  8. The 2001 April Burst Activation of SGR 1900+14: Pulse Properties and Torque

    NASA Technical Reports Server (NTRS)

    Woods, P. M.; Kouveliotou, C.; Goegues, E.; Finger, M. H.; Feroci, M.; Mereghetti, S.; Swank, J. H.; Hurley, K.; Heise, J.; Smith, D.; hide

    2002-01-01

    We report on observations of SGR 1900+14 made with the Rossi X-ray Timing Explorer (RXTE) and BeppoSAX during the April 2001 burst activation of the source. Using these data, we measure the spindown torque on the star and confirm earlier findings that the torque and burst activity are not directly correlated. We compare the X-ray pulse profile to the gamma-ray profile during the April 18 intermediate flare and show that (i) their shapes are similar and (ii) the gamma-ray profile aligns closely in phase with the X-ray pulsations. The good phase alignment of the gamma-ray and X-ray profiles suggests that there was no rapid spindown following this flare, in contrast to the August 27 giant flare. The absence of rapid spindown in the hours following the April 18 flare suggests that there was no significant outflow of material as was believed to be present following the August 27 flare. Finally, we discuss how these observations further constrain magnetic field reconfiguration models for the large flares of SGRs.

  9. Characterizing Oscillatory Bursts in Single-Trial EEG Data

    NASA Technical Reports Server (NTRS)

    Knuth, K. H.; Shah, A. S.; Lakatos, P.; Schroeder, C. E.

    2004-01-01

    Oscillatory bursts in numerous bands ranging from low (theta) to high frequencies (e.g., gamma) undoubtedly play an important role in cortical dynamics. Largely because of the inadequacy of existing analytic techniques. however, oscillatory bursts and their role in cortical processing remains poorly understood. To study oscillatory bursts effectively one must be able to isolate them and characterize them in the single trial. We describe a series of straightforward analysis techniques that produce useful indices of burst characteristics. First, stimulus-evoked responses are estimated using Differentially Variable Component Analysis (dVCA), and are subtracted from the single-trial. The single-trial characteristics of the evoked responses are stored to identify possible correlations with burst activity. Time-frequency (T-F), or wavelet, analyses are then applied to the single trial residuals. While T-F plots have been used in recent studies to identify and isolate bursts, we go further by fitting each burst in the T-F plot with a two-dimensional Gaussian. This provides a set of burst characteristics, such as, center time. burst duration, center frequency. frequency dispersion. and amplitude, all of which contribute to the accurate characterization of the individual burst. The burst phase can also be estimated. Burst characteristics can be quantified with several standard techniques (e.g.. histogramming and clustering), as well as Bayesian techniques (e.g., blocking) to allow a more parametric description analysis of the characteristics of oscillatory bursts, and the relationships of specific parameters to cortical excitability and stimulus integration.

  10. Mechanisms of CO2/H+ chemoreception by respiratory rhythm generator neurons in the medulla from newborn rats in vitro

    PubMed Central

    Kawai, Akira; Onimaru, Hiroshi; Homma, Ikuo

    2006-01-01

    We investigated mechanisms of CO2/H+ chemoreception in the respiratory centre of the medulla by measuring membrane potentials of pre-inspiratory neurons, which are putative respiratory rhythm generators, in the brainstem–spinal cord preparation of the neonatal rat. Neuronal response was tested by changing superfusate CO2 concentration from 2% to 8% at constant HCO3− concentration (26 mm) or by changing pH from 7.8 to 7.2 by reducing HCO3− concentration at constant CO2 (5%). Both respiratory and metabolic acidosis lead to depolarization of neurons with increased excitatory synaptic input and increased burst rate. Respiratory acidosis potentiated the amplitude of the neuronal drive potential. In the presence of tetrodotoxin (TTX), membrane depolarization persisted during respiratory and metabolic acidosis. However, the depolarization was smaller than that before application of TTX, which suggests that some neurons are intrinsically, and others synaptically, chemosensitive to CO2/H+. Application of Ba2+ blocked membrane depolarization by respiratory acidosis, whereas significant depolarization in response to metabolic acidosis still remained after application of Cd2+ and Ba2+. We concluded that the intrinsic responses to CO2/H+changes were mediated by potassium channels during respiratory acidosis, and that some other mechanisms operate during metabolic acidosis. In low-Ca2+, high-Mg2+ solution, an increased CO2 concentration induced a membrane depolarization with a simultaneous increase of the burst rate. Pre-inspiratory neurons could adapt their baseline membrane potential to external CO2/H+ changes by integration of these mechanisms to modulate their burst rates. Thus, pre-inspiratory neurons might play an important role in modulation of respiratory rhythm by central chemoreception in the brainstem–spinal cord preparation. PMID:16469786

  11. Non-Equilibrium Thermodynamics of Transcriptional Bursts

    NASA Astrophysics Data System (ADS)

    Hernández-Lemus, Enrique

    Gene transcription or Gene Expression (GE) is the process which transforms the information encoded in DNA into a functional RNA message. It is known that GE can occur in bursts or pulses. Transcription is irregular, with strong periods of activity, interspersed by long periods of inactivity. If we consider the average behavior over millions of cells, this process appears to be continuous. But at the individual cell level, there is considerable variability, and for most genes, very little activity at any one time. Some have claimed that GE bursting can account for the high variability in gene expression occurring between cells in isogenic populations. This variability has a big impact on cell behavior and thus on phenotypic conditions and disease. In view of these facts, the development of a thermodynamic framework to study gene expression and transcriptional regulation to integrate the vast amount of molecular biophysical GE data is appealing. Application of such thermodynamic formalism is useful to observe various dissipative phenomena in GE regulatory dynamics. In this chapter we will examine at some detail the complex phenomena of transcriptional bursts (specially of a certain class of anomalous bursts) in the context of a non-equilibrium thermodynamics formalism and will make some initial comments on the relevance of some irreversible processes that may be connected to anomalous transcriptional bursts.

  12. Burst Firing is a Neural Code in an Insect Auditory System

    PubMed Central

    Eyherabide, Hugo G.; Rokem, Ariel; Herz, Andreas V. M.; Samengo, Inés

    2008-01-01

    Various classes of neurons alternate between high-frequency discharges and silent intervals. This phenomenon is called burst firing. To analyze burst activity in an insect system, grasshopper auditory receptor neurons were recorded in vivo for several distinct stimulus types. The experimental data show that both burst probability and burst characteristics are strongly influenced by temporal modulations of the acoustic stimulus. The tendency to burst, hence, is not only determined by cell-intrinsic processes, but also by their interaction with the stimulus time course. We study this interaction quantitatively and observe that bursts containing a certain number of spikes occur shortly after stimulus deflections of specific intensity and duration. Our findings suggest a sparse neural code where information about the stimulus is represented by the number of spikes per burst, irrespective of the detailed interspike-interval structure within a burst. This compact representation cannot be interpreted as a firing-rate code. An information-theoretical analysis reveals that the number of spikes per burst reliably conveys information about the amplitude and duration of sound transients, whereas their time of occurrence is reflected by the burst onset time. The investigated neurons encode almost half of the total transmitted information in burst activity. PMID:18946533

  13. Bright x-ray flares in gamma-ray burst afterglows.

    PubMed

    Burrows, D N; Romano, P; Falcone, A; Kobayashi, S; Zhang, B; Moretti, A; O'brien, P T; Goad, M R; Campana, S; Page, K L; Angelini, L; Barthelmy, S; Beardmore, A P; Capalbi, M; Chincarini, G; Cummings, J; Cusumano, G; Fox, D; Giommi, P; Hill, J E; Kennea, J A; Krimm, H; Mangano, V; Marshall, F; Mészáros, P; Morris, D C; Nousek, J A; Osborne, J P; Pagani, C; Perri, M; Tagliaferri, G; Wells, A A; Woosley, S; Gehrels, N

    2005-09-16

    Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid x-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.

  14. Number of transients/Q-bursts in ELF-band as possible criterion for global thunderstorm activity estimation.

    NASA Astrophysics Data System (ADS)

    Ondraskova, Adriena; Sevcik, Sebastian

    2015-04-01

    Schumann resonances (SR) are resonant electromagnetic oscillations in extremely low frequency band (ELF, 3 Hz - 3 kHz), which arise in the Earth-ionosphere cavity due to lightning activity in planetary range. The time records in the ELF-band consist of background signals and ELF transients/Q-bursts superimposed on the background exceeding it by a factor of 5 - 10. The former are produced by the common worldwide thunderstorm activity (100 - 150 events per second), the latter origin from individual intense distant lightning discharges (100 - 120 powerful strokes per hour). A Q-burst is produced by a combination of direct and antipodal pulses and the decisive factor for its shape follows from the source-to-observer distance (SOD). Diurnal/seasonal variations of global thunderstorm activity can be deduced from spectral amplitudes of SR modes. Here we focus on diurnal/seasonal variations of the number of ELF-transients assuming that it is another way of lightning activity estimation. To search for transients, our own code was applied to the SR vertical electric component measured in October 2004 - December 2008 at the Astronomical and Geophysical Observatory of FMPI CU, Slovakia. Limits (min-max) for the width of primary spike, time difference between primary and secondary spike and the amplitude of the spike were chosen as criteria for the identification of the burst. Cumulative spectral amplitude of the first three SR modes compared with number of ELF-transients in monthly averaged diurnal variations quite successfully confirmed, that the number of transients can be a suitable criterion for the quantification of global lightning activity.

  15. Respiratory muscle training increases respiratory muscle strength and reduces respiratory complications after stroke: a systematic review.

    PubMed

    Menezes, Kênia Kp; Nascimento, Lucas R; Ada, Louise; Polese, Janaine C; Avelino, Patrick R; Teixeira-Salmela, Luci F

    2016-07-01

    After stroke, does respiratory muscle training increase respiratory muscle strength and/or endurance? Are any benefits carried over to activity and/or participation? Does it reduce respiratory complications? Systematic review of randomised or quasi-randomised trials. Adults with respiratory muscle weakness following stroke. Respiratory muscle training aimed at increasing inspiratory and/or expiratory muscle strength. Five outcomes were of interest: respiratory muscle strength, respiratory muscle endurance, activity, participation and respiratory complications. Five trials involving 263 participants were included. The mean PEDro score was 6.4 (range 3 to 8), showing moderate methodological quality. Random-effects meta-analyses showed that respiratory muscle training increased maximal inspiratory pressure by 7 cmH2O (95% CI 1 to 14) and maximal expiratory pressure by 13 cmH2O (95% CI 1 to 25); it also decreased the risk of respiratory complications (RR 0.38, 95% CI 0.15 to 0.96) compared with no/sham respiratory intervention. Whether these effects carry over to activity and participation remains uncertain. This systematic review provided evidence that respiratory muscle training is effective after stroke. Meta-analyses based on five trials indicated that 30minutes of respiratory muscle training, five times per week, for 5 weeks can be expected to increase respiratory muscle strength in very weak individuals after stroke. In addition, respiratory muscle training is expected to reduce the risk of respiratory complications after stroke. Further studies are warranted to investigate whether the benefits are carried over to activity and participation. PROSPERO (CRD42015020683). [Menezes KKP, Nascimento LR, Ada L, Polese JC, Avelino PR, Teixeira-Salmela LF (2016) Respiratory muscle training increases respiratory muscle strength and reduces respiratory complications after stroke: a systematic review.Journal of Physiotherapy62: 138-144]. Copyright © 2016 Australian

  16. Local cortical dynamics of burst suppression in the anaesthetized brain.

    PubMed

    Lewis, Laura D; Ching, Shinung; Weiner, Veronica S; Peterfreund, Robert A; Eskandar, Emad N; Cash, Sydney S; Brown, Emery N; Purdon, Patrick L

    2013-09-01

    Burst suppression is an electroencephalogram pattern that consists of a quasi-periodic alternation between isoelectric 'suppressions' lasting seconds or minutes, and high-voltage 'bursts'. It is characteristic of a profoundly inactivated brain, occurring in conditions including hypothermia, deep general anaesthesia, infant encephalopathy and coma. It is also used in neurology as an electrophysiological endpoint in pharmacologically induced coma for brain protection after traumatic injury and during status epilepticus. Classically, burst suppression has been regarded as a 'global' state with synchronous activity throughout cortex. This assumption has influenced the clinical use of burst suppression as a way to broadly reduce neural activity. However, the extent of spatial homogeneity has not been fully explored due to the challenges in recording from multiple cortical sites simultaneously. The neurophysiological dynamics of large-scale cortical circuits during burst suppression are therefore not well understood. To address this question, we recorded intracranial electrocorticograms from patients who entered burst suppression while receiving propofol general anaesthesia. The electrodes were broadly distributed across cortex, enabling us to examine both the dynamics of burst suppression within local cortical regions and larger-scale network interactions. We found that in contrast to previous characterizations, bursts could be substantially asynchronous across the cortex. Furthermore, the state of burst suppression itself could occur in a limited cortical region while other areas exhibited ongoing continuous activity. In addition, we found a complex temporal structure within bursts, which recapitulated the spectral dynamics of the state preceding burst suppression, and evolved throughout the course of a single burst. Our observations imply that local cortical dynamics are not homogeneous, even during significant brain inactivation. Instead, cortical and, implicitly

  17. Calcium responses to synaptically activated bursts of action potentials and their synapse-independent replay in cultured networks of hippocampal neurons.

    PubMed

    Bengtson, C Peter; Kaiser, Martin; Obermayer, Joshua; Bading, Hilmar

    2013-07-01

    Both synaptic N-methyl-d-aspartate (NMDA) receptors and voltage-operated calcium channels (VOCCs) have been shown to be critical for nuclear calcium signals associated with transcriptional responses to bursts of synaptic input. However the direct contribution to nuclear calcium signals from calcium influx through NMDA receptors and VOCCs has been obscured by their concurrent roles in action potential generation and synaptic transmission. Here we compare calcium responses to synaptically induced bursts of action potentials with identical bursts devoid of any synaptic contribution generated using the pre-recorded burst as the voltage clamp command input to replay the burst in the presence of blockers of action potentials or ionotropic glutamate receptors. Synapse independent replays of bursts produced nuclear calcium responses with amplitudes around 70% of their original synaptically generated signals and were abolished by the L-type VOCC blocker, verapamil. These results identify a major direct source of nuclear calcium from local L-type VOCCs whose activation is boosted by NMDA receptor dependent depolarization. The residual component of synaptically induced nuclear calcium signals which was both VOCC independent and NMDA receptor dependent showed delayed kinetics consistent with a more distal source such as synaptic NMDA receptors or internal stores. The dual requirement of NMDA receptors and L-type VOCCs for synaptic activity-induced nuclear calcium dependent transcriptional responses most likely reflects a direct somatic calcium influx from VOCCs whose activation is amplified by synaptic NMDA receptor-mediated depolarization and whose calcium signal is boosted by a delayed input from distal calcium sources mostly likely entry through NMDA receptors and release from internal stores. This article is part of a Special Issue entitled: 12th European Symposium on Calcium. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Burst Firing in Bee Gustatory Neurons Prevents Adaptation.

    PubMed

    Miriyala, Ashwin; Kessler, Sébastien; Rind, F Claire; Wright, Geraldine A

    2018-05-01

    Animals detect changes in the environment using modality-specific, peripheral sensory neurons. The insect gustatory system encodes tastant identity and concentration through the independent firing of gustatory receptor neurons (GRNs) that spike rapidly at stimulus onset and quickly adapt. Here, we show the first evidence that concentrated sugar evokes a temporally structured burst pattern of spiking involving two GRNs within the gustatory sensilla of bumblebees. Bursts of spikes resulted when a sucrose-activated GRN was inhibited by another GRN at a frequency of ∼22 Hz during the first 1 s of stimulation. Pharmacological blockade of gap junctions abolished bursting, indicating that bee GRNs have electrical synapses that produce a temporal pattern of spikes when one GRN is activated by a sugar ligand. Bursting permitted bee GRNs to maintain a high rate of spiking and to exhibit the slowest rate of adaptation of any insect species. Feeding bout duration correlated with coherent bursting; only sugar concentrations that produced bursting evoked the bumblebee's feeding reflex. Volume of solution imbibed was a direct function of time in contact with food. We propose that gap junctions among GRNs enable a sustained rate of GRN spiking that is necessary to drive continuous feeding by the bee proboscis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Comparison of respiratory activity and culturability during monochloramine disinfection of binary population biofilms.

    PubMed Central

    Stewart, P S; Griebe, T; Srinivasan, R; Chen, C I; Yu, F P; deBeer, D; McFeters, G A

    1994-01-01

    Biofilm bacteria challenged with monochloramine retained significant respiratory activity, even though they could not be cultured on agar plates. Microbial colony counts on agar media declined by approximately 99.9% after 1 h of disinfection, whereas the number of bacteria stained by a fluorescent redox dye experienced a 93% reduction. Integrated measures of biofilm respiratory activity, including net oxygen and glucose utilization rates, showed only a 10 to 15% reduction. In this biofilm system, measures of microbial respiratory activity and culturability yielded widely differing estimates of biocide efficacy. PMID:8017950

  20. Origin of the phagocytic respiratory burst and its role in gut epithelial phagocytosis in a basal chordate.

    PubMed

    Yang, Ping; Huang, Shengfeng; Yan, Xinyu; Huang, Guangrui; Dong, Xiangru; Zheng, Tingting; Yuan, Dongjuan; Wang, Ruihua; Li, Rui; Tan, Ying; Xu, Anlong

    2014-05-01

    The vertebrate phagocytic respiratory burst (PRB) is a highly specific and efficient mechanism for reactive oxygen species (ROS) production. This mechanism is mediated by NADPH oxidase 2 (NOX2) and used by vertebrate phagocytic leukocytes to destroy internalized microbes. Here we demonstrate the presence of the PRB in a basal chordate, the amphioxus Branchiostoma belcheri tsingtauense (bbt). We show that using the antioxidant NAC to scavenge the production of ROS significantly decreased the survival rates of infected amphioxus, indicating that ROS are indispensable for efficient antibacterial responses. Amphioxus NOX enzymes and cytosolic factors were found to colocalize in the epithelial cells of the gill, intestine, and hepatic cecum and could be upregulated after exposure to microbial pathogens. The ROS production in epithelial cell lysates could be reconstructed by supplementing recombinant cytosolic factors, including bbt-p47phox, bbt-p67phox, bbt-p47phox, and bbt-Rac; the restored ROS production could be inhibited by anti-bbt-NOX2 and anti-bbt-p67phox antibodies. We also reveal that the gut epithelial lining cells of the amphioxus are competent at bacterial phagocytosis, and there is evidence that the PRB machinery could participate in the initiation of this phagocytic process. In conclusion, we report the presence of the classical PRB machinery in nonvertebrates and provide the first evidence for the possible role of PRB in epithelial cell immunity and phagocytosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Activation of respiratory muscles does not occur during cold-submergence in bullfrogs, Lithobates catesbeianus.

    PubMed

    Santin, Joseph M; Hartzler, Lynn K

    2017-04-01

    Semiaquatic frogs may not breathe air for several months because they overwinter in ice-covered ponds. In contrast to many vertebrates that experience decreased motor performance after inactivity, bullfrogs, Lithobates catesbeianus , retain functional respiratory motor processes following cold-submergence. Unlike mammalian hibernators with unloaded limb muscles and inactive locomotor systems, respiratory mechanics of frogs counterintuitively allow for ventilatory maneuvers when submerged. Thus, we hypothesized that bullfrogs generate respiratory motor patterns during cold-submergence to avoid disuse and preserve motor performance. Accordingly, we measured activity of respiratory muscles (buccal floor compressor and glottal dilator) via electromyography in freely behaving bullfrogs at 20 and 2°C. Although we confirm that ventilation cycles occur underwater at 20°C, bullfrogs did not activate either respiratory muscle when submerged acutely or chronically at 2°C. We conclude that cold-submerged bullfrogs endure respiratory motor inactivity, implying that other mechanisms, excluding underwater muscle activation, maintain a functional respiratory motor system throughout overwintering. © 2017. Published by The Company of Biologists Ltd.

  2. The influence of single bursts vs. single spikes at excitatory dendrodendritic synapses

    PubMed Central

    Masurkar, Arjun V.; Chen, Wei R.

    2015-01-01

    The synchronization of neuronal activity is thought to enhance information processing. There is much evidence supporting rhythmically bursting external tufted cells (ETCs) of the rodent olfactory bulb glomeruli coordinating the activation of glomerular interneurons and mitral cells via dendrodendritic excitation. However, as bursting has variable significance at axodendritic cortical synapses, it is not clear if ETC bursting imparts a specific functional advantage over the preliminary spike in dendrodendritic synaptic networks. To answer this question, we investigated the influence of single ETC bursts and spikes with the in-vitro rat olfactory bulb preparation at different levels of processing, via calcium imaging of presynaptic ETC dendrites, dual electrical recording of ETC–interneuron synaptic pairs, and multicellular calcium imaging of ETC-induced population activity. Our findings supported single ETC bursts, vs. single spikes, driving robust presynaptic calcium signaling, which in turn was associated with profound extension of the initial monosynaptic spike-driven dendrodendritic excitatory postsynaptic potential. This extension could be driven by either the spike-dependent or spike-independent components of the burst. At the population level, burst-induced excitation was more widespread and reliable compared with single spikes. This further supports the ETC network, in part due to a functional advantage of bursting at excitatory dendrodendritic synapses, coordinating synchronous activity at behaviorally relevant frequencies related to odor processing in vivo. PMID:22277089

  3. Quantum key based burst confidentiality in optical burst switched networks.

    PubMed

    Balamurugan, A M; Sivasubramanian, A

    2014-01-01

    The optical burst switching (OBS) is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS). This paper deals with employing RC4 (stream cipher) to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks.

  4. Quantum Key Based Burst Confidentiality in Optical Burst Switched Networks

    PubMed Central

    Balamurugan, A. M.; Sivasubramanian, A.

    2014-01-01

    The optical burst switching (OBS) is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS). This paper deals with employing RC4 (stream cipher) to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks. PMID:24578663

  5. Stimulus-dependent modulation of spike burst length in cat striate cortical cells.

    PubMed

    DeBusk, B C; DeBruyn, E J; Snider, R K; Kabara, J F; Bonds, A B

    1997-07-01

    Burst activity, defined by groups of two or more spikes with intervals of < or = 8 ms, was analyzed in responses to drifting sinewave gratings elicited from striate cortical neurons in anesthetized cats. Bursting varied broadly across a population of 507 simple and complex cells. Half of this population had > or = 42% of their spikes contained in bursts. The fraction of spikes in bursts did not vary as a function of average firing rate and was stationary over time. Peaks in the interspike interval histograms were found at both 3-5 ms and 10-30 ms. In many cells the locations of these peaks were independent of firing rate, indicating a quantized control of firing behavior at two different time scales. The activity at the shorter time scale most likely results from intrinsic properties of the cell membrane, and that at the longer scale from recurrent network excitation. Burst frequency (bursts per s) and burst length (spikes per burst) both depended on firing rate. Burst frequency was essentially linear with firing rate, whereas burst length was a nonlinear function of firing rate and was also governed by stimulus orientation. At a given firing rate, burst length was greater for optimal orientations than for nonoptimal orientations. No organized orientation dependence was seen in bursts from lateral geniculate nucleus cells. Activation of cortical contrast gain control at low response amplitudes resulted in no burst length modulation, but burst shortening at optimal orientations was found in responses characterized by supersaturation. At a given firing rate, cortical burst length was shortened by microinjection of gamma-aminobutyric acid (GABA), and bursts became longer in the presence of N-methyl-bicuculline, a GABA(A) receptor blocker. These results are consistent with a model in which responses are reduced at nonoptimal orientations, at least in part, by burst shortening that is mediated by GABA. A similar mechanism contributes to response supersaturation at high

  6. A continuum model of transcriptional bursting

    PubMed Central

    Corrigan, Adam M; Tunnacliffe, Edward; Cannon, Danielle; Chubb, Jonathan R

    2016-01-01

    Transcription occurs in stochastic bursts. Early models based upon RNA hybridisation studies suggest bursting dynamics arise from alternating inactive and permissive states. Here we investigate bursting mechanism in live cells by quantitative imaging of actin gene transcription, combined with molecular genetics, stochastic simulation and probabilistic modelling. In contrast to early models, our data indicate a continuum of transcriptional states, with a slowly fluctuating initiation rate converting the gene between different levels of activity, interspersed with extended periods of inactivity. We place an upper limit of 40 s on the lifetime of fluctuations in elongation rate, with initiation rate variations persisting an order of magnitude longer. TATA mutations reduce the accessibility of high activity states, leaving the lifetime of on- and off-states unchanged. A continuum or spectrum of gene states potentially enables a wide dynamic range for cell responses to stimuli. DOI: http://dx.doi.org/10.7554/eLife.13051.001 PMID:26896676

  7. Spiking and bursting patterns of fractional-order Izhikevich model

    NASA Astrophysics Data System (ADS)

    Teka, Wondimu W.; Upadhyay, Ranjit Kumar; Mondal, Argha

    2018-03-01

    Bursting and spiking oscillations play major roles in processing and transmitting information in the brain through cortical neurons that respond differently to the same signal. These oscillations display complex dynamics that might be produced by using neuronal models and varying many model parameters. Recent studies have shown that models with fractional order can produce several types of history-dependent neuronal activities without the adjustment of several parameters. We studied the fractional-order Izhikevich model and analyzed different kinds of oscillations that emerge from the fractional dynamics. The model produces a wide range of neuronal spike responses, including regular spiking, fast spiking, intrinsic bursting, mixed mode oscillations, regular bursting and chattering, by adjusting only the fractional order. Both the active and silent phase of the burst increase when the fractional-order model further deviates from the classical model. For smaller fractional order, the model produces memory dependent spiking activity after the pulse signal turned off. This special spiking activity and other properties of the fractional-order model are caused by the memory trace that emerges from the fractional-order dynamics and integrates all the past activities of the neuron. On the network level, the response of the neuronal network shifts from random to scale-free spiking. Our results suggest that the complex dynamics of spiking and bursting can be the result of the long-term dependence and interaction of intracellular and extracellular ionic currents.

  8. Intraspinal microstimulation and diaphragm activation after cervical spinal cord injury

    PubMed Central

    Mercier, L. M.; Gonzalez-Rothi, E. J.; Streeter, K. A.; Posgai, S. S.; Poirier, A. S.; Fuller, D. D.; Reier, P. J.

    2016-01-01

    Intraspinal microstimulation (ISMS) using implanted electrodes can evoke locomotor movements after spinal cord injury (SCI) but has not been explored in the context of respiratory motor output. An advantage over epidural and direct muscle stimulation is the potential of ISMS to selectively stimulate components of the spinal respiratory network. The present study tested the hypothesis that medullary respiratory activity could be used to trigger midcervical ISMS and diaphragm motor unit activation in rats with cervical SCI. Studies were conducted after acute (hours) and subacute (5–21 days) C2 hemisection (C2Hx) injury in adult rats. Inspiratory bursting in the genioglossus (tongue) muscle was used to trigger a 250-ms train stimulus (100 Hz, 100–200 μA) to the ventral C4 spinal cord, targeting the phrenic motor nucleus. After both acute and subacute injury, genioglossus EMG activity effectively triggered ISMS and activated diaphragm motor units during the inspiratory phase. The ISMS paradigm also evoked short-term potentiation of spontaneous inspiratory activity in the previously paralyzed hemidiaphragm (i.e., bursting persisting beyond the stimulus period) in ∼70% of the C2Hx animals. We conclude that medullary inspiratory output can be used to trigger cervical ISMS and diaphragm activity after SCI. Further refinement of this method may enable “closed-loop-like” ISMS approaches to sustain ventilation after severe SCI. NEW & NOTEWORTHY We examined the feasibility of using intraspinal microstimulation (ISMS) of the cervical spinal cord to evoke diaphragm activity ipsilateral to acute and subacute hemisection of the upper cervical spinal cord of the rat. This proof-of-concept study demonstrated the efficacy of diaphragm activation, using an upper airway respiratory EMG signal to trigger ISMS at the level of the ipsilesional phrenic nucleus during acute and advanced postinjury intervals. PMID:27881723

  9. The influence of single bursts versus single spikes at excitatory dendrodendritic synapses.

    PubMed

    Masurkar, Arjun V; Chen, Wei R

    2012-02-01

    The synchronization of neuronal activity is thought to enhance information processing. There is much evidence supporting rhythmically bursting external tufted cells (ETCs) of the rodent olfactory bulb glomeruli coordinating the activation of glomerular interneurons and mitral cells via dendrodendritic excitation. However, as bursting has variable significance at axodendritic cortical synapses, it is not clear if ETC bursting imparts a specific functional advantage over the preliminary spike in dendrodendritic synaptic networks. To answer this question, we investigated the influence of single ETC bursts and spikes with the in vitro rat olfactory bulb preparation at different levels of processing, via calcium imaging of presynaptic ETC dendrites, dual electrical recording of ETC -interneuron synaptic pairs, and multicellular calcium imaging of ETC-induced population activity. Our findings supported single ETC bursts, versus single spikes, driving robust presynaptic calcium signaling, which in turn was associated with profound extension of the initial monosynaptic spike-driven dendrodendritic excitatory postsynaptic potential. This extension could be driven by either the spike-dependent or spike-independent components of the burst. At the population level, burst-induced excitation was more widespread and reliable compared with single spikes. This further supports the ETC network, in part due to a functional advantage of bursting at excitatory dendrodendritic synapses, coordinating synchronous activity at behaviorally relevant frequencies related to odor processing in vivo. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  10. Optical imaging of respiratory neuron activity from the dorsal view of the lower brainstem.

    PubMed

    Onimaru, Hiroshi; Homma, Ikuo

    2005-04-01

    1. We visualized respiratory-related neuron network activity in the dorsal part of the pons and medulla of an in vitro preparation from newborn rats by optical recordings using a voltage-sensitive dye. We measured optical signals from several seconds before to several seconds after the inspiratory phase using the inspiratory motor nerve discharge as the trigger signal and we averaged the optical signals of 20-50 respiratory cycles to obtain an optical image correlating specifically to inspiratory activity. 2. Four areas that were excited or inhibited corresponding to the respiratory cycles were detected. (i) The most rostral activity was in the rostral and lateral parts of the pons, with activity mainly in the inspiratory phase, corresponding to the pontine-respiratory group. (ii) In the midpontine level, inspiratory activity followed by long-lasting hyperpolarization appeared in the midlateral parts. This part was presumed to reflect activity in the locus coeruleus. The hyperpolarization became almost negligible after treatment with the alpha-adrenergic antagonist, phentolamine. (iii) In the dorsal medulla, the predominantly inspiratory activity was detected at the rostral level of the area postrema. This part was considered to reflect activity mainly of the hypoglossal nucleus. (iv) At a similar level, we also detected weak and disperse inspiratory activity extending more laterally and caudally than that of the hypoglossal nucleus activity. This might reflect activity of the dorsal respiratory group. 3. In conclusion, the present optical recording study revealed that the dorsal part of the lower brainstem in the in vitro preparation is noticeably active as well as the ventral part shown in the previous study. This method is very useful for analysis of pharmacological properties, as well as the spatio-temporal pattern of respiratory-related network activity in the brainstem.

  11. The Respiratory System and Diazotrophic Activity of Acetobacter diazotrophicus PAL5

    PubMed Central

    Flores-Encarnación, M.; Contreras-Zentella, M.; Soto-Urzua, L.; Aguilar, G. R.; Baca, B. E.; Escamilla, J. E.

    1999-01-01

    The characteristics of the respiratory system of Acetobacter diazotrophicus PAL5 were investigated. Increasing aeration (from 0.5 to 4.0 liters of air min−1 liter of medium−1) had a strong positive effect on growth and on the diazotrophic activity of cultures. Cells obtained from well-aerated and diazotrophically active cultures possessed a highly active, membrane-bound electron transport system with dehydrogenases for NADH, glucose, and acetaldehyde as the main electron donors. Ethanol, succinate, and gluconate were also oxidized but to only a minor extent. Terminal cytochrome c oxidase-type activity was poor as measured by reduced N,N,N,N′-tetramethyl-p-phenylenediamine, but quinol oxidase-type activity, as measured by 2,3,5,6-tetrachloro-1,4-benzenediol, was high. Spectral and high-pressure liquid chromatography analysis of membranes revealed the presence of cytochrome ba as a putative oxidase in cells obtained from diazotrophically active cultures. Cells were also rich in c-type cytochromes; four bands of high molecular mass (i.e., 67, 56, 52, and 45 kDa) were revealed by a peroxidase activity stain in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. KCN inhibition curves of respiratory oxidase activities were biphasic, with a highly resistant component. Treatment of membranes with 0.2% Triton X-100 solubilized c-type cytochromes and resulted in a preparation that was significantly more sensitive to cyanide. Repression of diazotrophic activity in well-aerated cultures by 40 mM (NH4)2SO4 caused a significant decrease of the respiratory activities. It is noteworthy that the levels of glucose dehydrogenase and putative oxidase ba decreased 6.8- and 10-fold, respectively. In these cells, a bd-type cytochrome seems to be the major terminal oxidase. Thus, it would seem that glucose dehydrogenase and cytochrome ba are key components of the respiratory system of A. diazotrophicus during aerobic diazotrophy. PMID:10559164

  12. PPAR Activation Induces M1 Macrophage Polarization via cPLA2-COX-2 Inhibition, Activating ROS Production against Leishmania mexicana

    PubMed Central

    Díaz-Gandarilla, J. A.; Osorio-Trujillo, C.; Hernández-Ramírez, V. I.; Talamás-Rohana, P.

    2013-01-01

    Defence against Leishmania depends upon Th1 inflammatory response and, a major problem in susceptible models, is the turnoff of the leishmanicidal activity of macrophages with IL-10, IL-4, and COX-2 upregulation, as well as immunosuppressive PGE2, all together inhibiting the respiratory burst. Peroxisome proliferator-activated receptors (PPAR) activation is responsible for macrophages polarization on Leishmania susceptible models where microbicide functions are deactivated. In this paper, we demonstrated that, at least for L. mexicana, PPAR activation, mainly PPARγ, induced macrophage activation through their polarization towards M1 profile with the increase of microbicide activity against intracellular pathogen L. mexicana. PPAR activation induced IL-10 downregulation, whereas the production of proinflammatory cytokines such as TNF-α, IL-1β, and IL-6 remained high. Moreover, PPAR agonists treatment induced the deactivation of cPLA2-COX-2-prostaglandins pathway together with an increase in TLR4 expression, all of whose criteria meet the M1 macrophage profile. Finally, parasite burden, in treated macrophages, was lower than that in infected nontreated macrophages, most probably associated with the increase of respiratory burst in these treated cells. Based on the above data, we conclude that PPAR agonists used in this work induces M1 macrophages polarization via inhibition of cPLA2 and the increase of aggressive microbicidal activity via reactive oxygen species (ROS) production. PMID:23555077

  13. A possible relation between flare activity in super-luminous supernovae and gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Yu, Yun-Wei; Li, Shao-Ze

    2017-09-01

    Significant undulations appear in the light curve of a recently discovered super-luminous supernova (SLSN) SN 2015bn after the first peak, while the underlying profile of the light curve can be explained well by a continuous energy supply from a central engine, possibly the spin-down of a millisecond magnetar. We propose that these undulations are caused by an intermittent pulsed energy supply, indicating the energetic flare activity of the central engine of the SLSN. Many post-burst flares were discovered during X-ray afterglow observations of gamma-ray bursts (GRBs). We find that the SLSN flares described here approximately obey the empirical correlation between the luminosity and time-scale of GRB flares, extrapolated to the relevant longer time-scales of SLSN flares. This somewhat confirms the possible connection between these two different phenomena, as recently suggested by Yu et al.

  14. Phrenic motor outputs in response to bronchopulmonary C‐fibre activation following chronic cervical spinal cord injury

    PubMed Central

    2016-01-01

    Key points Activation of bronchopulmonary C‐fibres, the main chemosensitive afferents in the lung, can induce pulmonary chemoreflexes to modulate respiratory activity.Following chronic cervical spinal cord injury, bronchopulmonary C‐fibre activation‐induced inhibition of phrenic activity was exaggerated.Supersensitivity of phrenic motor outputs to the inhibitory effect of bronchopulmonary C‐fibre activation is due to a shift of phrenic motoneuron types and slow recovery of phrenic motoneuron discharge in cervical spinal cord‐injured animals.These data suggest that activation of bronchopulmonary C‐fibres may retard phrenic output recovery following cervical spinal cord injury.The alteration of phenotype and discharge pattern of phrenic motoneuron enables us to understand the impact of spinal cord injury on spinal respiratory activity. Abstract Cervical spinal injury interrupts bulbospinal pathways and results in cessation of phrenic bursting ipsilateral to the lesion. The ipsilateral phrenic activity can partially recover over weeks to months following injury due to the activation of latent crossed spinal pathways and exhibits a greater capacity to increase activity during respiratory challenges than the contralateral phrenic nerve. However, whether the bilateral phrenic nerves demonstrate differential responses to respiratory inhibitory inputs is unclear. Accordingly, the present study examined bilateral phrenic bursting in response to capsaicin‐induced pulmonary chemoreflexes, a robust respiratory inhibitory stimulus. Bilateral phrenic nerve activity was recorded in anaesthetized and mechanically ventilated adult rats at 8–9 weeks after C2 hemisection (C2Hx) or C2 laminectomy. Intra‐jugular capsaicin (1.5 μg kg−1) injection was performed to activate the bronchopulmonary C‐fibres to evoke pulmonary chemoreflexes. The present results indicate that capsaicin‐induced prolongation of expiratory duration was significantly attenuated in C2Hx

  15. Burst Mode Composite Photography for Dynamic Physics Demonstrations

    ERIC Educational Resources Information Center

    Lincoln, James

    2018-01-01

    I am writing this article to raise awareness of burst mode photography as a fun and engaging way for teachers and students to experience physics demonstration activities. In the context of digital photography, "burst mode" means taking multiple photographs per second, and this is a feature that now comes standard on most digital…

  16. Localization of spontaneous bursting neuronal activity in the preterm human brain with simultaneous EEG-fMRI.

    PubMed

    Arichi, Tomoki; Whitehead, Kimberley; Barone, Giovanni; Pressler, Ronit; Padormo, Francesco; Edwards, A David; Fabrizi, Lorenzo

    2017-09-12

    Electroencephalographic recordings from the developing human brain are characterized by spontaneous neuronal bursts, the most common of which is the delta brush. Although similar events in animal models are known to occur in areas of immature cortex and drive their development, their origin in humans has not yet been identified. Here, we use simultaneous EEG-fMRI to localise the source of delta brush events in 10 preterm infants aged 32-36 postmenstrual weeks. The most frequent patterns were left and right posterior-temporal delta brushes which were associated in the left hemisphere with ipsilateral BOLD activation in the insula only; and in the right hemisphere in both the insular and temporal cortices. This direct measure of neural and hemodynamic activity shows that the insula, one of the most densely connected hubs in the developing cortex, is a major source of the transient bursting events that are critical for brain maturation.

  17. Respiratory modulation of human autonomic function on Earth.

    PubMed

    Eckberg, Dwain L; Cooke, William H; Diedrich, André; Biaggioni, Italo; Buckey, Jay C; Pawelczyk, James A; Ertl, Andrew C; Cox, James F; Kuusela, Tom A; Tahvanainen, Kari U O; Mano, Tadaaki; Iwase, Satoshi; Baisch, Friedhelm J; Levine, Benjamin D; Adams-Huet, Beverley; Robertson, David; Blomqvist, C Gunnar

    2016-10-01

    We studied healthy supine astronauts on Earth with electrocardiogram, non-invasive arterial pressure, respiratory carbon dioxide concentrations, breathing depth and sympathetic nerve recordings. The null hypotheses were that heart beat interval fluctuations at usual breathing frequencies are baroreflex mediated, that they persist during apnoea, and that autonomic responses to apnoea result from changes of chemoreceptor, baroreceptor or lung stretch receptor inputs. R-R interval fluctuations at usual breathing frequencies are unlikely to be baroreflex mediated, and disappear during apnoea. The subjects' responses to apnoea could not be attributed to changes of central chemoreceptor activity (hypocapnia prevailed); altered arterial baroreceptor input (vagal baroreflex gain declined and muscle sympathetic nerve burst areas, frequencies and probabilities increased, even as arterial pressure climbed to new levels); or altered pulmonary stretch receptor activity (major breathing frequency and tidal volume changes did not alter vagal tone or sympathetic activity). Apnoea responses of healthy subjects may result from changes of central respiratory motoneurone activity. We studied eight healthy, supine astronauts on Earth, who followed a simple protocol: they breathed at fixed or random frequencies, hyperventilated and then stopped breathing, as a means to modulate and expose to view important, but obscure central neurophysiological mechanisms. Our recordings included the electrocardiogram, finger photoplethysmographic arterial pressure, tidal volume, respiratory carbon dioxide concentrations and peroneal nerve muscle sympathetic activity. Arterial pressure, vagal tone and muscle sympathetic outflow were comparable during spontaneous and controlled-frequency breathing. Compared with spontaneous, 0.1 and 0.05 Hz breathing, however, breathing at usual frequencies (∼0.25 Hz) lowered arterial baroreflex gain, and provoked smaller arterial pressure and R-R interval

  18. Respiratory modulation of human autonomic function on Earth

    PubMed Central

    Cooke, William H.; Diedrich, André; Biaggioni, Italo; Buckey, Jay C.; Pawelczyk, James A.; Ertl, Andrew C.; Cox, James F.; Kuusela, Tom A.; Tahvanainen, Kari U. O.; Mano, Tadaaki; Iwase, Satoshi; Baisch, Friedhelm J.; Levine, Benjamin D.; Adams‐Huet, Beverley; Robertson, David; Blomqvist, C. Gunnar

    2016-01-01

    Key points We studied healthy supine astronauts on Earth with electrocardiogram, non‐invasive arterial pressure, respiratory carbon dioxide concentrations, breathing depth and sympathetic nerve recordings.The null hypotheses were that heart beat interval fluctuations at usual breathing frequencies are baroreflex mediated, that they persist during apnoea, and that autonomic responses to apnoea result from changes of chemoreceptor, baroreceptor or lung stretch receptor inputs.R‐R interval fluctuations at usual breathing frequencies are unlikely to be baroreflex mediated, and disappear during apnoea.The subjects’ responses to apnoea could not be attributed to changes of central chemoreceptor activity (hypocapnia prevailed); altered arterial baroreceptor input (vagal baroreflex gain declined and muscle sympathetic nerve burst areas, frequencies and probabilities increased, even as arterial pressure climbed to new levels); or altered pulmonary stretch receptor activity (major breathing frequency and tidal volume changes did not alter vagal tone or sympathetic activity). Apnoea responses of healthy subjects may result from changes of central respiratory motoneurone activity. Abstract We studied eight healthy, supine astronauts on Earth, who followed a simple protocol: they breathed at fixed or random frequencies, hyperventilated and then stopped breathing, as a means to modulate and expose to view important, but obscure central neurophysiological mechanisms. Our recordings included the electrocardiogram, finger photoplethysmographic arterial pressure, tidal volume, respiratory carbon dioxide concentrations and peroneal nerve muscle sympathetic activity. Arterial pressure, vagal tone and muscle sympathetic outflow were comparable during spontaneous and controlled‐frequency breathing. Compared with spontaneous, 0.1 and 0.05 Hz breathing, however, breathing at usual frequencies (∼0.25 Hz) lowered arterial baroreflex gain, and provoked smaller arterial pressure

  19. Alternative temporal classification of long Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Alejandro Vasquez, Nicolas; Baquero, Andres; Andrade, David

    2015-08-01

    In order to increase the understanding on Gamma Ray Bursts, many attempts of classification have been proposed. Starting with the canonical classification into long and short GRBs, alternative classifications taking into account the cosmological origin of GRBs have been analyzed. In the present work we propose an alternative classification based on two temporal estimators, the Auto Correlation Function (ACF) of the light curves and the emission time which considered the time where the bursts engine is active. The time estimators chosen reflects the internal evolution of the GRB and the internal structure. Using a sample of 61 bright GRBs detected by SWIFT satellite with known redshift, we proposed a bimodal distribution of long bursts. The two types of bursts have different internal structure suggesting different progenitors.

  20. Design of a new artificial breathing system for simulating the human respiratory activities.

    PubMed

    Essoukaki, Elmaati; Rattal, Mourad; Ben Taleb, Lhoucine; Harmouchi, Mohammed; Assir, Abdelhadi; Mouhsen, Azeddine; Lyazidi, Aissam

    2018-01-01

    The purpose of this work is the conception and implementation of an artificial active respiratory system that allows the simulation of human respiratory activities. The system consists of two modules, mechanical and electronical. The first one represents a cylindrical lung adjustable in resistance and compliance. This lung is located inside a transparent thoracic box, connected to a piston that generates variable respiratory efforts. The parameters of the system, which are pressure, flow and volume, are measured by the second module. A computer application was developed to control the whole system, and enables the display of the parameters. A series of tests were made to evaluate the respiratory efforts, resistances and compliances. The results were compared to the bibliographical studies, allowing the validation of the proposed system.

  1. Neurokinin receptor modulation of respiratory activity in the rabbit.

    PubMed

    Bongianni, Fulvia; Mutolo, Donatella; Cinelli, Elenia; Pantaleo, Tito

    2008-06-01

    The respiratory role of neurokinin (NK) receptors was investigated in alpha-chloralose-urethane-anaesthetized, vagotomized, paralysed and artificially ventilated rabbits by using bilateral microinjections (30-50 nL) of NK receptor agonists and antagonists. Microinjections were performed in a region located just caudal to the rostral expiratory neurons. This region displayed features similar to those of the pre-Bötzinger complex (pre-BötC) of adult cats and rats, and proved to produce excitatory respiratory effects in response to microinjections of D,L-homocysteic acid. We used as agonists (0.1, 0.5 and 5 mM) substance P (SP), the NK1 receptor agonists [Sar(9), Met(O2)(11)]-SP and GR 73632, the NK2 receptor agonist NKA, the NK3 receptor agonist senktide, and as antagonists (5 mM) the NK1 receptor antagonist CP-99,994 and the NK2 receptor antagonist MEN 10376. SP always increased respiratory frequency, but NK1 receptor agonists did not change respiratory variables. NKA and senktide at 5 mm increased respiratory frequency. CP-99,994 caused increases in respiratory frequency and did not antagonize the effects of SP. MEN 10376 prevented the respiratory responses induced by NKA and reduced those provoked by SP. SP or the NK1 receptor agonists (5 mM) injected (1 microL) into the IV ventricle caused marked excitatory effects on respiration. The results suggest that NK2 and NK3, but not NK1, receptors are involved in the excitatory modulation of inspiratory activity within the investigated region and are consistent with the notion that the pre-BötC neurons are important components of the inspiratory rhythm-generating mechanisms.

  2. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression.

    PubMed

    Yang, Yan; Cui, Yihui; Sang, Kangning; Dong, Yiyan; Ni, Zheyi; Ma, Shuangshuang; Hu, Hailan

    2018-02-14

    The N-methyl-d-aspartate receptor (NMDAR) antagonist ketamine has attracted enormous interest in mental health research owing to its rapid antidepressant actions, but its mechanism of action has remained elusive. Here we show that blockade of NMDAR-dependent bursting activity in the 'anti-reward center', the lateral habenula (LHb), mediates the rapid antidepressant actions of ketamine in rat and mouse models of depression. LHb neurons show a significant increase in burst activity and theta-band synchronization in depressive-like animals, which is reversed by ketamine. Burst-evoking photostimulation of LHb drives behavioural despair and anhedonia. Pharmacology and modelling experiments reveal that LHb bursting requires both NMDARs and low-voltage-sensitive T-type calcium channels (T-VSCCs). Furthermore, local blockade of NMDAR or T-VSCCs in the LHb is sufficient to induce rapid antidepressant effects. Our results suggest a simple model whereby ketamine quickly elevates mood by blocking NMDAR-dependent bursting activity of LHb neurons to disinhibit downstream monoaminergic reward centres, and provide a framework for developing new rapid-acting antidepressants.

  3. Cell-type specific expression of constitutively-active Rheb promotes regeneration of bulbospinal respiratory axons following cervical SCI.

    PubMed

    Urban, Mark W; Ghosh, Biswarup; Strojny, Laura R; Block, Cole G; Blazejewski, Sara M; Wright, Megan C; Smith, George M; Lepore, Angelo C

    2018-05-01

    Damage to respiratory neural circuitry and consequent loss of diaphragm function is a major cause of morbidity and mortality in individuals suffering from traumatic cervical spinal cord injury (SCI). Repair of CNS axons after SCI remains a therapeutic challenge, despite current efforts. SCI disrupts inspiratory signals originating in the rostral ventral respiratory group (rVRG) of the medulla from their phrenic motor neuron (PhMN) targets, resulting in loss of diaphragm function. Using a rat model of cervical hemisection SCI, we aimed to restore rVRG-PhMN-diaphragm circuitry by stimulating regeneration of injured rVRG axons via targeted induction of Rheb (ras homolog enriched in brain), a signaling molecule that regulates neuronal-intrinsic axon growth potential. Following C2 hemisection, we performed intra-rVRG injection of an adeno-associated virus serotype-2 (AAV2) vector that drives expression of a constitutively-active form of Rheb (cRheb). rVRG neuron-specific cRheb expression robustly increased mTOR pathway activity within the transduced rVRG neuron population ipsilateral to the hemisection, as assessed by levels of phosphorylated ribosomal S6 kinase. By co-injecting our novel AAV2-mCherry/WGA anterograde/trans-synaptic axonal tracer into rVRG, we found that cRheb expression promoted regeneration of injured rVRG axons into the lesion site, while we observed no rVRG axon regrowth with AAV2-GFP control. AAV2-cRheb also significantly reduced rVRG axonal dieback within the intact spinal cord rostral to the lesion. However, cRheb expression did not promote any recovery of ipsilateral hemi-diaphragm function, as assessed by inspiratory electromyography (EMG) burst amplitudes. This lack of functional recovery was likely because regrowing rVRG fibers did not extend back into the caudal spinal cord to synaptically reinnervate PhMNs that we retrogradely-labeled with cholera toxin B from the ipsilateral hemi-diaphragm. Our findings demonstrate that enhancing neuronal

  4. Phase-locking of bursting neuronal firing to dominant LFP frequency components.

    PubMed

    Constantinou, Maria; Elijah, Daniel H; Squirrell, Daniel; Gigg, John; Montemurro, Marcelo A

    2015-10-01

    Neuronal firing in the hippocampal formation relative to the phase of local field potentials (LFP) has a key role in memory processing and spatial navigation. Firing can be in either tonic or burst mode. Although bursting neurons are common in the hippocampal formation, the characteristics of their locking to LFP phase are not completely understood. We investigated phase-locking properties of bursting neurons using simulations generated by a dual compartmental model of a pyramidal neuron adapted to match the bursting activity in the subiculum of a rat. The model was driven with stochastic input signals containing a power spectral profile consistent with physiologically relevant frequencies observed in LFP. The single spikes and spike bursts fired by the model were locked to a preferred phase of the predominant frequency band where there was a peak in the power of the driving signal. Moreover, the preferred phase of locking shifted with increasing burst size, providing evidence that LFP phase can be encoded by burst size. We also provide initial support for the model results by analysing example data of spontaneous LFP and spiking activity recorded from the subiculum of a single urethane-anaesthetised rat. Subicular neurons fired single spikes, two-spike bursts and larger bursts that locked to a preferred phase of either dominant slow oscillations or theta rhythms within the LFP, according to the model prediction. Both power-modulated phase-locking and gradual shift in the preferred phase of locking as a function of burst size suggest that neurons can use bursts to encode timing information contained in LFP phase into a spike-count code. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  5. A closed-loop model of the respiratory system: focus on hypercapnia and active expiration.

    PubMed

    Molkov, Yaroslav I; Shevtsova, Natalia A; Park, Choongseok; Ben-Tal, Alona; Smith, Jeffrey C; Rubin, Jonathan E; Rybak, Ilya A

    2014-01-01

    Breathing is a vital process providing the exchange of gases between the lungs and atmosphere. During quiet breathing, pumping air from the lungs is mostly performed by contraction of the diaphragm during inspiration, and muscle contraction during expiration does not play a significant role in ventilation. In contrast, during intense exercise or severe hypercapnia forced or active expiration occurs in which the abdominal "expiratory" muscles become actively involved in breathing. The mechanisms of this transition remain unknown. To study these mechanisms, we developed a computational model of the closed-loop respiratory system that describes the brainstem respiratory network controlling the pulmonary subsystem representing lung biomechanics and gas (O2 and CO2) exchange and transport. The lung subsystem provides two types of feedback to the neural subsystem: a mechanical one from pulmonary stretch receptors and a chemical one from central chemoreceptors. The neural component of the model simulates the respiratory network that includes several interacting respiratory neuron types within the Bötzinger and pre-Bötzinger complexes, as well as the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) representing the central chemoreception module targeted by chemical feedback. The RTN/pFRG compartment contains an independent neural generator that is activated at an increased CO2 level and controls the abdominal motor output. The lung volume is controlled by two pumps, a major one driven by the diaphragm and an additional one activated by abdominal muscles and involved in active expiration. The model represents the first attempt to model the transition from quiet breathing to breathing with active expiration. The model suggests that the closed-loop respiratory control system switches to active expiration via a quantal acceleration of expiratory activity, when increases in breathing rate and phrenic amplitude no longer provide sufficient ventilation. The model

  6. In vivo and in vitro evidences that carotenoids could modulate the neutrophil respiratory burst during dietary manipulation.

    PubMed

    Walrand, Stéphane; Farges, Marie-Chantal; Dehaese, Olivier; Cardinault, Nicolas; Minet-Quinard, Régine; Grolier, Pascal; Bouteloup-Demange, Corinne; Ribalta, Josep; Winklhofer-Roob, Brigitte M; Rock, Edmond; Vasson, Marie-Paule

    2005-03-01

    The primary role of polymorphonuclear neutrophils (PMNs) is to destroy pathogenic microorganisms after phagocytosis by producing reactive oxygen species (ROS) and toxic molecules. However, PMNs produce sufficient amounts of ROS during an oxidative burst to be autotoxic and detrimental to their own functions and to possibly cause DNA damage, protein and lipid oxidation and cell membrane destructuration. The aim of this study was to investigate in vivo the role of the antioxidant capacities of carotenoids in modulating ROS content in PMNs during oxidative burst. Moreover to investigate the direct or indirect effect of carotenoids, the modification of PMN ROS content was explored after in vitro supplementation with beta-carotene or lycopene, chosen taking account of their vitamin A and no vitamin A precursor effect, respectively. In vivo study: Venous blood was collected from 10 healthy male volunteers and ROS production from phorbol myristate acetate (PMA)-stimulated PMNs was determined, by flow cytometry using the fluorescent dye dihydrorhodamine 123, at baseline, after 3 weeks of carotenoid depletion (carotenoid intake limited to 25% of usual intake) and after 5 weeks of carotenoid repletion (30 mg beta-carotene, 15 mg lycopene and 9 mg lutein per day). In vitro study: ROS content in PMA-stimulated PMNs isolated from carotenoid depleted subjects and controls was quantified after an in vitro enrichment with beta-carotene (1 micromol/L) or lycopene (0.3 micromol/L). In vivo carotenoid depletion increased PMN H2O2 content after PMA activation by 38% (p < 0.05 vs baseline),while supplementation for 5 weeks restored basal H2O2 generation (p < 0.05 vs depletion). Although H2O2 measurement in PMNs from non-depleted subjects was not affected by an in vitro supply with beta-carotene or lycopene, a significant decrease in H2O2 content by 78.9 % and 81.2%, respectively, was observed in PMNs from carotenoid depleted subjects (p < 0.01 vs depleted control subjects). The

  7. QKD-Based Secured Burst Integrity Design for Optical Burst Switched Networks

    NASA Astrophysics Data System (ADS)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.

    2016-03-01

    The field of optical transmission has undergone numerous advancements and is still being researched mainly due to the fact that optical data transmission can be done at enormous speeds. It is quite evident that people prefer optical communication when it comes to large amount of data involving its transmission. The concept of switching in networks has matured enormously with several researches, architecture to implement and methods starting with Optical circuit switching to Optical Burst Switching. Optical burst switching is regarded as viable solution for switching bursts over networks but has several security vulnerabilities. However, this work exploited the security issues associated with Optical Burst Switching with respect to integrity of burst. This proposed Quantum Key based Secure Hash Algorithm (QKBSHA-512) with enhanced compression function design provides better avalanche effect over the conventional integrity algorithms.

  8. Prevalence and impact of active and passive cigarette smoking in acute respiratory distress syndrome.

    PubMed

    Hsieh, S Jean; Zhuo, Hanjing; Benowitz, Neal L; Thompson, B Taylor; Liu, Kathleen D; Matthay, Michael A; Calfee, Carolyn S

    2014-09-01

    Cigarette smoke exposure has recently been found to be associated with increased susceptibility to trauma- and transfusion-associated acute respiratory distress syndrome. We sought to determine 1) the incidence of cigarette smoke exposure in a diverse multicenter sample of acute respiratory distress syndrome patients and 2) whether cigarette smoke exposure is associated with severity of lung injury and mortality in acute respiratory distress syndrome. Analysis of the Albuterol for the Treatment of Acute Lung Injury and Omega Acute Respiratory Distress Syndrome Network studies. Acute Respiratory Distress Syndrome Network hospitals. Three hundred eighty-one patients with acute respiratory distress syndrome. None. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol, a validated tobacco-specific marker, was measured in urine samples from subjects enrolled in two National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network randomized controlled trials. Urine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol levels were consistent with active smoking in 36% of acute respiratory distress syndrome patients and with passive smoking in 41% of nonsmokers (vs 20% and 40% in general population, respectively). Patients with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol levels in the active smoking range were younger and had a higher incidence of alcohol misuse, fewer comorbidities, lower severity of illness, and less septic shock at enrollment compared with patients with undetectable 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol levels. Despite this lower severity of illness, the severity of lung injury did not significantly differ based on biomarker-determined smoking status. Cigarette smoke exposure was not significantly associated with death after adjusting for differences in age, alcohol use, comorbidities, and severity of illness. In this first multicenter study of biomarker-determined cigarette smoke exposure in acute respiratory distress syndrome patients

  9. The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes

    NASA Astrophysics Data System (ADS)

    Sojka, Bartlomiej; Liskova, Aurelia; Kuricova, Miroslava; Banski, Mateusz; Misiewicz, Jan; Dusinska, Maria; Horvathova, Mira; Ilavska, Silvia; Szabova, Michaela; Rollerova, Eva; Podhorodecki, Artur; Tulinska, Jana

    2017-02-01

    Sodium fluoride-based β-NaLnF4 nanoparticles (NPs) doped with lanthanide ions are promising materials for application as luminescent markers in bio-imaging. In this work, the effect of NPs doped with yttrium (Y), gadolinium (Gd), europium (Eu), thulium (Tm), ytterbium (Yb) and terbium (Tb) ions on phagocytic activity of monocytes and granulocytes and the respiratory burst was examined. The surface functionalization of <10-nm NPs was performed according to our variation of patent pending ligand exchange method that resulted in meso-2,3-dimercaptosuccinic acid (DMSA) molecules on their surface. Y-core-based NCs were doped with Eu ions, which enabled them to be excited with UV light wavelengths. Cultures of human peripheral blood ( n = 8) were in vitro treated with five different concentrations of eight NPs for 24 h. In summary, neither type of nanoparticles is found toxic with respect to conducted test; however, some cause toxic effects (they have statistically significant deviations compared to reference) in some selected doses tested. Both core types of NPs (Y-core and Gd-core) impaired the phagocytic activity of monocytes the strongest, having minimal or none whatsoever influence on granulocytes and respiratory burst of phagocytic cells. The lowest toxicity was observed in Gd-core, Yb, Tm dopants and near-infrared nanoparticles. Clear dose-dependent effect of NPs on phagocytic activity of leukocytes and respiratory burst of cells was observed for limited number of samples.

  10. A repeating fast radio burst

    NASA Astrophysics Data System (ADS)

    Spitler, L. G.; Scholz, P.; Hessels, J. W. T.; Bogdanov, S.; Brazier, A.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J.; Ferdman, R. D.; Freire, P. C. C.; Kaspi, V. M.; Lazarus, P.; Lynch, R.; Madsen, E. C.; McLaughlin, M. A.; Patel, C.; Ransom, S. M.; Seymour, A.; Stairs, I. H.; Stappers, B. W.; van Leeuwen, J.; Zhu, W. W.

    2016-03-01

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  11. A repeating fast radio burst.

    PubMed

    Spitler, L G; Scholz, P; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W

    2016-03-10

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  12. Correlated bursts and the role of memory range

    NASA Astrophysics Data System (ADS)

    Jo, Hang-Hyun; Perotti, Juan I.; Kaski, Kimmo; Kertész, János

    2015-08-01

    Inhomogeneous temporal processes in natural and social phenomena have been described by bursts that are rapidly occurring events within short time periods alternating with long periods of low activity. In addition to the analysis of heavy-tailed interevent time distributions, higher-order correlations between interevent times, called correlated bursts, have been studied only recently. As the underlying mechanism behind such correlated bursts is far from being fully understood, we devise a simple model for correlated bursts using a self-exciting point process with a variable range of memory. Whether a new event occurs is stochastically determined by a memory function that is the sum of decaying memories of past events. In order to incorporate the noise and/or limited memory capacity of systems, we apply two memory loss mechanisms: a fixed number or a variable number of memories. By analysis and numerical simulations, we find that too much memory effect may lead to a Poissonian process, implying that there exists an intermediate range of memory effect to generate correlated bursts comparable to empirical findings. Our conclusions provide a deeper understanding of how long-range memory affects correlated bursts.

  13. Flowers of Clerodendrum volubile exacerbate immunomodulation by suppressing phagocytic oxidative burst and modulation of COX-2 activity.

    PubMed

    Erukainure, Ochuko L; Mesaik, Ahmed M; Muhammad, Aliyu; Chukwuma, Chika I; Manhas, Neha; Singh, Parvesh; Aremu, Oluwole S; Islam, Md Shahidul

    2016-10-01

    The immunomodulatory potentials of the crude methanolic extract and fractions [n-hexane (Hex), n-dichloromethane (DCM), ethyl acetate (EtOAc) and n-butanol (BuOH)] of Clerodendrum volubile flowers were investigated on whole blood phagocytic oxidative burst using luminol-amplified chemiluminescence technique. They were also investigated for their free radicals scavenging activities. The DCM fraction showed significant (p<0.05) anti-oxidative burst and free radical scavenging activities indicating high immunomodulatory and antioxidant potencies respectively. Cytotoxicity assay of the DCM fraction revealed a cytotoxic effect on CC-1 normal cell line. GCMS analysis revealed the presence of triacetin; 3,6-dimethyl-3-octanol; 2R - Acetoxymethyl-1,3,3-trimethtyl - 4t - (3-methyl-2-buten-1-yl) - 1c - cyclohexanol and Stigmastan - 3,5-diene in DCM fraction. These compounds were docked with the active sites of cyclooxygenase-2 (COX-2). Triacetin, 3,6-dimethyl-3-Octanol, and 2R-Acetoxymethyl-1,3,3-trimethtyl-4t-(3-methyl-2-buten-1-yl)-1c-cyclohexanol docked comfortably with COX-2 with good scoring function (-CDocker energy) indicating their inhibitory potency against COX-2. 3,6-dimethyl-3-Octanol, displayed the lowest predicted free energy of binding (-21.4kcalmol -1 ) suggesting its stronger interaction with COX-2, this was followed by 2R - Acetoxymethyl-1, 3, 3-trimethtyl-4t-(3-methyl-2-buten-1-yl)-1c-cyclhexanol (BE=-20.5kcalmol -1 ), and triacetin (BE=-10.9kcalmol -1 ). Stigmastan - 3,5-diene failed to dock with COX-2. The observed suppressive effect of the DCM fraction of C. volubile flower methanolic extract on phagocytic oxidative burst indicates an immunomodulatory potential. This is further reflected in its free scavenging activities and synergetic modulation of COX-2 activities by its identified compounds in silico. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Investigation of primordial black hole bursts using interplanetary network gamma-ray bursts

    DOE PAGES

    Ukwatta, Tilan Niranjan; Hurley, Kevin; MacGibbon, Jane H.; ...

    2016-07-25

    The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating primordial black holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the distance to GRBs using detections from widely separated, non-imaging spacecraft. This method can determine the actual distance to the burst if it is local. We applied this method to constrain distances to a sample of 36 short-duration GRBs detected bymore » the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 10 13–10 18 cm (7–10 5 au) range, which are consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Furthermore, assuming that these bursts are real PBH events, we estimate lower limits on the PBH burst evaporation rate in the solar neighborhood.« less

  15. Dynamics of neuromodulatory feedback determines frequency modulation in a reduced respiratory network: a computational study.

    PubMed

    Toporikova, Natalia; Butera, Robert J

    2013-02-01

    Neuromodulators, such as amines and neuropeptides, alter the activity of neurons and neuronal networks. In this work, we investigate how neuromodulators, which activate G(q)-protein second messenger systems, can modulate the bursting frequency of neurons in a critical portion of the respiratory neural network, the pre-Bötzinger complex (preBötC). These neurons are a vital part of the ponto-medullary neuronal network, which generates a stable respiratory rhythm whose frequency is regulated by neuromodulator release from the nearby Raphe nucleus. Using a simulated 50-cell network of excitatory preBötC neurons with a heterogeneous distribution of persistent sodium conductance and Ca(2+), we determined conditions for frequency modulation in such a network by simulating interaction between Raphe and preBötC nuclei. We found that the positive feedback between the Raphe excitability and preBötC activity induces frequency modulation in the preBötC neurons. In addition, the frequency of the respiratory rhythm can be regulated via phasic release of excitatory neuromodulators from the Raphe nucleus. We predict that the application of a G(q) antagonist will eliminate this frequency modulation by the Raphe and keep the network frequency constant and low. In contrast, application of a G(q) agonist will result in a high frequency for all levels of Raphe stimulation. Our modeling results also suggest that high [K(+)] requirement in respiratory brain slice experiments may serve as a compensatory mechanism for low neuromodulatory tone. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Effect of structured physical activity on respiratory outcomes in sedentary elderly adults with mobility limitations

    USDA-ARS?s Scientific Manuscript database

    OBJECTIVES: To evaluate the effect of structured physical activity on respiratory outcomes in community dwelling elderly adults with mobility limitations. DESIGN: Multicenter, randomized trial of physical activity vs health education, with respiratory variables prespecified as tertiary outcomes over...

  17. Respiratory pattern in awake rats: effects of motor activity and of alerting stimuli.

    PubMed

    Kabir, Muammar M; Beig, Mirza I; Baumert, Mathias; Trombini, Mimosa; Mastorci, Francesca; Sgoifo, Andrea; Walker, Frederick R; Day, Trevor A; Nalivaiko, Eugene

    2010-08-04

    Our aim was to assess the impact of motor activity and of arousing stimuli on respiratory rate in the awake rats. The study was performed in male adult Sprague-Dawley (SD, n=5) and Hooded Wistar (HW, n=5) rats instrumented for ECG telemetry. Respiratory rate was recorded using whole-body plethysmograph, with a piezoelectric sensor attached for the simultaneous assessment of motor activity. All motor activity was found to be associated with an immediate increase in respiratory rate that remained elevated for the whole duration of movement; this was reflected by: i) bimodal distribution of respiratory intervals (modes for slow peak: 336+/-19 and 532+/-80 ms for HW and SD, p<0.05; modes for fast peak 128+/-6 and 132+/-7 ms for HW and SD, NS); and ii) a tight correlation between total movement time and total time of tachypnoea, with an R(2) ranging 0.96-0.99 (n=10, p<0001). The extent of motor-related tachypnoea was significantly correlated with the intensity of associated movement. Mild alerting stimuli produced stereotyped tachypnoeic responses, without affecting heart rate: tapping the chamber raised respiratory rate from 117+/-7 to 430+/-15 cpm; sudden side move--from 134+/-13 to 487+/-16 cpm, and turning on lights--from 136+/-12 to 507+/-14 cpm (n=10; p<0.01 for all; no inter-strain differences). We conclude that: i) sniffing is an integral part of the generalized arousal response and does not depend on the modality of sensory stimuli; ii) tachypnoea is a sensitive index of arousal; and iii) respiratory rate is tightly correlated with motor activity. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Changes in respiratory activity induced by mastication during oral breathing in humans.

    PubMed

    Daimon, Shigeru; Yamaguchi, Kazunori

    2014-06-01

    We examined the effect of oral breathing on respiratory movements, including the number of respirations and the movement of the thoracic wall at rest and while chewing gum. Forty normal nose breathers were selected by detecting expiratory airflow from the mouth using a CO2 sensor. Chest measurements were recorded using a Piezo respiratory belt transducer, and electromyographic (EMG) activity of the masseter and trapezius muscles were recorded at rest and while chewing gum during nasal or oral breathing. Oral breathing was introduced by completely occluding the nostrils with a nose clip. During oral breathing, the respiration rate was significantly lower while chewing gum than while at rest (P < 0.05). While chewing gum, the respiration rate was significantly lower during oral breathing than during nasal breathing (P < 0.05). During oral breathing, thoracic movement was significantly higher while chewing gum than while at rest (P < 0.05). Thoracic movement was significantly greater during oral breathing than during nasal breathing (P < 0.05). The trapezius muscle exhibited significant EMG activity when chewing gum during oral breathing. The activity of the trapezius muscle coincided with increased movement of the thoracic wall. Chewing food while breathing through the mouth interferes with and decreases the respiratory cycle and promotes unusual respiratory movement of the thoracic wall, which is directed by the activity of accessory muscles of respiration. Copyright © 2014 the American Physiological Society.

  19. Simultaneous cytofluorometric measurement of phagocytosis, burst production and killing of human phagocytes using Candida albicans and Staphylococcus aureus as target organisms.

    PubMed

    Salih, H R; Husfeld, L; Adam, D

    2000-05-01

    Polymorphonuclear leukocytes (PMN) play a central role in the elimination of most extracellular pathogens, and an impairment of their functions predisposes an individual towards local and systemic bacterial and fungal infections. Here we describe a rapid and easy-to-perform cytofluorometric assay for investigation of PMN activity using Candida albicans and Staphylococcus aureus as target organisms. Phagocytes were stained with anti-CD13-RPE antibody, and microorganisms were stained with calcein-AM. Oxidative burst production was measured by oxidation of dihydroethidium. The percentage of killed target organisms after ingestion was determined by staining with ethidium-homodimer-1 after lysis of human cells. The dyes and procedures used in this method were chosen after comparison of different stains and cell preparation techniques described in previous assays. Concerning phagocytosis, the percentages of active phagocytes and of ingested microorganisms were determined. Furthermore, the method allowed measurement of the resulting percentage of PMNs producing respiratory burst, and of the percentage of killed microorganisms. We minimized artifactual changes, which might have been the reason for the difficulties and conflicting results of other cytofluorometric methods. The described method provides a new whole blood cytofluorometric assay, which combines rapid and simple handling with high reproducibility of results obtained by investigation of PMN activity using Candida albicans and Staphylococcus aureus as target organisms.

  20. Gamma Ray Bursts - Observations

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2010-01-01

    We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high energy emission.

  1. Self-Organization on Social Media: Endo-Exo Bursts and Baseline Fluctuations

    PubMed Central

    Oka, Mizuki; Hashimoto, Yasuhiro; Ikegami, Takashi

    2014-01-01

    A salient dynamic property of social media is bursting behavior. In this paper, we study bursting behavior in terms of the temporal relation between a preceding baseline fluctuation and the successive burst response using a frequency time series of 3,000 keywords on Twitter. We found that there is a fluctuation threshold up to which the burst size increases as the fluctuation increases and that above the threshold, there appears a variety of burst sizes. We call this threshold the critical threshold. Investigating this threshold in relation to endogenous bursts and exogenous bursts based on peak ratio and burst size reveals that the bursts below this threshold are endogenously caused and above this threshold, exogenous bursts emerge. Analysis of the 3,000 keywords shows that all the nouns have both endogenous and exogenous origins of bursts and that each keyword has a critical threshold in the baseline fluctuation value to distinguish between the two. Having a threshold for an input value for activating the system implies that Twitter is an excitable medium. These findings are useful for characterizing how excitable a keyword is on Twitter and could be used, for example, to predict the response to particular information on social media. PMID:25329610

  2. Characteristics of shock-associated fast-drift kilometric radio bursts

    NASA Technical Reports Server (NTRS)

    Macdowall, R. J.; Kundu, M. R.; Stone, R. G.

    1987-01-01

    The existence of a class of fast-drift, shock-associated (SA), kilometric radio bursts which occur at the time of metric type II emission and which are not entirely the kilometric continuation of metric type III bursts has been reported previously (Cane et al., 1981). In this paper unambiguous SA event criteria are established for the purpose of statistically comparing SA events with conventional kilometric type III bursts. Applying these criteria to all long-duration, fast-drift bursts observed by the ISEE-3 spacecraft during a 28-month interval, it is found that more than 70 percent of the events satisfying the criteria are associated with the radio signatures of coronal shocks. If a given event is associated with a metric type II or type IV burst, it is 13 times more likely to satisfy the SA criteria than an event associated only with metric type III activity.

  3. Mechanisms Underlying Adaptation of Respiratory Network Activity to Modulatory Stimuli in the Mouse Embryo.

    PubMed

    Chevalier, Marc; De Sa, Rafaël; Cardoit, Laura; Thoby-Brisson, Muriel

    2016-01-01

    Breathing is a rhythmic behavior that requires organized contractions of respiratory effector muscles. This behavior must adapt to constantly changing conditions in order to ensure homeostasis, proper body oxygenation, and CO2/pH regulation. Respiratory rhythmogenesis is controlled by neural networks located in the brainstem. One area considered to be essential for generating the inspiratory phase of the respiratory rhythm is the preBötzinger complex (preBötC). Rhythmogenesis emerges from this network through the interplay between the activation of intrinsic cellular properties (pacemaker properties) and intercellular synaptic connections. Respiratory activity continuously changes under the impact of numerous modulatory substances depending on organismal needs and environmental conditions. The preBötC network has been shown to become active during the last third of gestation. But only little is known regarding the modulation of inspiratory rhythmicity at embryonic stages and even less on a possible role of pacemaker neurons in this functional flexibility during the prenatal period. By combining electrophysiology and calcium imaging performed on embryonic brainstem slice preparations, we provide evidence showing that embryonic inspiratory pacemaker neurons are already intrinsically sensitive to neuromodulation and external conditions (i.e., temperature) affecting respiratory network activity, suggesting a potential role of pacemaker neurons in mediating rhythm adaptation to modulatory stimuli in the embryo.

  4. The association between farming activities and respiratory health in rural school age children.

    PubMed

    Farthing, Pamela; Rennie, Donna; Pahwa, Punam; Janzen, Bonnie; Dosman, James

    2009-01-01

    This study assessed the prevalence of asthma in Canadian children living on and off farms and the risk of asthma and respiratory symptoms of children exposed to certain farming activities. A cross-sectional survey was sent to parents of school children ages 6 to 13 living in an agricultural community in rural Saskatchewan. History of asthma and respiratory symptoms (cough, phlegm, or wheeze), location of home, and exposure to farming activities including haying, harvesting, moving, or playing with hay bales, feeding livestock, cleaning or playing in barns, cleaning pens, and emptying or filling grain bins were assessed. The response rate was 90.6% (n = 553). The prevalence of asthma and respiratory symptoms were 18.8% and 39.8%, respectively, and did not differ by home location (farm/nonfarm). In the adjusted multivariable models conducted with each farming activity separately, children who were exposed to emptying and filling of grain bins had a higher odds of asthma (odds [OR] = 2.18, 95% confidence interval [CI]: 1.03-4.62]. Reports of playing on or near hay bales (OR = 1.89, 95% CI:1.19-3.01), (OR = 2.08, 95% CI:1.07-4.06), and cleaning pens (OR = 2.70, 95% CI:1.05-6.97) were associated with increased respiratory symptoms. Certain farming activities associated with dust and animals appear to be risk factors for asthma and respiratory symptoms in this study population and should be avoided.

  5. FAST OPTICAL VARIABILITY OF A NAKED-EYE BURST-MANIFESTATION OF THE PERIODIC ACTIVITY OF AN INTERNAL ENGINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beskin, G.; Karpov, S.; Bondar, S.

    We imaged the position of the naked-eye burst, GRB080319B, before, during, and after its gamma-ray activity with sub-second temporal resolution using the TORTORA wide-field camera. The burst optical prompt emission, which reached 5.3 mag, has been detected, and its periodic optical variability has been discovered in the form of four equidistant flashes with a duration of several seconds. We also detected a strong correlation (r {approx} 0.82) between optical and gamma-ray light curves with a 2 s delay of the optical emission with respect to the gamma-ray emission. The revealed temporal structure of the optical light curve in comparison withmore » the gamma-ray light curve can be interpreted in the framework of the model of shell collisions in the ejecta containing a significant neutron component. All observed emission features reflect the non-stationary behavior of the burst internal engine-supposedly, a hyperaccreting solar-mass black hole formed in the collapse of a massive stellar core.« less

  6. Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons

    PubMed Central

    Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C.; Bunney, Benjamin S.; Peterson, Bradley S.

    2012-01-01

    Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. PMID:22831464

  7. Mechanisms contributing to the dopamine induction of crawl-like bursting in leech motoneurons.

    PubMed

    Crisp, Kevin M; Gallagher, Brian R; Mesce, Karen A

    2012-09-01

    Dopamine (DA) activates fictive crawling behavior in the medicinal leech. To identify the cellular mechanisms underlying this activation at the level of crawl-specific motoneuronal bursting, we targeted potential cAMP-dependent events that are often activated through DA(1)-like receptor signaling pathways. We found that isolated ganglia produced crawl-like motoneuron bursting after bath application of phosphodiesterase inhibitors (PDIs) that upregulated cAMP. This bursting persisted in salines in which calcium ions were replaced with equimolar cobalt or nickel, but was blocked by riluzole, an inhibitor of a persistent sodium current. PDI-induced bursting contained a number of patterned elements that were statistically similar to those observed during DA-induced fictive crawling, except that one motoneuron (CV) exhibited bursting during the contraction rather than the elongation phase of crawling. Although DA and the PDIs produced similar bursting profiles, intracellular recordings from motoneurons revealed differences in altered membrane properties. For example, DA lowered motoneuron excitability whereas the PDIs increased resting discharge rates. We suggest that PDIs (and DA) activate a sodium-influx-dependent timing mechanism capable of setting the crawl rhythm and that multiple DA receptor subtypes are involved in shaping and modulating the phase relationships and membrane properties of cell-specific members of the crawl network to generate crawling.

  8. An oxidative burst and its attenuation by bacterial peroxidase activity is required for optimal establishment of the Arachis hypogaea-Bradyrhizobium sp. symbiosis.

    PubMed

    Muñoz, V; Ibáñez, F; Figueredo, M S; Fabra, A

    2016-07-01

    The main purpose of this study was to determine whether the Arachis hypogaea L. root oxidative burst, produced at early stages of its symbiotic interaction with Bradyrhizobium sp. SEMIA 6144, and the bacterial antioxidant system are required for the successful development of this interaction. Pharmacological approaches were used to reduce both plant oxidative burst and bacterial peroxidase enzyme activity. In plants whose H2 O2 levels were decreased, a low nodule number, a reduction in the proportion of red nodules (%) and an increase in the bacteroid density were found. The symbiotic phenotype of plants inoculated with a Bradyrhizobium sp. SEMIA 6144 culture showing decreased peroxidase activity was also affected, since the biomass production, nodule number and percentage of red nodules in these plants were lower than in plants inoculated with Bradyrhizobium sp. control cultures. We demonstrated for the first time that the oxidative burst triggered at the early events of the symbiotic interaction in peanut, is a prerequisite for the efficient development of root nodules, and that the antioxidant system of bradyrhizobial peanut symbionts, particularly the activity of peroxidases, is counteracting this oxidative burst for the successful establishment of the symbiosis. Our results provide new insights into the mechanisms involved in the development of the symbiotic interaction established in A. hypogaea L. a legume infected in an intercellular way. © 2016 The Society for Applied Microbiology.

  9. Heterogeneity in Short Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Norris, Jay P.; Gehrels Neil; Scargle, Jeffrey D.

    2011-01-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample comprises 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales - durations, pulse structure widths, and peak intervals - for EE bursts are factors of approx 2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts - the anti-correlation of pulse intensity and width - continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/XRT. The median flux of the initial XRT detections for EE bursts (approx 6 X 10(exp -10) erg / sq cm/ s) is approx > 20 x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (approx 60,000 s) is approx 30 x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into more dense environments than non-EE bursts, or that the sometimes-dominant EE component efficiently p()wers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  10. LOFAR tied-array imaging and spectroscopy of solar S bursts

    NASA Astrophysics Data System (ADS)

    Morosan, D. E.; Gallagher, P. T.; Zucca, P.; O'Flannagain, A.; Fallows, R.; Reid, H.; Magdalenić, J.; Mann, G.; Bisi, M. M.; Kerdraon, A.; Konovalenko, A. A.; MacKinnon, A. L.; Rucker, H. O.; Thidé, B.; Vocks, C.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Bentum, M. J.; Bernardi, G.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Brouw, W. N.; Butcher, H. R.; Ciardi, B.; de Geus, E.; Eislöffel, J.; Falcke, H.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Hessels, J. W. T.; Hoeft, M.; Karastergiou, A.; Kondratiev, V. I.; Kuper, G.; van Leeuwen, J.; McKay-Bukowski, D.; McKean, J. P.; Munk, H.; Orru, E.; Paas, H.; Pizzo, R.; Polatidis, A. G.; Scaife, A. M. M.; Sluman, J.; Tasse, C.; Toribio, M. C.; Vermeulen, R.; Zarka, P.

    2015-08-01

    Context. The Sun is an active source of radio emission that is often associated with energetic phenomena ranging from nanoflares to coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous millisecond duration radio bursts have been reported, such as radio spikes or solar S bursts (where S stands for short). To date, these have neither been studied extensively nor imaged because of the instrumental limitations of previous radio telescopes. Aims: Here, LOw Frequency ARray (LOFAR) observations were used to study the spectral and spatial characteristics of a multitude of S bursts, as well as their origin and possible emission mechanisms. Methods: We used 170 simultaneous tied-array beams for spectroscopy and imaging of S bursts. Since S bursts have short timescales and fine frequency structures, high cadence (~50 ms) tied-array images were used instead of standard interferometric imaging, that is currently limited to one image per second. Results: On 9 July 2013, over 3000 S bursts were observed over a time period of ~8 h. S bursts were found to appear as groups of short-lived (<1 s) and narrow-bandwidth (~2.5 MHz) features, the majority drifting at ~3.5 MHz s-1 and a wide range of circular polarisation degrees (2-8 times more polarised than the accompanying Type III bursts). Extrapolation of the photospheric magnetic field using the potential field source surface (PFSS) model suggests that S bursts are associated with a trans-equatorial loop system that connects an active region in the southern hemisphere to a bipolar region of plage in the northern hemisphere. Conclusions: We have identified polarised, short-lived solar radio bursts that have never been imaged before. They are observed at a height and frequency range where plasma emission is the dominant emission mechanism, however, they possess some of the characteristics of electron-cyclotron maser emission. A movie associated to Fig. 3 is available in electronic form at http://www.aanda.org

  11. An interacting loop model of solar flare bursts

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.

    1981-01-01

    As a result of the strong heating produced at chromospheric levels during a solar flare burst, the local gas pressure can transiently attain very large values in certain regions. The effectiveness of the surrounding magnetic field at confining this high pressure plasma is therefore reduced and the flaring loop becomes free to expand laterally. In so doing it may drive magnetic field lines into neighboring, nonflaring, loops in the same active region, causing magnetic reconnection to take place and triggering another flare burst. The features of this interacting loop model are found to be in good agreement with the energetics and time structure of flare associated solar hard X-ray bursts.

  12. Diet supplementation of Pediococcus pentosaceus in cobia (Rachycentron canadum) enhances growth rate, respiratory burst and resistance against photobacteriosis.

    PubMed

    Xing, Chen-Fu; Hu, Hung-Hsi; Huang, Jian-Bin; Fang, Han-Chun; Kai, Yu-Hsuan; Wu, Yu-Chi; Chi, Shau-Chi

    2013-10-01

    Cobia (Rachycentron canadum) is an economically important fish species for aquaculture in tropical and sub-tropical areas. Cobia aquaculture industry has severely damaged due to photobacteriosis caused by Photobacterium damselae subsp. piscicida (Pdp), especially in Taiwan. Antibiotics and vaccines have been applied to control Pdp infection, but the efficacy has been inconsistent. One species of lactic acid bacteria, Pediococcus pentosaceus strain 4012 (LAB 4012), was isolated from the intestine of adult cobia, and its culture supernatant can effectively inhibit Pdp growth in vitro. The acidic pH derived from metabolic acids in LAB culture supernatant was demonstrated to be an important factor for the suppression. After a 2-week feeding of LAB 4012, the growth rate of the fed cobia was 12% higher than that of the non-fed group, and the relative percentage of survival (RPS) of the fed cobia was found to be 74.4 in Pdp immersion challenge. In addition, the respiratory burst (RB) of peripheral blood leukocytes (PBL) in the LAB 4012-fed group was significantly higher than that of the non-fed group. Although feeding LAB 4012 did not improve specific antibody response in cobia after immunization with Pdp vaccine, it still significantly raised the survival rate by 22% over that of the non-fed group after Pdp immersion challenge. Judging by the quick induction of high protection against Pdp infection and promotion of growth in larvae, LAB 4012 was considered to be a viable probiotic for cobia aquaculture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Heterogeneity in Short Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Norris, Jay P.; Gehrels, Neil; Scargle, Jeffrey D.

    2011-07-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample is comprised of 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales—durations, pulse structure widths, and peak intervals—for EE bursts are factors of ~2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts—the anti-correlation of pulse intensity and width—continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition, we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/X-Ray Telescope (XRT). The median flux of the initial XRT detections for EE bursts (~6×10-10 erg cm-2 s-1) is gsim20× brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (~60,000 s) is ~30× longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into denser environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  14. Extract of Pelargonium sidoides (EPs 7630) improves phagocytosis, oxidative burst, and intracellular killing of human peripheral blood phagocytes in vitro.

    PubMed

    Conrad, Andreas; Hansmann, Cathrin; Engels, Inge; Daschner, Franz D; Frank, Uwe

    2007-01-01

    Clinical data show that EPs 7630, an aqueous ethanolic extract from the roots of Pelargonium sidoides, can be used for the treatment of upper respiratory tract infections (URTI). The biological effects of the preparation have not been fully investigated. The objective of this study was to examine the impact of EPs 7630 on the activity of human peripheral blood phagocytes (PBP). A whole blood-based, flow cytometric assay was used to simultaneously assess phagocytosis and oxidative burst. Calcein-AM stained Candida albicans (DSM 1386) were used as target organisms. Oxidative burst was measured by addition of dihydroethidium (DHE). Target organisms and whole blood were co-incubated and analyzed after 0, 2, 4, 6, 10, and 30 min. Intracellular killing of the target organisms was evaluated by determining the number of surviving yeast cells after co-incubation of C. albicans and human whole blood. EPs 7630 was applied in therapeutically relevant concentrations between 0 and 30 microg/ml. Compared with controls EPs 7630 increased the number of phagocytosing PBP during the observed time points between 2 and 10 min in a concentration-dependent manner, with a maximum enhancement of 56% at 2 min (p=0.002). The application of EPs 7630 also led to a significant increase in the number of burst-active PBP for all time points observed beyond 2 min (p<0.001). The maximum augmentation was 120% after application of 30 microg/ml EPs 7630 at 4 min. Using a microbiological assay, intracellular killing was also enhanced by EPs 7630. This was expressed by a significant reduction in the number of surviving target organisms (p<0.001). The maximum reduction in viable yeast cells (-31%) was observed after co-incubation for 120 min with the highest concentration of EPs 7630 (30 microg/ml). In conclusion, the positive effects of EPs 7630 on phagocytosis, oxidative burst, and intracellular killing of yeast cells as test organisms are important components of the compound's biological activity. Our

  15. Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons.

    PubMed

    Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C; Bunney, Benjamin S; Peterson, Bradley S

    2012-11-01

    Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  16. Mechanisms Underlying Adaptation of Respiratory Network Activity to Modulatory Stimuli in the Mouse Embryo

    PubMed Central

    Chevalier, Marc; De Sa, Rafaël; Cardoit, Laura; Thoby-Brisson, Muriel

    2016-01-01

    Breathing is a rhythmic behavior that requires organized contractions of respiratory effector muscles. This behavior must adapt to constantly changing conditions in order to ensure homeostasis, proper body oxygenation, and CO2/pH regulation. Respiratory rhythmogenesis is controlled by neural networks located in the brainstem. One area considered to be essential for generating the inspiratory phase of the respiratory rhythm is the preBötzinger complex (preBötC). Rhythmogenesis emerges from this network through the interplay between the activation of intrinsic cellular properties (pacemaker properties) and intercellular synaptic connections. Respiratory activity continuously changes under the impact of numerous modulatory substances depending on organismal needs and environmental conditions. The preBötC network has been shown to become active during the last third of gestation. But only little is known regarding the modulation of inspiratory rhythmicity at embryonic stages and even less on a possible role of pacemaker neurons in this functional flexibility during the prenatal period. By combining electrophysiology and calcium imaging performed on embryonic brainstem slice preparations, we provide evidence showing that embryonic inspiratory pacemaker neurons are already intrinsically sensitive to neuromodulation and external conditions (i.e., temperature) affecting respiratory network activity, suggesting a potential role of pacemaker neurons in mediating rhythm adaptation to modulatory stimuli in the embryo. PMID:27239348

  17. A search for optical bursts from the repeating fast radio burst FRB 121102

    NASA Astrophysics Data System (ADS)

    Hardy, L. K.; Dhillon, V. S.; Spitler, L. G.; Littlefair, S. P.; Ashley, R. P.; De Cia, A.; Green, M. J.; Jaroenjittichai, P.; Keane, E. F.; Kerry, P.; Kramer, M.; Malesani, D.; Marsh, T. R.; Parsons, S. G.; Possenti, A.; Rattanasoon, S.; Sahman, D. I.

    2017-12-01

    We present a search for optical bursts from the repeating fast radio burst FRB 121102 using simultaneous observations with the high-speed optical camera ULTRASPEC on the 2.4-m Thai National Telescope and radio observations with the 100-m Effelsberg Radio Telescope. A total of 13 radio bursts were detected, but we found no evidence for corresponding optical bursts in our 70.7-ms frames. The 5σ upper limit to the optical flux density during our observations is 0.33 mJy at 767 nm. This gives an upper limit for the optical burst fluence of 0.046 Jy ms, which constrains the broad-band spectral index of the burst emission to α ≤ -0.2. Two of the radio pulses are separated by just 34 ms, which may represent an upper limit on a possible underlying periodicity (a rotation period typical of pulsars), or these pulses may have come from a single emission window that is a small fraction of a possible period.

  18. Periodic Bursts of Jovian Non-Io Decametric Radio Emission

    NASA Technical Reports Server (NTRS)

    Panchenko, M.; Rucker, H O.; Farrell, W. M.

    2013-01-01

    During the years 2000-2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have Recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period approx. = 1:5% longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300 deg. and 60 deg. (via 360 deg.). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every approx. 25 days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind.

  19. Periodic bursts of Jovian non-Io decametric radio emission

    PubMed Central

    Panchenko, M.; Rucker, H.O.; Farrell, W.M.

    2013-01-01

    During the years 2000–2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period ≈1.5% longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300° and 60° (via 360°). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every ∼25 days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind. PMID:23585696

  20. On vortex bursting

    NASA Technical Reports Server (NTRS)

    Werle, H.

    1984-01-01

    Vortex bursting is studied by means of visualization. The physical behavior of the phenomenon is emphasized, and its similarity with boundary layer separation or wake bursting becomes apparent. The essential influence of an increasing pressure gradient on the initiation, the position and the type of bursting is clearly confirmed. The evolution of the phenomena as a function of several parameters is analyzed in the case of delta wings, alone or installed on aircraft models, and compared with the results of similar wind tunnel or flight tests.

  1. Gamma-ray burst models.

    PubMed

    King, Andrew

    2007-05-15

    I consider various possibilities for making gamma-ray bursts, particularly from close binaries. In addition to the much-studied neutron star+neutron star and black hole+neutron star cases usually considered good candidates for short-duration bursts, there are also other possibilities. In particular, neutron star+massive white dwarf has several desirable features. These systems are likely to produce long-duration gamma-ray bursts (GRBs), in some cases definitely without an accompanying supernova, as observed recently. This class of burst would have a strong correlation with star formation and occur close to the host galaxy. However, rare members of the class need not be near star-forming regions and could have any type of host galaxy. Thus, a long-duration burst far from any star-forming region would also be a signature of this class. Estimates based on the existence of a known progenitor suggest that this type of GRB may be quite common, in agreement with the fact that the absence of a supernova can only be established in nearby bursts.

  2. Stimulus information stored in lasting active and hidden network states is destroyed by network bursts

    PubMed Central

    Dranias, Mark R.; Westover, M. Brandon; Cash, Sidney; VanDongen, Antonius M. J.

    2015-01-01

    In both humans and animals brief synchronizing bursts of epileptiform activity known as interictal epileptiform discharges (IEDs) can, even in the absence of overt seizures, cause transient cognitive impairments (TCI) that include problems with perception or short-term memory. While no evidence from single units is available, it has been assumed that IEDs destroy information represented in neuronal networks. Cultured neuronal networks are a model for generic cortical microcircuits, and their spontaneous activity is characterized by the presence of synchronized network bursts (SNBs), which share a number of properties with IEDs, including the high degree of synchronization and their spontaneous occurrence in the absence of an external stimulus. As a model approach to understanding the processes underlying IEDs, optogenetic stimulation and multielectrode array (MEA) recordings of cultured neuronal networks were used to study whether stimulus information represented in these networks survives SNBs. When such networks are optically stimulated they encode and maintain stimulus information for as long as one second. Experiments involved recording the network response to a single stimulus and trials where two different stimuli were presented sequentially, akin to a paired pulse trial. We broke the sequential stimulus trials into encoding, delay and readout phases and found that regardless of which phase the SNB occurs, stimulus-specific information was impaired. SNBs were observed to increase the mean network firing rate, but this did not translate monotonically into increases in network entropy. It was found that the more excitable a network, the more stereotyped its response was during a network burst. These measurements speak to whether SNBs are capable of transmitting information in addition to blocking it. These results are consistent with previous reports and provide baseline predictions concerning the neural mechanisms by which IEDs might cause TCI. PMID:25755638

  3. Respiratory and metabolic acidosis differentially affect the respiratory neuronal network in the ventral medulla of neonatal rats.

    PubMed

    Okada, Yasumasa; Masumiya, Haruko; Tamura, Yoshiyasu; Oku, Yoshitaka

    2007-11-01

    Two respiratory-related areas, the para-facial respiratory group/retrotrapezoid nucleus (pFRG/RTN) and the pre-Bötzinger complex/ventral respiratory group (preBötC/VRG), are thought to play key roles in respiratory rhythm. Because respiratory output patterns in response to respiratory and metabolic acidosis differ, we hypothesized that the responses of the medullary respiratory neuronal network to respiratory and metabolic acidosis are different. To test these hypotheses, we analysed respiratory-related activity in the pFRG/RTN and preBötC/VRG of the neonatal rat brainstem-spinal cord in vitro by optical imaging using a voltage-sensitive dye, and compared the effects of respiratory and metabolic acidosis on these two populations. We found that the spatiotemporal responses of respiratory-related regional activities to respiratory and metabolic acidosis are fundamentally different, although both acidosis similarly augmented respiratory output by increasing respiratory frequency. PreBötC/VRG activity, which is mainly inspiratory, was augmented by respiratory acidosis. Respiratory-modulated pixels increased in the preBötC/VRG area in response to respiratory acidosis. Metabolic acidosis shifted the respiratory phase in the pFRG/RTN; the pre-inspiratory dominant pattern shifted to inspiratory dominant. The responses of the pFRG/RTN activity to respiratory and metabolic acidosis are complex, and involve either augmentation or reduction in the size of respiratory-related areas. Furthermore, the activation pattern in the pFRG/RTN switched bi-directionally between pre-inspiratory/inspiratory and post-inspiratory. Electrophysiological study supported the results of our optical imaging study. We conclude that respiratory and metabolic acidosis differentially affect activities of the pFRG/RTN and preBötC/VRG, inducing switching and shifts of the respiratory phase. We suggest that they differently influence the coupling states between the pFRG/RTN and preBötC/VRG.

  4. Thalamic neuron models encode stimulus information by burst-size modulation

    PubMed Central

    Elijah, Daniel H.; Samengo, Inés; Montemurro, Marcelo A.

    2015-01-01

    Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here, we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of thalamic neurons. PMID

  5. Thalamic neuron models encode stimulus information by burst-size modulation.

    PubMed

    Elijah, Daniel H; Samengo, Inés; Montemurro, Marcelo A

    2015-01-01

    Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here, we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of thalamic neurons.

  6. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease

    PubMed Central

    Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M.; Tan, Huiling

    2017-01-01

    Abstract Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson’s disease, elevations in beta activity (13–35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson’s disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this

  7. A Stochastic Burst Follows the Periodic Morning Peak in Individual Drosophila Locomotion

    PubMed Central

    Lazopulo, Stanislav; Lopez, Juan A.; Levy, Paul; Syed, Sheyum

    2015-01-01

    Coupling between cyclically varying external light and an endogenous biochemical oscillator known as the circadian clock, modulates a rhythmic pattern with two prominent peaks in the locomotion of Drosophila melanogaster. A morning peak appears around the time lights turn on and an evening peak appears just before lights turn off. The close association between the peaks and the external 12:12 hour light/dark photoperiod means that respective morning and evening peaks of individual flies are well-synchronized in time and, consequently, feature prominently in population-averaged data. Here, we report on a brief but strong stochastic burst in fly activity that, in contrast to morning and evening peaks, is detectable only in single fly recordings. This burst was observed across 3 wild-type strains of Drosophila melanogaster. In a single fly recording, the burst is likely to appear once randomly within 0.5–5 hours after lights turn on, last for only 2–3 minutes and yet show 5 times greater activity compared to the maximum of morning peak with data binned in 3 minutes. Owing to its variable timing and short duration, the burst is virtually undetectable in population-averaged data. We use a locally-built illumination system to study the burst and find that its incidence in a population correlates with light intensity, with ~85% of control flies showing the behavior at 8000 lux (1942 μW/cm2). Consistent with that finding, several mutant flies with impaired vision show substantially reduced frequency of the burst. Additionally, we find that genetic ablation of the clock has insignificant effect on burst frequency. Together, these data suggest that the pronounced burst is likely generated by a light-activated circuit that is independent of the circadian clock. PMID:26528813

  8. Transient Receptor Potential Channels TRPM4 and TRPC3 Critically Contribute to Respiratory Motor Pattern Formation but not Rhythmogenesis in Rodent Brainstem Circuits

    PubMed Central

    Tariq, Mohammad F.; Phillips, Ryan S.; Mosher, Bryan; Thompson, Ryan; Zhang, Ruli

    2018-01-01

    Abstract Transient receptor potential channel, TRPM4, the putative molecular substrate for Ca2+-activated nonselective cation current (ICAN), is hypothesized to generate bursting activity of pre-Bötzinger complex (pre-BötC) inspiratory neurons and critically contribute to respiratory rhythmogenesis. Another TRP channel, TRPC3, which mediates Na+/Ca2+ fluxes, may be involved in regulating Ca2+-related signaling, including affecting TRPM4/ICAN in respiratory pre-BötC neurons. However, TRPM4 and TRPC3 expression in pre-BötC inspiratory neurons and functional roles of these channels remain to be determined. By single-cell multiplex RT-PCR, we show mRNA expression for these channels in pre-BötC inspiratory neurons in rhythmically active medullary in vitro slices from neonatal rats and mice. Functional contributions were analyzed with pharmacological inhibitors of TRPM4 or TRPC3 in vitro as well as in mature rodent arterially perfused in situ brainstem–spinal cord preparations. Perturbations of respiratory circuit activity were also compared with those by a blocker of ICAN. Pharmacologically attenuating endogenous activation of TRPM4, TRPC3, or ICAN in vitro similarly reduced the amplitude of inspiratory motoneuronal activity without significant perturbations of inspiratory frequency or variability of the rhythm. Amplitude perturbations were correlated with reduced inspiratory glutamatergic pre-BötC neuronal activity, monitored by multicellular dynamic calcium imaging in vitro. In more intact circuits in situ, the reduction of pre-BötC and motoneuronal inspiratory activity amplitude was accompanied by reduced post-inspiratory motoneuronal activity, without disruption of rhythm generation. We conclude that endogenously activated TRPM4, which likely mediates ICAN, and TRPC3 channels in pre-BötC inspiratory neurons play fundamental roles in respiratory pattern formation but are not critically involved in respiratory rhythm generation. PMID:29435486

  9. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson's disease.

    PubMed

    Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M; Tan, Huiling; Brown, Peter

    2017-04-01

    Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson's disease, elevations in beta activity (13-35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson's disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could

  10. The effects of low-dose X-irradiation on the oxidative burst in stimulated macrophages.

    PubMed

    Schaue, D; Marples, B; Trott, K R

    2002-07-01

    Local irradiation with a dose of around 0.5 Gy is an effective treatment of acute necrotizing inflammations. The hypothesis that low doses of X-rays modulate the oxidative burst in activated macrophages, which plays a major role in the acute inflammatory process, was tested. Murine RAW 264.7 macrophages were stimulated with LPS/gammaIFN, PMA or zymosan and oxidative burst was measured using either DCFH-DA or by reduction of cytochrome-C. Radiation doses of 0.3-10 Gy were given shortly before or after stimulation. Low X-ray doses of <1 Gy significantly reduced the oxidative burst in activated macrophages, whereas higher doses had little effect on oxidative burst. The modulation of oxidative burst by low radiation doses may contribute to the therapeutic effectiveness of low-dose radiotherapy of acute necrotizing inflammations.

  11. Do gamma-ray burst sources repeat?

    NASA Technical Reports Server (NTRS)

    Meegan, C. A.; Hartmann, D. H.; Brainerd, J. J.; Briggs, M.; Paciesas, W. S.; Pendleton, G.; Kouveliotou, C.; Fishman, G.; Blumenthal, G.; Brock, M.

    1994-01-01

    The demonstration of repeated gamma-ray bursts from an individual source would severely constrain burst source models. Recent reports of evidence for repetition in the first BATSE burst catalog have generated renewed interest in this issue. Here, we analyze the angular distribution of 585 bursts of the second BATSE catalog (Meegan et al. 1994). We search for evidence of burst recurrence using the nearest and farthest neighbor statistic ad the two-point angular correlation function. We find the data to be consistent with the hypothesis that burst sources do not repeat; however, a repeater fraction of up to about 20% of the bursts cannot be excluded.

  12. Cloning and expression analysis of the Ccrboh gene encoding respiratory burst oxidase in Citrullus colocynthis and grafting onto Citrullus lanatus (watermelon)

    PubMed Central

    Si, Ying; Dane, Fenny; Rashotte, Aaron; Kang, Kwonkyoo; Singh, Narendra K.

    2010-01-01

    A full-length drought-responsive gene Ccrboh, encoding the respiratory burst oxidase homologue (rboh), was cloned in Citrullus colocynthis, a very drought-tolerant cucurbit species. The robh protein, also named NADPH oxidase, is conserved in plants and animals, and functions in the production of reactive oxygen species (ROS). The Ccrboh gene accumulated in a tissue-specific pattern when C. colocynthis was treated with PEG, abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), or NaCl, while the homologous rboh gene did not show any change in C. lanatus var. lanatus, cultivated watermelon, during drought. Grafting experiments were conducted using C. colocynthis or C. lanatus as the rootstock or scion. Results showed that the rootstock significantly affects gene expression in the scion, and some signals might be transported from the root to the shoot. Ccrboh in C. colocynthis was found to function early during plant development, reaching high mRNA transcript levels 3 d after germination. The subcellular location of Ccrboh was investigated by transient expression of the 35S::Ccrboh::GFP fusion construct in protoplasts. The result confirmed that Ccrboh is a transmembrane protein. Our data suggest that Ccrboh might be functionally important during the acclimation of plants to stress and also in plant development. It holds great promise for improving drought tolerance of other cucurbit species. PMID:20181664

  13. Cloning and expression analysis of the Ccrboh gene encoding respiratory burst oxidase in Citrullus colocynthis and grafting onto Citrullus lanatus (watermelon).

    PubMed

    Si, Ying; Dane, Fenny; Rashotte, Aaron; Kang, Kwonkyoo; Singh, Narendra K

    2010-06-01

    A full-length drought-responsive gene Ccrboh, encoding the respiratory burst oxidase homologue (rboh), was cloned in Citrullus colocynthis, a very drought-tolerant cucurbit species. The robh protein, also named NADPH oxidase, is conserved in plants and animals, and functions in the production of reactive oxygen species (ROS). The Ccrboh gene accumulated in a tissue-specific pattern when C. colocynthis was treated with PEG, abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), or NaCl, while the homologous rboh gene did not show any change in C. lanatus var. lanatus, cultivated watermelon, during drought. Grafting experiments were conducted using C. colocynthis or C. lanatus as the rootstock or scion. Results showed that the rootstock significantly affects gene expression in the scion, and some signals might be transported from the root to the shoot. Ccrboh in C. colocynthis was found to function early during plant development, reaching high mRNA transcript levels 3 d after germination. The subcellular location of Ccrboh was investigated by transient expression of the 35S::Ccrboh::GFP fusion construct in protoplasts. The result confirmed that Ccrboh is a transmembrane protein. Our data suggest that Ccrboh might be functionally important during the acclimation of plants to stress and also in plant development. It holds great promise for improving drought tolerance of other cucurbit species.

  14. Solar Radio Bursts and Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk,

    2012-01-01

    Radio bursts from the Sun are produced by electron accelerated to relativistic energies by physical processes on the Sun such as solar flares and coronal mass ejections (CMEs). The radio bursts are thus good indicators of solar eruptions. Three types of nonthermal radio bursts are generally associated with CMEs. Type III bursts due to accelerated electrons propagating along open magnetic field lines. The electrons are thought to be accelerated at the reconnection region beneath the erupting CME, although there is another view that the electrons may be accelerated at the CME-driven shock. Type II bursts are due to electrons accelerated at the shock front. Type II bursts are also excellent indicators of solar energetic particle (SEP) events because the same shock is supposed accelerate electrons and ions. There is a hierarchical relationship between the wavelength range of type /I bursts and the CME kinetic energy. Finally, Type IV bursts are due to electrons trapped in moving or stationary structures. The low frequency stationary type IV bursts are observed occasionally in association with very fast CMEs. These bursts originate from flare loops behind the erupting CME and hence indicate tall loops. This paper presents a summary of radio bursts and their relation to CMEs and how they can be useful for space weather predictions.

  15. Simple stochastic model for El Niño with westerly wind bursts

    PubMed Central

    Thual, Sulian; Majda, Andrew J.; Chen, Nan; Stechmann, Samuel N.

    2016-01-01

    Atmospheric wind bursts in the tropics play a key role in the dynamics of the El Niño Southern Oscillation (ENSO). A simple modeling framework is proposed that summarizes this relationship and captures major features of the observational record while remaining physically consistent and amenable to detailed analysis. Within this simple framework, wind burst activity evolves according to a stochastic two-state Markov switching–diffusion process that depends on the strength of the western Pacific warm pool, and is coupled to simple ocean–atmosphere processes that are otherwise deterministic, stable, and linear. A simple model with this parameterization and no additional nonlinearities reproduces a realistic ENSO cycle with intermittent El Niño and La Niña events of varying intensity and strength as well as realistic buildup and shutdown of wind burst activity in the western Pacific. The wind burst activity has a direct causal effect on the ENSO variability: in particular, it intermittently triggers regular El Niño or La Niña events, super El Niño events, or no events at all, which enables the model to capture observed ENSO statistics such as the probability density function and power spectrum of eastern Pacific sea surface temperatures. The present framework provides further theoretical and practical insight on the relationship between wind burst activity and the ENSO. PMID:27573821

  16. Reliability of burst superimposed technique to assess central activation failure during fatiguing contraction.

    PubMed

    Dousset, Erick; Jammes, Yves

    2003-04-01

    Recording a superimposed electrically-induced contraction at the limit of endurance during voluntary contraction is used as an indicator of failure of muscle activation by the central nervous system and discards the existence of peripheral muscle fatigue. We questioned on the reliability of this method by using other means to explore peripheral muscle failure. Fifteen normal subjects sustained handgrip at 60% of maximal voluntary contraction (MVC) until exhaustion. During sustained contraction, the power spectrum analysis of the flexor digitorum surface electromyogram allowed us to calculate the leftward shift of median frequency (MF). A superimposed 60 Hz 3 s pulse train (burst superimposition) was delivered to the muscle when force levelled off close to the preset value. Immediately after the fatigue trial had ended, the subject was asked to perform a 5 s 60% MVC and we measured the peak contractile response to a 60 Hz 3 s burst stimulation. Recordings of the compound evoked muscle action potential (M-wave) allowed us to explore an impairment of neuromuscular propagation. A superimposed contraction was measured in 7 subjects in their two forearms, whereas it was absent in the 8 others. Despite these discrepancies, all subjects were able to reproduce a 3 s 60% MVC immediately after the fatigue trial ended and there was no post-fatigue decrease of contraction elicited by the 60 Hz 3 s burst stimulation, as well as no M-wave decrease in amplitude and conduction time. Thus, there was no indication of peripheral muscle fatigue. MF decrease was present in all individuals throughout the fatiguing contraction and it was not correlated with the magnitude of superimposed force. These observations indicate that an absence of superimposed electrically-induced muscle contraction does not allow us to conclude the existence of a sole peripheral muscle fatigue in these circumstances.

  17. Effect of compounds with antibacterial activities in human milk on respiratory syncytial virus and cytomegalovirus in vitro.

    PubMed

    Portelli, J; Gordon, A; May, J T

    1998-11-01

    The effect of some antibacterial compounds present in human milk were tested for antiviral activity against respiratory syncytial virus, Semliki Forest virus and cytomegalovirus. These included the gangliosides GM1, GM2 and GM3, sialyl-lactose, lactoferrin and chondroitin sulphate A, B and C, which were all tested for their ability to inhibit the viruses in cell culture. Of the compounds tested, only the ganglioside GM2, chondroitin sulphate B and lactoferrin inhibited the absorption and growth of respiratory syncytial virus in cell culture, and none inhibited the growth of Semliki Forest virus, indicating that lipid antiviral activity was not associated with any of the gangliosides. While the concentrations of these two compounds required to inhibit respiratory syncytial virus were in excess of those present in human milk, sialyl-lactose concentrations similar to those present in human milk increased the growth of cytomegalovirus. Lactoferrin was confirmed as inhibiting both respiratory syncytial virus and cytomegalovirus growth in culture even when used at lower concentrations than those present in human milk. The antiviral activities of GM2, chondroitin sulphate B and lactoferrin were tested when added to an infant formula. Lactoferrin continued to have antiviral activity against cytomegalovirus, but a lower activity against respiratory syncytial virus; ganglioside GM2 and chondroitin sulphate B still maintained antiviral activity against respiratory syncytial virus.

  18. One nuclear calcium transient induced by a single burst of action potentials represents the minimum signal strength in activity-dependent transcription in hippocampal neurons.

    PubMed

    Yu, Yan; Oberlaender, Kristin; Bengtson, C Peter; Bading, Hilmar

    2017-07-01

    Neurons undergo dramatic changes in their gene expression profiles in response to synaptic stimulation. The coupling of neuronal excitation to gene transcription is well studied and is mediated by signaling pathways activated by cytoplasmic and nuclear calcium transients. Despite this, the minimum synaptic activity required to induce gene expression remains unknown. To address this, we used cultured hippocampal neurons and cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH) that allows detection of nascent transcripts in the cell nucleus. We found that a single burst of action potentials, consisting of 24.4±5.1 action potentials during a 6.7±1.9s depolarization of 19.5±2.0mV causing a 9.3±0.9s somatic calcium transient, is sufficient to activate transcription of the immediate early gene arc (also known as Arg3.1). The total arc mRNA yield produced after a single burst-induced nuclear calcium transient was very small and, compared to unstimulated control neurons, did not lead to a significant increase in arc mRNA levels measured using quantitative reverse transcriptase PCR (qRT-PCR) of cell lysates. Significantly increased arc mRNA levels became detectable in hippocampal neurons that had undergone 5-8 consecutive burst-induced nuclear calcium transients at 0.05-0.15Hz. These results indicate that a single burst-induced nuclear calcium transient can activate gene expression and that transcription is rapidly shut off after synaptic stimulation has ceased. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Do gamma-ray burst sources repeat?

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.; Hartmann, Dieter H.; Brainerd, J. J.; Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey; Kouveliotou, Chryssa; Fishman, Gerald; Blumenthal, George; Brock, Martin

    1995-01-01

    The demonstration of repeated gamma-ray bursts from an individual source would severely constrain burst source models. Recent reports (Quashnock and Lamb, 1993; Wang and Lingenfelter, 1993) of evidence for repetition in the first BATSE burst catalog have generated renewed interest in this issue. Here, we analyze the angular distribution of 585 bursts of the second BATSE catalog (Meegan et al., 1994). We search for evidence of burst recurrence using the nearest and farthest neighbor statistic and the two-point angular correlation function. We find the data to be consistent with the hypothesis that burst sources do not repeat; however, a repeater fraction of up to about 20% of the observed bursts cannot be excluded.

  20. Time-related interdependence between low-frequency cortical electrical activity and respiratory activity in lizard, Gallotia galloti.

    PubMed

    de Vera, Luis; Pereda, Ernesto; Santana, Alejandro; González, Julián J

    2005-03-01

    Electroencephalograms of medial cortex and electromyograms of intercostal muscles (EMG-icm) were simultaneously recorded in the lizard, Gallotia galloti, during two daily time periods (at daytime, DTP: 1200-1600 h; by night, NTP: 0000-0400 h), to investigate whether a relationship exists between the respiratory and cortical electrical activity of reptiles, and, if so, how this relationship changes during the night rest period. Testing was carried out by studying interdependence between cortical electrical and respiratory activities, by means of linear and nonlinear signal analysis techniques. Both physiological activities were evaluated through simultaneous power signals, derived from the power of the low-frequency band of the electroencephalogram (pEEG-LF), and from the power of the EMG-icm (pEMG-icm), respectively. During both DTP and NTP, there was a significant coherence between both signals in the main frequency band of pEMG-icm. During both DTP and NTP, the nonlinear index N measured significant linear asymmetric interdependence between pEEG-LF and pEMG-icm. The N value obtained between pEEG-LF vs. pEMG-icm was greater than the one between pEMG-icm vs. pEEG-LF. This means that the system that generates the pEEG-LF is more complex than the one that generates the pEMG-icm, and suggests that the temporal variability of power in the low-frequency cortical electrical activity is driven by the power of the respiratory activity.

  1. A Sodium Leak Current Regulates Pacemaker Activity of Adult Central Pattern Generator Neurons in Lymnaea Stagnalis

    PubMed Central

    Lu, Tom Z.; Feng, Zhong-Ping

    2011-01-01

    The resting membrane potential of the pacemaker neurons is one of the essential mechanisms underlying rhythm generation. In this study, we described the biophysical properties of an uncharacterized channel (U-type channel) and investigated the role of the channel in the rhythmic activity of a respiratory pacemaker neuron and the respiratory behaviour in adult freshwater snail Lymnaea stagnalis. Our results show that the channel conducts an inward leak current carried by Na+ (ILeak-Na). The ILeak-Na contributed to the resting membrane potential and was required for maintaining rhythmic action potential bursting activity of the identified pacemaker RPeD1 neurons. Partial knockdown of the U-type channel suppressed the aerial respiratory behaviour of the adult snail in vivo. These findings identified the Na+ leak conductance via the U-type channel, likely a NALCN-like channel, as one of the fundamental mechanisms regulating rhythm activity of pacemaker neurons and respiratory behaviour in adult animals. PMID:21526173

  2. Impulsive EUV bursts observed in C IV with OSO-8. [UV solar spectra

    NASA Technical Reports Server (NTRS)

    Athay, R. G.; White, O. R.; Lites, B. W.; Bruner, E. C., Jr.

    1980-01-01

    Time sequences of profiles of the 1548 A line of C IV containing 51 EUV bursts observed in or near active regions are analyzed to determine the brightness, Doppler shift and line broadening characteristics of the bursts. The bursts have mean lifetimes of approximately 150 s, and mean increases in brightness at burst maximum of four-fold as observed with a field of view of 2 x 20 arc sec. Mean burst diameters are estimated to be 3 arc sec, or smaller. All but three of the bursts show Doppler shifts with velocities sometimes exceeding 75 km/s; 31 are dominated by red shifts and 17 are dominated by blue shifts. Approximately half of the latter group have red-shifted precursors. The bursts are interpreted as prominence material, such as surges and coronal rain, moving through the field of view of the spectrometer.

  3. Respiratory-related activity in hypoglossal neurons across sleep-waking states in cats.

    PubMed

    Richard, C A; Harper, R M

    1991-02-22

    Activity of behaviorally identified neurons in the hypoglossal nuclei supplying the genioglossal muscles was assessed in intact, unanesthetized cats across sleep-wake states. Nineteen of 37 recorded cells discharged on a breath-by-breath or tonic basis with the respiratory cycle in at least one state. Most respiratory-related cells discharged more slowly during quiet sleep, whereas rates during rapid eye movement sleep were similar to those of waking.

  4. Optothermally actuated capillary burst valve

    NASA Astrophysics Data System (ADS)

    Eriksen, Johan; Bilenberg, Brian; Kristensen, Anders; Marie, Rodolphe

    2017-04-01

    We demonstrate the optothermal actuation of individual capillary burst valves in an all-polymer microfluidic device. The capillary burst valves are realised in a planar design by introducing a fluidic constriction in a microfluidic channel of constant depth. We show that a capillary burst valve can be burst by raising the temperature due to the temperature dependence of the fluid surface tension. We address individual valves by using a local heating platform based on a thin film of near infrared absorber dye embedded in the lid used to seal the microfluidic device [L. H. Thamdrup et al., Nano Lett. 10, 826-832 (2010)]. An individual valve is burst by focusing the laser in its vicinity. We demonstrate the capture of single polystyrene 7 μm beads in the constriction triggered by the bursting of the valve.

  5. Cosmological gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan

    1991-01-01

    The distribution in angle and flux of gamma-ray bursts indicates that the majority of gamma-ray bursters are at cosmological distances, i.e., at z of about 1. The rate is then about 10 exp -8/yr in a galaxy like the Milky Way, i.e., orders of magnitude lower than the estimated rate for collisions between neutron stars in close binary systems. The energy per burst is about 10 exp 51 ergs, assuming isotropic emission. The events appear to be less energetic and more frequent if their emission is strongly beamed. Some tests for the distance scale are discussed: a correlation between the burst's strength and its spectrum; the absorption by the Galactic gas below about 2 keV; the X-ray tails caused by forward scattering by the Galactic dust; about 1 month recurrence of some bursts caused by gravitational lensing by foreground galaxies; and a search for gamma-ray bursts in M31. The bursts appear to be a manifestation of something exotic, but conventional compact objects can provide an explanation. The best possibility is offered by a decay of a bindary composed of a spinning-stellar-mass black-hole primary and a neutron or a strange-quark star secondary. In the final phase the secondary is tidally disrupted, forms an accretion disk, and up to 10 exp 54 ergs are released. A very small fraction of this energy powers the gamma-ray burst.

  6. Enhancement of anti-Aeromonas salmonicida activity in Atlantic salmon (Salmo salar) macrophages by a mannose-binding lectin

    USGS Publications Warehouse

    Ottinger, C.A.; Johnson, S.C.; Ewart, K.V.; Brown, L.L.; Ross, N.W.

    1999-01-01

    We investigated the effects of a calcium-dependent mannose-binding lectin isolated from the serum of Atlantic salmon on Aeromonassalmonicida viability and the anti-A. salmonicida activity of Atlantic salmon macrophages. In the absence of other factors, binding of this lectin at concentrations of 0.8, 4.0 and 20.0 ng ml−1 to virulent A. salmonicida failed to significantly reduce (P>0.05) cell viability. However, binding of the lectin to A. salmonicida did result in significant (P≤0.05) dose-dependent increases in phagocytosis, and bactericidal activity. Significant increases (P≤0.05) were also observed in phagocyte respiratory burst activity within the lectin concentration range of 4.0–20.0 ng ml−1 but the stimulation was not dose dependent at these lectin concentrations. At the lowest lectin concentration tested (0.32 ng ml−1), a significant decrease (P≤0.05) in respiratory burst was observed. The structure and activity of this lectin are similar to that of mammalian mannose-binding lectins, which are known to play a pivotal role in innate immunity. The presence of this lectin may be an important defense mechanism against Gram-negative bacteria such as A. salmonicida.

  7. Broadband Spectral Investigations of SGR J1550-5418 Bursts

    NASA Technical Reports Server (NTRS)

    Lin, Lin; Goegues, Ersin; Baring, Matthew G.; Granot, Jonathan; Kouveliotou, Chryssa; Kaneko, Yuki; van der Horst, Alexander; Gruber, David; von Kienlin, Andreas; Younes, George; hide

    2012-01-01

    We present the results of our broadband spectral analysis of 42 SGR J1550-5418 bursts simultaneously detected with the Swift/X-ray Telescope (XRT) and the Fermi/Gamma-ray Burst Monitor (GBM), during the 2009 January active episode of the source. The unique spectral and temporal capabilities of the XRT windowed timing mode have allowed us to extend the GBM spectral coverage for these events down to the X-ray domain (0.5-10 keV). Our earlier analysis of the GBM data found that the SGR J1550-5418 burst spectra were described equally well with either a Comptonized model or with two blackbody functions; the two models were statistically indistinguishable. Our new broadband (0.5-200 keV) spectral fits show that, on average, the burst spectra are better described with two blackbody functions than with the Comptonized model. Thus, our joint XRT-GBM analysis clearly shows for the first time that the SGR J1550-5418 burst spectra might naturally be expected to exhibit a more truly thermalized character, such as a two-blackbody or even a multi-blackbody signal. Using the Swift and RXTE timing ephemeris for SGR J1550-5418 we construct the distribution of the XRT burst counts with spin phase and find that it is not correlated with the persistent X-ray emission pulse phase from SGR J1550-5418. These results indicate that the burst emitting sites on the neutron star need not to be co-located with hot spots emitting the bulk of the persistent X-ray emission. Finally, we show that there is a significant pulse phase dependence of the XRT burst counts, likely demonstrating that the surface magnetic field of SGR J1550-5418 is not uniform over the emission zones, since it is anticipated that regions with stronger surface magnetic field could trigger bursts more efficiently.

  8. Complex transitions between spike, burst or chaos synchronization states in coupled neurons with coexisting bursting patterns

    NASA Astrophysics Data System (ADS)

    Gu, Hua-Guang; Chen, Sheng-Gen; Li, Yu-Ye

    2015-05-01

    We investigated the synchronization dynamics of a coupled neuronal system composed of two identical Chay model neurons. The Chay model showed coexisting period-1 and period-2 bursting patterns as a parameter and initial values are varied. We simulated multiple periodic and chaotic bursting patterns with non-(NS), burst phase (BS), spike phase (SS), complete (CS), and lag synchronization states. When the coexisting behavior is near period-2 bursting, the transitions of synchronization states of the coupled system follows very complex transitions that begins with transitions between BS and SS, moves to transitions between CS and SS, and to CS. Most initial values lead to the CS state of period-2 bursting while only a few lead to the CS state of period-1 bursting. When the coexisting behavior is near period-1 bursting, the transitions begin with NS, move to transitions between SS and BS, to transitions between SS and CS, and then to CS. Most initial values lead to the CS state of period-1 bursting but a few lead to the CS state of period-2 bursting. The BS was identified as chaos synchronization. The patterns for NS and transitions between BS and SS are insensitive to initial values. The patterns for transitions between CS and SS and the CS state are sensitive to them. The number of spikes per burst of non-CS bursting increases with increasing coupling strength. These results not only reveal the initial value- and parameter-dependent synchronization transitions of coupled systems with coexisting behaviors, but also facilitate interpretation of various bursting patterns and synchronization transitions generated in the nervous system with weak coupling strength. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372224 and 11402039) and the Fundamental Research Funds for Central Universities designated to Tongji University (Grant No. 1330219127).

  9. Fast drift kilometric radio bursts and solar proton events

    NASA Technical Reports Server (NTRS)

    Cliver, E. W.; Kahler, S. W.; Cane, H. V.; Mcguire, R. E.; Vonrosenvinge, T. T.; Stone, R. G.

    1985-01-01

    Initial results of a comparative study of major fast drift kilometric bursts and solar proton events from Sep. 1978 to Feb. 1983 are presented. It was found that only about half of all intense, long duration ( 40 min above 500 sfu) 1 MHz bursts can be associated with F 20 MeV proton events. However, for the subset of such fast drift bursts accompanied by metric Type 2 and/or 4 activity (approximately 40% of the total), the degree of association with 20 MeV events is 80%. For the reverse association, it was found that proton events with J( 20 MeV) 0.01 1 pr cm(-2)s(-1)sr(-1)MeV(-1) were typically (approximately 80% of the time) preceded by intense 1 MHz bursts that exceeded the 500 sfu level for times 20 min (median duration approximately 35 min).

  10. Variability in individual activity bursts improves ant foraging success.

    PubMed

    Campos, Daniel; Bartumeus, Frederic; Méndez, Vicenç; Andrade, José S; Espadaler, Xavier

    2016-12-01

    Using experimental and computational methods, we study the role of behavioural variability in activity bursts (or temporal activity patterns) for individual and collective regulation of foraging in A. senilis ants. First, foraging experiments were carried out under special conditions (low densities of ants and food and absence of external cues or stimuli) where individual-based strategies are most prevalent. By using marked individuals and recording all foraging trajectories, we were then able to precisely quantify behavioural variability among individuals. Our main conclusions are that (i) variability of ant trajectories (turning angles, speed, etc.) is low compared with variability of temporal activity profiles, and (ii) this variability seems to be driven by plasticity of individual behaviour through time, rather than the presence of fixed behavioural stereotypes or specialists within the group. The statistical measures obtained from these experimental foraging patterns are then used to build a general agent-based model (ABM) which includes the most relevant properties of ant foraging under natural conditions, including recruitment through pheromone communication. Using the ABM, we are able to provide computational evidence that the characteristics of individual variability observed in our experiments can provide a functional advantage (in terms of foraging success) to the group; thus, we propose the biological basis underpinning our observations. Altogether, our study reveals the potential utility of experiments under simplified (laboratory) conditions for understanding information-gathering in biological systems. © 2016 The Author(s).

  11. The human respiratory gate

    NASA Technical Reports Server (NTRS)

    Eckberg, Dwain L.

    2003-01-01

    Respiratory activity phasically alters membrane potentials of preganglionic vagal and sympathetic motoneurones and continuously modulates their responsiveness to stimulatory inputs. The most obvious manifestation of this 'respiratory gating' is respiratory sinus arrhythmia, the rhythmic fluctuations of electrocardiographic R-R intervals observed in healthy resting humans. Phasic autonomic motoneurone firing, reflecting the throughput of the system, depends importantly on the intensity of stimulatory inputs, such that when levels of stimulation are low (as with high arterial pressure and sympathetic activity, or low arterial pressure and vagal activity), respiratory fluctuations of sympathetic or vagal firing are also low. The respiratory gate has a finite capacity, and high levels of stimulation override the ability of respiration to gate autonomic responsiveness. Autonomic throughput also depends importantly on other factors, including especially, the frequency of breathing, the rate at which the gate opens and closes. Respiratory sinus arrhythmia is small at rapid, and large at slow breathing rates. The strong correlation between systolic pressure and R-R intervals at respiratory frequencies reflects the influence of respiration on these two measures, rather than arterial baroreflex physiology. A wide range of evidence suggests that respiratory activity gates the timing of autonomic motoneurone firing, but does not influence its tonic level. I propose that the most enduring significance of respiratory gating is its use as a precisely controlled experimental tool to tease out and better understand otherwise inaccessible human autonomic neurophysiological mechanisms.

  12. Epileptic seizures, coma and EEG burst-suppression from suicidal bupropion intoxication.

    PubMed

    Noda, Anna Hiro; Schu, Ulrich; Maier, Tanja; Knake, Susanne; Rosenow, Felix

    2017-03-01

    Bupropion, an amphetamine-like dual mechanism drug, is approved and increasingly used for the treatment of major depression, and its use is associated with a dose-dependent risk of epileptic seizures. Suicide attempts are frequent in major depression and often an overdose of the drugs available is ingested. Therefore, it is important to be aware of the clinical course, including EEG and neurological symptoms, as well as treatment and prognosis of bupropion intoxication. We report on the clinical and EEG course of a women who ingested 27 g of bupropion in a suicide attempt. Myoclonic seizures were followed by generalized tonic-clonic seizures and coma associated with EEG burst-suppression and brief tonic seizures. Active carbon and neuro-intensive care treatment, including respiratory support, were given. Within three days, the patient returned to a stable clinical condition with a mildly encephalopathic EEG. In conclusion, bupropion intoxication requires acute intensive care treatment and usually has a good prognosis, however, misinterpretation of the clinical and EEG presentation may lead to errors in management.

  13. Observations of short gamma-ray bursts.

    PubMed

    Fox, Derek B; Roming, Peter W A

    2007-05-15

    We review recent observations of short-hard gamma-ray bursts and their afterglows. The launch and successful ongoing operations of the Swift satellite, along with several localizations from the High-Energy Transient Explorer mission, have provoked a revolution in short-burst studies: first, by quickly providing high-quality positions to observers; and second, via rapid and sustained observations from the Swift satellite itself. We make a complete accounting of Swift-era short-burst localizations and proposed host galaxies, and discuss the implications of these observations for the distances, energetics and environments of short bursts, and the nature of their progenitors. We then review the physical modelling of short-burst afterglows: while the simplest afterglow models are inadequate to explain the observations, there have been several notable successes. Finally, we address the case of an unusual burst that threatens to upset the simple picture in which long bursts are due to the deaths of massive stars, and short bursts to compact-object merger events.

  14. Spatial variation in automated burst suppression detection in pharmacologically induced coma.

    PubMed

    An, Jingzhi; Jonnalagadda, Durga; Moura, Valdery; Purdon, Patrick L; Brown, Emery N; Westover, M Brandon

    2015-01-01

    Burst suppression is actively studied as a control signal to guide anesthetic dosing in patients undergoing medically induced coma. The ability to automatically identify periods of EEG suppression and compactly summarize the depth of coma using the burst suppression probability (BSP) is crucial to effective and safe monitoring and control of medical coma. Current literature however does not explicitly account for the potential variation in burst suppression parameters across different scalp locations. In this study we analyzed standard 19-channel EEG recordings from 8 patients with refractory status epilepticus who underwent pharmacologically induced burst suppression as medical treatment for refractory seizures. We found that although burst suppression is generally considered a global phenomenon, BSP obtained using a previously validated algorithm varies systematically across different channels. A global representation of information from individual channels is proposed that takes into account the burst suppression characteristics recorded at multiple electrodes. BSP computed from this representative burst suppression pattern may be more resilient to noise and a better representation of the brain state of patients. Multichannel data integration may enhance the reliability of estimates of the depth of medical coma.

  15. Q-Burst Origins in Africa

    NASA Astrophysics Data System (ADS)

    Boldi, R.; Hobara, Y.; Yamashita, K.; Hayakawa, M.; Satori, G.; Bor, J.; Lyons, W. A.; Nelson, T.; Russell, B.; Williams, E.

    2006-12-01

    The generation of electromagnetic transient signatures in the SR frequency range (Q-bursts) from the energetic lightning originating in Africa were intensively studied during the AMMA (African Monsoon Multidisciplinary Analysis) field program centered on Niamey, Niger in 2006. During this wet season many active westward- moving MCSs were observed by the MIT C-band Doppler radar. The MCSs exhibited a gust front, a leading squall line and a large spatially-extended (100-200 km) stratiform region that often passed over the observation site. Many transient events were recorded in association with local lightning both with a slow antenna and a DC electric field mill installed near the radar. During the gust front and squall line traverse, the majority of lightning exhibited normal polarity. A remarkable transition of polarity is observed once the radar site is under the stratiform region and a pronounced radar bright band has had time to develop. The majority of the ground flashes then exhibit a positive polarity (positive ground flash). In particular, very intense positive ground flashes (often topped with spider lightning structure) are registered when the radar "hbright band"h is most strongly developed. These positive flashes exhibit a large DC field change in comparison to ones observed during the earlier squall line passage. Video observations of nighttime events support the existence of the lateral extensive spider lightning. Daytime events exhibit thunder durations of a few minutes. ELF Q-bursts were recorded at MIT's Schumann resonance station in Rhode Island U.S.A. (about 8 Mm distance from Niamey) associated with several large well-established positive ground flashes observed locally near Niamey. The event identification is made by accurate GPS timing and arrival direction of the waves. The onset times of the Q-burst are in good agreement with the electric field measurement near Niamey. The arrival directions of the waves are also in good agreement assuming

  16. X-ray bursts: Observation versus theory

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.

    1981-01-01

    Results of various observations of common type I X-ray bursts are discussed with respect to the theory of thermonuclear flashes in the surface layers of accreting neutron stars. Topics covered include burst profiles; irregular burst intervals; rise and decay times and the role of hydrogen; the accuracy of source distances; accuracy in radii determination; radius increase early in the burst; the super Eddington limit; temperatures at burst maximum; and the role of the magnetic field.

  17. Mixed-mode oscillations and population bursting in the pre-Bötzinger complex

    PubMed Central

    Bacak, Bartholomew J; Kim, Taegyo; Smith, Jeffrey C; Rubin, Jonathan E; Rybak, Ilya A

    2016-01-01

    This study focuses on computational and theoretical investigations of neuronal activity arising in the pre-Bötzinger complex (pre-BötC), a medullary region generating the inspiratory phase of breathing in mammals. A progressive increase of neuronal excitability in medullary slices containing the pre-BötC produces mixed-mode oscillations (MMOs) characterized by large amplitude population bursts alternating with a series of small amplitude bursts. Using two different computational models, we demonstrate that MMOs emerge within a heterogeneous excitatory neural network because of progressive neuronal recruitment and synchronization. The MMO pattern depends on the distributed neuronal excitability, the density and weights of network interconnections, and the cellular properties underlying endogenous bursting. Critically, the latter should provide a reduction of spiking frequency within neuronal bursts with increasing burst frequency and a dependence of the after-burst recovery period on burst amplitude. Our study highlights a novel mechanism by which heterogeneity naturally leads to complex dynamics in rhythmic neuronal populations. DOI: http://dx.doi.org/10.7554/eLife.13403.001 PMID:26974345

  18. Manifestation of peripherial coding in the effect of increasing loudness and enhanced discrimination of the intensity of tone bursts before and after tone burst noise

    NASA Astrophysics Data System (ADS)

    Rimskaya-Korsavkova, L. K.

    2017-07-01

    To find the possible reasons for the midlevel elevation of the Weber fraction in intensity discrimination of a tone burst, a comparison was performed for the complementary distributions of spike activity of an ensemble of space nerves, such as the distribution of time instants when spikes occur, the distribution of interspike intervals, and the autocorrelation function. The distribution properties were detected in a poststimulus histogram, an interspike interval histogram, and an autocorrelation histogram—all obtained from the reaction of an ensemble of model space nerves in response to an auditory noise burst-useful tone burst complex. Two configurations were used: in the first, the peak amplitude of the tone burst was varied and the noise amplitude was fixed; in the other, the tone burst amplitude was fixed and the noise amplitude was varied. Noise could precede or follow the tone burst. The noise and tone burst durations, as well as the interval between them, was 4 kHz and corresponded to the characteristic frequencies of the model space nerves. The profiles of all the mentioned histograms had two maxima. The values and the positions of the maxima in the poststimulus histogram corresponded to the amplitudes and mutual time position of the noise and the tone burst. The maximum that occurred in response to the tone burst action could be a basis for the formation of the loudness of the latter (explicit loudness). However, the positions of the maxima in the other two histograms did not depend on the positions of tone bursts and noise in the combinations. The first maximum fell in short intervals and united intervals corresponding to the noise and tone burst durations. The second maximum fell in intervals corresponding to a tone burst delay with respect to noise, and its value was proportional to the noise amplitude or tone burst amplitude that was smaller in the complex. An increase in tone burst or noise amplitudes was caused by nonlinear variations in the two

  19. Secured Hash Based Burst Header Authentication Design for Optical Burst Switched Networks

    NASA Astrophysics Data System (ADS)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.

    2017-12-01

    The optical burst switching (OBS) is a promising technology that could meet the fast growing network demand. They are featured with the ability to meet the bandwidth requirement of applications that demand intensive bandwidth. OBS proves to be a satisfactory technology to tackle the huge bandwidth constraints, but suffers from security vulnerabilities. The objective of this proposed work is to design a faster and efficient burst header authentication algorithm for core nodes. There are two important key features in this work, viz., header encryption and authentication. Since the burst header is an important in optical burst switched network, it has to be encrypted; otherwise it is be prone to attack. The proposed MD5&RC4-4S based burst header authentication algorithm runs 20.75 ns faster than the conventional algorithms. The modification suggested in the proposed RC4-4S algorithm gives a better security and solves the correlation problems between the publicly known outputs during key generation phase. The modified MD5 recommended in this work provides 7.81 % better avalanche effect than the conventional algorithm. The device utilization result also shows the suitability of the proposed algorithm for header authentication in real time applications.

  20. Postnatal developmental changes in activation profiles of the respiratory neuronal network in the rat ventral medulla

    PubMed Central

    Oku, Yoshitaka; Masumiya, Haruko; Okada, Yasumasa

    2007-01-01

    Two putative respiratory rhythm generators (RRGs), the para-facial respiratory group (pFRG) and the pre-Bötzinger complex (preBötC), have been identified in the neonatal rodent brainstem. To elucidate their functional roles during the neonatal period, we evaluated developmental changes of these RRGs by optical imaging using a voltage-sensitive dye. Optical signals, recorded from the ventral medulla of brainstem–spinal cord preparations of neonatal (P0–P4) rats (n = 44), were analysed by a cross correlation method. With development during the first few postnatal days, the respiratory-related activity in the pFRG reduced and shifted from a preinspiratory (P0–P1) to an inspiratory (P2–P4) pattern, whereas preBötC activity remained unchanged. The μ-opioid agonist [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) augmented preinspiratory activity in the pFRG, while the μ-opioid antagonist naloxone induced changes in spatiotemporal activation profiles that closely mimicked the developmental changes. These results are consistent with the recently proposed hypothesis by Janczewski and Feldman that the pFRG is activated to compensate for the depression of the preBötC by perinatal opiate surge. We conclude that significant reorganization of the respiratory neuronal network, characterized by a reduction of preinspiratory activity in the pFRG, occurs at P1–P2 in rats. The changes in spatiotemporal activation profiles of the pFRG neurones may reflect changes in the mode of coupling of the two respiratory rhythm generators. PMID:17884928

  1. Fermi/GBM Observations of SGRJ0501 + 4516 Bursts

    NASA Technical Reports Server (NTRS)

    Lin, Lin; Kouveliotou, Chryssa; Baring, Matthew G.; van der Horst, Alexander J.; Guiriec, Sylvain; Woods, Peter M.; Goegues, Ersin; Kaneko, Yuki; Scargle, Jeffrey; Granot, Jonathan; hide

    2011-01-01

    We present our temporal and spectral analyses of 29 bursts from SGRJ0501+4516, detected with the Gamma-ray Burst Monitor onboard the Fermi Gamma-ray Space Telescope during the 13 days of the source activation in 2008 (August 22 to September 3). We find that the T(sub 90) durations of the bursts can be fit with a log-normal distribution with a mean value of approx. 123 ms. We also estimate for the first time event durations of Soft Gamma Repeater (SGR) bursts in photon space (i.e., using their deconvolved spectra) and find that these are very similar to the T(sub 90)s estimated in count space (following a log-normal distribution with a mean value of approx. 124 ms). We fit the time-integrated spectra for each burst and the time-resolved spectra of the five brightest bursts with several models. We find that a single power law with an exponential cutoff model fits all 29 bursts well, while 18 of the events can also be fit with two black body functions. We expand on the physical interpretation of these two models and we compare their parameters and discuss their evolution. We show that the time-integrated and time-resolved spectra reveal that E(sub peak) decreases with energy flux (and fluence) to a minimum of approx. 30 keV at F = 8.7 x 10(exp -6)erg/sq cm/s, increasing steadily afterwards. Two more sources exhibit a similar trend: SGRs J1550 - 5418 and 1806 - 20. The isotropic luminosity, L(sub iso), corresponding to these flux values is roughly similar for all sources (0.4 - l.5 x 10(exp 40) erg/s.

  2. Solar Drift-Pair Bursts

    NASA Astrophysics Data System (ADS)

    Stanislavsky, A.; Volvach, Ya.; Konovalenko, A.; Koval, A.

    2017-08-01

    In this paper a new sight on the study of solar bursts historically called drift pairs (DPs) is presented. Having a simple morphology on dynamic spectra of radio records (two short components separated in time, and often they are very similar) and discovered at the dawn of radio astronomy, their features remain unexplained totally up to now. Generally, the DPs are observed during the solar storms of type III bursts, but not every storm of type III bursts is linked with DPs. Detected by ground-based instruments at decameter and meter wavelengths, the DP bursts are limited in frequency bandwidth. They can drift from high frequencies to low ones and vice versa. Their frequency drift rate may be both lower and higher than typical rates of type III bursts at the same frequency range. The development of low-frequency radio telescopes and data processing provide additional possibilities in the research. In this context the fresh analysis of DPs, made from recent observations in the summer campaign of 2015, are just considered. Their study was implemented by updated tools of the UTR-2 radio telescope at 9-33 MHz. During 10-12 July of 2015, DPs forming the longest patterns on dynamic spectra are about 7% of the total number of recorded DPs. Their marvelous resemblance in frequency drift rates with the solar S-bursts is discussed.

  3. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons to...

  4. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons to...

  5. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons to...

  6. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons to...

  7. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons to...

  8. Burst firing and modulation of functional connectivity in cat striate cortex.

    PubMed

    Snider, R K; Kabara, J F; Roig, B R; Bonds, A B

    1998-08-01

    We studied the influences of the temporal firing patterns of presynaptic cat visual cortical cells on spike generation by postsynaptic cells. Multiunit recordings were dissected into the activity of individual neurons within the recorded group. Cross-correlation analysis was then used to identify directly coupled neuron pairs. The 22 multiunit groups recorded typically showed activity from two to six neurons, each containing between 1 and 15 neuron pairs. From a total of 241 neuron pairs, 91 (38%) had a shifted cross-correlation peak, which indicated a possible direct connection. Only two multiunit groups contained no shifted peaks. Burst activity, defined by groups of two or more spikes with intervals of bursts (of any length) in eliciting a time-related response spike averaged 18.53% across all measurements as compared with the effectiveness of single spikes, which averaged 9.53%. Longer bursts were more effective than shorter ones. Effectiveness was reduced with spatially nonoptimal, as opposed to optimal, stimuli. The effectiveness of both bursts and single spikes decreased by the same amount across measurements with nonoptimal orientations, spatial frequencies and contrasts. At similar firing rates and burst lengths, the decrease was more pronounced for nonoptimal orientations than for lower contrasts, suggesting the existence of a mechanism that reduces effectiveness at nonoptimal orientations. These results support the hypothesis that neural information can be emphasized via instantaneous rate coding that is not preserved over long intervals or over trials. This is consistent with the integrate and fire model, where bursts participate in temporal integration.

  9. Automated graphic assessment of respiratory activity is superior to pulse oximetry and visual assessment for the detection of early respiratory depression during therapeutic upper endoscopy.

    PubMed

    Vargo, John J; Zuccaro, Gregory; Dumot, John A; Conwell, Darwin L; Morrow, J Brad; Shay, Steven S

    2002-06-01

    Recommendations from the American Society of Anesthesiologists suggest that monitoring for apnea using the detection of exhaled carbon dioxide (capnography) is a useful adjunct in the assessment of ventilatory status of patients undergoing sedation and analgesia. There are no data on the utility of capnography in GI endoscopy, nor is the frequency of abnormal ventilatory activity during endoscopy known. The aims of this study were to determine the following: (1) the frequency of abnormal ventilatory activity during therapeutic upper endoscopy, (2) the sensitivity of observation and pulse oximetry in the detection of apnea or disordered respiration, and (3) whether capnography provides an improvement over accepted monitoring techniques. Forty-nine patients undergoing therapeutic upper endoscopy were monitored with standard methods including pulse oximetry, automated blood pressure measurement, and visual assessment. In addition, graphic assessment of respiratory activity with sidestream capnography was performed in all patients. Endoscopy personnel were blinded to capnography data. Episodes of apnea or disordered respiration detected by capnography were documented and compared with the occurrence of hypoxemia, hypercapnea, hypotension, and the recognition of abnormal respiratory activity by endoscopy personnel. Comparison of simultaneous respiratory rate measurements obtained by capnography and by auscultation with a pretracheal stethoscope verified that capnography was an excellent indicator of respiratory rate when compared with the reference standard (auscultation) (r = 0.967, p < 0.001). Fifty-four episodes of apnea or disordered respiration occurred in 28 patients (mean duration 70.8 seconds). Only 50% of apnea or disordered respiration episodes were eventually detected by pulse oximetry. None were detected by visual assessment (p < 0.0010). Apnea/disordered respiration occurs commonly during therapeutic upper endoscopy and frequently precedes the development

  10. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2004-01-01

    Gamma-ray bursts remain one of the greatest mysteries in astrophysics. Observations of gamma-ray bursts made by the BATSE experiment on the Compton Gamma-Ray Observatory will be described. Most workers in the field now believe that they originate from cosmological distances. This view has been reinforced by observations this year of several optical afterglow counterparts to gamma-ray bursts. A summary of these recent discoveries will be presented, along with their implications for models of the burst emission mechanism and the energy source of the bursts.

  11. Endogenous GABA and Glutamate Finely Tune the Bursting of Olfactory Bulb External Tufted Cells

    PubMed Central

    Hayar, Abdallah; Ennis, Matthew

    2008-01-01

    In rat olfactory bulb slices, external tufted (ET) cells spontaneously generate spike bursts. Although ET cell bursting is intrinsically generated, its strength and precise timing may be regulated by synaptic input. We tested this hypothesis by analyzing whether the burst properties are modulated by activation of ionotropic γ-aminobutyric acid (GABA) and glutamate receptors. Blocking GABAA receptors increased—whereas blocking ionotropic glutamate receptors decreased—the number of spikes/burst without changing the interburst frequency. The GABAA agonist (isoguvacine, 10 μM) completely inhibited bursting or reduced the number of spikes/burst, suggesting a shunting effect. These findings indicate that the properties of ET cell spontaneous bursting are differentially controlled by GABAergic and glutamatergic fast synaptic transmission. We suggest that ET cell excitatory and inhibitory inputs may be encoded as a change in the pattern of spike bursting in ET cells, which together with mitral/tufted cells constitute the output circuit of the olfactory bulb. PMID:17567771

  12. Endogenous GABA and glutamate finely tune the bursting of olfactory bulb external tufted cells.

    PubMed

    Hayar, Abdallah; Ennis, Matthew

    2007-08-01

    In rat olfactory bulb slices, external tufted (ET) cells spontaneously generate spike bursts. Although ET cell bursting is intrinsically generated, its strength and precise timing may be regulated by synaptic input. We tested this hypothesis by analyzing whether the burst properties are modulated by activation of ionotropic gamma-aminobutyric acid (GABA) and glutamate receptors. Blocking GABA(A) receptors increased--whereas blocking ionotropic glutamate receptors decreased--the number of spikes/burst without changing the interburst frequency. The GABA(A) agonist (isoguvacine, 10 microM) completely inhibited bursting or reduced the number of spikes/burst, suggesting a shunting effect. These findings indicate that the properties of ET cell spontaneous bursting are differentially controlled by GABAergic and glutamatergic fast synaptic transmission. We suggest that ET cell excitatory and inhibitory inputs may be encoded as a change in the pattern of spike bursting in ET cells, which together with mitral/tufted cells constitute the output circuit of the olfactory bulb.

  13. Stimulus induced bursts in severe postanoxic encephalopathy.

    PubMed

    Tjepkema-Cloostermans, Marleen C; Wijers, Elisabeth T; van Putten, Michel J A M

    2016-11-01

    To report on a distinct effect of auditory and sensory stimuli on the EEG in comatose patients with severe postanoxic encephalopathy. In two comatose patients admitted to the Intensive Care Unit (ICU) with severe postanoxic encephalopathy and burst-suppression EEG, we studied the effect of external stimuli (sound and touch) on the occurrence of bursts. In patient A bursts could be induced by either auditory or sensory stimuli. In patient B bursts could only be induced by touching different facial regions (forehead, nose and chin). When stimuli were presented with relatively long intervals, bursts persistently followed the stimuli, while stimuli with short intervals (<1s) did not induce bursts. In both patients bursts were not accompanied by myoclonia. Both patients deceased. Bursts in patients with a severe postanoxic encephalopathy can be induced by external stimuli, resulting in stimulus-dependent burst-suppression. Stimulus induced bursts should not be interpreted as prognostic favourable EEG reactivity. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Lung respiratory rhythm and pattern generation in the bullfrog: role of neurokinin-1 and mu-opioid receptors.

    PubMed

    Davies, B L; Brundage, C M; Harris, M B; Taylor, B E

    2009-07-01

    Location of the lung respiratory rhythm generator (RRG) in the bullfrog brainstem was investigated by examining neurokinin-1 and mu-opioid receptor (NK1R, muOR) colocalization by immunohistochemistry and characterizing the role of these receptors in lung rhythm and episodic pattern generation. NK1R and muOR occurred in brainstems from all developmental stages. In juvenile bullfrogs a distinct area of colocalization was coincident with high-intensity fluorescent labeling of muOR; high-intensity labeling of muOR was not distinctly and consistently localized in tadpole brainstems. NK1R labeling intensity did not change with development. Similarity in colocalization is consistent with similarity in responses to substance P (SP, NK1R agonist) and DAMGO (muOR agonist) when bath applied to bullfrog brainstems of different developmental stages. In early stage tadpoles and juvenile bullfrogs, SP increased and DAMGO decreased lung burst frequency. In juvenile bullfrogs, SP increased lung burst frequency, episode frequency, but decreased number of lung bursts per episode and lung burst duration. In contrast, DAMGO decreased lung burst frequency and burst cycle frequency, episode frequency, and number of lung bursts per episode but increased all other lung burst parameters. Based on these results, we hypothesize that NK1R and muOR colocalization together with a metamorphosis-related increase in muOR intensity marks the location of the lung RRG but not necessarily the lung episodic pattern generator.

  15. Predicting rock bursts in mines

    USGS Publications Warehouse

    Spall, H.

    1979-01-01

    The microseismic method relies on observational data, amply demonstrated in laboratory experiments, that acoustic noise occurs in rocks subjected to high differential stresses. Acoustic emission becomes most pronounced as the breaking strength of the rock is reached. Laboratory studies have shown that the acoustic emission is linked with the release of stored strain energy as the rock mass undergoes small-scale adjustments such as the formation of cracks. Studies in actual mines have shown that acoustic noises often precede failure of rock masses in rock bursts or in coal bumps. Seismologists are, therefore, very interested in whether these results can be applied to large-scale failures; that is, earthquakes. An active research program in predicting rock bursts in mines is being conducted by Brian T. Brady and his colleagues at the U.S Bureau of Mines, Denver Colo.  

  16. All-Sky Monitoring with the Fermi Gamma Ray Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2010-01-01

    We are currently monitoring the transient hard X-ray/soft gamma ray sky using the Gamma Ray Burst Monitor (GBM) on-board Fermi. The twelve GBM NaI detectors span 8 keV to 1MeV, while the two GBM BGO detectors span about 150 keV to 40 MeV. With GBM, we detect transient events on multiple timescales. Brief events, such as Gamma Ray Bursts, Solar flares, and magnetar bursts are detected with on-board triggers. On longer timescales, we use the Earth occultation technique to monitor a number of sources, including X-ray binaries, AGN, and solar flaring activity. To date we have detected 7 sources above 100 keV. Transient activity from accretion-powered pulsars is monitored using epoch-folding techniques. With GBM we track the pulsed flux and frequency for a number of pulsars. We will present highlights of GBM observations on various timescales.

  17. Progress in Written Language Bursts, Pauses, Transcription, and Written Composition across Schooling

    ERIC Educational Resources Information Center

    Alves, Rui A.; Limpo, Teresa

    2015-01-01

    Research on adult writers has shown that writing proceeds through bursts of transcription activity interspersed by long pauses. Yet few studies have examined how these writing behaviors unfold during early and middle childhood. This study traces the progress of bursts, pauses, transcription, and written composition in Portuguese students from…

  18. Different meteorological parameters influence metapneumovirus and respiratory syncytial virus activity.

    PubMed

    Darniot, Magali; Pitoiset, Cécile; Millière, Laurine; Aho-Glélé, Ludwig Serge; Florentin, Emmanuel; Bour, Jean-Baptiste; Manoha, Catherine

    2018-05-05

    Both human metapneumovirus (hMPV) and respiratory syncytial virus (RSV) cause epidemics during the cold season in temperate climates. The purpose of this study was to find out whether climatic factors are associated with RSV and hMPV epidemics. Our study was based on data from 4300 patients admitted to the Dijon University Hospital for acute respiratory infection (ARI) over three winter seasons chosen for their dissimilar meteorological and virological patterns. Cases of hMPV and RSV were correlated with meteorological parameters recorded in the Dijon area. The relationship between virus data and local meteorological conditions was analyzed by univariate and multivariate negative binomial regression analysis. RSV detection was inversely associated with temperature and positively with relative humidity and air pressure, whereas hMPV was inversely associated with temperature and positively with wind speed. The association among meteorological variables and weekly ARIs cases due to RSV and hMPV demonstrated the relevance of climate factors as contributors to both hMPV and RSV activities. Meteorological drivers of RSV and hMPV epidemics are different. Low temperatures influence both hMPV and RSV activity. Relative humidity is an important predictor of RSV activity, but it does not influence hMPV activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. UWB dual burst transmit driver

    DOEpatents

    Dallum, Gregory E [Livermore, CA; Pratt, Garth C [Discovery Bay, CA; Haugen, Peter C [Livermore, CA; Zumstein, James M [Livermore, CA; Vigars, Mark L [Livermore, CA; Romero, Carlos E [Livermore, CA

    2012-04-17

    A dual burst transmitter for ultra-wideband (UWB) communication systems generates a pair of precisely spaced RF bursts from a single trigger event. An input trigger pulse produces two oscillator trigger pulses, an initial pulse and a delayed pulse, in a dual trigger generator. The two oscillator trigger pulses drive a gated RF burst (power output) oscillator. A bias driver circuit gates the RF output oscillator on and off and sets the RF burst packet width. The bias driver also level shifts the drive signal to the level that is required for the RF output device.

  20. The effect of learning on bursting.

    PubMed

    Stegenga, Jan; Le Feber, Joost; Marani, Enrico; Rutten, Wim L C

    2009-04-01

    We have studied the effect that learning a new stimulus-response (SR) relationship had within a neuronal network cultured on a multielectrode array. For training, we applied repetitive focal electrical stimulation delivered at a low rate (<1/s). Stimulation was withdrawn when a desired SR success ratio was achieved. It has been shown elsewhere, and we verified that this training algorithm, named conditional repetitive stimulation (CRS), can be used to strengthen an initially weak SR. So far, it remained unclear what the role of the rest of the network during learning was. We therefore studied the effect of CRS on spontaneously occurring network bursts. To this end, we made profiles of the firing rates within network bursts. We have earlier shown that these profiles change shape on a time base of several hours during spontaneous development. We show here that profiles of summed activity, called burst profiles, changed shape at an increased rate during CRS. This suggests that the whole network was involved in making the changes necessary to incorporate the desired SR relationship. However, a local (path-specific) component to learning was also found by analyzing profiles of single-electrode-activity phase profiles. Phase profiles that were not part of the SR relationship changed far less during CRS than the phase profiles of the electrodes that were part of the SR relationship. Finally, the manner in which phase profiles changed shape varied and could not be linked to the SR relationship.

  1. 76 FR 28460 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Rock Burst...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... develop a rock burst plan within 90 days after a rock burst has been experienced. Stress data are normally recorded on gauges and plotted on maps. This information is used for work assignments to ensure miner safety and to schedule correction work. This information collection is subject to the PRA. A Federal...

  2. Involvement of the raphe in the respiratory effects of gigantocellular area activation.

    PubMed

    Richard, C A; Stremel, R W

    1990-07-01

    Previous reports indicate that the nucleus reticularis gigantocellularis (NGC) of the brainstem reticular formation is involved in inhibitory respiratory and cardiovascular reflexes. Stimulation of portions of the nearby bulbar raphe complex, specifically the raphe magnus (RM), have also been shown to suppress phrenic activity and to decrease blood pressure and heart rate. Since synaptic connectivity between the NGC and the RM has been demonstrated, we hypothesized that the RM may be involved in the cardiopulmonary effects of NGC stimulation. This study found that electrolytic lesions in the raphe magnus attenuated the inhibitory respiratory effects but not the cardiovascular suppression due to NGC stimulation. Lesions in the raphe magnus also lowered resting blood pressure and resting breath frequency. We conclude that the RM may mediate part of the NGC-mediated respiratory effects.

  3. Post-transcriptional bursting in genes regulated by small RNA molecules

    NASA Astrophysics Data System (ADS)

    Rodrigo, Guillermo

    2018-03-01

    Gene expression programs in living cells are highly dynamic due to spatiotemporal molecular signaling and inherent biochemical stochasticity. Here we study a mechanism based on molecule-to-molecule variability at the RNA level for the generation of bursts of protein production, which can lead to heterogeneity in a cell population. We develop a mathematical framework to show numerically and analytically that genes regulated post transcriptionally by small RNA molecules can exhibit such bursts due to different states of translation activity (on or off), mostly revealed in a regime of few molecules. We exploit this framework to compare transcriptional and post-transcriptional bursting and also to illustrate how to tune the resulting protein distribution with additional post-transcriptional regulations. Moreover, because RNA-RNA interactions are predictable with an energy model, we define the kinetic constants of on-off switching as functions of the two characteristic free-energy differences of the system, activation and formation, with a nonequilibrium scheme. Overall, post-transcriptional bursting represents a distinctive principle linking gene regulation to gene expression noise, which highlights the importance of the RNA layer beyond the simple information transfer paradigm and significantly contributes to the understanding of the intracellular processes from a first-principles perspective.

  4. Effects of Thermonuclear X-Ray Bursts on Non-burst Emissions in the Soft State of 4U 1728–34

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Sudip; Yadav, J. S.; Sridhar, Navin; Verdhan Chauhan, Jai; Agrawal, P. C.; Antia, H. M.; Pahari, Mayukh; Misra, Ranjeev; Katoch, Tilak; Manchanda, R. K.; Paul, Biswajit

    2018-06-01

    It has recently been shown that the persistent emission of a neutron star low-mass X-ray binary (LMXB) evolves during a thermonuclear (type-I) X-ray burst. The reason of this evolution, however, is not fully known. This uncertainty can introduce significant systematics in the neutron star radius measurement using burst spectra, particularly if an unknown but significant fraction of the burst emission, which is reprocessed, contributes to the changes in the persistent emission during the burst. Here, by analyzing individual burst data of AstroSat/LAXPC from the neutron star LMXB 4U 1728–34 in the soft state, we show that the burst emission is not significantly reprocessed by a corona covering the neutron star. Rather, our analysis suggests that the burst emission enhances the accretion disk emission, possibly by increasing the accretion rate via disk. This enhanced disk emission, which is Comptonized by a corona covering the disk, can explain an increased persistent emission observed during the burst. This finding provides an understanding of persistent emission components and their interaction with the thermonuclear burst emission. Furthermore, as burst photons are not significantly reprocessed, non-burst and burst emissions can be reliably separated, which is required to reduce systematic uncertainties in the stellar radius measurement.

  5. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    1998-01-01

    Gamma-ray bursts remain on of the greatest mysteries in astrophysics in spite of recent observational advances and intense theoretical work. Although some of the basic properties of bursts were known 25 years ago, new and more detailed observations have been made by the BATSE (Burst and Transient Source Experiment) experiment on the Compton Gamma Ray Observatory in the past five years. Recent observations of bursts and some proposed models will be discussed.

  6. Gamma-ray bursts, QSOs and active galaxies.

    PubMed

    Burbidge, Geoffrey

    2007-05-15

    The similarity of the absorption spectra of gamma-ray burst (GRB) sources or afterglows with the absorption spectra of quasars (QSOs) suggests that QSOs and GRB sources are very closely related. Since most people believe that the redshifts of QSOs are of cosmological origin, it is natural to assume that GRBs or their afterglows also have cosmological redshifts. For some years a few of us have argued that there is much optical evidence suggesting a very different model for QSOs, in which their redshifts have a non-cosmological origin, and are ejected from low-redshift active galaxies. In this paper I extend these ideas to GRBs. In 2003, Burbidge (Burbidge 2003 Astrophys. J. 183, 112-120) showed that the redshift periodicity in the spectra of QSOs appears in the redshift of GRBs. This in turn means that both the QSOs and the GRB sources are similar objects ejected from comparatively low-redshift active galaxies. It is now clear that many of the GRBs of low redshift do appear in, or very near, active galaxies.A new and powerful result supporting this hypothesis has been produced by Prochter et al. (Prochter et al. 2006 Astrophys. J. Lett. 648, L93-L96). They show that in a survey for strong MgII absorption systems along the sightlines to long-duration GRBs, nearly every sightline shows at least one absorber. If the absorbers are intervening clouds or galaxies, only a small fraction should show absorption of this kind. The number found by Prochter et al. is four times higher than that normally found for the MgII absorption spectra of QSOs. They believe that this result is inconsistent with the intervening hypothesis and would require a statistical fluctuation greater than 99.1% probability. This is what we expect if the absorption is intrinsic to the GRBs and the redshifts are not associated with their distances. In this case, the absorption must be associated with gas ejected from the QSO. This in turn implies that the GRBs actually originate in comparatively low

  7. Respiratory modulation of human autonomic function: long-term neuroplasticity in space.

    PubMed

    Eckberg, Dwain L; Diedrich, André; Cooke, William H; Biaggioni, Italo; Buckey, Jay C; Pawelczyk, James A; Ertl, Andrew C; Cox, James F; Kuusela, Tom A; Tahvanainen, Kari U O; Mano, Tadaaki; Iwase, Satoshi; Baisch, Friedhelm J; Levine, Benjamin D; Adams-Huet, Beverley; Robertson, David; Blomqvist, C Gunnar

    2016-10-01

    We studied healthy astronauts before, during and after the Neurolab Space Shuttle mission with controlled breathing and apnoea, to identify autonomic changes that might contribute to postflight orthostatic intolerance. Measurements included the electrocardiogram, finger photoplethysmographic arterial pressure, respiratory carbon dioxide levels, tidal volume and peroneal nerve muscle sympathetic activity. Arterial pressure fell and then rose in space, and drifted back to preflight levels after return to Earth. Vagal metrics changed in opposite directions: vagal baroreflex gain and two indices of vagal fluctuations rose and then fell in space, and descended to preflight levels upon return to Earth. Sympathetic burst frequencies (but not areas) were greater than preflight in space and on landing day, and astronauts' abilities to modulate both burst areas and frequencies during apnoea were sharply diminished. Spaceflight triggers long-term neuroplastic changes reflected by reciptocal sympathetic and vagal motoneurone responsiveness to breathing changes. We studied six healthy astronauts five times, on Earth, in space on the first and 12th or 13th day of the 16 day Neurolab Space Shuttle mission, on landing day, and 5-6 days later. Astronauts followed a fixed protocol comprising controlled and random frequency breathing and apnoea, conceived to perturb their autonomic function and identify changes, if any, provoked by microgravity exposure. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, tidal carbon dioxide concentrations and volumes, and peroneal nerve muscle sympathetic activity on Earth (in the supine position) and in space. (Sympathetic nerve recordings were made during three sessions: preflight, late mission and landing day.) Arterial pressure changed systematically from preflight levels: pressure fell during early microgravity exposure, rose as microgravity exposure continued, and drifted back to preflight levels after return

  8. Respiratory modulation of human autonomic function: long‐term neuroplasticity in space

    PubMed Central

    Diedrich, André; Cooke, William H.; Biaggioni, Italo; Buckey, Jay C.; Pawelczyk, James A.; Ertl, Andrew C.; Cox, James F.; Kuusela, Tom A.; Tahvanainen, Kari U.O.; Mano, Tadaaki; Iwase, Satoshi; Baisch, Friedhelm J.; Levine, Benjamin D.; Adams‐Huet, Beverley; Robertson, David; Blomqvist, C. Gunnar

    2016-01-01

    Key points We studied healthy astronauts before, during and after the Neurolab Space Shuttle mission with controlled breathing and apnoea, to identify autonomic changes that might contribute to postflight orthostatic intolerance.Measurements included the electrocardiogram, finger photoplethysmographic arterial pressure, respiratory carbon dioxide levels, tidal volume and peroneal nerve muscle sympathetic activity.Arterial pressure fell and then rose in space, and drifted back to preflight levels after return to Earth.Vagal metrics changed in opposite directions: vagal baroreflex gain and two indices of vagal fluctuations rose and then fell in space, and descended to preflight levels upon return to Earth.Sympathetic burst frequencies (but not areas) were greater than preflight in space and on landing day, and astronauts’ abilities to modulate both burst areas and frequencies during apnoea were sharply diminished.Spaceflight triggers long‐term neuroplastic changes reflected by reciptocal sympathetic and vagal motoneurone responsiveness to breathing changes. Abstract We studied six healthy astronauts five times, on Earth, in space on the first and 12th or 13th day of the 16 day Neurolab Space Shuttle mission, on landing day, and 5–6 days later. Astronauts followed a fixed protocol comprising controlled and random frequency breathing and apnoea, conceived to perturb their autonomic function and identify changes, if any, provoked by microgravity exposure. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, tidal carbon dioxide concentrations and volumes, and peroneal nerve muscle sympathetic activity on Earth (in the supine position) and in space. (Sympathetic nerve recordings were made during three sessions: preflight, late mission and landing day.) Arterial pressure changed systematically from preflight levels: pressure fell during early microgravity exposure, rose as microgravity exposure continued, and drifted back to preflight

  9. BATSE Observations of Gamma-Ray Burst Tails

    NASA Technical Reports Server (NTRS)

    Connaughton, Valerie; Six, N. Frank (Technical Monitor)

    2001-01-01

    With the discovery of low-energy radiation appearing to come from the site of gamma-ray bursts in the hours to weeks after the initial burst of gamma rays, it would appear that astronomers have seen a cosmological imprint made by the burster on its surroundings. I discuss in this paper the phenomenon of post-burst emission in BATSE (Burst and Transient Source Experiment) gamma-ray bursts at energies traditionally associated with prompt emission. By summing the background-subtracted signals from hundreds of bursts, I find that tails out to hundreds of seconds after the trigger may be a common feature of long events (duration greater than 2s), and perhaps of the shorter bursts at a lower and shorter-lived level. The tail component appears independent of both the duration (within the long GRB sample) and brightness of the prompt burst emission, and may be softer. Some individual bursts have visible tails at gamma-ray energies and the spectrum in at least a few cases is different from that of the prompt emission. Afterglow at lower energies was detected for one of these bursts, GRB-991216, raising the possibility of afterglow observations over large energy ranges using the next generation of GRB detectors in conjunction with sensitive space or ground-based telescopes.

  10. Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria M.

    2017-01-01

    Fast Radio Bursts (FRBs) are a recently discovered phenomenon consisting of short (few ms) bursts of radio waves that have dispersion measures that strongly suggest an extragalactic and possibly cosmological origin. Current best estimates for the rate of FRBs is several thousand per sky per day at radio frequencies near 1.4 GHz. Even with so high a rate, to date, fewer than 20 FRBs have been reported, with one source showing repeated bursts. In this talk I will describe known FRB properties including what is known about the lone repeating source, as well as models for the origin of these mysterious events. I will also describe the CHIME radio telescope, currently under construction in Canada. Thanks to its great sensitivity and unprecedented field-of-view, CHIME promises major progress on FRBs.

  11. Are There Multiple Populations of Fast Radio Bursts?

    NASA Astrophysics Data System (ADS)

    Palaniswamy, Divya; Li, Ye; Zhang, Bing

    2018-02-01

    The repeating FRB 121102 (the “repeater”) shows repetitive bursting activities and was localized in a host galaxy at z = 0.193. On the other hand, despite dozens of hours of telescope time spent on follow-up observations, no other fast radio bursts (FRBs) have been observed to repeat. Yet, it has been speculated that the repeater is the prototype of FRBs, and that other FRBs should show similar repeating patterns. Using the published data, we compare the repeater with other FRBs in the observed time interval (Δt)–flux ratio (S i /S i+1) plane. We find that whereas other FRBs occupy the upper (large S i /S i+1) and right (large Δt) regions of the plane due to the non-detections of other bursts, some of the repeater bursts fall into the lower left region of the plot (short interval and small flux ratio) excluded by the non-detection data of other FRBs. The trend also exists even if one only selects those bursts detectable by the Parkes radio telescope. If other FRBs were similar to the repeater, our simulations suggest that the probability that none of them have been detected to repeat with the current searches would be ∼(10‑4–10‑3). We suggest that the repeater is not representative of the entire FRB population, and that there is strong evidence of more than one population of FRBs.

  12. Project BudBurst: People, Plants, and Climate Change

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Ward, D.; Havens, K.; Gardiner, L. S.; Alaback, P.

    2010-12-01

    Providing opportunities for individuals to contribute to a better understanding of climate change is the hallmark of Project BudBurst (www.budburst.org). This highly successful, national citizen science program, now in its third year, is bringing climate change education outreach to thousands of individuals. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, thousands of participants from all 50 states have submitted data. Project BudBurst has been the subject of almost 200 media outlets including NPR, national and regional television broadcasts, and most of the major national and regional newspapers. This presentation will provide an overview of Project BudBurst and will report on the results of the 2009 field campaign and discuss plans to expand Project BudBurst in 2010 including the use of mobile phones applications for data collection and reporting from the field. Project BudBurst co managed by the National Ecological Observatory Network and

  13. Gamma-Ray Bursts in the Swift Era

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Ramirez-Ruiz, E.; Fox, D. B.

    2010-01-01

    With its rapid-response capability and multiwavelength complement of instruments, the Swift satellite has transformed our physical understanding of gamma-ray bursts. Providing high-quality observations of hundreds of bursts, and facilitating a wide range of follow-up observations within seconds of each event, Swift has revealed an unforeseen richness in observed burst properties, shed light on the nature of short-duration bursts, and helped realize the promise of gamma-ray bursts as probes of the processes and environments of star formation out to the earliest cosmic epochs. These advances have opened new perspectives on the nature and properties of burst central engines, interactions with the burst environment from microparsec to gigaparsec scales, and the possibilities for non-photonic signatures. Our understanding of these extreme cosmic sources has thus advanced substantially; yet more than forty years after their discovery, gamma-ray bursts continue to present major challenges on both observational and theoretical fronts.

  14. Excess close burst pairs in FRB 121102

    NASA Astrophysics Data System (ADS)

    Katz, J. I.

    2018-05-01

    The repeating FRB 121102 emitted a pair of apparently discrete bursts separated by 37 ms and another pair, 131 d later, separated by 34 ms, during observations that detected bursts at a mean rate of ˜2 × 10-4 s-1. While FRB 121102 is known to produce multipeaked bursts, here I assume that these `burst pairs' are truly separate bursts and not multicomponent single bursts, and consider the implications of that assumption. Their statistics are then non-Poissonian. Assuming that the emission comes from a narrow range of rotational phase, then the measured burst intervals constrain any possible periodic modulation underlying the highly episodic emission. If more such short intervals are measured a period may be determined or periodicity may be excluded. The excess of burst intervals much shorter than their mean recurrence time may be explained if FRB emit steady but narrow beams that execute a random walk in direction, perhaps indicating origin in a black hole's accretion disc.

  15. Respiratory Sinus Arrhythmia as an Index of Vagal Activity during Stress in Infants: Respiratory Influences and Their Control

    PubMed Central

    Ritz, Thomas; Bosquet Enlow, Michelle; Schulz, Stefan M.; Kitts, Robert; Staudenmayer, John; Wright, Rosalind J.

    2012-01-01

    Respiratory sinus arrhythmia (RSA) is related to cardiac vagal outflow and the respiratory pattern. Prior infant studies have not systematically examined respiration rate and tidal volume influences on infant RSA or the extent to which infants' breathing is too fast to extract a valid RSA. We therefore monitored cardiac activity, respiration, and physical activity in 23 six-month old infants during a standardized laboratory stressor protocol. On average, 12.6% (range 0–58.2%) of analyzed breaths were too short for RSA extraction. Higher respiration rate was associated with lower RSA amplitude in most infants, and lower tidal volume was associated with lower RSA amplitude in some infants. RSA amplitude corrected for respiration rate and tidal volume influences showed theoretically expected strong reductions during stress, whereas performance of uncorrected RSA was less consistent. We conclude that stress-induced changes of peak-valley RSA and effects of variations in breathing patterns on RSA can be determined for a representative percentage of infant breaths. As expected, breathing substantially affects infant RSA and needs to be considered in studies of infant psychophysiology. PMID:23300753

  16. FRB121102 Bursts Show Detailed Spectrotemporal Structure

    NASA Astrophysics Data System (ADS)

    Hessels, Jason; Seymour, Andrew; Spitler, Laura; Michilli, Daniele; Lynch, Ryan S.; Gajjar, Vishal; Gourdji, Kelly

    2018-01-01

    FRB121102 is a sporadic emitter of millisecond-duration radio bursts, and is associated with a compact, persistent radio source in the primary star-forming region of a dwarf galaxy at ~ 1 Gpc. Key to understanding FRB121102's physical nature is using the observed burst properties to elucidate the underlying emission mechanism and its local environment. Here we present a sample of high signal-to-noise bursts that reveal hitherto unseen spectrotemporal features. We find that the bursts are often composed of sub-bursts with finite bandwidths, and characteristic frequencies that drift downwards during the burst. While this behavior could be an intrinsic feature of the burst emission mechanism, we also discuss an interpretation in terms of plasma lensing in the source environment, similar to the pulse echoes sometimes seen from the Crab pulsar.

  17. Gamma-Ray Bursts: An Overview

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    1995-01-01

    A history and overview of the observed properties of gamma-ray bursts are presented. The phenomenon of gamma-ray bursts is without precedent in astronomy, having no observed property that would be a direct indicator of their distance and no counterpart object in another wavelength region. Their brief, random appearance only in the gamma-ray region has made their study difficult. The observed time profiles, spectral properties, and durations of gamma-ray bursts cover a wide range. All proposed models for their origin must be considered speculative. It is humbling to think that even after 25 years since their discovery, the distance scale of gamma-ray bursts is still very much debatable.

  18. The GLAST Burst Monitor

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.

    2004-01-01

    The Gamma Ray Large Area Space Telescope (GLAST) observatory, scheduled for launch in 2007, comprises the Large Area Telescope (LAT) and the GLAST Burst Monitor (GBM). spectral changes that are known to occur within GRBs. between the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and the Max Planck Institute for Extraterrestrial Physics. It consists of an array of NaI and BGO scintillation detectors operating in the 10 kev to 25 MeV range. The field of view includes the entire unocculted sky when the observatory is pointing close to the zenith. The GBM will enhance LAT observations of GRBs by extending the spectral coverage into the range of current GRB databases, and will provide a trigger for reorienting the spacecraft to observe delayed emission from bursts outside the LAT field of view. GBM is expected to trigger on about 200 bursts per year, and will provide on-board locations of strong bursts accurate to better than 10 degrees.

  19. Powerful Radio Burst Indicates New Astronomical Phenomenon

    NASA Astrophysics Data System (ADS)

    2007-09-01

    Hawking. The newly-discovered radio burst, the researchers said, might be the "last gasp" of a black hole as it finally evaporates completely. "We're actively looking for more of these powerful, short bursts, in other archival pulsar surveys, and hope to resolve the mystery of their origin," said McLaughlin. "In addition, if we can associate these events with galaxies of known distance, the radio dispersion we measure can be used as a powerful new way to determine the amount of material in intergalactic space," she added. The Parkes radio telescope is part of the Australia Telescope, which is funded by the Commonwealth of Australia for operation as a National Facility. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  20. Westerly Wind Bursts: a Synoptic-Dynamic Study

    NASA Astrophysics Data System (ADS)

    Hartten, Leslie Marie

    This research examines the synoptic and climatological settings of westerly wind bursts (WWBs) during the 1980s and the dynamical processes active during them. Probabilities of strong westerly and easterly 1000 mb winds over the western equatorial Pacific are presented. Westerlies exhibit a clear annual cycle, appearing in the north in July, moving southeastward as the year progresses, and disappearing by June. Conditional probabilities, dependent on the value of the SOI, show that strong westerlies are more likely and more geographically extensive when the SOI is low, especially from July through January. A newly developed two-dimensional classification scheme qualitatively describes the near-surface synoptic flow of almost 90% of the 131 WWBs identified during the decade. Only 8% of the WWBs are described by the pattern involving twin cyclonic circulations straddling the equator. The trades, tropical cyclones, and the southeast Asian monsoon are all at times linked to WWBs, and the synoptic patterns often contain a significant barotropic component. Breaks in WWB activity are well correlated with a cooler than normal western Pacific warm pool. However, near-equatorial WWBs do not show a good correlation with the Madden-Julian Oscillation. Four near-equatorial WWBs are examined in detail. All are associated with broad cross-equatorial flow; two also have a cyclonic circulation poleward of the westerlies. Anticyclonic relative vorticity equatorward of the burst displaces the zero line of absolute vorticity, eta, into the burst hemisphere. In the three Southern Hemisphere cases, horizontal advection in a region extending from north of New Guinea east-southeast toward the dateline is crucial to the generation and maintenance of the eta pattern. Vorticity stretching associated with convection helps maintain a tight gradient of eta near and poleward of the burst, but also drives the eta = 0 line back towards the equator as the burst ends. In the Northern Hemisphere case

  1. Project BudBurst: Citizen Science for All Seasons

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Brewer, C.; Havens, K.; Meymaris, K.

    2007-12-01

    Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. Project BudBurst launched a pilot program in the Spring of 2007. The goals of Project BudBurst were to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants; and 3) increase science literacy by engaging participants in the scientific process. From April through mid-June 2007, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of ~60 easily identifiable, broadly distributed wild and cultivated species found across the continent. We will report on the results of the pilot project and discuss plans to expand Project BudBurst as it becomes a year round event beginning in 2008. A broad consortium of collaborators, representing the Chicago Botanic Garden, Plant Conservation Alliance, ESRI, the USA-National Phenology Network, University Corporation for Atmospheric Research, University of Arizona, University of Montana, University of California-Santa Barbara, University of Wisconsin-Milwaukee and the University of Wisconsin-Madison, came together to design and implement Project BudBurst with seed funding from the U.S. Bureau of Land Management, the National Phenology Network (through a RCN grant from the NSF), and the Plant Conservation Alliance.

  2. Burst and inter-burst duration statistics as empirical test of long-range memory in the financial markets

    NASA Astrophysics Data System (ADS)

    Gontis, V.; Kononovicius, A.

    2017-10-01

    We address the problem of long-range memory in the financial markets. There are two conceptually different ways to reproduce power-law decay of auto-correlation function: using fractional Brownian motion as well as non-linear stochastic differential equations. In this contribution we address this problem by analyzing empirical return and trading activity time series from the Forex. From the empirical time series we obtain probability density functions of burst and inter-burst duration. Our analysis reveals that the power-law exponents of the obtained probability density functions are close to 3 / 2, which is a characteristic feature of the one-dimensional stochastic processes. This is in a good agreement with earlier proposed model of absolute return based on the non-linear stochastic differential equations derived from the agent-based herding model.

  3. Burst mode composite photography for dynamic physics demonstrations

    NASA Astrophysics Data System (ADS)

    Lincoln, James

    2018-05-01

    I am writing this article to raise awareness of burst mode photography as a fun and engaging way for teachers and students to experience physics demonstration activities. In the context of digital photography, "burst mode" means taking multiple photographs per second, and this is a feature that now comes standard on most digital cameras—including the iPhone. Sometimes the images are composited to imply motion from a series of still pictures. By analyzing the time between the photos, students can measure rates of velocity and acceleration of moving objects. Some of these composite photographs have already shown up in the AAPT High School Physics Photo Contest. In this article I discuss some ideas for using burst mode photography in the iPhone and provide a discussion of how to edit these photographs to create a composite image. I also compare the capabilities of the iPhone and GoPro cameras in creating these photographic composites.

  4. X-Ray Bursts from NGC 6652

    NASA Astrophysics Data System (ADS)

    Morgan, Edward

    The possibly transient X-ray Source in the globular cluster NGC 6652 has been seen by BeppoSax and the ASM on RXTE to undergo X-ray bursts, possibly Type I. Very little is known about this X-ray source, and confirmation of its bursts type-I nature would identify it as a neutron star binary. Type I bursts in 6 other sources have been shown to exhibit intervals of millisecond ocsillation that most likely indicate the neutron star spin period. Radius-expansion bursts can reveal information about the mass and size of the neutron star. We propose to use the ASM to trigger an observation of this source to maximize the probability of catching a burst in the PCA.

  5. Initial Results of a Large-scale Statistical Survey of Small-scale UV Bursts with IRIS and SDO

    NASA Astrophysics Data System (ADS)

    Madsen, C. A.; DeLuca, E.

    2016-12-01

    UV bursts are small-scale ( 1 arcsec or less) brightenings observed in the NUV/FUV passbands of the Interface Region Imaging Spectrograph (IRIS). These peculiar phenomena are found exclusively in active regions and exhibit dramatic and defining spectroscopic characteristics. In particular, they present intense broadening and splitting, often in excess of 70 km s-1, in all bright emission lines observable by IRIS. Furthermore, these broadened lines also display strong absorption from cool metallic ions such as Fe II and Ni II which typically populate the chromosphere. These features suggest that bursts are bidirectional plasma flows at transition region temperatures embedded much farther down in the cool chromosphere. To better characterize these phenomena, we have launched a statistical survey encompassing the entire IRIS data catalogue to date and its accompanying data from the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI). We sample a wide variety of IRIS observations of Si IV lines, ranging from large 400-step rasters for large detection rates to short-cadence sit-and-stare observations to provide in-depth time evolution data of individual bursts. Detection is streamlined by a semi-automated method that isolates characteristic burst spectra based on single-Gaussian fit parameters, greatly reducing search times in the vast IRIS catalogue. Our initial results demonstrate that UV bursts tend to appear when active regions are young and actively emerging, preferring to populate poorly developed inversion lines composed of numerous small mixed-polarity regions. Burst occurrence rates peak at 30-70 per hour in young active regions, decreasing as those regions age. We also find dramatic variations in spectral morphology in spatial scans of bursts with many split into distinct, opposing, resolved regions of blueshifts and redshifts. Finally, we find little evidence for coronal counterparts in AIA 171 Å, but we do find that a significant

  6. Project BudBurst: Continental-scale citizen science for all seasons

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Newman, S. J.; Ward, D.; Havens-Young, K.; Alaback, P.; Meymaris, K.

    2011-12-01

    Project BudBurst's (budburst.org) recent move to the National Ecological Observatory Network (NEON) has benefitted both programs. NEON has been able to use Project BudBurst as a testbed to learn best practices, network with experts in the field, and prototype potential tools for engaging people in continental-scale ecology as NEON develops its citizen science program. Participation in Project BudBurst has grown significantly since the move to NEON. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants at a continental-scale; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, thousands of participants from all 50 states have submitted data. This presentation will provide an overview of Project BudBurst and will report on the results of the 2010 field campaign and discuss plans to expand Project BudBurst in 2012 including the use of mobile phones applications for data collection and reporting from the field. Project BudBurst is co-managed by the National Ecological Observatory Network and the Chicago

  7. BATSE Observations of Gamma-Ray Burst Tails

    NASA Technical Reports Server (NTRS)

    Connaughton, Valerie

    2002-01-01

    With the observation of low-energy radiation coming from the site of gamma-ray bursts in the hours to weeks after the initial gamma ray burst, it appears that astronomers have discovered a cosmological imprint made by the burster on its surroundings. This paper discusses the phenomenon of postburst emission in Burst and Transient Source Experiment (BATSE) gamma-ray bursts at energies usually associated with prompt emission. After summing up the background-subtracted signals from hundreds of bursts, it is found that tails out to hundreds of seconds after the trigger could be a common feature of events of a duration greater than 2 seconds, and perhaps of the shorter bursts at a lower and shorter-lived level. The tail component may be softer and seems independent of the duration (within the long-GRB sample) and brightness of the prompt burst emission. Some individual bursts have visible tails at gamma-ray energies, and the spectrum in a few cases differs from that of the prompt emission. For one of these bursts, GRB 991216, afterglow at lower energies was detected, which raised the possibility of seeing afterglow observations over large energy ranges using the next generation of GRB detectors in addition to sensitive space- or ground-based telescopes.

  8. The Second SWIFT Burst Alert Telescope (BAT) Gamma-Ray Burst Catalog

    NASA Technical Reports Server (NTRS)

    Sakamoto, T.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Krimm, H. A.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; hide

    2012-01-01

    We present the second Swift Burst Alert Telescope (BAT) catalog of gamma-ray bursts. (GRBs), which contains 476 bursts detected by the BAT between 2004 December 19 and 2009 December 21. This catalog (hereafter the BAT2 catalog) presents burst trigger time, location, 90% error radius, duration, fluence, peak flux, time-averaged spectral parameters and time-resolved spectral parameters measured by the BAT. In the correlation study of various observed parameters extracted from the BAT prompt emission data, we distinguish among long-duration GRBs (L-GRBs), short-duration GRBs (S-GRBs), and short-duration GRBs with extended emission (S-GRBs with E.E.) to investigate differences in the prompt emission properties. The fraction of L-GRBs, S-GRBs and S-GRBs with E.E. in the catalog are 89%, 8% and 2% respectively. We compare the BAT prompt emission properties with the BATSE, BeppoSAX and HETE-2 GRB samples.. We also correlate the observed prompt emission properties with the redshifts for the GRBs with known redshift. The BAT T(sub 90) and T(sub 50) durations peak at 70 s and 30 s, respectively. We confirm that the spectra of the BAT S-GRBs are generally harder than those of the L-GRBs.

  9. ADP study of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Lamb, Don Q.; Wang, John C. L.; Heuter, Geoffry J.; Graziani, Carlo; Loredo, Tom; Freeman, Peter

    1991-01-01

    This grant supported study of cyclotron scattering lines in the spectra of gamma-ray bursts through analysis of Ginga and HEAO-1 archival data, and modeling of the results in terms of radiation transfer calculations of cyclotron scattering in a strong magnetic field. A Monte Carlo radiation transfer code with which we are able to calculate the expected properties of cyclotron scattering lines in the spectra of gamma-ray bursts was developed. The extensive software necessary in order to carry out fits of these model spectra to gamma-ray burst spectral data, including folding of the model spectra through the detector response functions was also developed. Fits to Ginga satellite data on burst GB880205 were completed and fits to Ginga satellite data on burst GB870303 are being carried out. These fits have allowed us to test our software, as well as to garner new scientific results. This work has demonstrated that cyclotron resonant scattering successfully accounts for the locations, strengths, and widths of the observed line features in GB870303 and GB880205. The success of the model provides compelling evidence that these gamma-ray bursts come from strongly magnetic neutron stars and are galactic in origin, resolving longstanding controversies about the nature and distance of the burst sources. These results were reported in two papers which are in press in the proceedings of the Taos Workshop on Gamma-Ray Bursts, and in a paper submitted for publication.

  10. UWB multi-burst transmit driver for averaging receivers

    DOEpatents

    Dallum, Gregory E

    2012-11-20

    A multi-burst transmitter for ultra-wideband (UWB) communication systems generates a sequence of precisely spaced RF bursts from a single trigger event. There are two oscillators in the transmitter circuit, a gated burst rate oscillator and a gated RF burst or RF power output oscillator. The burst rate oscillator produces a relatively low frequency, i.e., MHz, square wave output for a selected transmit cycle, and drives the RF burst oscillator, which produces RF bursts of much higher frequency, i.e., GHz, during the transmit cycle. The frequency of the burst rate oscillator sets the spacing of the RF burst packets. The first oscillator output passes through a bias driver to the second oscillator. The bias driver conditions, e.g., level shifts, the signal from the first oscillator for input into the second oscillator, and also controls the length of each RF burst. A trigger pulse actuates a timing circuit, formed of a flip-flop and associated reset time delay circuit, that controls the operation of the first oscillator, i.e., how long it oscillates (which defines the transmit cycle).

  11. Cytofluorometric analysis of chondrotoxicity of fluoroquinolone antimicrobial agents.

    PubMed

    Hayem, G; Petit, P X; Levacher, M; Gaudin, C; Kahn, M F; Pocidalo, J J

    1994-02-01

    To better understand quinolone-related arthropathy, we conceived an experimental ex vivo model using cell cultures of articular chondrocytes issued from pretreated New Zealand White rabbits (NZW). Juvenile (4- to 5-week-old) NZW were orally dosed with ofloxacin or pefloxacin (300 mg/kg of body weight for 1 day) or with pefloxacin (300 mg/kg for 7 days). Adult (5-month-old) NZW were treated with pefloxacin (300 mg/kg for 1 day). Chondrocytes were enzymatically recovered from cartilage and were analyzed by cytofluorometry using 2',7'-dichlorofluorescein diacetate (DCFH-DA) and dihydrorhodamine 123 (DHR), reflecting cellular respiratory-burst activity, and rhodamine 123 (Rh123) and 10-N-nonyl-acridine orange (NAO), specific for the mitochondrial activity and mass, respectively. A significant increase in the respiratory burst was detected by DCFH-DA and DHR in all treated groups of young animals, compared with untreated control groups. No significant increase of respiratory burst was noted in older treated rabbits. The 7-day treatment resulted in a decrease in mitochondrial uptake of Rh123 and an increase in NAO uptake. Fluoroquinolone arthrotoxicity seems to involve in its early phase the respiratory burst of immature articular chondrocytes.

  12. Generation and preservation of the slow underlying membrane potential oscillation in model bursting neurons.

    PubMed

    Franklin, Clarence C; Ball, John M; Schulz, David J; Nair, Satish S

    2010-09-01

    The underlying membrane potential oscillation of both forced and endogenous slow-wave bursting cells affects the number of spikes per burst, which in turn affects outputs downstream. We use a biophysical model of a class of slow-wave bursting cells with six active currents to investigate and generalize correlations among maximal current conductances that might generate and preserve its underlying oscillation. We propose three phases for the underlying oscillation for this class of cells: generation, maintenance, and termination and suggest that different current modules coregulate to preserve the characteristics of each phase. Coregulation of I(Burst) and I(A) currents within distinct boundaries maintains the dynamics during the generation phase. Similarly, coregulation of I(CaT) and I(Kd) maintains the peak and duration of the underlying oscillation, whereas the calcium-activated I(KCa) ensures appropriate termination of the oscillation and adjusts the duration independent of peak.

  13. Long-Lag, Wide-pulse Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Bonnell, J. T.; Kazanas, D.; Scargle, . D.; Hakkila, J.; Giblin, T. W.

    2004-01-01

    Currently, the best available probe of the early phase of gamma-ray burst (GRB) jet attributes is the prompt gamma-ray emission, in which several intrinsic and extrinsic variables determine GRB pulse evolution. Bright, usually complex bursts have many narrow pulses that are difficult to model due to overlap. However, the relatively simple, long spectral lag, wide-pulse bursts may have simpler physics and are easier to model. In this work we analyze the temporal and spectral behavior of wide pulses in 24 long-lag bursts, using a pulse model with two shape parameters - width and asymmetry - and the Band spectral model with three shape parameters. We find that pulses in long-lag bursts are distinguished both temporally and spectrally from those in bright bursts: the pulses in long spectral lag bursts are few in number, and approximately 100 times wider (10s of seconds), have systematically lower peaks in vF(v), harder low-energy spectra and softer high-energy spectra. We find that these five pulse descriptors are essentially uncorrelated for our long-lag sample, suggesting that at least approximately 5 parameters are needed to model burst temporal and spectral behavior. However, pulse width is strongly correlated with spectral lag; hence these two parameters may be viewed as mutual surrogates. We infer that accurate formulations for estimating GRB luminosity and total energy will depend on several gamma-ray attributes, at least for long-lag bursts. The prevalence of long-lag bursts near the BATSE trigger threshold, their predominantly low vF(v) spectral peaks, and relatively steep upper power-law spectral indices indicate that Swift will detect many such bursts.

  14. The association of a J-burst with a solar jet

    NASA Astrophysics Data System (ADS)

    Morosan, D. E.; Gallagher, P. T.; Fallows, R. A.; Reid, H.; Mann, G.; Bisi, M. M.; Magdalenić, J.; Rucker, H. O.; Thidé, B.; Vocks, C.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Bell, M. E.; Bentum, M. J.; Best, P.; Blaauw, R.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Brüggen, M.; Cerrigone, L.; Ciardi, B.; de Geus, E.; Duscha, S.; Eislöffel, J.; Falcke, H.; Garrett, M. A.; Grießmeier, J. M.; Gunst, A. W.; Hoeft, M.; Iacobelli, M.; Juette, E.; Kuper, G.; McFadden, R.; McKay-Bukowski, D.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Nelles, A.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Schwarz, D. J.; Sluman, J.; Smirnov, O.; Steinmetz, M.; Tagger, M.; ter Veen, S.; Thoudam, S.; Toribio, M. C.; Vermeulen, R.; van Weeren, R. J.; Wucknitz, O.; Zarka, P.

    2017-10-01

    Context. The Sun is an active star that produces large-scale energetic events such as solar flares and coronal mass ejections, and numerous smaller scale events such as solar jets. These events are often associated with accelerated particles that can cause emission at radio wavelengths. The reconfiguration of the solar magnetic field in the corona is believed to be the cause of the majority of solar energetic events and accelerated particles. Aims: Here, we investigate a bright J-burst that was associated with a solar jet and the possible emission mechanism causing these two phenomena. Methods: We used data from the Solar Dynamics Observatory (SDO) to observe a solar jet and radio data from the Low Frequency Array (LOFAR) and the Nançay Radioheliograph (NRH) to observe a J-burst over a broad frequency range (33-173 MHz) on 9 July 2013 at 11:06 UT. Results: The J-burst showed fundamental and harmonic components and was associated with a solar jet observed at extreme ultraviolet wavelengths with SDO. The solar jet occurred in the northern hemisphere at a time and location coincident with the radio burst and not inside a group of complex active regions in the southern hemisphere. The jet occurred in the negative polarity region of an area of bipolar plage. Newly emerged positive flux in this region appeared to be the trigger of the jet. Conclusions: Magnetic reconnection between the overlying coronal field lines and the newly emerged positive field lines is most likely the cause of the solar jet. Radio imaging provides a clear association between the jet and the J-burst, which shows the path of the accelerated electrons. These electrons travelled from a region in the vicinity of the solar jet along closed magnetic field lines up to the top of a closed magnetic loop at a height of 360 Mm. Such small-scale complex eruptive events arising from magnetic reconnection could facilitate accelerated electrons to produce continuously the large numbers of Type III bursts

  15. The effects of breathing exercise types on respiratory muscle activity and body function in patients with mild chronic obstructive pulmonary disease.

    PubMed

    Kang, Jeong-Il; Jeong, Dae-Keun; Choi, Hyun

    2016-01-01

    [Purpose] Fragmentary studies on characteristics of respiratory muscles are being done to increase respiratory capacity by classifying exercises into voluntary respiratory exercise which relieves symptoms and prevents COPD and exercise using breathing exercise equipment. But this study found changes on respiratory pattern through changes on the activity pattern of agonist and synergist respiratory muscles and studied what effect they can have on body function improvement. [Subjects and Methods] Fifteen subjects in experimental group I that respiratory exercise of diaphragm and 15 subjects in experimental group II that feedback respiratory exercise were randomly selected among COPD patients to find the effective intervention method for COPD patients. And intervention program was conducted for 5 weeks, three times a week, once a day and 30 minutes a session. They were measured with BODE index using respiratory muscle activity, pulmonary function, the six-minute walking test, dyspnea criteria and BMI Then the results obtained were compared and analyzed. [Results] There was a significant difference in sternocleidomastoid muscle and scalene muscle and in 6-minute walk and BODE index for body function. Thus the group performing feedback respiratory had more effective results for mild COPD patients. [Conclusion] Therefore, the improvement was significant regarding the activity of respiratory muscles synergists when breathing before doing breathing exercise. Although, it is valuable to reduce too much mobilization of respiratory muscles synergists through the proper intervention it is necessary to study body function regarding improvement of respiratory function for patients with COPD.

  16. A Temporal Correlation in Quiescent Gamma-Ray Burst Prompt Emission: Evidence for Prognitor Memory

    NASA Astrophysics Data System (ADS)

    Patton, Thomas L.; Giblin, Timothy; Hakkila, Jon E.

    2018-06-01

    In spite of the insight gained into the nature of the Gamma-Ray Bursts (GRB) from early and late-time X-Ray observations in the Swift era, GRB prompt emission continues to provide clues and new insight into the activity of the central engine. A comprehensive understanding of all emission components observed in GRBs, from the traditional prompt GRB emission to the long lived X-Ray and optical decay super- imposed with late-time flaring activity, currently remains allusive. Using data from the Swift Burst Alert Telescope (BAT), we've identified and measured durations observed in GRBs that exhibit multi-episodic prompt emission behavior. Duration analysis of the burst attributes revealed no significant correlations between emissions and quiet time durations. This variability allows us to extrapolate that the central engine is constantly active.

  17. Diagnostic Thresholds for Quantitative REM Sleep Phasic Burst Duration, Phasic and Tonic Muscle Activity, and REM Atonia Index in REM Sleep Behavior Disorder with and without Comorbid Obstructive Sleep Apnea

    PubMed Central

    McCarter, Stuart J.; St. Louis, Erik K.; Duwell, Ethan J.; Timm, Paul C.; Sandness, David J.; Boeve, Bradley F.; Silber, Michael H.

    2014-01-01

    Objectives: We aimed to determine whether phasic burst duration and conventional REM sleep without atonia (RSWA) methods could accurately diagnose REM sleep behavior disorder (RBD) patients with comorbid OSA. Design: We visually analyzed RSWA phasic burst durations, phasic, “any,” and tonic muscle activity by 3-s mini-epochs, phasic activity by 30-s (AASM rules) epochs, and conducted automated REM atonia index (RAI) analysis. Group RSWA metrics were analyzed and regression models fit, with receiver operating characteristic (ROC) curves determining the best diagnostic cutoff thresholds for RBD. Both split-night and full-night polysomnographic studies were analyzed. Setting: N/A. Participants: Parkinson disease (PD)-RBD (n = 20) and matched controls with (n = 20) and without (n = 20) OSA. Interventions: N/A. Measurements and Results: All mean RSWA phasic burst durations and muscle activities were higher in PD-RBD patients than controls (P < 0.0001), and RSWA associations with PD-RBD remained significant when adjusting for age, gender, and REM AHI (P < 0.0001). RSWA muscle activity (phasic, “any”) cutoffs for 3-s mini-epoch scorings were submentalis (SM) (15.5%, 21.6%), anterior tibialis (AT) (30.2%, 30.2%), and combined SM/AT (37.9%, 43.4%). Diagnostic cutoffs for 30-s epochs (AASM criteria) were SM 2.8%, AT 11.3%, and combined SM/AT 34.7%. Tonic muscle activity cutoff of 1.2% was 100% sensitive and specific, while RAI (SM) cutoff was 0.88. Phasic muscle burst duration cutoffs were: SM (0.65) and AT (0.79) seconds. Combining phasic burst durations with RSWA muscle activity improved sensitivity and specificity of RBD diagnosis. Conclusions: This study provides evidence for REM sleep without atonia diagnostic thresholds applicable in Parkinson disease-REM sleep behavior disorder (PD-RBD) patient populations with comorbid OSA that may be useful toward distinguishing PD-RBD in typical outpatient populations. Citation: McCarter SJ, St. Louis EK, Duwell EJ, Timm PC

  18. Diagnostic thresholds for quantitative REM sleep phasic burst duration, phasic and tonic muscle activity, and REM atonia index in REM sleep behavior disorder with and without comorbid obstructive sleep apnea.

    PubMed

    McCarter, Stuart J; St Louis, Erik K; Duwell, Ethan J; Timm, Paul C; Sandness, David J; Boeve, Bradley F; Silber, Michael H

    2014-10-01

    We aimed to determine whether phasic burst duration and conventional REM sleep without atonia (RSWA) methods could accurately diagnose REM sleep behavior disorder (RBD) patients with comorbid OSA. We visually analyzed RSWA phasic burst durations, phasic, "any," and tonic muscle activity by 3-s mini-epochs, phasic activity by 30-s (AASM rules) epochs, and conducted automated REM atonia index (RAI) analysis. Group RSWA metrics were analyzed and regression models fit, with receiver operating characteristic (ROC) curves determining the best diagnostic cutoff thresholds for RBD. Both split-night and full-night polysomnographic studies were analyzed. N/A. Parkinson disease (PD)-RBD (n = 20) and matched controls with (n = 20) and without (n = 20) OSA. N/A. All mean RSWA phasic burst durations and muscle activities were higher in PD-RBD patients than controls (P < 0.0001), and RSWA associations with PD-RBD remained significant when adjusting for age, gender, and REM AHI (P < 0.0001). RSWA muscle activity (phasic, "any") cutoffs for 3-s mini-epoch scorings were submentalis (SM) (15.5%, 21.6%), anterior tibialis (AT) (30.2%, 30.2%), and combined SM/AT (37.9%, 43.4%). Diagnostic cutoffs for 30-s epochs (AASM criteria) were SM 2.8%, AT 11.3%, and combined SM/AT 34.7%. Tonic muscle activity cutoff of 1.2% was 100% sensitive and specific, while RAI (SM) cutoff was 0.88. Phasic muscle burst duration cutoffs were: SM (0.65) and AT (0.79) seconds. Combining phasic burst durations with RSWA muscle activity improved sensitivity and specificity of RBD diagnosis. This study provides evidence for REM sleep without atonia diagnostic thresholds applicable in Parkinson disease-REM sleep behavior disorder (PD-RBD) patient populations with comorbid OSA that may be useful toward distinguishing PD-RBD in typical outpatient populations. © 2014 Associated Professional Sleep Societies, LLC.

  19. Spinal NMDA receptor activation constrains inactivity-induced phrenic motor facilitation in Charles River Sprague-Dawley rats

    PubMed Central

    Streeter, K. A.

    2014-01-01

    Reduced spinal synaptic inputs to phrenic motor neurons elicit a unique form of spinal plasticity known as inactivity-induced phrenic motor facilitation (iPMF). iPMF requires tumor necrosis factor-α (TNF-α) and atypical protein kinase C (aPKC) activity within spinal segments containing the phrenic motor nucleus to stabilize early, transient increases in phrenic burst amplitude into long-lasting iPMF. Here we tested the hypothesis that spinal N-methyl-d-aspartate receptor (NMDAR) activation constrains long-lasting iPMF in some rat substrains. Phrenic motor output was recorded in anesthetized, ventilated Harlan (HSD) and Charles River (CRSD) Sprague-Dawley rats exposed to a 30-min central neural apnea. HSD rats expressed a robust, long-lasting (>60 min) increase in phrenic burst amplitude (i.e., long-lasting iPMF) when respiratory neural activity was restored. By contrast, CRSD rats expressed an attenuated, transient (∼15 min) iPMF. Spinal NMDAR inhibition with DL-2-amino-5-phosphonopentanoic acid (APV) before neural apnea or shortly (4 min) prior to the resumption of respiratory neural activity revealed long-lasting iPMF in CRSD rats that was phenotypically similar to that in HSD rats. By contrast, APV did not alter iPMF expression in HSD rats. Spinal TNF-α or aPKC inhibition impaired long-lasting iPMF enabled by NMDAR inhibition in CRSD rats, suggesting that similar mechanisms give rise to long-lasting iPMF in CRSD rats with NMDAR inhibition as those giving rise to long-lasting iPMF in HSD rats. These results suggest that NMDAR activation can impose constraints on TNF-α-induced aPKC activation after neural apnea, impairing stabilization of transient iPMF into long-lasting iPMF. These data may have important implications for understanding differential responses to reduced respiratory neural activity in a heterogeneous human population. PMID:25103979

  20. Gamma Ray Bursts-Afterglows and Counterparts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J

    1998-01-01

    Several breakthrough discoveries were made last year of x-ray, optical and radio afterglows and counterparts to gamma-ray bursts, and a redshift has been associated with at least one of these. These discoveries were made possible by the fast, accurate gamma-ray burst locations of the BeppoSAX satellite. It is now generally believed that the burst sources are at cosmological distances and that they represent the most powerful explosions in the Universe. These observations also open new possibilities for the study of early star formation, the physics of extreme conditions and perhaps even cosmology. This session will concentrate on recent x-ray, optical and radio afterglow observations of gamma-ray bursts, associated redshift measurements, and counterpart observations. Several review and theory talks will also be presented, along with a summary of the astrophysical implications of the observations. There will be additional poster contributions on observations of gamma-ray burst source locations at wavelengths other than gamma rays. Posters are also solicited that describe new observational capabilities for rapid follow-up observations of gamma-ray bursts.

  1. Diffusion of extracellular K+ can synchronize bursting oscillations in a model islet of Langerhans.

    PubMed Central

    Stokes, C L; Rinzel, J

    1993-01-01

    Electrical bursting oscillations of mammalian pancreatic beta-cells are synchronous among cells within an islet. While electrical coupling among cells via gap junctions has been demonstrated, its extent and topology are unclear. The beta-cells also share an extracellular compartment in which oscillations of K+ concentration have been measured (Perez-Armendariz and Atwater, 1985). These oscillations (1-2 mM) are synchronous with the burst pattern, and apparently are caused by the oscillating voltage-dependent membrane currents: Extracellular K+ concentration (Ke) rises during the depolarized active (spiking) phase and falls during the hyperpolarized silent phase. Because raising Ke depolarizes the cell membrane by increasing the potassium reversal potential (VK), any cell in the active phase should recruit nonspiking cells into the active phase. The opposite is predicted for the silent phase. This positive feedback system might couple the cells' electrical activity and synchronize bursting. We have explored this possibility using a theoretical model for bursting of beta-cells (Sherman et al., 1988) and K+ diffusion in the extracellular space of an islet. Computer simulations demonstrate that the bursts synchronize very quickly (within one burst) without gap junctional coupling among the cells. The shape and amplitude of computed Ke oscillations resemble those seen in experiments for certain parameter ranges. The model cells synchronize with exterior cells leading, though incorporating heterogeneous cell properties can allow interior cells to lead. The model islet can also be forced to oscillate at both faster and slower frequencies using periodic pulses of higher K+ in the medium surrounding the islet. Phase plane analysis was used to understand the synchronization mechanism. The results of our model suggest that diffusion of extracellular K+ may contribute to coupling and synchronization of electrical oscillations in beta-cells within an islet. Images FIGURE 1 PMID

  2. Closest Gamma Ray Burst Providing Scientists With Crucial Test for Burst Physics

    NASA Astrophysics Data System (ADS)

    2003-05-01

    -ray observations, visible light from GRB 030329 was observed by 65 telescopes around the world. At its brightest, the visible light from this burst was detectable with moderate-sized amateur telescopes. Gamma Ray Bursts were first detected in 1967 by a satellite monitoring compliance with the 1963 atmospheric nuclear test-ban treaty. For three decades thereafter, astronomers were unable to determine their distances from Earth, and thus were unable to begin understanding the physics underlying the explosions. In 1997, the first distance measurements were made to GRBs, and the NSF's Very Large Array (VLA) detected the first radio emission from a GRB afterglow. Once scientists determined that GRBs originate in distant galaxies and that they probably occur in regions of those galaxies where stars are actively forming, some 200 proposed models for what causes GRBs were reduced to a handful of viable models. Most scientists now believe that GRBs arise from a violent explosion that ends the life of a star much more massive than the Sun. Whereas such an explosion as a typical supernova leaves a dense neutron star, a GRB explosion leaves a black hole, a concentration of mass with gravitational pull so strong that not even light can escape it. The VLBA is a continent-wide system of ten radio- telescope antennas, ranging from Hawaii in the west to the U.S. Virgin Islands in the east, providing the greatest resolving power, or ability to see fine detail, in astronomy. Dedicated in 1993, the VLBA is operated from the NRAO's Array Operations Center in Socorro, New Mexico. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  3. Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury

    PubMed Central

    Hormigo, Kristiina M.; Zholudeva, Lyandysha V.; Spruance, Victoria M.; Marchenko, Vitaliy; Cote, Marie-Pascale; Vinit, Stephane; Giszter, Simon; Bezdudnaya, Tatiana; Lane, Michael A.

    2016-01-01

    Cervical spinal cord injury (SCI) results in permanent life-altering sensorimotor deficits, among which impaired breathing is one of the most devastating and life-threatening. While clinical and experimental research has revealed that some spontaneous respiratory improvement (functional plasticity) can occur post-SCI, the extent of the recovery is limited and significant deficits persist. Thus, increasing effort is being made to develop therapies that harness and enhance this neuroplastic potential to optimize long-term recovery of breathing in injured individuals. One strategy with demonstrated therapeutic potential is the use of treatments that increase neural and muscular activity (e.g. locomotor training, neural and muscular stimulation) and promote plasticity. With a focus on respiratory function post-SCI, this review will discuss advances in the use of neural interfacing strategies and activity-based treatments, and highlights some recent results from our own research. PMID:27582085

  4. Homologous and Homologous like Microwave Solar Radio Bursts

    NASA Astrophysics Data System (ADS)

    Trevisan, R. H.; Sawant, H. S.; Kalman, B.; Gesztelyi, L.

    1990-11-01

    ABSTRACT. Solar radio observations at 1.6 GHz were carried out in the month of July, 1985 by using 13.7 m diameter Itapetinga antenna with time resolution of 3 ms. Homologous Bursts, with total duration of about couple of seconds and repeated by some seconds were observed associated with Homologous H- flares. These H- flares were having periodicities of about 40 min. Observed long periodicities were attributed to oscillation of prominences, and small periods were attributed to removal of plasma from the field interaction zone. Also observed are "Homologous-Like" bursts. These bursts are double peak bursts with same time profile repeating in time. In addition to this, the ratio of the total duration of the bursts to time difference in the peaks of bursts remain constant. Morphological studies of these bursts have been presented. Keq tuoit : SUN-BURSTS - SUN-FLARE

  5. FRBCAT: The Fast Radio Burst Catalogue

    NASA Astrophysics Data System (ADS)

    Petroff, E.; Barr, E. D.; Jameson, A.; Keane, E. F.; Bailes, M.; Kramer, M.; Morello, V.; Tabbara, D.; van Straten, W.

    2016-09-01

    Here, we present a catalogue of known Fast Radio Burst sources in the form of an online catalogue, FRBCAT. The catalogue includes information about the instrumentation used for the observations for each detected burst, the measured quantities from each observation, and model-dependent quantities derived from observed quantities. To aid in consistent comparisons of burst properties such as width and signal-to-noise ratios, we have re-processed all the bursts for which we have access to the raw data, with software which we make available. The originally derived properties are also listed for comparison. The catalogue is hosted online as a Mysql database which can also be downloaded in tabular or plain text format for off-line use. This database will be maintained for use by the community for studies of the Fast Radio Burst population as it grows.

  6. Automatic recognition of coronal type II radio bursts: The ARBIS 2 method and first observations

    NASA Astrophysics Data System (ADS)

    Lobzin, Vasili; Cairns, Iver; Robinson, Peter; Steward, Graham; Patterson, Garth

    Major space weather events such as solar flares and coronal mass ejections are usually accompa-nied by solar radio bursts, which can potentially be used for real-time space weather forecasts. Type II radio bursts are produced near the local plasma frequency and its harmonic by fast electrons accelerated by a shock wave moving through the corona and solar wind with a typi-cal speed of 1000 km s-1 . The coronal bursts have dynamic spectra with frequency gradually falling with time and durations of several minutes. We present a new method developed to de-tect type II coronal radio bursts automatically and describe its implementation in an extended Automated Radio Burst Identification System (ARBIS 2). Preliminary tests of the method with spectra obtained in 2002 show that the performance of the current implementation is quite high, ˜ 80%, while the probability of false positives is reasonably low, with one false positive per 100-200 hr for high solar activity and less than one false event per 10000 hr for low solar activity periods. The first automatically detected coronal type II radio bursts are also presented. ARBIS 2 is now operational with IPS Radio and Space Services, providing email alerts and event lists internationally.

  7. The Five Year Fermi/GBM Magnetar Burst Catalog

    NASA Astrophysics Data System (ADS)

    Collazzi, A. C.; Kouveliotou, C.; van der Horst, A. J.; Younes, G. A.; Kaneko, Y.; Göğüş, E.; Lin, L.; Granot, J.; Finger, M. H.; Chaplin, V. L.; Huppenkothen, D.; Watts, A. L.; von Kienlin, A.; Baring, M. G.; Gruber, D.; Bhat, P. N.; Gibby, M. H.; Gehrels, N.; McEnery, J.; van der Klis, M.; Wijers, R. A. M. J.

    2015-05-01

    Since launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has detected many hundreds of bursts from magnetar sources. While the vast majority of these bursts have been attributed to several known magnetars, there is also a small sample of magnetar-like bursts of unknown origin. Here, we present the Fermi/GBM magnetar catalog, providing the results of the temporal and spectral analyses of 440 magnetar bursts with high temporal and spectral resolution. This catalog covers the first five years of GBM magnetar observations, from 2008 July to 2013 June. We provide durations, spectral parameters for various models, fluences, and peak fluxes for all the bursts, as well as a detailed temporal analysis for SGR J1550-5418 bursts. Finally, we suggest that some of the bursts of unknown origin are associated with the newly discovered magnetar 3XMM J185246.6+0033.7.

  8. Project BudBurst: Citizen Science for All Seasons

    NASA Astrophysics Data System (ADS)

    Meymaris, K.; Henderson, S.; Alaback, P.; Havens, K.

    2008-12-01

    Providing opportunities for individuals to contribute to a better understanding of climate change is the hallmark of Project BudBurst (www.budburst.org). This highly successful, national citizen science program, now in its second year, is bringing climate change education outreach to thousands of individuals. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, participants from 49 states have submitted data that is being submitted to the USA National Phenology Network (www.usanpn.org) database. Project BudBurst has been the subject of almost 200 media outlets including NPR, national and regional television broadcasts, and most of the major national and regional newspapers. This presentation will provide an overview of Project Budburst and will report on the results of the 2008 field campaign and discuss plans to expand Project BudBurst in 2009. Project BudBurst is a Windows to the Universe Citizen Science program managed by the University

  9. Coronal magnetic fields from multiple type II bursts

    NASA Astrophysics Data System (ADS)

    Honnappa, Vijayakumar; Raveesha, K. H.; Subramanian, K. R.

    Coronal magnetic fields from multiple type II bursts Vijayakumar H Doddamani1*, Raveesha K H2 and Subramanian3 1Bangalore University, Bangalore, Karnataka state, India 2CMR Institute of Technology, Bangalore, Karnataka state, India 3 Retd, Indian Institute of Astrophysics, Bangalore, Karnataka state, India Abstract Magnetic fields play an important role in the astrophysical processes occurring in solar corona. In the solar atmosphere, magnetic field interacts with the plasma, producing abundant eruptive activities. They are considered to be the main factors for coronal heating, particle acceleration and the formation of structures like prominences, flares and Coronal Mass Ejections. The magnetic field in solar atmosphere in the range of 1.1-3 Rsun is especially important as an interface between the photospheric magnetic field and the solar wind. Its structure and time dependent change affects space weather by modifying solar wind conditions, Cho (2000). Type II doublet bursts can be used for the estimation of the strength of the magnetic field at two different heights. Two type II bursts occur sometimes in sequence. By relating the speed of the type II radio burst to Alfven Mach Number, the Alfven speed of the shock wave generating type II radio burst can be calculated. Using the relation between the Alfven speed and the mean frequency of emission, the magnetic field strength can be determined at a particular height. We have used the relative bandwidth and drift rate properties of multiple type II radio bursts to derive magnetic field strengths at two different heights and also the gradient of the magnetic field in the outer corona. The magnetic field strength has been derived for different density factors. It varied from 1.2 to 2.5 gauss at a solar height of 1.4 Rsun. The empirical relation of the variation of the magnetic field with height is found to be of the form B(R) = In the present case the power law index ‘γ’ varied from -3 to -2 for variation of

  10. Respiratory Tract Infections and the Role of Biologically Active Polysaccharides in Their Management and Prevention.

    PubMed

    Jesenak, Milos; Urbancikova, Ingrid; Banovcin, Peter

    2017-07-20

    Respiratory tract infections (RTIs) are the most common form of infections in every age category. Recurrent respiratory tract infections (RRTIs), a specific form of RTIs, represent a typical and common problem associated with early childhood, causing high indirect and direct costs on the healthcare system. They are usually the consequence of immature immunity in children and high exposure to various respiratory pathogens. Their rational management should aim at excluding other severe chronic diseases associated with increased morbidity (e.g., primary immunodeficiency syndromes, cystic fibrosis, and ciliary dyskinesia) and at supporting maturity of the mucosal immune system. However, RRTIs can also be observed in adults (e.g., during exhausting and stressful periods, chronic inflammatory diseases, secondary immunodeficiencies, or in elite athletes) and require greater attention. Biologically active polysaccharides (e.g., β-glucans) are one of the most studied natural immunomodulators with a pluripotent mode of action and biological activity. According to many studies, they possess immunomodulatory, anti-inflammatory, and anti-infectious activities and therefore could be suggested as an effective part of treating and preventing RTIs. Based on published studies, the application of β-glucans was proven as a possible therapeutic and preventive approach in managing and preventing recurrent respiratory tract infections in children (especially β-glucans from Pleurotus ostreatus ), adults (mostly the studies with yeast-derived β-glucans), and in elite athletes (studies with β-glucans from Pleurotus ostreatus or yeast).

  11. X-ray observations of the burst source MXB 1728 - 34

    NASA Technical Reports Server (NTRS)

    Basinska, E. M.; Lewin, W. H. G.; Sztajno, M.; Cominsky, L. R.; Marshall, F. J.

    1984-01-01

    Where sufficient information has been obtained, attention is given to the maximum burst flux, integrated burst flux, spectral hardness, rise time, etc., of 96 X-ray bursts observed from March 1976 to March 1979. The integrated burst flux and the burst frequency appear to be correlated; the longer the burst interval, the larger the integrated burst flux, as expected on the basis of simple thermonuclear flash models. The maximum burst flux and the integrated burst flux are strongly correlated; for low flux levels their dependence is approximately linear, while for increasing values of the integrated burst flux, the flux at burst maximum saturates and reaches a plateau.

  12. SOME COMMENTS ON TYPE IV BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, H.; Kakinuma, T.

    1962-01-01

    It has become clear that a large continuum burst is composed of 4 distinctive types, CM/sub 1/, CM/sub 2/, DM, and IV, which originate from different altitudes over the photosphere. The observational characters of each type are given. CM/sub 1/ is the main phase of a centimeter-wave burst originating from about 0.02-0.05 R/sub S/ in height. DM burst is polarized in the ordinary sense, which is the cause of reversal of polarization with frequency. Its center frequency lies between about 1000 and 200 Mc/s, and is often misunderstood as the original Type IV burst. The movement of magnetic field duringmore » a burst is suggested. CM/sub 2/ may be considered as an enhancement of the upper part of the source of S-component caused by this movement of the field. (auth)« less

  13. Neuronal Networks during Burst Suppression as Revealed by Source Analysis

    PubMed Central

    Reinicke, Christine; Moeller, Friederike; Anwar, Abdul Rauf; Mideksa, Kidist Gebremariam; Pressler, Ronit; Deuschl, Günther; Stephani, Ulrich; Siniatchkin, Michael

    2015-01-01

    Introduction Burst-suppression (BS) is an electroencephalography (EEG) pattern consisting of alternant periods of slow waves of high amplitude (burst) and periods of so called flat EEG (suppression). It is generally associated with coma of various etiologies (hypoxia, drug-related intoxication, hypothermia, and childhood encephalopathies, but also anesthesia). Animal studies suggest that both the cortex and the thalamus are involved in the generation of BS. However, very little is known about mechanisms of BS in humans. The aim of this study was to identify the neuronal network underlying both burst and suppression phases using source reconstruction and analysis of functional and effective connectivity in EEG. Material/Methods Dynamic imaging of coherent sources (DICS) was applied to EEG segments of 13 neonates and infants with burst and suppression EEG pattern. The brain area with the strongest power in the analyzed frequency (1–4 Hz) range was defined as the reference region. DICS was used to compute the coherence between this reference region and the entire brain. The renormalized partial directed coherence (RPDC) was used to describe the informational flow between the identified sources. Results/Conclusion Delta activity during the burst phases was associated with coherent sources in the thalamus and brainstem as well as bilateral sources in cortical regions mainly frontal and parietal, whereas suppression phases were associated with coherent sources only in cortical regions. Results of the RPDC analyses showed an upwards informational flow from the brainstem towards the thalamus and from the thalamus to cortical regions, which was absent during the suppression phases. These findings may support the theory that a “cortical deafferentiation” between the cortex and sub-cortical structures exists especially in suppression phases compared to burst phases in burst suppression EEGs. Such a deafferentiation may play a role in the poor neurological outcome of

  14. Emission Patterns of Solar Type III Radio Bursts: Stereoscopic Observations

    NASA Technical Reports Server (NTRS)

    Thejappa, G.; MacDowall, R.; Bergamo, M.

    2012-01-01

    Simultaneous observations of solar type III radio bursts obtained by the STEREO A, B, and WIND spacecraft at low frequencies from different vantage points in the ecliptic plane are used to determine their directivity. The heliolongitudes of the sources of these bursts, estimated at different frequencies by assuming that they are located on the Parker spiral magnetic field lines emerging from the associated active regions into the spherically symmetric solar atmosphere, and the heliolongitudes of the spacecraft are used to estimate the viewing angle, which is the angle between the direction of the magnetic field at the source and the line connecting the source to the spacecraft. The normalized peak intensities at each spacecraft Rj = Ij /[Sigma]Ij (the subscript j corresponds to the spacecraft STEREO A, B, and WIND), which are defined as the directivity factors are determined using the time profiles of the type III bursts. It is shown that the distribution of the viewing angles divides the type III bursts into: (1) bursts emitting into a very narrow cone centered around the tangent to the magnetic field with angular width of approximately 2 deg and (2) bursts emitting into a wider cone with angular width spanning from [approx] -100 deg to approximately 100 deg. The plots of the directivity factors versus the viewing angles of the sources from all three spacecraft indicate that the type III emissions are very intense along the tangent to the spiral magnetic field lines at the source, and steadily fall as the viewing angles increase to higher values. The comparison of these emission patterns with the computed distributions of the ray trajectories indicate that the intense bursts visible in a narrow range of angles around the magnetic field directions probably are emitted in the fundamental mode, whereas the relatively weaker bursts visible to a wide range of angles are probably emitted in the harmonic mode.

  15. Herringbone bursts associated with type II solar radio emission

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.; Robinson, R. D.

    1987-01-01

    Detailed observations of the herringbone (HB) fine structure on type II solar radio bursts are presented. Data from the Culgoora radiospectrograph, radiometer and radioheliograph are analyzed. The characteristic spectral profiles, frequency drift rates and exciter velocities, fluxes, source sizes, brightness temperatures, and polarizations of individual HB bursts are determined. Correlations between individual bursts within the characteristic groups of bursts and the properties of the associated type II bursts are examined. These data are compatible with HB bursts being radiation at multiples of the plasma frequency generated by electron streams accelerated by the type II shock. HB bursts are physically distinct phenomena from type II and type III bursts, differing significantly in emission processes and/or source conditions; this conclusion indicates that many of the presently available theoretical ideas for HB bursts are incorrect.

  16. Modeling of synchronization behavior of bursting neurons at nonlinearly coupled dynamical networks.

    PubMed

    Çakir, Yüksel

    2016-01-01

    Synchronization behaviors of bursting neurons coupled through electrical and dynamic chemical synapses are investigated. The Izhikevich model is used with random and small world network of bursting neurons. Various currents which consist of diffusive electrical and time-delayed dynamic chemical synapses are used in the simulations to investigate the influences of synaptic currents and couplings on synchronization behavior of bursting neurons. The effects of parameters, such as time delay, inhibitory synaptic strengths, and decay time on synchronization behavior are investigated. It is observed that in random networks with no delay, bursting synchrony is established with the electrical synapse alone, single spiking synchrony is observed with hybrid coupling. In small world network with no delay, periodic bursting behavior with multiple spikes is observed when only chemical and only electrical synapse exist. Single-spike and multiple-spike bursting are established with hybrid couplings. A decrease in the synchronization measure is observed with zero time delay, as the decay time is increased in random network. For synaptic delays which are above active phase period, synchronization measure increases with an increase in synaptic strength and time delay in small world network. However, in random network, it increases with only an increase in synaptic strength.

  17. An Ephemeral Burst-Buffer File System for Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Teng; Moody, Adam; Yu, Weikuan

    BurstFS is a distributed file system for node-local burst buffers on high performance computing systems. BurstFS presents a shared file system space across the burst buffers so that applications that use shared files can access the highly-scalable burst buffers without changing their applications.

  18. Dark gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Brdar, Vedran; Kopp, Joachim; Liu, Jia

    2017-03-01

    Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a p -wave process than for s -wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to standard model particles later, the annihilation burst results in a flash of gamma rays accompanying the supernova. For a galactic supernova, this "dark gamma-ray burst" may be observable in the Čerenkov Telescope Array.

  19. A closed-loop anesthetic delivery system for real-time control of burst suppression

    NASA Astrophysics Data System (ADS)

    Liberman, Max Y.; Ching, ShiNung; Chemali, Jessica; Brown, Emery N.

    2013-08-01

    Objective. There is growing interest in using closed-loop anesthetic delivery (CLAD) systems to automate control of brain states (sedation, unconsciousness and antinociception) in patients receiving anesthesia care. The accuracy and reliability of these systems can be improved by using as control signals electroencephalogram (EEG) markers for which the neurophysiological links to the anesthetic-induced brain states are well established. Burst suppression, in which bursts of electrical activity alternate with periods of quiescence or suppression, is a well-known, readily discernible EEG marker of profound brain inactivation and unconsciousness. This pattern is commonly maintained when anesthetics are administered to produce a medically-induced coma for cerebral protection in patients suffering from brain injuries or to arrest brain activity in patients having uncontrollable seizures. Although the coma may be required for several hours or days, drug infusion rates are managed inefficiently by manual adjustment. Our objective is to design a CLAD system for burst suppression control to automate management of medically-induced coma. Approach. We establish a CLAD system to control burst suppression consisting of: a two-dimensional linear system model relating the anesthetic brain level to the EEG dynamics; a new control signal, the burst suppression probability (BSP) defining the instantaneous probability of suppression; the BSP filter, a state-space algorithm to estimate the BSP from EEG recordings; a proportional-integral controller; and a system identification procedure to estimate the model and controller parameters. Main results. We demonstrate reliable performance of our system in simulation studies of burst suppression control using both propofol and etomidate in rodent experiments based on Vijn and Sneyd, and in human experiments based on the Schnider pharmacokinetic model for propofol. Using propofol, we further demonstrate that our control system reliably

  20. Characterisation of the antioxidant effects of Aesculus hippocastanum L. bark extract on the basis of radical scavenging activity, the chemiluminescence of human neutrophil bursts and lipoperoxidation assay.

    PubMed

    Braga, P C; Marabini, L; Wang, Y Y; Lattuada, N; Calò, R; Bertelli, A; Falchi, M; Dal Sasso, M; Bianchi, T

    2012-07-01

    Oxidative stress is increasingly recognised as a pivotal factor that plays a number of roles in the inflammatory response to environmental signals. It has been claimed that Aesculus hippocastanum extracts have antioxidant and anti-inflammatory activity, but these claims are mainly based on the results of chemical reactions and folk-medicine. The aim of this study was to examine whether a bark extract of Aesculus hippocastanum interferes with reactive oxygen/nitrogen species (ROS/RNS) during the course of human neutrophil respiratory bursts, and to establish the lowest concentration at which it still has antioxidant activity by means of luminol amplified chemiluminescence (LACL). We also studied its ability to counteract lipid peroxidation (LPO) in human cells. Before investigating its antioxidant effects on human cells, we analysed its scavenging activity against ABTS*+, hydroxyl radical, superoxide anion, and Fremy's salt (those last three by means of electron paramagnetic resonance (EPR) spectrometry). The extract of Aesculus hippocastanum exerted its anti-ROS/RNS activity in a concentration-dependent manner with significant effects being observed for even very low concentrations: 10 microg/ml without L-Arg, and 5 microg/ml when L-Arg was added to the fMLP test. The LPO assay confirmed these results, which were paralleled by the EPR study. These findings are interesting for improving the antioxidant network and restoring redox balance in human cells, and extend the possibility of using plant-derived molecules to antagonise the oxidative stress generated in living organisms when the balance is in favour of free radicals as a result of the depletion of cell antioxidants.

  1. Long-Lag, Wide-pulse Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Bonnell, J. T.; Kazanas, D.; Scargie, J. D.; Hakkila, J.; Giblin, T. W.

    2005-01-01

    The best available probe of the early phase of gamma-ray burst (GRB) jet attributes is the prompt gamma-ray emission, in which several intrinsic and extrinsic variables determine observed GRB pulse evolution, including at least: jet opening angle, profiles of Lorentz factor and matter/field density, distance of emission region from central source, and viewing angle. Bright, usually complex bursts have many narrow pulses that are difficult to model due to overlap. However, the relatively simple, long spectral lag, wide-pulse bursts may have simpler physics and are easier to model. We have analyzed the temporal and spectral behavior of wide pulses in 24 long-lag bursts from the BATSE sample, using a pulse model with two shape parameters - width and asymmetry - and the Band spectral model with three shape parameters. We find that pulses in long-lag bursts are distinguished both temporally and spectrally from those in bright bursts: the pulses in long spectral lag bursts are few in number, and approximately 100 times wider (10s of seconds), have systemtically lower peaks in nu*F(nu), harder low-energy spectra and softer high-energy spectra. These five pulse descriptors are essentially uncorrelated for our long-lag sample, suggesting that at least approximately 5 parameters are needed to model burst temporal and spectral behavior, roughly commensurate with the theoretical phase space. However, we do find that pulse width is strongly correlated with spectral lag; hence these two parameters may be viewed as mutual surrogates. The prevalence of long-lag bursts near the BATSE trigger threshold, their predominantly low nu*F(nu) spectral peaks, and relatively steep upper power-law spectral indices indicate that Swiift will detect many such bursts.

  2. NASA’s SDO Watches Bursts of Solar Material

    NASA Image and Video Library

    2017-12-08

    Solar material repeatedly bursts from the sun in this close-up captured on July 9-10, 2016, by NASA’s Solar Dynamics Observatory, or SDO. The sun is composed of plasma, a gas in which the negative electrons move freely around the positive ions, forming a powerful mix of charged particles. Each burst of plasma licks out from the surface only to withdraw back into the active region – a dance commanded by complex magnetic forces above the sun. SDO captured this video in wavelengths of extreme ultraviolet light, which are typically invisible to our eyes. The imagery is colorized here in red for easy viewing. Credit: NASA/SDO/Goddard Space Flight Center/Joy Ng

  3. [Physical activity and respiratory function: corporal composition and spirometric values analysis].

    PubMed

    Paulo, Rui; Petrica, João; Martins, Júlio

    2013-01-01

    The main aim of this research project was to measure the effects of physical activity on corporal composition (BMI and waist circumference) on spirometric values and relate these indicators to the respiratory/ventilator function. The sample consisted of 86 individuals, higher education students, with an average age of 21.3 ± 2.4 years, who were divided into two groups: the control group consisted of 28 sedentary subjects (20.9 ± 1.3 years), and the experimental group consisting of 58 subjects (21.5 ± 2.8 years) who undertook supervised exercise. To characterize the sample of the type of physical activity, we used an adaptation of the questionnaire Telama et al.19 We assessed the value of spirometry (PEF, FVC and FEV₁) with a Microquark Cosmed spirometer and the BMI and waist circumference. The figures obtained were processed with the S.P.S.S. 19.0, the t-test, the Levene test, the Mann-Whitney test and the Spearman correlation test, adopting a significance level of 5%. The experimental group achieved significantly better BMI and waist circumference results (p = 0.05) and in all of the values assessed by spirometry (PEF, FVC and FEV₁) compared to the control group. We also found that there is a tendency for a negative correlation between the values of body composition and spirometric values, only observable in some variables (PEF, FEV₁), i.e., the higher the values of body composition, the lower the spirometric values. The students that performed supervised exercise had higher levels of body composition and lung function. Poor BMI and waist circumference values may lead to respiratory dysfunction in terms of ventilation and the respective lung volumes, limiting the practice of physical activity and increasing the probability of respiratory pathologies.

  4. The role of protease activation of inflammation in allergic respiratory diseases.

    PubMed

    Reed, Charles E; Kita, Hirohito

    2004-11-01

    Extracellular endogenous proteases, as well as exogenous proteases from mites and molds, react with cell-surface receptors in the airways to generate leukocyte infiltration and to amplify the response to allergens. Stimulation leads to increased intracellular Ca ++ and gene transcription. The most thoroughly investigated receptors, protease-activated receptors (PARs), are 7-transmembrane proteins coupled to G proteins. PARs are widely distributed on the cells of the airways, where they contribute to the inflammation characteristic of allergic diseases. PAR stimulation of epithelial cells opens tight junctions, causes desquamation, and produces cytokines, chemokines, and growth factors. They degranulate eosinophils and mast cells. Proteases contract bronchial smooth muscle and cause it to proliferate. PARs also promote maturation, proliferation, and collagen production of fibroblast precursors and mature fibroblasts. PAR-2, apparently the most important of the 4 PARs that have been characterized, is increased on the epithelium of patients with asthma. Trypsin, a product of injured epithelial cells, and mast cell tryptase are potent activators of PAR-2. Mast cell chymase activates PAR-1. Proteases from mites and molds appear to act through similar receptors. They amplify IgE production to allergens, degranulate eosinophils, and can generate inflammation, even in the absence of IgE. Proteases produced by Aspergillus species to support its growth are presumably responsible for the exuberant IgE, IgG, and granulomatous response of allergic bronchopulmonary aspergillosis. Similar proteases from molds germinating on the respiratory mucosa have been recently been implicated in the pathogenesis of chronic hyperplastic rhinitis and polyps and, by extension, of intrinsic asthma. Finally, proteases from mites and fungi growing in damp, water-damaged buildings might be the basis for the increased prevalence in these buildings of rhinitis, asthma, and other respiratory diseases

  5. Burst-type noise mechanisms in bipolar transistors

    NASA Astrophysics Data System (ADS)

    Wu, X. L.; van der Ziel, A.; Birbas, A. N.; van Rheenen, A. D.

    1989-11-01

    Two types of burst noise have been observed in silicon bipolar transistors. They can be characterized by the typical frequency dependence of their current fluctuation spectra. Interestingly, observation of the noise signal in the time domain gives two distinctively different pictures of the bistable waveform. Also, amplification of the noise signal yields different sounds when fed to a speaker. One of the noise spectra is the superposition of 1/ƒ noise and a Lorentzian component (burst noise) and the other can be described mathematically as 1/ƒ noise modulated by the burst noise. The classification of those two types of burst noise and the mathematical explanation will lead to a better understanding of the bipolar transistor burst noise itself.

  6. Low-Frequency Radio Bursts and Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    Low-frequency radio phenomena are due to the presence of nonthermal electrons in the interplanetary (IP) medium. Understanding these phenomena is important in characterizing the space environment near Earth and other destinations in the solar system. Substantial progress has been made in the past two decades, because of the continuous and uniform data sets available from space-based radio and white-light instrumentation. This paper highlights some recent results obtained on IP radio phenomena. In particular, the source of type IV radio bursts, the behavior of type III storms, shock propagation in the IP medium, and the solar-cycle variation of type II radio bursts are considered. All these phenomena are closely related to solar eruptions and active region evolution. The results presented were obtained by combining data from the Wind and SOHO missions.

  7. Symmetric Fold/Super-Hopf Bursting, Chaos and Mixed-Mode Oscillations in Pernarowski Model of Pancreatic Beta-Cells

    NASA Astrophysics Data System (ADS)

    Fallah, Haniyeh

    Pancreatic beta-cells produce insulin to regularize the blood glucose level. Bursting is important in beta cells due to its relation to the release of insulin. Pernarowski model is a simple polynomial model of beta-cell activities indicating bursting oscillations in these cells. This paper presents bursting behaviors of symmetric type in this model. In addition, it is shown that the current system exhibits the phenomenon of period doubling cascades of canards which is a route to chaos. Canards are also observed symmetrically near folds of slow manifold which results in a chaotic transition between n and n + 1 spikes symmetric bursting. Furthermore, mixed-mode oscillations (MMOs) and combination of symmetric bursting together with MMOs are illustrated during the transition between symmetric bursting and continuous spiking.

  8. Immortalized Parkinson's disease lymphocytes have enhanced mitochondrial respiratory activity

    PubMed Central

    Annesley, Sarah J.; Lay, Sui T.; De Piazza, Shawn W.; Sanislav, Oana; Hammersley, Eleanor; Allan, Claire Y.; Francione, Lisa M.; Bui, Minh Q.; Chen, Zhi-Ping; Ngoei, Kevin R. W.; Tassone, Flora; Kemp, Bruce E.; Storey, Elsdon; Evans, Andrew; Loesch, Danuta Z.

    2016-01-01

    ABSTRACT In combination with studies of post-mortem Parkinson's disease (PD) brains, pharmacological and genetic models of PD have suggested that two fundamental interacting cellular processes are impaired – proteostasis and mitochondrial respiration. We have re-examined the role of mitochondrial dysfunction in lymphoblasts isolated from individuals with idiopathic PD and an age-matched control group. As previously reported for various PD cell types, the production of reactive oxygen species (ROS) by PD lymphoblasts was significantly elevated. However, this was not due to an impairment of mitochondrial respiration, as is often assumed. Instead, basal mitochondrial respiration and ATP synthesis are dramatically elevated in PD lymphoblasts. The mitochondrial mass, genome copy number and membrane potential were unaltered, but the expression of indicative respiratory complex proteins was also elevated. This explains the increased oxygen consumption rates by each of the respiratory complexes in experimentally uncoupled mitochondria of iPD cells. However, it was not attributable to increased activity of the stress- and energy-sensing protein kinase AMPK, a regulator of mitochondrial biogenesis and activity. The respiratory differences between iPD and control cells were sufficiently dramatic as to provide a potentially sensitive and reliable biomarker of the disease state, unaffected by disease duration (time since diagnosis) or clinical severity. Lymphoblasts from control and PD individuals thus occupy two distinct, quasi-stable steady states; a ‘normal’ and a ‘hyperactive’ state characterized by two different metabolic rates. The apparent stability of the ‘hyperactive’ state in patient-derived lymphoblasts in the face of patient ageing, ongoing disease and mounting disease severity suggests an early, permanent switch to an alternative metabolic steady state. With its associated, elevated ROS production, the ‘hyperactive’ state might not cause pathology

  9. Fast transient X-rays and gamma ray bursts - Are they stellar flares?

    NASA Astrophysics Data System (ADS)

    Rao, A. R.; Vahia, M. N.

    Short period transient X-ray emissions (FTX) have been observed from several sources in the sky and the largest single group of objects identified with such sources are active stars: flare stars, and RS CVn binaries. The study of the number, source and flux distribution of the fast transient X-ray sources shows that all the FTX emission can be treated as flares in the interbinary regions of active stars. It is suggested that the FTX emission is a common feature of the gamma ray bursts (GRBs). The evidence for the similarity between the hard X-ray flares and GRBs is discussed, and the possibility that the gamma ray bursts are the impulsive precursors of FTX originating from active stars with large scale magnetic activity is examined.

  10. Excretory products of the cestode, Schistocephalus solidus, modulate in vitro responses of leukocytes from its specific host, the three-spined stickleback (Gasterosteus aculeatus).

    PubMed

    Scharsack, Jörn Peter; Gossens, Anabel; Franke, Frederik; Kurtz, Joachim

    2013-12-01

    Helminth parasites have evolved remarkable strategies to manipulate the immune system of their hosts. During infections of three-spined stickleback (Gasterosteus aculeatus) with the cestode Schistocephalus solidus prominent immunological changes occur, presumably due to manipulative activity of the parasite. We hypothesise that excretory/secretory products of the parasite are involved in the manipulation of the stickleback's immune system and that this may depend on the individual parasite and its origin. We therefore produced S. solidus conditioned cell culture media (SSCM) with parasites from different origins (Norway, Spain and Germany) and exposed head kidney leukocytes (HKL) from un-infected sticklebacks in cell cultures to SSCM. After in vitro culture, HKL were subjected to differential cell counts (granulocytes/lymphocytes) by means of flow cytometry. Leukocyte sub-populations were analysed for cell viability and changes in cell morphology. The respiratory burst activity was measured with a luminescence assay. Exposure of HKL to SSCM induced an up-regulation of respiratory burst activity after already 1 h, which was still elevated at 24 h, but which was in some cases significantly down-regulated after 96 h. Respiratory burst was positively correlated with the number of live granulocytes in the culture, suggesting that the respiratory burst activity was changed by SSCM effects on granulocyte viability. After 1 h and 24 h of HKL culture, no lymphocyte responses to SSCM were detectable, but after 96 h lymphocyte viability was significantly decreased with SSCM from Spanish S. solidus. In these cultures, residual lymphocytes increased in size, suggesting that cell death and activation might have occurred in parallel. The highest respiratory burst activity was induced by SSCM from Spanish parasites, in particular when they were grown in sympatric sticklebacks. The in vitro HKL responses to SSCM depended on the individual parasite and its population of origin

  11. Activation of lumbosacral 5-HT2C receptors induces bursts of rhythmic activity in sympathetic nerves to the vas deferens in male rats

    PubMed Central

    Stafford, Stuart A; Tang, Kim; Coote, John H

    2006-01-01

    We previously demonstrated that p-chloroamphetamine (PCA) intravenously (i.v.) evokes a specific patterned bursting response in the vas deferens nerve (VDN) of anaesthetised male rats that is associated with contraction of the vas deferens, and ejaculation and contraction of the bulbospongiosus muscles. The present study used selective 5-HT agonists to induce similar rhythmic bursting responses in the VDN in order to reveal the 5-HT receptor subtypes involved. The 5-HT2C receptor agonist (1.0 mg kg−1 Ro600175 i.v.) evoked the characteristic bursting pattern responses in the VDN. The 5-HT1A receptor agonist (1.0 mg kg−1 8-OH-DPAT i.v.) failed to elicit any responses. However, 8-OH-DPAT coadministered in combination with Ro600175 induced a potentiation of the responses. Responses were also evoked in rats with a mid-thoracic spinalisation, with a more predictable response being observed following the combination of agonists. This suggests an action of both agonists in the lumbosacral spinal cord. Responses were blocked by 0.5 mg kg−1 SB206553 i.v. (5-HT2B/C receptor antagonist) or 0.5 mg kg−1 WAY100635 i.v. (5-HT1A receptor antagonist), but not 0.1 or 1.0 mg kg−1 SB269970 i.v. (5-HT7 receptor antagonist). We suggest that activation of 5-HT2C and 5-HT1A receptor subtypes synergistically elicits contraction of the vas deferens through the activation of sympathetic preganglionic neurones in the spinal cord. These data support the idea of a proejaculatory action of 5-HT2C receptors in the lumbosacral spinal cord, suggesting a descending 5-HT excitatory pathway in addition to a 5-HT inhibitory pathway. An excitatory action of 8-OH-DPAT at lumbosacral sites is also evident. PMID:16799648

  12. Catalogue of isolated emission episodes in gamma-ray bursts from Fermi, Swift and BATSE

    NASA Astrophysics Data System (ADS)

    Charisi, M.; Márka, S.; Bartos, I.

    2015-04-01

    We report a comprehensive catalogue of emission episodes within long gamma-ray bursts (GRBs) that are separated by a quiescent period during which gamma-ray emission falls below the background level. We use a fully automated identification method for an unbiased, large-scale and expandable search. We examine a comprehensive sample of long GRBs from the BATSE (Burst and Transient Source Experiment), Swift and Fermi missions, assembling a total searched set of 2710 GRBs, the largest catalogue of isolated emission episodes so far. Our search extends out to [-1000 s, 750 s] around the burst trigger, expanding the covered time interval beyond previous studies and far beyond the nominal durations (T90) of most bursts. We compare our results to previous works by identifying pre-peak emission (or precursors), defined as isolated emission periods prior to the episode with the highest peak luminosity of the burst. We also systematically search for similarly defined periods after the burst's peak emission. We find that the pre-peak and post-peak emission periods are statistically similar, possibly indicating a common origin. For the analysed GRBs, we identify 24 per cent to have more than one isolated emission episode, with 11 per cent having at least one pre-peak event and 15 per cent having at least one post-peak event. We identify GRB activity significantly beyond their T90, which can be important for understanding the central engine activity as well as, e.g. gravitational-wave searches.

  13. Antimicrobial activity of tigecycline against recent isolates of respiratory pathogens from Asian countries.

    PubMed

    Ko, Kwan Soo; Song, Jae-Hoon; Lee, Mi Young; Park, Sulhee; Kwon, Ki Tae; Heo, Sang Taek; Ryu, Seong Yeol; Oh, Won Sup; Peck, Kyong Ran; Lee, Nam Yong

    2006-08-01

    In vitro activities of tigecycline were compared with 15 other comparator agents against recent clinical isolates of respiratory pathogens (623 Streptococcus pneumoniae, 105 Staphylococcus aureus, 92 Klebsiella pneumoniae, and 84 Haemophilus influenzae isolates) collected from 11 Asian countries. All isolates of S. pneumoniae from Asian countries were susceptible to tigecycline regardless of penicillin susceptibility with MIC90 of active against K. pneumoniae (98.9% susceptible; MIC50, 1 mg/L; MIC90, 2 mg/L) including 10 extended-spectrum beta-lactamase-producing isolates and H. influenzae (100% susceptible; MIC50 and MIC90, 0.12 mg/L) from Korea. Data confirmed that tigecycline has an excellent in vitro activity against drug-resistant clinical isolates of respiratory pathogens from Asian countries.

  14. Action potential bursts in central snail neurons elicited by paeonol: roles of ionic currents

    PubMed Central

    Chen, Yi-hung; Lin, Pei-lin; Hsu, Hui-yu; Wu, Ya-ting; Yang, Han-yin; Lu, Dah-yuu; Huang, Shiang-suo; Hsieh, Ching-liang; Lin, Jaung-geng

    2010-01-01

    Aim: To investigate the effects of 2′-hydroxy-4′-methoxyacetophenone (paeonol) on the electrophysiological behavior of a central neuron (right parietal 4; RP4) of the giant African snail (Achatina fulica Ferussac). Methods: Intracellular recordings and the two-electrode voltage clamp method were used to study the effects of paeonol on the RP4 neuron. Results: The RP4 neuron generated spontaneous action potentials. Bath application of paeonol at a concentration of ≥500 μmol/L reversibly elicited action potential bursts in a concentration-dependent manner. Immersing the neurons in Co2+-substituted Ca2+-free solution did not block paeonol-elicited bursting. Pretreatment with the protein kinase A (PKA) inhibitor KT-5720 or the protein kinase C (PKC) inhibitor Ro 31-8220 did not affect the action potential bursts. Voltage-clamp studies revealed that paeonol at a concentration of 500 μmol/L had no remarkable effects on the total inward currents, whereas paeonol decreased the delayed rectifying K+ current (IKD) and the fast-inactivating K+ current (IA). Application of 4-aminopyridine (4-AP 5 mmol/L), an inhibitor of IA, or charybdotoxin 250 nmol/L, an inhibitor of the Ca2+-activated K+ current (IK(Ca)), failed to elicit action potential bursts, whereas tetraethylammonium chloride (TEA 50 mmol/L), an IKD blocker, successfully elicited action potential bursts. At a lower concentration of 5 mmol/L, TEA facilitated the induction of action potential bursts elicited by paeonol. Conclusion: Paeonol elicited a bursting firing pattern of action potentials in the RP4 neuron and this activity relates closely to the inhibitory effects of paeonol on the IKD. PMID:21042287

  15. The Double Firing Burst

    NASA Astrophysics Data System (ADS)

    2008-09-01

    Astronomers from around the world combined data from ground- and space-based telescopes to paint a detailed portrait of the brightest explosion ever seen. The observations reveal that the jets of the gamma-ray burst called GRB 080319B were aimed almost directly at the Earth. Uncovering the disc ESO PR Photo 28/08 A Gamma-Ray Burst with Two Jets Read more on this illuminating blast in the additional story. GRB 080319B was so intense that, despite happening halfway across the Universe, it could have been seen briefly with the unaided eye (ESO 08/08). In a paper to appear in the 11 September issue of Nature, Judith Racusin of Penn State University, Pennsylvania (USA), and a team of 92 co-authors report observations across the electromagnetic spectrum that began 30 minutes before the explosion and followed it for months afterwards. "We conclude that the burst's extraordinary brightness arose from a jet that shot material almost directly towards Earth at almost the speed of light - the difference is only 1 part in 20 000," says Guido Chincarini, a member of the team. Gamma-ray bursts are the Universe's most luminous explosions. Most occur when massive stars run out of fuel. As a star collapses, it creates a black hole or neutron star that, through processes not fully understood, drives powerful gas jets outward. As the jets shoot into space, they strike gas previously shed by the star and heat it, thereby generating bright afterglows. The team believes the jet directed toward Earth contained an ultra-fast component just 0.4 degrees across (this is slightly smaller than the apparent size of the Full Moon). This jet is contained within another slightly less energetic jet about 20 times wider. The broad component is more typical of other bursts. "Perhaps every gamma-ray burst has a narrow jet, but astronomers miss it most of the time," says team member Stefano Covino. "We happened to view this monster down the barrel of the very narrow and energetic jet, and the chance for

  16. Physics of Gamma Ray Burst Sources

    NASA Technical Reports Server (NTRS)

    Meszaros, Peter

    2004-01-01

    During this grant period, the physics of gamma-ray bursts was investigated. A number of new results have emerged. The importance of pair formation in high compactness burst spectra may help explain x-ray flashes; a universal jet shape is a likely explanation for the distribution of jet break times; gravitational waves may be copiously produced both in short bursts from compact mergers and in long bursts arising from collapsars; x-ray iron lines are likely to be due to interaction with the stellar atmosphere of the progenitor; prompt optical flashes from reverse shocks will give diagnostics on the Lorentz factor and the environment; GeV and TeV emission from bursts may be expected in the external shock; etc. The group working with the PI included postdocs Dr. Bing Zhang (now assistant professor at University of Nevada); Dr. Shiho Kobayashi; graduate student Lijun Gou; collaborators Drs. Tim Kallman and Martin Rees. Meszaros shared with Rees and Dr. Bohan Paczynsky the AAS Rossi Prize in 2000 for their work on the theory of gamma ray bursts. The refereed publications and conference proceedings resulting from this research are summarized below. The PI gave a number of invited talks at major conferences, also listed.

  17. Extracellular K+ in the supraoptic nucleus of the rat during reflex bursting activity by oxytocin neurones.

    PubMed Central

    Coles, J A; Poulain, D A

    1991-01-01

    1. We have investigated changes in extracellular potassium concentration [K+]o in the supraoptic nucleus of lactating rats and in particular those that occur during the intense burst of firing by the oxytocin neurones involved in the milk ejection reflex. 2. Double-barrelled K(+)-selective microelectrodes containing a highly selective sensor based on valinomycin were lowered through the exposed cortex towards the supraoptic nucleus (SON) of female rats anaesthetized with urethane. The mean resting [K+]o in the hypothalami of five rats was 2.4 mM, S.D. = 0.3 mM. 3. Where the reference barrel recorded extracellular action potentials from an oxytocin cell, the reflex burst of firing (4 s, typical maximum 50 Hz) was accompanied by a mean increase in [K+]o (delta[K+]o) of 0.22 mM (S.E.M. = 0.02 mM, fifty-seven bursts in eight cells in seven rats). The rise in [K+]o did not begin more than 0.1 s before the onset of the burst, and began to fall from its maximum during the burst. Slow field potentials, indicative of spatial buffering of K+, were undetectable (less than 50 microV). When the electrode was advanced in steps, the amplitudes of both delta[K+]o and the action potential declined steeply to about 10% over a distance of 20 microns: K+ from oxytocin cells appears to be prevented from dispersing freely through the extracellular space of the SON. 4. When the electrode recorded action potentials from a vasopressin cell, delta[K+]o during an oxytocin cell burst was very small: 0.021 mM (S.E.M. = 0.005 mM). At other sites in the SON, where antidromic stimulation evoked a field potential but no action potential, delta[K+]o was 0.047 +/- 0.005 mM. We conclude that the reason oxytocin bursts do not affect vasopressin cells is that [K+]o rises very little around vasopressin cells. A fortiori, since the increases in [K+]o were very small except where action potentials from oxytocin cells were recorded, they can make no significant contribution to synchronizing the onsets of

  18. Substance P and central respiratory activity: a comparative in vitro study in NK1 receptor knockout and wild-type mice.

    PubMed

    Ptak, K; Hunt, S P; Monteau, R

    2000-07-01

    Neurokinin-1 receptors (NK1) are present within the respiratory medullary network and in the phrenic nucleus, which controls the diaphragm. We compared the efficacy of substance P (SP) at inducing changes in respiratory frequency or the amplitude of the respiratory motor output between NK1 knockout (NK1-/-) and wild-type mice, using the in vitro brainstem-spinal cord preparation. The in vitro respiratory frequency, as well as the variability of the rhythm and the amplitude of the motor output were similar in both lines. In wild-type mice, application of exogenous SP induced either an increase in respiratory frequency (superfusion of the medulla) or an increase of the inspiratory motor output, as defined by the integral of C4 cervical ventral root activity (superfusion of the spinal cord). These two effects were not apparent in NK1-/- mice. In conclusion, NK1 receptors mediate the respiratory responses to SP but the lack of NK1 receptors in newborn NK1-/- mice does not change the respiratory activity.

  19. Respiratory Tract Infections and the Role of Biologically Active Polysaccharides in Their Management and Prevention

    PubMed Central

    Jesenak, Milos; Urbancikova, Ingrid; Banovcin, Peter

    2017-01-01

    Respiratory tract infections (RTIs) are the most common form of infections in every age category. Recurrent respiratory tract infections (RRTIs), a specific form of RTIs, represent a typical and common problem associated with early childhood, causing high indirect and direct costs on the healthcare system. They are usually the consequence of immature immunity in children and high exposure to various respiratory pathogens. Their rational management should aim at excluding other severe chronic diseases associated with increased morbidity (e.g., primary immunodeficiency syndromes, cystic fibrosis, and ciliary dyskinesia) and at supporting maturity of the mucosal immune system. However, RRTIs can also be observed in adults (e.g., during exhausting and stressful periods, chronic inflammatory diseases, secondary immunodeficiencies, or in elite athletes) and require greater attention. Biologically active polysaccharides (e.g., β-glucans) are one of the most studied natural immunomodulators with a pluripotent mode of action and biological activity. According to many studies, they possess immunomodulatory, anti-inflammatory, and anti-infectious activities and therefore could be suggested as an effective part of treating and preventing RTIs. Based on published studies, the application of β-glucans was proven as a possible therapeutic and preventive approach in managing and preventing recurrent respiratory tract infections in children (especially β-glucans from Pleurotus ostreatus), adults (mostly the studies with yeast-derived β-glucans), and in elite athletes (studies with β-glucans from Pleurotus ostreatus or yeast). PMID:28726737

  20. MSFC Respiratory Protection Services

    NASA Technical Reports Server (NTRS)

    CoVan, James P.

    1999-01-01

    An overview of the Marshall Space Flight Center Respiratory Protection program is provided in this poster display. Respiratory protection personnel, building, facilities, equipment, customers, maintenance and operational activities, and Dynatech fit testing details are described and illustrated.

  1. "Short, Hard Gamma-Ray Bursts - Mystery Solved?????"

    NASA Technical Reports Server (NTRS)

    Parsons, A.

    2006-01-01

    After over a decade of speculation about the nature of short-duration hard-spectrum gamma-ray bursts (GRBs), the recent detection of afterglow emission from a small number of short bursts has provided the first physical constraints on possible progenitor models. While the discovery of afterglow emission from long GRBs was a real breakthrough linking their origin to star forming galaxies, and hence the death of massive stars, the progenitors, energetics, and environments for short gamma-ray burst events remain elusive despite a few recent localizations. Thus far, the nature of the host galaxies measured indicates that short GRBs arise from an old (> 1 Gyr) stellar population, strengthening earlier suggestions and providing support for coalescing compact object binaries as the progenitors. On the other hand, some of the short burst afterglow observations cannot be easily explained in the coalescence scenario. These observations raise the possibility that short GRBs may have different or multiple progenitors systems. The study of the short-hard GRB afterglows has been made possible by the Swift Gamma-ray Burst Explorer, launched in November of 2004. Swift is equipped with a coded aperture gamma-ray telescope that can observe up to 2 steradians of the sky and can compute the position of a gamma-ray burst to within 2-3 arcmin in less than 10 seconds. The Swift spacecraft can slew on to this burst position without human intervention, allowing its on-board x ray and optical telescopes to study the afterglow within 2 minutes of the original GRB trigger. More Swift short burst detections and afterglow measurements are needed before we can declare that the mystery of short gamma-ray burst is solved.

  2. Serotonergic raphe magnus cell discharge reflects ongoing autonomic and respiratory activities.

    PubMed

    Mason, Peggy; Gao, Keming; Genzen, Jonathan R

    2007-10-01

    Serotonergic cells are located in a restricted number of brain stem nuclei, send projections to virtually all parts of the CNS, and are critical to normal brain function. They discharge tonically at a rate modulated by the sleep-wake cycle and, in the case of medullary serotonergic cells in raphe magnus and the adjacent reticular formation (RM), are excited by cold challenge. Yet, beyond behavioral state and cold, endogenous factors that influence serotonergic cell discharge remain largely mysterious. The present study in the anesthetized rat investigated predictors of serotonergic RM cell discharge by testing whether cell discharge correlated to three rhythms observed in blood pressure recordings that averaged >30 min in length. A very slow frequency rhythm with a period of minutes, a respiratory rhythm, and a cardiac rhythm were derived from the blood pressure recording. Cross-correlations between each of the derived rhythms and cell activity revealed that the discharge of 38 of the 40 serotonergic cells studied was significantly correlated to the very slow and/or respiratory rhythms. Very few serotonergic cells discharged in relation to the cardiac cycle and those that did, did so weakly. The correlations between serotonergic cell discharge and the slow and respiratory rhythms cannot arise from baroreceptive input. Instead we hypothesize that they are by-products of ongoing adjustments to homeostatic functions that happen to alter blood pressure. Thus serotonergic RM cells integrate information about multiple homeostatic activities and challenges and can consequently modulate spinal processes according to the most pressing need of the organism.

  3. Monitoring respiratory muscles.

    PubMed

    Nava, S

    1998-12-01

    The respiratory system consists of two main parts, the lung and the ventilatory pump. The latter consists of the bony structure of the thorax, the central respiratory controllers, the inspiratory and expiratory muscles, and the nerves innervating these muscles. Respiratory muscle fatigue occurs when respiratory muscle endurance is exceeded. Muscle fatigue is defined as a condition in which there is a reduction in the capacity for developing force and/or velocity of a muscle, resulting from muscle activity, and which is reversible by rest. The respiratory muscles are somewhat difficult to assess and the techniques employed are still relatively primitive. The most important methods of respiratory muscles function assessment are: 1) the vital capacity manoeuvre, which depends on maximum inspiratory and expiratory effort by the muscles and may be a useful indicator of respiratory muscle function; 2) radiological screening has been proposed for the detection of diaphragm paralysis. This may be helpful if the paralysis is unilateral, but bilateral paralysis is difficult to detect; and 3) respiratory muscles strength may be assessed with either voluntary or nonvoluntary manoeuvres. The function of the inspiratory muscles is assessed with 3 voluntary dependent manoeuvres. They are the so called Müller manoeuvre (or maximal inspiratory pressure), the sniff test and the combined test. All these three manoeuvres generate a pressure that is a reflection of complex interactions between several muscle groups since the efforts produce different mechanisms of activity of inspiratory and expiratory muscles. Two techniques are presently employed to assess diaphragm function, not being dependent on the patient's motivation: electrical phrenic nerve stimulation and cervical magnetic stimulation. Since it is less painful, magnetic cervical stimulation overcomes some of the difficulties encountered during electrical stimulation. With these two techniques recordings of diaphragmatic

  4. GLAST's GBM Burst Trigger

    NASA Technical Reports Server (NTRS)

    Band, D.; Briggs, M.; Connaughton, V.; Kippen, M.; Preece, R.

    2003-01-01

    The GLAST Burst Monitor (GBM) will detect and localize bursts for the GLAST mission, and provide the spectral and temporal context in the traditional 10 keV to 25 MeV band for the high energy observations by the Large Area Telescope (LAT). The GBM will use traditional rate triggers in up to three energy bands, and on a variety of timescales between 16 ms and 16 s.

  5. Short pauses in thalamic deep brain stimulation promote tremor and neuronal bursting.

    PubMed

    Swan, Brandon D; Brocker, David T; Hilliard, Justin D; Tatter, Stephen B; Gross, Robert E; Turner, Dennis A; Grill, Warren M

    2016-02-01

    We conducted intraoperative measurements of tremor during DBS containing short pauses (⩽50 ms) to determine if there is a minimum pause duration that preserves tremor suppression. Nine subjects with ET and thalamic DBS participated during IPG replacement surgery. Patterns of DBS included regular 130 Hz stimulation interrupted by 0, 15, 25 or 50 ms pauses. The same patterns were applied to a model of the thalamic network to quantify effects of pauses on activity of model neurons. All patterns of DBS decreased tremor relative to 'off'. Patterns with pauses generated less tremor reduction than regular high frequency DBS. The model revealed that rhythmic burst-driver inputs to thalamus were masked during DBS, but pauses in stimulation allowed propagation of bursting activity. The mean firing rate of bursting-type model neurons as well as the firing pattern entropy of model neurons were both strongly correlated with tremor power across stimulation conditions. The temporal pattern of stimulation influences the efficacy of thalamic DBS. Pauses in stimulation resulted in decreased tremor suppression indicating that masking of pathological bursting is a mechanism of thalamic DBS for tremor. Pauses in stimulation decreased the efficacy of open-loop DBS for suppression of tremor. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. An Application of Conley Index Techniques to a Model of Bursting in Excitable Membranes

    NASA Astrophysics Data System (ADS)

    Kinney, William M.

    2000-04-01

    Assumptions about a model of bursting activity in pancreatic β-cells are stated and a neighborhood of the attractor in this model is constructed. Conley index results and techniques are used to give a sufficient condition for a singular isolating neighborhood to isolate a nonempty attractor. Finally, this theorem is applied to the bursting model.

  7. Evaluation of respiratory muscles activity by means of cross mutual information function at different levels of ventilatory effort.

    PubMed

    Alonso, Joan Francesc; Mañanas, Miguel A; Hoyer, Dirk; Topor, Zbigniew L; Bruce, Eugene N

    2007-09-01

    Analysis of respiratory muscles activity is an effective technique for the study of pulmonary diseases such as obstructive sleep apnea syndrome (OSAS). Respiratory diseases, especially those associated with changes in the mechanical properties of the respiratory apparatus, are often associated with disruptions of the normally highly coordinated contractions of respiratory muscles. Due to the complexity of the respiratory control, the assessment of OSAS related dysfunctions by linear methods are not sufficient. Therefore, the objective of this study was the detection of diagnostically relevant nonlinear complex respiratory mechanisms. Two aims of this work were: (1) to assess coordination of respiratory muscles contractions through evaluation of interactions between respiratory signals and myographic signals through nonlinear analysis by means of cross mutual information function (CMIF); (2) to differentiate between functioning of respiratory muscles in patients with OSAS and in normal subjects. Electromyographic (EMG) and mechanomyographic (MMG) signals were recorded from three respiratory muscles: genioglossus, sternomastoid and diaphragm. Inspiratory pressure and flow were also acquired. All signals were measured in eight patients with OSAS and eight healthy subjects during an increased respiratory effort while awake. Several variables were defined and calculated from CMIF in order to describe correlation between signals. The results indicate different nonlinear couplings of respiratory muscles in both populations. This effect is progressively more evident at higher levels of respiratory effort.

  8. The occurrence of respiratory events in young subjects with a frequent rhythmic masticatory muscle activity: a pilot study.

    PubMed

    Tsujisaka, Akiko; Haraki, Shingo; Nonoue, Shigeru; Mikami, Akira; Adachi, Hiroyoshi; Mizumori, Takahiro; Yatani, Hirofumi; Yoshida, Atsushi; Kato, Takafumi

    2018-02-21

    Concomitant occurrence of respiratory events can be often overlooked in the clinical practice of SB. This study assessed physiological characteristics of rhythmic masticatory muscle activity (RMMA) and concomitant respiratory events in young SB subjects asymptomatic to obstructive sleep apnea (OSA). Twenty-two subjects (age: 24.1±1.9years; F 8: M 14; BMI: 20.2±1.9kg/m 2 ) were polysomnographically diagnosed as moderate-severe SB. Sleep architecture, oromotor (RMMA and non-specific masseter activity [NSMA]) and apnea/hypopnea events were scored. All subjects showed normal sleep architecture whereas 6 exhibited respiratory events at a mild level of OSA. In all subjects, RMMA predominantly occurred in Stage N1+N2 while NSMA occurred in Stage N1+N2 (approximately 60 %) and in Stage R (up to 30 %). Up to 50% of respiratory events were scored in Stage R. RMMA occurred more frequently in close association (e.g., within 10s) with respiratory events in 6 subjects with OSA than those without. The percentage of RMMA occurring closely to respiratory events was positively correlated with apnea-hypopnea index (AHI) in Stage N1+N2 only while that of NSMA was positively correlated with AHI in Stage N1+N2 and Stage R. A sub-analysis in 6 subjects with OSA, RMMA after respiratory events was followed to arousals while those before respiratory events were mostly associated with central apnea. A subpopulation of young SB subjects can show concomitant respiratory events. Further large sample studies are needed to demonstrate that the occurrence of subclinical respiratory events represents a clinical subtype of SB. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  9. Optimal Codes for the Burst Erasure Channel

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon

    2010-01-01

    Deep space communications over noisy channels lead to certain packets that are not decodable. These packets leave gaps, or bursts of erasures, in the data stream. Burst erasure correcting codes overcome this problem. These are forward erasure correcting codes that allow one to recover the missing gaps of data. Much of the recent work on this topic concentrated on Low-Density Parity-Check (LDPC) codes. These are more complicated to encode and decode than Single Parity Check (SPC) codes or Reed-Solomon (RS) codes, and so far have not been able to achieve the theoretical limit for burst erasure protection. A block interleaved maximum distance separable (MDS) code (e.g., an SPC or RS code) offers near-optimal burst erasure protection, in the sense that no other scheme of equal total transmission length and code rate could improve the guaranteed correctible burst erasure length by more than one symbol. The optimality does not depend on the length of the code, i.e., a short MDS code block interleaved to a given length would perform as well as a longer MDS code interleaved to the same overall length. As a result, this approach offers lower decoding complexity with better burst erasure protection compared to other recent designs for the burst erasure channel (e.g., LDPC codes). A limitation of the design is its lack of robustness to channels that have impairments other than burst erasures (e.g., additive white Gaussian noise), making its application best suited for correcting data erasures in layers above the physical layer. The efficiency of a burst erasure code is the length of its burst erasure correction capability divided by the theoretical upper limit on this length. The inefficiency is one minus the efficiency. The illustration compares the inefficiency of interleaved RS codes to Quasi-Cyclic (QC) LDPC codes, Euclidean Geometry (EG) LDPC codes, extended Irregular Repeat Accumulate (eIRA) codes, array codes, and random LDPC codes previously proposed for burst erasure

  10. Lack of respiratory chain complex I impairs alternative oxidase engagement and modulates redox signaling during elicitor-induced cell death in tobacco.

    PubMed

    Vidal, Guillaume; Ribas-Carbo, Miquel; Garmier, Marie; Dubertret, Guy; Rasmusson, Allan G; Mathieu, Chantal; Foyer, Christine H; De Paepe, Rosine

    2007-02-01

    Alternative oxidase (AOX) functions in stress resistance by preventing accumulation of reactive oxygen species (ROS), but little is known about in vivo partitioning of electron flow between AOX and the cytochrome pathway. We investigated the relationships between AOX expression and in vivo activity in Nicotiana sylvestris and the complex I-deficient CMSII mutant in response to a cell death elicitor. While a specific AOX1 isoform in the active reduced state was constitutively overexpressed in CMSII, partitioning through the alternative pathway was similar to the wild type. Lack of correlation between AOX content and activity indicates severe metabolic constraints in nonstressed mutant leaves. The bacterial elicitor harpin N(Ea) induced similar timing and extent of cell death and a twofold respiratory burst in both genotypes with little change in AOX amounts. However, partitioning to AOX was increased twofold in the wild type but remained unchanged in CMSII. Oxidative phosphorylation modeling indicated a twofold ATP increase in both genotypes. By contrast, mitochondrial superoxide dismutase activity and reduced forms of ascorbate and glutathione were higher in CMSII than in the wild type. These results demonstrate genetically programmed flexibility of plant respiratory routes and antioxidants in response to elicitors and suggest that sustained ATP production, rather than AOX activity by itself or mitochondrial ROS, might be important for in planta cell death.

  11. Chondrocyte burst promotes space for mineral expansion.

    PubMed

    Hara, Emilio Satoshi; Okada, Masahiro; Nagaoka, Noriyuki; Hattori, Takako; Iida, Letycia Mary; Kuboki, Takuo; Nakano, Takayoshi; Matsumoto, Takuya

    2018-01-22

    Analysis of tissue development from multidisciplinary approaches can result in more integrative biological findings, and can eventually allow the development of more effective bioengineering methods. In this study, we analyzed the initial steps of mineral formation during secondary ossification of mouse femur based on biological and bioengineering approaches. We first found that some chondrocytes burst near the mineralized area. External factors that could trigger chondrocyte burst were then investigated. Chondrocyte burst was shown to be modulated by mechanical and osmotic pressure. A hypotonic solution, as well as mechanical stress, significantly induced chondrocyte burst. We further hypothesized that chondrocyte burst could be associated with space-making for mineral expansion. In fact, ex vivo culture of femur epiphysis in hypotonic conditions, or under mechanical pressure, enhanced mineral formation, compared to normal culture conditions. Additionally, the effect of mechanical pressure on bone formation in vivo was investigated by immobilization of mouse lower limbs to decrease the body pressure onto the joints. The results showed that limb immobilization suppressed bone formation. Together, these results suggest chondrocyte burst as a novel fate of chondrocytes, and that manipulation of chondrocyte burst with external mechano-chemical stimuli could be an additional approach for cartilage and bone tissue engineering.

  12. Stimulation of Respiratory Motor Output and Ventilation in a Murine Model of Pompe Disease by Ampakines.

    PubMed

    ElMallah, Mai K; Pagliardini, Silvia; Turner, Sara M; Cerreta, Anthony J; Falk, Darin J; Byrne, Barry J; Greer, John J; Fuller, David D

    2015-09-01

    Pompe disease results from a mutation in the acid α-glucosidase gene leading to lysosomal glycogen accumulation. Respiratory insufficiency is common, and the current U.S. Food and Drug Administration-approved treatment, enzyme replacement, has limited effectiveness. Ampakines are drugs that enhance α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor responses and can increase respiratory motor drive. Recent work indicates that respiratory motor drive can be blunted in Pompe disease, and thus pharmacologic stimulation of breathing may be beneficial. Using a murine Pompe model with the most severe clinical genotype (the Gaa(-/-) mouse), our primary objective was to test the hypothesis that ampakines can stimulate respiratory motor output and increase ventilation. Our second objective was to confirm that neuropathology was present in Pompe mouse medullary respiratory control neurons. The impact of ampakine CX717 on breathing was determined via phrenic and hypoglossal nerve recordings in anesthetized mice and whole-body plethysmography in unanesthetized mice. The medulla was examined using standard histological methods coupled with immunochemical markers of respiratory control neurons. Ampakine CX717 robustly increased phrenic and hypoglossal inspiratory bursting and reduced respiratory cycle variability in anesthetized Pompe mice, and it increased inspiratory tidal volume in unanesthetized Pompe mice. CX717 did not significantly alter these variables in wild-type mice. Medullary respiratory neurons showed extensive histopathology in Pompe mice. Ampakines stimulate respiratory neuromotor output and ventilation in Pompe mice, and therefore they have potential as an adjunctive therapy in Pompe disease.

  13. EGRET observations of bursts at MeV energies

    NASA Astrophysics Data System (ADS)

    Catelli, J. R.; Dingus, B. L.; Schneid, E. J.

    1998-05-01

    We present preliminary results from the analysis of 16 bright bursts that have been observed by the EGRET NaI calorimeter, or TASC. Seven bursts have been imaged in the EGRET spark chamber above 30 MeV, but in most cases the TASC data gives the highest energy spectra available for these bursts. The TASC can obtain spectral and rate information for bursts well outside the field of view of the EGRET spark chambers, and is sensitive in the energy range from 1 to 200 MeV. The spectra for these bursts are mostly consistent with a simple power law with spectral index in the range from 1.7 to 3.7, with several of the brighter bursts showing emission past 100 MeV. No high energy cutoff has been observed. These high energy photons offer important clues to the physical processes involved at the origin of burst emission. For bursts at cosmological distances extremely high bulk Lorentz factors are implied by the presence of MeV and GeV photons which have not been attenuated by pair production with the lower energy photons from the source.

  14. The Fermi-GBM Three-year X-Ray Burst Catalog

    NASA Astrophysics Data System (ADS)

    Jenke, P. A.; Linares, M.; Connaughton, V.; Beklen, E.; Camero-Arranz, A.; Finger, M. H.; Wilson-Hodge, C. A.

    2016-08-01

    The Fermi Gamma-ray Burst Monitor (GBM) is an all-sky gamma-ray monitor well known in the gamma-ray burst (GRB) community. Although GBM excels in detecting the hard, bright extragalactic GRBs, its sensitivity above 8 keV and its all-sky view make it an excellent instrument for the detection of rare, short-lived Galactic transients. In 2010 March, we initiated a systematic search for transients using GBM data. We conclude this phase of the search by presenting a three-year catalog of 1084 X-ray bursts. Using spectral analysis, location, and spatial distributions we classified the 1084 events into 752 thermonuclear X-ray bursts, 267 transient events from accretion flares and X-ray pulses, and 65 untriggered gamma-ray bursts. All thermonuclear bursts have peak blackbody temperatures broadly consistent with photospheric radius expansion (PRE) bursts. We find an average rate of 1.4 PRE bursts per day, integrated over all Galactic bursters within about 10 kpc. These include 33 and 10 bursts from the ultra-compact X-ray binaries 4U 0614+09 and 2S 0918-549, respectively. We discuss these recurrence times and estimate the total mass ejected by PRE bursts in our Galaxy.

  15. Classification of Radiological Changes in Burst Fractures

    PubMed Central

    Şentürk, Salim; Öğrenci, Ahmet; Gürçay, Ahmet Gürhan; Abdioğlu, Ahmet Atilla; Yaman, Onur; Özer, Ali Fahir

    2018-01-01

    AIM: Burst fractures can occur with different radiological images after high energy. We aimed to simplify radiological staging of burst fractures. METHODS: Eighty patients whom exposed spinal trauma and had burst fracture were evaluated concerning age, sex, fracture segment, neurological deficit, secondary organ injury and radiological changes that occurred. RESULTS: We performed a new classification in burst fractures at radiological images. CONCLUSIONS: According to this classification system, secondary organ injury and neurological deficit can be an indicator of energy exposure. If energy is high, the clinical status will be worse. Thus, we can get an idea about the likelihood of neurological deficit and secondary organ injuries. This classification has simplified the radiological staging of burst fractures and is a classification that gives a very accurate idea about the neurological condition. PMID:29531604

  16. NICER Eyes on Bursting Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-03-01

    What happens to a neutron stars accretion disk when its surface briefly explodes? A new instrument recently deployed at the International Space Station (ISS) is now watching bursts from neutron stars and reporting back.Deploying a New X-Ray MissionLaunch of NICER aboard a Falcon 9 rocket in June 2017. [NASA/Tony Gray]In early June of 2017, a SpaceX Dragon capsule on a Falcon 9 rocket launched on a resupply mission to the ISS. The pressurized interior of the Dragon contained the usual manifest of crew supplies, spacewalk equipment, and vehicle hardware. But the unpressurized trunk of the capsule held something a little different: the Neutron star Interior Composition Explorer (NICER).In the two weeks following launch, NICER was extracted from the SpaceX Dragon capsule and installed on the ISS. And by the end of the month, the instrument was already collecting its first data set: observations of a bright X-ray burst from Aql X-1, a neutron star accreting matter from a low-mass binary companion.Impact of BurstsNICERs goal is to provide a new view of neutron-star physics at X-ray energies of 0.212 keV a window that allows us to explore bursts of energy that neutron stars sometimes emit from their surfaces.Artists impression of an X-ray binary, in which a compact object accretes material from a companion star. [ESA/NASA/Felix Mirabel]In X-ray burster systems, hydrogen- and helium-rich material from a low-mass companion star piles up in an accretion disk around the neutron star. This material slowly funnels onto the neutron stars surface, forming a layer that gravitationally compresses and eventually becomes so dense and hot that runaway nuclear fusion ignites.Within seconds, the layer of material is burned up, producing a burst of emission from the neutron star that outshines even the inner regions of the hot accretion disk. Then more material funnels onto the neutron star and the process begins again.Though we have a good picture of the physics that causes these bursts

  17. Transcriptional bursting explains the noise–versus–mean relationship in mRNA and protein levels

    DOE PAGES

    Dar, Roy; Shaffer, Sydney M.; Singh, Abhyudai; ...

    2016-07-28

    Recent analysis demonstrates that the HIV-1 Long Terminal Repeat (HIV LTR) promoter exhibits a range of possible transcriptional burst sizes and frequencies for any mean-expression level. However, these results have also been interpreted as demonstrating that cell-tocell expression variability (noise) and mean are uncorrelated, a significant deviation from previous results. Here, we re-examine the available mRNA and protein abundance data for the HIV LTR and find that noise in mRNA and protein expression scales inversely with the mean along analytically predicted transcriptional burst-size manifolds. We then experimentally perturb transcriptional activity to test a prediction of the multiple burst-size model: thatmore » increasing burst frequency will cause mRNA noise to decrease along given burst-size lines as mRNA levels increase. In conclusion, the data show that mRNA and protein noise decrease as mean expression increases, supporting the canonical inverse correlation between noise and mean.« less

  18. Bursting of sensitive polymersomes induced by curling

    PubMed Central

    Mabrouk, Elyes; Cuvelier, Damien; Brochard-Wyart, Françoise; Nassoy, Pierre; Li, Min-Hui

    2009-01-01

    Polymersomes, which are stable and robust vesicles made of block copolymer amphiphiles, are good candidates for drug carriers or micro/nanoreactors. Polymer chemistry enables almost unlimited molecular design of responsive polymersomes whose degradation upon environmental changes has been used for the slow release of active species. Here, we propose a strategy to remotely trigger instantaneous polymersome bursting. We have designed asymmetric polymer vesicles, in which only one leaflet is composed of responsive polymers. In particular, this approach has been successfully achieved by using a UV-sensitive liquid-crystalline copolymer. We study experimentally and theoretically this bursting mechanism and show that it results from a spontaneous curvature of the membrane induced by the remote stimulus. The versatility of this mechanism should broaden the range of applications of polymersomes in fields such as drug delivery, cosmetics and material chemistry. PMID:19383800

  19. The Third BATSE Gamma-Ray Burst Catalog

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.; Pendleton, Geoffrey N.; Briggs, Michael S.; Kouveliotou, Chryssa; Koshut, Thomas M.; Lestrade, John Patrick; Paciesas, William S.; McCollough, Michael L.; Brainerd, Jerome J.; Horack, John M.; hide

    1996-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) has triggered on 1122 cosmic gamma-ray bursts between 1991 April 19 and 1994 September 19. These events constitute the Third BATSE (3B) burst catalog. This catalog includes the events previously reported in the 2B catalog, which covered the time interval 1991 April 19 to 1993 March 9. We present tables of the burst occurrence times, locations, peak fluxes, fluences, and durations. In general, results from previous BATSE catalogs are confirmed here with greater statistical significance. The angular distribution is consistent with isotropy. The mean galactic dipole and quadrupole moments are within 0.6 a and 0.3 a, respectively, of the values expected for isotropy. The intensity distribution is not consistent with a homogeneous distribution of burst sources, with V/V(sub max) = 0.33 +/- 0.01. The duration distribution (T(sub 90)) exhibits bimodality, with peaks at approx. 0.5 and approx. 30 s. There is no compelling evidence for burst repetition, but only weak limits can be placed on the repetition rate.

  20. Prompt optical emission from gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Kehoe, Robert; Akerlof, Karl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Lee, Brian; Marshall, Stuart; McKay, Tim; Pawl, Andrew; Piro, Luigi; Priedhorsky, Bill; Szymanski, John; Wren, Jim

    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure contemporaneous and early afterglow optical emission from gamma-ray bursts (GRBs). The ROTSE-I telescope array has been fully automated and responding to burst alerts from the GRB Coordinates Network since March 1998, taking prompt optical data for 30 bursts in its first year. We will briefly review observations of GRB990123 which revealed the first detection of an optical burst occurring during the gamma-ray emission, reaching 9th magnitude at its peak. In addition, we present here preliminary optical results for seven other gamma-ray bursts. No other optical counterparts were seen in this analysis, and the best limiting senisitivities are mV > 13.0 at 14.7 seconds after the gamma-ray rise, and mmV > 16.4 at 62 minutes. These are the most stringent limits obtained for GRB optical counterpart brightness in the first hour after the burst. This analysis suggests that there is not a strong correlation between optical flux and gamma-ray emission.

  1. In vitro activities of nine peptide deformylase inhibitors and five comparator agents against respiratory and skin pathogens.

    PubMed

    Bowker, K E; Noel, A R; MacGowan, A P

    2003-12-01

    The activity of nine peptide deformylase (PDF) inhibitors undergoing clinical evaluation were compared with co-amoxiclav, levofloxacin, moxifloxacin, erythromycin and telithromycin against a range of respiratory and skin pathogens (n=166). The PDF inhibitor showed good activity against Streptococcus pneumoniae, Moxarella catarrhalis, Group A streptococci and Staphylococcus aureus irrespective of beta-lactam or fluoroquinolone susceptibility. Against Haemophilus influenzae, MIC(90) values were generally higher. BB-88488 was the most active compound. Overall these data suggest that PDF inhibitors are an interesting new class of antimicrobial worthy of further investigation in the treatment of respiratory tract and skin infections.

  2. Swift Gamma-Ray Burst Explorer: Mission Design for Rapid, Accurate Location of Gamma-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bundas, David J.

    2004-01-01

    The Swift Gamma-ray Burst Explorer is a NASA Mid-sized Explorer (MIDEX) with the primary mission of determining the origins of Gamma-Ray Bursts (GRBs). It will be the first mission to autonomously respond to newly-discovered GRBs and provide immediate follow-up with narrow field instruments capable of multi-wavelength (UV, Optical, X-ray) observations. The characteristics of GRBs that are the key mission design drivers, are their non-repeating and brief duration bursts of multi-wavelength photons. In addition, rapid notification of the location and characteristics of the GRBs to ground-and-space-based observatories drive the end-to-end data analysis and distribution requirements.

  3. Swift Gamma-ray Burst Explorer: Mission Design for Rapid, Accurate Location of Gamma-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bundas, David J.

    2005-01-01

    The Swift Gamma-ray Burst Explorer is a NASA Mid-sized Explorer (MIDEX) with the primary mission of determining the origins of Gamma-Ray Bursts (GRBs). It will be the first mission to autonomously respond to newly-discovered GRBs and provide immediate follow-up with narrow field instruments capable of multi-wavelength (UT, Optical, X-ray) observations. The characteristics of GRBs that are the key mission design drivers, are their non-repeating and brief duration bursts of multi-wavelength photons. In addition, rapid notification of the location and characteristics of the GRBs to ground-and-space-based observatories drive the end-to-end data analysis and distribution requirements.

  4. A Novel QKD-based Secure Edge Router Architecture Design for Burst Confidentiality in Optical Burst Switched Networks

    NASA Astrophysics Data System (ADS)

    Balamurugan, A. M.; Sivasubramanian, A.

    2014-06-01

    The Optical Burst Switching (OBS) is an emergent result to the technology issue that could achieve a viable network in future. They have the ability to meet the bandwidth requisite of those applications that call for intensive bandwidth. The field of optical transmission has undergone numerous advancements and is still being researched mainly due to the fact that optical data transmission can be done at enormous speeds. The concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution and quality of service (QoS). This paper proposes a framework based on QKD based secure edge router architecture design to provide burst confidentiality. The QKD protocol offers high level of confidentiality as it is indestructible. The design architecture was implemented in FPGA using diverse models and the results were taken. The results show that the proposed model is suitable for real time secure routing applications of the Optical burst switched networks.

  5. Incidence of respiratory viruses in Peruvian children with acute respiratory infections.

    PubMed

    del Valle Mendoza, Juana; Cornejo-Tapia, Angela; Weilg, Pablo; Verne, Eduardo; Nazario-Fuertes, Ronald; Ugarte, Claudia; del Valle, Luis J; Pumarola, Tomás

    2015-06-01

    Acute respiratory infections are responsible for high morbi-mortality in Peruvian children. However, the etiological agents are poorly identified. This study, conducted during the pandemic outbreak of H1N1 influenza in 2009, aims to determine the main etiological agents responsible for acute respiratory infections in children from Lima, Peru. Nasopharyngeal swabs collected from 717 children with acute respiratory infections between January 2009 and December 2010 were analyzed by multiplex RT-PCR for 13 respiratory viruses: influenza A, B, and C virus; parainfluenza virus (PIV) 1, 2, 3, and 4; and human respiratory syncytial virus (RSV) A and B, among others. Samples were also tested with direct fluorescent-antibodies (DFA) for six respiratory viruses. RT-PCR and DFA detected respiratory viruses in 240 (33.5%) and 85 (11.9%) cases, respectively. The most common etiological agents were RSV-A (15.3%), followed by influenza A (4.6%), PIV-1 (3.6%), and PIV-2 (1.8%). The viruses identified by DFA corresponded to RSV (5.9%) and influenza A (1.8%). Therefore, respiratory syncytial viruses (RSV) were found to be the most common etiology of acute respiratory infections. The authors suggest that active surveillance be conducted to identify the causative agents and improve clinical management, especially in the context of possible circulation of pandemic viruses. © 2015 Wiley Periodicals, Inc.

  6. 3rd Interplanetary Network Gamma-Ray Burst Website

    NASA Astrophysics Data System (ADS)

    Hurley, Kevin

    1998-05-01

    We announce the opening of the 3rd Interplanetary Network web site at http://ssl.berkeley.edu/ipn3/index.html This site presently has four parts: 1. A bibliography of over 3000 publications on gamma-ray bursts, 2. IPN data on all bursts triangulated up to February 1998, 3. A master list showing which spacecraft observed which bursts, 4. Preliminary IPN data on the latest bursts observed.

  7. Temporal relationship between antibiotic use and respiratory virus activities in the Republic of Korea: a time-series analysis.

    PubMed

    Ryu, Sukhyun; Kim, Sojung; Kim, Bryan I; Klein, Eili Y; Yoon, Young Kyung; Chun, Byung Chul

    2018-01-01

    Inappropriate use of antibiotics increases resistance and reduces their effectiveness. Despite evidence-based guidelines, antibiotics are still commonly used to treat infections likely caused by respiratory viruses. In this study, we examined the temporal relationships between antibiotic usage and respiratory infections in the Republic of Korea. The number of monthly antibiotic prescriptions and the incidence of acute respiratory tract infections between 2010 and 2015 at all primary care clinics were obtained from the Korean Health Insurance Review and Assessment Service. The monthly detection rates of respiratory viruses, including adenovirus, respiratory syncytial virus, influenza virus, human coronavirus, and human rhinovirus, were collected from Korea Centers for Disease Control and Prevention. Cross-correlation analysis was conducted to quantify the temporal relationship between antibiotic use and respiratory virus activities as well as respiratory infections in primary clinics. The monthly use of different classes of antibiotic, including penicillins, other beta-lactam antibacterials, macrolides and quinolones, was significantly correlated with influenza virus activity. These correlations peaked at the 0-month lag with cross-correlation coefficients of 0.45 ( p  < 0.01), 0.46 ( p  < 0.01), 0.40 ( p  < 0.01), and 0.35 (< 0.01), respectively. Furthermore, a significant correlation was found between acute bronchitis and antibiotics, including penicillin (0.73, p  < 0.01), macrolides (0.74, p  < 0.01), and quinolones (0.45, p  < 0.01), at the 0-month lag. Our findings suggest that there is a significant temporal relationship between influenza virus activity and antibiotic use in primary clinics. This relationship indicates that interventions aimed at reducing influenza cases in addition to effort to discourage the prescription of antibiotics by physicians may help to decrease unnecessary antibiotic consumption.

  8. Human serum activity of telithromycin, azithromycin and amoxicillin/clavulanate against common aerobic and anaerobic respiratory pathogens.

    PubMed

    Stein, Gary E; Schooley, Sharon; Tyrrell, Kerin L; Citron, Diane M; Goldstein, Ellie J C

    2007-01-01

    Telithromycin is a new ketolide antimicrobial with a good in vitro activity against both aerobic and anaerobic respiratory pathogens. In this study, we evaluated the antibacterial activity over time of telithromycin (800mg), azithromycin (500mg), and amoxicillin/clavulanate (875/125mg) in serum following single oral doses of these agents to 10 healthy subjects. Inhibitory and bactericidal titers were determined at 2, 6, 12, and 24h after each dose and the median titer was used to determine antibacterial activity. Against two azithromycin-resistant strains of Streptococcus pneumoniae, both telithromycin (MIC=0.25 and 0.5 microg/mL) and amoxicillin/clavulanate exhibited inhibitory and cidal activity for at least 6h. All three antibiotics provided prolonged (>or=12h) inhibitory activity against strains of Hemophilus influenzae (telithromycin MIC=4.0 microg/ml). Both telithromycin and amoxicillin/clavulanate exhibited rapid and prolonged inhibitory activity (>or=12h) against each of the anaerobes studied (Finegoldia [Peptostreptococcus] magna Peptostreptococcus micros, Prevotella bivia, and Prevotella melaninogenica). Moreover, both agents provided bactericidal activity against both Prevotella species. In this ex vivo pharmacodynamic study, we found that telithromycin provided rapid and prolonged antibacterial activity in serum against macrolide-resistant strains of S. pneumoniae, beta-lactamase-positive and -negative strains of H. influenzae, and common respiratory anaerobic pathogens. These findings suggest that telithromycin could have clinical utility in the treatment of community-acquired mixed aerobic-anaerobic respiratory tract infections, including chronic sinusitis and aspiration pneumonia.

  9. Staphylococcus aureus capsular polysaccharide types 5 and 8 reduce killing by bovine neutrophils in vitro.

    PubMed

    Kampen, Annette H; Tollersrud, Tore; Lund, Arve

    2005-03-01

    Isogenic variants of Staphylococcus aureus strain Reynolds expressing either no capsule or capsular polysaccharide (CP) type 5 (CP5) or type 8 (CP8) were used to assess the effect of CP on bacterial killing and the respiratory burst of bovine neutrophils. The effects of antisera specific for CP5 and CP8 were also evaluated. The killing of live bacteria by isolated neutrophils was quantified in a bactericidal assay, while the respiratory burst after stimulation with live bacteria in whole blood was measured by flow cytometry. The expression of a CP5 or CP8 capsule protected the bacteria from being killed by bovine neutrophils in vitro (P <0.001), and the capsule-expressing variants did not stimulate respiratory burst activity in calf whole blood. The addition of serotype-specific antisera increased the killing of the capsule-expressing bacteria and enhanced their stimulating effect in the respiratory burst assay (P <0.01). When the S. aureus variants were grown under conditions known not to promote capsule expression, there were no significant differences between them. The present study demonstrates that the expression of S. aureus CP5 or CP8 confers resistance to opsonophagocytic killing and prevents the bacteria from inducing respiratory burst of bovine neutrophils in vitro and that these effects can be reversed by the addition of serotype-specific antisera.

  10. A direct localization of a fast radio burst and its host.

    PubMed

    Chatterjee, S; Law, C J; Wharton, R S; Burke-Spolaor, S; Hessels, J W T; Bower, G C; Cordes, J M; Tendulkar, S P; Bassa, C G; Demorest, P; Butler, B J; Seymour, A; Scholz, P; Abruzzo, M W; Bogdanov, S; Kaspi, V M; Keimpema, A; Lazio, T J W; Marcote, B; McLaughlin, M A; Paragi, Z; Ransom, S M; Rupen, M; Spitler, L G; van Langevelde, H J

    2017-01-04

    Fast radio bursts are astronomical radio flashes of unknown physical nature with durations of milliseconds. Their dispersive arrival times suggest an extragalactic origin and imply radio luminosities that are orders of magnitude larger than those of all known short-duration radio transients. So far all fast radio bursts have been detected with large single-dish telescopes with arcminute localizations, and attempts to identify their counterparts (source or host galaxy) have relied on the contemporaneous variability of field sources or the presence of peculiar field stars or galaxies. These attempts have not resulted in an unambiguous association with a host or multi-wavelength counterpart. Here we report the subarcsecond localization of the fast radio burst FRB 121102, the only known repeating burst source, using high-time-resolution radio interferometric observations that directly image the bursts. Our precise localization reveals that FRB 121102 originates within 100 milliarcseconds of a faint 180-microJansky persistent radio source with a continuum spectrum that is consistent with non-thermal emission, and a faint (twenty-fifth magnitude) optical counterpart. The flux density of the persistent radio source varies by around ten per cent on day timescales, and very long baseline radio interferometry yields an angular size of less than 1.7 milliarcseconds. Our observations are inconsistent with the fast radio burst having a Galactic origin or its source being located within a prominent star-forming galaxy. Instead, the source appears to be co-located with a low-luminosity active galactic nucleus or a previously unknown type of extragalactic source. Localization and identification of a host or counterpart has been essential to understanding the origins and physics of other kinds of transient events, including gamma-ray bursts and tidal disruption events. However, if other fast radio bursts have similarly faint radio and optical counterparts, our findings imply that

  11. Analysis of Family Structures Reveals Robustness or Sensitivity of Bursting Activity to Parameter Variations in a Half-Center Oscillator (HCO) Model.

    PubMed

    Doloc-Mihu, Anca; Calabrese, Ronald L

    2016-01-01

    The underlying mechanisms that support robustness in neuronal networks are as yet unknown. However, recent studies provide evidence that neuronal networks are robust to natural variations, modulation, and environmental perturbations of parameters, such as maximal conductances of intrinsic membrane and synaptic currents. Here we sought a method for assessing robustness, which might easily be applied to large brute-force databases of model instances. Starting with groups of instances with appropriate activity (e.g., tonic spiking), our method classifies instances into much smaller subgroups, called families, in which all members vary only by the one parameter that defines the family. By analyzing the structures of families, we developed measures of robustness for activity type. Then, we applied these measures to our previously developed model database, HCO-db, of a two-neuron half-center oscillator (HCO), a neuronal microcircuit from the leech heartbeat central pattern generator where the appropriate activity type is alternating bursting. In HCO-db, the maximal conductances of five intrinsic and two synaptic currents were varied over eight values (leak reversal potential also varied, five values). We focused on how variations of particular conductance parameters maintain normal alternating bursting activity while still allowing for functional modulation of period and spike frequency. We explored the trade-off between robustness of activity type and desirable change in activity characteristics when intrinsic conductances are altered and identified the hyperpolarization-activated (h) current as an ideal target for modulation. We also identified ensembles of model instances that closely approximate physiological activity and can be used in future modeling studies.

  12. Observational properties of decameter type IV bursts

    NASA Astrophysics Data System (ADS)

    Melnik, Valentin; Brazhenko, Anatoly; Rucker, Helmut; Konovalenko, Alexander; Briand, Carine; Dorovskyy, Vladimir; Zarka, Philippe; Frantzusenko, Anatoly; Panchenko, Michael; Poedts, Stefan; Zaqarashvili, Teimuraz; Shergelashvili, Bidzina

    2013-04-01

    Oscillations of decameter type IV bursts were registered during observations of solar radio emission by UTR-2, URAN-2 and NDA in 2011-2012. Large majority of these bursts were accompanied by coronal mass ejections (CMEs), which were observed by SOHO and STEREO in the visible light. Only in some cases decameter type IV bursts were not associated with CMEs. The largest periods of oscillations P were some tens of minutes. There were some modes of long periods of oscillations simultaneously. Periods of oscillations in flux and in polarization profiles were close. Detailed properties of oscillations at different frequencies were analyzed on the example of two type IV bursts. One of them was observed on April 7, 2011 when a CME happened. Another one (August 1, 2011) was registered without any CME. The 7 April type IV burst had two periods in the frames 75-85 and 35-85 minutes. Interesting feature of these oscillations is decreasing periods with time. The observed decreasing rates dP/dt equaled 0.03-0.07. Concerning type IV burst observed on August 1, 2011 the period of its oscillations increases from 17 min. at 30 MHz to 44 min. at 10 MHz. Connection of type IV burst oscillations with oscillations of magnetic arches and CMEs at corresponding altitudes are discussed. The work is fulfilled in the frame of FP7 project "SOLSPANET".

  13. The human burst suppression electroencephalogram of deep hypothermia.

    PubMed

    Westover, M Brandon; Ching, Shinung; Kumaraswamy, Vishakhadatta M; Akeju, Seun Oluwaseun; Pierce, Eric; Cash, Sydney S; Kilbride, Ronan; Brown, Emery N; Purdon, Patrick L

    2015-10-01

    Deep hypothermia induces 'burst suppression' (BS), an electroencephalogram pattern with low-voltage 'suppressions' alternating with high-voltage 'bursts'. Current understanding of BS comes mainly from anesthesia studies, while hypothermia-induced BS has received little study. We set out to investigate the electroencephalogram changes induced by cooling the human brain through increasing depths of BS through isoelectricity. We recorded scalp electroencephalograms from eleven patients undergoing deep hypothermia during cardiac surgery with complete circulatory arrest, and analyzed these using methods of spectral analysis. Within patients, the depth of BS systematically depends on the depth of hypothermia, though responses vary between patients except at temperature extremes. With decreasing temperature, burst lengths increase, and burst amplitudes and lengths decrease, while the spectral content of bursts remains constant. These findings support an existing theoretical model in which the common mechanism of burst suppression across diverse etiologies is the cyclical diffuse depletion of metabolic resources, and suggest the new hypothesis of local micro-network dropout to explain decreasing burst amplitudes at lower temperatures. These results pave the way for accurate noninvasive tracking of brain metabolic state during surgical procedures under deep hypothermia, and suggest new testable predictions about the network mechanisms underlying burst suppression. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Activation of respiratory muscles during weaning from mechanical ventilation.

    PubMed

    Walterspacher, Stephan; Gückler, Julia; Pietsch, Fabian; Walker, David Johannes; Kabitz, Hans-Joachim; Dreher, Michael

    2017-04-01

    Respiratory muscle dysfunction is a key component of weaning failure. Balancing respiratory muscle loading and unloading by applying different ventilation modes along with spontaneous breathing episodes are established weaning strategies. However, the effects of body positioning on the respiratory muscles during weaning remains unclear. This study aimed at assessing respiratory drive by surface electromyography (EMG) of the diaphragm (EMG dia ) and parasternal muscles (EMG para ) in tracheotomized patients during prolonged weaning in 3 randomized body positions-supine, 30° semirecumbent, and 80° sitting-during mechanical ventilation and spontaneous breathing. Nine patients were included for analysis. Cardiorespiratory parameters (heart rate, blood pressure, arterial oxygen saturation, dyspnea) did not change under each condition (all P>.05). EMG para and EMG dia did not change under mechanical ventilation (both P>.05). EMG dia changed under spontaneous breathing from supine to sitting (0.45±0.26 vs 0.32±0.19; P=.012) and between semirecumbent to sitting (0.41±0.23 vs 0.32±0.19; P=.039), whereas EMG para did not change. This is the first study to show that body positioning influences respiratory drive to the diaphragm in tracheotomized patients with prolonged weaning from mechanical ventilation during unassisted breathing. Sitting position reduces respiratory drive compared with semirecumbent and supine positioning and might therefore be favored during spontaneous breathing trials. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. High-frequency stimulation of the temporoammonic pathway induces input-specific long-term potentiation in subicular bursting cells.

    PubMed

    Fidzinski, Pawel; Wawra, Matthias; Bartsch, Julia; Heinemann, Uwe; Behr, Joachim

    2012-01-09

    The subiculum (Sub) as a part of the hippocampal formation is thought to play a functional role in learning and memory. In addition to its major input from CA1 pyramidal cells, the subiculum receives input from the entorhinal cortex (EC) via the temporoammonic pathway. Thus far, synaptic plasticity in the subiculum was mainly investigated at CA1-Sub synapses. According to their spiking pattern, pyramidal cells in the subiculum were classified as bursting cells and non-bursting cells. In the present study, we demonstrate that subicular bursting cells show input-specific forms of long-term potentiation (LTP). At CA1-Sub synapses, bursting cells have been shown to express a presynaptic NMDA receptor-dependent LTP that depends on the activation of a cAMP-PKA cascade (Wozny et al., Journal of Physiology 2008). In contrast, at EC-Sub synapses the induction of LTP in bursting cells shows a high induction-threshold and relies on the activation of postsynaptic NMDA receptors, postsynaptic depolarization and postsynaptic Ca(2+) influx. Each form of LTP is input-specific and fails to induce heterosynaptic plasticity. Taken together, our data suggest that distinct, input-specific mechanisms govern high frequency-induced LTP at subicular bursting cells' synapses. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Testing the Gamma-Ray Burst Energy Relationships

    NASA Technical Reports Server (NTRS)

    Band, David L.; Preece, Robert D.

    2005-01-01

    Building on Nakar & Piran's analysis of the Amati relation relating gamma-ray burst peak energies E(sub p) and isotropic energies E(sub iso ) we test the consistency of a large sample of BATSE bursts with the Amati and Ghirlanda (which relates peak energies and actual gamma-ray energies E(sub gamma)) relations. Each of these relations can be exp ressed as a ratio of the different energies that is a function of red shift (for both the Amati and Ghirlanda relations) and beaming fraction f(sub B) (for the Ghirlanda relation). The most rigorous test, whic h allows bursts to be at any redshift, corroborates Nakar & Piran's r esult - 88% of the BATSE bursts are inconsistent with the Amati relat ion - while only l.6% of the bursts are inconsistent with the Ghirlan da relation if f(sub B) = 1. Modelling the redshift distribution resu lts in an energy ratio distribution for the Amati relation that is sh ifted by an order of magnitude relative to the observed distributions; any sub-population satisfying the Amati relation can comprise at mos t approx. 18% of our burst sample. A similar analysis of the Ghirland a relation depends sensitively on the beaming fraction distribution f or small values of f(sub B); for reasonable estimates of this distrib ution about a third of the burst sample is inconsistent with the Ghir landa relation. Our results indicate that these relations are an artifact of the selection effects of the burst sample in which they were f ound; these selection effects may favor sub-populations for which the se relations are valid.

  17. New decoding methods of interleaved burst error-correcting codes

    NASA Astrophysics Data System (ADS)

    Nakano, Y.; Kasahara, M.; Namekawa, T.

    1983-04-01

    A probabilistic method of single burst error correction, using the syndrome correlation of subcodes which constitute the interleaved code, is presented. This method makes it possible to realize a high capability of burst error correction with less decoding delay. By generalizing this method it is possible to obtain probabilistic method of multiple (m-fold) burst error correction. After estimating the burst error positions using syndrome correlation of subcodes which are interleaved m-fold burst error detecting codes, this second method corrects erasure errors in each subcode and m-fold burst errors. The performance of these two methods is analyzed via computer simulation, and their effectiveness is demonstrated.

  18. Solar Type II Radio Bursts and IP Type II Events

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Erickson, W. C.

    2005-01-01

    We have examined radio data from the WAVES experiment on the Wind spacecraft in conjunction with ground-based data in order to investigate the relationship between the shocks responsible for metric type II radio bursts and the shocks in front of coronal mass ejections (CMEs). The bow shocks of fast, large CMEs are strong interplanetary (IP) shocks, and the associated radio emissions often consist of single broad bands starting below approx. 4 MHz; such emissions were previously called IP type II events. In contrast, metric type II bursts are usually narrowbanded and display two harmonically related bands. In addition to displaying complete dynamic spectra for a number of events, we also analyze the 135 WAVES 1 - 14 MHz slow-drift time periods in 2001-2003. We find that most of the periods contain multiple phenomena, which we divide into three groups: metric type II extensions, IP type II events, and blobs and bands. About half of the WAVES listings include probable extensions of metric type II radio bursts, but in more than half of these events, there were also other slow-drift features. In the 3 yr study period, there were 31 IP type II events; these were associated with the very fastest CMEs. The most common form of activity in the WAVES events, blobs and bands in the frequency range between 1 and 8 MHz, fall below an envelope consistent with the early signatures of an IP type II event. However, most of this activity lasts only a few tens of minutes, whereas IP type II events last for many hours. In this study we find many examples in the radio data of two shock-like phenomena with different characteristics that occur simultaneously in the metric and decametric/hectometric bands, and no clear example of a metric type II burst that extends continuously down in frequency to become an IP type II event. The simplest interpretation is that metric type II bursts, unlike IP type II events, are not caused by shocks driven in front of CMEs.

  19. The supernova-gamma-ray burst-jet connection.

    PubMed

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  20. Flash photoionization of gamma-ray burst environments

    NASA Technical Reports Server (NTRS)

    Band, David L.; Hartmann, Dieter H.

    1992-01-01

    The H-alpha line emission that a flash-photoionized region emits is calculated. Archival transients, as well as various theoretical predictions, suggest that there may be significant ionizing flux. The limits on the line flux which might be observable indicate that the density must be fairly high for the recombination radiation to be observable. The intense burst radiation is insufficient to melt the dust which will be present in such a dense medium. This dust may attenuate the observable line emission, but does not attenuate the ionizing radiation before it ionizes the neutral medium surrounding the burst source. The dust can also produce a light echo. If there are indeed gamma-ray bursts in dense clouds, then it is possible that the burst was triggered by Bondi-Hoyle accretion from the dense medium, although it is unlikely on statistical grounds that all bursts occur in clouds.

  1. Kilometric shock-associated events and microwave bursts

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Macdowall, R. J.; Stone, R. G.

    1990-01-01

    The peak times of impulsive microwaves bursts are compared with those of shock-associated (SA) kilometric radio events. The first peaks in these two frequency regimes are usually well-correlated in time, but the last peaks of the SA events observed at 1 MHz occur an average of 20 min after the last impulsive microwave peaks. In some cases, the SA events overlap in time with the post-burst increases of microwave bursts; sometimes there is general correspondence in their intensity time profiles. These observations suggest that the earlier components of the SA events are usually caused by electrons accelerated in or near the microwave source region. The possibility that the later components of some SA events could be associated with nonthermal electrons responsible for microwave post-burst increases, although they have traditionally been attributed to electrons accelerated at type II burst producing shocks in the upper corona is discussed.

  2. Simulating X-ray bursts during a transient accretion event

    NASA Astrophysics Data System (ADS)

    Johnston, Zac; Heger, Alexander; Galloway, Duncan K.

    2018-06-01

    Modelling of thermonuclear X-ray bursts on accreting neutron stars has to date focused on stable accretion rates. However, bursts are also observed during episodes of transient accretion. During such events, the accretion rate can evolve significantly between bursts, and this regime provides a unique test for burst models. The accretion-powered millisecond pulsar SAX J1808.4-3658 exhibits accretion outbursts every 2-3 yr. During the well-sampled month-long outburst of 2002 October, four helium-rich X-ray bursts were observed. Using this event as a test case, we present the first multizone simulations of X-ray bursts under a time-dependent accretion rate. We investigate the effect of using a time-dependent accretion rate in comparison to constant, averaged rates. Initial results suggest that using a constant, average accretion rate between bursts may underestimate the recurrence time when the accretion rate is decreasing, and overestimate it when the accretion rate is increasing. Our model, with an accreted hydrogen fraction of X = 0.44 and a CNO metallicity of ZCNO = 0.02, reproduces the observed burst arrival times and fluences with root mean square (rms) errors of 2.8 h, and 0.11× 10^{-6} erg cm^{-2}, respectively. Our results support previous modelling that predicted two unobserved bursts and indicate that additional bursts were also missed by observations.

  3. Towards estimation of respiratory muscle effort with respiratory inductance plethysmography signals and complementary ensemble empirical mode decomposition.

    PubMed

    Chen, Ya-Chen; Hsiao, Tzu-Chien

    2018-07-01

    Respiratory inductance plethysmography (RIP) sensor is an inexpensive, non-invasive, easy-to-use transducer for collecting respiratory movement data. Studies have reported that the RIP signal's amplitude and frequency can be used to discriminate respiratory diseases. However, with the conventional approach of RIP data analysis, respiratory muscle effort cannot be estimated. In this paper, the estimation of the respiratory muscle effort through RIP signal was proposed. A complementary ensemble empirical mode decomposition method was used, to extract hidden signals from the RIP signals based on the frequency bands of the activities of different respiratory muscles. To validate the proposed method, an experiment to collect subjects' RIP signal under thoracic breathing (TB) and abdominal breathing (AB) was conducted. The experimental results for both the TB and AB indicate that the proposed method can be used to loosely estimate the activities of thoracic muscles, abdominal muscles, and diaphragm. Graphical abstract ᅟ.

  4. Detection of burst suppression patterns in EEG using recurrence rate.

    PubMed

    Liang, Zhenhu; Wang, Yinghua; Ren, Yongshao; Li, Duan; Voss, Logan; Sleigh, Jamie; Li, Xiaoli

    2014-01-01

    Burst suppression is a unique electroencephalogram (EEG) pattern commonly seen in cases of severely reduced brain activity such as overdose of general anesthesia. It is important to detect burst suppression reliably during the administration of anesthetic or sedative agents, especially for cerebral-protective treatments in various neurosurgical diseases. This study investigates recurrent plot (RP) analysis for the detection of the burst suppression pattern (BSP) in EEG. The RP analysis is applied to EEG data containing BSPs collected from 14 patients. Firstly we obtain the best selection of parameters for RP analysis. Then, the recurrence rate (RR), determinism (DET), and entropy (ENTR) are calculated. Then RR was selected as the best BSP index one-way analysis of variance (ANOVA) and multiple comparison tests. Finally, the performance of RR analysis is compared with spectral analysis, bispectral analysis, approximate entropy, and the nonlinear energy operator (NLEO). ANOVA and multiple comparison tests showed that the RR could detect BSP and that it was superior to other measures with the highest sensitivity of suppression detection (96.49%, P = 0.03). Tracking BSP patterns is essential for clinical monitoring in critically ill and anesthetized patients. The purposed RR may provide an effective burst suppression detector for developing new patient monitoring systems.

  5. Gamma-Ray Burst Host Galaxies Have "Normal" Luminosities.

    PubMed

    Schaefer

    2000-04-10

    The galactic environment of gamma-ray bursts can provide good evidence about the nature of the progenitor system, with two old arguments implying that the burst host galaxies are significantly subluminous. New data and new analysis have now reversed this picture: (1) Even though the first two known host galaxies are indeed greatly subluminous, the next eight hosts have absolute magnitudes typical for a population of field galaxies. A detailed analysis of the 16 known hosts (10 with redshifts) shows them to be consistent with a Schechter luminosity function with R*=-21.8+/-1.0, as expected for normal galaxies. (2) Bright bursts from the Interplanetary Network are typically 18 times brighter than the faint bursts with redshifts; however, the bright bursts do not have galaxies inside their error boxes to limits deeper than expected based on the luminosities for the two samples being identical. A new solution to this dilemma is that a broad burst luminosity function along with a burst number density varying as the star formation rate will require the average luminosity of the bright sample (>6x1058 photons s-1 or>1.7x1052 ergs s-1) to be much greater than the average luminosity of the faint sample ( approximately 1058 photons s-1 or approximately 3x1051 ergs s-1). This places the bright bursts at distances for which host galaxies with a normal luminosity will not violate the observed limits. In conclusion, all current evidence points to gamma-ray burst host galaxies being normal in luminosity.

  6. In vitro inhibitory effects of Moringa oleifera leaf extract and its major components on chemiluminescence and chemotactic activity of phagocytes.

    PubMed

    Vongsak, Boonyadist; Gritsanapan, Wandee; Wongkrajang, Yuvadee; Jantan, Ibrahim

    2013-11-01

    The ethanol extract of Moringa oleifera Lam. leaves and its major constituents, crypto-chlorogenic acid, quercetin 3-O-glucoside and kaempferol 3-O-glucoside, were investigated on the respiratory burst of human whole blood and isolated human polymorphonuclear leukocytes (PMNs) using a luminol-based chemiluminescence assay. The chemotactic migration of PMNs was also investigated using the Boyden chamber technique. The ethanol extract demonstrated inhibitory activities on the oxidative burst and the chemotactic migration of PMNs. Quercetin 3-O-glucoside, crypto-chlorogenic acid, and kaempferol 3-O-glucoside, isolated from the extract, expressed relatively strong inhibitory activity on the oxidative burst of PMNs with IC50 values of 4.1, 6.7 and 7.0 microM, respectively, comparable with that of aspirin. They also demonstrated strong inhibition of chemotatic migration of PMNs with IC50 values of 9.5, 15.9 and 18.2 microM, respectively. The results suggest that M. oleifera leaves could modulate the immune response of human phagocytes, linking to its ethnopharmacological use as an anti-inflammatory agent. The immunomodulating activity of the plant was mainly due to its major components.

  7. Spontaneously regulated vs. controlled ventilation of acute lung injury/acute respiratory distress syndrome.

    PubMed

    Marini, John J

    2011-02-01

    To present an updated discussion of those aspects of controlled positive pressure breathing and retained spontaneous regulation of breathing that impact the management of patients whose tissue oxygenation is compromised by acute lung injury. The recent introduction of ventilation techniques geared toward integrating natural breathing rhythms into even the earliest phase of acute respiratory distress syndrome support (e.g., airway pressure release, proportional assist ventilation, and neurally adjusted ventilatory assist), has stimulated a burst of new investigations. Optimizing gas exchange, avoiding lung injury, and preserving respiratory muscle strength and endurance are vital therapeutic objectives for managing acute lung injury. Accordingly, comparing the physiology and consequences of breathing patterns that preserve and eliminate breathing effort has been a theme of persisting investigative interest throughout the several decades over which it has been possible to sustain cardiopulmonary life support outside the operating theater.

  8. Inhibitory effect of heparin on neutrophil phagocytosis and burst production using a new whole-blood cytofluorometric method for determination.

    PubMed

    Salih, H; Husfeld, L; Adam, D

    1997-12-31

    The influence of heparin on Polymorphonuclear (PMN s) leukocytes was investigated using a new whole-blood cytofluorometric method (patent granted for the test with the number P 4334935.8-41) with Candida albicans and Staphylococcus aureus as test microorganisms. After comparing the effect of equal volumes of two widely used heparins we examined the influence of 5 different heparin-concentrations. Using both yeasts and bacteria, we found a significant, dose-depending decrease of the percentage of phagocyting PMN's and of phagocytized microorganisms as well as of the resulting percentage of PMN s producing respiratory burst along the kinetics. Furthermore we could demonstrate that heparin independently of phagocytosis produces a dose-dependent decrease of burst production of PMN's. Our results indicate that the use of heparins as anticoagulant for immunological investigations as well as clinically with patients under immunosuppressive therapy should be critically reconsidered. This applies even more because due to the evaluated dose-dependent decrease of phagocyte function no boundary for the inhibiting effect can be declared.

  9. A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses

    PubMed Central

    Zhao, Hanjun; Zhou, Jie; Zhang, Ke; Chu, Hin; Liu, Dabin; Poon, Vincent Kwok-Man; Chan, Chris Chung-Sing; Leung, Ho-Chuen; Fai, Ng; Lin, Yong-Ping; Zhang, Anna Jin-Xia; Jin, Dong-Yan; Yuen, Kwok-Yung; Zheng, Bo-Jian

    2016-01-01

    A safe, potent and broad-spectrum antiviral is urgently needed to combat emerging respiratory viruses. In light of the broad antiviral activity of β-defensins, we tested the antiviral activity of 11 peptides derived from mouse β-defensin-4 and found that a short peptide, P9, exhibited potent and broad-spectrum antiviral effects against multiple respiratory viruses in vitro and in vivo, including influenza A virus H1N1, H3N2, H5N1, H7N7, H7N9, SARS-CoV and MERS-CoV. The antiviral activity of P9 was attributed to its high-affinity binding to viral glycoproteins, as well as the abundance of basic amino acids in its composition. After binding viral particles through viral surface glycoproteins, P9 entered into cells together with the viruses via endocytosis and prevented endosomal acidification, which blocked membrane fusion and subsequent viral RNA release. This study has paved the avenue for developing new prophylactic and therapeutic agents with broad-spectrum antiviral activities. PMID:26911565

  10. Eddington-limited X-Ray Bursts as Distance Indicators. I. Systematic Trends and Spherical Symmetry in Bursts from 4U 1728-34

    NASA Astrophysics Data System (ADS)

    Galloway, Duncan K.; Psaltis, Dimitrios; Chakrabarty, Deepto; Muno, Michael P.

    2003-06-01

    We investigate the limitations of thermonuclear X-ray bursts as a distance indicator for the weakly magnetized accreting neutron star 4U 1728-34. We measured the unabsorbed peak flux of 81 bursts in public data from the Rossi X-Ray Timing Explorer (RXTE). The distribution of peak fluxes was bimodal: 66 bursts exhibited photospheric radius expansion (presumably reaching the local Eddington limit) and were distributed about a mean bolometric flux of 9.2×10-8ergscm-2s-1, while the remaining (non-radius expansion) bursts reached 4.5×10-8ergscm-2s-1, on average. The peak fluxes of the radius expansion bursts were not constant, exhibiting a standard deviation of 9.4% and a total variation of 46%. These bursts showed significant correlations between their peak flux and the X-ray colors of the persistent emission immediately prior to the burst. We also found evidence for quasi-periodic variation of the peak fluxes of radius expansion bursts, with a timescale of ~=40 days. The persistent flux observed with RXTE/ASM over 5.8 yr exhibited quasi-periodic variability on a similar timescale. We suggest that these variations may have a common origin in reflection from a warped accretion disk. Once the systematic variation of the peak burst fluxes is subtracted, the residual scatter is only ~=3%, roughly consistent with the measurement uncertainties. The narrowness of this distribution strongly suggests that (1) the radiation from the neutron star atmosphere during radius expansion episodes is nearly spherically symmetric and (2) the radius expansion bursts reach a common peak flux that may be interpreted as a standard candle intensity. Adopting the minimum peak flux for the radius expansion bursts as the Eddington flux limit, we derive a distance for the source of 4.4-4.8 kpc (assuming RNS=10 km), with the uncertainty arising from the probable range of the neutron star mass MNS=1.4-2 Msolar.

  11. Amyloidosis involving the respiratory system: 5-year's experience of a multi-disciplinary group's activity.

    PubMed

    Scala, Raffaele; Maccari, Uberto; Madioni, Chiara; Venezia, Duccio; La Magra, Lidia Calogera

    2015-01-01

    Amyloidosis may involve the respiratory system with different clinical-radiological-functional patterns which are not always easy to be recognized. A good level of knowledge of the disease, an active integration of the pulmonologist within a multidisciplinary setting and a high level of clinical suspicion are necessary for an early diagnosis of respiratory amyloidosis. The aim of this retrospective study was to evaluate the number and the patterns of amyloidosis involving the respiratory system. We searched the cases of amyloidosis among patients attending the multidisciplinary rare and diffuse lung disease outpatients' clinic of Pulmonology Unit of the Hospital of Arezzo from 2007 to 2012. Among the 298 patients evaluated during the study period, we identified three cases of amyloidosis with involvement of the respiratory system, associated or not with other extra-thoracic localizations, whose diagnosis was histo-pathologically confirmed after the pulmonologist, the radiologist, and the pathologist evaluation. Our experience of a multidisciplinary team confirms that intra-thoracic amyloidosis is an uncommon disorder, representing 1.0% of the cases of rare and diffuse lung diseases referred to our center. The diagnosis of the disease is not always easy and quick as the amyloidosis may involve different parts of the respiratory system (airways, pleura, parenchyma). It is therefore recommended to remind this orphan disease in the differential diagnosis of the wide clinical scenarios the pulmonologist may intercept in clinical practice.

  12. Amyloidosis involving the respiratory system: 5-year's experience of a multi-disciplinary group's activity

    PubMed Central

    Scala, Raffaele; Maccari, Uberto; Madioni, Chiara; Venezia, Duccio; La Magra, Lidia Calogera

    2015-01-01

    Amyloidosis may involve the respiratory system with different clinical-radiological-functional patterns which are not always easy to be recognized. A good level of knowledge of the disease, an active integration of the pulmonologist within a multidisciplinary setting and a high level of clinical suspicion are necessary for an early diagnosis of respiratory amyloidosis. The aim of this retrospective study was to evaluate the number and the patterns of amyloidosis involving the respiratory system. We searched the cases of amyloidosis among patients attending the multidisciplinary rare and diffuse lung disease outpatients' clinic of Pulmonology Unit of the Hospital of Arezzo from 2007 to 2012. Among the 298 patients evaluated during the study period, we identified three cases of amyloidosis with involvement of the respiratory system, associated or not with other extra-thoracic localizations, whose diagnosis was histo-pathologically confirmed after the pulmonologist, the radiologist, and the pathologist evaluation. Our experience of a multidisciplinary team confirms that intra-thoracic amyloidosis is an uncommon disorder, representing 1.0% of the cases of rare and diffuse lung diseases referred to our center. The diagnosis of the disease is not always easy and quick as the amyloidosis may involve different parts of the respiratory system (airways, pleura, parenchyma). It is therefore recommended to remind this orphan disease in the differential diagnosis of the wide clinical scenarios the pulmonologist may intercept in clinical practice. PMID:26229565

  13. [Comparative study of effects of cortical nucleus of amygdala and pyriform cortex on activity of bulbar respiratory neurons in cats].

    PubMed

    Nersesian, L B; Eganova, V S; Pogosian, N L; Avetisian, I N

    2011-01-01

    Comparative microelectrophysiological study of character and peculiarities of effects of the cortical nucleus of amygdala and of the periamygdalar area of pyriform cortex on impulse activity was performed on the same single functionally identified respiratory medullar neurons. A high reactivity of bulbar respiratory neurons on stimulation is established in both studied limbic structures. There is established the qualitatively different character of their response reactions at stimulation of the cortical amygdala nucleus and the periamygdalar cortex. The cortical amygdala nucleus has been shown to produce on the activity of medullar respiratory neurons both facilitating and inhibitory action with predominance of the activating one (without topographical orderliness). The effect of periamygdalar cortex at stimulation of various parts was characterized by topographic differentiation. The suppressing reactions of neurons in the majority of cases were recorded at stimulation of the rostral area of periamygdalar cortex, whereas the excitatory reactions--at stimulation of its caudal part. Functional organization of respiratory control of the studied limbic system structures is discussed.

  14. Respiratory processes in non-photosynthetic plastids

    PubMed Central

    Renato, Marta; Boronat, Albert; Azcón-Bieto, Joaquín

    2015-01-01

    Chlororespiration is a respiratory process located in chloroplast thylakoids which consists in an electron transport chain from NAD(P)H to oxygen. This respiratory chain involves the NAD(P)H dehydrogenase complex, the plastoquinone pool and the plastid terminal oxidase (PTOX), and it probably acts as a safety valve to prevent the over-reduction of the photosynthetic machinery in stress conditions. The existence of a similar respiratory activity in non-photosynthetic plastids has been less studied. Recently, it has been reported that tomato fruit chromoplasts present an oxygen consumption activity linked to ATP synthesis. Etioplasts and amyloplasts contain several electron carriers and some subunits of the ATP synthase, so they could harbor a similar respiratory process. This review provides an update on the study about respiratory processes in chromoplasts, identifying the major gaps that need to be addressed in future research. It also reviews the proteomic data of etioplasts and amyloplasts, which suggest the presence of a respiratory electron transport chain in these plastids. PMID:26236317

  15. Post-Launch Analysis of Swift's Gamma-Ray Burst Detection Sensitivity

    NASA Technical Reports Server (NTRS)

    Band, David L.

    2005-01-01

    The dependence of Swift#s detection sensitivity on a burst#s temporal and spectral properties shapes the detected burst population. Using s implified models of the detector hardware and the burst trigger syste m I find that Swift is more sensitive to long, soft bursts than CGRO# s BATSE, a reference mission because of its large burst database. Thu s Swift has increased sensitivity in the parameter space region into which time dilation and spectral redshifting shift high redshift burs ts.

  16. In vitro Increased Respiratory Activity of Selected Oral Bacteria May Explain Competitive and Collaborative Interactions in the Oral Microbiome

    PubMed Central

    Hernandez-Sanabria, Emma; Slomka, Vera; Herrero, Esteban R.; Kerckhof, Frederiek-Maarten; Zaidel, Lynette; Teughels, Wim; Boon, Nico

    2017-01-01

    Understanding the driving forces behind the shifts in the ecological balance of the oral microbiota will become essential for the future management and treatment of periodontitis. As the use of competitive approaches for modulating bacterial outgrowth is unexplored in the oral ecosystem, our study aimed to investigate both the associations among groups of functional compounds and the impact of individual substrates on selected members of the oral microbiome. We employed the Phenotype Microarray high-throughput technology to analyse the microbial cellular phenotypes of 15 oral bacteria. Multivariate statistical analysis was used to detect respiratory activity triggers and to assess similar metabolic activities. Carbon and nitrogen were relevant for the respiration of health-associated bacteria, explaining competitive interactions when grown in biofilms. Carbon, nitrogen, and peptides tended to decrease the respiratory activity of all pathobionts, but not significantly. None of the evaluated compounds significantly increased activity of pathobionts at both 24 and 48 h. Additionally, metabolite requirements of pathobionts were dissimilar, suggesting that collective modulation of their respiratory activity may be challenging. Flow cytometry indicated that the metabolic activity detected in the Biolog plates may not be a direct result of the number of bacterial cells. In addition, damage to the cell membrane may not influence overall respiratory activity. Our methodology confirmed previously reported competitive and collaborative interactions among bacterial groups, which could be used either as marker of health status or as targets for modulation of the oral environment. PMID:28638806

  17. ASKAP Joins the Hunt for Mysterious Bursts

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-05-01

    A new telescope, the Australian Square Kilometre Array Pathfinder (ASKAP), has joined the search for energetic and elusive fast radio bursts. And in just a few days of looking, its already had success!Elusive TransientsThe Parkes radio telescope, which has detected all but five of the fast radio bursts published to date, has a very narrow field of view. [CSIRO]Fast radio bursts are mysterious millisecond-duration radio pulses that were first discovered around a decade ago. Since that time particularly in recent years weve made some progress toward the goal of localizing them. Were now fairly convinced that fast radio bursts come from outside of the galaxy, and yet theyre enormously bright orders of magnitude more luminous than any pulse seen from the Milky Way.Better identification of where these mysterious bursts come from would help us to determine what they are. But so far, weve discovered only around 30 such bursts, despite the fact that theyre estimated to occur at a rate of 3,000 events per day across the whole sky.Why are they so hard to find? Due to their short duration, effective detection would require instantaneous coverage of a very large fraction of the sky. The Parkes radio telescope which has detected all but five of the fast radio bursts published to date has a field of view spanning less than a square degree,significantly limiting our ability to rapidly survey for these transients.FRB 170107s band-averaged pulse (top) and dynamic spectrum (bottom). [Bannister et al. 2017]A New Array in TownA new player is now on the scene, however, and its already had huge success. ASKAP is a wide-field radio telescope made up of an array of 12-meter antennas. Using phased-array-feed technology, ASKAP is able to instantaneously observe an effective area of 160 square degrees an enormous field compared to Parkes 0.6 square degrees! This capability significantly increases our chances of being able to detect fast radio bursts.In a new study led by Keith Bannister

  18. Theoretical investigations of X-ray bursts

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.

    1987-01-01

    Current theoretical understanding of the X-ray burst phenomenon is reviewed, providing a framework in which the burst radiation can be used as a diagnostic of the fundamental properties of the underlying neutron star. The typical Type I X-ray burst is detected as a rapid increase in emission to a level about a factor of 10 above that seen during the quiescent state and recurs on time scales which range from several hours to several days. The thermonuclear flash model has successfully reproduced the basic features of the X-ray burst phenomenon and thereby provided strong theoretical evidence that neutron stars are involved. Topics covered include: theory of the emission spectrum; oscillation modes and prospects for diagnosing the thermal state of neutron stars through experiments on board the X-Ray Timing Explorer or the Advanced X-Ray Astrophysics Facility; applications to the mass and radius of a neutron star.

  19. Light Dawns on Dark Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    2010-12-01

    Gamma-ray bursts are among the most energetic events in the Universe, but some appear curiously faint in visible light. The biggest study to date of these so-called dark gamma-ray bursts, using the GROND instrument on the 2.2-metre MPG/ESO telescope at La Silla in Chile, has found that these gigantic explosions don't require exotic explanations. Their faintness is now fully explained by a combination of causes, the most important of which is the presence of dust between the Earth and the explosion. Gamma-ray bursts (GRBs), fleeting events that last from less than a second to several minutes, are detected by orbiting observatories that can pick up their high energy radiation. Thirteen years ago, however, astronomers discovered a longer-lasting stream of less energetic radiation coming from these violent outbursts, which can last for weeks or even years after the initial explosion. Astronomers call this the burst's afterglow. While all gamma-ray bursts [1] have afterglows that give off X-rays, only about half of them were found to give off visible light, with the rest remaining mysteriously dark. Some astronomers suspected that these dark afterglows could be examples of a whole new class of gamma-ray bursts, while others thought that they might all be at very great distances. Previous studies had suggested that obscuring dust between the burst and us might also explain why they were so dim. "Studying afterglows is vital to further our understanding of the objects that become gamma-ray bursts and what they tell us about star formation in the early Universe," says the study's lead author Jochen Greiner from the Max-Planck Institute for Extraterrestrial Physics in Garching bei München, Germany. NASA launched the Swift satellite at the end of 2004. From its orbit above the Earth's atmosphere it can detect gamma-ray bursts and immediately relay their positions to other observatories so that the afterglows could be studied. In the new study, astronomers combined Swift

  20. Creatine and creatine pyruvate reduce hypoxia-induced effects on phrenic nerve activity in the juvenile mouse respiratory system.

    PubMed

    Scheer, Monika; Bischoff, Anna M; Kruzliak, Peter; Opatrilova, Radka; Bovell, Douglas; Büsselberg, Dietrich

    2016-08-01

    Adequate concentrations of ATP are required to preserve physiological cell functions and protect tissue from hypoxic damage. Decreased oxygen concentration results in ATP synthesis relying increasingly on the presence of phosphocreatine. The lack of ATP through hypoxic insult to neurons that generate or regulate respiratory function, would lead to the cessation of breathing (apnea). It is not clear whether creatine plays a role in maintaining respiratory phrenic nerve (PN) activity during hypoxic challenge. The aim of the study was to test the effects of exogenously applied creatine or creatine pyruvate in maintaining PN induced respiratory rhythm against the deleterious effects of severe hypoxic insult using Working Heart-Brainstem (WHB) preparations of juvenile Swiss type mice. WHB's were perfused with control perfusate or perfusate containing either creatine [100μM] or creatine pyruvate [100μM] prior to hypoxic challenge and PN activity recorded throughout. Results showed that severe hypoxic challenge resulted in an initial transient increase in PN activity, followed by a reduction in that activity leading to respiratory apnea. The results demonstrated that perfusing the WHB preparation with creatine or creatine pyruvate, significantly reduced the onset of apnea compared to control conditions, with creatine pyruvate being the more effective substance. Overall, creatine and creatine pyruvate each produced time-dependent degrees of protection against severe hypoxic-induced disturbances of PN activity. The underlying protective mechanisms are unknown and need further investigations. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Central Engine Memory of Gamma-Ray Bursts and Soft Gamma-Ray Repeaters

    NASA Astrophysics Data System (ADS)

    Zhang, Bin-Bin; Zhang, Bing; Castro-Tirado, Alberto J.

    2016-04-01

    Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that the central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs.

  2. Gamma-Ray Bursts and Cosmology

    NASA Technical Reports Server (NTRS)

    Norris, Jay P.

    2003-01-01

    The unrivalled, extreme luminosities of gamma-ray bursts (GRBs) make them the favored beacons for sampling the high redshift Universe. To employ GRBs to study the cosmic terrain -- e.g., star and galaxy formation history -- GRB luminosities must be calibrated, and the luminosity function versus redshift must be measured or inferred. Several nascent relationships between gamma-ray temporal or spectral indicators and luminosity or total energy have been reported. These measures promise to further our understanding of GRBs once the connections between the luminosity indicators and GRB jets and emission mechanisms are better elucidated. The current distribution of 33 redshifts determined from host galaxies and afterglows peaks near z $\\sim$ 1, whereas for the full BATSE sample of long bursts, the lag-luminosity relation predicts a broad peak z $\\sim$ 1--4 with a tail to z $\\sim$ 20, in rough agreement with theoretical models based on star formation considerations. For some GRB subclasses and apparently related phenomena -- short bursts, long-lag bursts, and X-ray flashes -- the present information on their redshift distributions is sparse or entirely lacking, and progress is expected in Swift era when prompt alerts become numerous.

  3. Multifrequency observations of a solar microwave burst with two-dimensional spatial resolution

    NASA Technical Reports Server (NTRS)

    Gary, Dale E.; Hurford, G. J.

    1990-01-01

    Frequency-agile interferometry observations using three baselines and the technique of frequency synthesis were used to obtain two-dimensional positions of multiple microwave sources at several frequency ranges in a solar flare. Source size and brightness temperature spectra were obtained near the peak of the burst. The size spectrum shows that the source size decreases rapidly with increasing frequency, but the brightness temperature spectrum can be well-fitted by gyrosynchrotron emission from a nonthermal distribution of electrons with power-law index of 4.8. The spatial structure of the burst showed several characteristics in common with primary/secondary bursts discussed by Nakajima et al. (1985). A source of coherent plasma emission at low frequencies is found near the secondary gyrosynchrotron source, associated with the leader spots of the active region.

  4. Longevity of U cells of differentiated yeast colonies grown on respiratory medium depends on active glycolysis.

    PubMed

    Čáp, Michal; Váchová, Libuše; Palková, Zdena

    2015-01-01

    Colonies of Saccharomyces cerevisiae laboratory strains pass through specific developmental phases when growing on solid respiratory medium. During entry into the so-called alkali phase, in which ammonia signaling is initiated, 2 prominent cell types are formed within the colonies: U cells in upper colony regions, which have a longevity phenotype and activate the expression of a large number of metabolic genes, and L cells in lower regions, which die more quickly and exhibit a starvation phenotype. Here, we performed a detailed analysis of the activities of enzymes of central carbon metabolism in lysates of both cell types and determined several fermentation end products, showing that previously reported expression differences are reflected in the different enzymatic capabilities of each cell type. Hence, U cells, despite being grown on respiratory medium, behave as fermenting cells, whereas L cells rely on respiratory metabolism and possess active gluconeogenesis. Using a spectrum of different inhibitors, we showed that glycolysis is essential for the formation, and particularly, the survival of U cells. We also showed that β-1,3-glucans that are released from the cell walls of L cells are the most likely source of carbohydrates for U cells.

  5. Calcium imaging of neuronal activity in the most rostral parafacial respiratory group of the newborn rat.

    PubMed

    Onimaru, Hiroshi; Dutschmann, Mathias

    2012-01-01

    The parafacial respiratory group (pFRG) is thought to be involved in respiratory rhythm generation in neonates. This subgroup expresses the transcription factor, Phox2b, and contains intrinsically CO(2) sensitive neurons. Calcium imaging has been widely used for analysis of neuronal activity at the cellular and network level. In the present study, we applied calcium imaging to analyze neuronal activity of the most-rostral pFRG in an in vitro brainstem-spinal cord preparation from neonatal rats. We detected strong pre-inspiratory neuron activity in the most rostral pFRG, suggesting that significant numbers of pre-inspiratory neurons are localized in the ventrolateral medulla near the rostral end of the medulla. We show that usage of calcium imaging would be very useful for analysis of neuronal activity over different time scales, and discuss the advantages and disadvantages of this method.

  6. On the Theory of Type 1 X-Ray Bursts: The Energetics of Bursts and the Nuclear Fuel Reservoir in the Envelope

    NASA Technical Reports Server (NTRS)

    Fujimoto, Masayuki Y.; Sztajno, Mirek; Lewin, Walter H. G.; Vanparadijs, Jan

    1986-01-01

    The observed properties of type 1 X-ray bursts from 4U/MXB 1636-53 and those of models of thermonuclear flashes on accreting neutron stars are compared. Ways to explain variations in the burst recurrence properties without an apparent correlation with the accretion rate, including the rapid succession of bursts at intervals 10 min are discussed. The strongest X-ray bursts, which occur after a very long interval, are well described by thermonuclear flash models with simple accumulation of accreted fuel, and a spherically symmetric structure in the burning shell. The majority of observed bursts, however, occur after much shorter intervals, and radiate much smaller amounts of energy, by a factor of up to 10 times that predicted by the spherical models. An ignition mechanism of the bursts is proposed in terms of elemental mixing and dissipative heating associated with hydrodynamical instabilities in the neutron star envelope caused by angular momentum carried inward by accreted gas.

  7. DEMETER observations of bursty MF emissions and their relation to ground-level auroral MF burst

    NASA Astrophysics Data System (ADS)

    Broughton, M. C.; LaBelle, J.; Parrot, M.

    2014-12-01

    A survey of medium frequency (MF) electric field data from selected orbits of the Detection of Electro-Magnetic Emissions Transmitted from Earthquakes (DEMETER) spacecraft reveals 68 examples of a new type of bursty MF emissions occurring at high latitudes associated with auroral phenomena. These resemble auroral MF burst, a natural radio emission observed at ground level near local substorm onsets. Similar to MF burst, the bursty MF waves observed by DEMETER have broadband, impulsive frequency structure covering 1.5-3.0 MHz, amplitudes of 50-100 μV/m, an overall occurrence rate of ˜0.76% with higher occurrence during active times, and strong correlation with auroral hiss. The magnetic local time distribution of the MF waves observed by DEMETER shows peak occurrence rate near 18 MLT, somewhat earlier than the equivalent peak in the occurrence rate of ground level MF burst, though propagation effects and differences in the latitudes sampled by the two techniques may explain this discrepancy. Analysis of solar wind and SuperMAG data suggests that while the bursty MF waves observed by DEMETER are associated with enhanced auroral activity, their coincidence with substorm onset may not be as exact as that of ground level MF burst. One conjunction occurs in which MF burst is observed at Churchill, Manitoba, within 8 min of MF emissions detected by DEMETER on field lines approximately 1000 km southeast of Churchill. These observations may plausibly be associated with the same auroral event detected by ground level magnetometers at several Canadian observatories. Although it is uncertain, the balance of the evidence suggests that the bursty MF waves observed with DEMETER are the same phenomenon as the ground level MF burst. Hence, theories of MF burst generation in the ionosphere, such as beam-generated Langmuir waves excited over a range of altitudes or strong Langmuir turbulence generating a range of frequencies within a narrow altitude range, need to be revisited to

  8. Burst Oscillations: Watching Neutron Stars Spin

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2010-01-01

    It is now almost 15 years since the first detection of rotationally modulated emission from X-ray bursting neutron stars, "burst oscillations," This phenomenon enables us to see neutron stars spin, as the X-ray burst flux asymmetrically lights up the surface. It has enabled a new way to probe the neutron star spin frequency distribution, as well as to elucidate the multidimensional nature of nuclear burning on neutron stars. I will review our current observational understanding of the phenomenon, with an eye toward highlighting some of the interesting remaining puzzles, of which there is no shortage.

  9. Discovery of the short gamma-ray burst GRB 050709.

    PubMed

    Villasenor, J S; Lamb, D Q; Ricker, G R; Atteia, J-L; Kawai, N; Butler, N; Nakagawa, Y; Jernigan, J G; Boer, M; Crew, G B; Donaghy, T Q; Doty, J; Fenimore, E E; Galassi, M; Graziani, C; Hurley, K; Levine, A; Martel, F; Matsuoka, M; Olive, J-F; Prigozhin, G; Sakamoto, T; Shirasaki, Y; Suzuki, M; Tamagawa, T; Vanderspek, R; Woosley, S E; Yoshida, A; Braga, J; Manchanda, R; Pizzichini, G; Takagishi, K; Yamauchi, M

    2005-10-06

    Gamma-ray bursts (GRBs) fall into two classes: short-hard and long-soft bursts. The latter are now known to have X-ray and optical afterglows, to occur at cosmological distances in star-forming galaxies, and to be associated with the explosion of massive stars. In contrast, the distance scale, the energy scale and the progenitors of the short bursts have remained a mystery. Here we report the discovery of a short-hard burst whose accurate localization has led to follow-up observations that have identified the X-ray afterglow and (for the first time) the optical afterglow of a short-hard burst; this in turn led to the identification of the host galaxy of the burst as a late-type galaxy at z = 0.16 (ref. 10). These results show that at least some short-hard bursts occur at cosmological distances in the outskirts of galaxies, and are likely to be caused by the merging of compact binaries.

  10. Compact solar UV burst triggered in a magnetic field with a fan-spine topology

    NASA Astrophysics Data System (ADS)

    Chitta, L. P.; Peter, H.; Young, P. R.; Huang, Y.-M.

    2017-09-01

    Context. Solar ultraviolet (UV) bursts are small-scale features that exhibit intermittent brightenings that are thought to be due to magnetic reconnection. They are observed abundantly in the chromosphere and transition region, in particular in active regions. Aims: We investigate in detail a UV burst related to a magnetic feature that is advected by the moat flow from a sunspot towards a pore. The moving feature is parasitic in that its magnetic polarity is opposite to that of the spot and the pore. This comparably simple photospheric magnetic field distribution allows for an unambiguous interpretation of the magnetic geometry leading to the onset of the observed UV burst. Methods: We used UV spectroscopic and slit-jaw observations from the Interface Region Imaging Spectrograph (IRIS) to identify and study chromospheric and transition region spectral signatures of said UV burst. To investigate the magnetic topology surrounding the UV burst, we used a two-hour-long time sequence of simultaneous line-of-sight magnetograms from the Helioseismic and Magnetic Imager (HMI) and performed data-driven 3D magnetic field extrapolations by means of a magnetofrictional relaxation technique. We can connect UV burst signatures to the overlying extreme UV (EUV) coronal loops observed by the Atmospheric Imaging Assembly (AIA). Results: The UV burst shows a variety of extremely broad line profiles indicating plasma flows in excess of ±200 km s-1 at times. The whole structure is divided into two spatially distinct zones of predominantly up- and downflows. The magnetic field extrapolations show a persistent fan-spine magnetic topology at the UV burst. The associated 3D magnetic null point exists at a height of about 500 km above the photosphere and evolves co-spatially with the observed UV burst. The EUV emission at the footpoints of coronal loops is correlated with the evolution of the underlying UV burst. Conclusions: The magnetic field around the null point is sheared by

  11. Analysis of respiratory and muscle activity by means of cross information function between ventilatory and myographic signals.

    PubMed

    Alonso, J F; Mañanas, M A; Hoyer, D; Topor, Z L; Bruce, E N

    2004-01-01

    Analysis of respiratory muscle activity is a promising technique for the study of pulmonary diseases such as obstructive sleep apnea syndrome (OSAS). Evaluation of interactions between muscles is very useful in order to determine the muscular pattern during an exercise. These interactions have already been assessed by means of different linear techniques like cross-spectrum, magnitude squared coherence or cross-correlation. The aim of this work is to evaluate interactions between respiratory and myographic signals through nonlinear analysis by means of cross mutual information function (CMIF), and finding out what information can be extracted from it. Some parameters are defined and calculated from CMIF between ventilatory and myographic signals of three respiratory muscles. Finally, differences in certain parameters were obtained between OSAS patients and healthy subjects indicating different respiratory muscle couplings.

  12. Gamma-Ray Burst Intensity Distributions

    NASA Technical Reports Server (NTRS)

    Band, David L.; Norris, Jay P.; Bonnell, Jerry T.

    2004-01-01

    We use the lag-luminosity relation to calculate self-consistently the redshifts, apparent peak bolometric luminosities L(sub B1), and isotropic energies E(sub iso) for a large sample of BATSE bursts. We consider two different forms of the lag-luminosity relation; for both forms the median redshift, for our burst database is 1.6. We model the resulting sample of burst energies with power law and Gaussian dis- tributions, both of which are reasonable models. The power law model has an index of a = 1.76 plus or minus 0.05 (95% confidence) as opposed to the index of a = 2 predicted by the simple universal jet profile model; however, reasonable refinements to this model permit much greater flexibility in reconciling predicted and observed energy distributions.

  13. Quantification of fetal magnetoencephalographic activity in low-risk fetuses using burst duration and interburst interval.

    PubMed

    Vairavan, Srinivasan; Govindan, Rathinaswamy B; Haddad, Naim; Preissl, Hubert; Lowery, Curtis L; Siegel, Eric; Eswaran, Hari

    2014-07-01

    To identify quantitative MEG indices of spontaneous brain activity for fetal neurological maturation in normal pregnancies and examine the effect of fetal state on these indices. Spontaneous MEG brain activity was examined in 22 low-risk fetal recordings with gestational age (GA) ranging from 30 to 37 weeks. As major quantitative characteristics of spontaneous activity, burst duration (BD) and interburst interval (IBI) were studied in correlation with GA and fetal state. IBI showed a decrease with gestational age (-0.21 s/week, P=0.0031). This trend was only maintained in the quiet-sleep state. With respect to BD, no significant trends were detected with GA and state. IBI can be quantified as a fetal brain maturational parameter. The decrease in IBI over gestation was similar to the trend reported in the preterm neonatal EEG studies. Quiet sleep could be the optimal state to study such MEG maturational indices. With further investigation, indices extracted from spontaneous fetal brain activity may serve as an early warning for fetal neurological distress. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. The Human Burst Suppression Electroencephalogram of Deep Hypothermia

    PubMed Central

    Kumaraswamy, Vishakhadatta M.; Akeju, Seun Oluwaseun; Pierce, Eric; Cash, Sydney S.; Kilbride, Ronan; Brown, Emery N.; Purdon, Patrick L.

    2015-01-01

    Objective Deep hypothermia induces ‘burst suppression’ (BS), an electroencephalogram pattern with low-voltage ‘suppressions’ alternating with high-voltage ‘bursts’. Current understanding of BS comes mainly from anesthesia studies, while hypothermia-induced BS has received little study. We set out to investigate the electroencephalogram changes induced by cooling the human brain through increasing depths of BS through isoelectricity. Methods We recorded scalp electroencephalograms from eleven patients undergoing deep hypothermia during cardiac surgery with complete circulatory arrest, and analyzed these using methods of spectral analysis. Results Within patients, the depth of BS systematically depends on the depth of hypothermia, though responses vary between patients except at temperature extremes. With decreasing temperature, burst lengths increase, and burst amplitudes and lengths decrease, while the spectral content of bursts remains constant. Conclusions These findings support an existing theoretical model in which the common mechanism of burst suppression across diverse etiologies is the cyclical diffuse depletion of metabolic resources, and suggest the new hypothesis of local micro-network dropout to explain decreasing burst amplitudes at lower temperatures. Significance These results pave the way for accurate noninvasive tracking of brain metabolic state during surgical procedures under deep hypothermia, and suggest new testable predictions about the network mechanisms underlying burst suppression. PMID:25649968

  15. Gamma Ray Burst Optical Counterpart Search Experiment (GROCSE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, H.S.; Ables, E.; Bionta, R.M.

    GROCSE (Gamma-Ray Optical Counterpart Search Experiments) is a system of automated telescopes that search for simultaneous optical activity associated with gamma ray bursts in response to real-time burst notifications provided by the BATSE/BACODINE network. The first generation system, GROCSE 1, is sensitive down to Mv {approximately} 8.5 and requires an average of 12 seconds to obtain the first images of the gamma ray burst error box defined by the BACODINE trigger. The collaboration is now constructing a second generation system which has a 4 second slewing time and can reach Mv {approximately} 14 with a 5 second exposure. GROCSE 2more » consists of 4 cameras on a single mount. Each camera views the night sky through a commercial Canon lens (f/1.8, focal length 200 mm) and utilizes a 2K x 2K Loral CCD. Light weight and low noise custom readout electronics were designed and fabricated for these CCDs. The total field of view of the 4 cameras is 17.6 x 17.6 {degree}. GROCSE II will be operated by the end of 1995. In this paper, the authors present an overview of the GROCSE system and the results of measurements with a GROCSE 2 prototype unit.« less

  16. Plant flavones enhance antimicrobial activity of respiratory epithelial cell secretions against Pseudomonas aeruginosa

    PubMed Central

    Hariri, Benjamin M.; McMahon, Derek B.; Chen, Bei; Adappa, Nithin D.; Palmer, James N.; Kennedy, David W.

    2017-01-01

    Flavones are a class of natural plant secondary metabolites that have anti-inflammatory and anti-bacterial effects. Some flavones also activate the T2R14 bitter taste receptor, which is expressed in motile cilia of the sinonasal epithelium and activates innate immune nitric oxide (NO) production. Flavones may thus be potential therapeutics for respiratory infections. Our objective was to examine the anti-microbial effects of flavones on the common sinonasal pathogens Candida albicans, Staphylococcus aureus, and Pseudomonas aeruginosa, evaluating both planktonic and biofilm growth. Flavones had only very low-level antibacterial activity alone. They did not reduce biofilm formation, but did reduce production of the important P. aeruginosa inflammatory mediator and ciliotoxin pyocyanin. However, flavones exhibited synergy against P. aeruginosa in the presence of antibiotics or recombinant human lysozyme. They also enhanced the efficacy of antimicrobials secreted by cultured and primary human airway cells grown at air-liquid interface. This suggests that flavones may have anti-gram-negative potential as topical therapeutics when combined with antibiotics or in the context of innate antimicrobials secreted by the respiratory or other epithelia. This may have an additive effect when combined with T2R14-activated NO production. Additional studies are necessary to understand which flavone compounds or mixtures are the most efficacious. PMID:28931063

  17. Revealing degree distribution of bursting neuron networks.

    PubMed

    Shen, Yu; Hou, Zhonghuai; Xin, Houwen

    2010-03-01

    We present a method to infer the degree distribution of a bursting neuron network from its dynamics. Burst synchronization (BS) of coupled Morris-Lecar neurons has been studied under the weak coupling condition. In the BS state, all the neurons start and end bursting almost simultaneously, while the spikes inside the burst are incoherent among the neurons. Interestingly, we find that the spike amplitude of a given neuron shows an excellent linear relationship with its degree, which makes it possible to estimate the degree distribution of the network by simple statistics of the spike amplitudes. We demonstrate the validity of this scheme on scale-free as well as small-world networks. The underlying mechanism of such a method is also briefly discussed.

  18. Minocycline inhibits D-amphetamine-elicited action potential bursts in a central snail neuron.

    PubMed

    Chen, Y-H; Lin, P-L; Wong, R-W; Wu, Y-T; Hsu, H-Y; Tsai, M-C; Lin, M-J; Hsu, Y-C; Lin, C-H

    2012-10-25

    Minocycline is a second-generation tetracycline that has been reported to have powerful neuroprotective properties. In our previous studies, we found that d-amphetamine (AMPH) elicited action potential bursts in an identifiable RP4 neuron of the African snail, Achatina fulica Ferussac. This study sought to determine the effects of minocycline on the AMPH-elicited action potential pattern changes in the central snail neuron, using the two-electrode voltage clamping method. Extracellular application of AMPH at 300 μM elicited action potential bursts in the RP4 neuron. Minocycline dose-dependently (300-900 μM) inhibited the action potential bursts elicited by AMPH. The inhibitory effects of minocycline on AMPH-elicited action potential bursts were restored by forskolin (50 μM), an adenylate cyclase activator, and by dibutyryl cAMP (N(6),2'-O-Dibutyryladenosine 3',5'-cyclic monophosphate; 1mM), a membrane-permeable cAMP analog. Co-administration of forskolin (50 μM) plus tetraethylammonium chloride (TEA; 5mM) or co-administration of TEA (5mM) plus dibutyryl cAMP (1mM) also elicited action potential bursts, which were prevented and inhibited by minocycline. In addition, minocycline prevented and inhibited forskolin (100 μM)-elicited action potential bursts. Notably, TEA (50mM)-elicited action potential bursts in the RP4 neuron were not affected by minocycline. Minocycline did not affect steady-state outward currents of the RP4 neuron. However, minocycline did decrease the AMPH-elicited steady-state current changes. Similarly, minocycline decreased the effects of forskolin-elicited steady-state current changes. Pretreatment with H89 (N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride; 10 μM), a protein kinase A inhibitor, inhibited AMPH-elicited action potential bursts and decreased AMPH-elicited steady-state current changes. These results suggest that the cAMP-protein kinase A signaling pathway and the steady-state current are involved in

  19. Exploring the Time Evolution of Cool Metallic Absorption Features in UV Burst Spectra

    NASA Astrophysics Data System (ADS)

    Belmes, K.; Madsen, C. A.; DeLuca, E.

    2017-12-01

    UV bursts are compact brightenings in active regions that appear in UV images. They are identified through three spectroscopic features: (1) broadening and intensification of NUV/FUV emission lines, (2) the presence of optically thin Si IV emission, and (3) the presence of absorption features from cool metallic ions. Properties (2) and (3) imply that bursts exist at transition region temperatures (≥ 80,000 K) but are located in the cooler lower chromosphere ( 5,000 K). Their energetic and dynamical properties remain poorly constrained. Improving our understanding of this phenomena could help us further constrain the energetic and dynamical properties of the chromosphere, as well as give us insight into whether or not UV bursts contribute to chromospheric and/or coronal heating. We analyzed the time evolution of UV bursts using spectral data from the Interface Region Imaging Spectrograph (IRIS). We inspected Si IV 1393.8 Å line profiles for Ni II 1393.3 Å absorption features to look for signs of heating. Weakening of absorption features over time could indicate heating of the cool ions above the burst, implying that thermal energy from the burst could rapidly conduct upward through the chromosphere. To detect the spectral profiles corresponding to bursts, we applied a four-parameter Gaussian fit to every profile in each observation and took cuts in parameter space to isolate the bursts. We then manually reviewed the remaining profiles by looking for a statistically significant appearance of Ni II 1393.3 Å absorption. We quantified these absorption features by normalizing the Si IV 1393.8 Å emission profiles and measuring the maximum fractional extinction in each. Our preliminary results indicate that Ni II 1393.3 Å absorption may undergo a cycle of strengthening and weakening throughout a burst's lifetime. However, further investigation is needed for confirmation. This work is supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313.

  20. Overview of Solar Radio Bursts and their Sources

    NASA Astrophysics Data System (ADS)

    Golla, Thejappa; MacDowall, Robert J.

    2018-06-01

    Properties of radio bursts emitted by the Sun at frequencies below tens of MHz are reviewed. In this frequency range, the most prominent radio emissions are those of solar type II, complex type III and solar type IV radio bursts, excited probably by the energetic electron populations accelerated in completely different environments: (1) type II bursts are due to non-relativistic electrons accelerated by the CME driven interplanetary shocks, (2) complex type III bursts are due to near-relativistic electrons accelerated either by the solar flare reconnection process or by the SEP shocks, and (3) type IV bursts are due to relativistic electrons, trapped in the post-eruption arcades behind CMEs; these relativistic electrons probably are accelerated by the continued reconnection processes occurring beneath the CME. These radio bursts, which can serve as the natural plasma probes traversing the heliosphere by providing information about various crucial space plasma parameters, are also an ideal instrument for investigating acceleration mechanisms responsible for the high energy particles. The rich collection of valuable high quality radio and high time resolution in situ wave data from the WAVES experiments of the STEREO A, STEREO B and WIND spacecraft has provided an unique opportunity to study these different radio phenomena and understand the complex physics behind their excitation. We have developed Monte Carlo simulation techniques to estimate the propagation effects on the observed characteristics of these low frequency radio bursts. We will present some of the new results and describe how one can use these radio burst observations for space weather studies. We will also describe some of the non-linear plasma processes detected in the source regions of both solar type III and type II radio bursts. The analysis and simulation techniques used in these studies will be of immense use for future space based radio observations.

  1. The Early Life Of A Gamma-ray Burst

    NASA Astrophysics Data System (ADS)

    O'Brien, P. T.; Willingale, D.

    2006-09-01

    We present results for 100 gamma-ray bursts observed promptly by the Swift satellite. Combining the early gamma-ray and X-ray data from the BAT and XRT, we show that although individual GRBs can display complex light curves, including a variety of decay phases and flares, their early emission can be described by a relatively simple combination of central engine activity and the interaction of a relativistic jet with the surrounding environment. We also discuss the later fading, which in the optical/IR has traditionally been explained as a jet-break. The Swift data reveal many bursts have a relatively early break in their X-ray light curves contradicting the standard jet break model derived from optical data. We discuss the implications of this for GRB jet models and for using GRBs as standard candles.

  2. Gamma Ray Burst Discoveries with the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2008-01-01

    Gamma-ray bursts (GRBs) are among the most fascinating occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole formation. The Swift Observatory has been detecting 100 bursts per year for 3 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from - 1 minute after the burst, continuing for days. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type I1 and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are providing a new tool to study the high redshift universe. Swift has detected several events at z>5 and one at z=6.3 giving metallicity measurements and other data on galaxies at previously inaccessible distances. The talk will present the latest results from Swift in GRB astronomy.

  3. Gamma Ray Burst Discoveries with the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2008-01-01

    Gamma-ray bursts (GRBs) are among the most fascinating occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole formation. The Swift Observatory has been detecting 100 bursts per year for 3 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from approximately 1 minute after the burst, continuing for days. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type II and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are providing a new tool to study the high redshift universe. Swift has detected several events at z greater than 5 and one at z=6.3 giving metallicity measurements and other data on galaxies at previously inaccessible distances. The talk will present the latest results from Swift in GRB astronomy.

  4. Gamma Ray Burst Discoveries with the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2009-01-01

    Gamma-ray bursts (GRBs) are among the most fascinating occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole formation. The Swift Observatory has been detecting 100 bursts per year for 4 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from approximately 1 minute after the burst, continuing for days. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type II and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are providing a new tool to study the high redshift universe. Swift has detected several events at z>5 and one at z=6.7 giving metallicity measurements and other data on galaxies at previously inaccessible distances. The talk will present the latest results from Swift in GRB astronomy.

  5. Broadband Spectral Investigations of Magnetar Bursts

    NASA Astrophysics Data System (ADS)

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki; Göğüş, Ersin

    2017-09-01

    We present our broadband (2-250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550-5418, SGR 1900+14, and SGR 1806-20 detected with the Rossi X-ray Timing Explorer (RXTE) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6% of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.

  6. Bursts of seizures in long-term recordings of human focal epilepsy

    PubMed Central

    Karoly, Philippa J.; Nurse, Ewan S.; Freestone, Dean R.; Ung, Hoameng; Cook, Mark J.; Boston, Ray

    2017-01-01

    Summary Objective We report on temporally clustered seizures detected from continuous long-term ambulatory human electroencephalographic data. The objective was to investigate short-term seizure clustering, which we have termed bursting, and consider implications for patient care, seizure prediction, and evaluating therapies. Methods Chronic ambulatory intracranial EEG data collected for the purpose of seizure prediction were annotated to identify seizure events. A detection algorithm was used to identify bursts of events. Burst events were compared to non-burst events to evaluate event dispersion, duration and dynamics. Results Bursts of seizures were present in six of fifteen patients, and detections were consistent over long term monitoring (> 2 years). Seizures within bursts are highly overdispersed compared to non-burst seizures. There was a complicated relationship between bursts and clinical seizures, although bursts were associated with multi-modal distributions of seizure duration, and poorer predictive outcomes. For three subjects, bursts demonstrated distinctive pre-ictal dynamics compared to clinical seizures. Significance We have previously hypothesized that there are distinct physiological pathways underlying short and long duration seizures. Here we show that burst seizures fall almost exclusively within the short population of seizure durations; however, a short duration was not sufficient to induce or imply bursting. We can therefore conclude that in addition to distinct mechanisms underlying seizure duration, there are separate factors regulating bursts of seizures. We show that bursts were a robust phenomenon in our patient cohort, which were consistent with overdispersed seizure rates, suggesting long-memory dynamics. PMID:28084639

  7. MAXI observations of long X-ray bursts

    NASA Astrophysics Data System (ADS)

    Serino, Motoko; Iwakiri, Wataru; Tamagawa, Toru; Sakamoto, Takanori; Nakahira, Satoshi; Matsuoka, Masaru; Yamaoka, Kazutaka; Negoro, Hitoshi

    2016-12-01

    We report nine long X-ray bursts from neutron stars, detected with the Monitor of All-sky X-ray Image (MAXI). Some of these bursts lasted for hours, and hence are qualified as superbursts, which are prolonged thermonuclear flashes on neutron stars and are relatively rare events. MAXI observes roughly 85% of the whole sky every 92 minutes in the 2-20 keV energy band, and has detected nine bursts with a long e-folding decay time, ranging from 0.27 to 5.2 hr, since its launch in 2009 August until 2015 August. The majority of the nine events were found to originate from transient X-ray sources. The persistent luminosities of the sources, when these prolonged bursts were observed, were lower than 1% of the Eddington luminosity for five of them and lower than 20% for the rest. This trend is contrastive to the 18 superbursts observed before MAXI, all but two of which originated from bright persistent sources. The distribution of the total emitted energy, i.e., the product of e-folding time and luminosity, of these bursts clusters around 1041-1042 erg, whereas both the e-folding time and luminosity ranges for an order of magnitude. Among the nine events, two were from 4U 1850-086 during phases of relatively low persistent flux, whereas it usually exhibits standard short X-ray bursts during outbursts.

  8. Real-time segmentation of burst suppression patterns in critical care EEG monitoring

    PubMed Central

    Westover, M. Brandon; Shafi, Mouhsin M.; Ching, ShiNung; Chemali, Jessica J.; Purdon, Patrick L.; Cash, Sydney S.; Brown, Emery N.

    2014-01-01

    Objective Develop a real-time algorithm to automatically discriminate suppressions from non-suppressions (bursts) in electroencephalograms of critically ill adult patients. Methods A real-time method for segmenting adult ICU EEG data into bursts and suppressions is presented based on thresholding local voltage variance. Results are validated against manual segmentations by two experienced human electroencephalographers. We compare inter-rater agreement between manual EEG segmentations by experts with inter-rater agreement between human vs automatic segmentations, and investigate the robustness of segmentation quality to variations in algorithm parameter settings. We further compare the results of using these segmentations as input for calculating the burst suppression probability (BSP), a continuous measure of depth-of-suppression. Results Automated segmentation was comparable to manual segmentation, i.e. algorithm-vs-human agreement was comparable to human-vs-human agreement, as judged by comparing raw EEG segmentations or the derived BSP signals. Results were robust to modest variations in algorithm parameter settings. Conclusions Our automated method satisfactorily segments burst suppression data across a wide range adult ICU EEG patterns. Performance is comparable to or exceeds that of manual segmentation by human electroencephalographers. Significance Automated segmentation of burst suppression EEG patterns is an essential component of quantitative brain activity monitoring in critically ill and anesthetized adults. The segmentations produced by our algorithm provide a basis for accurate tracking of suppression depth. PMID:23891828

  9. Real-time segmentation of burst suppression patterns in critical care EEG monitoring.

    PubMed

    Brandon Westover, M; Shafi, Mouhsin M; Ching, Shinung; Chemali, Jessica J; Purdon, Patrick L; Cash, Sydney S; Brown, Emery N

    2013-09-30

    Develop a real-time algorithm to automatically discriminate suppressions from non-suppressions (bursts) in electroencephalograms of critically ill adult patients. A real-time method for segmenting adult ICU EEG data into bursts and suppressions is presented based on thresholding local voltage variance. Results are validated against manual segmentations by two experienced human electroencephalographers. We compare inter-rater agreement between manual EEG segmentations by experts with inter-rater agreement between human vs automatic segmentations, and investigate the robustness of segmentation quality to variations in algorithm parameter settings. We further compare the results of using these segmentations as input for calculating the burst suppression probability (BSP), a continuous measure of depth-of-suppression. Automated segmentation was comparable to manual segmentation, i.e. algorithm-vs-human agreement was comparable to human-vs-human agreement, as judged by comparing raw EEG segmentations or the derived BSP signals. Results were robust to modest variations in algorithm parameter settings. Our automated method satisfactorily segments burst suppression data across a wide range adult ICU EEG patterns. Performance is comparable to or exceeds that of manual segmentation by human electroencephalographers. Automated segmentation of burst suppression EEG patterns is an essential component of quantitative brain activity monitoring in critically ill and anesthetized adults. The segmentations produced by our algorithm provide a basis for accurate tracking of suppression depth. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Automatic burst detection for the EEG of the preterm infant.

    PubMed

    Jennekens, Ward; Ruijs, Loes S; Lommen, Charlotte M L; Niemarkt, Hendrik J; Pasman, Jaco W; van Kranen-Mastenbroek, Vivianne H J M; Wijn, Pieter F F; van Pul, Carola; Andriessen, Peter

    2011-10-01

    To aid with prognosis and stratification of clinical treatment for preterm infants, a method for automated detection of bursts, interburst-intervals (IBIs) and continuous patterns in the electroencephalogram (EEG) is developed. Results are evaluated for preterm infants with normal neurological follow-up at 2 years. The detection algorithm (MATLAB®) for burst, IBI and continuous pattern is based on selection by amplitude, time span, number of channels and numbers of active electrodes. Annotations of two neurophysiologists were used to determine threshold values. The training set consisted of EEG recordings of four preterm infants with postmenstrual age (PMA, gestational age + postnatal age) of 29-34 weeks. Optimal threshold values were based on overall highest sensitivity. For evaluation, both observers verified detections in an independent dataset of four EEG recordings with comparable PMA. Algorithm performance was assessed by calculation of sensitivity and positive predictive value. The results of algorithm evaluation are as follows: sensitivity values of 90% ± 6%, 80% ± 9% and 97% ± 5% for burst, IBI and continuous patterns, respectively. Corresponding positive predictive values were 88% ± 8%, 96% ± 3% and 85% ± 15%, respectively. In conclusion, the algorithm showed high sensitivity and positive predictive values for bursts, IBIs and continuous patterns in preterm EEG. Computer-assisted analysis of EEG may allow objective and reproducible analysis for clinical treatment.

  11. Method and apparatus for coherent burst ranging

    DOEpatents

    Wachter, Eric A.; Fisher, Walter G.

    1998-01-01

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time.

  12. Method and apparatus for coherent burst ranging

    DOEpatents

    Wachter, E.A.; Fisher, W.G.

    1998-04-28

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time. 12 figs.

  13. Acute Respiratory Distress Syndrome Neutrophils Have a Distinct Phenotype and Are Resistant to Phosphoinositide 3-Kinase Inhibition

    PubMed Central

    Juss, Jatinder K.; House, David; Amour, Augustin; Begg, Malcolm; Herre, Jurgen; Storisteanu, Daniel M. L.; Hoenderdos, Kim; Bradley, Glyn; Lennon, Mark; Summers, Charlotte; Hessel, Edith M.; Condliffe, Alison

    2016-01-01

    Rationale: Acute respiratory distress syndrome is refractory to pharmacological intervention. Inappropriate activation of alveolar neutrophils is believed to underpin this disease’s complex pathophysiology, yet these cells have been little studied. Objectives: To examine the functional and transcriptional profiles of patient blood and alveolar neutrophils compared with healthy volunteer cells, and to define their sensitivity to phosphoinositide 3-kinase inhibition. Methods: Twenty-three ventilated patients underwent bronchoalveolar lavage. Alveolar and blood neutrophil apoptosis, phagocytosis, and adhesion molecules were quantified by flow cytometry, and oxidase responses were quantified by chemiluminescence. Cytokine and transcriptional profiling were used in multiplex and GeneChip arrays. Measurements and Main Results: Patient blood and alveolar neutrophils were distinct from healthy circulating cells, with increased CD11b and reduced CD62L expression, delayed constitutive apoptosis, and primed oxidase responses. Incubating control cells with disease bronchoalveolar lavage recapitulated the aberrant functional phenotype, and this could be reversed by phosphoinositide 3-kinase inhibitors. In contrast, the prosurvival phenotype of patient cells was resistant to phosphoinositide 3-kinase inhibition. RNA transcriptomic analysis revealed modified immune, cytoskeletal, and cell death pathways in patient cells, aligning closely to sepsis and burns datasets but not to phosphoinositide 3-kinase signatures. Conclusions: Acute respiratory distress syndrome blood and alveolar neutrophils display a distinct primed prosurvival profile and transcriptional signature. The enhanced respiratory burst was phosphoinositide 3-kinase–dependent but delayed apoptosis and the altered transcriptional profile were not. These unexpected findings cast doubt over the utility of phosphoinositide 3-kinase inhibition in acute respiratory distress syndrome and highlight the importance of

  14. Analysis of type II and type III solar radio bursts

    NASA Astrophysics Data System (ADS)

    Wijesekera, J. V.; Jayaratne, K. P. S. C.; Adassuriya, J.

    2018-04-01

    Solar radio burst is an arrangement of a frequency space that variation with time. Most of radio burst can be identified in low frequency range such as below 200 MHz and depending on frequencies. Solar radio bursts were the first phenomenon identified in the field of radio astronomy field. Solar radio frequency range is from 70 MHz to 2.2 GHz. Most of the radio burst can be identified in a low frequency range such as below 200 MHz. Properties of low-frequency radio were analyzed this research. There are two types of solar radio bursts were analyzed, named as type II and type III radio bursts. Exponential decay type could be seen in type II, and a linear could be indicated in type III solar radio bursts. The results of the drift rate graphs show the values of each chosen solar radio burst. High drift rate values can be seen in type III solar flares whereas low to medium drift rate values can be seen in type II solar flares. In the second part of the research the Newkirk model electron density model was used to estimate the drift velocities of the solar radio bursts. Although the special origin of the solar radio burst is not known clearly we assumed. The chosen solar radio bursts were originated within the solar radius of 0.9 - 1.3 range from the photosphere. We used power low in the form of (x) = A × 10‑bx were that the electron density related to the height of the solar atmosphere. The calculation of the plasma velocity of each solar radio burst was done using the electron density model and drift rates. Therefore velocity of chosen type II solar radio bursts indicates low velocities. The values are 233.2499 Km s‑1, 815.9522 Km s‑1 and 369.5425 Km s‑1. Velocity of chosen type III solar radio bursts were 1443.058 Km s‑1and 1205.05Km s ‑1.

  15. Ceramic Matrix Composite Vane Subelement Burst Testing

    NASA Technical Reports Server (NTRS)

    Brewer, David N.; Verrilli, Michael; Calomino, Anthony

    2006-01-01

    Burst tests were performed on Ceramic Matrix Composite (CMC) vane specimens, manufactured by two vendors, under the Ultra Efficient Engine Technology (UEET) project. Burst specimens were machined from the ends of 76mm long vane sub-elements blanks and from High Pressure Burner Rig (HPBR) tested specimens. The results of burst tests will be used to compare virgin specimens with specimens that have had an Environmental Barrier Coating (EBC) applied, both HPBR tested and untested, as well as a comparison between vendors.

  16. Ballerina - pirouettes in search of gamma bursts

    NASA Astrophysics Data System (ADS)

    Brandt, S.; Lund, N.; Pedersen, H.; Hjorth, J.; BALLERINA Collaboration

    1999-09-01

    The cosmological origin of gamma ray bursts has now been established with reasonable certainty. Many more bursts will need to be studied to establish the typical distance scale, and to map out the large diversity in properties which have been indicated by the first handful of events. We are proposing Ballerina, a small satellite to provide accurate positions and new data on the gamma-ray bursts. We anticipate a detection rate an order of magnitude larger than obtained from Beppo-SAX.

  17. Oscillations During Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    High amplitude, nearly coherent X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries, a long sought goal of X-ray astronomy. Studies carried out over the past year have led to the discovery of burst oscillations in four new sources, bringing to ten the number with confirmed burst oscillations. I review the status of our knowledge of these oscillations and indicate how they can be used to probe the physics of neutron stars. For a few burst oscillation sources it has been proposed that the strongest and most ubiquitous frequency is actually the first overtone of the spin frequency and hence that two nearly antipodal hot spots are present on the neutron star. This inference has important implications for both the physics of thermonuclear burning as well as the mass - radius relation for neutron stars, so its confirmation is crucial. I discuss recent attempts to confirm this hypothesis for 4U 1636-53, the source for which a signal at the putative fundamental (290Hz) has, been claimed.

  18. Long Duration X-ray Bursts Observed by MAXI

    NASA Astrophysics Data System (ADS)

    Serino, Motoko; Iwakiri, Wataru; Tamagawa, Toru; Sakamoto, Takanori; Nakahira, Satoshi; Matsuoka, Masaru; Yamaoka, Kazutaka; Negoro, Hitoshi

    Monitor of All-sky X-ray Image (MAXI) is X-ray mission on the International Space Station. MAXI scans all sky every 92 min and detects various X-ray transient events including X-ray bursts. Among the X-ray bursts observed by MAXI, eleven had long duration and were observed more than one scan. Six out of eleven long bursts have the e-folding time of >1 h, that should be classified as "superbursts", while the rest are "intermediate-duration bursts". The total emitted energy of these long X-ray bursts range from 1041 to 1042 ergs. The lower limits of the superburst recurrence time of 4U 0614+091 and Ser X-1 are calculated as 4400 and 59 days, which may be consistent with the observed recurrence time of 3523 and 1148 days, respectively.

  19. Amplitude sorting of oscillatory burst signals by sampling

    DOEpatents

    Davis, Thomas J.

    1977-01-01

    A method and apparatus for amplitude sorting of oscillatory burst signals is described in which the burst signal is detected to produce a burst envelope signal and an intermediate or midportion of such envelope signal is sampled to provide a sample pulse output. The height of the sample pulse is proportional to the amplitude of the envelope signal and to the maximum burst signal amplitude. The sample pulses are fed to a pulse height analyzer for sorting. The present invention is used in an acoustic emission testing system to convert the amplitude of the acoustic emission burst signals into sample pulse heights which are measured by a pulse height analyzer for sorting the pulses in groups according to their height in order to identify the material anomalies in the test material which emit the acoustic signals.

  20. A New Catalogue of Fine Structures Superimposed on Solar Microwave Bursts

    NASA Astrophysics Data System (ADS)

    Fu, Qi-Jun; Yan, Yi-Hua; Liu, Yu-Ying; Wang, Min; Wang, Shu-Juan

    2004-04-01

    The 2.6--3.8 GHz, 4.5--7.5 GHz, 5.2--7.6 GHz and 0.7--1.5 GHz component spectrometers of Solar Broadband Radio Spectrometer (SBRS) started routine observations, respectively, in late August 1996, August 1999, August 1999, and June 2000. They just managed to catch the coming 23rd solar active maximum. Consequently, a large amount of microwave burst data with high temporal and high spectral resolutionand high sensitivity were obtained. A variety of fine structures (FS) superimposed on microwave bursts have been found. Some of them are known, such as microwave type III bursts, microwave spike emission, but these were observed with more detail; some are new. Reported for the first time here are microwave type U bursts with similar spectral morphology to those in decimetric and metric wavelengths, and with outstanding characteristics such as very short durations (tens to hundreds ms), narrow bandwidths, higher frequency drift rates and higher degrees of polarization. Type N and type M bursts were also observed. Detailed zebra pattern and fiber bursts at the high frequency were found. Drifting pulsation structure (DPS) phenomena closely associated with CME are considered to manifest the initial phase of the CME, and quasi-periodic pulsation with periods of tens ms have been recorded. Microwave ``patches", unlike those reported previously, were observed with very short durations (about 300 ms), very high flux densities (up to 1000 sfu), very high polarization (about 100% RCP), extremely narrow bandwidths (about 5%), and very high spectral indexes. These cannot be interpreted with the gyrosynchrotron process. A superfine structure in the form of microwave FS (ZPS, type U), consisting of microwave millisecond spike emission (MMS), was also found.

  1. BALLERINA - doing Pirouettes for the Gamma-Bursts

    NASA Astrophysics Data System (ADS)

    Lund, Niels; Ballerina Consortium

    1998-12-01

    BALLERINA is a satellite project currently selected (together with 3 other candidates) for a five month phase-A study within the Danish Small-Satellite Programme. BALLERINA combines an all-sky monitor yielding instantaneous half-degree size error boxes with rapid maneuverability and a wide field X-ray telescope. The project aims to study the transition phase from the gamma-burst to the afterglow phase, and to distribute sub-arcminute positions for the bursts in near real time. We expect to be able to lock-on to the source with the X-ray telescope in less than 3 minutes from the trigger, and to provide the accurate burst position to the general astronomical community within 10 minutes. While waiting for the bursts we plan to study other transient and persistent X-ray sources .

  2. Modeling temporal changes of low-frequency earthquake bursts near Parkfield, CA

    NASA Astrophysics Data System (ADS)

    Wu, C.; Daub, E. G.

    2016-12-01

    Tectonic tremor and low-frequency earthquakes (LFE) are found in the deeper crust of various tectonic environments in the last decade. LFEs are presumed to be caused by failure of deep fault patches during a slow slip event, and the long-term variation in LFE recurrence could provide crucial insight into the deep fault zone processes that may lead to future large earthquakes. However, the physical mechanisms causing the temporal changes of LFE recurrence are still under debate. In this study, we combine observations of long-term changes in LFE burst activities near Parkfield, CA with a brittle and ductile friction (BDF) model, and use the model to constrain the possible physical mechanisms causing the observed long-term changes in LFE burst activities after the 2004 M6 Parkfield earthquake. The BDF model mimics the slipping of deep fault patches by a spring-drugged block slider with both brittle and ductile friction components. We use the BDF model to test possible mechanisms including static stress imposed by the Parkfield earthquake, changes in pore pressure, tectonic force, afterslip, brittle friction strength, and brittle contact failure distance. The simulation results suggest that changes in brittle friction strength and failure distance are more likely to cause the observed changes in LFE bursts than other mechanisms.

  3. Study of Neutrino-Induced Neutrons in Dark Matter Detectors for Supernova Burst Neutrinos

    NASA Astrophysics Data System (ADS)

    Kwan, Newton; Scholberg, Kate

    2017-09-01

    When supernova burst neutrinos (1-50 MeV) pass through the Earth, they occasionally interact with the passive shielding surrounding dark matter detectors. When the neutrinos interact, one or two roughly 2 MeV neutrons are scattered isotropically and uniformly, often leaving undetected. Occasionally, these neutrino-induced neutrons (NINs) interact with the detector and leave a background signal similar to a WIMP. The purpose of this study is to understand the effects of NINs on active dark matter detectors during a supernova burst.

  4. Bactericidal activity of tracheal antimicrobial peptide against respiratory pathogens of cattle.

    PubMed

    Taha-Abdelaziz, Khaled; Perez-Casal, José; Schott, Courtney; Hsiao, Jason; Attah-Poku, Samuel; Slavić, Durđa; Caswell, Jeff L

    2013-04-15

    Tracheal antimicrobial peptide (TAP) is a β-defensin produced by mucosal epithelial cells of cattle. Although effective against several human pathogens, the activity of this bovine peptide against the bacterial pathogens that cause bovine respiratory disease have not been reported. This study compared the antibacterial effects of synthetic TAP against Mannheimia haemolytica, Histophilus somni, Pasteurella multocida, and Mycoplasma bovis. Bactericidal activity against M. bovis was not detected. In contrast, the Pasteurellaceae bacteria showed similar levels of susceptibility to that of Escherichia coli, with 0.125μg TAP inhibiting growth in a radial diffusion assay and minimum inhibitory concentrations of 1.56-6.25μg/ml in a bactericidal assay. Significant differences among isolates were not observed. Sequencing of exon 2 of the TAP gene from 23 cattle revealed a prevalent non-synonymous single nucleotide polymorphism (SNP) A137G, encoding either serine or asparagine at residue 20 of the mature peptide. The functional effect of this SNP was tested against M. haemolytica using synthetic peptides. The bactericidal effect of the asparagine-containing peptide was consistently higher than the serine-containing peptide. Bactericidal activities were similar for an acapsular mutant of M. haemolytica compared to the wild type. These findings indicate that the Pasteurellaceae bacteria that cause bovine respiratory disease are susceptible to killing by bovine TAP and appear not to have evolved resistance, whereas M. bovis appears to be resistant. A non-synonymous SNP was identified in the coding region of the TAP gene, and the corresponding peptides vary in their bactericidal activity against M. haemolytica. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. 42 CFR 84.52 - Respiratory hazards; classification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Respiratory hazards; classification. 84.52 Section... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Classification of Approved Respirators; Scope of Approval; Atmospheric Hazards; Service Time § 84.52 Respiratory...

  6. 42 CFR 84.52 - Respiratory hazards; classification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Respiratory hazards; classification. 84.52 Section... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Classification of Approved Respirators; Scope of Approval; Atmospheric Hazards; Service Time § 84.52 Respiratory...

  7. 42 CFR 84.52 - Respiratory hazards; classification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respiratory hazards; classification. 84.52 Section... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Classification of Approved Respirators; Scope of Approval; Atmospheric Hazards; Service Time § 84.52 Respiratory...

  8. 42 CFR 84.52 - Respiratory hazards; classification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Respiratory hazards; classification. 84.52 Section... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Classification of Approved Respirators; Scope of Approval; Atmospheric Hazards; Service Time § 84.52 Respiratory...

  9. 42 CFR 84.52 - Respiratory hazards; classification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Respiratory hazards; classification. 84.52 Section... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Classification of Approved Respirators; Scope of Approval; Atmospheric Hazards; Service Time § 84.52 Respiratory...

  10. Solar U- and J- Bursts at the Frequencies 10-30MHz

    NASA Astrophysics Data System (ADS)

    Dorovskyy, V. V.; Melnik, V. N.; Konovalenko, A. A.; Abranin, E. P.; Rucker, H. O.; Lecacheux, A.

    2006-08-01

    In the present report we discuss the results of observations of solar U- and J- bursts over the frequency range 10-30MHz, which have been obtained within the framework of an international observational campaign in June - August, 2004 at the radio telescope UTR-2 (Kharkov, Ukraine). We succeed to observe these types of bursts for the first time at such a low frequencies due to combination of large effective area of the radio telescope and high sensitivity of the new back-end. During June - August, 2004 about 30 U- and J- bursts were registered, and only 5 of them were confidently identified as U-bursts that may speak about the relative sparsity of the latter at mentioned frequencies. Both the isolated bursts and their sequences were observed. On average the turning frequencies lay in the range 10-22 MHz that corresponds to the arches heliocentric heights of 1.6-2.2 solar radii. In some sequences the bursts turning frequency was stable that may indicate the arch stability, while in others the turning frequency had tendency to vary from burst to burst. Durations of U- and J- bursts did not differ from those of usual Type III bursts (3-7s), while the drift rates of an ascending arm (on the average -1MHz/ s) was a little bit lower, than those of ordinary Type III bursts in this range. The harmonic structure of U- and J- bursts, and also Jb-J pairs (analogous to IIIb-III pairs) were registered. Also L-shaped bursts (Leblanc and Hoyos, 1985) were recorded. A specific feature of L-shaped bursts is prolonged zero-drift region on their dynamic spectra. The sizes and configurations of the arches were estimated on the base of obtained data. Possible explanations of the observed properties of U- and J- bursts are discussed.

  11. Burst synchronization transitions in a neuronal network of subnetworks

    NASA Astrophysics Data System (ADS)

    Sun, Xiaojuan; Lei, Jinzhi; Perc, Matjaž; Kurths, Jürgen; Chen, Guanrong

    2011-03-01

    In this paper, the transitions of burst synchronization are explored in a neuronal network consisting of subnetworks. The studied network is composed of electrically coupled bursting Hindmarsh-Rose neurons. Numerical results show that two types of burst synchronization transitions can be induced not only by the variations of intra- and intercoupling strengths but also by changing the probability of random links between different subnetworks and the number of subnetworks. Furthermore, we find that the underlying mechanisms for these two bursting synchronization transitions are different: one is due to the change of spike numbers per burst, while the other is caused by the change of the bursting type. Considering that changes in the coupling strengths and neuronal connections are closely interlaced with brain plasticity, the presented results could have important implications for the role of the brain plasticity in some functional behavior that are associated with synchronization.

  12. Galactic dual population models of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Higdon, J. C.; Lingenfelter, R. E.

    1994-01-01

    We investigate in more detail the properties of two-population models for gamma-ray bursts in the galactic disk and halo. We calculate the gamma-ray burst statistical properties, mean value of (V/V(sub max)), mean value of cos Theta, and mean value of (sin(exp 2) b), as functions of the detection flux threshold for bursts coming from both Galactic disk and massive halo populations. We consider halo models inferred from the observational constraints on the large-scale Galactic structure and we compare the expected values of mean value of (V/V(sub max)), mean value of cos Theta, and mean value of (sin(exp 2) b), with those measured by Burst and Transient Source Experiment (BATSE) and other detectors. We find that the measured values are consistent with solely Galactic populations having a range of halo distributions, mixed with local disk distributions, which can account for as much as approximately 25% of the observed BATSE bursts. M31 does not contribute to these modeled bursts. We also demonstrate, contrary to recent arguments, that the size-frequency distributions of dual population models are quite consistent with the BATSE observations.

  13. CENTRAL ENGINE MEMORY OF GAMMA-RAY BURSTS AND SOFT GAMMA-RAY REPEATERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bin-Bin; Castro-Tirado, Alberto J.; Zhang, Bing, E-mail: zhang.grb@gmail.com

    Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that themore » central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs.« less

  14. Impact of azadirachtin, an insecticidal allelochemical from neem on soil microflora, enzyme and respiratory activities.

    PubMed

    Gopal, Murali; Gupta, Alka; Arunachalam, V; Magu, S P

    2007-11-01

    The effect of 10% azadirachtin granules (alcoholic extract of neem seed kernel mixed with China clay) was studied on the population of bacteria, actinomycetes, fungi, Azotobacter and nitrifying bacteria; soil dehydrogenase, phosphatase and respiratory activities on 0, 15th, 30th, 60th and 90th days after application in sandy loam soil collected from the fields. It was observed that baring the Azotobacter sp., azadirachtin at all the doses exerted a suppressive effect on the rest of the microbial communities and enzyme activities in the initial 15 day period. The population of bacteria, actinomycetes besides phosphatase and respiratory activities recovered after 60th day and subsequently increased significantly. The fungi and nitrifiers were most sensitive groups as their numbers were reduced significantly throughout the studies. The two times and five times recommended dose of azadirachtin had very high biocidal effects on the soil microorganisms and its activities. However, analysis of the data by the Shannon Weaver index showed that azadirachtin reduces both the form and functional microbial diversity at all doses.

  15. An integrate-and-fire model for synchronized bursting in a network of cultured cortical neurons.

    PubMed

    French, D A; Gruenstein, E I

    2006-12-01

    It has been suggested that spontaneous synchronous neuronal activity is an essential step in the formation of functional networks in the central nervous system. The key features of this type of activity consist of bursts of action potentials with associated spikes of elevated cytoplasmic calcium. These features are also observed in networks of rat cortical neurons that have been formed in culture. Experimental studies of these cultured networks have led to several hypotheses for the mechanisms underlying the observed synchronized oscillations. In this paper, bursting integrate-and-fire type mathematical models for regular spiking (RS) and intrinsic bursting (IB) neurons are introduced and incorporated through a small-world connection scheme into a two-dimensional excitatory network similar to those in the cultured network. This computer model exhibits spontaneous synchronous activity through mechanisms similar to those hypothesized for the cultured experimental networks. Traces of the membrane potential and cytoplasmic calcium from the model closely match those obtained from experiments. We also consider the impact on network behavior of the IB neurons, the geometry and the small world connection scheme.

  16. Analysis of PAMP-Triggered ROS Burst in Plant Immunity.

    PubMed

    Sang, Yuying; Macho, Alberto P

    2017-01-01

    The plant perception of pathogen-associated molecular patterns triggers a plethora of cellular immune responses. One of these responses is a rapid and transient burst of reactive oxygen species (ROS) mediated by plasma membrane-localized NADPH oxidases. The ROS burst requires a functional receptor complex and the contribution of several additional regulatory components. In laboratory conditions, the ROS burst can be detected a few minutes after the treatment with an immunogenic microbial elicitor. For these reasons, the elicitor-triggered ROS burst has been often exploited as readout to probe the contribution of plant components to early immune responses. Here, we describe a detailed protocol for the measurement of elicitor-triggered ROS burst in a simple, fast, and easy manner.

  17. Identifying the Critical Domain of LL-37 Involved in Mediating Neutrophil Activation in the Presence of Influenza Virus: Functional and Structural Analysis

    PubMed Central

    Tripathi, Shweta; Wang, Guangshun; White, Mitchell; Rynkiewicz, Michael; Seaton, Barbara; Hartshorn, Kevan

    2015-01-01

    The human cathelicidin LL-37 has been shown to play a role in host defense against influenza A viruses (IAV) through direct antiviral effects and through modulating inflammatory responses to infection. We recently showed that LL-37 increases neutrophil respiratory burst and neutrophil extracellular trap (NET) responses to IAV through engaging formyl peptide receptor 2 (FPR-2). In this paper we show that a fragment of LL-37, GI-20, which is composed of the central helical segment of the peptide, has similar effects as LL-37 on neutrophil activation. In addition to increasing respiratory burst and NET responses of the cells to IAV through an FPR-2 dependent mechanism, it reduces neutrophil IL-8 production to IAV (also like LL-37). The N-terminal fragment, LL-23, did not have similar effects. Both GI-20 and LL-37 increase neutrophil intracellular calcium levels and their ability to increase neutrophil activation responses was calcium dependent and partially inhibited by pertussis toxin. These studies show that the central helix of LL-37 retains the ability of LL-37 to modulate neutrophil responses through FPR-2. Based on our findings we developed a homology model of FPR-2 and performed docking experiments of LL-37 and GI-20 with the receptor. PMID:26308522

  18. On Burst Detection and Prediction in Retweeting Sequence

    DTIC Science & Technology

    2015-05-22

    We conduct a comprehensive empirical analysis of a large microblogging dataset collected from the Sina Weibo and report our observations of burst...whether and how accurate we can predict bursts using classifiers based on the extracted features. Our empirical study of the Sina Weibo data shows the...feasibility of burst prediction using appropriately extracted features and classic classifiers. 1 Introduction Microblogging, such as Twitter and Sina

  19. The application of network synthesis to repeating classical gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Hurley, K.; Kouveliotou, C.; Fishman, J.; Meegan, C.; Laros, J.; Klebesadel, R.

    1995-01-01

    It has been suggested that the Burst and Transient Source Experiment (BATSE) gamma-ray burst catalog contains several groups of bursts clustered in space or in space and time, which provide evidence that a substantial fraction of the classical gamma-ray burst sources repeat. Because many of the bursts in these groups are weak, they are not directly detected by the Ulysses GRB experiment. We apply the network synthesis method to these events to test the repeating burst hypothesis. Although we find no evidence for repeating sources, the method must be applied under more general conditions before reaching any definite conclusions about the existence of classical gamma-ray burst repeating sources.

  20. Effect of network architecture on burst and spike synchronization in a scale-free network of bursting neurons.

    PubMed

    Kim, Sang-Yoon; Lim, Woochang

    2016-07-01

    We investigate the effect of network architecture on burst and spike synchronization in a directed scale-free network (SFN) of bursting neurons, evolved via two independent α- and β-processes. The α-process corresponds to a directed version of the Barabási-Albert SFN model with growth and preferential attachment, while for the β-process only preferential attachments between pre-existing nodes are made without addition of new nodes. We first consider the "pure" α-process of symmetric preferential attachment (with the same in- and out-degrees), and study emergence of burst and spike synchronization by varying the coupling strength J and the noise intensity D for a fixed attachment degree. Characterizations of burst and spike synchronization are also made by employing realistic order parameters and statistical-mechanical measures. Next, we choose appropriate values of J and D where only burst synchronization occurs, and investigate the effect of the scale-free connectivity on the burst synchronization by varying (1) the symmetric attachment degree and (2) the asymmetry parameter (representing deviation from the symmetric case) in the α-process, and (3) the occurrence probability of the β-process. In all these three cases, changes in the type and the degree of population synchronization are studied in connection with the network topology such as the degree distribution, the average path length Lp, and the betweenness centralization Bc. It is thus found that just taking into consideration Lp and Bc (affecting global communication between nodes) is not sufficient to understand emergence of population synchronization in SFNs, but in addition to them, the in-degree distribution (affecting individual dynamics) must also be considered to fully understand for the effective population synchronization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The Effect of Post-Burst Energy on Exploding Bridgewire Output

    NASA Astrophysics Data System (ADS)

    Lee, Elizabeth; Bowden, Mike

    2015-06-01

    For an EBW detonator, as the fireset energy is increased from threshold to all-fire level the post-burst energy delivered to the detonator increases, and the function times decrease. To gain an understanding of the processes through which the post-burst electrical energy influences the function times the effect of the post-burst energy on the explosion of bridgewires was studied. A fireset was developed which enabled the post-burst energy to be varied independent of the burst energy by terminating the current flow at pre-selected times. The effect of this on the bridgewires was characterised at a range of firing voltages and a range of termination times. The response of the bridgewire was characterised using Photonic Doppler Velocimetry. The velocimetry trace detected two families of velocities. The first family had initial velocities in the range 1-2 km.s-1 and the second family had velocities in the range 0-0.5 km.s-1. The relative position of the two families depended on the post burst energy. The results show that a reduction in the post-burst energy and therefore the total delivered energy, but for a constant energy delivered to burst, corresponds to a decrease in the acceleration and peak velocity of the bridgewire / plasma at burst.

  2. Gamma Ray Bursts and the Birth of Black Holes

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2009-01-01

    Black holes have been predicted since the 1940's from solutions of Einstein's general relativity field equation. There is strong evidence of their existence from astronomical observations, but their origin has remained an open question of great interest. Gamma-ray bursts may the clue. They are powerful explosions, visible to high redshift, and appear to be the birth cries of black holes. The Swift and Fermi missions are two powerful NASA observatories currently in orbit that are discovering how gamma-ray bursts work. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type II and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are tremendously luminous and are providing a new tool to study the high redshift universe. One Swift burst at z=8.3 is the most distant object known in the universe. The talk will present the latest gamma-ray burst results from Swift and Fermi and will highlight what they are teaching us about black holes and jet outflows.

  3. Substance P and central respiratory activity: a comparative in vitro study on foetal and newborn rat.

    PubMed

    Ptak, K; Di Pasquale, E; Monteau, R

    1999-05-14

    Experiments were performed in vitro on foetal (embryonic days 18 to 21, E18-21) and newborn rat (postnatal days 0 to 3, P0-3) brainstem spinal cord preparations to analyse the perinatal developmental changes in the effects induced by substance P. Superfusion of the preparations with SP-containing artificial cerebrospinal fluid (aCSF) induced significant increase in the respiratory frequency of newborn rats (10-9 M), whereas concentration up to 10-7 M induced no change in foetal preparations. A whole cell patch clamp approach was used to record intracellularly from phrenic motoneurones. In newborn or E20-21 foetal rats SP-containing aCSF depolarised the phrenic motoneurones, increased their input resistance, reduced the rheobase current and shifted the frequency-intensity curves upward. In E18 foetal rats, no change was evoked by SP. A peptidase inhibitor mixture was used to block the enzymatic degradation of endogenous SP. This mixture was ineffective in changing the respiratory frequency in newborn and foetal preparations. In newborn rat phrenic motoneurones, the peptidase inhibitor mixture induced changes similar to those caused by SP but no change was induced in foetal rats. These results indicate that SP may modulate (i) the activity of the respiratory rhythm generator in newborn but not in foetal rats, and (ii) the activity of phrenic motoneurones at E20, E21 and in newborn rats but not at E18. Results obtained using the peptidase inhibitor mixture suggest that endogenous SP is probably not involved in the control of the respiratory rhythm in the prenatal period, but may influence the activity of the phrenic motoneurones after birth. Copyright 1999 Elsevier Science B.V.

  4. Detection of artifacts from high energy bursts in neonatal EEG.

    PubMed

    Bhattacharyya, Sourya; Biswas, Arunava; Mukherjee, Jayanta; Majumdar, Arun Kumar; Majumdar, Bandana; Mukherjee, Suchandra; Singh, Arun Kumar

    2013-11-01

    Detection of non-cerebral activities or artifacts, intermixed within the background EEG, is essential to discard them from subsequent pattern analysis. The problem is much harder in neonatal EEG, where the background EEG contains spikes, waves, and rapid fluctuations in amplitude and frequency. Existing artifact detection methods are mostly limited to detect only a subset of artifacts such as ocular, muscle or power line artifacts. Few methods integrate different modules, each for detection of one specific category of artifact. Furthermore, most of the reference approaches are implemented and tested on adult EEG recordings. Direct application of those methods on neonatal EEG causes performance deterioration, due to greater pattern variation and inherent complexity. A method for detection of a wide range of artifact categories in neonatal EEG is thus required. At the same time, the method should be specific enough to preserve the background EEG information. The current study describes a feature based classification approach to detect both repetitive (generated from ECG, EMG, pulse, respiration, etc.) and transient (generated from eye blinking, eye movement, patient movement, etc.) artifacts. It focuses on artifact detection within high energy burst patterns, instead of detecting artifacts within the complete background EEG with wide pattern variation. The objective is to find true burst patterns, which can later be used to identify the Burst-Suppression (BS) pattern, which is commonly observed during newborn seizure. Such selective artifact detection is proven to be more sensitive to artifacts and specific to bursts, compared to the existing artifact detection approaches applied on the complete background EEG. Several time domain, frequency domain, statistical features, and features generated by wavelet decomposition are analyzed to model the proposed bi-classification between burst and artifact segments. A feature selection method is also applied to select the

  5. Spinal TNFα is necessary for inactivity-induced phrenic motor facilitation

    PubMed Central

    Broytman, Oleg; Baertsch, Nathan A; Baker-Herman, Tracy L

    2013-01-01

    A prolonged reduction in central neural respiratory activity elicits a form of plasticity known as inactivity-induced phrenic motor facilitation (iPMF), a ‘rebound’ increase in phrenic burst amplitude apparent once respiratory neural activity is restored. iPMF requires atypical protein kinase C (aPKC) activity within spinal segments containing the phrenic motor nucleus to stabilize an early transient increase in phrenic burst amplitude and to form long-lasting iPMF following reduced respiratory neural activity. Upstream signal(s) leading to spinal aPKC activation are unknown. We tested the hypothesis that spinal tumour necrosis factor-α (TNFα) is necessary for iPMF via an aPKC-dependent mechanism. Anaesthetized, ventilated rats were exposed to a 30 min neural apnoea; upon resumption of respiratory neural activity, a prolonged increase in phrenic burst amplitude (42 ± 9% baseline; P < 0.05) was apparent, indicating long-lasting iPMF. Pretreatment with recombinant human soluble TNF receptor 1 (sTNFR1) in the intrathecal space at the level of the phrenic motor nucleus prior to neural apnoea blocked long-lasting iPMF (2 ± 8% baseline; P > 0.05). Intrathecal TNFα without neural apnoea was sufficient to elicit long-lasting phrenic motor facilitation (pMF; 62 ± 7% baseline; P < 0.05). Similar to iPMF, TNFα-induced pMF required spinal aPKC activity, as intrathecal delivery of a ζ-pseudosubstrate inhibitory peptide (PKCζ-PS) 35 min following intrathecal TNFα arrested TNFα-induced pMF (28 ± 8% baseline; P < 0.05). These data demonstrate that: (1) spinal TNFα is necessary for iPMF; and (2) spinal TNFα is sufficient to elicit pMF via a similar aPKC-dependent mechanism. These data are consistent with the hypothesis that reduced respiratory neural activity elicits iPMF via a TNFα-dependent increase in spinal aPKC activity. PMID:23878370

  6. Interplanetary baseline observations of type III solar radio bursts

    NASA Technical Reports Server (NTRS)

    Weber, R. R.; Fitzenreiter, R. J.; Novaco, J. C.; Fainberg, J.

    1977-01-01

    Simultaneous observations of type III radio bursts from spacecraft separated by 0.43 AU have been made using the solar orbiters Helios-A and Helios-B. The burst beginning at 19:22 UT on March 28, 1976, has been located from the intersection of the source directions measured at each spacecraft and from burst arrival-time differences. The source positions range from 0.03 AU from the sun at 3000 kHz to 0.08 AU at 585 kHz. The electron density along the burst trajectory and the exciter velocity (0.13c) were determined directly without the need to assume a density model, as has been done with single-spacecraft observations. The separation of Helios-A and -B has also provided measurements of burst directivity at low frequencies. For the March 28 burst the intensity observed from near the source longitude (Helios-B) was 3-10dB greater than that from 60 deg west of the source (Helios-A)

  7. The effect of respiratory exercise on trunk control, pulmonary function, and trunk muscle activity in chronic stroke patients.

    PubMed

    Lee, Dong-Kyu; Kim, Se-Hun

    2018-05-01

    [Purpose] This study aims to identify the effect of respiratory exercise on trunk control, pulmonary function, and trunk muscle activity in chronic stroke patients. [Subjects and Methods] The study included 24 chronic stroke patients who were randomly assigned, 12 each, to the experimental and control groups, and received neurodevelopmental treatment. Moreover, the experimental group underwent respiratory exercise. In each patient, the trunk control was measured using the Trunk Impairment Scale (TIS); muscle activity of the trunk, through the surface electromyogram; and pulmonary function, using the pneumatometer. [Results] The intragroup comparison showed significant differences in TIS, Forced vital capacity (FVC), Forced expiratory volume at one second (FEV1), Rectus Abdominis (RA), Internal Oblique (IO) and External Oblique (EO) in the experimental group. The intergroup comparison showed that the differences in TIS, FVC, FEV1, RA, IO and EO within the experimental group appeared significant relative to the control group. [Conclusion] Based on these results, this study proved that respiratory exercise was effective in improving trunk control, pulmonary function, and trunk muscle activity in patients with chronic stroke.

  8. Reliable WDM multicast in optical burst-switched networks

    NASA Astrophysics Data System (ADS)

    Jeong, Myoungki; Qiao, Chunming; Xiong, Yijun

    2000-09-01

    IN this paper,l we present a reliable WDM (Wavelength-Division Multiplexing) multicast protocol in optical burst-switched (OBS) networks. Since the burst dropping (loss) probability may be potentially high in a heavily loaded OBS backbone network, reliable multicast protocols that have developed for IP networks at the transport (or application) layer may incur heavy overheads such as a large number of duplicate retransmissions. In addition, it may take a longer time for an end host to detect and then recover from burst dropping (loss) occurred at the WDM layer. For efficiency reasons, we propose burst loss recovery within the OBS backbone (i.e., at the WDM link layer). The proposed protocol requires two additional functions to be performed by the WDM switch controller: subcasting and maintaining burst states, when the WDM switch has more than one downstream on the WDM multicast tree. We show that these additional functions are simple to implement and the overhead associated with them is manageable.

  9. Optimization of encapsulation of a synthetic long peptide in PLGA nanoparticles: low-burst release is crucial for efficient CD8(+) T cell activation.

    PubMed

    Silva, A L; Rosalia, R A; Sazak, A; Carstens, M G; Ossendorp, F; Oostendorp, J; Jiskoot, W

    2013-04-01

    Overlapping synthetic long peptides (SLPs) hold great promise for immunotherapy of cancer. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are being developed as delivery systems to improve the potency of peptide-based therapeutic cancer vaccines. Our aim was to optimize PLGA NP for SLP delivery with respect to encapsulation and release, using OVA24, a 24-residue long synthetic antigenic peptide covering a CTL epitope of ovalbumin (SIINFEKL), as a model antigen. Peptide-loaded PLGA NPs were prepared by a double emulsion/solvent evaporation technique. Using standard conditions (acidic inner aqueous phase), we observed that either encapsulation was very low (1-30%), or burst release extremely high (>70%) upon resuspension of NP in physiological buffers. By adjusting formulation and process parameters, we uncovered that the pH of the first emulsion was critical to efficient encapsulation and controlled release. In particular, an alkaline inner aqueous phase resulted in circa 330 nm sized NP with approximately 40% encapsulation efficiency and low (<10%) burst release. These NP showed enhanced MHC class I restricted T cell activation in vitro when compared to high-burst releasing NP and soluble OVA24, proving that efficient entrapment of the antigen is crucial to induce a potent cellular immune response. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. The oxidative burst reaction in mammalian cells depends on gravity

    PubMed Central

    2013-01-01

    Gravity has been a constant force throughout the Earth’s evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in “functional weightlessness” were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and

  11. The oxidative burst reaction in mammalian cells depends on gravity.

    PubMed

    Adrian, Astrid; Schoppmann, Kathrin; Sromicki, Juri; Brungs, Sonja; von der Wiesche, Melanie; Hock, Bertold; Kolanus, Waldemar; Hemmersbach, Ruth; Ullrich, Oliver

    2013-12-20

    Gravity has been a constant force throughout the Earth's evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in "functional weightlessness" were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function

  12. Multi-feature classifiers for burst detection in single EEG channels from preterm infants

    NASA Astrophysics Data System (ADS)

    Navarro, X.; Porée, F.; Kuchenbuch, M.; Chavez, M.; Beuchée, Alain; Carrault, G.

    2017-08-01

    Objective. The study of electroencephalographic (EEG) bursts in preterm infants provides valuable information about maturation or prognostication after perinatal asphyxia. Over the last two decades, a number of works proposed algorithms to automatically detect EEG bursts in preterm infants, but they were designed for populations under 35 weeks of post menstrual age (PMA). However, as the brain activity evolves rapidly during postnatal life, these solutions might be under-performing with increasing PMA. In this work we focused on preterm infants reaching term ages (PMA  ⩾36 weeks) using multi-feature classification on a single EEG channel. Approach. Five EEG burst detectors relying on different machine learning approaches were compared: logistic regression (LR), linear discriminant analysis (LDA), k-nearest neighbors (kNN), support vector machines (SVM) and thresholding (Th). Classifiers were trained by visually labeled EEG recordings from 14 very preterm infants (born after 28 weeks of gestation) with 36-41 weeks PMA. Main results. The most performing classifiers reached about 95% accuracy (kNN, SVM and LR) whereas Th obtained 84%. Compared to human-automatic agreements, LR provided the highest scores (Cohen’s kappa  =  0.71) using only three EEG features. Applying this classifier in an unlabeled database of 21 infants  ⩾36 weeks PMA, we found that long EEG bursts and short inter-burst periods are characteristic of infants with the highest PMA and weights. Significance. In view of these results, LR-based burst detection could be a suitable tool to study maturation in monitoring or portable devices using a single EEG channel.

  13. Electromagnetic Quasi-periodic Whistler-Mode Bursts during Ring Grazing Passes

    NASA Astrophysics Data System (ADS)

    Farrell, W. M.; Morooka, M. W.; Wahlund, J. E.; Kurth, W. S.; Hospodarsky, G.; MacDowall, R. J.; Mitchell, D. G.; Gurnett, D. A.; Krupp, N.; Roussos, E.; Kollmann, P.

    2017-12-01

    In the 2016-2017 time-frame, the Cassini spacecraft made a set of over 20 nearly identical Saturn orbital passes with closest approach at the outer edge of the F-ring. These passes are now called `Ring Grazing' orbits. During nearly every one of these orbits, quasi-periodic (QP) whistler-mode bursts were detected at mid-southern latitudes between -57o and -22o. During these ring grazing orbits, the spacecraft had an extended period of time where the trajectory 'hugged' the L 13 field line along its southern path when these bursts were detected. As such, we conclude that the 1 hr periodicity is not a spatial effect but a true temporal effect. In about 2/3 of the cases, there was wave activity observed above the local electron cyclotron frequency. We note that there have been previous reports of these QP whistler-mode burst in direct correlation with energetic auroral electron bursts, and we now also present the use of relativist electron cyclotron resonance theory to examine the wave-electron interactions. While in the past these waves have been considered a form of electrostatic auroral hiss, we suggest herein that the high energy of the electrons is more strongly coupled to the electromagnetic portion of the whistler-mode branch. In this presentation, we will provide more information on the wave character, and suggest the non-unique possibility that mode coupling is involved in creating emissions above the electron cyclotron frequency.

  14. Activity of Tachykinin1-Expressing Pet1 Raphe Neurons Modulates the Respiratory Chemoreflex

    PubMed Central

    Corcoran, Andrea E.; Brust, Rachael D.; Chang, YoonJeung; Nattie, Eugene E.

    2017-01-01

    Homeostatic control of breathing, heart rate, and body temperature relies on circuits within the brainstem modulated by the neurotransmitter serotonin (5-HT). Mounting evidence points to specialized neuronal subtypes within the serotonergic neuronal system, borne out in functional studies, for the modulation of distinct facets of homeostasis. Such functional differences, read out at the organismal level, are likely subserved by differences among 5-HT neuron subtypes at the cellular and molecular levels, including differences in the capacity to coexpress other neurotransmitters such as glutamate, GABA, thyrotropin releasing hormone, and substance P encoded by the Tachykinin-1 (Tac1) gene. Here, we characterize in mice a 5-HT neuron subtype identified by expression of Tac1 and the serotonergic transcription factor gene Pet1, referred to as the Tac1-Pet1 neuron subtype. Transgenic cell labeling showed Tac1-Pet1 soma resident largely in the caudal medulla. Chemogenetic [clozapine-N-oxide (CNO)-hM4Di] perturbation of Tac1-Pet1 neuron activity blunted the ventilatory response of the respiratory CO2 chemoreflex, which normally augments ventilation in response to hypercapnic acidosis to restore normal pH and PCO2. Tac1-Pet1 axonal boutons were found localized to brainstem areas implicated in respiratory modulation, with highest density in motor regions. These findings demonstrate that the activity of a Pet1 neuron subtype with the potential to release both 5-HT and substance P is necessary for normal respiratory dynamics, perhaps via motor outputs that engage muscles of respiration and maintain airway patency. These Tac1-Pet1 neurons may act downstream of Egr2-Pet1 serotonergic neurons, which were previously established in respiratory chemoreception, but do not innervate respiratory motor nuclei. SIGNIFICANCE STATEMENT Serotonin (5-HT) neurons modulate physiological processes and behaviors as diverse as body temperature, respiration, aggression, and mood. Using genetic

  15. Activity of Tachykinin1-Expressing Pet1 Raphe Neurons Modulates the Respiratory Chemoreflex.

    PubMed

    Hennessy, Morgan L; Corcoran, Andrea E; Brust, Rachael D; Chang, YoonJeung; Nattie, Eugene E; Dymecki, Susan M

    2017-02-15

    Homeostatic control of breathing, heart rate, and body temperature relies on circuits within the brainstem modulated by the neurotransmitter serotonin (5-HT). Mounting evidence points to specialized neuronal subtypes within the serotonergic neuronal system, borne out in functional studies, for the modulation of distinct facets of homeostasis. Such functional differences, read out at the organismal level, are likely subserved by differences among 5-HT neuron subtypes at the cellular and molecular levels, including differences in the capacity to coexpress other neurotransmitters such as glutamate, GABA, thyrotropin releasing hormone, and substance P encoded by the Tachykinin-1 ( Tac1 ) gene. Here, we characterize in mice a 5-HT neuron subtype identified by expression of Tac1 and the serotonergic transcription factor gene Pet1 , referred to as the Tac1-Pet1 neuron subtype. Transgenic cell labeling showed Tac1-Pet1 soma resident largely in the caudal medulla. Chemogenetic [clozapine -N- oxide (CNO)-hM4Di] perturbation of Tac1-Pet1 neuron activity blunted the ventilatory response of the respiratory CO 2 chemoreflex, which normally augments ventilation in response to hypercapnic acidosis to restore normal pH and PCO 2 Tac1-Pet1 axonal boutons were found localized to brainstem areas implicated in respiratory modulation, with highest density in motor regions. These findings demonstrate that the activity of a Pet1 neuron subtype with the potential to release both 5-HT and substance P is necessary for normal respiratory dynamics, perhaps via motor outputs that engage muscles of respiration and maintain airway patency. These Tac1-Pet1 neurons may act downstream of Egr2-Pet1 serotonergic neurons, which were previously established in respiratory chemoreception, but do not innervate respiratory motor nuclei. SIGNIFICANCE STATEMENT Serotonin (5-HT) neurons modulate physiological processes and behaviors as diverse as body temperature, respiration, aggression, and mood. Using

  16. Activity of innate antimicrobial peptides and ivacaftor against clinical cystic fibrosis respiratory pathogens.

    PubMed

    Payne, Joanna E; Dubois, Alice V; Ingram, Rebecca J; Weldon, Sinead; Taggart, Clifford C; Elborn, J Stuart; Tunney, Michael M

    2017-09-01

    There is a clear need for new antimicrobials to improve current treatment of chronic lung infection in people with cystic fibrosis (CF). This study determined the activities of antimicrobial peptides (AMPs) and ivacaftor, a novel CF transmembrane conductance regulator potentiator, for CF treatment. Antimicrobial activities of AMPs [LL37, human β-defensins (HβD) 1-4 and SLPI] and ivacaftor against clinical respiratory isolates (Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus spp., Achromobacter spp. and Stenotrophomonas maltophilia) were determined using radial diffusion and time-kill assays, respectively. Synergy of LL37 and ivacaftor with tobramycin was determined by time-kill, with in vivo activity of ivacaftor and tobramycin compared using a murine infection model. LL37 and HβD3 were the most active AMPs tested, with MICs ranging from 3.2- ≥ 200 mg/L and 4.8- ≥ 200 mg/L, respectively, except for Achromobacter that was resistant. HβD1 and SLPI demonstrated no antimicrobial activity. LL37 demonstrated synergy with tobramycin against 4/5 S. aureus and 2/5 Streptococcus spp. isolates. Ivacaftor demonstrated bactericidal activity against Streptococcus spp. (mean log 10 decrease 3.31 CFU/mL) and bacteriostatic activity against S. aureus (mean log 10 change 0.13 CFU/mL), but no activity against other genera. Moreover, ivacaftor demonstrated synergy with tobramycin, with mean log 10 decreases of 5.72 CFU/mL and 5.53 CFU/mL at 24 h for S. aureus and Streptococcus spp., respectively. Ivacaftor demonstrated immunomodulatory but no antimicrobial activity in a P. aeruginosa in vivo murine infection model. Following further modulation to enhance activity, AMPs and ivacaftor offer real potential as therapeutics to augment antibiotic therapy of respiratory infection in CF. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  17. The Effect of Magnetic Fields on Gamma-Ray Bursts Inferred from Multi-Wavelength Observations of the Bursts of 23 January 1999

    NASA Technical Reports Server (NTRS)

    Galama, T. J.; Briggs, M. S.; Wijers, R. A. M. J.; Vreeswijk, P. M.; Rol, E.; Band, D.; vanParadijs, J.; Kouveliotou, C.; Preece, R. D.; Bremer, M.

    1999-01-01

    Gamma-ray bursts (GRBs) are thought to arise when an extremely relativistic outflow of particles from a massive explosion (the nature at which is still unclear) interacts with material surrounding the site of the explosion. Observations of the evolving changes in emission at many wavelengths allow us to investigate the origin of the photons, and so potentially determine the nature of the explosion. Here we report the results of gamma-ray, optical, infrared, submillimeter, millimeter and radio observations of the burst ORB990123 and its afterglow. Our interpretation of the data indicates that the initial and afterglow emissions are associated with three distinct regions in the fireball. The peak flux of the afterglow, one day after the burst, has a lower frequency than observed for other bursts; this explains the short-lived radio emission. We suggest that the differences between bursts reflect variations in the magnetic-field strength in the afterglow-emitting regions.

  18. Autocrine feedback inhibition of plateau potentials terminates phasic bursts in magnocellular neurosecretory cells of the rat supraoptic nucleus

    PubMed Central

    Brown, Colin H; Bourque, Charles W

    2004-01-01

    Phasic activity in magnocellular neurosecretory cells is characterized by alternating periods of activity (bursts) and silence. During phasic bursts, action potentials are superimposed on plateau potentials that are generated by summation of depolarizing after-potentials. Dynorphin is copackaged in vasopressin neurosecretory vesicles that are exocytosed from magnocellular neurosecretory cell dendrites and terminals, and both peptides have been implicated in the generation of phasic activity. Here we show that somato-dendritic dynorphin release terminates phasic bursts by autocrine inhibition of plateau potentials in magnocellular neurosecretory cells recorded intracellularly from hypothalamic explants using sharp electrodes. Conditioning spike trains caused an activity-dependent reduction of depolarizing after-potential amplitude that was partially reversed by α-latrotoxin (which depletes neurosecretory vesicles) and by nor-binaltorphimine (κ-opioid receptor antagonist), but not by an oxytocin/vasopressin receptor antagonist or a μ-opioid receptor antagonist, indicating that activity-dependent inhibition of depolarizing after-potentials requires exocytosis of an endogenous κ-opioid peptide. κ-Opioid inhibition of depolarizing after-potentials was not mediated by actions on evoked after-hyperpolarizations since these were not affected by κ-opioid receptor agonists or antagonists. Evoked bursts were prolonged by antagonism of κ-opioid receptors with nor-binaltorphimine and by depletion of neurosecretory vesicles by α-latrotoxin, becoming everlasting in ∼50% of cells. Finally, spontaneously active neurones exposed to nor-binaltorphimine switched from phasic to continuous firing as plateau potentials became non-inactivating. Thus, dynorphin coreleased with vasopressin generates phasic activity through activity-dependent feedback inhibition of plateau potentials in magnocellular neurosecretory cells. PMID:15107473

  19. Detection of Bursts and Pauses in Spike Trains

    PubMed Central

    Ko, D.; Wilson, C. J.; Lobb, C. J.; Paladini, C. A.

    2012-01-01

    Midbrain dopaminergic neurons in vivo exhibit a wide range of firing patterns. They normally fire constantly at a low rate, and speed up, firing a phasic burst when reward exceeds prediction, or pause when an expected reward does not occur. Therefore, the detection of bursts and pauses from spike train data is a critical problem when studying the role of phasic dopamine (DA) in reward related learning, and other DA dependent behaviors. However, few statistical methods have been developed that can identify bursts and pauses simultaneously. We propose a new statistical method, the Robust Gaussian Surprise (RGS) method, which performs an exhaustive search of bursts and pauses in spike trains simultaneously. We found that the RGS method is adaptable to various patterns of spike trains recorded in vivo, and is not influenced by baseline firing rate, making it applicable to all in vivo spike trains where baseline firing rates vary over time. We compare the performance of the RGS method to other methods of detecting bursts, such as the Poisson Surprise (PS), Rank Surprise (RS), and Template methods. Analysis of data using the RGS method reveals potential mechanisms underlying how bursts and pauses are controlled in DA neurons. PMID:22939922

  20. Effect of wear on the burst strength of l-80 steel casing

    NASA Astrophysics Data System (ADS)

    Irawan, S.; Bharadwaj, A. M.; Temesgen, B.; Karuppanan, S.; Abdullah, M. Z. B.

    2015-12-01

    Casing wear has recently become one of the areas of research interest in the oil and gas industry especially in extended reach well drilling. The burst strength of a worn out casing is one of the significantly affected mechanical properties and is yet an area where less research is done The most commonly used equations to calculate the resulting burst strength after wear are Barlow, the initial yield burst, the full yield burst and the rupture burst equations. The objective of this study was to estimate casing burst strength after wear through Finite Element Analysis (FEA). It included calculation and comparison of the different theoretical bursts pressures with the simulation results along with effect of different wear shapes on L-80 casing material. The von Misses stress was used in the estimation of the burst pressure. The result obtained shows that the casing burst strength decreases as the wear percentage increases. Moreover, the burst strength value of the casing obtained from the FEA has a higher value compared to the theoretical burst strength values. Casing with crescent shaped wear give the highest burst strength value when simulated under nonlinear analysis.