Science.gov

Sample records for activity revealed significant

  1. Comparative genomic and transcriptional analyses of the carbohydrate-active enzymes and secretomes of phytopathogenic fungi reveal their significant roles during infection and development

    PubMed Central

    Lyu, Xueliang; Shen, Cuicui; Fu, Yanping; Xie, Jiatao; Jiang, Daohong; Li, Guoqing; Cheng, Jiasen

    2015-01-01

    Our comparative genomic analysis showed that the numbers of plant cell wall (PCW)- and fungal cell wall (FCW)-degradation-associated carbohydrate-active enzymes (CAZymes) in necrotrophic and hemibiotrophic fungi are significantly larger than that in most biotrophic fungi. However, our transcriptional analyses of CAZyme-encoding genes in Melampsora larici-populina, Puccinia graminis and Sclerotinia sclerotiorum showed that many genes encoding PCW- and FCW-degradation-associated CAZymes were significantly up-regulated during the infection of both necrotrophic fungi and biotrophic fungi, indicating an existence of a universal mechanism underlying PCW degradation and FCW reorganization or modification, which are both intimately involved in necrotrophic and biotrophic fungal infection. Furthermore, our results showed that the FCW reorganization or modification was also related to the fungal development. Additionally, our transcriptional analysis of the secretome of S. sclerotiorum showed that many secreted protein-encoding genes were dramatically induced during infection. Among them, a small, cysteine-rich protein SsCVNH was experimentally confirmed to be essential for the virulence and sclerotial development, indicating that the small secreted proteins might also play crucial roles as potential effectors in host-non-specific necrotrophic fungi. PMID:26531059

  2. Significant Quantum Effects in Hydrogen Activation

    SciTech Connect

    Kyriakou, Georgios; Davidson, Erlend R.; Peng, Guowen; Roling, Luke T.; Singh, Suyash; Boucher, Matthew B.; Marcinkowski, Matthew D.; Mavrikakis, Manos; Michaelides, Angelos; Sykes, E. Charles H.

    2014-03-31

    Dissociation of molecular hydrogen is an important step in a wide variety of chemical, biological, and physical processes. Due to the light mass of hydrogen, it is recognized that quantum effects are often important to its reactivity. However, understanding how quantum effects impact the reactivity of hydrogen is still in its infancy. Here, we examine this issue using a well-defined Pd/Cu(111) alloy that allows the activation of hydrogen and deuterium molecules to be examined at individual Pd atom surface sites over a wide range of temperatures. Experiments comparing the uptake of hydrogen and deuterium as a function of temperature reveal completely different behavior of the two species. The rate of hydrogen activation increases at lower sample temperature, whereas deuterium activation slows as the temperature is lowered. Density functional theory simulations in which quantum nuclear effects are accounted for reveal that tunneling through the dissociation barrier is prevalent for H2 up to 190 K and for D2 up to 140 K. Kinetic Monte Carlo simulations indicate that the effective barrier to H2 dissociation is so low that hydrogen uptake on the surface is limited merely by thermodynamics, whereas the D2 dissociation process is controlled by kinetics. These data illustrate the complexity and inherent quantum nature of this ubiquitous and seemingly simple chemical process. Examining these effects in other systems with a similar range of approaches may uncover temperature regimes where quantum effects can be harnessed, yielding greater control of bond-breaking processes at surfaces and uncovering useful chemistries such as selective bond activation or isotope separation.

  3. Significant Quantum Effects in Hydrogen Activation

    PubMed Central

    2014-01-01

    Dissociation of molecular hydrogen is an important step in a wide variety of chemical, biological, and physical processes. Due to the light mass of hydrogen, it is recognized that quantum effects are often important to its reactivity. However, understanding how quantum effects impact the reactivity of hydrogen is still in its infancy. Here, we examine this issue using a well-defined Pd/Cu(111) alloy that allows the activation of hydrogen and deuterium molecules to be examined at individual Pd atom surface sites over a wide range of temperatures. Experiments comparing the uptake of hydrogen and deuterium as a function of temperature reveal completely different behavior of the two species. The rate of hydrogen activation increases at lower sample temperature, whereas deuterium activation slows as the temperature is lowered. Density functional theory simulations in which quantum nuclear effects are accounted for reveal that tunneling through the dissociation barrier is prevalent for H2 up to ∼190 K and for D2 up to ∼140 K. Kinetic Monte Carlo simulations indicate that the effective barrier to H2 dissociation is so low that hydrogen uptake on the surface is limited merely by thermodynamics, whereas the D2 dissociation process is controlled by kinetics. These data illustrate the complexity and inherent quantum nature of this ubiquitous and seemingly simple chemical process. Examining these effects in other systems with a similar range of approaches may uncover temperature regimes where quantum effects can be harnessed, yielding greater control of bond-breaking processes at surfaces and uncovering useful chemistries such as selective bond activation or isotope separation. PMID:24684530

  4. Cytochrome bd Displays Significant Quinol Peroxidase Activity

    PubMed Central

    Al-Attar, Sinan; Yu, Yuanjie; Pinkse, Martijn; Hoeser, Jo; Friedrich, Thorsten; Bald, Dirk; de Vries, Simon

    2016-01-01

    Cytochrome bd is a prokaryotic terminal oxidase that catalyses the electrogenic reduction of oxygen to water using ubiquinol as electron donor. Cytochrome bd is a tri-haem integral membrane enzyme carrying a low-spin haem b558, and two high-spin haems: b595 and d. Here we show that besides its oxidase activity, cytochrome bd from Escherichia coli is a genuine quinol peroxidase (QPO) that reduces hydrogen peroxide to water. The highly active and pure enzyme preparation used in this study did not display the catalase activity recently reported for E. coli cytochrome bd. To our knowledge, cytochrome bd is the first membrane-bound quinol peroxidase detected in E. coli. The observation that cytochrome bd is a quinol peroxidase, can provide a biochemical basis for its role in detoxification of hydrogen peroxide and may explain the frequent findings reported in the literature that indicate increased sensitivity to hydrogen peroxide and decreased virulence in mutants that lack the enzyme. PMID:27279363

  5. Metabolomics reveals significant variations in metabolites and correlations regarding the maturation of walnuts (Juglans regia L.)

    PubMed Central

    Rao, Guodong; Sui, Jinkai

    2016-01-01

    ABSTRACT The content of walnut metabolites is related to its nutritive value and physiological characteristics, however, comprehensive information concerning the metabolome of walnut kernels is limited. In this study we analyzed the metabolites of walnut kernels at five developmental stages from filling to ripening using GC-MS-based untargeted metabolomics; of a total 252 peaks identified, 85 metabolites were positively identified. Further statistical analysis revealed that these 85 metabolites covered different types of metabolism pathways. PCA scores revealed that the metabolic compositions of the embryo are different at each stage, while the metabolic composition of the endotesta could not be significantly separated into distinct groups. Additionally, 7225 metabolite-metabolite correlations were detected in walnut kernel by a Pearson correlation coefficient approach; during screening of the calculated correlations, 463 and 1047 were determined to be significant with r2≥0.49 and had a false discovery rate (FDR) ≤0.05 in endotesta and embryo, respectively. This work provides the first comprehensive metabolomic study of walnut kernels and reveals that most of the carbohydrate and protein-derived carbon was transferred into other compounds, such as fatty acids, during the maturation of walnuts, which may potentially provide the basis for further studies on walnut kernel metabolism. PMID:27215321

  6. Metabolomics reveals significant variations in metabolites and correlations regarding the maturation of walnuts (Juglans regia L.).

    PubMed

    Rao, Guodong; Sui, Jinkai; Zhang, Jianguo

    2016-06-15

    The content of walnut metabolites is related to its nutritive value and physiological characteristics, however, comprehensive information concerning the metabolome of walnut kernels is limited. In this study we analyzed the metabolites of walnut kernels at five developmental stages from filling to ripening using GC-MS-based untargeted metabolomics; of a total 252 peaks identified, 85 metabolites were positively identified. Further statistical analysis revealed that these 85 metabolites covered different types of metabolism pathways. PCA scores revealed that the metabolic compositions of the embryo are different at each stage, while the metabolic composition of the endotesta could not be significantly separated into distinct groups. Additionally, 7225 metabolite-metabolite correlations were detected in walnut kernel by a Pearson correlation coefficient approach; during screening of the calculated correlations, 463 and 1047 were determined to be significant with r(2)≥0.49 and had a false discovery rate (FDR) ≤0.05 in endotesta and embryo, respectively. This work provides the first comprehensive metabolomic study of walnut kernels and reveals that most of the carbohydrate and protein-derived carbon was transferred into other compounds, such as fatty acids, during the maturation of walnuts, which may potentially provide the basis for further studies on walnut kernel metabolism.

  7. Statistically significant contrasts between EMG waveforms revealed using wavelet-based functional ANOVA.

    PubMed

    McKay, J Lucas; Welch, Torrence D J; Vidakovic, Brani; Ting, Lena H

    2013-01-01

    We developed wavelet-based functional ANOVA (wfANOVA) as a novel approach for comparing neurophysiological signals that are functions of time. Temporal resolution is often sacrificed by analyzing such data in large time bins, increasing statistical power by reducing the number of comparisons. We performed ANOVA in the wavelet domain because differences between curves tend to be represented by a few temporally localized wavelets, which we transformed back to the time domain for visualization. We compared wfANOVA and ANOVA performed in the time domain (tANOVA) on both experimental electromyographic (EMG) signals from responses to perturbation during standing balance across changes in peak perturbation acceleration (3 levels) and velocity (4 levels) and on simulated data with known contrasts. In experimental EMG data, wfANOVA revealed the continuous shape and magnitude of significant differences over time without a priori selection of time bins. However, tANOVA revealed only the largest differences at discontinuous time points, resulting in features with later onsets and shorter durations than those identified using wfANOVA (P < 0.02). Furthermore, wfANOVA required significantly fewer (~1/4;×; P < 0.015) significant F tests than tANOVA, resulting in post hoc tests with increased power. In simulated EMG data, wfANOVA identified known contrast curves with a high level of precision (r(2) = 0.94 ± 0.08) and performed better than tANOVA across noise levels (P < <0.01). Therefore, wfANOVA may be useful for revealing differences in the shape and magnitude of neurophysiological signals (e.g., EMG, firing rates) across multiple conditions with both high temporal resolution and high statistical power. PMID:23100136

  8. Metagenomic analysis reveals significant changes of microbial compositions and protective functions during drinking water treatment.

    PubMed

    Chao, Yuanqing; Ma, Liping; Yang, Ying; Ju, Feng; Zhang, Xu-Xiang; Wu, Wei-Min; Zhang, Tong

    2013-12-19

    The metagenomic approach was applied to characterize variations of microbial structure and functions in raw (RW) and treated water (TW) in a drinking water treatment plant (DWTP) at Pearl River Delta, China. Microbial structure was significantly influenced by the treatment processes, shifting from Gammaproteobacteria and Betaproteobacteria in RW to Alphaproteobacteria in TW. Further functional analysis indicated the basic metabolic functions of microorganisms in TW did not vary considerably. However, protective functions, i.e. glutathione synthesis genes in 'oxidative stress' and 'detoxification' subsystems, significantly increased, revealing the surviving bacteria may have higher chlorine resistance. Similar results were also found in glutathione metabolism pathway, which identified the major reaction for glutathione synthesis and supported more genes for glutathione metabolism existed in TW. This metagenomic study largely enhanced our knowledge about the influences of treatment processes, especially chlorination, on bacterial community structure and protective functions (e.g. glutathione metabolism) in ecosystems of DWTPs.

  9. Metagenomic analysis reveals significant changes of microbial compositions and protective functions during drinking water treatment

    NASA Astrophysics Data System (ADS)

    Chao, Yuanqing; Ma, Liping; Yang, Ying; Ju, Feng; Zhang, Xu-Xiang; Wu, Wei-Min; Zhang, Tong

    2013-12-01

    The metagenomic approach was applied to characterize variations of microbial structure and functions in raw (RW) and treated water (TW) in a drinking water treatment plant (DWTP) at Pearl River Delta, China. Microbial structure was significantly influenced by the treatment processes, shifting from Gammaproteobacteria and Betaproteobacteria in RW to Alphaproteobacteria in TW. Further functional analysis indicated the basic metabolic functions of microorganisms in TW did not vary considerably. However, protective functions, i.e. glutathione synthesis genes in `oxidative stress' and `detoxification' subsystems, significantly increased, revealing the surviving bacteria may have higher chlorine resistance. Similar results were also found in glutathione metabolism pathway, which identified the major reaction for glutathione synthesis and supported more genes for glutathione metabolism existed in TW. This metagenomic study largely enhanced our knowledge about the influences of treatment processes, especially chlorination, on bacterial community structure and protective functions (e.g. glutathione metabolism) in ecosystems of DWTPs.

  10. Membrane bioreactor wastewater treatment plants reveal diverse yeast and protist communities of potential significance in biofouling.

    PubMed

    Liébana, Raquel; Arregui, Lucía; Belda, Ignacio; Gamella, Luis; Santos, Antonio; Marquina, Domingo; Serrano, Susana

    2015-01-01

    The yeast community was studied in a municipal full-scale membrane bioreactor wastewater treatment plant (MBR-WWTP). The unexpectedly high diversity of yeasts indicated that the activated sludge formed a suitable environment for them to proliferate, with cellular concentrations of 2.2 ± 0.8 × 10(3) CFU ml(-1). Sixteen species of seven genera were present in the biological reactor, with Ascomycetes being the most prevalent group (93%). Most isolates were able to grow in a synthetic wastewater medium, adhere to polyethylene surfaces, and develop biofilms of variable complexity. The relationship between yeast populations and the protists in the MBR-WWTP was also studied, revealing that some protist species preyed on and ingested yeasts. These results suggest that yeast populations may play a role in the food web of a WWTP and, to some extent, contribute to membrane biofouling in MBR systems. PMID:25588128

  11. Membrane bioreactor wastewater treatment plants reveal diverse yeast and protist communities of potential significance in biofouling.

    PubMed

    Liébana, Raquel; Arregui, Lucía; Belda, Ignacio; Gamella, Luis; Santos, Antonio; Marquina, Domingo; Serrano, Susana

    2015-01-01

    The yeast community was studied in a municipal full-scale membrane bioreactor wastewater treatment plant (MBR-WWTP). The unexpectedly high diversity of yeasts indicated that the activated sludge formed a suitable environment for them to proliferate, with cellular concentrations of 2.2 ± 0.8 × 10(3) CFU ml(-1). Sixteen species of seven genera were present in the biological reactor, with Ascomycetes being the most prevalent group (93%). Most isolates were able to grow in a synthetic wastewater medium, adhere to polyethylene surfaces, and develop biofilms of variable complexity. The relationship between yeast populations and the protists in the MBR-WWTP was also studied, revealing that some protist species preyed on and ingested yeasts. These results suggest that yeast populations may play a role in the food web of a WWTP and, to some extent, contribute to membrane biofouling in MBR systems.

  12. Deuterium reveals the dynamics of notch activation.

    PubMed

    Raphael, Kopan

    2011-04-13

    Notch activation requires unfolding of a juxtamembrane negative regulatory domain (NRR). Tiyanont et al. (2011) analyzed the dynamics of NRR unfolding in the presence of EGTA. As predicted from the crystal structure and deletion analyses, the lin-Notch repeats unfold first, facilitating access by ADAM proteases. Surprisingly, the heterodimerization domain remains stable.

  13. Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars.

    PubMed

    Lin, Hong; Rao, Jun; Shi, Jianxin; Hu, Chaoyang; Cheng, Fang; Wilson, Zoe A; Zhang, Dabing; Quan, Sheng

    2014-09-01

    Soybean [Glycine max (L.) Merr.] is one of the world's major crops, and soybean seeds are a rich and important resource for proteins and oils. While "omics" studies, such as genomics, transcriptomics, and proteomics, have been widely applied in soybean molecular research, fewer metabolomic studies have been conducted for large-scale detection of low molecular weight metabolites, especially in soybean seeds. In this study, we investigated the seed metabolomes of 29 common soybean cultivars through combined gas chromatography-mass spectrometry and ultra-performance liquid chromatography-tandem mass spectrometry. One hundred sixty-nine named metabolites were identified and subsequently used to construct a metabolic network of mature soybean seed. Among the 169 detected metabolites, 104 were found to be significantly variable in their levels across tested cultivars. Metabolite markers that could be used to distinguish genetically related soybean cultivars were also identified, and metabolite-metabolite correlation analysis revealed some significant associations within the same or among different metabolite groups. Findings from this work may potentially provide the basis for further studies on both soybean seed metabolism and metabolic engineering to improve soybean seed quality and yield.

  14. [Diagnostic significance of cancer procoagulant activity in colorectal cancer].

    PubMed

    Kozuszko, B; Skrzydlewski, Z; Famulski, W

    2000-03-01

    This study aimed at evaluating diagnostic significance of cancer procoagulant (CP) activity in the homogenates of colon cancer tissues and in blood serum of patients with this neoplasm. Procoagulant activity, depending of specific cancer procoagulant, has been found in all examined tissues as well as in blood serum of cancer patients. CP activity in homogenates of colon cancer tissues as well as in blood serum of the examined cancer patients has been markedly higher than in the normal subjects. These data indicate that CP activity in the neoplastic tissue homogenates and in blood serum may be of value in the diagnosis of cancer.

  15. Shocking Detail of Superstar's Activity Revealed

    NASA Astrophysics Data System (ADS)

    1999-10-01

    NASA's Chandra X-ray Observatory has imaged Eta Carinae and revealed a hot inner core around this mysterious superstar. The new X-ray observation shows three distinct structures: an outer, horseshoe shaped ring about two light years in diameter, a hot inner core about 3 light months in diameter, and a hot central source less than a light month in diameter which may contain the superstar. All three structures are thought to represent shock waves produced by matter rushing away from the superstar at supersonic speeds. The temperature of the shock-heated gas ranges from 60 million degrees Celsius in the central regions to 3 million degrees Celsius on the outer structure. An earlier image of Eta Carinae by the Hubble Space Telescope revealed two spectacular bubbles of gas expanding in opposite directions away from a central bright region at speeds in excess of a million miles per hour. The inner region visible in the Chandra image has never been resolved before, and appears to be associated with a central disk of high velocity gas rushing out at much higher speeds perpendicular to the bipolar optical nebula. "It is not what I expected," said Dr. Fred Seward of the Harvard-Smithsonian Center for Astrophysics. "I expected to see a strong point source with a little diffuse emission cloud around it. Instead, we see just the opposite- a bright cloud of diffuse emission, and much less radiation from the center." "The Chandra image contains some puzzles for existing ideas of how a star can produce such hot and intense X-rays," agreed Prof. Kris Davidson of the University of Minnesota. "In the most popular theory, X-rays are made by colliding gas streams from two stars so close together that they'd look like a point source to us. But what happens to gas streams that escape to farther distances? The extended hot stuff in the middle of the new image gives demanding new conditions for any theory to meet." Eta Carinae is one of the most enigmatic and intriguing objects in our

  16. Growth behaviors of bacteria reveal the evolutionary significance of energy-efficiency

    NASA Astrophysics Data System (ADS)

    Maitra, Arijit; Dill, Ken

    2015-03-01

    Microorganisms have evolved a mosaic of gene expression changes to adapt their growth behaviors to changing environmental conditions. The subset of genes coding for the protein translation machineries, the ribosomes, however display robust linear activities with growth rates. Such patterns are considered to be the source of growth itself. There is another robust growth law, observed by Monod in the 1940s, in which bacteria are able to scale their growth with food concentration before plateauing off to a constant value. To interlink these observed growth laws we derive an analytical network model that leverages metabolic data to capture how the cell manages its exchange of energy to support costly gene expression. The model explores the limits of energy allocation for function and reveals evolutionary principles. Among others, we find, in glucose medium the fastest growing E. coli operate close to their maximum energy-efficiency. Optimization of energy efficiency provides a quantitative limit to how much energy is allocated for protein synthesis and it is determined by evolutionarily selected structural and biophysical constants. We conclude that energy efficiency has played a key role in bacterial evolution. Supported by the Laufer Center for Physical and Quantitative Biology, SBU.

  17. Disease-aging network reveals significant roles of aging genes in connecting genetic diseases.

    PubMed

    Wang, Jiguang; Zhang, Shihua; Wang, Yong; Chen, Luonan; Zhang, Xiang-Sun

    2009-09-01

    One of the challenging problems in biology and medicine is exploring the underlying mechanisms of genetic diseases. Recent studies suggest that the relationship between genetic diseases and the aging process is important in understanding the molecular mechanisms of complex diseases. Although some intricate associations have been investigated for a long time, the studies are still in their early stages. In this paper, we construct a human disease-aging network to study the relationship among aging genes and genetic disease genes. Specifically, we integrate human protein-protein interactions (PPIs), disease-gene associations, aging-gene associations, and physiological system-based genetic disease classification information in a single graph-theoretic framework and find that (1) human disease genes are much closer to aging genes than expected by chance; and (2) diseases can be categorized into two types according to their relationships with aging. Type I diseases have their genes significantly close to aging genes, while type II diseases do not. Furthermore, we examine the topological characters of the disease-aging network from a systems perspective. Theoretical results reveal that the genes of type I diseases are in a central position of a PPI network while type II are not; (3) more importantly, we define an asymmetric closeness based on the PPI network to describe relationships between diseases, and find that aging genes make a significant contribution to associations among diseases, especially among type I diseases. In conclusion, the network-based study provides not only evidence for the intricate relationship between the aging process and genetic diseases, but also biological implications for prying into the nature of human diseases.

  18. Seabird diving behaviour reveals the functional significance of shelf-sea fronts as foraging hotspots

    NASA Astrophysics Data System (ADS)

    Cox, S. L.; Miller, P. I.; Embling, C. B.; Scales, K. L.; Bicknell, A. W. J.; Hosegood, P. J.; Morgan, G.; Ingram, S. N.; Votier, S. C.

    2016-09-01

    Oceanic fronts are key habitats for a diverse range of marine predators, yet how they influence fine-scale foraging behaviour is poorly understood. Here, we investigated the dive behaviour of northern gannets Morus bassanus in relation to shelf-sea fronts. We GPS (global positioning system) tracked 53 breeding birds and examined the relationship between 1901 foraging dives (from time-depth recorders) and thermal fronts (identified via Earth Observation composite front mapping) in the Celtic Sea, Northeast Atlantic. We (i) used a habitat-use availability analysis to determine whether gannets preferentially dived at fronts, and (ii) compared dive characteristics in relation to fronts to investigate the functional significance of these oceanographic features. We found that relationships between gannet dive probabilities and fronts varied by frontal metric and sex. While both sexes were more likely to dive in the presence of seasonally persistent fronts, links to more ephemeral features were less clear. Here, males were positively correlated with distance to front and cross-front gradient strength, with the reverse for females. Both sexes performed two dive strategies: shallow V-shaped plunge dives with little or no active swim phase (92% of dives) and deeper U-shaped dives with an active pursuit phase of at least 3 s (8% of dives). When foraging around fronts, gannets were half as likely to engage in U-shaped dives compared with V-shaped dives, independent of sex. Moreover, V-shaped dive durations were significantly shortened around fronts. These behavioural responses support the assertion that fronts are important foraging habitats for marine predators, and suggest a possible mechanistic link between the two in terms of dive behaviour. This research also emphasizes the importance of cross-disciplinary research when attempting to understand marine ecosystems.

  19. Seabird diving behaviour reveals the functional significance of shelf-sea fronts as foraging hotspots

    PubMed Central

    Miller, P. I.; Embling, C. B.; Bicknell, A. W. J.; Hosegood, P. J.; Morgan, G.; Ingram, S. N.

    2016-01-01

    Oceanic fronts are key habitats for a diverse range of marine predators, yet how they influence fine-scale foraging behaviour is poorly understood. Here, we investigated the dive behaviour of northern gannets Morus bassanus in relation to shelf-sea fronts. We GPS (global positioning system) tracked 53 breeding birds and examined the relationship between 1901 foraging dives (from time-depth recorders) and thermal fronts (identified via Earth Observation composite front mapping) in the Celtic Sea, Northeast Atlantic. We (i) used a habitat-use availability analysis to determine whether gannets preferentially dived at fronts, and (ii) compared dive characteristics in relation to fronts to investigate the functional significance of these oceanographic features. We found that relationships between gannet dive probabilities and fronts varied by frontal metric and sex. While both sexes were more likely to dive in the presence of seasonally persistent fronts, links to more ephemeral features were less clear. Here, males were positively correlated with distance to front and cross-front gradient strength, with the reverse for females. Both sexes performed two dive strategies: shallow V-shaped plunge dives with little or no active swim phase (92% of dives) and deeper U-shaped dives with an active pursuit phase of at least 3 s (8% of dives). When foraging around fronts, gannets were half as likely to engage in U-shaped dives compared with V-shaped dives, independent of sex. Moreover, V-shaped dive durations were significantly shortened around fronts. These behavioural responses support the assertion that fronts are important foraging habitats for marine predators, and suggest a possible mechanistic link between the two in terms of dive behaviour. This research also emphasizes the importance of cross-disciplinary research when attempting to understand marine ecosystems. PMID:27703698

  20. A Case Control Study Reveals that Polyomaviruria Is Significantly Associated with Interstitial Cystitis and Vesical Ulceration

    PubMed Central

    Winter, Benjamin J.; O'Connell, Helen E.; Bowden, Scott; Carey, Marcus; Eisen, Damon P.

    2015-01-01

    Objectives To investigate whether polyomaviruses contribute to interstitial cystitis pathogenesis. Subjects and Methods A prospective study was performed with 50 interstitial cystitis cases compared with 50 age-matched, disease-free controls for the frequency of polyomaviruria. Associations between polyomaviruria and disease characteristics were analysed in cases. Polyomavirus in urine and bladder tissue was detected with species (JC virus vs. BK virus) specific, real-time PCR. Results Case patients were reflective of interstitial cystitis epidemiology with age range from 26–88 years (median 58) and female predominance (41/50 F). There was a significant increase in the frequency of polyomavirus shedding between cases and controls (p<0.02). Polyomavirus shedding, in particular BK viruria, was associated with vesical ulceration, a marker of disease severity, among interstitial cystitis cases after adjustment for age and sex (OR 6.8, 95% CI 1.89–24.4). There was a significant association among cases between the presence of BK viruria and response to intravesical Clorpactin therapy (OR 4.50, 95% CI 1.17–17.4). Conclusion The presence of polyomaviruria was found to be associated with the ulcerative form of interstitial cystitis. Clorpactin, which has anti-DNA virus activity, was more likely to improve symptoms in the presence of BK viruria. These data from this pilot study suggest associations between polyomaviruria and interstitial cystitis warranting further investigation. PMID:26325074

  1. Finding Significant Correlates of Conscious Activity in Rhythmic EEG

    NASA Astrophysics Data System (ADS)

    Durka, Piotr J.

    2005-12-01

    One of the important issues in designing an EEG-based brain-computer interface is an exact delineation of the rhythms, related to the intended or performed action. Traditionally, related bands were found by trial and error procedures seeking maximum reactivity. Even then, large values of ERD/ERS did not imply the statistical significance of the results. This paper presents complete methodology, allowing for a high-resolution presentation of the whole time-frequency picture of event-related changes in the energy density of signals, revealing the microstructure of rhythms, and determination of the time-frequency regions of energy changes, which are related to the intentions in a statistically significant way.

  2. [Significance of the functional activity of antibodies in influenza immunity].

    PubMed

    Naĭkhin, A N; Artem'eva, S A; Bosak, L V; Katorgina, L G

    1995-01-01

    A simple and inexpensive test for mass examination of the functional activity of serum antibodies was developed. The test is based on a kinetic serologic reaction that reflects the time course of changes in antibody titers depending on the time of contact of the tested material with antigen. The curves of serum kinetic titration were processed on a computer by the special programme. As a result, an integral factor, an antibody functional activity index (AFAI) was calculated for each serum sample under study. The titers and AFAI were determined in more than 2,000 healthy persons, patients with influenza A and B, and those immunized with different influenza vaccines. The persons having similar antibody titers were demonstrated to greatly differ in AFAI. The functional activity of antibodies is a more precise marker of protection from influenza than the routine quantitative characteristics of antibodies, i.e. titers. The high baseline AFAI decreased the severity of influenza infection. Live influenza vaccines stimulated the production of antibodies having higher AFAI than inactivated ones. The live influenza strains (candidates for vaccine ones) significantly differed in their ability to stimulate the production of antibodies having a high functional activity.

  3. Palaeoceanographic significance of sedimentary features at the Argentine continental margin revealed by multichannel seismic reflection data

    NASA Astrophysics Data System (ADS)

    Gruetzner, Jens; Uenzelmann-Neben, Gabriele; Franke, Dieter

    2010-05-01

    The thermohaline circulation in the Argentine Basin today is characterized by the interaction of northward flowing Antarctic water masses (Antarctic Intermediate Water, AAIW; Circumpolar Deep Water, CDW; Antarctic Bottom Water, AABW) and southward flowing North Atlantic Deep Water (NADW). The transfer of heat and energy via both AABW and NADW constitutes an important component in maintaining the global conveyor belt. We aim at a better understanding of both paths and intensity of this current system in the past by investigating an extensive (> 11000 km) set of high quality seismic reflection profiles from the Argentine continental margin. The profiles show a significant contourite system containing both erosive and depositional features that formed through the evolution of water masses and their modifications (path, physical and chemical properties) due to plate tectonic events such as the opening of the Drake Passage or the extensive emplacement of volcanic flows at the Rio Grande Rise. Overall the depositional features indicate that along slope (contour current) transport dominates over down slope (turbiditic) processes at the southern Argentine margin south of 45° S. Further to the North down slope transport was more extensive as indicated by the presence of submarine canyons crossing the slope down to a depth of ~3500 m. Here we present preliminary results from the southern part of the continental margin (42°-50° S) where we focus on a set of ~50 km wide terraces on the slope and rise separated by contouritic channels. The terraces developed over time in alternating constructional (depositional) and erosive phases. An initial age frame was developed by mapping regional reflectors and seismic units known from previous studies. The sedimentary layer between regional reflectors AR 4 and AR 5 spanning roughly the time interval from the Eocene/Oligocene boundary to the early middle Miocene is thin (0.1 - 0.4 s TWT) below the Valentine Feilberg Terrace but

  4. Patient-Specific Simulations Reveal Significant Differences in Mechanical Stimuli in Venous and Arterial Coronary Grafts.

    PubMed

    Ramachandra, Abhay B; Kahn, Andrew M; Marsden, Alison L

    2016-08-01

    Mechanical stimuli are key to understanding disease progression and clinically observed differences in failure rates between arterial and venous grafts following coronary artery bypass graft surgery. We quantify biologically relevant mechanical stimuli, not available from standard imaging, in patient-specific simulations incorporating non-invasive clinical data. We couple CFD with closed-loop circulatory physiology models to quantify biologically relevant indices, including wall shear, oscillatory shear, and wall strain. We account for vessel-specific material properties in simulating vessel wall deformation. Wall shear was significantly lower (p = 0.014*) and atheroprone area significantly higher (p = 0.040*) in venous compared to arterial grafts. Wall strain in venous grafts was significantly lower (p = 0.003*) than in arterial grafts while no significant difference was observed in oscillatory shear index. Simulations demonstrate significant differences in mechanical stimuli acting on venous vs. arterial grafts, in line with clinically observed graft failure rates, offering a promising avenue for stratifying patients at risk for graft failure. PMID:27447176

  5. Recent progress in revealing the biological and medical significance of the non-neuronal cholinergic system.

    PubMed

    Grando, Sergei A; Kawashima, Koichiro; Kirkpatrick, Charles J; Kummer, Wolfgang; Wessler, Ignaz

    2015-11-01

    This special issue of International Immunopharmacology is the proceedings of the Fourth International Symposium on Non-neuronal Acetylcholine that was held on August 28-30, 2014 at the Justus Liebig University of Giessen in Germany. It contains original contributions of meeting participants covering the significant progress in understanding of the biological and medical significance of the non-neuronal cholinergic system extending from exciting insights into molecular mechanisms regulating this system via miRNAs over the discovery of novel cholinergic cellular signaling circuitries to clinical implications in cancer, wound healing, immunity and inflammation, cardiovascular, respiratory and other diseases. PMID:26362206

  6. Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence

    PubMed Central

    2010-01-01

    Background The Ralstonia solanacearum species complex includes thousands of strains pathogenic to an unusually wide range of plant species. These globally dispersed and heterogeneous strains cause bacterial wilt diseases, which have major socio-economic impacts. Pathogenicity is an ancestral trait in R. solanacearum and strains with high genetic variation can be subdivided into four phylotypes, correlating to isolates from Asia (phylotype I), the Americas (phylotype IIA and IIB), Africa (phylotype III) and Indonesia (phylotype IV). Comparison of genome sequences strains representative of this phylogenetic diversity can help determine which traits allow this bacterium to be such a pathogen of so many different plant species and how the bacteria survive in many different habitats. Results The genomes of three tomato bacterial wilt pathogens, CFBP2957 (phy. IIA), CMR15 (phy. III) and PSI07 (phy. IV) were sequenced and manually annotated. These genomes were compared with those of three previously sequenced R. solanacearum strains: GMI1000 (tomato, phy. I), IPO1609 (potato, phy. IIB), and Molk2 (banana, phy. IIB). The major genomic features (size, G+C content, number of genes) were conserved across all of the six sequenced strains. Despite relatively high genetic distances (calculated from average nucleotide identity) and many genomic rearrangements, more than 60% of the genes of the megaplasmid and 70% of those on the chromosome are syntenic. The three new genomic sequences revealed the presence of several previously unknown traits, probably acquired by horizontal transfers, within the genomes of R. solanacearum, including a type IV secretion system, a rhi-type anti-mitotic toxin and two small plasmids. Genes involved in virulence appear to be evolving at a faster rate than the genome as a whole. Conclusions Comparative analysis of genome sequences and gene content confirmed the differentiation of R. solanacearum species complex strains into four phylotypes. Genetic

  7. A designer bleomycin with significantly improved DNA cleavage activity.

    PubMed

    Huang, Sheng-Xiong; Feng, Zhiyang; Wang, Liyan; Galm, Ute; Wendt-Pienkowski, Evelyn; Yang, Dong; Tao, Meifeng; Coughlin, Jane M; Duan, Yanwen; Shen, Ben

    2012-08-15

    The bleomycins (BLMs) are used clinically in combination with a number of other agents for the treatment of several types of tumors, and the BLM, etoposide, and cisplatin treatment regimen cures 90-95% of metastatic testicular cancer patients. BLM-induced pneumonitis is the most feared, dose-limiting side effect of BLM in chemotherapy, which can progress into lung fibrosis and affect up to 46% of the total patient population. There have been continued efforts to develop new BLM analogues in the search for anticancer drugs with better clinical efficacy and lower lung toxicity. We have previously cloned and characterized the biosynthetic gene clusters for BLMs from Streptomyces verticillus ATCC15003, tallysomycins from Streptoalloteichus hindustanus E465-94 ATCC31158, and zorbamycin (ZBM) from Streptomyces flavoviridis SB9001. Comparative analysis of the three biosynthetic machineries provided the molecular basis for the formulation of hypotheses to engineer novel analogues. We now report engineered production of three new analogues, 6'-hydroxy-ZBM, BLM Z, and 6'-deoxy-BLM Z and the evaluation of their DNA cleavage activities as a measurement for their potential anticancer activity. Our findings unveiled: (i) the disaccharide moiety plays an important role in the DNA cleavage activity of BLMs and ZBMs, (ii) the ZBM disaccharide significantly enhances the potency of BLM, and (iii) 6'-deoxy-BLM Z represents the most potent BLM analogue known to date. The fact that 6'-deoxy-BLM Z can be produced in reasonable quantities by microbial fermentation should greatly facilitate follow-up mechanistic and preclinical studies to potentially advance this analogue into a clinical drug.

  8. A Designer Bleomycin with Significantly Improved DNA Cleavage Activity

    PubMed Central

    Huang, Sheng-Xiong; Feng, Zhiyang; Wang, Liyan; Galm, Ute; Wendt-Pienkowski, Evelyn; Yang, Dong; Tao, Meifeng; Coughlin, Jane M; Duan, Yanwen; Shen, Ben

    2012-01-01

    The bleomycins (BLMs) are used clinically in combination with a number of other agents for the treatment of several types of tumors, and the BLM, etoposide, and cisplatin treatment regimen cures 90–95% of metastatic testicular cancer patients. BLM-induced pneumonitis is the most feared, dose-limiting side effect of BLM in chemotherapy, which can progress into lung fibrosis and affect up to 46% of the total patient population. There have been continued efforts to develop new BLM analogues in the search for anticancer drugs with better clinical efficacy and lower lung toxicity. We have previously cloned and characterized the biosynthetic gene clusters for BLMs from Streptomyces verticillus ATCC15003, tallysomycins from Streptoalloteichus hindustanus E465-94 ATCC31158, and zorbamycin (ZBM) from Streptomyces flavoviridis SB9001. Comparative analysis of the three biosynthetic machineries provided the molecular basis for the formulation of hypotheses to engineer novel analogues. We now report engineered production of three new analogues, 6′-hydroxy-ZBM, BLM Z, and 6′-deoxy-BLM Z and the evaluation of their DNA cleavage activities as a measurement for their potential anticancer activity. Our findings unveiled: (i) the disaccharide moiety plays an important role in the DNA cleavage activity of BLMs and ZBMs, (ii) the ZBM disaccharide significantly enhances the potency of BLM, and (iii) 6′-deoxy-BLM Z represents the most potent BLM analogue known to date. The fact that 6′-deoxy-BLM Z can be produced in reasonable quantities by microbial fermentation should greatly facilitate follow-up mechanistic and preclinical studies to potentially advance this analogue into a clinical drug. PMID:22831455

  9. Investigation of seasonal melting of Greenland using GPS records reveals significant ice mass loss in 2010

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Dixon, T.; Wdowinski, S.

    2011-12-01

    Greenland has experienced significant ice mass loss in the past decade. High-precision global positioning system (GPS) data from sites on the rocky margin of Greenland enable measurement of vertical motion of the coastal area, which is an indicator of nearby mass loss. In this study, seasonal melting variation of the Greenland ice sheet (GrIS) is investigated using GPS vertical displacement data. Using a cubic spline fitting model, we retrieve three variables of the seasonal melting pattern for GrIS from 1996 to 2010: date of the beginning and end of melt season, length of melt season, and amount of uplift in the melt season. Data from three long -term sites on the periphery of Greenland show anomalously large uplift in 2010, implying significant melting in 2010. Preliminary results also show an early onset of melting in 2010, about 8 days earlier than the 1996-2009 average. In 2010, Greenland experienced a warmer and drier winter as well as a very warm summer, which presumably contributed to the anomalous ice mass loss of 2010.

  10. Diurnal sampling reveals significant variation in CO2 emission from a tropical productive lake.

    PubMed

    Reis, P C J; Barbosa, F A R

    2014-08-01

    It is well accepted in the literature that lakes are generally net heterotrophic and supersaturated with CO2 because they receive allochthonous carbon inputs. However, autotrophy and CO2 undersaturation may happen for at least part of the time, especially in productive lakes. Since diurnal scale is particularly important to tropical lakes dynamics, we evaluated diurnal changes in pCO2 and CO2 flux across the air-water interface in a tropical productive lake in southeastern Brazil (Lake Carioca) over two consecutive days. Both pCO2 and CO2 flux were significantly different between day (9:00 to 17:00) and night (21:00 to 5:00) confirming the importance of this scale for CO2 dynamics in tropical lakes. Net heterotrophy and CO2 outgassing from the lake were registered only at night, while significant CO2 emission did not happen during the day. Dissolved oxygen concentration and temperature trends over the diurnal cycle indicated the dependence of CO2 dynamics on lake metabolism (respiration and photosynthesis). This study indicates the importance of considering the diurnal scale when examining CO2 emissions from tropical lakes.

  11. Global gene expression profiles reveal significant nuclear reprogramming by the blastocyst stage after cloning.

    PubMed

    Smith, Sadie L; Everts, Robin E; Tian, X Cindy; Du, Fuliang; Sung, Li-Ying; Rodriguez-Zas, Sandra L; Jeong, Byeong-Seon; Renard, Jean-Paul; Lewin, Harris A; Yang, Xiangzhong

    2005-12-01

    Nuclear transfer (NT) has potential applications in agriculture and biomedicine, but the technology is hindered by low efficiency. Global gene expression analysis of clones is important for the comprehensive study of nuclear reprogramming. Here, we compared global gene expression profiles of individual bovine NT blastocysts with their somatic donor cells and fertilized control embryos using cDNA microarray technology. The NT embryos' gene expression profiles were drastically different from those of their donor cells and closely resembled those of the naturally fertilized embryos. Our findings demonstrate that the NT embryos have undergone significant nuclear reprogramming by the blastocyst stage; however, problems may occur during redifferentiation for tissue genesis and organogenesis, and small reprogramming errors may be magnified downstream in development.

  12. Carbohydrate active enzymes revealed in Coptotermes formosanus transcriptome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A normalized cDNA library of Coptotermes formosanus was constructed using mixed RNA isolated from workers, soldiers, nymphs and alates of both sexes. Sequencing of this library generated 131,637 EST and 25,939 unigenes were assembled. Carbohydrate active enzymes (CAZymes) revealed in this library we...

  13. Topological structure dynamics revealing collective evolution in active nematics

    PubMed Central

    Shi, Xia-qing; Ma, Yu-qiang

    2013-01-01

    Topological defects frequently emerge in active matter like bacterial colonies, cytoskeleton extracts on substrates, self-propelled granular or colloidal layers and so on, but their dynamical properties and the relations to large-scale organization and fluctuations in these active systems are seldom touched. Here we reveal, through a simple model for active nematics using self-driven hard elliptic rods, that the excitation, annihilation and transportation of topological defects differ markedly from those in non-active media. These dynamical processes exhibit strong irreversibility in active nematics in the absence of detailed balance. Moreover, topological defects are the key factors in organizing large-scale dynamic structures and collective flows, resulting in multi-spatial temporal effects. These findings allow us to control the self-organization of active matter through topological structures. PMID:24346733

  14. Ozone-Induced Dissociation of Conjugated Lipids Reveals Significant Reaction Rate Enhancements and Characteristic Odd-Electron Product Ions

    NASA Astrophysics Data System (ADS)

    Pham, Huong T.; Maccarone, Alan T.; Campbell, J. Larry; Mitchell, Todd W.; Blanksby, Stephen J.

    2013-02-01

    Ozone-induced dissociation (OzID) is an alternative ion activation method that relies on the gas phase ion-molecule reaction between a mass-selected target ion and ozone in an ion trap mass spectrometer. Herein, we evaluated the performance of OzID for both the structural elucidation and selective detection of conjugated carbon-carbon double bond motifs within lipids. The relative reactivity trends for [M + X]+ ions (where X = Li, Na, K) formed via electrospray ionization (ESI) of conjugated versus nonconjugated fatty acid methyl esters (FAMEs) were examined using two different OzID-enabled linear ion-trap mass spectrometers. Compared with nonconjugated analogues, FAMEs derived from conjugated linoleic acids were found to react up to 200 times faster and to yield characteristic radical cations. The significantly enhanced reactivity of conjugated isomers means that OzID product ions can be observed without invoking a reaction delay in the experimental sequence (i.e., trapping of ions in the presence of ozone is not required). This possibility has been exploited to undertake neutral-loss scans on a triple quadrupole mass spectrometer targeting characteristic OzID transitions. Such analyses reveal the presence of conjugated double bonds in lipids extracted from selected foodstuffs. Finally, by benchmarking of the absolute ozone concentration inside the ion trap, second order rate constants for the gas phase reactions between unsaturated organic ions and ozone were obtained. These results demonstrate a significant influence of the adducting metal on reaction rate constants in the fashion Li > Na > K.

  15. Ozone-induced dissociation of conjugated lipids reveals significant reaction rate enhancements and characteristic odd-electron product ions.

    PubMed

    Pham, Huong T; Maccarone, Alan T; Campbell, J Larry; Mitchell, Todd W; Blanksby, Stephen J

    2013-02-01

    Ozone-induced dissociation (OzID) is an alternative ion activation method that relies on the gas phase ion-molecule reaction between a mass-selected target ion and ozone in an ion trap mass spectrometer. Herein, we evaluated the performance of OzID for both the structural elucidation and selective detection of conjugated carbon-carbon double bond motifs within lipids. The relative reactivity trends for [M + X](+) ions (where X = Li, Na, K) formed via electrospray ionization (ESI) of conjugated versus nonconjugated fatty acid methyl esters (FAMEs) were examined using two different OzID-enabled linear ion-trap mass spectrometers. Compared with nonconjugated analogues, FAMEs derived from conjugated linoleic acids were found to react up to 200 times faster and to yield characteristic radical cations. The significantly enhanced reactivity of conjugated isomers means that OzID product ions can be observed without invoking a reaction delay in the experimental sequence (i.e., trapping of ions in the presence of ozone is not required). This possibility has been exploited to undertake neutral-loss scans on a triple quadrupole mass spectrometer targeting characteristic OzID transitions. Such analyses reveal the presence of conjugated double bonds in lipids extracted from selected foodstuffs. Finally, by benchmarking of the absolute ozone concentration inside the ion trap, second order rate constants for the gas phase reactions between unsaturated organic ions and ozone were obtained. These results demonstrate a significant influence of the adducting metal on reaction rate constants in the fashion Li > Na > K.

  16. The Significance of Ras Activity in Pancreatic Cancer Initiation

    PubMed Central

    Logsdon, Craig D.; Lu, Weiqin

    2016-01-01

    The genetic landscape of pancreatic cancer shows nearly ubiquitous mutations of K-RAS. However, oncogenic K-Rasmt alone is not sufficient to lead to pancreatic ductal adenocarcinoma (PDAC) in either human or in genetically modified adult mouse models. Many stimulants, such as high fat diet, CCK, LPS, PGE2 and others, have physiological effects at low concentrations that are mediated in part through modest increases in K-Ras activity. However, at high concentrations, they induce inflammation that, in the presence of oncogenic K-Ras expression, substantially accelerates PDAC formation. The mechanism involves increased activity of oncogenic K-Rasmt. Unlike what has been proposed in the standard paradigm for the role of Ras in oncogenesis, oncogenic K-Rasmt is now known to not be constitutively active. Rather, it can be activated by standard mechanisms similar to wild-type K-Ras, but its activity is sustained for a prolonged period. Furthermore, if the level of K-Ras activity exceeds a threshold at which it begins to generate its own activators, then a feed-forward loop is formed between K-Ras activity and inflammation and pathological processes including oncogenesis are initiated. Oncogenic K-Rasmt activation, a key event in PDAC initiation and development, is subject to complex regulatory mechanisms. Reagents which inhibit inflammation, such as the Cox2 inhibitor celecoxib, block the feed-forward loop and prevent induction of PDAC in models with endogenous oncogenic K-Rasmt. Increased understanding of the role of activating and inhibitory mechanisms on oncogenic K-Rasmt activity is of paramount importance for the development of preventive and therapeutic strategies to fight against this lethal disease. PMID:26929740

  17. Rural Enterprises, Incorporated report of significant activities and accomplishments

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The ongoing activities of Rural Enterprises, Inc. are presented. The function of Rural Enterprises is to bring innovation from its rudimentary conceptual stages to useful and productive ends by means of cooperation with government, business, and educational institutions.

  18. Distribution and significance of heterotrophic marine bacteria with antibacterial activity.

    PubMed Central

    Nair, S; Simidu, U

    1987-01-01

    Bacteria with antibacterial activity were isolated from seawater, sediments, phytoplankton, and zooplankton of Suruga, Sagami, and Tokyo Bays and from soft corals and sponges collected from the Taiwan coast. Of the 726 strains isolated, 37 showed antibacterial activity against either Vibrio parahaemolyticus (ATCC 17802) or Staphylococcus aureus (P209). Sediment harbored the lowest number of these forms of bacteria, and those from Tokyo Bay did not show any activity. Attached isolates showed greater activity compared with free-living forms. Relatively high numbers of strains with antibacterial activity were associated with phytoplankton. Among the zooplankton isolates, cladocerans harbored the maximum number of antibacterial strains. Isolates were more inhibitory to gram-positive test cultures. Autoinhibition was observed only among 8% of the isolates. Marine nonproducers were more susceptible. Pseudomonas/Alteromonas species made up 81.0% of isolates, of which 30% were pigmented strains. The absence or reduction in number of bacteria with antibacterial activity in Tokyo Bay is attributed to its eutrophic nature, which may tend to moderate the production of antibacterial compounds. PMID:3435149

  19. Significant Natural Product Biosynthetic Potential of Actinorhizal Symbionts of the Genus Frankia, as Revealed by Comparative Genomic and Proteomic Analyses▿

    PubMed Central

    Udwary, Daniel W.; Gontang, Erin A.; Jones, Adam C.; Jones, Carla S.; Schultz, Andrew W.; Winter, Jaclyn M.; Yang, Jane Y.; Beauchemin, Nicholas; Capson, Todd L.; Clark, Benjamin R.; Esquenazi, Eduardo; Eustáquio, Alessandra S.; Freel, Kelle; Gerwick, Lena; Gerwick, William H.; Gonzalez, David; Liu, Wei-Ting; Malloy, Karla L.; Maloney, Katherine N.; Nett, Markus; Nunnery, Joshawna K.; Penn, Kevin; Prieto-Davo, Alejandra; Simmons, Thomas L.; Weitz, Sara; Wilson, Micheal C.; Tisa, Louis S.; Dorrestein, Pieter C.; Moore, Bradley S.

    2011-01-01

    Bacteria of the genus Frankia are mycelium-forming actinomycetes that are found as nitrogen-fixing facultative symbionts of actinorhizal plants. Although soil-dwelling actinomycetes are well-known producers of bioactive compounds, the genus Frankia has largely gone uninvestigated for this potential. Bioinformatic analysis of the genome sequences of Frankia strains ACN14a, CcI3, and EAN1pec revealed an unexpected number of secondary metabolic biosynthesis gene clusters. Our analysis led to the identification of at least 65 biosynthetic gene clusters, the vast majority of which appear to be unique and for which products have not been observed or characterized. More than 25 secondary metabolite structures or structure fragments were predicted, and these are expected to include cyclic peptides, siderophores, pigments, signaling molecules, and specialized lipids. Outside the hopanoid gene locus, no cluster could be convincingly demonstrated to be responsible for the few secondary metabolites previously isolated from other Frankia strains. Few clusters were shared among the three species, demonstrating species-specific biosynthetic diversity. Proteomic analysis of Frankia sp. strains CcI3 and EAN1pec showed that significant and diverse secondary metabolic activity was expressed in laboratory cultures. In addition, several prominent signals in the mass range of peptide natural products were observed in Frankia sp. CcI3 by intact-cell matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). This work supports the value of bioinformatic investigation in natural products biosynthesis using genomic information and presents a clear roadmap for natural products discovery in the Frankia genus. PMID:21498757

  20. Individual transcriptional activity of estrogen receptors in primary breast cancer and its clinical significance.

    PubMed

    Gohno, Tatsuyuki; Seino, Yuko; Hanamura, Toru; Niwa, Toshifumi; Matsumoto, Mitsuyo; Yaegashi, Nobuo; Oba, Hanako; Kurosumi, Masafumi; Takei, Hiroyuki; Yamaguchi, Yuri; Hayashi, Shin-Ichi

    2012-12-01

    To predict the efficacy of hormonal therapy at the individual-level, immunohistochemical methods are used to analyze expression of classical molecular biomarkers such as estrogen receptor (ER), progesterone receptor (PgR), and HER2. However, the current diagnostic standard is not perfect for the individualization of diverse cases. Therefore, establishment of more accurate diagnostics is required. Previously, we established a novel method that enables analysis of ER transcriptional activation potential in clinical specimens using an adenovirus estrogen response element-green fluorescence protein (ERE-GFP) assay system. Using this assay, we assessed the ERE transcriptional activity of 62 primary breast cancer samples. In 40% of samples, we observed that ER protein expression was not consistent with ERE activity. Comparison of ERE activity with clinicopathological information revealed that ERE activity was significantly correlated with the ER target gene, PgR, rather than ER in terms of both protein and mRNA expression. Moreover, subgrouping of Luminal A-type breast cancer samples according to ERE activity revealed that ERα mRNA expression correlated with ER target gene mRNA expression in the high-, but not the low-, ERE-activity group. On the other hand, the low-ERE-activity group showed significantly higher mRNA expression of the malignancy biomarker Ki67 in association with disease recurrence in 5% of patients. Thus, these data suggest that ER expression does not always correlate with ER transcriptional activity. Therefore, in addition to ER protein expression, determination of ERE activity as an ER functional marker will be helpful for analysis of a variety of diverse breast cancer cases and the subsequent course of treatment. PMID:23342282

  1. Pathogenic significance of alpha-N-acetylgalactosaminidase activity found in the hemagglutinin of influenza virus.

    PubMed

    Yamamoto, Nobuto; Urade, Masahiro

    2005-04-01

    Serum vitamin D3-binding protein (Gc protein) is the precursor for the principal macrophage activating factor (MAF). The precursor activity of serum Gc protein was reduced in all influenza virus-infected patients. These patient sera contained alpha-N-acetylgalactosaminidase (Nagalase) that deglycosylates Gc protein. Deglycosylated Gc protein cannot be converted to MAF, thus it loses the MAF precursor activity, leading to immunosuppression. An influenza virus stock contained a large amount of Nagalase activity. A sucrose gradient centrifugation analysis of the virus stock showed that the profile of Nagalase activity corresponds to that of hemagglutinating activity. When these gradient fractions were treated with 0.01% trypsin for 30 min, the Nagalase activity of each fraction increased significantly, suggesting that the Nagalase activity resides on an outer envelope protein of the influenza virion and is enhanced by the proteolytic process. After disruption of influenza virions with sodium deoxycholate, fractionation of the envelope proteins with mannose-specific lectin affinity column along with electrophoretic analysis of the Nagalase peak fraction revealed that Nagalase is the intrinsic component of the hemagglutinin (HA). Cloned HA protein exhibited Nagalase activity only if treated with trypsin. Since both fusion capacity and Nagalase activity of HA protein are expressed by proteolytic cleavage, Nagalase activity appears to be an enzymatic basis for the fusion process. Thus, Nagalase plays dual roles in regulating both infectivity and immunosuppression. PMID:15848273

  2. Small molecules reveal an alternative mechanism of Bax activation

    PubMed Central

    Brahmbhatt, Hetal; Uehling, David; Al-awar, Rima; Leber, Brian; Andrews, David

    2016-01-01

    The pro-apoptotic protein Bax commits a cell to death by permeabilizing the mitochondrial outer membrane (MOM). To obtain small-molecule probes for elucidating the molecular mechanism(s) of Bax activation, we screened for compounds that induced Bax-mediated liposome permeabilization. We identified five structurally different small molecules that promoted both Bax targeting to and oligomerization at membranes. All five compounds initiated Bax oligomerization in the absence of membranes by a mechanism unlike Bax activation by Bcl-2 homology 3 domain (BH3) proteins. Some of the compounds induced Bax/Bak-dependent apoptosis in cells. Activation of Bax by the most active compound was poorly inhibited by the anti-apoptotic protein Bcl-XL and requires a cysteine residue at position 126 of Bax that is not required for activation by BH3 proteins. Our results reveal a novel pathway for Bax activation independent of pro-apoptotic BH3 proteins that may have important implications for the regulation of Bax activity in cells. PMID:26916338

  3. On the validity versus utility of activity landscapes: are all activity cliffs statistically significant?

    PubMed Central

    2014-01-01

    Background Most work on the topic of activity landscapes has focused on their quantitative description and visual representation, with the aim of aiding navigation of SAR. Recent developments have addressed applications such as quantifying the proportion of activity cliffs, investigating the predictive abilities of activity landscape methods and so on. However, all these publications have worked under the assumption that the activity landscape models are “real” (i.e., statistically significant). Results The current study addresses for the first time, in a quantitative manner, the significance of a landscape or individual cliffs in the landscape. In particular, we question whether the activity landscape derived from observed (experimental) activity data is different from a randomly generated landscape. To address this we used the SALI measure with six different data sets tested against one or more molecular targets. We also assessed the significance of the landscapes for single and multiple representations. Conclusions We find that non-random landscapes are data set and molecular representation dependent. For the data sets and representations used in this work, our results suggest that not all representations lead to non-random landscapes. This indicates that not all molecular representations should be used to a) interpret the SAR and b) combined to generate consensus models. Our results suggest that significance testing of activity landscape models and in particular, activity cliffs, is key, prior to the use of such models. PMID:24694189

  4. Clinical significance of diffuse delta EEG activity in chronic schizophrenia.

    PubMed

    Matsuura, M; Yoshino, M; Ohta, K; Onda, H; Nakajima, K; Kojima, T

    1994-07-01

    1) Forty-three chronic schizophrenics with diffuse delta activity (DDA) in their rest-awake EEGs were compared with 23 chronic schizophrenics with normal EEGs. 2) The DDA group was divided into three sub-groups according to the temporal persistence of DDA: brief, intermittent, and prolonged. The intermittent DDA is analogous to intermittent rhythmic delta activity (IRDA). 3) The disorganized type of schizophrenia was frequent in the DDA group and the residual type was frequent in the normal EEG group. 4) The doses of neuroleptics, as well as those of phenothiazines and butyrophenones, were higher in the DDA than in the normal group. 5) The frequency of co-administration of carbamazepine was higher in the DDA than in the normal group, and the rate increased with the degree of abnormality. 6) In a 1 year follow-up of the DDA group, reducing doses of neuroleptics resulted in a tendency for DDA to disappear, and reducing the doses of adjunctive carbamazepine caused DDA to disappear. 7) There was no correlation between DDA and the psychiatric symptoms, intelligence level, or CT findings.

  5. Active medulloblastoma enhancers reveal subgroup-specific cellular origins.

    PubMed

    Lin, Charles Y; Erkek, Serap; Tong, Yiai; Yin, Linlin; Federation, Alexander J; Zapatka, Marc; Haldipur, Parthiv; Kawauchi, Daisuke; Risch, Thomas; Warnatz, Hans-Jörg; Worst, Barbara C; Ju, Bensheng; Orr, Brent A; Zeid, Rhamy; Polaski, Donald R; Segura-Wang, Maia; Waszak, Sebastian M; Jones, David T W; Kool, Marcel; Hovestadt, Volker; Buchhalter, Ivo; Sieber, Laura; Johann, Pascal; Chavez, Lukas; Gröschel, Stefan; Ryzhova, Marina; Korshunov, Andrey; Chen, Wenbiao; Chizhikov, Victor V; Millen, Kathleen J; Amstislavskiy, Vyacheslav; Lehrach, Hans; Yaspo, Marie-Laure; Eils, Roland; Lichter, Peter; Korbel, Jan O; Pfister, Stefan M; Bradner, James E; Northcott, Paul A

    2016-02-01

    Medulloblastoma is a highly malignant paediatric brain tumour, often inflicting devastating consequences on the developing child. Genomic studies have revealed four distinct molecular subgroups with divergent biology and clinical behaviour. An understanding of the regulatory circuitry governing the transcriptional landscapes of medulloblastoma subgroups, and how this relates to their respective developmental origins, is lacking. Here, using H3K27ac and BRD4 chromatin immunoprecipitation followed by sequencing (ChIP-seq) coupled with tissue-matched DNA methylation and transcriptome data, we describe the active cis-regulatory landscape across 28 primary medulloblastoma specimens. Analysis of differentially regulated enhancers and super-enhancers reinforced inter-subgroup heterogeneity and revealed novel, clinically relevant insights into medulloblastoma biology. Computational reconstruction of core regulatory circuitry identified a master set of transcription factors, validated by ChIP-seq, that is responsible for subgroup divergence, and implicates candidate cells of origin for Group 4. Our integrated analysis of enhancer elements in a large series of primary tumour samples reveals insights into cis-regulatory architecture, unrecognized dependencies, and cellular origins.

  6. Active Mars Revealed through HiRISE DTMs and Orthoimages

    NASA Astrophysics Data System (ADS)

    Mattson, Sarah; McEwen, Alfred S.; Bridges, Nathan; Byrne, Shane; Chojnacki, Matthew; Daubar, Ingrid; Dundas, Colin; Russell, Patrick

    2014-11-01

    Before the arrival of the Mars Reconnaissance Orbiter (MRO) with the High-Resolution Imaging Science Experiment (HiRISE), the amount of surface activity on Mars was not well known. HiRISE repeat imaging (often at ~30 cm/pixel), combined with the ability to take stereo images and generate high resolution Digital Terrain Models (DTMs) reveals the many types of surface processes that are currently active on Mars. Examples of active processes on Mars studied with HiRISE data include aeolian activity [Bridges et al., 2012, Nature 485; Chojnacki et al., 2014, Icarus 232], Recurring Slope Lineae (RSL) [McEwen et al., 2011, Science 333; 2014, Nature Geoscience 7], active gullies [Dundas et al., 2012, Icarus 220], polar processes [Hansen et al., 2011, Science 331; Portyankina et al. 2013, AGU], new impacts [Byrne et al., 2009, Science 325; Daubar et al., 2013, Icarus 225; Dundas et al., 2014, JGR 119], and north polar scarp avalanches [Russell et al., 2008, GRL 35, 2014, LPSC]. These studies utilize images from multiple Mars years and seasons. We generate animated gifs with sequences of orthorectified images to analyze temporal changes (see http://www.uahirise.org/sim/). HiRISE DTMs and orthoimages can be used to quantitatively map and record changes in geospatial software. More than 200 DTMs and 400 orthoimages are available through the Planetary Data System (see http://uahirise.org/dtm). Three-band color (blue-green, red, and near infrared) orthoimages are also available in many cases. The ability to monitor the surface of Mars at high spatial and temporal resolution provides insight into seasonal and annual changes, further increasing our understanding of Mars as an active planet.

  7. An anti-hapten camelid antibody reveals a cryptic binding site with significant energetic contributions from a nonhypervariable loop

    SciTech Connect

    Fanning, Sean W.; Horn, James R.

    2014-03-05

    Conventional anti-hapten antibodies typically bind low-molecular weight compounds (haptens) in the crevice between the variable heavy and light chains. Conversely, heavy chain-only camelid antibodies, which lack a light chain, must rely entirely on a single variable domain to recognize haptens. While several anti-hapten VHHs have been generated, little is known regarding the underlying structural and thermodynamic basis for hapten recognition. Here, an anti-methotrexate VHH (anti-MTX VHH) was generated using grafting methods whereby the three complementarity determining regions (CDRs) were inserted onto an existing VHH framework. Thermodynamic analysis of the anti-MTX VHH CDR1-3 Graft revealed a micromolar binding affinity, while the crystal structure of the complex revealed a somewhat surprising noncanonical binding site which involved MTX tunneling under the CDR1 loop. Due to the close proximity of MTX to CDR4, a nonhypervariable loop, the CDR4 loop sequence was subsequently introduced into the CDR1-3 graft, which resulted in a dramatic 1000-fold increase in the binding affinity. Crystal structure analysis of both the free and complex anti-MTX CDR1-4 graft revealed CDR4 plays a significant role in both intermolecular contacts and binding site conformation that appear to contribute toward high affinity binding. Additionally, the anti-MTX VHH possessed relatively high specificity for MTX over closely related compounds aminopterin and folate, demonstrating that VHH domains are capable of binding low-molecular weight ligands with high affinity and specificity, despite their reduced interface.

  8. Limiting prothrombin activation to meizothrombin is compatible with survival but significantly alters hemostasis in mice.

    PubMed

    Shaw, Maureen A; Kombrinck, Keith W; McElhinney, Kathryn E; Sweet, David R; Flick, Matthew J; Palumbo, Joseph S; Cheng, Mei; Esmon, Naomi L; Esmon, Charles T; Brill, Alexander; Wagner, Denisa D; Degen, Jay L; Mullins, Eric S

    2016-08-01

    Thrombin-mediated proteolysis is central to hemostatic function but also plays a prominent role in multiple disease processes. The proteolytic conversion of fII to α-thrombin (fIIa) by the prothrombinase complex occurs through 2 parallel pathways: (1) the inactive intermediate, prethrombin; or (2) the proteolytically active intermediate, meizothrombin (fIIa(MZ)). FIIa(MZ) has distinct catalytic properties relative to fIIa, including diminished fibrinogen cleavage and increased protein C activation. Thus, fII activation may differentially influence hemostasis and disease depending on the pathway of activation. To determine the in vivo physiologic and pathologic consequences of restricting thrombin generation to fIIa(MZ), mutations were introduced into the endogenous fII gene, resulting in expression of prothrombin carrying 3 amino acid substitutions (R157A, R268A, and K281A) to limit activation events to yield only fIIa(MZ) Homozygous fII(MZ) mice are viable, express fII levels comparable with fII(WT) mice, and have reproductive success. Although in vitro studies revealed delayed generation of fIIa(MZ) enzyme activity, platelet aggregation by fII(MZ) is similar to fII(WT) Consistent with prior analyses of human fIIa(MZ), significant prolongation of clotting times was observed for fII(MZ) plasma. Adult fII(MZ) animals displayed significantly compromised hemostasis in tail bleeding assays, but did not demonstrate overt bleeding. More notably, fII(MZ) mice had 2 significant phenotypic advantages over fII(WT) animals: protection from occlusive thrombosis after arterial injury and markedly diminished metastatic potential in a setting of experimental tumor metastasis to the lung. Thus, these novel animals will provide a valuable tool to assess the role of both fIIa and fIIa(MZ) in vivo. PMID:27252233

  9. A genome scan revealed significant associations of growth traits with a major QTL and GHR2 in tilapia

    PubMed Central

    Liu, Feng; Sun, Fei; Xia, Jun Hong; Li, Jian; Fu, Gui Hong; Lin, Grace; Tu, Rong Jian; Wan, Zi Yi; Quek, Delia; Yue, Gen Hua

    2014-01-01

    Growth is an important trait in animal breeding. However, the genetic effects underpinning fish growth variability are still poorly understood. QTL mapping and analysis of candidate genes are effective methods to address this issue. We conducted a genome-wide QTL analysis for growth in tilapia. A total of 10, 7 and 8 significant QTLs were identified for body weight, total length and standard length at 140 dph, respectively. The majority of these QTLs were sex-specific. One major QTL for growth traits was identified in the sex-determining locus in LG1, explaining 71.7%, 67.2% and 64.9% of the phenotypic variation (PV) of body weight, total length and standard length, respectively. In addition, a candidate gene GHR2 in a QTL was significantly associated with body weight, explaining 13.1% of PV. Real-time qPCR revealed that different genotypes at the GHR2 locus influenced the IGF-1 expression level. The markers located in the major QTL for growth traits could be used in marker-assisted selection of tilapia. The associations between GHR2 variants and growth traits suggest that the GHR2 gene should be an important gene that explains the difference in growth among tilapia species. PMID:25435025

  10. Cassava root membrane proteome reveals activities during storage root maturation.

    PubMed

    Naconsie, Maliwan; Lertpanyasampatha, Manassawe; Viboonjun, Unchera; Netrphan, Supatcharee; Kuwano, Masayoshi; Ogasawara, Naotake; Narangajavana, Jarunya

    2016-01-01

    Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava.

  11. The temporal structures and functional significance of scale-free brain activity.

    PubMed

    He, Biyu J; Zempel, John M; Snyder, Abraham Z; Raichle, Marcus E

    2010-05-13

    Scale-free dynamics, with a power spectrum following P proportional to f(-beta), are an intrinsic feature of many complex processes in nature. In neural systems, scale-free activity is often neglected in electrophysiological research. Here, we investigate scale-free dynamics in human brain and show that it contains extensive nested frequencies, with the phase of lower frequencies modulating the amplitude of higher frequencies in an upward progression across the frequency spectrum. The functional significance of scale-free brain activity is indicated by task performance modulation and regional variation, with beta being larger in default network and visual cortex and smaller in hippocampus and cerebellum. The precise patterns of nested frequencies in the brain differ from other scale-free dynamics in nature, such as earth seismic waves and stock market fluctuations, suggesting system-specific generative mechanisms. Our findings reveal robust temporal structures and behavioral significance of scale-free brain activity and should motivate future study on its physiological mechanisms and cognitive implications. PMID:20471349

  12. The temporal structures and functional significance of scale-free brain activity.

    PubMed

    He, Biyu J; Zempel, John M; Snyder, Abraham Z; Raichle, Marcus E

    2010-05-13

    Scale-free dynamics, with a power spectrum following P proportional to f(-beta), are an intrinsic feature of many complex processes in nature. In neural systems, scale-free activity is often neglected in electrophysiological research. Here, we investigate scale-free dynamics in human brain and show that it contains extensive nested frequencies, with the phase of lower frequencies modulating the amplitude of higher frequencies in an upward progression across the frequency spectrum. The functional significance of scale-free brain activity is indicated by task performance modulation and regional variation, with beta being larger in default network and visual cortex and smaller in hippocampus and cerebellum. The precise patterns of nested frequencies in the brain differ from other scale-free dynamics in nature, such as earth seismic waves and stock market fluctuations, suggesting system-specific generative mechanisms. Our findings reveal robust temporal structures and behavioral significance of scale-free brain activity and should motivate future study on its physiological mechanisms and cognitive implications.

  13. The temporal structures and functional significance of scale-free brain activity

    PubMed Central

    He, Biyu J.; Zempel, John M.; Snyder, Abraham Z.; Raichle, Marcus E.

    2010-01-01

    SUMMARY Scale-free dynamics, with a power spectrum following P ∝ f-β, are an intrinsic feature of many complex processes in nature. In neural systems, scale-free activity is often neglected in electrophysiological research. Here, we investigate scale-free dynamics in human brain and show that it contains extensive nested frequencies, with the phase of lower frequencies modulating the amplitude of higher frequencies in an upward progression across the frequency spectrum. The functional significance of scale-free brain activity is indicated by task performance modulation and regional variation, with β being larger in default network and visual cortex and smaller in hippocampus and cerebellum. The precise patterns of nested frequencies in the brain differ from other scale-free dynamics in nature, such as earth seismic waves and stock market fluctuations, suggesting system-specific generative mechanisms. Our findings reveal robust temporal structures and behavioral significance of scale-free brain activity and should motivate future study on its physiological mechanisms and cognitive implications. PMID:20471349

  14. Hidden Stages of Cognition Revealed in Patterns of Brain Activation.

    PubMed

    Anderson, John R; Pyke, Aryn A; Fincham, Jon M

    2016-09-01

    To advance cognitive theory, researchers must be able to parse the performance of a task into its significant mental stages. In this article, we describe a new method that uses functional MRI brain activation to identify when participants are engaged in different cognitive stages on individual trials. The method combines multivoxel pattern analysis to identify cognitive stages and hidden semi-Markov models to identify their durations. This method, applied to a problem-solving task, identified four distinct stages: encoding, planning, solving, and responding. We examined whether these stages corresponded to their ascribed functions by testing whether they are affected by appropriate factors. Planning-stage duration increased as the method for solving the problem became less obvious, whereas solving-stage duration increased as the number of calculations to produce the answer increased. Responding-stage duration increased with the difficulty of the motor actions required to produce the answer. PMID:27440808

  15. Metatranscriptomics reveals overall active bacterial composition in caries lesions

    PubMed Central

    Simón-Soro, Aurea; Guillen-Navarro, Miriam; Mira, Alex

    2014-01-01

    Background Identifying the microbial species in caries lesions is instrumental to determine the etiology of dental caries. However, a significant proportion of bacteria in carious lesions have not been cultured, and the use of molecular methods has been limited to DNA-based approaches, which detect both active and inactive or dead microorganisms. Objective To identify the RNA-based, metabolically active bacterial composition of caries lesions at different stages of disease progression in order to provide a list of potential etiological agents of tooth decay. Design Non-cavitated enamel caries lesions (n=15) and dentin caries lesions samples (n=12) were collected from 13 individuals. RNA was extracted and cDNA was constructed, which was used to amplify the 16S rRNA gene. The resulting 780 bp polymerase chain reaction products were pyrosequenced using Titanium-plus chemistry, and the sequences obtained were used to determine the bacterial composition. Results A mean of 4,900 sequences of the 16S rRNA gene with an average read length of 661 bp was obtained per sample, giving a comprehensive view of the active bacterial communities in caries lesions. Estimates of bacterial diversity indicate that the microbiota of cavities is highly complex, each sample containing between 70 and 400 metabolically active species. The composition of these bacterial consortia varied among individuals and between caries lesions of the same individuals. In addition, enamel and dentin lesions had a different bacterial makeup. Lactobacilli were found almost exclusively in dentin cavities. Streptococci accounted for 40% of the total active community in enamel caries, and 20% in dentin caries. However, Streptococcus mutans represented only 0.02–0.73% of the total bacterial community. Conclusions The data indicate that the etiology of dental caries is tissue dependent and that the disease has a clear polymicrobial origin. The low proportion of mutans streptococci detected confirms that they

  16. Color-Doppler sonographic tissue perfusion measurements reveal significantly diminished renal cortical perfusion in kidneys with vesicoureteral reflux.

    PubMed

    Scholbach, T M; Sachse, C

    2016-01-01

    Vesicoureteral reflux (VUR) and its sequelae may lead to reduced renal perfusion and loss of renal function. Methods to describe and monitor tissue perfusion are needed. We investigated dynamic tissue perfusion measurement (DTPM) with the PixelFlux-software to measure microvascular changes in the renal cortex in 35 children with VUR and 28 healthy children. DTPM of defined horizontal slices of the renal cortex was carried out. A kidney was assigned to the "low grade reflux"-group if the reflux grade of the voiding cystourethrogram was 1 to 3 and to the "high grade reflux"-group if the reflux grade was 4 to 5. Kidneys with VUR showed a significantly reduced cortical perfusion. Compared to healthy kidneys, this decline reached in low and high grade refluxes within the proximal 50% of the cortex: 3% and 12 %, in the distal 50% of the cortex: 21% and 44 % and in the most distal 20 % of the cortex 41% and 44%. DTPM reveals a perfusion loss in kidneys depending on the degree of VUR, which is most pronounced in the peripheral cortex. Thus, DTPM offers the tool to evaluate microvascular perfusion, to help planning treatment decisions in children with VUR.

  17. Single cell activity reveals direct electron transfer in methanotrophic consortia

    NASA Astrophysics Data System (ADS)

    McGlynn, Shawn E.; Chadwick, Grayson L.; Kempes, Christopher P.; Orphan, Victoria J.

    2015-10-01

    Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer.

  18. Single cell activity reveals direct electron transfer in methanotrophic consortia.

    PubMed

    McGlynn, Shawn E; Chadwick, Grayson L; Kempes, Christopher P; Orphan, Victoria J

    2015-10-22

    Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer. PMID:26375009

  19. Activities on Facebook Reveal the Depressive State of Users

    PubMed Central

    Kwak, Jinah

    2013-01-01

    Background As online social media have become prominent, much effort has been spent on identifying users with depressive symptoms in order to aim at early diagnosis, treatment, and even prevention by using various online social media. In this paper, we focused on Facebook to discern any correlations between the platform’s features and users’ depressive symptoms. This work may be helpful in trying to reach and detect large numbers of depressed individuals more easily. Objective Our goal was to develop a Web application and identify depressive symptom–related features from users of Facebook, a popular social networking platform. Methods 55 Facebook users (male=40, female=15, mean age 24.43, SD 3.90) were recruited through advertisement fliers distributed to students in a large university in Korea. Using EmotionDiary, the Facebook application we developed, we evaluated depressive symptoms using the Center for Epidemiological Studies-Depression (CES-D) scale. We also provided tips and facts about depression to participants and measured their responses using EmotionDiary. To identify the Facebook features related to depression, correlation analyses were performed between CES-D and participants’ responses to tips and facts or Facebook social features. Last, we interviewed depressed participants (CES-D≥25) to assess their depressive symptoms by a psychiatrist. Results Facebook activities had predictive power in distinguishing depressed and nondepressed individuals. Participants’ response to tips and facts, which can be explained by the number of app tips viewed and app points, had a positive correlation (P=.04 for both cases), whereas the number of friends and location tags had a negative correlation with the CES-D scale (P=.08 and P=.045 respectively). Furthermore, in finding group differences in Facebook social activities, app tips viewed and app points resulted in significant differences (P=.01 and P=.03 respectively) between probably depressed and

  20. Metatranscriptomic Analysis of Groundwater Reveals an Active Anammox Bacterial Population

    NASA Astrophysics Data System (ADS)

    Jewell, T. N. M.; Karaoz, U.; Thomas, B. C.; Banfield, J. F.; Brodie, E.; Williams, K. H.; Beller, H. R.

    2014-12-01

    Groundwater is a major natural resource, yet little is known about the contribution of microbial anaerobic ammonium oxidation (anammox) activity to subsurface nitrogen cycling. During anammox, energy is generated as ammonium is oxidized under anaerobic conditions to dinitrogen gas, using nitrite as the final electron acceptor. This process is a global sink for fixed nitrogen. Only a narrow range of monophyletic bacteria within the Planctomycetes carries out anammox, and the full extent of their metabolism, and subsequent impact on nitrogen cycling and microbial community structure, is still unknown. Here, we employ a metatranscriptomic analysis on enriched mRNA to identify the abundance and activity of a population of anammox bacteria within an aquifer at Rifle, CO. Planktonic biomass was collected over a two-month period after injection of up to 1.5 mM nitrate. Illumina-generated sequences were mapped to a phylogenetically binned Rifle metagenome database. We identified transcripts for genes with high protein sequence identities (81-98%) to those of anammox strain KSU-1 and to two of the five anammox bacteria genera, Brocadia and Kuenenia, suggesting an active, if not diverse, anammox population. Many of the most abundant anammox transcripts mapped to a single scaffold, indicative of a single dominant anammox species. Transcripts of the genes necessary for the anammox pathway were present, including an ammonium transporter (amtB), nitrite/formate transporter, nitrite reductase (nirK), and hydrazine oxidoreductase (hzoB). The form of nitrite reductase encoded by anammox is species-dependent, and we only identified nirK, with no evidence of anammox nirS. In addition to the anammox pathway we saw evidence of the anammox bacterial dissimilatory nitrate reduction to ammonium pathway (narH, putative nrfA, and nrfB), which provides an alternate means of generating substrates for anammox from nitrate, rather than relying on an external pool. Transcripts for hydroxylamine

  1. Revealing Significant Relations between Chemical/Biological Features and Activity: Associative Classification Mining for Drug Discovery

    ERIC Educational Resources Information Center

    Yu, Pulan

    2012-01-01

    Classification, clustering and association mining are major tasks of data mining and have been widely used for knowledge discovery. Associative classification mining, the combination of both association rule mining and classification, has emerged as an indispensable way to support decision making and scientific research. In particular, it offers a…

  2. An MHC-defined primate model reveals significant rejection of bone marrow after mixed chimerism induction despite full MHC matching.

    PubMed

    Larsen, C P; Page, A; Linzie, K H; Russell, M; Deane, T; Stempora, L; Strobert, E; Penedo, M C T; Ward, T; Wiseman, R; O'Connor, D; Miller, W; Sen, S; Singh, K; Kean, L S

    2010-11-01

    In murine models, mixed hematopoietic chimerism induction leads to robust immune tolerance. However, translation to primates and to patients has been difficult. In this study, we used a novel MHC-defined rhesus macaque model to examine the impact of MHC matching on the stability of costimulation blockade-/sirolimus-mediated chimerism, and to probe possible mechanisms of bone marrow rejection after nonmyeloablative transplant. Using busulfan-based pretransplant preparation and maintenance immunosuppression with sirolimus, as well as CD28 and CD154 blockade, all recipients demonstrated donor engraftment after transplant. However, the mixed chimerism that resulted was compartmentalized, with recipients demonstrating significantly higher whole blood chimerism compared to T cell chimerism. Thus, the vast majority of T cells presenting posttransplant were recipient-rather than donor-derived. Surprisingly, even in MHC-matched transplants, rejection of donor hematopoiesis predominated after immunosuppression withdrawal. Weaning of immunosuppression was associated with a surge of antigen-experienced T cells, and transplant rejection was associated with the acquisition of donor-directed T cell alloreactivity. These results suggest that a reservoir of alloreactive cells was present despite prior costimulation blockade and sirolimus, and that the post-immunosuppression lymphocytic rebound may have lead to a phenotypic shift in these recipient T cells towards an activated, antigen-experienced phenotype, and ultimately, to transplant rejection. PMID:20849552

  3. The Functional Significance of Posttranslational Modifications on Polo-Like Kinase 1 Revealed by Chemical Genetic Complementation.

    PubMed

    Lasek, Amber L; McPherson, Brittany M; Trueman, Natalie G; Burkard, Mark E

    2016-01-01

    Mitosis is coordinated by carefully controlled phosphorylation and ubiquitin-mediated proteolysis. Polo-like kinase 1 (Plk1) plays a central role in regulating mitosis and cytokinesis by phosphorylating target proteins. Yet, Plk1 is itself a target for posttranslational modification by phosphorylation and ubiquitination. We developed a chemical-genetic complementation assay to evaluate the functional significance of 34 posttranslational modifications (PTMs) on human Plk1. To do this, we used human cells that solely express a modified analog-sensitive Plk1 (Plk1AS) and complemented with wildtype Plk1. The wildtype Plk1 provides cells with a functional Plk1 allele in the presence of 3-MB-PP1, a bulky ATP-analog inhibitor that specifically inhibits Plk1AS. Using this approach, we evaluated the ability of 34 singly non-modifiable Plk1 mutants to complement Plk1AS in the presence of 3-MB-PP1. Mutation of the T-loop activating residue T210 and adjacent T214 are lethal, but surprisingly individual mutation of the remaining 32 posttranslational modification sites did not disrupt the essential functions of Plk1. To evaluate redundancy, we simultaneously mutated all phosphorylation sites in the kinase domain except for T210 and T214 or all sites in the C-terminal polo-box domain (PBD). We discovered that redundant phosphorylation events within the kinase domain are required for accurate chromosome segregation in anaphase but those in the PBD are dispensable. We conclude that PTMs within the T-loop of Plk1 are essential and nonredundant, additional modifications in the kinase domain provide redundant control of Plk1 function, and those in the PBD are dispensable for essential mitotic functions of Plk1. This comprehensive evaluation of Plk1 modifications demonstrates that although phosphorylation and ubiquitination are important for mitotic progression, many individual PTMs detected in human tissue may have redundant, subtle, or dispensable roles in gene function. PMID

  4. The Functional Significance of Posttranslational Modifications on Polo-Like Kinase 1 Revealed by Chemical Genetic Complementation

    PubMed Central

    Lasek, Amber L.; McPherson, Brittany M.; Trueman, Natalie G.; Burkard, Mark E.

    2016-01-01

    Mitosis is coordinated by carefully controlled phosphorylation and ubiquitin-mediated proteolysis. Polo-like kinase 1 (Plk1) plays a central role in regulating mitosis and cytokinesis by phosphorylating target proteins. Yet, Plk1 is itself a target for posttranslational modification by phosphorylation and ubiquitination. We developed a chemical-genetic complementation assay to evaluate the functional significance of 34 posttranslational modifications (PTMs) on human Plk1. To do this, we used human cells that solely express a modified analog-sensitive Plk1 (Plk1AS) and complemented with wildtype Plk1. The wildtype Plk1 provides cells with a functional Plk1 allele in the presence of 3-MB-PP1, a bulky ATP-analog inhibitor that specifically inhibits Plk1AS. Using this approach, we evaluated the ability of 34 singly non-modifiable Plk1 mutants to complement Plk1AS in the presence of 3-MB-PP1. Mutation of the T-loop activating residue T210 and adjacent T214 are lethal, but surprisingly individual mutation of the remaining 32 posttranslational modification sites did not disrupt the essential functions of Plk1. To evaluate redundancy, we simultaneously mutated all phosphorylation sites in the kinase domain except for T210 and T214 or all sites in the C-terminal polo-box domain (PBD). We discovered that redundant phosphorylation events within the kinase domain are required for accurate chromosome segregation in anaphase but those in the PBD are dispensable. We conclude that PTMs within the T-loop of Plk1 are essential and nonredundant, additional modifications in the kinase domain provide redundant control of Plk1 function, and those in the PBD are dispensable for essential mitotic functions of Plk1. This comprehensive evaluation of Plk1 modifications demonstrates that although phosphorylation and ubiquitination are important for mitotic progression, many individual PTMs detected in human tissue may have redundant, subtle, or dispensable roles in gene function. PMID

  5. Trends in space activities in 2014: The significance of the space activities of governments

    NASA Astrophysics Data System (ADS)

    Paikowsky, Deganit; Baram, Gil; Ben-Israel, Isaac

    2016-01-01

    This article addresses the principal events of 2014 in the field of space activities, and extrapolates from them the primary trends that can be identified in governmental space activities. In 2014, global space activities centered on two vectors. The first was geopolitical, and the second relates to the matrix between increasing commercial space activities and traditional governmental space activities. In light of these two vectors, the article outlines and analyzes trends of space exploration, human spaceflights, industry and technology, cooperation versus self-reliance, and space security and sustainability. It also reviews the space activities of the leading space-faring nations.

  6. Cohesin's role as an active chromatin domain anchorage revealed.

    PubMed

    Feig, Christine; Odom, Duncan T

    2013-12-11

    Cohesin is a conserved protein complex indispensible for proper cell division, because it secures sister-chromatid cohesion following DNA replication until segregation is required at the onset of anaphase. Recent studies have revealed functions beyond this, showing that cohesin binds to interphase chromatin regulating gene expression at select loci via long-range chromosomal interactions. In this issue of The EMBO Journal, Sofueva et al (2013) use a combination of chromatin conformation capture methods, classical FISH imaging, and loss-of-function studies to elegantly demonstrate how cohesin controls the 3D architectural organization of the genome.

  7. Census of cytosolic aminopeptidase activity reveals two novel cytosolic aminopeptidases.

    PubMed

    Akkad, Nadja; Schatz, Mark; Dengjel, Jörn; Tenzer, Stefan; Schild, Hansjörg

    2012-11-01

    Activation of CD8(+) cytotoxic T cells is crucial for the adaptive immune response against viral infections and the control of malignant transformed cells. Together with activation of costimulatory molecules like CD3 and CD28, CD8(+) T cells need activation of their unique T cell receptor via recognition of foreign peptide epitopes in combination with major histocompatibility complexes class I on the cell surface of professional antigen-presenting cells. Presentation of pathogen-associated proteins is the result of a complex proteolytic process. It starts with the breakdown of proteins by a cytosolic endopeptidase, the proteasome, and is continued by subsequent N-terminal trimming events in the cytosol and/or the endoplasmic reticulum. Analysis of the proteolytic aminopeptidase activity in the former cellular compartment showed that the cytosol harbors a multitude of aminopeptidases that have singular specificities, but on the other hand also show redundancy in the trimming of N-terminal residues. The observed pattern of the overall trimming in the cytosol is reflected by the activity of the four identified aminopeptidases, and the administration of protease inhibitors made it possible to assign specificity of cleaving of proteinogenic amino acids to one or more identified aminopeptidase. The only exception was the cleavage of aspartic acid, which is performed by one yet unidentified enzyme.

  8. Sleeping Beauty screen reveals Pparg activation in metastatic prostate cancer.

    PubMed

    Ahmad, Imran; Mui, Ernest; Galbraith, Laura; Patel, Rachana; Tan, Ee Hong; Salji, Mark; Rust, Alistair G; Repiscak, Peter; Hedley, Ann; Markert, Elke; Loveridge, Carolyn; van der Weyden, Louise; Edwards, Joanne; Sansom, Owen J; Adams, David J; Leung, Hing Y

    2016-07-19

    Prostate cancer (CaP) is the most common adult male cancer in the developed world. The paucity of biomarkers to predict prostate tumor biology makes it important to identify key pathways that confer poor prognosis and guide potential targeted therapy. Using a murine forward mutagenesis screen in a Pten-null background, we identified peroxisome proliferator-activated receptor gamma (Pparg), encoding a ligand-activated transcription factor, as a promoter of metastatic CaP through activation of lipid signaling pathways, including up-regulation of lipid synthesis enzymes [fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACLY)]. Importantly, inhibition of PPARG suppressed tumor growth in vivo, with down-regulation of the lipid synthesis program. We show that elevated levels of PPARG strongly correlate with elevation of FASN in human CaP and that high levels of PPARG/FASN and PI3K/pAKT pathway activation confer a poor prognosis. These data suggest that CaP patients could be stratified in terms of PPARG/FASN and PTEN levels to identify patients with aggressive CaP who may respond favorably to PPARG/FASN inhibition. PMID:27357679

  9. Sleeping Beauty screen reveals Pparg activation in metastatic prostate cancer

    PubMed Central

    Ahmad, Imran; Mui, Ernest; Galbraith, Laura; Patel, Rachana; Tan, Ee Hong; Salji, Mark; Rust, Alistair G.; Repiscak, Peter; Hedley, Ann; Markert, Elke; Loveridge, Carolyn; van der Weyden, Louise; Edwards, Joanne; Sansom, Owen J.; Adams, David J.; Leung, Hing Y.

    2016-01-01

    Prostate cancer (CaP) is the most common adult male cancer in the developed world. The paucity of biomarkers to predict prostate tumor biology makes it important to identify key pathways that confer poor prognosis and guide potential targeted therapy. Using a murine forward mutagenesis screen in a Pten-null background, we identified peroxisome proliferator-activated receptor gamma (Pparg), encoding a ligand-activated transcription factor, as a promoter of metastatic CaP through activation of lipid signaling pathways, including up-regulation of lipid synthesis enzymes [fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACLY)]. Importantly, inhibition of PPARG suppressed tumor growth in vivo, with down-regulation of the lipid synthesis program. We show that elevated levels of PPARG strongly correlate with elevation of FASN in human CaP and that high levels of PPARG/FASN and PI3K/pAKT pathway activation confer a poor prognosis. These data suggest that CaP patients could be stratified in terms of PPARG/FASN and PTEN levels to identify patients with aggressive CaP who may respond favorably to PPARG/FASN inhibition. PMID:27357679

  10. Sleeping Beauty screen reveals Pparg activation in metastatic prostate cancer.

    PubMed

    Ahmad, Imran; Mui, Ernest; Galbraith, Laura; Patel, Rachana; Tan, Ee Hong; Salji, Mark; Rust, Alistair G; Repiscak, Peter; Hedley, Ann; Markert, Elke; Loveridge, Carolyn; van der Weyden, Louise; Edwards, Joanne; Sansom, Owen J; Adams, David J; Leung, Hing Y

    2016-07-19

    Prostate cancer (CaP) is the most common adult male cancer in the developed world. The paucity of biomarkers to predict prostate tumor biology makes it important to identify key pathways that confer poor prognosis and guide potential targeted therapy. Using a murine forward mutagenesis screen in a Pten-null background, we identified peroxisome proliferator-activated receptor gamma (Pparg), encoding a ligand-activated transcription factor, as a promoter of metastatic CaP through activation of lipid signaling pathways, including up-regulation of lipid synthesis enzymes [fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACLY)]. Importantly, inhibition of PPARG suppressed tumor growth in vivo, with down-regulation of the lipid synthesis program. We show that elevated levels of PPARG strongly correlate with elevation of FASN in human CaP and that high levels of PPARG/FASN and PI3K/pAKT pathway activation confer a poor prognosis. These data suggest that CaP patients could be stratified in terms of PPARG/FASN and PTEN levels to identify patients with aggressive CaP who may respond favorably to PPARG/FASN inhibition.

  11. Revealing Student Blogging Activities Using RSS Feeds and LMS Logs

    ERIC Educational Resources Information Center

    Derntl, Michael

    2010-01-01

    Blogs are an easy-to-use, free alternative to classic means of computer-mediated communication. Moreover, they are authentically aligned with web activity patterns of today's students. The body of studies on integrating and implementing blogs in various educational settings has grown rapidly recently; however, it is often difficult to distill…

  12. Latent luciferase activity in the fruit fly revealed by a synthetic luciferin

    PubMed Central

    Mofford, David M.; Reddy, Gadarla Randheer; Miller, Stephen C.

    2014-01-01

    Beetle luciferases are thought to have evolved from fatty acyl-CoA synthetases present in all insects. Both classes of enzymes activate fatty acids with ATP to form acyl-adenylate intermediates, but only luciferases can activate and oxidize d-luciferin to emit light. Here we show that the Drosophila fatty acyl-CoA synthetase CG6178, which cannot use d-luciferin as a substrate, is able to catalyze light emission from the synthetic luciferin analog CycLuc2. Bioluminescence can be detected from the purified protein, live Drosophila Schneider 2 cells, and from mammalian cells transfected with CG6178. Thus, the nonluminescent fruit fly possesses an inherent capacity for bioluminescence that is only revealed upon treatment with a xenobiotic molecule. This result expands the scope of bioluminescence and demonstrates that the introduction of a new substrate can unmask latent enzymatic activity that differs significantly from an enzyme’s normal function without requiring mutation. PMID:24616520

  13. Metaproteomic analysis reveals microbial metabolic activities in the deep ocean

    NASA Astrophysics Data System (ADS)

    Wang, Da-Zhi; Xie, Zhang-Xian; Zhang, Shu-Feng; Wang, Ming-Hua; Zhang, Hao; Kong, Ling-Fen; Lin, Lin

    2016-04-01

    The deep sea is the largest habitat on earth and holds many and varied microbial life forms. However, little is known about their metabolic activities in the deep ocean. Here, we characterized protein profiles of particulate (>0.22 μm) and dissolved (between 10 kDa and 0.22 μm) fractions collected from the deep South China Sea using a shotgun proteomic approach. SAR324, Alteromonadales and SAR11 were the most abundant groups, while Prasinophyte contributed most to eukaryotes and cyanophage to viruses. The dominant heterotrophic activity was evidenced by the abundant transporters (33%). Proteins participating in nitrification, methanogenesis, methyltrophy and CO2 fixation were detected. Notably, the predominance of unique cellular proteins in dissolved fraction suggested the presence of membrane structures. Moreover, the detection of translation proteins related to phytoplankton indicated that other process rather than sinking particles might be the downward export of living cells. Our study implied that novel extracellular activities and the interaction of deep water with its overlying water could be crucial to the microbial world of deep sea.

  14. Oscillatory Brain Activity Reveals Linguistic Prints in the Quantity Code

    PubMed Central

    Salillas, Elena; Barraza, Paulo; Carreiras, Manuel

    2015-01-01

    Number representations change through education, although it is currently unclear whether and how language could impact the magnitude representation that we share with other species. The most prominent view is that language does not play any role in modulating the core numeric representation involved in the contrast of quantities. Nevertheless, possible cultural hints on the numerical magnitude representation are currently on discussion focus. In fact, the acquisition of number words provides linguistic input that the quantity system may not ignore. Bilingualism offers a window to the study of this question, especially in bilinguals where the two number wording systems imply also two different numerical systems, such as in Basque-Spanish bilinguals. The present study evidences linguistic prints in the core number representational system through the analysis of EEG oscillatory activity during a simple number comparison task. Gamma band synchronization appears when Basque-Spanish bilinguals compare pairs of Arabic numbers linked through the Basque base-20 wording system, but it does not if the pairs are related through the base-10 system. Crucially, this gamma activity, originated in a left fronto-parietal network, only appears in bilinguals who learned math in Basque and not in equivalent proficiency bilinguals who learned math in Spanish. Thus, this neural index reflected in gamma band synchrony appears to be triggered by early learning experience with the base-20 numerical associations in Basque number words. PMID:25875210

  15. Oscillatory brain activity reveals linguistic prints in the quantity code.

    PubMed

    Salillas, Elena; Barraza, Paulo; Carreiras, Manuel

    2015-01-01

    Number representations change through education, although it is currently unclear whether and how language could impact the magnitude representation that we share with other species. The most prominent view is that language does not play any role in modulating the core numeric representation involved in the contrast of quantities. Nevertheless, possible cultural hints on the numerical magnitude representation are currently on discussion focus. In fact, the acquisition of number words provides linguistic input that the quantity system may not ignore. Bilingualism offers a window to the study of this question, especially in bilinguals where the two number wording systems imply also two different numerical systems, such as in Basque-Spanish bilinguals. The present study evidences linguistic prints in the core number representational system through the analysis of EEG oscillatory activity during a simple number comparison task. Gamma band synchronization appears when Basque-Spanish bilinguals compare pairs of Arabic numbers linked through the Basque base-20 wording system, but it does not if the pairs are related through the base-10 system. Crucially, this gamma activity, originated in a left fronto-parietal network, only appears in bilinguals who learned math in Basque and not in equivalent proficiency bilinguals who learned math in Spanish. Thus, this neural index reflected in gamma band synchrony appears to be triggered by early learning experience with the base-20 numerical associations in Basque number words.

  16. Multilocus phylogenetic analyses reveal unexpected abundant diversity and significant disjunct distribution pattern of the Hedgehog Mushrooms (Hydnum L.).

    PubMed

    Feng, Bang; Wang, Xiang-Hua; Ratkowsky, David; Gates, Genevieve; Lee, Su See; Grebenc, Tine; Yang, Zhu L

    2016-01-01

    Hydnum is a fungal genus proposed by Linnaeus in the early time of modern taxonomy. It contains several ectomycorrhizal species which are commonly consumed worldwide. However, Hydnum is one of the most understudied fungal genera, especially from a molecular phylogenetic view. In this study, we extensively gathered specimens of Hydnum from Asia, Europe, America and Australasia, and analyzed them by using sequences of four gene fragments (ITS, nrLSU, tef1α and rpb1). Our phylogenetic analyses recognized at least 31 phylogenetic species within Hydnum, 15 of which were reported for the first time. Most Australasian species were recognized as strongly divergent old relics, but recent migration between Australasia and the Northern Hemisphere was also detected. Within the Northern Hemisphere, frequent historical biota exchanges between the Old World and the New World via both the North Atlantic Land Bridge and the Bering Land Bridge could be elucidated. Our study also revealed that most Hydnum species found in subalpine areas of the Hengduan Mountains in southwestern China occur in northeastern/northern China and Europe, indicating that the composition of the mycobiota in the Hengduan Mountains reigion is more complicated than what we have known before. PMID:27151256

  17. Multilocus phylogenetic analyses reveal unexpected abundant diversity and significant disjunct distribution pattern of the Hedgehog Mushrooms (Hydnum L.)

    PubMed Central

    Feng, Bang; Wang, Xiang-Hua; Ratkowsky, David; Gates, Genevieve; Lee, Su See; Grebenc, Tine; Yang, Zhu L.

    2016-01-01

    Hydnum is a fungal genus proposed by Linnaeus in the early time of modern taxonomy. It contains several ectomycorrhizal species which are commonly consumed worldwide. However, Hydnum is one of the most understudied fungal genera, especially from a molecular phylogenetic view. In this study, we extensively gathered specimens of Hydnum from Asia, Europe, America and Australasia, and analyzed them by using sequences of four gene fragments (ITS, nrLSU, tef1α and rpb1). Our phylogenetic analyses recognized at least 31 phylogenetic species within Hydnum, 15 of which were reported for the first time. Most Australasian species were recognized as strongly divergent old relics, but recent migration between Australasia and the Northern Hemisphere was also detected. Within the Northern Hemisphere, frequent historical biota exchanges between the Old World and the New World via both the North Atlantic Land Bridge and the Bering Land Bridge could be elucidated. Our study also revealed that most Hydnum species found in subalpine areas of the Hengduan Mountains in southwestern China occur in northeastern/northern China and Europe, indicating that the composition of the mycobiota in the Hengduan Mountains reigion is more complicated than what we have known before. PMID:27151256

  18. Light and Electron Microscopy of the European Beaver (Castor fiber) Stomach Reveal Unique Morphological Features with Possible General Biological Significance

    PubMed Central

    Petryński, Wojciech; Palkowska, Katarzyna; Prusik, Magdalena; Targońska, Krystyna; Giżejewski, Zygmunt; Przybylska-Gornowicz, Barbara

    2014-01-01

    Anatomical, histological, and ultrastructural studies of the European beaver stomach revealed several unique morphological features. The prominent attribute of its gross morphology was the cardiogastric gland (CGG), located near the oesophageal entrance. Light microscopy showed that the CGG was formed by invaginations of the mucosa into the submucosa, which contained densely packed proper gastric glands comprised primarily of parietal and chief cells. Mucous neck cells represented <0.1% of cells in the CGG gastric glands and 22–32% of cells in the proper gastric glands of the mucosa lining the stomach lumen. These data suggest that chief cells in the CGG develop from undifferentiated cells that migrate through the gastric gland neck rather than from mucous neck cells. Classical chief cell formation (i.e., arising from mucous neck cells) occurred in the mucosa lining the stomach lumen, however. The muscularis around the CGG consisted primarily of skeletal muscle tissue. The cardiac region was rudimentary while the fundus/corpus and pyloric regions were equally developed. Another unusual feature of the beaver stomach was the presence of specific mucus with a thickness up to 950 µm (in frozen, unfixed sections) that coated the mucosa. Our observations suggest that the formation of this mucus is complex and includes the secretory granule accumulation in the cytoplasm of pit cells, the granule aggregation inside cells, and the incorporation of degenerating cells into the mucus. PMID:24727802

  19. Characterization and phylogenetic analysis of α-gliadin gene sequences reveals significant genomic divergence in Triticeae species.

    PubMed

    Li, Guang-Rong; Lang, Tao; Yang, En-Nian; Liu, Cheng; Yang, Zu-Jun

    2014-12-01

    Although the unique properties of wheat α-gliadin gene family are well characterized, little is known about the evolution and genomic divergence of α-gliadin gene family within the Triticeae. We isolated a total of 203 α-gliadin gene sequences from 11 representative diploid and polyploid Triticeae species, and found 108 sequences putatively functional. Our results indicate that α-gliadin genes may have possibly originated from wild Secale species, where the sequences contain the shortest repetitive domains and display minimum variation. A miniature inverted-repeat transposable element insertion is reported for the first time in α-gliadin gene sequence of Thinopyrum intermedium in this study, indicating that the transposable element might have contributed to the diversification of α-gliadin genes family among Triticeae genomes. The phylogenetic analyses revealed that the α-gliadin gene sequences of Dasypyrum, Australopyrum, Lophopyrum, Eremopyrum and Pseudoroengeria species have amplified several times. A search for four typical toxic epitopes for celiac disease within the Triticeae α-gliadin gene sequences showed that the α-gliadins of wild Secale, Australopyrum and Agropyron genomes lack all four epitopes, while other Triticeae species have accumulated these epitopes, suggesting that the evolution of these toxic epitopes sequences occurred during the course of speciation, domestication or polyploidization of Triticeae. PMID:25572231

  20. Co-evolution of cancer microenvironment reveals distinctive patterns of gastric cancer invasion: laboratory evidence and clinical significance

    PubMed Central

    2010-01-01

    Background Cancer invasion results from constant interactions between cancer cells and their microenvironment. Major components of the cancer microenvironment are stromal cells, infiltrating inflammatory cells, collagens, matrix metalloproteinases (MMP) and newly formed blood vessels. This study was to determine the roles of MMP-9, MMP-2, type IV collagen, infiltrating macrophages and tumor microvessels in gastric cancer (GC) invasion and their clinico-pathological significance. Methods Paraffin-embedded tissue sections from 37 GC patients were studied by Streptavidin-Peroxidase (SP) immunohistochemical technique to determine the levels of MMP-2, MMP-9, type IV collagen, macrophages infiltration and microvessel density (MVD). Different invasion patterns were delineated and their correlation with major clinico-pathological information was explored. Results MMP2 expression was higher in malignant gland compared to normal gland, especially nearby the basement membrane (BM). High densities of macrophages at the interface of cancer nests and stroma were found where BM integrity was destroyed. MMP2 expression was significantly increased in cases with recurrence and distant metastasis (P = 0.047 and 0.048, respectively). Infiltrating macrophages were correlated with serosa invasion (P = 0.011) and TNM stage (P = 0.001). MVD was higher in type IV collagen negative group compared to type IV collagen positive group (P = 0.026). MVD was related to infiltrating macrophages density (P = 0.040). Patients with negative MMP9 expression had better overall survival (OS) compared to those with positive MMP9 expression (Median OS 44.0 vs 13.5 mo, P = 0.036). Median OS was significantly longer in type IV collagen positive group than negative group (Median OS 25.5 vs 10.0 mo, P = 0.044). The cumulative OS rate was higher in low macrophages density group than in high macrophages density group (median OS 40.5 vs 13.0 mo, P = 0.056). Median OS was significantly longer in low MVD group than

  1. Characterisation of Drosophila CMP-sialic acid synthetase activity reveals unusual enzymatic properties

    PubMed Central

    Mertsalov, Ilya B.; Novikov, Boris N.; Scott, Hilary; Dangott, Lawrence; Panin, Vladislav M.

    2016-01-01

    CMP-sialic acid synthetase (CSAS) is a key enzyme of the sialylation pathway. CSAS produces the activated sugar donor, CMP-sialic acid, which serves as a substrate for sialyltransferases to modify glycan termini with sialic acid. Unlike other animal CMP-Sia synthetases that normally localize in the nucleus, Drosophila melanogaster CSAS (DmCSAS) localizes in the cell secretory compartment, predominantly in the Golgi, which suggests that this enzyme has properties distinct from those of its vertebrate counterparts. To test this hypothesis, we purified recombinant DmCSAS and characterised its activity in vitro. Our experiments revealed several unique features of this enzyme. DmCSAS displays specificity for N-acetylneuraminic acid as a substrate, shows preference for lower pH and can function with a broad range of metal cofactors. When tested at a pH corresponding to the Golgi compartment, the enzyme showed significant activity with several metal cations, including Zn2+, Fe2+, Co2+ and Mn2+, while the activity with Mg2+ was found to be low. Protein sequence analysis and site-specific mutagenesis identified an aspartic acid residue that is necessary for enzymatic activity and predicted to be involved in coordinating a metal cofactor. DmCSAS enzymatic activity was found to be essential in vivo for rescuing the phenotype of DmCSAS mutants. Finally, our experiments revealed a steep dependence of the enzymatic activity on temperature. Taken together, our results indicate that DmCSAS underwent evolutionary adaptation to pH and ionic environment different from that of counterpart synthetases in vertebrates. Our data also suggest that environmental temperatures can regulate Drosophila sialylation, thus modulating neural transmission. PMID:27114558

  2. Networks of Food Sharing Reveal the Functional Significance of Multilevel Sociality in Two Hunter-Gatherer Groups.

    PubMed

    Dyble, Mark; Thompson, James; Smith, Daniel; Salali, Gul Deniz; Chaudhary, Nikhil; Page, Abigail E; Vinicuis, Lucio; Mace, Ruth; Migliano, Andrea Bamberg

    2016-08-01

    Like many other mammalian and primate societies [1-4], humans are said to live in multilevel social groups, with individuals situated in a series of hierarchically structured sub-groups [5, 6]. Although this multilevel social organization has been described among contemporary hunter-gatherers [5], questions remain as to the benefits that individuals derive from living in such groups. Here, we show that food sharing among two populations of contemporary hunter-gatherers-the Palanan Agta (Philippines) and Mbendjele BaYaka (Republic of Congo)-reveals similar multilevel social structures, with individuals situated in households, within sharing clusters of 3-4 households, within the wider residential camps, which vary in size. We suggest that these groupings serve to facilitate inter-sexual provisioning, kin provisioning, and risk reduction reciprocity, three levels of cooperation argued to be fundamental in human societies [7, 8]. Humans have a suite of derived life history characteristics including a long childhood and short inter-birth intervals that make offspring energetically demanding [9] and have moved to a dietary niche that often involves the exploitation of difficult to acquire foods with highly variable return rates [10-12]. This means that human foragers face both day-to-day and more long-term energetic deficits that conspire to make humans energetically interdependent. We suggest that a multilevel social organization allows individuals access to both the food sharing partners required to buffer themselves against energetic shortfalls and the cooperative partners required for skill-based tasks such as cooperative foraging.

  3. Networks of Food Sharing Reveal the Functional Significance of Multilevel Sociality in Two Hunter-Gatherer Groups.

    PubMed

    Dyble, Mark; Thompson, James; Smith, Daniel; Salali, Gul Deniz; Chaudhary, Nikhil; Page, Abigail E; Vinicuis, Lucio; Mace, Ruth; Migliano, Andrea Bamberg

    2016-08-01

    Like many other mammalian and primate societies [1-4], humans are said to live in multilevel social groups, with individuals situated in a series of hierarchically structured sub-groups [5, 6]. Although this multilevel social organization has been described among contemporary hunter-gatherers [5], questions remain as to the benefits that individuals derive from living in such groups. Here, we show that food sharing among two populations of contemporary hunter-gatherers-the Palanan Agta (Philippines) and Mbendjele BaYaka (Republic of Congo)-reveals similar multilevel social structures, with individuals situated in households, within sharing clusters of 3-4 households, within the wider residential camps, which vary in size. We suggest that these groupings serve to facilitate inter-sexual provisioning, kin provisioning, and risk reduction reciprocity, three levels of cooperation argued to be fundamental in human societies [7, 8]. Humans have a suite of derived life history characteristics including a long childhood and short inter-birth intervals that make offspring energetically demanding [9] and have moved to a dietary niche that often involves the exploitation of difficult to acquire foods with highly variable return rates [10-12]. This means that human foragers face both day-to-day and more long-term energetic deficits that conspire to make humans energetically interdependent. We suggest that a multilevel social organization allows individuals access to both the food sharing partners required to buffer themselves against energetic shortfalls and the cooperative partners required for skill-based tasks such as cooperative foraging. PMID:27451900

  4. Metabolomics reveals significant impairments in the immune system of the APP/PS1 transgenic mice of Alzheimer's disease.

    PubMed

    González-Domínguez, Raúl; García-Barrera, Tamara; Vitorica, Javier; Gómez-Ariza, José Luis

    2015-02-01

    Inflammatory processes and other failures related to the immune system are common features associated with Alzheimer's disease (AD), in both brain and the peripheral system. Thus, the study of the main organs of the immune system may have a great potential for the elucidation of pathological mechanisms underlying these abnormalities. This is the first metabolomic investigation performed in spleen and thymus from transgenic mice of AD. Tissues were fingerprinted using a metabolomic platform comprising GC-MS and ultra-HPLC-MS. Multivariate statistics demonstrated significant differences in numerous metabolites between the APP/PS1 mice and wild-type controls, and it was proven that multiple biochemical pathways are disturbed in these organs including abnormal metabolism of phospholipids, energy deficiencies, altered homeostasis of amino acids, oxidative stress, and others. Therefore, these findings highlight the importance of the proper metabolic functioning of peripheral immune system in the development of neurodegenerative disorders such as AD.

  5. Biochemical Characterization of AtRECQ3 Reveals Significant Differences Relative to Other RecQ Helicases1[W

    PubMed Central

    Kobbe, Daniela; Blanck, Sandra; Focke, Manfred; Puchta, Holger

    2009-01-01

    Members of the conserved RecQ helicase family are important for the preservation of genomic stability. Multiple RecQ homologs within one organism raise the question of functional specialization. Whereas five different homologs are present in humans, the model plant Arabidopsis (Arabidopsis thaliana) carries seven RecQ homologs in its genome. We performed biochemical analysis of AtRECQ3, expanded upon a previous analysis of AtRECQ2, and compared their properties. Both proteins differ in their domain composition. Our analysis demonstrates that they are 3′ to 5′ helicases with similar activities on partial duplex DNA. However, they promote different outcomes with synthetic DNA structures that mimic Holliday junctions or a replication fork. AtRECQ2 catalyzes Holliday junction branch migration and replication fork regression, while AtRECQ3 cannot act on intact Holliday junctions. The observed reaction of AtRECQ3 on the replication fork is in line with unwinding the lagging strand. On nicked Holliday junctions, which have not been intensively studied with RecQ helicases before, AtRECQ3, but not AtRECQ2, shows a clear preference for one unwinding mechanism. In addition, AtRECQ3 is much more efficient at catalyzing DNA strand annealing. Thus, AtRECQ2 and AtRECQ3 are likely to perform different tasks in the cell, and AtRECQ3 differs in its biochemical properties from all other eukaryotic RECQ helicases characterized so far. PMID:19755539

  6. Crystal structure analysis of the exocytosis-sensitive phosphoprotein, pp63/parafusin (phosphoglucomutase), from Paramecium reveals significant conformational variability.

    PubMed

    Müller, Simone; Diederichs, Kay; Breed, Jason; Kissmehl, Roland; Hauser, Karin; Plattner, Helmut; Welte, Wolfram

    2002-01-11

    During exocytosis of dense-core secretory vesicles (trichocysts) in Paramecium, the protein pp63/parafusin (pp63/pf) is transiently dephosphorylated. We report here the structures of two crystal forms of one isoform of this protein which has a high degree of homology with rabbit phosphoglucomutase, whose structure has been reported. As expected, both proteins possess highly similar structures, showing the same four domains forming two lobes with an active-site crevice in between. The two X-ray structures that we report here were determined after crystallization in the presence of sulfate and tartrate, and show the lobes arranged as a closed and an open conformation, respectively. While both conformations possess a bound divalent cation, only the closed (sulfate-bound) conformation shows bound sulfate ions in the "phosphate-transfer site" near the catalytic serine residue and in the "phosphate-binding site". Comparison with the open form shows that the latter dianion is placed in the centre of three arginine residues, one contributed by subunit II and two by subunit IV, suggesting that it causes a contraction of the arginine triangle, which establishes the observed conformational closure of the lobes. It is therefore likely that the closed conformation forms only when a phosphoryl group is bound to the phosphate-binding site. The previously published structure of rabbit phosphoglucomutase is intermediate between these two conformers. Several of the known reversible phosphorylation sites of pp63/pf-1 are at positions critical for transition between the conformations and for binding of the ligands and thus give hints as to possible roles of pp63/pf-1 in the course of exocytosis.

  7. The Longitudinal Transcriptomic Response of the Substantia Nigra to Intrastriatal 6-Hydroxydopamine Reveals Significant Upregulation of Regeneration-Associated Genes

    PubMed Central

    Cole-Strauss, Allyson; Grabinski, Tessa; Mattingly, Zachary R.; Winn, Mary E.; Steece-Collier, Kathy; Sortwell, Caryl E.; Manfredsson, Fredric P.; Lipton, Jack W.

    2015-01-01

    We hypothesized that the study of gene expression at 1, 2, 4, 6 and 16 weeks in the substantia nigra (SN) after intrastriatal 6-OHDA in the Sprague-Dawley rat (rattus norvegicus) would identify cellular responses during the degenerative process that could be axoprotective. Specifically, we hypothesized that genes expressed within the SN that followed a profile of being highly upregulated early after the lesion (during active axonal degeneration) and then progressively declined to baseline over 16 weeks as DA neurons died are indicative of potential protective responses to the striatal 6-OHDA insult. Utilizing a κ-means cluster analysis strategy, we demonstrated that one such cluster followed this hypothesized expression pattern over time, and that this cluster contained several interrelated transcripts that are classified as regeneration-associated genes (RAGs) including Atf3, Sprr1a, Ecel1, Gadd45a, Gpnmb, Sox11, Mmp19, Srgap1, Rab15,Lifr, Trib3, Tgfb1, and Sema3c. All exemplar transcripts tested from this cluster (Sprr1a, Ecel1, Gadd45a, Atf3 and Sox11) were validated by qPCR and a smaller subset (Sprr1a, Gadd45a and Sox11) were shown to be exclusively localized to SN DA neurons using a dual label approach with RNAScope in situ hybridization and immunohistochemistry. Upregulation of RAGs is typically associated with the response to axonal injury in the peripheral nerves and was not previously reported as part of the axodegenerative process for DA neurons of the SN. Interestingly, as part of this cluster, other transcripts were identified based on their expression pattern but without a RAG provenance in the literature. These "RAG-like" transcripts need further characterization to determine if they possess similar functions to or interact with known RAG transcripts. Ultimately, it is hoped that some of the newly identified axodegeneration-reactive transcripts could be exploited as axoprotective therapies in PD and other neurodegenerative diseases. PMID:25992874

  8. Altered niche of an ecologically significant urchin species, Centrostephanus rodgersii, in its extended range revealed using an Autonomous Underwater Vehicle

    NASA Astrophysics Data System (ADS)

    Perkins, Nicholas R.; Hill, Nicole A.; Foster, Scott D.; Barrett, Neville S.

    2015-03-01

    Poleward range shifts of species as a result of global climate change are being increasingly documented. As species extend into new ranges their ecological impacts and the niches that they occupy may be unpredictable. We use benthic imagery obtained from the broad-scale deployment of an Autonomous Underwater Vehicle (AUV) to quantify the depth distribution of barrens habitat formed by a recent range extension of the sea urchin species, Centrostephanus rodgersii, a known ecosystem engineer. AUV transects covering similar depths from both the historical range of New South Wales, Australia, and from the range extension area of the east coast of Tasmania were examined for the presence of barrens. We find that C. rodgersii occupies a different realised niche in its extended range, with barrens habitat occurring significantly deeper in Tasmanian waters (16-58 m) compared to NSW waters (7-27 m). The expansion of barrens habitat has devastating impacts on biodiversity, with flow-on effects to ecosystem services and local fisheries, and in Tasmania this threat extends to deeper, invertebrate-dominated habitats. This finding has important management implications, in particular the need to incorporate deeper reef systems into planning, with increased barrens expected under future climate change predictions. One conservation management approach is the use of no-take Marine Protected Areas (MPAs) to prevent barren establishment in representative habitats by rebuilding viable populations of urchin predators. We also examine the correlation between MPA status and the occurrence of barrens within a small, no-take Tasmanian reserve and adjacent control sites. We find that there is suggestive, but inconclusive, evidence for fewer barrens in the MPA (p = 0.07). Our study highlights the utility of a novel technology for conducting large-scale benthic surveys and monitoring the impacts of range extending species.

  9. Significance of a two-domain structure in subunits of phycobiliproteins revealed by the normal mode analysis.

    PubMed

    Kikuchi, H; Wako, H; Yura, K; Go, M; Mimuro, M

    2000-09-01

    Phycobiliproteins are basic building blocks of phycobilisomes, a supra-molecular assembly for the light-capturing function of photosynthesis in cyanobacteria and red algae. One functional form of phycobiliproteins is a trimeric form consisting of three identical units having C(3) symmetry, with each unit composed of two kinds of subunits, the alpha-subunit and beta-subunit. These subunits have similar chain folds and can be divided into either globin-like or X-Y helices domains. We studied the significance of this two-domain structure for their assembled structures and biological function (light-absorption) using a normal mode analysis to investigate dynamic aspects of their three-dimensional structures. We used C-phycocyanin (C-PC) as an example, and focused on the interactions between the two domains. The normal mode analysis was carried out for the following two cases: 1) the whole subunit, including the two domains; and 2) the globin-like domain alone. By comparing the dynamic properties, such as correlative movements between residues and the fluctuations of individual residues, we found that the X-Y helices domain plays an important role not only in the C(3) symmetry assemblies of the subunits in phycobiliproteins, but also in stabilizing the light absorption property by suppressing the fluctuation of the specific Asp residues near the chromophore. Interestingly, the conformation of the X-Y helices domain corresponds to that of a module in pyruvate phosphate dikinase (PPDK). The module in PPDK is involved in the interactions of two domains, just as the X-Y helices domain is involved in the interactions of two subunits. Finally, we discuss the mechanical construction of the C-PC subunits based on the normal mode analysis.

  10. Gamete production patterns, ploidy, and population genetics reveal evolutionary significant units in hybrid water frogs (Pelophylax esculentus).

    PubMed

    Pruvost, Nicolas B M; Hoffmann, Alexandra; Reyer, Heinz-Ulrich

    2013-09-01

    . These differences are strong evidence for a polyphyletic origin of triploids. Moreover, our findings shed light on the evolutionary potential inherent to the P. esculentus complex, where rare events due to untypical gametogenetic processes can lead to the raise, the perpetuation, and the dispersion of new evolutionary significant lineages which may also deserve special conservation measures.

  11. Synthesis of non-competitive inhibitors of sphingomyelinases with significant activity.

    PubMed

    Yokomatsu, Tsutomu; Murano, Tetsuo; Akiyama, Takeshi; Koizumi, Junichi; Shibuya, Shiroshi; Tsuji, Yoshiaki; Soeda, Shinji; Shimeno, Hiroshi

    2003-01-20

    A series of short-chain analogues of N-palmitoylsphingosine-1-phosphate, modified by replacement of the phosphate and the long alkenyl side chain with hydrolytically stable difluoromethylene phosphonate and phenyl, respectively, were prepared to study the structure-activity relationship for inhibition of sphingomyelinase. The study revealed that inhibition is highly dependent upon the stereochemistry of the asymmetric centers of the acylamino moiety, and resulted in identification of a non-competitive inhibitor with the same level of inhibitory activity of schyphostatin, the most potent of the few known small molecular inhibitors of sphingomyelinase.

  12. Analysis of Polymorphic Residues Reveals Distinct Enzymatic and Cytotoxic Activities of the Streptococcus pyogenes NAD+ Glycohydrolase*

    PubMed Central

    Chandrasekaran, Sukantha; Ghosh, Joydeep; Port, Gary C.; Koh, Eun-ik; Caparon, Michael G.

    2013-01-01

    The Streptococcus pyogenes NAD+ glycohydrolase (SPN) is secreted from the bacterial cell and translocated into the host cell cytosol where it contributes to cell death. Recent studies suggest that SPN is evolving and has diverged into NAD+ glycohydrolase-inactive variants that correlate with tissue tropism. However, the role of SPN in both cytotoxicity and niche selection are unknown. To gain insight into the forces driving the adaptation of SPN, a detailed comparison of representative glycohydrolase activity-proficient and -deficient variants was conducted. Of a total 454 amino acids, the activity-deficient variants differed at only nine highly conserved positions. Exchanging residues between variants revealed that no one single residue could account for the inability of the deficient variants to cleave the glycosidic bond of β-NAD+ into nicotinamide and ADP-ribose; rather, reciprocal changes at 3 specific residues were required to both abolish activity of the proficient version and restore full activity to the deficient variant. Changing any combination of 1 or 2 residues resulted in intermediate activity. However, a change to any 1 residue resulted in a significant decrease in enzyme efficiency. A similar pattern involving multiple residues was observed for comparison with a second highly conserved activity-deficient variant class. Remarkably, despite differences in glycohydrolase activity, all versions of SPN were equally cytotoxic to cultured epithelial cells. These data indicate that the glycohydrolase activity of SPN may not be the only contribution the toxin has to the pathogenesis of S. pyogenes and that both versions of SPN play an important role during infection. PMID:23689507

  13. Paraoxonase-1 activity determination via paraoxon substrate yields no significant difference in mild hyperhomocysteinemia.

    PubMed

    Türkeli, Hatice; Caycı, Tuncer; Akgül, Emin Özgür; Macit, Enis; Yaman, Halil; Aydın, Ibrahim; Demirin, Hilmi; Alacam, Hasan; Ozkan, Esin; Cakır, Erdinç; Deren, Ozgür; Erbil, Mehmet Kemal; Kunak, Z Ilker; Burat, Kutlay; Akman, Serif

    2010-11-01

    Elevated plasma homocystein (Hcy) level has been recognized as an important risk factor for a number of cardiovascular diseases, peripheral arterial occlusive disease and venous thrombosis. A part of Hcy in the organism is turned to homocysteine thiolactone (HcyT) via a ring closure reaction, which gains rate in hyperhomocysteinemia, and in turn undergoes a hydrolytic reaction back to Hcy by paraoxonase enzyme (PON). Since this is a protective reflex action enzyme against hyperhomocysteinemia, we investigated how a mild hyperhomocysteinemic nutritional habit affected serum PON activity in a population-based study. The difference detected via enzymatic activity using the paraoxon substrate was statistically non-significant (p=0.19), suggesting a defective performance to reflect the expected significance. Determination of serum PON activity via substrate paraoxon yielded no significant difference in an acute mild hyperhomocysteinemic diet model in humans. PMID:19419786

  14. An Acute Lateral Ankle Sprain Significantly Decreases Physical Activity across the Lifespan.

    PubMed

    Hubbard-Turner, Tricia; Wikstrom, Erik A; Guderian, Sophie; Turner, Michael J

    2015-09-01

    We do not know the impact an ankle sprain has on physical activity levels across the lifespan. With the negative consequences of physical inactivity well established, understanding the effect of an ankle sprain on this outcome is critical. The objective of this study was to measure physical activity across the lifespan after a single ankle sprain in an animal model. Thirty male mice (CBA/J) were randomly placed into one of three groups: the transected calcaneofibular ligament (CFL) group, the transected anterior talofibular ligament (ATFL)/CFL group, and a SHAM group. Three days after surgery, all of the mice were individually housed in a cage containing a solid surface running wheel. Physical activity levels were recorded and averaged every week across the mouse's lifespan. The SHAM mice ran significantly more distance each day compared to the remaining two running groups (post hoc p = 0.011). Daily duration was different between the three running groups (p = 0.048). The SHAM mice ran significantly more minutes each day compared to the remaining two running groups (post hoc p=0.046) while the ATFL/CFL mice ran significantly less minutes each day (post hoc p = 0.028) compared to both the SHAM and CFL only group. The SHAM mice ran at a faster daily speed versus the remaining two groups of mice (post hoc p = 0.019) and the ATFL/CFL mice ran significantly slower each day compared to the SHAM and CFL group (post hoc p = 0.005). The results of this study indicate that a single ankle sprain significantly decreases physical activity across the lifespan in mice. This decrease in physical activity can potentially lead to the development of numerous chronic diseases. An ankle sprain thus has the potential to lead to significant long term health risks if not treated appropriately. Key pointsA single ankle significantly decreased physical activity levels in mice across the lifespan.Decreased physical activity could significantly negatively impact overall health if not modified

  15. Preparation and characterization of quaternary ammonium chitosan hydrogel with significant antibacterial activity.

    PubMed

    Fan, Lihong; Yang, Jing; Wu, Huan; Hu, Zhihai; Yi, Jiayan; Tong, Jun; Zhu, Xiaoming

    2015-08-01

    Quaternary ammonium chitosan (HACC)/polyvinyl alcohol (PVA)/polyethylene oxide (PEO) hydrogels were prepared using gamma radiation. The chemical structure of the hydrogels was characterized using FT-IR. The results revealed that HACC, PVA and PEO were perfectly compatible and interacted via the hydrogen bonds. As revealed by SEM, scaffolds with a homogeneous interconnected pore structure were obtained after lyophilizing the hydrogels. The influence of different radiation doses and weight ratios on properties including gel content, swelling ability, water evaporation rate and mechanical properties were investigated. It indicated that the hydrogels had the good swelling ability, water evaporation rate and mechanical properties. In vitro antibacterial activity assessment, the hydrogels exhibited a pronounced inhibitory effect against two bacteria (Staphylococcus aureus and Escherichia coli). Therefore, the hydrogels showed a promising potential to be applied as wound dressing. PMID:25895959

  16. Apolipoprotein A-I in Labeo rohita: Cloning and functional characterisation reveal its broad spectrum antimicrobial property, and indicate significant role during ectoparasitic infection.

    PubMed

    Mohapatra, Amruta; Karan, Sweta; Kar, Banya; Garg, L C; Dixit, A; Sahoo, P K

    2016-08-01

    Apolipoprotein A-I (ApoA-I) is the most abundant and multifunctional high-density lipoprotein (HDL) having a major role in lipid transport and potent antimicrobial activity against a wide range of microbes. In this study, a complete CDS of 771 bp of Labeo rohita (rohu) ApoA-I (LrApoA-I) encoding a protein of 256 amino acids was amplified, cloned and sequenced. Tissue specific transcription analysis of LrApoA-I revealed its expression in a wide range of tissues, with a very high level of expression in liver and spleen. Ontogenic study of LrApoA-I expression showed presence of transcripts in milt and 3 h post-fertilization onwards in the larvae. The expression kinetics of LrApoA-I was studied upon infection with three different types of pathogens to elucidate its functional significance. Its expression was found to be up-regulated in the anterior kidney of L. rohita post-infection with Aeromonas hydrophila. Similarly following poly I:C (poly inosinic:cytidylic) stimulation, the transcript levels increased in both the anterior kidney and liver tissues. Significant up-regulation of LrApoA-I expression was observed in skin, mucous, liver and anterior kidney of the fish challenged with the ectoparasite Argulus siamensis. Immunomodulatory effect of recombinant LrApoA-I (rApoA-I) produced in Escherichia coli was demonstrated against A. hydrophila challenge in vivo. L. rohita administered with rApoA-I at a dose of 100 μg exhibited significantly higher protection (∼55%) upon challenge with A. hydrophila 12 h post-administration of the protein, in comparison to that observed in control group, along with higher level of expression of immune-related genes. The heightened expression of ApoA-I observed post-infection reflected its involvement in immune responses against a wide range of infections including bacterial, viral as well as parasitic pathogens. Our results also suggest the possibility of using rApoA-I as an immunostimulant, particularly rendering protection

  17. Risk Factors for Clinically Significant Intimate Partner Violence among Active-Duty Members

    ERIC Educational Resources Information Center

    Smith Slep, Amy M.; Foran, Heather M.; Heyman, Richard E.; Snarr, Jeffery D.

    2011-01-01

    Hypothesized risk factors for men's and women's clinically significant intimate partner violence (CS-IPV) from four ecological levels (i.e., individual, family, workplace, community) were tested in a representative sample of active-duty U.S. Air Force members (N = 42,744). When considered together, we expected only individual and family factors to…

  18. Subjective Significance Shapes Arousal Effects on Modified Stroop Task Performance: A Duality of Activation Mechanisms Account.

    PubMed

    Imbir, Kamil K

    2016-01-01

    Activation mechanisms such as arousal are known to be responsible for slowdown observed in the Emotional Stroop and modified Stroop tasks. Using the duality of mind perspective, we may conclude that both ways of processing information (automatic or controlled) should have their own mechanisms of activation, namely, arousal for an experiential mind, and subjective significance for a rational mind. To investigate the consequences of both, factorial manipulation was prepared. Other factors that influence Stroop task processing such as valence, concreteness, frequency, and word length were controlled. Subjective significance was expected to influence arousal effects. In the first study, the task was to name the color of font for activation charged words. In the second study, activation charged words were, at the same time, combined with an incongruent condition of the classical Stroop task around a fixation point. The task was to indicate the font color for color-meaning words. In both studies, subjective significance was found to shape the arousal impact on performance in terms of the slowdown reduction for words charged with subjective significance. PMID:26869974

  19. Event-related potentials reveal early activation of syntax information in Chinese verb processing.

    PubMed

    Deng, Yuan; Wu, Qiuyan; Wang, Jin; Feng, Liping; Xiao, Qing

    2016-09-19

    By taking advantage of the semantic-syntactic characteristics of Chinese verbs, the current study examined the brain activity of automatic activation of syntactic features at the single word level. Both syntactic (transitivity) and semantic (integrity) features of the verb were manipulated. Event-related potentials were measured while subjects performed lexical decision tasks on visually presented verbs at the single word level. The results showed that there was a significant transitivity effect in both lateral and midline areas for the 150-200ms time window (N200 effect), indicating the retrieval of the syntactic feature. There was also a significant syntactic-semantic interaction at the late stage of verb processing (N400 effect) in the midline central-parietal region, reflecting syntactic influences on semantic processing. These findings suggest that transitivity is an integral part of the mental representation of Chinese verbs and such information can be retrieved at the early stage of single verb processing and can influence subsequent semantic integration. These results also reveal the special features of Chinese language processing. PMID:27466021

  20. Event-related potentials reveal early activation of syntax information in Chinese verb processing.

    PubMed

    Deng, Yuan; Wu, Qiuyan; Wang, Jin; Feng, Liping; Xiao, Qing

    2016-09-19

    By taking advantage of the semantic-syntactic characteristics of Chinese verbs, the current study examined the brain activity of automatic activation of syntactic features at the single word level. Both syntactic (transitivity) and semantic (integrity) features of the verb were manipulated. Event-related potentials were measured while subjects performed lexical decision tasks on visually presented verbs at the single word level. The results showed that there was a significant transitivity effect in both lateral and midline areas for the 150-200ms time window (N200 effect), indicating the retrieval of the syntactic feature. There was also a significant syntactic-semantic interaction at the late stage of verb processing (N400 effect) in the midline central-parietal region, reflecting syntactic influences on semantic processing. These findings suggest that transitivity is an integral part of the mental representation of Chinese verbs and such information can be retrieved at the early stage of single verb processing and can influence subsequent semantic integration. These results also reveal the special features of Chinese language processing.

  1. Activating Mutations of the TRPML1 Channel Revealed by Proline-scanning Mutagenesis*

    PubMed Central

    Dong, Xian-ping; Wang, Xiang; Shen, Dongbiao; Chen, Su; Liu, Meiling; Wang, Yanbin; Mills, Eric; Cheng, Xiping; Delling, Markus; Xu, Haoxing

    2009-01-01

    The mucolipin TRP (TRPML) proteins are a family of endolysosomal cation channels with genetically established importance in humans and rodent. Mutations of human TRPML1 cause type IV mucolipidosis, a devastating pediatric neurodegenerative disease. Our recent electrophysiological studies revealed that, although a TRPML1-mediated current can only be recorded in late endosome and lysosome (LEL) using the lysosome patch clamp technique, a proline substitution in TRPML1 (TRPML1V432P) results in a large whole cell current. Thus, it remains unknown whether the large TRPML1V432P-mediated current results from an increased surface expression (trafficking), elevated channel activity (gating), or both. Here we performed systemic Pro substitutions in a region previously implicated in the gating of various 6 transmembrane cation channels. We found that several Pro substitutions displayed gain-of-function (GOF) constitutive activities at both the plasma membrane (PM) and endolysosomal membranes. Although wild-type TRPML1 and non-GOF Pro substitutions localized exclusively in LEL and were barely detectable in the PM, the GOF mutations with high constitutive activities were not restricted to LEL compartments, and most significantly, exhibited significant surface expression. Because lysosomal exocytosis is Ca2+-dependent, constitutive Ca2+ permeability due to Pro substitutions may have resulted in stimulus-independent intralysosomal Ca2+ release, hence the surface expression and whole cell current of TRPML1. Indeed, surface staining of lysosome-associated membrane protein-1 (Lamp-1) was dramatically increased in cells expressing GOF TRPML1 channels. We conclude that TRPML1 is an inwardly rectifying, proton-impermeable, Ca2+ and Fe2+/Mn2+ dually permeable cation channel that may be gated by unidentified cellular mechanisms through a conformational change in the cytoplasmic face of the transmembrane 5 (TM5). Furthermore, activation of TRPML1 in LEL may lead to the appearance of TRPML

  2. Nanoscale electrochemical patterning reveals the active sites for catechol oxidation at graphite surfaces.

    PubMed

    Patel, Anisha N; McKelvey, Kim; Unwin, Patrick R

    2012-12-19

    Graphite-based electrodes (graphite, graphene, and nanotubes) are used widely in electrochemistry, and there is a long-standing view that graphite step edges are needed to catalyze many reactions, with the basal surface considered to be inert. In the present work, this model was tested directly for the first time using scanning electrochemical cell microscopy reactive patterning and shown to be incorrect. For the electro-oxidation of dopamine as a model process, the reaction rate was measured at high spatial resolution across a surface of highly oriented pyrolytic graphite. Oxidation products left behind in a pattern defined by the scanned electrochemical cell served as surface-site markers, allowing the electrochemical activity to be correlated directly with the graphite structure on the nanoscale. This process produced tens of thousands of electrochemical measurements at different locations across the basal surface, unambiguously revealing it to be highly electrochemically active, with step edges providing no enhanced activity. This new model of graphite electrodes has significant implications for the design of carbon-based biosensors, and the results are additionally important for understanding electrochemical processes on related sp(2)-hybridized materials such as pristine graphene and nanotubes.

  3. Significance probability mapping: an aid in the topographic analysis of brain electrical activity.

    PubMed

    Duffy, F H; Bartels, P H; Burchfiel, J L

    1981-05-01

    We illustrate the application of significance probability mapping (SPM) to the analysis of topographic maps of spectral analyzed EEG and visual evoked potential (VEP) activity from patients with brain tumors, boys with dyslexia, and control subjects. When the VEP topographic plots of tumor patients were displayed as number of standard deviations from a reference mean, more subjects were correctly identified than by inspection of the underlying raw data. When topographic plots of EEG alpha activity obtained while listening to speech or music were compared by t statistic to plots of resting alpha activity, regions of cortex presumably activated by speech or music were delineated. DIfferent regions were defined in dyslexic boys and controls. We propose that SPM will prove valuable in the regional localization of normal and abnormal functions in other clinical situations. PMID:6165544

  4. Core microbial functional activities in ocean environments revealed by global metagenomic profiling analyses.

    PubMed

    Ferreira, Ari J S; Siam, Rania; Setubal, João C; Moustafa, Ahmed; Sayed, Ahmed; Chambergo, Felipe S; Dawe, Adam S; Ghazy, Mohamed A; Sharaf, Hazem; Ouf, Amged; Alam, Intikhab; Abdel-Haleem, Alyaa M; Lehvaslaiho, Heikki; Ramadan, Eman; Antunes, André; Stingl, Ulrich; Archer, John A C; Jankovic, Boris R; Sogin, Mitchell; Bajic, Vladimir B; El-Dorry, Hamza

    2014-01-01

    Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world's oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs) of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light.

  5. Are secular correlations between sunspots, geomagnetic activity, and global temperature significant?

    USGS Publications Warehouse

    Love, J.J.; Mursula, K.; Tsai, V.C.; Perkins, D.M.

    2011-01-01

    Recent studies have led to speculation that solar-terrestrial interaction, measured by sunspot number and geomagnetic activity, has played an important role in global temperature change over the past century or so. We treat this possibility as an hypothesis for testing. We examine the statistical significance of cross-correlations between sunspot number, geomagnetic activity, and global surface temperature for the years 1868-2008, solar cycles 11-23. The data contain substantial autocorrelation and nonstationarity, properties that are incompatible with standard measures of cross-correlational significance, but which can be largely removed by averaging over solar cycles and first-difference detrending. Treated data show an expected statistically- significant correlation between sunspot number and geomagnetic activity, Pearson p < 10-4, but correlations between global temperature and sunspot number (geomagnetic activity) are not significant, p = 0.9954, (p = 0.8171). In other words, straightforward analysis does not support widely-cited suggestions that these data record a prominent role for solar-terrestrial interaction in global climate change. With respect to the sunspot-number, geomagnetic-activity, and global-temperature data, three alternative hypotheses remain difficult to reject: (1) the role of solar-terrestrial interaction in recent climate change is contained wholly in long-term trends and not in any shorter-term secular variation, or, (2) an anthropogenic signal is hiding correlation between solar-terrestrial variables and global temperature, or, (3) the null hypothesis, recent climate change has not been influenced by solar-terrestrial interaction. ?? 2011 by the American Geophysical Union.

  6. Protopanaxadiol, an Active Ginseng Metabolite, Significantly Enhances the Effects of Fluorouracil on Colon Cancer

    PubMed Central

    Wang, Chong-Zhi; Zhang, Zhiyu; Wan, Jin-Yi; Zhang, Chun-Feng; Anderson, Samantha; He, Xin; Yu, Chunhao; He, Tong-Chuan; Qi, Lian-Wen; Yuan, Chun-Su

    2015-01-01

    In this study, we evaluated the effects of protopanaxadiol (PPD), a gut microbiome induced ginseng metabolite, in increasing the anticancer effects of a chemotherapeutic agent fluorouracil (5-FU) on colorectal cancer. An in vitro HCT-116 colorectal cancer cell proliferation test was conducted to observe the effects of PPD, 5-FU and their co-administration and the related mechanisms of action. Then, an in vivo xenografted athymic mouse model was used to confirm the in vitro data. Our results showed that the human gut microbiome converted ginsenoside compound K to PPD as a metabolite. PPD and 5-FU significantly inhibited HCT-116 cell proliferation in a concentration-dependent manner (both p < 0.01), and the effects of 5-FU were very significantly enhanced by combined treatment with PPD (p < 0.01). Cell cycle evaluation demonstrated that 5-FU markedly induced the cancer cell S phase arrest, while PPD increased arrest in G1 phase. Compared to the control, 5-FU and PPD increased apoptosis, and their co-administration significantly increased the number of apoptotic cells (p < 0.01). Using bioluminescence imaging, in vivo data revealed that 5-FU significantly reduced the tumor growth up to Day 20 (p < 0.05). PPD and 5-FU co-administration very significantly reduced the tumor size in a dose-related manner (p < 0.01 compared to the 5-FU alone). The quantification of the tumor size and weight changes for 43 days supported the in vivo imaging data. Our results demonstrated that the co-administration of PPD and 5-FU significantly inhibited the tumor growth, indicating that PPD significantly enhanced the anticancer action of 5-FU, a commonly used chemotherapeutic agent. PPD may have a clinical value in 5-FU’s cancer therapeutics. PMID:25625815

  7. Liquid chromatography-electrospray linear ion trap mass spectrometry analysis of targeted neuropeptides in Tac1(-/-) mouse spinal cords reveals significant lower concentration of opioid peptides.

    PubMed

    Saidi, Mouna; Beaudry, Francis

    2015-08-01

    Tachykinin and opioid peptides play a central role in pain transmission, modulation and inhibition. The treatment of pain is very important in medicine and many studies using NK1 receptor antagonists failed to show significant analgesic effects in humans. Recent investigations suggest that both pronociceptive tachykinins and the analgesic opioid systems are important for normal pain sensation. The analysis of opioid peptides in Tac1(-/-) spinal cord tissues offers a great opportunity to verify the influence of the tachykinin system on specific opioid peptides. The objectives of this study were to develop an HPLC-MS/MRM assay to quantify targeted peptides in spinal cord tissues. Secondly, we wanted to verify if the Tac1(-/-) mouse endogenous opioid system is hampered and therefore affects significantly the pain modulatory pathways. Targeted neuropeptides were analyzed by high performance liquid chromatography linear ion trap mass spectrometry. Our results reveal that EM-2, Leu-Enk and Dyn A were down-regulated in Tac1(-/-) spinal cord tissues. Interestingly, Dyn A was almost 3 fold down-regulated (p<0.0001). No significant concentration differences were observed in mouse Tac1(-/-) spinal cords for Met-Enk and CGRP. The analysis of Tac1(-/-) mouse spinal cords revealed noteworthy decreases of EM-2, Leu-Enk and Dyn A concentrations which strongly suggest a significant impact on the endogenous pain-relieving mechanisms. These observations may have insightful impact on future analgesic drug developments and therapeutic strategies.

  8. Activity in ventromedial prefrontal cortex during self-related processing: positive subjective value or personal significance?

    PubMed Central

    Johnson, Marcia K.

    2015-01-01

    Well-being and subjective experience of a coherent world depend on our sense of ‘self’ and relations between the self and the environment (e.g. people, objects and ideas). The ventromedial prefrontal cortex (vMPFC) is involved in self-related processing, and disrupted vMPFC activity is associated with disruptions of emotional/social functioning (e.g. depression and autism). Clarifying precise function(s) of vMPFC in self-related processing is an area of active investigation. In this study, we sought to more specifically characterize the function of vMPFC in self-related processing, focusing on two alternative accounts: (i) assignment of positive subjective value to self-related information and (ii) assignment of personal significance to self-related information. During functional magnetic resonance imaging (fMRI), participants imagined owning objects associated with either their perceived ingroup or outgroup. We found that for ingroup-associated objects, vMPFC showed greater activity for objects with increased than decreased post-ownership preference. In contrast, for outgroup-associated objects, vMPFC showed greater activity for objects with decreased than increased post-ownership preference. Our findings support the idea that the function of vMPFC in self-related processing may not be to represent/evaluate the ‘positivity’ or absolute preference of self-related information but to assign personal significance to it based on its meaning/function for the self. PMID:24837477

  9. Recent tectonic activity on Mercury revealed by small thrust fault scarps

    NASA Astrophysics Data System (ADS)

    Watters, Thomas R.; Daud, Katie; Banks, Maria E.; Selvans, Michelle M.; Chapman, Clark R.; Ernst, Carolyn M.

    2016-10-01

    Large tectonic landforms on the surface of Mercury, consistent with significant contraction of the planet, were revealed by the flybys of Mariner 10 in the mid-1970s. The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission confirmed that the planet's past 4 billion years of tectonic history have been dominated by contraction expressed by lobate fault scarps that are hundreds of kilometres long. Here we report the discovery of small thrust fault scarps in images from the low-altitude campaign at the end of the MESSENGER mission that are orders of magnitude smaller than the large-scale lobate scarps. These small scarps have tens of metres of relief, are only kilometres in length and are comparable in scale to small young scarps on the Moon. Their small-scale, pristine appearance, crosscutting of impact craters and association with small graben all indicate an age of less than 50 Myr. We propose that these scarps are the smallest members of a continuum in scale of thrust fault scarps on Mercury. The young age of the small scarps, along with evidence for recent activity on large-scale scarps, suggests that Mercury is tectonically active today and implies a prolonged slow cooling of the planet's interior.

  10. The anti-obesity drug orlistat reveals anti-viral activity.

    PubMed

    Ammer, Elisabeth; Nietzsche, Sandor; Rien, Christian; Kühnl, Alexander; Mader, Theresa; Heller, Regine; Sauerbrei, Andreas; Henke, Andreas

    2015-12-01

    The administration of drugs to inhibit metabolic pathways not only reduces the risk of obesity-induced diseases in humans but may also hamper the replication of different viral pathogens. In order to investigate the value of the US Food and Drug Administration-approved anti-obesity drug orlistat in view of its anti-viral activity against different human-pathogenic viruses, several anti-viral studies, electron microscopy analyses as well as fatty acid uptake experiments were performed. The results indicate that administrations of non-cytotoxic concentrations of orlistat reduced the replication of coxsackievirus B3 (CVB3) in different cell types significantly. Moreover, orlistat revealed cell protective effects and modified the formation of multi-layered structures in CVB3-infected cells, which are necessary for viral replication. Lowering fatty acid uptake from the extracellular environment by phloretin administrations had only marginal impact on CVB3 replication. Finally, orlistat reduced also the replication of varicella-zoster virus moderately but had no significant influence on the replication of influenza A viruses. The data support further experiments into the value of orlistat as an inhibitor of the fatty acid synthase to develop new anti-viral compounds, which are based on the modulation of cellular metabolic pathways.

  11. Metabolomics Reveals that Aryl Hydrocarbon Receptor Activation by Environmental Chemicals Induces Systemic Metabolic Dysfunction in Mice

    PubMed Central

    Zhang, Limin; Hatzakis, Emmanuel; Nichols, Robert G.; Hao, Ruixin; Correll, Jared; Smith, Philip B.; Chiaro, Christopher R.; Perdew, Gary H.; Patterson, Andrew D.

    2016-01-01

    Environmental exposure to dioxins and dioxin-like compounds poses a significant health risk for human health. Developing a better understanding of the mechanisms of toxicity through activation of the aryl hydrocarbon receptor (AHR) is likely to improve the reliability of risk assessment. In this study, the AHR-dependent metabolic response of mice exposed to 2,3,7,8-tetrachlorodibenzofuran (TCDF) were assessed using global 1H nuclear magnetic resonance (NMR)-based metabolomics and targeted metabolic profiling of extracts obtained from serum and liver. 1H NMR analyses revealed that TCDF exposure suppressed gluconeogenesis and glycogenolysis, stimulated lipogenesis, and triggered inflammatory gene expression in an Ahr-dependent manner. Targeted analyses using gas chromatography mass spectrometry showed TCDF treatment altered the ratio of unsaturated/saturated fatty acids. Consistent with this observation, an increase in hepatic expression of stearoyl coenzyme A desaturase 1 was also observed. In addition, TCDF exposure resulted in inhibition of de novo fatty acid biosynthesis manifested by down-regulation of acetyl-CoA, malonyl-CoA and palmitoyl-CoA metabolites and related mRNA levels. In contrast, no significant changes in the levels of glucose and lipid were observed in serum and liver obtained from Ahr-null mice following TCDF treatment, thus strongly supporting the important role of the AHR in mediating the metabolic effects seen following TCDF exposure. PMID:26023891

  12. Significant Enhancement of Water Splitting Activity of N-Carbon Electrocatalyst by Trace Level Co Doping.

    PubMed

    Bayatsarmadi, Bita; Zheng, Yao; Tang, Youhong; Jaroniec, Mietek; Qiao, Shi-Zhang

    2016-07-01

    Replacement of precious metal electrocatalysts with highly active and cost efficient alternatives for complete water splitting at low voltage has attracted a growing attention in recent years. Here, this study reports a carbon-based composite co-doped with nitrogen and trace amount of metallic cobalt (1 at%) as a bifunctional electrocatalyst for water splitting at low overpotential and high current density. An excellent electrochemical activity of the newly developed electrocatalyst originates from its graphitic nanostructure and highly active Co-Nx sites. In the case of carefully optimized sample of this electrocatalyst, 10 mA cm(-2) current density can be achieved for two half reactions in alkaline solutions-hydrogen evolution reaction and oxygen evolution reaction-at low overpotentials of 220 and 350 mV, respectively, which are smaller than those previously reported for nonprecious metal and metal-free counterparts. Based on the spectroscopic and electrochemical investigations, the newly identified Co-Nx sites in the carbon framework are responsible for high electrocatalytic activity of the Co,N-doped carbon. This study indicates that a trace level of the introduced Co into N-doped carbon can significantly enhance its electrocatalytic activity toward water splitting. PMID:27246288

  13. Biological significance of nuclear localization of mitogen-activated protein kinase Pmk1 in fission yeast.

    PubMed

    Sánchez-Mir, Laura; Franco, Alejandro; Madrid, Marisa; Vicente-Soler, Jero; Villar-Tajadura, M Antonia; Soto, Teresa; Pérez, Pilar; Gacto, Mariano; Cansado, José

    2012-07-27

    Mitogen-activated protein kinase (MAPK) signaling pathways play a fundamental role in the response of eukaryotic cells to environmental changes. Also, much evidence shows that the stimulus-dependent nuclear targeting of this class of regulatory kinases is crucial for adequate regulation of distinct cellular events. In the fission yeast Schizosaccharomyces pombe, the cell integrity MAPK pathway, whose central element is the MAPK Pmk1, regulates multiple processes such as cell wall integrity, vacuole fusion, cytokinesis, and ionic homeostasis. In non-stressed cells Pmk1 is constitutively localized in both cytoplasm and nucleus, and its localization pattern appears unaffected by its activation status or in response to stress, thus questioning the biological significance of the presence of this MAPK into the nucleus. We have addressed this issue by characterizing mutants expressing Pmk1 versions excluded from the cell nucleus and anchored to the plasma membrane in different genetic backgrounds. Although nuclear Pmk1 partially regulates cell wall integrity at a transcriptional level, membrane-tethered Pmk1 performs many of the biological functions assigned to wild type MAPK like regulation of chloride homeostasis, vacuole fusion, and cellular separation. However, we found that down-regulation of nuclear Pmk1 by MAPK phosphatases induced by the stress activated protein kinase pathway is important for the fine modulation of extranuclear Pmk1 activity. These results highlight the importance of the control of MAPK activity at subcellular level.

  14. Antibacterial activity of Sonoran propolis and some of its constituents against clinically significant Vibrio species.

    PubMed

    Navarro-Navarro, Moises; Ruiz-Bustos, Patricia; Valencia, Dora; Robles-Zepeda, Ramón; Ruiz-Bustos, Eduardo; Virués, Claudia; Hernandez, Javier; Domínguez, Zaira; Velazquez, Carlos

    2013-02-01

    The aim of the present study was to evaluate the anti-Vibrio activity of propolis collected from three different areas of the Sonoran Desert in northwestern, Mexico [Pueblo de Alamos (PAP), Ures (UP), and Caborca (CP)]. The anti-Vibrio spp. activity of Sonoran propolis was determined by the broth microdilution method. UP propolis showed the highest antibacterial activity [minimal inhibitory concentration (MIC(50))<50 μg mL(-1)] against Vibrio spp. (UP>CP>PAP). UP propolis significantly inhibited the growth of Vibrio cholerae O1 serotype Inaba (MIC(50)<50 μg mL(-1)), V. cholerae non-O1 (MIC(50)<50 μg mL(-1)), V. vulnificus (MIC(50)<50 μg mL(-1)), and V. cholerae O1 serotype Ogawa (MIC(50) 100 μg mL(-1)), in a concentration-dependent manner. The UP propolis constituents, galangin and caffeic acid phenethyl ester (CAPE), exhibited a potent growth inhibitory activity (MIC(50) 0.05-0.1 mmol l(-1)) against V. cholerae strains (non-O1 and serotype Ogawa). The strong anti-Vibrio activity of Sonoran propolis and some of its chemical constituents (galangin and CAPE) support further studies on the clinical applications of this natural bee product against different Vibrio spp., mainly V. cholerae.

  15. Significant Enhancement of Water Splitting Activity of N-Carbon Electrocatalyst by Trace Level Co Doping.

    PubMed

    Bayatsarmadi, Bita; Zheng, Yao; Tang, Youhong; Jaroniec, Mietek; Qiao, Shi-Zhang

    2016-07-01

    Replacement of precious metal electrocatalysts with highly active and cost efficient alternatives for complete water splitting at low voltage has attracted a growing attention in recent years. Here, this study reports a carbon-based composite co-doped with nitrogen and trace amount of metallic cobalt (1 at%) as a bifunctional electrocatalyst for water splitting at low overpotential and high current density. An excellent electrochemical activity of the newly developed electrocatalyst originates from its graphitic nanostructure and highly active Co-Nx sites. In the case of carefully optimized sample of this electrocatalyst, 10 mA cm(-2) current density can be achieved for two half reactions in alkaline solutions-hydrogen evolution reaction and oxygen evolution reaction-at low overpotentials of 220 and 350 mV, respectively, which are smaller than those previously reported for nonprecious metal and metal-free counterparts. Based on the spectroscopic and electrochemical investigations, the newly identified Co-Nx sites in the carbon framework are responsible for high electrocatalytic activity of the Co,N-doped carbon. This study indicates that a trace level of the introduced Co into N-doped carbon can significantly enhance its electrocatalytic activity toward water splitting.

  16. Antisecretory and antimotility activity of Aconitum heterophyllum and its significance in treatment of diarrhea

    PubMed Central

    Prasad, Satyendra K.; Jain, Divya; Patel, Dinesh K.; Sahu, Alakh N.; Hemalatha, Siva

    2014-01-01

    Aim: The roots of the plant Aconitum heterophyllum (EAH) are traditionally used for curing hysteria, throat infection, dyspepsia, abdominal pain, diabetes, and diarrhea. Therefore, the present study was undertaken to determine the mechanism involved in the anti-diarrheal activity of roots of A. heterophyllum. Materials and Methods: Ant-diarrheal activity of ethanol extract at 50, 100, and 200 mg/kg p.o. was evaluated using fecal excretion and castor oil-induced diarrhea models, while optimized dose, that is, 100 mg/kg p.o. was further subjected to small intestinal transit, intestinal fluids accumulation, PGE2-induced enteropooling and gastric emptying test. To elucidate the probable mechanism, various biochemical parameters and Na+, K+ concentration in intestinal fluids were also determined. Further, antibacterial activity of extract along with its standardization using aconitine as a marker with the help of HPLC was carried out. Results: The results depicted a significant (P < 0.05) reduction in normal fecal output at 100 and 200 mg/kg p.o. of extract after 5th and 7th h of treatment. Castor oil-induced diarrhea model demonstrated a ceiling effect at 100 mg/kg p.o. with a protection of 60.185% from diarrhea. EAH at 100 mg/kg p.o. also showed significant activity in small intestinal transit, fluid accumulation, and PGE2-induced enteropooling models, which also restored the altered biochemical parameters and prevented Na+ and K+ loss. The extract with 0.0833% w/w of aconitine depicted a potential antibacterial activity of extract against microbes implicated in diarrhea. Conclusion: The study concluded antisecretory and antimotility effect of A. heterophyllum, which mediates through nitric oxide path way. PMID:24550590

  17. Active Hemovigilance Significantly Improves Reporting of Acute Non-infectious Adverse Reactions to Blood Transfusion.

    PubMed

    Agnihotri, Naveen; Agnihotri, Ajju

    2016-09-01

    One of the key purposes of a hemovigilance program is to improve reporting of transfusion related adverse events and subsequent data-driven improvement in blood transfusion (BT) practices. We conducted a study over 3 years to assess the impact of healthcare worker training and an active feedback programme on reporting of adverse reactions to BTs. All hospitalized patients who required a BT were included in the study. Healthcare workers involved in BT to patients were sensitized and trained in adverse reaction reporting by conducting training sessions and meetings. All the transfused patients were 'actively' monitored for any acute adverse reaction by using a uniquely coded blood issue form. A total of 18,914 blood components transfused to 5785 different patients resulted in 61 adverse reaction episodes. This incidence of 0.32 % in our study was found to be significantly higher (p < 0.005) than that reported from the same region in the past. Red blood cell units were the most frequently transfused component and thus most commonly involved in an adverse reaction (42.6 %), however apheresis platelets had the highest chance of reaction per unit transfused (0.66 %). There was no mortality associated with the BT during the study period. An active surveillance program significantly improves reporting and management of adverse reactions to BTs. PMID:27429527

  18. The Crowded Sea: Incorporating Multiple Marine Activities in Conservation Plans Can Significantly Alter Spatial Priorities

    PubMed Central

    Mazor, Tessa; Possingham, Hugh P.; Edelist, Dori; Brokovich, Eran; Kark, Salit

    2014-01-01

    Successful implementation of marine conservation plans is largely inhibited by inadequate consideration of the broader social and economic context within which conservation operates. Marine waters and their biodiversity are shared by a host of stakeholders, such as commercial fishers, recreational users and offshore developers. Hence, to improve implementation success of conservation plans, we must incorporate other marine activities while explicitly examining trade-offs that may be required. In this study, we test how the inclusion of multiple marine activities can shape conservation plans. We used the entire Mediterranean territorial waters of Israel as a case study to compare four planning scenarios with increasing levels of complexity, where additional zones, threats and activities were added (e.g., commercial fisheries, hydrocarbon exploration interests, aquaculture, and shipping lanes). We applied the marine zoning decision support tool Marxan to each planning scenario and tested a) the ability of each scenario to reach biodiversity targets, b) the change in opportunity cost and c) the alteration of spatial conservation priorities. We found that by including increasing numbers of marine activities and zones in the planning process, greater compromises are required to reach conservation objectives. Complex plans with more activities incurred greater opportunity cost and did not reach biodiversity targets as easily as simplified plans with less marine activities. We discovered that including hydrocarbon data in the planning process significantly alters spatial priorities. For the territorial waters of Israel we found that in order to protect at least 10% of the range of 166 marine biodiversity features there would be a loss of ∼15% of annual commercial fishery revenue and ∼5% of prospective hydrocarbon revenue. This case study follows an illustrated framework for adopting a transparent systematic process to balance biodiversity goals and economic

  19. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization

    PubMed Central

    Zhang, Liman; Chen, Shuobing; Ruan, Jianbin; Wu, Jiayi; Tong, Alexander B.; Yin, Qian; Li, Yang; David, Liron; Lu, Alvin; Wang, Wei Li; Marks, Carolyn; Ouyang, Qi; Zhang, Xinzheng; Mao, Youdong; Wu, Hao

    2015-01-01

    The NLR family apoptosis inhibitory proteins (NAIPs) bind conserved bacterial ligands, such as the bacterial rod protein PrgJ, and recruit NLR family CARD-containing protein 4 (NLRC4) as the inflammasome adapter to activate innate immunity. We found that the PrgJ-NAIP2-NLRC4 inflammasome is assembled into multisubunit disk-like structures through a unidirectional adenosine triphosphatase polymerization, primed with a single PrgJ-activated NAIP2 per disk. Cryo–electron microscopy (cryo-EM) reconstruction at subnanometer resolution revealed a ~90° hinge rotation accompanying NLRC4 activation. Unlike in the related heptameric Apaf-1 apoptosome, in which each subunit needs to be conformationally activated by its ligand before assembly, a single PrgJ-activated NAIP2 initiates NLRC4 polymerization in a domino-like reaction to promote the disk assembly. These insights reveal the mechanism of signal amplification in NAIP-NLRC4 inflammasomes. PMID:26449474

  20. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization.

    PubMed

    Zhang, Liman; Chen, Shuobing; Ruan, Jianbin; Wu, Jiayi; Tong, Alexander B; Yin, Qian; Li, Yang; David, Liron; Lu, Alvin; Wang, Wei Li; Marks, Carolyn; Ouyang, Qi; Zhang, Xinzheng; Mao, Youdong; Wu, Hao

    2015-10-23

    The NLR family apoptosis inhibitory proteins (NAIPs) bind conserved bacterial ligands, such as the bacterial rod protein PrgJ, and recruit NLR family CARD-containing protein 4 (NLRC4) as the inflammasome adapter to activate innate immunity. We found that the PrgJ-NAIP2-NLRC4 inflammasome is assembled into multisubunit disk-like structures through a unidirectional adenosine triphosphatase polymerization, primed with a single PrgJ-activated NAIP2 per disk. Cryo-electron microscopy (cryo-EM) reconstruction at subnanometer resolution revealed a ~90° hinge rotation accompanying NLRC4 activation. Unlike in the related heptameric Apaf-1 apoptosome, in which each subunit needs to be conformationally activated by its ligand before assembly, a single PrgJ-activated NAIP2 initiates NLRC4 polymerization in a domino-like reaction to promote the disk assembly. These insights reveal the mechanism of signal amplification in NAIP-NLRC4 inflammasomes. PMID:26449474

  1. Pilot sequencing of onion genomic DNA reveals fragments of transposable elements, low gene densities, and significant gene enrichment after methyl filtration.

    PubMed

    Jakse, Jernej; Meyer, Jenelle D F; Suzuki, Go; McCallum, John; Cheung, Foo; Town, Christopher D; Havey, Michael J

    2008-10-01

    Sequencing of the onion (Allium cepa) genome is challenging because it has one of the largest nuclear genomes among cultivated plants. We undertook pilot sequencing of onion genomic DNA to estimate gene densities and investigate the nature and distribution of repetitive DNAs. Complete sequences from two onion BACs were AT rich (64.8%) and revealed long tracts of degenerated retroviral elements and transposons, similar to other larger plant genomes. Random BACs were end sequenced and only 3 of 460 ends showed significant (e < -25) non-organellar hits to the protein databases. The BAC-end sequences were AT rich (63.4%), similar to the completely sequenced BACs. A total of 499,997 bp of onion genomic DNA yielded an estimated mean density of one gene per 168 kb, among the lowest reported to date. Methyl filtration was highly effective relative to random shotgun reads in reducing frequencies of anonymous sequences from 82 to 55% and increasing non-organellar protein hits from 4 to 42%. Our results revealed no evidence for gene-dense regions and indicated that sequencing of methyl-filtered genomic fragments should be an efficient approach to reveal genic sequences in the onion genome.

  2. Interspecies insertion polymorphism analysis reveals recent activity of transposable elements in extant coelacanths.

    PubMed

    Naville, Magali; Chalopin, Domitille; Volff, Jean-Nicolas

    2014-01-01

    Coelacanths are lobe-finned fish represented by two extant species, Latimeria chalumnae in South Africa and Comoros and L. menadoensis in Indonesia. Due to their intermediate phylogenetic position between ray-finned fish and tetrapods in the vertebrate lineage, they are of great interest from an evolutionary point of view. In addition, extant specimens look similar to 300 million-year-old fossils; because of their apparent slowly evolving morphology, coelacanths have been often described as « living fossils ». As an underlying cause of such a morphological stasis, several authors have proposed a slow evolution of the coelacanth genome. Accordingly, sequencing of the L. chalumnae genome has revealed a globally low substitution rate for protein-coding regions compared to other vertebrates. However, genome and gene evolution can also be influenced by transposable elements, which form a major and dynamic part of vertebrate genomes through their ability to move, duplicate and recombine. In this work, we have searched for evidence of transposition activity in coelacanth genomes through the comparative analysis of orthologous genomic regions from both Latimeria species. Comparison of 5.7 Mb (0.2%) of the L. chalumnae genome with orthologous Bacterial Artificial Chromosome clones from L. menadoensis allowed the identification of 27 species-specific transposable element insertions, with a strong relative contribution of CR1 non-LTR retrotransposons. Species-specific homologous recombination between the long terminal repeats of a new coelacanth endogenous retrovirus was also detected. Our analysis suggests that transposon activity is responsible for at least 0.6% of genome divergence between both Latimeria species. Taken together, this study demonstrates that coelacanth genomes are not evolutionary inert: they contain recently active transposable elements, which have significantly contributed to post-speciation genome divergence in Latimeria.

  3. Marine organism sulfated polysaccharides exhibiting significant antimalarial activity and inhibition of red blood cell invasion by Plasmodium.

    PubMed

    Marques, Joana; Vilanova, Eduardo; Mourão, Paulo A S; Fernàndez-Busquets, Xavier

    2016-01-01

    The antimalarial activity of heparin, against which there are no resistances known, has not been therapeutically exploited due to its potent anticoagulating activity. Here, we have explored the antiplasmodial capacity of heparin-like sulfated polysaccharides from the sea cucumbers Ludwigothurea grisea and Isostichopus badionotus, from the red alga Botryocladia occidentalis, and from the marine sponge Desmapsamma anchorata. In vitro experiments demonstrated for most compounds significant inhibition of Plasmodium falciparum growth at low-anticoagulant concentrations. This activity was found to operate through inhibition of erythrocyte invasion by Plasmodium, likely mediated by a coating of the parasite similar to that observed for heparin. In vivo four-day suppressive tests showed that several of the sulfated polysaccharides improved the survival of Plasmodium yoelii-infected mice. In one animal treated with I. badionotus fucan parasitemia was reduced from 10.4% to undetectable levels, and Western blot analysis revealed the presence of antibodies against P. yoelii antigens in its plasma. The retarded invasion mediated by sulfated polysaccharides, and the ensuing prolonged exposure of Plasmodium to the immune system, can be explored for the design of new therapeutic approaches against malaria where heparin-related polysaccharides of low anticoagulating activity could play a dual role as drugs and as potentiators of immune responses. PMID:27071342

  4. Marine organism sulfated polysaccharides exhibiting significant antimalarial activity and inhibition of red blood cell invasion by Plasmodium

    PubMed Central

    Marques, Joana; Vilanova, Eduardo; Mourão, Paulo A. S.; Fernàndez-Busquets, Xavier

    2016-01-01

    The antimalarial activity of heparin, against which there are no resistances known, has not been therapeutically exploited due to its potent anticoagulating activity. Here, we have explored the antiplasmodial capacity of heparin-like sulfated polysaccharides from the sea cucumbers Ludwigothurea grisea and Isostichopus badionotus, from the red alga Botryocladia occidentalis, and from the marine sponge Desmapsamma anchorata. In vitro experiments demonstrated for most compounds significant inhibition of Plasmodium falciparum growth at low-anticoagulant concentrations. This activity was found to operate through inhibition of erythrocyte invasion by Plasmodium, likely mediated by a coating of the parasite similar to that observed for heparin. In vivo four-day suppressive tests showed that several of the sulfated polysaccharides improved the survival of Plasmodium yoelii-infected mice. In one animal treated with I. badionotus fucan parasitemia was reduced from 10.4% to undetectable levels, and Western blot analysis revealed the presence of antibodies against P. yoelii antigens in its plasma. The retarded invasion mediated by sulfated polysaccharides, and the ensuing prolonged exposure of Plasmodium to the immune system, can be explored for the design of new therapeutic approaches against malaria where heparin-related polysaccharides of low anticoagulating activity could play a dual role as drugs and as potentiators of immune responses. PMID:27071342

  5. Functional significance of Glu-77 and Tyr-137 within the active site of isoaspartyl dipeptidase.

    PubMed

    Martí-Arbona, Ricardo; Thoden, James B; Holden, Hazel M; Raushel, Frank M

    2005-12-01

    Isoaspartyl dipeptidase (IAD) is a binuclear metalloenzyme and a member of the amidohydrolase superfamily. This enzyme catalyzes the hydrolytic cleavage of beta-aspartyl dipeptides. The pH-rate profiles for the hydrolysis of beta-Asp-Leu indicates that catalysis is dependent on the ionization of two groups; one that ionizes at a pH approximately 6 and the other approximately 9. The group that must be ionized for catalysis is directly dependent on the identity of the metal ion bound to the active site. This result is consistent with the ionization of the hydroxide that bridges the two divalent cations. In addition to the residues that interact directly with the divalent cations there are two other residues that are highly conserved and found within the active site: Glu-77 and Tyr-137. Mutation of Tyr-137 to phenylalanine reduced the rate of catalysis by three orders of magnitude. The three dimensional X-ray structure of the Y137F mutant did not show any significant conformation changes relative to the three dimensional structure of the wild-type enzyme. The positioning of the side-chain phenolic group of Tyr-137 in the active site of IAD is consistent with the stabilization of the tetrahedral adduct concomitant with nucleophilic attack by the hydroxide that bridges the two divalent cations. Mutation of Glu-77 resulted in the reduction of catalytic activity by five orders of magnitude. The three dimensional structure of the E77Q mutant did not show any significant conformational changes in the mutant relative to the three dimensional structure of the wild-type enzyme. The positioning of the side-chain carboxylate of Glu-77 is consistent with the formation of an ion pair interaction with the free alpha-amino group of the substrate.

  6. Significant correlation between refractive index and activity of mitochondria: single mitochondrion study.

    PubMed

    Haseda, Keisuke; Kanematsu, Keita; Noguchi, Keiichi; Saito, Hiromu; Umeda, Norihiro; Ohta, Yoshihiro

    2015-03-01

    Measurements of refractive indices (RIs) of intracellular components can provide useful information on the structure and function of cells. The present study reports, for the first time, determination of the RI of an isolated mitochondrion in isotonic solution using retardation-modulated differential interference contrast microscopy. The value was 1.41 ± 0.01, indicating that mitochondria are densely packed with molecules having high RIs. Further, the RIs of each mitochondrion were significantly correlated with the mitochondrial membrane potential, an index of mitochondrial activity. These results will provide useful information on the structures and functions of cells based on the intracellular distribution of RIs.

  7. Significant correlation between refractive index and activity of mitochondria: single mitochondrion study

    PubMed Central

    Haseda, Keisuke; Kanematsu, Keita; Noguchi, Keiichi; Saito, Hiromu; Umeda, Norihiro; Ohta, Yoshihiro

    2015-01-01

    Measurements of refractive indices (RIs) of intracellular components can provide useful information on the structure and function of cells. The present study reports, for the first time, determination of the RI of an isolated mitochondrion in isotonic solution using retardation-modulated differential interference contrast microscopy. The value was 1.41 ± 0.01, indicating that mitochondria are densely packed with molecules having high RIs. Further, the RIs of each mitochondrion were significantly correlated with the mitochondrial membrane potential, an index of mitochondrial activity. These results will provide useful information on the structures and functions of cells based on the intracellular distribution of RIs. PMID:25798310

  8. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing.

    PubMed

    Xiong, Wu; Zhao, Qingyun; Zhao, Jun; Xun, Weibing; Li, Rong; Zhang, Ruifu; Wu, Huasong; Shen, Qirong

    2015-07-01

    In the present study, soil bacterial and fungal communities across vanilla continuous cropping time-series fields were assessed through deep pyrosequencing of 16S ribosomal RNA (rRNA) genes and internal transcribed spacer (ITS) regions. The results demonstrated that the long-term monoculture of vanilla significantly altered soil microbial communities. Soil fungal diversity index increased with consecutive cropping years, whereas soil bacterial diversity was relatively stable. Bray-Curtis dissimilarity cluster and UniFrac-weighted principal coordinate analysis (PCoA) revealed that monoculture time was the major determinant for fungal community structure, but not for bacterial community structure. The relative abundances (RAs) of the Firmicutes, Actinobacteria, Bacteroidetes, and Basidiomycota phyla were depleted along the years of vanilla monoculture. Pearson correlations at the phyla level demonstrated that Actinobacteria, Armatimonadetes, Bacteroidetes, Verrucomicrobia, and Firmicutes had significant negative correlations with vanilla disease index (DI), while no significant correlation for fungal phyla was observed. In addition, the amount of the pathogen Fusarium oxysporum accumulated with increasing years and was significantly positively correlated with vanilla DI. By contrast, the abundance of beneficial bacteria, including Bradyrhizobium and Bacillus, significantly decreased over time. In sum, soil weakness and vanilla stem wilt disease after long-term continuous cropping can be attributed to the alteration of the soil microbial community membership and structure, i.e., the reduction of the beneficial microbes and the accumulation of the fungal pathogen. PMID:25391237

  9. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing.

    PubMed

    Xiong, Wu; Zhao, Qingyun; Zhao, Jun; Xun, Weibing; Li, Rong; Zhang, Ruifu; Wu, Huasong; Shen, Qirong

    2015-07-01

    In the present study, soil bacterial and fungal communities across vanilla continuous cropping time-series fields were assessed through deep pyrosequencing of 16S ribosomal RNA (rRNA) genes and internal transcribed spacer (ITS) regions. The results demonstrated that the long-term monoculture of vanilla significantly altered soil microbial communities. Soil fungal diversity index increased with consecutive cropping years, whereas soil bacterial diversity was relatively stable. Bray-Curtis dissimilarity cluster and UniFrac-weighted principal coordinate analysis (PCoA) revealed that monoculture time was the major determinant for fungal community structure, but not for bacterial community structure. The relative abundances (RAs) of the Firmicutes, Actinobacteria, Bacteroidetes, and Basidiomycota phyla were depleted along the years of vanilla monoculture. Pearson correlations at the phyla level demonstrated that Actinobacteria, Armatimonadetes, Bacteroidetes, Verrucomicrobia, and Firmicutes had significant negative correlations with vanilla disease index (DI), while no significant correlation for fungal phyla was observed. In addition, the amount of the pathogen Fusarium oxysporum accumulated with increasing years and was significantly positively correlated with vanilla DI. By contrast, the abundance of beneficial bacteria, including Bradyrhizobium and Bacillus, significantly decreased over time. In sum, soil weakness and vanilla stem wilt disease after long-term continuous cropping can be attributed to the alteration of the soil microbial community membership and structure, i.e., the reduction of the beneficial microbes and the accumulation of the fungal pathogen.

  10. Patterns of Activity Revealed by a Time Lag Analysis of a Model Active Region

    NASA Astrophysics Data System (ADS)

    Bradshaw, Stephen; Viall, Nicholeen

    2016-05-01

    We investigate the global activity patterns predicted from a model active region heated by distributions of nanoflares that have a range of average frequencies. The activity patterns are manifested in time lag maps of narrow-band instrument channel pairs. We combine an extrapolated magnetic skeleton with hydrodynamic and forward modeling codes to create a model active region, and apply the time lag method to synthetic observations. Our aim is to recover some typical properties and patterns of activity observed in active regions. Our key findings are: 1. Cooling dominates the time lag signature and the time lags between the channel pairs are generally consistent with observed values. 2. Shorter coronal loops in the core cool more quickly than longer loops at the periphery. 3. All channel pairs show zero time lag when the line-of-sight passes through coronal loop foot-points. 4. There is strong evidence that plasma must be re-energized on a time scale comparable to the cooling timescale to reproduce the observed coronal activity, but it is likely that a relatively broad spectrum of heating frequencies operates across active regions. 5. Due to their highly dynamic nature, we find nanoflare trains produce zero time lags along entire flux tubes in our model active region that are seen between the same channel pairs in observed active regions.

  11. Multitaxon activity profiling reveals differential microbial response to reduced seawater pH and oil pollution.

    PubMed

    Coelho, Francisco J R C; Cleary, Daniel F R; Costa, Rodrigo; Ferreira, Marina; Polónia, Ana R M; Silva, Artur M S; Simões, Mário M Q; Oliveira, Vanessa; Gomes, Newton C M

    2016-09-01

    There is growing concern that predicted changes to global ocean chemistry will interact with anthropogenic pollution to significantly alter marine microbial composition and function. However, knowledge of the compounding effects of climate change stressors and anthropogenic pollution is limited. Here, we used 16S and 18S rRNA (cDNA)-based activity profiling to investigate the differential responses of selected microbial taxa to ocean acidification and oil hydrocarbon contamination under controlled laboratory conditions. Our results revealed that a lower relative abundance of sulphate-reducing bacteria (Desulfosarcina/Desulfococcus clade) due to an adverse effect of seawater acidification and oil hydrocarbon contamination (reduced pH-oil treatment) may be coupled to changes in sediment archaeal communities. In particular, we observed a pronounced compositional shift and marked reduction in the prevalence of otherwise abundant operational taxonomic units (OTUs) belonging to the archaeal Marine Benthic Group B and Marine Hydrothermal Vent Group (MHVG) in the reduced pH-oil treatment. Conversely, the abundance of several putative hydrocarbonoclastic fungal OTUs was higher in the reduced pH-oil treatment. Sediment hydrocarbon profiling, furthermore, revealed higher concentrations of several alkanes in the reduced pH-oil treatment, corroborating the functional implications of the structural changes to microbial community composition. Collectively, our results advance the understanding of the response of a complex microbial community to the interaction between reduced pH and anthropogenic pollution. In future acidified marine environments, oil hydrocarbon contamination may alter the typical mixotrophic and k-/r-strategist composition of surface sediment microbiomes towards a more heterotrophic state with lower doubling rates, thereby impairing the ability of the ecosystem to recover from acute oil contamination events.

  12. Multitaxon activity profiling reveals differential microbial response to reduced seawater pH and oil pollution.

    PubMed

    Coelho, Francisco J R C; Cleary, Daniel F R; Costa, Rodrigo; Ferreira, Marina; Polónia, Ana R M; Silva, Artur M S; Simões, Mário M Q; Oliveira, Vanessa; Gomes, Newton C M

    2016-09-01

    There is growing concern that predicted changes to global ocean chemistry will interact with anthropogenic pollution to significantly alter marine microbial composition and function. However, knowledge of the compounding effects of climate change stressors and anthropogenic pollution is limited. Here, we used 16S and 18S rRNA (cDNA)-based activity profiling to investigate the differential responses of selected microbial taxa to ocean acidification and oil hydrocarbon contamination under controlled laboratory conditions. Our results revealed that a lower relative abundance of sulphate-reducing bacteria (Desulfosarcina/Desulfococcus clade) due to an adverse effect of seawater acidification and oil hydrocarbon contamination (reduced pH-oil treatment) may be coupled to changes in sediment archaeal communities. In particular, we observed a pronounced compositional shift and marked reduction in the prevalence of otherwise abundant operational taxonomic units (OTUs) belonging to the archaeal Marine Benthic Group B and Marine Hydrothermal Vent Group (MHVG) in the reduced pH-oil treatment. Conversely, the abundance of several putative hydrocarbonoclastic fungal OTUs was higher in the reduced pH-oil treatment. Sediment hydrocarbon profiling, furthermore, revealed higher concentrations of several alkanes in the reduced pH-oil treatment, corroborating the functional implications of the structural changes to microbial community composition. Collectively, our results advance the understanding of the response of a complex microbial community to the interaction between reduced pH and anthropogenic pollution. In future acidified marine environments, oil hydrocarbon contamination may alter the typical mixotrophic and k-/r-strategist composition of surface sediment microbiomes towards a more heterotrophic state with lower doubling rates, thereby impairing the ability of the ecosystem to recover from acute oil contamination events. PMID:27480881

  13. Metagenomics, metatranscriptomics and single cell genomics reveal functional response of active Oceanospirillales to Gulf oil spill

    SciTech Connect

    Mason, Olivia U.; Hazen, Terry C.; Borglin, Sharon; Chain, Patrick S. G.; Dubinsky, Eric A.; Fortney, Julian L.; Han, James; Holman, Hoi-Ying N.; Hultman, Jenni; Lamendella, Regina; Mackelprang, Rachel; Malfatti, Stephanie; Tom, Lauren M.; Tringe, Susannah G.; Woyke, Tanja; Zhou, Jizhong; Rubin, Edward M.; Jansson, Janet K.

    2012-06-12

    The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.

  14. Targeted gene disruption of glycerol-3-phosphate dehydrogenase in Colletotrichum gloeosporioides reveals evidence that glycerol is a significant transferred nutrient from host plant to fungal pathogen.

    PubMed

    Wei, Yangdou; Shen, Wenyun; Dauk, Melanie; Wang, Feng; Selvaraj, Gopalan; Zou, Jitao

    2004-01-01

    Unidirectional transfer of nutrients from plant host to pathogen represents a most revealing aspect of the parasitic lifestyle of plant pathogens. Whereas much effort has been focused on sugars and amino acids, the identification of other significant metabolites is equally important for comprehensive characterization of metabolic interactions between plants and biotrophic fungal pathogens. Employing a strategy of targeted gene disruption, we generated a mutant strain (gpdhDelta) defective in glycerol-3-phosphate dehydrogenase in a hemibiotrophic plant pathogen, Colletotrichum gloeosporioides f.sp. malvae. The gpdhDelta strain had severe defects in carbon utilization as it could use neither glucose nor amino acids for sustained growth. Although the mutant mycelia were able to grow on potato dextrose agar medium, they displayed arrhythmicity in growth and failure to conidiate. The metabolic defect of gpdhDelta could be entirely ameliorated by glycerol in chemically defined minimal medium. Furthermore, glycerol was the one and only metabolite that could restore rhythmic growth and conidiation of gpdhDelta. Despite the profound defects in carbon source utilization, in planta the gpdhDelta strain exhibited normal pathogenicity, proceeded normally in its life cycle, and produced abundant conidia. Analysis of plant tissues at the peripheral zone of fungal infection sites revealed a time-dependent reduction in glycerol content. This study provides strong evidence for a role of glycerol as a significant transferred metabolite from plant to fungal pathogen.

  15. Aspects of igneous activity significant to a repository at Yucca Mountain, Nevada

    SciTech Connect

    Krier, D. J.; Perry, F. V.

    2004-01-01

    Location, timing, volume, and eruptive style of post-Miocene volcanoes have defined the volcanic hazard significant to a proposed high-level radioactive waste (HLW) and spent nuclear fuel (SNF) repository at Yucca Mountain, Nevada, as a low-probability, high-consequence event. Examination of eruptive centers in the region that may be analogueues to possible future volcanic activity at Yucca Mountain have aided in defining and evaluating the consequence scenarios for intrusion into and eruption above a repository. The probability of a future event intersecting a repository at Yucca Mountain has a mean value of 1.7 x 10{sup -8} per year. This probability comes from the Probabilistic Volcanic Hazard Assessment (PVHA) completed in 1996 and updated to reflect change in repository layout. Since that time, magnetic anomalies representing potential buried volcanic centers have been identified fiom magnetic surveys; however these potential buried centers only slightly increase the probability of an event intersecting the repository. The proposed repository will be located in its central portion of Yucca Mountain at approximately 300m depth. The process for assessing performance of a repository at Yucca Mountain has identified two scenarios for igneous activity that, although having a very low probability of occurrence, could have a significant consequence should an igneous event occur. Either a dike swarm intersecting repository drifts containing waste packages, or a volcanic eruption through the repository could result in release of radioactive material to the accessible environment. Ongoing investigations are assessing the mechanisms and significance of the consequence scenarios. Lathrop Wells Cone ({approx}80,000 yrs), a key analogue for estimating potential future volcanic activity, is the youngest surface expression of apparent waning basaltic volcanism in the region. Cone internal structure, lavas, and ash-fall tephra have been examined to estimate eruptive volume

  16. A Global Genomic Screening Strategy Reveals Diverse Activators of Constitutive Activated Receptor (CAR)

    EPA Science Inventory

    A comprehensive survey of conditions that activate CAR in the mouse liver has not been carried out but would be useful in understanding their impact on CAR-dependent liver tumor induction. A gene signature dependent on CAR activation was identified by comparing the transcript pr...

  17. Significant 99mTc-MDP but Unimpressive 18F-NaF Gastric Activity in a Patient With Multiple Myeloma.

    PubMed

    Zhang, Shumao; Chen, Yue; Huang, Zhanwen; Cai, Liang; Zhang, Yin

    2016-09-01

    A 69-year-old man with a history of low back pain for more than 4 months underwent Tc-MDP bone scan to determine the cause of the symptoms. In addition to the osseous lesions, significant activity in the stomach wall was noted. However, a subsequent F-NaF PET/CT only revealed bone lesion without increased activity in the stomach wall. The cause of the back pain was eventually confirmed due to multiple myeloma. PMID:27504809

  18. Active Uplift At The Taiwan Belt Front Revealed By River Profiles:the Hsiaomei Anticline Area

    NASA Astrophysics Data System (ADS)

    Chen, R.-F.; Angelier, J.; Hu, J.-C.; Deffontaines, B.; Tsai, H.

    A river profile may reveal tectonic deformation through comparison with a smoothed theoretical function based on simple assumptions, provided that its relationships with the erosion-accumulation phenomena have been deciphered. The Taiwan orogeny re- sults from the collision between the Luzon volcanic arc of the Philippine Sea plate and the Chinese continental margin of the Eurasian plate. As an active collision zone between the Luzon arc and the China continental margin, the Taiwan mountain belt, particularly its south-central part, is undergoing strong crustal shortening and rapid uplift. In the central part of the island, rock uplift rates are matched by erosion rates calculated from sediment yields and exhumation rates. In the foothills of southwestern Taiwan we focus on the longitudinal profiles of twelve rivers near Chiayi area. Based on the fit with mathematical functions, we characterize a significant positive anomaly in terms of shape, amplitude and location. River data from 1/5,000 topographic maps were used to define a set of parameters related to the classical exponential equation of the longitudinal profiles. We obtained an accepted fit for a set of 5-7 parameters of the polynomial exponent, that is, a degree 4-6. The anomaly is spatially consistent and does not show correlation with variations in erosional-depositional phenomena, including variations in lithology of the rock formations. The anomaly thus reflects tectonic uplift, in good agreement with other sources of information, including the GPS data that indicate active E-W shortening of about 1 cm/yr in this area. The posi- tive anomaly detected in ten river profiles diminishes and vanishes in the northernmost and southernmost river profiles. It reflects continuing folding and uplift within an ellip- tic area elongated N-S, which corresponds to the present-day growth of the Hsiaomei anticline at the front of Taiwan belt.

  19. Functional significance of complex fluctuations in brain activity: from resting state to cognitive neuroscience

    PubMed Central

    Papo, David

    2014-01-01

    Behavioral studies have shown that human cognition is characterized by properties such as temporal scale invariance, heavy-tailed non-Gaussian distributions, and long-range correlations at long time scales, suggesting models of how (non observable) components of cognition interact. On the other hand, results from functional neuroimaging studies show that complex scaling and intermittency may be generic spatio-temporal properties of the brain at rest. Somehow surprisingly, though, hardly ever have the neural correlates of cognition been studied at time scales comparable to those at which cognition shows scaling properties. Here, we analyze the meanings of scaling properties and the significance of their task-related modulations for cognitive neuroscience. It is proposed that cognitive processes can be framed in terms of complex generic properties of brain activity at rest and, ultimately, of functional equations, limiting distributions, symmetries, and possibly universality classes characterizing them. PMID:24966818

  20. Nanosilver based anionic linear globular dendrimer with a special significant antiretroviral activity.

    PubMed

    Ardestani, Mehdi Shafiee; Fordoei, Alireza Salehi; Abdoli, Asghar; Ahangari Cohan, Reza; Bahramali, Golnaz; Sadat, Seyed Mehdi; Siadat, Seyed Davar; Moloudian, Hamid; Nassiri Koopaei, Nasser; Bolhasani, Azam; Rahimi, Pooneh; Hekmat, Soheila; Davari, Mehdi; Aghasadeghi, Mohammad Reza

    2015-05-01

    HIV is commonly caused to a very complicated disease which has not any recognized vaccine, so designing and development of novel antiretroviral agents with specific application of nanomedicine is a globally interested research subject worldwide. In the current study, a novel structure of silver complexes with anionic linear globular dendrimer was synthesized, characterized and then assessed against HIV replication pathway in vitro as well. The results showed a very good yield of synthesis (up to 70%) for the nano-complex as well as a very potent significant (P < 0.05) antiretroviral activity with non-severe toxic effects in comparison with the Nevirapine as standard drug in positive control group. According to the present data, silver anionic linear globular dendrimers complex may have a promising future to inhibit replication of HIV viruse in clinical practice.

  1. Nanosilver based anionic linear globular dendrimer with a special significant antiretroviral activity.

    PubMed

    Ardestani, Mehdi Shafiee; Fordoei, Alireza Salehi; Abdoli, Asghar; Ahangari Cohan, Reza; Bahramali, Golnaz; Sadat, Seyed Mehdi; Siadat, Seyed Davar; Moloudian, Hamid; Nassiri Koopaei, Nasser; Bolhasani, Azam; Rahimi, Pooneh; Hekmat, Soheila; Davari, Mehdi; Aghasadeghi, Mohammad Reza

    2015-05-01

    HIV is commonly caused to a very complicated disease which has not any recognized vaccine, so designing and development of novel antiretroviral agents with specific application of nanomedicine is a globally interested research subject worldwide. In the current study, a novel structure of silver complexes with anionic linear globular dendrimer was synthesized, characterized and then assessed against HIV replication pathway in vitro as well. The results showed a very good yield of synthesis (up to 70%) for the nano-complex as well as a very potent significant (P < 0.05) antiretroviral activity with non-severe toxic effects in comparison with the Nevirapine as standard drug in positive control group. According to the present data, silver anionic linear globular dendrimers complex may have a promising future to inhibit replication of HIV viruse in clinical practice. PMID:25893388

  2. Energy Landscape Topography Reveals the Underlying Link Between Binding Specificity and Activity of Enzymes

    PubMed Central

    Chu, Wen-Ting; Wang, Jin

    2016-01-01

    Enzyme activity (often quantified by kcat/Km) is the main function of enzyme when it is active against the specific substrate. Higher or lower activities are highly desired for the design of novel enzyme and drug resistance. However, it is difficult to measure the activities of all possible variants and find the “hot-spot” within the limit of experimental time. In this study, we explore the underlying energy landscape of enzyme-substrate interactions and introduce the intrinsic specificity ratio (ISR), which reflects the landscape topography. By studying two concrete systems, we uncover the statistical correlation between the intrinsic specificity and the enzyme activity kcat/Km. This physics-based concept and method show that the energy landscape topography is valuable for understanding the relationship between enzyme specificity and activity. In addition, it can reveal the underlying mechanism of enzyme-substrate actions and has potential applications on enzyme design. PMID:27298067

  3. Energy Landscape Topography Reveals the Underlying Link Between Binding Specificity and Activity of Enzymes

    NASA Astrophysics Data System (ADS)

    Chu, Wen-Ting; Wang, Jin

    2016-06-01

    Enzyme activity (often quantified by kcat/Km) is the main function of enzyme when it is active against the specific substrate. Higher or lower activities are highly desired for the design of novel enzyme and drug resistance. However, it is difficult to measure the activities of all possible variants and find the “hot-spot” within the limit of experimental time. In this study, we explore the underlying energy landscape of enzyme-substrate interactions and introduce the intrinsic specificity ratio (ISR), which reflects the landscape topography. By studying two concrete systems, we uncover the statistical correlation between the intrinsic specificity and the enzyme activity kcat/Km. This physics-based concept and method show that the energy landscape topography is valuable for understanding the relationship between enzyme specificity and activity. In addition, it can reveal the underlying mechanism of enzyme-substrate actions and has potential applications on enzyme design.

  4. Significant foreshock activities of M>7.5 earthquakes in the Kuril subduction zone

    NASA Astrophysics Data System (ADS)

    Harada, T.; Yokoi, S.; Satake, K.

    2014-12-01

    In the Kuril subduction zone, some M>7.5 earthquakes are accompanied by significant foreshock activities, providing a good opportunity to understand the characteristics of foreshocks for large interplate events such as occur along the Japan Trench and Nankai Trough etc. Some preliminary results from our examination of the foreshock sequences are as follows. Relocated foreshocks tend to migrate with time toward the trench axis. Foreshock distributions of the interplate earthquakes do not overlap with the large coseismic slips (asperities) of the mainshocks. Foreshocks of the 2007 northern Kuril outer-rise event, however, were distributed on the entire rupture area. Foreshock sequences seem to be limited in the regions where the background seismicity rates are relatively high. The foreshock activities were found in the examination of the space-time pattern of M>7 events along the northern Japan to Kuril trench since 1913 (e.g. Harada, Satake, and Ishibashi, 2011:AGU, 2012:AOGS). The large earthquakes preceded by active foreshock sequences are: the 2006 (M8.3), 2007 (M8.1) offshore Simushir earthquakes, the 1963 (M8.5), 1991 (M7.6), 1995 (M7.9) offshore Urup events, the 1978 (M7.8) offshore Iturup events, the 1969 (M8.2) offshore Shikotan event. In contrast, M>7.5 interplate earthquakes offshore Hokkaido (1952 (M8.1), 1973 (M7.8), 2003 (M8.1)) and intraslab earthquakes (1958 (M8.3), 1978 (M7.8), 1993 (M7.6), 1994 (M8.3)) had few or no foreshocks. In the examination of the active foreshocks, we relocated foreshocks by the Modified JHD method (Hurukawa, 1995), compared relocated foreshock areas with mainshock coseismic slip distributions estimated by the teleseismic body-wave inversion (Kikuchi and Kanamori, 2003), and examined the relation between active foreshock sequences and regional background seismicity. This study was supported by the MEXT's "New disaster mitigation research project on Mega thrust earthquakes around Nankai/Ryukyu subduction zones".

  5. Comparison of the activities of the lantibiotics nisin and lacticin 3147 against clinically significant mycobacteria.

    PubMed

    Carroll, James; Draper, Lorraine A; O'Connor, Paula M; Coffey, Aidan; Hill, Colin; Ross, R Paul; Cotter, Paul D; O'Mahony, Jim

    2010-08-01

    The aim of this study was to use the microtitre alamarBlue assay to investigate and compare the antimycobacterial potential of the lantibiotics nisin and lacticin 3147 against a representative cohort of clinically significant mycobacteria, i.e. Mycobacterium tuberculosis H37Ra, Mycobacterium avium subsp. paratuberculosis (MAP) ATCC 19698 and Mycobacterium kansasii CIT11/06. Lacticin 3147 displayed potent activity against all strains of mycobacteria, with MIC(90) values (lowest concentration of lantibiotic that prevented growth of >90% of the bacterial population) of 60 mg/L and 15 mg/L for M. kansasii and MAP, respectively. Lacticin 3147 was particularly effective against M. tuberculosis H37Ra, with a MIC(90) value of 7.5mg/L. Nisin, although inhibitory, was generally less potent against all strains of mycobacteria, with MIC(90) values of 60 mg/L for M. kansasii and >60 mg/L for MAP and M. tuberculosis H37Ra. Thus, lacticin 3147 is a potent antimycobacterial peptide that shows superior activity compared with nisin at physiological pH. PMID:20547041

  6. Significance of neuronal cytochrome P450 activity in opioid-mediated stress-induced analgesia.

    PubMed

    Hough, Lindsay B; Nalwalk, Julia W; Yang, Weizhu; Ding, Xinxin

    2014-08-26

    Stressful environmental changes can suppress nociceptive transmission, a phenomenon known as "stress-induced analgesia". Depending on the stressor and the subject, opioid or non-opioid mechanisms are activated. Brain μ opioid receptors mediate analgesia evoked either by exogenous agents (e.g. morphine), or by the release of endogenous opioids following stressful procedures. Recent work with morphine and neuronal cytochrome P450 (P450)-deficient mice proposed a signal transduction role for P450 enzymes in µ analgesia. Since µ opioid receptors also mediate some forms of stress-induced analgesia, the present studies assessed the significance of brain P450 activity in opioid-mediated stress-induced analgesia. Two widely-used models of opioid stress-induced analgesia (restraint and warm water swim) were studied in both sexes of wild-type control and P450-deficient (Null) mice. In control mice, both stressors evoked moderate analgesic responses which were blocked by pretreatment with the opioid antagonist naltrexone, confirming the opioid nature of these responses. Consistent with literature, sex differences (control female>control male) were seen in swim-induced, but not restraint-induced, analgesia. Null mice showed differential responses to the two stress paradigms. As compared with control subjects, Null mice showed highly attenuated restraint-induced analgesia, showing a critical role for neuronal P450s in this response. However, warm water swim-induced analgesia was unchanged in Null vs. control mice. Additional control experiments confirmed the absence of morphine analgesia in Null mice. These results are the first to show that some forms of opioid-mediated stress-induced analgesia require brain neuronal P450 activity.

  7. CoRoT Reveals a Magnetic Activity Cycle in a Sun-Like Star

    NASA Astrophysics Data System (ADS)

    García, Rafael A.; Mathur, Savita; Salabert, David; Ballot, Jérôme; Régulo, Clara; Metcalfe, Travis S.; Baglin, Annie

    2010-08-01

    The 11-year activity cycle of the Sun is a consequence of a dynamo process occurring beneath its surface. We analyzed photometric data obtained by the CoRoT space mission, showing solarlike oscillations in the star HD49933, for signatures of stellar magnetic activity. Asteroseismic measurements of global changes in the oscillation frequencies and mode amplitudes reveal a modulation of at least 120 days, with the minimum frequency shift corresponding to maximum amplitude as in the Sun. These observations are evidence of a stellar magnetic activity cycle taking place beneath the surface of HD49933 and provide constraints for stellar dynamo models under conditions different from those of the Sun.

  8. Transcriptomic Sequencing Reveals a Set of Unique Genes Activated by Butyrate-Induced Histone Modification.

    PubMed

    Li, Cong-Jun; Li, Robert W; Baldwin, Ransom L; Blomberg, Le Ann; Wu, Sitao; Li, Weizhong

    2016-01-01

    Butyrate is a nutritional element with strong epigenetic regulatory activity as a histone deacetylase inhibitor. Based on the analysis of differentially expressed genes in the bovine epithelial cells using RNA sequencing technology, a set of unique genes that are activated only after butyrate treatment were revealed. A complementary bioinformatics analysis of the functional category, pathway, and integrated network, using Ingenuity Pathways Analysis, indicated that these genes activated by butyrate treatment are related to major cellular functions, including cell morphological changes, cell cycle arrest, and apoptosis. Our results offered insight into the butyrate-induced transcriptomic changes and will accelerate our discerning of the molecular fundamentals of epigenomic regulation. PMID:26819550

  9. Transcriptomic Sequencing Reveals a Set of Unique Genes Activated by Butyrate-Induced Histone Modification

    PubMed Central

    Li, Cong-Jun; Li, Robert W.; Baldwin, Ransom L.; Blomberg, Le Ann; Wu, Sitao; Li, Weizhong

    2016-01-01

    Butyrate is a nutritional element with strong epigenetic regulatory activity as a histone deacetylase inhibitor. Based on the analysis of differentially expressed genes in the bovine epithelial cells using RNA sequencing technology, a set of unique genes that are activated only after butyrate treatment were revealed. A complementary bioinformatics analysis of the functional category, pathway, and integrated network, using Ingenuity Pathways Analysis, indicated that these genes activated by butyrate treatment are related to major cellular functions, including cell morphological changes, cell cycle arrest, and apoptosis. Our results offered insight into the butyrate-induced transcriptomic changes and will accelerate our discerning of the molecular fundamentals of epigenomic regulation. PMID:26819550

  10. Nuclear RNA-seq of single neurons reveals molecular signatures of activation

    PubMed Central

    Lacar, Benjamin; Linker, Sara B.; Jaeger, Baptiste N.; Krishnaswami, Suguna; Barron, Jerika; Kelder, Martijn; Parylak, Sarah; Paquola, Apuã; Venepally, Pratap; Novotny, Mark; O'Connor, Carolyn; Fitzpatrick, Conor; Erwin, Jennifer; Hsu, Jonathan Y.; Husband, David; McConnell, Michael J.; Lasken, Roger; Gage, Fred H.

    2016-01-01

    Single-cell sequencing methods have emerged as powerful tools for identification of heterogeneous cell types within defined brain regions. Application of single-cell techniques to study the transcriptome of activated neurons can offer insight into molecular dynamics associated with differential neuronal responses to a given experience. Through evaluation of common whole-cell and single-nuclei RNA-sequencing (snRNA-seq) methods, here we show that snRNA-seq faithfully recapitulates transcriptional patterns associated with experience-driven induction of activity, including immediate early genes (IEGs) such as Fos, Arc and Egr1. SnRNA-seq of mouse dentate granule cells reveals large-scale changes in the activated neuronal transcriptome after brief novel environment exposure, including induction of MAPK pathway genes. In addition, we observe a continuum of activation states, revealing a pseudotemporal pattern of activation from gene expression alone. In summary, snRNA-seq of activated neurons enables the examination of gene expression beyond IEGs, allowing for novel insights into neuronal activation patterns in vivo. PMID:27090946

  11. Nuclear RNA-seq of single neurons reveals molecular signatures of activation.

    PubMed

    Lacar, Benjamin; Linker, Sara B; Jaeger, Baptiste N; Krishnaswami, Suguna; Barron, Jerika; Kelder, Martijn; Parylak, Sarah; Paquola, Apuã; Venepally, Pratap; Novotny, Mark; O'Connor, Carolyn; Fitzpatrick, Conor; Erwin, Jennifer; Hsu, Jonathan Y; Husband, David; McConnell, Michael J; Lasken, Roger; Gage, Fred H

    2016-01-01

    Single-cell sequencing methods have emerged as powerful tools for identification of heterogeneous cell types within defined brain regions. Application of single-cell techniques to study the transcriptome of activated neurons can offer insight into molecular dynamics associated with differential neuronal responses to a given experience. Through evaluation of common whole-cell and single-nuclei RNA-sequencing (snRNA-seq) methods, here we show that snRNA-seq faithfully recapitulates transcriptional patterns associated with experience-driven induction of activity, including immediate early genes (IEGs) such as Fos, Arc and Egr1. SnRNA-seq of mouse dentate granule cells reveals large-scale changes in the activated neuronal transcriptome after brief novel environment exposure, including induction of MAPK pathway genes. In addition, we observe a continuum of activation states, revealing a pseudotemporal pattern of activation from gene expression alone. In summary, snRNA-seq of activated neurons enables the examination of gene expression beyond IEGs, allowing for novel insights into neuronal activation patterns in vivo. PMID:27090946

  12. Significance of redox-active cysteines in human FAD synthase isoform 2.

    PubMed

    Miccolis, Angelica; Galluccio, Michele; Nitride, Chiara; Giancaspero, Teresa Anna; Ferranti, Pasquale; Iametti, Stefania; Indiveri, Cesare; Bonomi, Francesco; Barile, Maria

    2014-12-01

    FAD synthase (FMN:ATP adenylyl transferase, FMNAT or FADS, EC 2.7.7.2) is the last enzyme in the pathway converting riboflavin into FAD. In humans, FADS is localized in different subcellular compartments and exists in different isoforms. Isoform 2 (490-amino acids) is organized in two domains: the 3'-phosphoadenosine-5'-phosphosulfate (PAPS) reductase domain, that is the FAD-forming catalytic domain, and one resembling a molybdopterin-binding (MPTb) domain, with a hypothetical regulatory role. hFADS2 contains ten Cys residues, seven of which located in the PAPS reductase domain, with a possible involvement either in FAD synthesis or in FAD delivery to cognate apo-flavoproteins. A homology model of the PAPS reductase domain of hFADS2 revealed a co-ordinated network among the Cys residues in this domain. In this model, C312 and C303 are very close to the flavin substrate, consistent with a significantly lowered FAD synthesis rate in C303A and C312A mutants. FAD synthesis is also inhibited by thiol-blocking reagents, suggesting the involvement of free cysteines in the hFADS2 catalytic cycle. Mass spectrometry measurements and titration with thiol reagents on wt hFADS2 and on several individual cysteine/alanine mutants allowed us to detect two stably reduced cysteines (C139 and C241, one for each protein domain), two stable disulfide bridges (C399-C402, C303-C312, both in the PAPS domain), and two unstable disulfides (C39-C50; C440-C464). Whereas the C39-C50 unstable disulfide is located in the MPTb domain and appears to have no catalytic relevance, a cysteine-based redox switch may involve formation and breakdown of a disulfide between C440 and C464 in the PAPS domain. PMID:25135855

  13. Optimisation and significance of ATP analysis for measuring active biomass in granular activated carbon filters used in water treatment.

    PubMed

    Magic-Knezev, Aleksandra; van der Kooij, Dick

    2004-11-01

    A method for determining the concentration of active microbial biomass in granular activated carbon (GAC) filters used in water treatment was developed to facilitate studies on the interactions between adsorption processes and biological activity in such filters. High-energy sonication at a power input of 40 W was applied to GAC samples for the detachment of biomass which was measured as adenosine triphosphate (ATP). Modelling of biomass removal indicated that a series of six to eight sonication treatments of 2 min each yielded more than 90% of the attached active biomass. The ATP concentrations in 30 different GAC filters at nine treatment plants in The Netherlands ranged from 25 to 5000 ng ATP cm(-3) GAC, with the highest concentrations at long filter run times and pretreatment with ozone. A similar concentration range was observed in nine rapid sand (RS) filters. ATP concentrations correlated significantly (p<0.05) with total direct bacterial cell counts in each of these filter types, but the median value of the ATP content per cell in GAC filters (2.1 x 10(-8) ng ATP/cell) was much lower than in the RS filters (3.6 x 10(-7) ng ATP/cell). Average biofilm concentrations ranging from 500 to 10(5) pg ATP cm(-2) were calculated assuming spherical shapes for the GAC particles but values were about 20 times lower when the surface of pores >1 microm diameter is included in these calculations. The quantitative biomass analysis with ATP enables direct comparisons with biofilm concentrations reported for spiral wound membranes used in water treatment, for distribution system pipes and other aquatic environments.

  14. Family-based Association Analyses of Imputed Genotypes Reveal Genome-Wide Significant Association of Alzheimer’s disease with OSBPL6, PTPRG and PDCL3

    PubMed Central

    Herold, Christine; Hooli, Basavaraj V.; Mullin, Kristina; Liu, Tian; Roehr, Johannes T; Mattheisen, Manuel; Parrado, Antonio R.; Bertram, Lars; Lange, Christoph; Tanzi, Rudolph E.

    2015-01-01

    The genetic basis of Alzheimer's disease (AD) is complex and heterogeneous. Over 200 highly penetrant pathogenic variants in the genes APP, PSEN1 and PSEN2 cause a subset of early-onset familial Alzheimer's disease (EOFAD). On the other hand, susceptibility to late-onset forms of AD (LOAD) is indisputably associated to the ε4 allele in the gene APOE, and more recently to variants in more than two-dozen additional genes identified in the large-scale genome-wide association studies (GWAS) and meta-analyses reports. Taken together however, although the heritability in AD is estimated to be as high as 80%, a large proportion of the underlying genetic factors still remain to be elucidated. In this study we performed a systematic family-based genome-wide association and meta-analysis on close to 15 million imputed variants from three large collections of AD families (~3,500 subjects from 1,070 families). Using a multivariate phenotype combining affection status and onset age, meta-analysis of the association results revealed three single nucleotide polymorphisms (SNPs) that achieved genome-wide significance for association with AD risk: rs7609954 in the gene PTPRG (P-value = 3.98·10−08), rs1347297 in the gene OSBPL6 (P-value = 4.53·10−08), and rs1513625 near PDCL3 (P-value = 4.28·10−08). In addition, rs72953347 in OSBPL6 (P-value = 6.36·10−07) and two SNPs in the gene CDKAL1 showed marginally significant association with LOAD (rs10456232, P-value: 4.76·10−07; rs62400067, P-value: 3.54·10−07). In summary, family-based GWAS meta-analysis of imputed SNPs revealed novel genomic variants in (or near) PTPRG, OSBPL6, and PDCL3 that influence risk for AD with genome-wide significance. PMID:26830138

  15. Palaeoclimatic significance of Phosphorus variability in Tropical and SubTropical speleothems revealed by high-resolution synchrotron micro XRF mapping

    NASA Astrophysics Data System (ADS)

    Frisia, S.; Borsato, A.; Drysdale, R.; Paul, B.; Cotte, M.; Greig, A.

    2012-12-01

    In temperate-humid climate phosphorus (P) concentration in speleothem calcite has commonly been related to vegetation die-back in autumn and subsequent colloidal transport from the soil zone into the cave during high infiltration events. As a consequence, the palaeoclimatic significance of cyclic increases in P concentration within speleothems has been that of a marker for seasonal augmentation of effective infiltration. In wet-tropical settings, however, complex interactions between microbial and hydrological processes may result in the formation of P-rich phases during periods of low infiltration. Here, we investigate the significance of P variability in one modern and two Early Pliocene speleothems formed in caves cut in low-lying, Tertiary marine limestones at Christmas Island and the Nullarbor in Australia by using microscopy and high resolution synchrotron radiation X-ray flourescence mapping. Monitoring data in the modern setting suggest that co-precipitation of P with speleothem calcite occurs when the drip rate decreases and the aquifer is progressively drained (Frisia et al., 2012, Clim. Past Discuss., 8, 2557-2582). Electron microscopy highlights the presence of bacterially-related structures, and synchrotron maps reveal that P is not incorporated in the calcite lattice, and commonly forms phosphates which could be associated with bacteria (not necessarily bio-mediated). Our interpretation of the hydrological significance of P incorporation in tropical speleothems is then used to interpret P peaks, which are commonly associated with micritic and stromatolite-like layers in the two Early Pliocene stalagmites from the Nullarbor. The petrographic structure is almost perfectly reproduced by high-resolution elemental mapping, which reveal a close association of S (as sulphate) with "microbial mats". Synchrotron maps highlight a complex behavior of P relative to other solutes (Mg, Ba, Sr) as well as colloidal traansported elements (Mn, Al, Y) and suggest that

  16. Magnetoencephalography reveals early activation of V4 in grapheme-color synesthesia.

    PubMed

    Brang, D; Hubbard, E M; Coulson, S; Huang, M; Ramachandran, V S

    2010-10-15

    Grapheme-color synesthesia is a neurological phenomenon in which letters and numbers (graphemes) consistently evoke particular colors (e.g. A may be experienced as red). The cross-activation theory proposes that synesthesia arises as a result of cross-activation between posterior temporal grapheme areas (PTGA) and color processing area V4, while the disinhibited feedback theory proposes that synesthesia arises from disinhibition of pre-existing feedback connections. Here we used magnetoencephalography (MEG) to test whether V4 and PTGA activate nearly simultaneously, as predicted by the cross-activation theory, or whether V4 activation occurs only after the initial stages of grapheme processing, as predicted by the disinhibited feedback theory. Using our high-resolution MEG source imaging technique (VESTAL), PTGA and V4 regions of interest (ROIs) were separately defined, and activity in response to the presentation of achromatic graphemes was measured. Activation levels in PTGA did not significantly differ between synesthetes and controls (suggesting similar grapheme processing mechanisms), whereas activation in V4 was significantly greater in synesthetes. In synesthetes, PTGA activation exceeded baseline levels beginning 105-109ms, and V4 activation did so 5ms later, suggesting nearly simultaneous activation of these areas. Results are discussed in the context of an updated version of the cross-activation model, the cascaded cross-tuning model of grapheme-color synesthesia.

  17. Prognostic Significance of Estimation of Pseudocholinesterase Activity and Role of Pralidoxime Therapy in Organophosphorous Poisoning

    PubMed Central

    Chaudhary, Shyam Chand; Singh, Khemraj; Sawlani, Kamal Kumar; Jain, Nirdesh; Vaish, Arvind Kumar; Atam, Virendra; Patel, Munna Lal; Agarwal, Avinash

    2013-01-01

    Background: Organophosphorous (OP) poisoning is one of the most common poisonings seen in India. OP compounds act through inhibition of enzyme acetylcholinesterase and estimation of pseudocholinesterase (PCE) activity strengthens the diagnosis in clinically uncertain cases of OP poisoning. The role of pralidoxime (PAM) therapy in OP poisoning has been controversial. Study Objectives: This study was aimed to determine the prognostic significance of estimation of PCE activity and also to assess the role of PAM therapy in OP poisoning. Materials and Methods: Patients of suspected OP poisoning of age >12 years admitted to emergency unit at a tertiary healthcare center of north India were enrolled. Patients were categorized into two groups; group A who were given intravenous atropine and group B who were given injectable PAM along with atropine. Serum PCE level was estimated at the time of admission in all patients and severity of OP poisoning was assessed according to PCE level. Requirement of atropine, oxygen inhalation, intubation and ventilatory support, total hospital stay, and mortality were compared between different classes of severity and also between Groups A and B. Results: This study included a total of 70 subjects, 35 in each group with mean age of 24.99 ± 8.7 years. Out of 70 subjects 49 (70%) were male and 21 (30%) were female. Forty nine patients (70%) of OP poisoning were with suicidal intent while 21 (30%) cases were accidentally poisoned. In all suicidal cases route of poisoning was ingestion whereas in all the accidental cases route of exposure was inhalational. PCE levels were reduced in all the cases and the mean level was 3,154.16 ± 2,562.40 IU/L. The total dose of atropine required, need for oxygen inhalation and need for intubation and ventilatory support, mean duration of hospital stay and mortality rate (P = 0.003) were higher in moderate to severe cases and did not have significant difference between Groups A and B. Conclusion: The study

  18. Functional Screening of Hydrolytic Activities Reveals an Extremely Thermostable Cellulase from a Deep-Sea Archaeon

    PubMed Central

    Leis, Benedikt; Heinze, Simon; Angelov, Angel; Pham, Vu Thuy Trang; Thürmer, Andrea; Jebbar, Mohamed; Golyshin, Peter N.; Streit, Wolfgang R.; Daniel, Rolf; Liebl, Wolfgang

    2015-01-01

    Extreme habitats serve as a source of enzymes that are active under extreme conditions and are candidates for industrial applications. In this work, six large-insert mixed genomic libraries were screened for hydrolase activities in a broad temperature range (8–70°C). Among a variety of hydrolytic activities, one fosmid clone, derived from a library of pooled isolates of hyperthermophilic archaea from deep sea vents, displayed hydrolytic activity on carboxymethyl cellulose substrate plates at 70°C but not at lower temperatures. Sequence analysis of the fosmid insert revealed a gene encoding a novel glycoside hydrolase family 12 (GHF12) endo-1,4-β-glucanase, termed Cel12E. The enzyme shares 45% sequence identity with a protein from the archaeon Thermococcus sp. AM4 and displays a unique multidomain architecture. Biochemical characterization of Cel12E revealed a remarkably thermostable protein, which appears to be of archaeal origin. The enzyme displayed maximum activity at 92°C and was active on a variety of linear 1,4-β-glucans like carboxymethyl cellulose, β-glucan, lichenan, and phosphoric acid swollen cellulose. The protein is able to bind to various insoluble β-glucans. Product pattern analysis indicated that Cel12E is an endo-cleaving β-glucanase. Cel12E expands the toolbox of hyperthermostable archaeal cellulases with biotechnological potential. PMID:26191525

  19. Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO₂ Nanowire Arrays by Nitrogen Implantation.

    PubMed

    Wang, Gongming; Xiao, Xiangheng; Li, Wenqing; Lin, Zhaoyang; Zhao, Zipeng; Chen, Chi; Wang, Chen; Li, Yongjia; Huang, Xiaoqing; Miao, Ling; Jiang, Changzhong; Huang, Yu; Duan, Xiangfeng

    2015-07-01

    Titanium oxide (TiO2) represents one of most widely studied materials for photoelectrochemical (PEC) water splitting but is severely limited by its poor efficiency in the visible light range. Here, we report a significant enhancement of visible light photoactivity in nitrogen-implanted TiO2 (N-TiO2) nanowire arrays. Our systematic studies show that a post-implantation thermal annealing treatment can selectively enrich the substitutional nitrogen dopants, which is essential for activating the nitrogen implanted TiO2 to achieve greatly enhanced visible light photoactivity. An incident photon to electron conversion efficiency (IPCE) of ∼10% is achieved at 450 nm in N-TiO2 without any other cocatalyst, far exceeding that in pristine TiO2 nanowires (∼0.2%). The integration of oxygen evolution reaction (OER) cocatalyst with N-TiO2 can further increase the IPCE at 450 nm to ∼17% and deliver an unprecedented overall photocurrent density of 1.9 mA/cm(2), by integrating the IPCE spectrum with standard AM 1.5G solar spectrum. Systematic photoelectrochemical and electrochemical studies demonstrated that the enhanced PEC performance can be attributed to the significantly improved visible light absorption and more efficient charge separation. Our studies demonstrate the implantation approach can be used to reliably dope TiO2 to achieve the best performed N-TiO2 photoelectrodes to date and may be extended to fundamentally modify other semiconductor materials for PEC water splitting.

  20. Targeted massively parallel sequencing of angiosarcomas reveals frequent activation of the mitogen activated protein kinase pathway

    PubMed Central

    Murali, Rajmohan; Chandramohan, Raghu; Möller, Inga; Scholz, Simone L.; Berger, Michael; Huberman, Kety; Viale, Agnes; Pirun, Mono; Socci, Nicholas D.; Bouvier, Nancy; Bauer, Sebastian; Artl, Monika; Schilling, Bastian; Schimming, Tobias; Sucker, Antje; Schwindenhammer, Benjamin; Grabellus, Florian; Speicher, Michael R.; Schaller, Jörg; Hillen, Uwe; Schadendorf, Dirk; Mentzel, Thomas; Cheng, Donavan T.; Wiesner, Thomas; Griewank, Klaus G.

    2015-01-01

    Angiosarcomas are rare malignant mesenchymal tumors of endothelial differentiation. The clinical behavior is usually aggressive and the prognosis for patients with advanced disease is poor with no effective therapies. The genetic bases of these tumors have been partially revealed in recent studies reporting genetic alterations such as amplifications of MYC (primarily in radiation-associated angiosarcomas), inactivating mutations in PTPRB and R707Q hotspot mutations of PLCG1. Here, we performed a comprehensive genomic analysis of 34 angiosarcomas using a clinically-approved, hybridization-based targeted next-generation sequencing assay for 341 well-established oncogenes and tumor suppressor genes. Over half of the angiosarcomas (n = 18, 53%) harbored genetic alterations affecting the MAPK pathway, involving mutations in KRAS, HRAS, NRAS, BRAF, MAPK1 and NF1, or amplifications in MAPK1/CRKL, CRAF or BRAF. The most frequently detected genetic aberrations were mutations in TP53 in 12 tumors (35%) and losses of CDKN2A in 9 tumors (26%). MYC amplifications were generally mutually exclusive of TP53 alterations and CDKN2A loss and were identified in 8 tumors (24%), most of which (n = 7, 88%) arose post-irradiation. Previously reported mutations in PTPRB (n = 10, 29%) and one (3%) PLCG1 R707Q mutation were also identified. Our results demonstrate that angiosarcomas are a genetically heterogeneous group of tumors, harboring a wide range of genetic alterations. The high frequency of genetic events affecting the MAPK pathway suggests that targeted therapies inhibiting MAPK signaling may be promising therapeutic avenues in patients with advanced angiosarcomas. PMID:26440310

  1. Novel pyrazole derivatives as neutral CB₁ antagonists with significant activity towards food intake.

    PubMed

    Manca, Ilaria; Mastinu, Andrea; Olimpieri, Francesca; Falzoi, Matteo; Sani, Monica; Ruiu, Stefania; Loriga, Giovanni; Volonterio, Alessandro; Tambaro, Simone; Bottazzi, Mirko Emilio Heiner; Zanda, Matteo; Pinna, Gérard Aimè; Lazzari, Paolo

    2013-04-01

    In spite of rimonabant's withdrawal from the European market due to its adverse effects, interest in the development of drugs based on CB1 antagonists is revamping on the basis of the peculiar properties of this class of compounds. In particular, new strategies have been proposed for the treatment of obesity and/or related risk factors through CB1 antagonists, i.e. by the development of selectively peripherally acting agents or by the identification of neutral CB1 antagonists. New compounds based on the lead CB1 antagonist/inverse agonist rimonabant have been synthesized with focus on obtaining neutral CB1 antagonists. Amongst the new derivatives described in this paper, the mixture of the two enantiomers (±)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-3-(2-cyclohexyl-1-hydroxyethyl)-4-methyl-1H-pyrazole ((±)-5), and compound 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-3-[(Z)-2-cyclohexyl-1-fluorovinyl]-4-methyl-1H-pyrazole ((Z)-6), showed interesting pharmacological profiles. According to the preliminary pharmacological evaluation, these novel pyrazole derivatives showed in fact both neutral CB1 antagonism behaviour and significant in vivo activity towards food intake.

  2. Dynamical Network of HIV-1 Protease Mutants Reveals the Mechanism of Drug Resistance and Unhindered Activity.

    PubMed

    Appadurai, Rajeswari; Senapati, Sanjib

    2016-03-15

    HIV-1 protease variants resist drugs by active and non-active-site mutations. The active-site mutations, which are the primary or first set of mutations, hamper the stability of the enzyme and resist the drugs minimally. As a result, secondary mutations that not only increase protein stability for unhindered catalytic activity but also resist drugs very effectively arise. While the mechanism of drug resistance of the active-site mutations is through modulating the active-site pocket volume, the mechanism of drug resistance of the non-active-site mutations is unclear. Moreover, how these allosteric mutations, which are 8-21 Å distant, communicate to the active site for drug efflux is completely unexplored. Results from molecular dynamics simulations suggest that the primary mechanism of drug resistance of the secondary mutations involves opening of the flexible protease flaps. Results from both residue- and community-based network analyses reveal that this precise action of protease is accomplished by the presence of robust communication paths between the mutational sites and the functionally relevant regions: active site and flaps. While the communication is more direct in the wild type, it traverses across multiple intermediate residues in mutants, leading to weak signaling and unregulated motions of flaps. The global integrity of the protease network is, however, maintained through the neighboring residues, which exhibit high degrees of conservation, consistent with clinical data and mutagenesis studies. PMID:26892689

  3. Characterization of purified human Bact spliceosomal complexes reveals compositional and morphological changes during spliceosome activation and first step catalysis

    PubMed Central

    Bessonov, Sergey; Anokhina, Maria; Krasauskas, Andrius; Golas, Monika M.; Sander, Bjoern; Will, Cindy L.; Urlaub, Henning; Stark, Holger; Lührmann, Reinhard

    2010-01-01

    To better understand the compositional and structural dynamics of the human spliceosome during its activation, we set out to isolate spliceosomal complexes formed after precatalytic B but prior to catalytically active C complexes. By shortening the polypyrimidine tract of the PM5 pre-mRNA, which lacks a 3′ splice site and 3′ exon, we stalled spliceosome assembly at the activation stage. We subsequently affinity purified human Bact complexes under the same conditions previously used to isolate B and C complexes, and analyzed their protein composition by mass spectrometry. A comparison of the protein composition of these complexes allowed a fine dissection of compositional changes during the B to Bact and Bact to C transitions, and comparisons with the Saccharomyces cerevisiae Bact complex revealed that the compositional dynamics of the spliceosome during activation are largely conserved between lower and higher eukaryotes. Human SF3b155 and CDC5L were shown to be phosphorylated specifically during the B to Bact and Bact to C transition, respectively, suggesting these modifications function at these stages of splicing. The two-dimensional structure of the human Bact complex was determined by electron microscopy, and a comparison with the B complex revealed that the morphology of the human spliceosome changes significantly during its activation. The overall architecture of the human and S. cerevisiae Bact complex is similar, suggesting that many of the higher order interactions among spliceosomal components, as well as their dynamics, are also largely conserved. PMID:20980672

  4. Latent myostatin has significant activity and this activity is controlled more efficiently by WFIKKN1 than by WFIKKN2.

    PubMed

    Szláma, György; Trexler, Mária; Patthy, László

    2013-08-01

    Myostatin, a negative regulator of skeletal muscle growth, is produced from myostatin precursor by multiple steps of proteolytic processing. After cleavage by a furin-type protease, the propeptide and growth factor domains remain associated, forming a noncovalent complex, the latent myostatin complex. Mature myostatin is liberated from latent myostatin by bone morphogenetic protein 1/tolloid proteases. Here, we show that, in reporter assays, latent myostatin preparations have significant myostatin activity, as the noncovalent complex dissociates at an appreciable rate, and both mature and semilatent myostatin (a complex in which the dimeric growth factor domain interacts with only one molecule of myostatin propeptide) bind to myostatin receptor. The interaction of myostatin receptor with semilatent myostatin is efficiently blocked by WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 or growth and differentiation factor-associated serum protein 2 (WFIKKN1), a large extracellular multidomain protein that binds both mature myostatin and myostatin propeptide [Kondás et al. (2008) J Biol Chem 283, 23677-23684]. Interestingly, the paralogous protein WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 2 or growth and differentiation factor-associated serum protein 1 (WFIKKN2) was less efficient than WFIKKN1 as an antagonist of the interactions of myostatin receptor with semilatent myostatin. Our studies have shown that this difference is attributable to the fact that only WFIKKN1 has affinity for the propeptide domain, and this interaction increases its potency in suppressing the receptor-binding activity of semilatent myostatin. As the interaction of WFIKKN1 with various forms of myostatin permits tighter control of myostatin activity until myostatin is liberated from latent myostatin by bone morphogenetic protein 1/tolloid proteases, WFIKKN1 may have greater potential as an antimyostatic agent than WFIKKN2.

  5. Spores of most common airborne fungi reveal no ice nucleation activity

    NASA Astrophysics Data System (ADS)

    Pummer, B. G.; Atanasova, L.; Bauer, H.; Bernardi, J.; Druzhinina, I. S.; Grothe, H.

    2013-06-01

    Fungal spores are ubiquitous biological aerosols, which are considered to show ice nucleation (IN) activity. In this study the respective IN activity was tested in oil emulsion in the immersion freezing mode. The focus was laid on species of economical, ecological or sanitary significance. For the first time, not only common moulds, but also edible mushrooms (Basidiomycota, Agaricomycetes) were investigated, as they contribute massively to the total amount of fungal spores in the atmosphere. Only Fusarium avenaceum showed freezing events at low subzero-temperatures, while the other investigated fungal spores showed no significant IN activity. Furthermore, we selected a set of fungal strains from different sites and exposed them to occasional freezing stress during cultivation. Although the total protein expression was altered by this treatment, it had no significant impact on the IN activity.

  6. Young asteroidal fluid activity revealed by absolute age from apatite in carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Zhang, Ai-Cheng; Li, Qiu-Li; Yurimoto, Hisayoshi; Sakamoto, Naoya; Li, Xian-Hua; Hu, Sen; Lin, Yang-Ting; Wang, Ru-Cheng

    2016-09-01

    Chondritic meteorites, consisting of the materials that have formed in the early solar system (ESS), have been affected by late thermal events and fluid activity to various degrees. Determining the timing of fluid activity in ESS is of fundamental importance for understanding the nature, formation, evolution and significance of fluid activity in ESS. Previous investigations have determined the relative ages of fluid activity with short-lived isotope systematics. Here we report an absolute 207Pb/206Pb isochron age (4,450+/-50 Ma) of apatite from Dar al Gani (DaG) 978, a type ~3.5, ungrouped carbonaceous chondrite. The petrographic, mineralogical and geochemical features suggest that the apatite in DaG 978 should have formed during metamorphism in the presence of a fluid. Therefore, the apatite age represents an absolute age for fluid activity in an asteroidal setting. An impact event could have provided the heat to activate this young fluid activity in ESS.

  7. Infrared Laser Spectroscopy of the n-PROPYL and i-PROPYL Radicals in Helium Droplets: Significant Bend-Stretch Coupling Revealed in the CH Stretch Region

    NASA Astrophysics Data System (ADS)

    Moradi, Christopher P.; Douberly, Gary E.; Tabor, Daniel P.; Sibert, Edwin

    2016-06-01

    The n-propyl and i-propyl radicals were generated in the gas phase via pyrolysis of n-butyl nitrite (CH3(CH2)3ONO) and i-butyl nitrite (CH3CH(CH3)CH2ONO) precursors, respectively. Nascent radicals were promptly solvated by a beam of He nanodroplets, and the infrared spectra of the radicals were recorded in the C-H stretching region. In addition to three vibrations of n-propyl previously measured in an Ar matrix, we observe many unreported bands between 2800 and 3150 wn, which we attribute to propyl radicals. The C-H stretching modes observed above 2960 wn for both radicals are in excellent agreement with anharmonic frequencies computed using VPT2. Between 2800 and 2960 wn, however, the spectra of n-propyl and i-propyl radicals become quite congested and difficult to assign due to the presence of multiple anharmonic resonances. Computations employing a local mode Hamiltonian reveal the origin of the spectral congestion to be strong coupling between the high frequency C-H stretching modes and the lower frequency bending/scissoring motions. The only significant local coupling is between stretches and bends on the same CH2/CH3 group.

  8. Physicochemical state of the nanotopographic surface of commercially pure titanium following anodization-hydrothermal treatment reveals significantly improved hydrophilicity and surface energy profiles.

    PubMed

    Takebe, Jun; Ito, Shigeki; Miura, Shingo; Miyata, Kyohei; Ishibashi, Kanji

    2012-01-01

    A method of coating commercially pure titanium (cpTi) implants with a highly crystalline, thin hydroxyapatite (HA) layer using discharge anodic oxidation followed by hydrothermal treatment (Spark discharged Anodic oxidation treatment ; SA-treated cpTi) has been reported for use in clinical dentistry. We hypothesized that a thin HA layer with high crystallinity and nanostructured anodic titanium oxide film on such SA-treated cpTi implant surfaces might be a crucial function of their surface-specific potential energy. To test this, we analyzed anodic oxide (AO) cpTi and SA-treated cpTi disks by SEM and AFM. Contact angles and surface free energy of each disk surface was measured using FAMAS software. High-magnification SEM and AFM revealed the nanotopographic structure of the anodic titanium oxide film on SA-treated cpTi; however, this was not observed on the AO cpTi surface. The contact angle and surface free energy measurements were also significantly different between AO cpTi and SA-treated cpTi surfaces (Tukey's, P<0.05). These data indicated that the change of physicochemical properties of an anodic titanium oxide film with HA crystals on an SA-treated cpTi surface may play a key role in the phenomenon of osteoconduction during the process of osseointegration.

  9. Genetic Basis of Heterosis for Growth-Related Traits in Arabidopsis Investigated by Testcross Progenies of Near-Isogenic Lines Reveals a Significant Role of Epistasis

    PubMed Central

    Melchinger, Albrecht E.; Piepho, Hans-Peter; Utz, H. Friedrich; Muminović, Jasmina; Wegenast, Thilo; Törjék, Otto; Altmann, Thomas; Kusterer, Barbara

    2007-01-01

    Epistasis seems to play a significant role in the manifestation of heterosis. However, the power of detecting epistatic interactions among quantitative trait loci (QTL) in segregating populations is low. We studied heterosis in Arabidopsis thaliana hybrid C24 × Col-0 by testing near-isogenic lines (NILs) and their triple testcross (TTC) progenies. Our objectives were to (i) provide the theoretical basis for estimating different types of genetic effects with this experimental design, (ii) determine the extent of heterosis for seven growth-related traits, (iii) map the underlying QTL, and (iv) determine their gene action. Two substitution libraries, each consisting of 28 NILs and covering ∼61 and 39% of the Arabidopsis genome, were assayed by 110 single-nucleotide polymorphism (SNP) markers. With our novel generation means approach 38 QTL were detected, many of which confirmed heterotic QTL detected previously in the same cross with TTC progenies of recombinant inbred lines. Furthermore, many of the QTL were common for different traits and in common with the 58 QTL detected by a method that compares triplets consisting of a NIL, its recurrent parent, and their F1 cross. While the latter approach revealed mostly (75%) overdominant QTL, the former approach allowed separation of dominance and epistasis by analyzing all materials simultaneously and yielded substantial positive additive × additive effects besides directional dominance. Positive epistatic effects reduced heterosis for growth-related traits in our materials. PMID:18039884

  10. Activation of the recombinant human alpha 7 nicotinic acetylcholine receptor significantly raises intracellular free calcium.

    PubMed

    Delbono, O; Gopalakrishnan, M; Renganathan, M; Monteggia, L M; Messi, M L; Sullivan, J P

    1997-01-01

    The alpha 7 nicotinic acetylcholine receptor (nAChR) subtype, unlike other neuronal nicotinic receptors, exhibits a relatively high permeability to Ca++ ions. Although Ca++ entry through this receptor subtype has been implicated in various Ca(++)-dependent processes in the central nervous system, little is known about how this receptor modulates mammalian intracellular Ca++ dynamics. Intracellular Ca++ responses evoked by activation of the human alpha 7 nAChRs stably expressed in HEK-293 (human embryonic kidney) cells were studied. Inward current and intracellular Ca++ transients were recorded simultaneously in response to a fast drug application system. Current recordings under whole-cell voltage-clamp and fast ratiometric intracellular Ca++ imaging acquisition were synchronized to drug pulses. The mean peak [Ca++]i observed with 100 microM (-)-nicotine was 356 +/- 48 nM (n = 8). The magnitude of the intracellular Ca++ elevation corresponds to a 20% fractional current carried by Ca++ ions. The EC50 of the intracellular Ca++ responses for (-)-nicotine, (+/-)-epibatidine, 1,1 dimethyl-4-phenyl-piperazinium and acetylcholine were 51, 3.5, 75 and 108 microM, respectively. These EC50 values strongly correlate with those recorded for the cationic inward current through alpha 7 nAChR. alpha-Bungarotoxin, methyllcaconitine or extracellular Ca++ chelation ablated (-)-nicotine-evoked increase in intracellular Ca++ concentration. This study provides evidence that cation influx through the human alpha 7 nAChR is sufficient to mediate a significant, transient, rise in intracellular Ca++ concentration.

  11. The complete chloroplast genome sequence of Mahonia bealei (Berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms.

    PubMed

    Ma, Ji; Yang, Bingxian; Zhu, Wei; Sun, Lianli; Tian, Jingkui; Wang, Xumin

    2013-10-10

    Mahonia bealei (Berberidaceae) is a frequently-used traditional Chinese medicinal plant with efficient anti-inflammatory ability. This plant is one of the sources of berberine, a new cholesterol-lowering drug with anti-diabetic activity. We have sequenced the complete nucleotide sequence of the chloroplast (cp) genome of M. bealei. The complete cp genome of M. bealei is 164,792 bp in length, and has a typical structure with large (LSC 73,052 bp) and small (SSC 18,591 bp) single-copy regions separated by a pair of inverted repeats (IRs 36,501 bp) of large size. The Mahonia cp genome contains 111 unique genes and 39 genes are duplicated in the IR regions. The gene order and content of M. bealei are almost unarranged which is consistent with the hypothesis that large IRs stabilize cp genome and reduce gene loss-and-gain probabilities during evolutionary process. A large IR expansion of over 12 kb has occurred in M. bealei, 15 genes (rps19, rpl22, rps3, rpl16, rpl14, rps8, infA, rpl36, rps11, petD, petB, psbH, psbN, psbT and psbB) have expanded to have an additional copy in the IRs. The IR expansion rearrangement occurred via a double-strand DNA break and subsequence repair, which is different from the ordinary gene conversion mechanism. Repeat analysis identified 39 direct/inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Analysis also revealed 75 simple sequence repeat (SSR) loci and almost all are composed of A or T, contributing to a distinct bias in base composition. Comparison of protein-coding sequences with ESTs reveals 9 putative RNA edits and 5 of them resulted in non-synonymous modifications in rpoC1, rps2, rps19 and ycf1. Phylogenetic analysis using maximum parsimony (MP) and maximum likelihood (ML) was performed on a dataset composed of 65 protein-coding genes from 25 taxa, which yields an identical tree topology as previous plastid-based trees, and provides strong support for the sister relationship between Ranunculaceae and Berberidaceae

  12. Meta-analysis reveals significant association of 3'-UTR VNTR in SLC6A3 with smoking cessation in Caucasian populations.

    PubMed

    Ma, Y; Yuan, W; Cui, W; Li, M D

    2016-02-01

    Many studies have examined the association between SLC6A3 3'-untranslated region (UTR) variable number tandem repeat (VNTR) polymorphism and smoking cessation; however, the results are inconclusive, primarily because of the small-to-moderate size samples. The primary goal of this study was to determine whether this polymorphism has any effect on smoking cessation by a meta-analysis of all reported studies. We adopted a 9-repeat dominant model that considers 9-repeat and non-9-repeat as two genotypes and compared their frequencies in former vs current smokers. Eleven studies with 5480 participants were included. Considering the presence of study heterogeneity and differences in the availability of information from each study, three separate meta-analyses were performed with the Comprehensive Meta-Analysis statistical software (version 2.0). The first meta-analysis provided evidence of association between the 9-repeat genotype and smoking cessation under the fixed-effects model (pooled odds ratio (OR)=1.13; 95% confidence interval (CI)=1.01, 1.27; P=0.037) but not in the random-effects model (pooled OR=1.11; 95% CI=0.96, 1.29; P=0.159). Given the marginal evidence of heterogeneity among studies (P=0.10; I2=35.9%), which likely was caused by inclusion of an Asian population treatment study with an opposite effect of the polymorphism on smoking cessation, we excluded the data of this study, revealing a significant association between the 9-repeat genotype and smoking cessation under both the fixed- and random-effects models (pooled OR=1.15; 95% CI=1.02, 1.29; P=0.02 for both models). By analyzing adjusted and unadjusted results, we performed the third meta-analysis, which showed consistently that the 9-repeat genotype was significantly associated with smoking cessation under both the fixed- and random-effects models (pooled OR=1.17; 95% CI=1.04, 1.31; P=0.009 for both models). We conclude that the 3'-UTR VNTR polymorphism is significantly associated with smoking

  13. Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes.

    PubMed

    Petr, Geraldine T; Sun, Yan; Frederick, Natalie M; Zhou, Yun; Dhamne, Sameer C; Hameed, Mustafa Q; Miranda, Clive; Bedoya, Edward A; Fischer, Kathryn D; Armsen, Wencke; Wang, Jianlin; Danbolt, Niels C; Rotenberg, Alexander; Aoki, Chiye J; Rosenberg, Paul A

    2015-04-01

    GLT-1 (EAAT2; slc1a2) is the major glutamate transporter in the brain, and is predominantly expressed in astrocytes, but at lower levels also in excitatory terminals. We generated a conditional GLT-1 knock-out mouse to uncover cell-type-specific functional roles of GLT-1. Inactivation of the GLT-1 gene was achieved in either neurons or astrocytes by expression of synapsin-Cre or inducible human GFAP-CreERT2. Elimination of GLT-1 from astrocytes resulted in loss of ∼80% of GLT-1 protein and of glutamate uptake activity that could be solubilized and reconstituted in liposomes. This loss was accompanied by excess mortality, lower body weight, and seizures suggesting that astrocytic GLT-1 is of major importance. However, there was only a small (15%) reduction that did not reach significance of glutamate uptake into crude forebrain synaptosomes. In contrast, when GLT-1 was deleted in neurons, both the GLT-1 protein and glutamate uptake activity that could be solubilized and reconstituted in liposomes were virtually unaffected. These mice showed normal survival, weight gain, and no seizures. However, the synaptosomal glutamate uptake capacity (Vmax) was reduced significantly (40%). In conclusion, astrocytic GLT-1 performs critical functions required for normal weight gain, resistance to epilepsy, and survival. However, the contribution of astrocytic GLT-1 to glutamate uptake into synaptosomes is less than expected, and the contribution of neuronal GLT-1 to synaptosomal glutamate uptake is greater than expected based on their relative protein expression. These results have important implications for the interpretation of the many previous studies assessing glutamate uptake capacity by measuring synaptosomal uptake. PMID:25834045

  14. Conditional Deletion of the Glutamate Transporter GLT-1 Reveals That Astrocytic GLT-1 Protects against Fatal Epilepsy While Neuronal GLT-1 Contributes Significantly to Glutamate Uptake into Synaptosomes

    PubMed Central

    Petr, Geraldine T.; Sun, Yan; Frederick, Natalie M.; Zhou, Yun; Dhamne, Sameer C.; Hameed, Mustafa Q.; Miranda, Clive; Bedoya, Edward A.; Fischer, Kathryn D.; Armsen, Wencke; Wang, Jianlin; Danbolt, Niels C.; Rotenberg, Alexander; Aoki, Chiye J.

    2015-01-01

    GLT-1 (EAAT2; slc1a2) is the major glutamate transporter in the brain, and is predominantly expressed in astrocytes, but at lower levels also in excitatory terminals. We generated a conditional GLT-1 knock-out mouse to uncover cell-type-specific functional roles of GLT-1. Inactivation of the GLT-1 gene was achieved in either neurons or astrocytes by expression of synapsin-Cre or inducible human GFAP-CreERT2. Elimination of GLT-1 from astrocytes resulted in loss of ∼80% of GLT-1 protein and of glutamate uptake activity that could be solubilized and reconstituted in liposomes. This loss was accompanied by excess mortality, lower body weight, and seizures suggesting that astrocytic GLT-1 is of major importance. However, there was only a small (15%) reduction that did not reach significance of glutamate uptake into crude forebrain synaptosomes. In contrast, when GLT-1 was deleted in neurons, both the GLT-1 protein and glutamate uptake activity that could be solubilized and reconstituted in liposomes were virtually unaffected. These mice showed normal survival, weight gain, and no seizures. However, the synaptosomal glutamate uptake capacity (Vmax) was reduced significantly (40%). In conclusion, astrocytic GLT-1 performs critical functions required for normal weight gain, resistance to epilepsy, and survival. However, the contribution of astrocytic GLT-1 to glutamate uptake into synaptosomes is less than expected, and the contribution of neuronal GLT-1 to synaptosomal glutamate uptake is greater than expected based on their relative protein expression. These results have important implications for the interpretation of the many previous studies assessing glutamate uptake capacity by measuring synaptosomal uptake. PMID:25834045

  15. Latent myostatin has significant activity and this activity is controlled more efficiently by WFIKKN1 than by WFIKKN2

    PubMed Central

    Szláma, György; Trexler, Mária; Patthy, László

    2013-01-01

    Myostatin, a negative regulator of skeletal muscle growth, is produced from myostatin precursor by multiple steps of proteolytic processing. After cleavage by a furin-type protease, the propeptide and growth factor domains remain associated, forming a noncovalent complex, the latent myostatin complex. Mature myostatin is liberated from latent myostatin by bone morphogenetic protein 1/tolloid proteases. Here, we show that, in reporter assays, latent myostatin preparations have significant myostatin activity, as the noncovalent complex dissociates at an appreciable rate, and both mature and semilatent myostatin (a complex in which the dimeric growth factor domain interacts with only one molecule of myostatin propeptide) bind to myostatin receptor. The interaction of myostatin receptor with semilatent myostatin is efficiently blocked by WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 or growth and differentiation factor-associated serum protein 2 (WFIKKN1), a large extracellular multidomain protein that binds both mature myostatin and myostatin propeptide [Kondás et al. (2008) J Biol Chem 283, 23677–23684]. Interestingly, the paralogous protein WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 2 or growth and differentiation factor-associated serum protein 1 (WFIKKN2) was less efficient than WFIKKN1 as an antagonist of the interactions of myostatin receptor with semilatent myostatin. Our studies have shown that this difference is attributable to the fact that only WFIKKN1 has affinity for the propeptide domain, and this interaction increases its potency in suppressing the receptor-binding activity of semilatent myostatin. As the interaction of WFIKKN1 with various forms of myostatin permits tighter control of myostatin activity until myostatin is liberated from latent myostatin by bone morphogenetic protein 1/tolloid proteases, WFIKKN1 may have greater potential as an antimyostatic agent than WFIKKN2

  16. Single molecule analysis reveals reversible and irreversible steps during spliceosome activation

    PubMed Central

    Hoskins, Aaron A; Rodgers, Margaret L; Friedman, Larry J; Gelles, Jeff; Moore, Melissa J

    2016-01-01

    The spliceosome is a complex machine composed of small nuclear ribonucleoproteins (snRNPs) and accessory proteins that excises introns from pre-mRNAs. After assembly the spliceosome is activated for catalysis by rearrangement of subunits to form an active site. How this rearrangement is coordinated is not well-understood. During activation, U4 must be released to allow U6 conformational change, while Prp19 complex (NTC) recruitment is essential for stabilizing the active site. We used multi-wavelength colocalization single molecule spectroscopy to directly observe the key events in Saccharomyces cerevisiae spliceosome activation. Following binding of the U4/U6.U5 tri-snRNP, the spliceosome either reverses assembly by discarding tri-snRNP or proceeds to activation by irreversible U4 loss. The major pathway for NTC recruitment occurs after U4 release. ATP stimulates both the competing U4 release and tri-snRNP discard processes. The data reveal the activation mechanism and show that overall splicing efficiency may be maintained through repeated rounds of disassembly and tri-snRNP reassociation. DOI: http://dx.doi.org/10.7554/eLife.14166.001 PMID:27244240

  17. Crystal structure of an avian influenza polymerase PA[subscript N] reveals an endonuclease active site

    SciTech Connect

    Yuan, Puwei; Bartlam, Mark; Lou, Zhiyong; Chen, Shoudeng; Zhou, Jie; He, Xiaojing; Lv, Zongyang; Ge, Ruowen; Li, Xuemei; Deng, Tao; Fodor, Ervin; Rao, Zihe; Liu, Yingfang

    2009-11-10

    The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 angstrom (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenza H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.

  18. Hydrogenase activity in aged, nonviable Desulfovibrio vulgaris cultures and its significance in anaerobic biocorrosion.

    PubMed

    Chatelus, C; Carrier, P; Saignes, P; Libert, M F; Berlier, Y; Lespinat, P A; Fauque, G; Legall, J

    1987-07-01

    Batch cultures of Desulfovibrio vulgaris stored at 32 degrees C for 10 months have been found to retain 50% of the hydrogenase activity of a 1-day culture. The hydrogenase found in old cultures needs reducing conditions for its activation. Viable cell counts are negative after 6 months, showing that the hydrogenase activity does not depend on the presence of viable cells. These observations are of importance in the understanding of anaerobic biocorrosion of metals caused by depolarization phenomena.

  19. CoRoT reveals a magnetic activity cycle in a Sun-like star.

    PubMed

    García, Rafael A; Mathur, Savita; Salabert, David; Ballot, Jérôme; Régulo, Clara; Metcalfe, Travis S; Baglin, Annie

    2010-08-27

    The 11-year activity cycle of the Sun is a consequence of a dynamo process occurring beneath its surface. We analyzed photometric data obtained by the CoRoT space mission, showing solarlike oscillations in the star HD49933, for signatures of stellar magnetic activity. Asteroseismic measurements of global changes in the oscillation frequencies and mode amplitudes reveal a modulation of at least 120 days, with the minimum frequency shift corresponding to maximum amplitude as in the Sun. These observations are evidence of a stellar magnetic activity cycle taking place beneath the surface of HD49933 and provide constraints for stellar dynamo models under conditions different from those of the Sun. PMID:20798310

  20. Significance of active ion transport in transalveolar water absorption: a study on isolated rat lung.

    PubMed

    Basset, G; Crone, C; Saumon, G

    1987-03-01

    1. Experiments were performed on isolated rat lungs perfused with Ringer solutions containing red cells. The goal was to clarify the role of active transport of Na+ for the absorption of fluid across the alveolar membrane, and to characterize active and passive pathways. 2. Partially degassed lungs were filled with 5 ml of an isotonic Ringer solution containing 125I-labelled albumin in order to calculate the fluid movement, and 22Na+ or 36Cl- for measurement of ion fluxes. Passive non-electrolyte permeability was determined in all experiments using [3H]mannitol. 3. The average rate of fluid absorption in phosphate-buffered instillates was 134 nl/s (S.E., 18.5; n = 14). With ouabain (10(-4) M) in the perfusate the fluid absorption rate fell to 57 nl/s (S.E., 8.2; n = 18). Amiloride (10(-3)-10(-4) M) in the instillate reduced the absorption to 75 nl/s (S.E., 8.6; n = 16). These results show that fluid absorption depends on transcellular transport of Na+ and that alveolar epithelial cells have a Na+ entry system in the luminal membrane and a Na+-K+ pump in the abluminal membrane. 4. The transcellular ion transport operates in parallel with a paracellular, passive leak that allows mannitol to pass with a permeability surface area product of 1.2 X 10(-4) ml/s, corresponding to a permeability coefficient of 2.4 X 10(-8) cm/s, assuming an alveolar surface area of 5000 cm2. 5. The passive fluxes of Na+ were 9.4 pmol/(cm2s) (S.E., 1.3; n = 25) in the direction from alveoli to perfusate and 8.0 pmol/(cm2s) (S.E., 0.86; n = 6) from perfusate to plasma. The passive fluxes of Cl- in the two directions were not significantly different either. Thus the transalveolar electrical potential difference is too small to affect ion movements measurably. 6. The passive permeability to Na+ was 6.7 X 10(-8) cm/s and to Cl- was 10.2 X 10(-8) cm/s (alveolar surface area assumed to be 5000 cm2). The ratio of the permeabilities is close to the ratio of the diffusion coefficients in free

  1. Genome Wide Expression Profiling of Cancer Cell Lines Cultured in Microgravity Reveals Significant Dysregulation of Cell Cycle and MicroRNA Gene Networks

    PubMed Central

    Vidyasekar, Prasanna; Shyamsunder, Pavithra; Arun, Rajpranap; Santhakumar, Rajalakshmi; Kapadia, Nand Kishore; Kumar, Ravi; Verma, Rama Shanker

    2015-01-01

    Zero gravity causes several changes in metabolic and functional aspects of the human body and experiments in space flight have demonstrated alterations in cancer growth and progression. This study reports the genome wide expression profiling of a colorectal cancer cell line-DLD-1, and a lymphoblast leukemic cell line-MOLT-4, under simulated microgravity in an effort to understand central processes and cellular functions that are dysregulated among both cell lines. Altered cell morphology, reduced cell viability and an aberrant cell cycle profile in comparison to their static controls were observed in both cell lines under microgravity. The process of cell cycle in DLD-1 cells was markedly affected with reduced viability, reduced colony forming ability, an apoptotic population and dysregulation of cell cycle genes, oncogenes, and cancer progression and prognostic markers. DNA microarray analysis revealed 1801 (upregulated) and 2542 (downregulated) genes (>2 fold) in DLD-1 cultures under microgravity while MOLT-4 cultures differentially expressed 349 (upregulated) and 444 (downregulated) genes (>2 fold) under microgravity. The loss in cell proliferative capacity was corroborated with the downregulation of the cell cycle process as demonstrated by functional clustering of DNA microarray data using gene ontology terms. The genome wide expression profile also showed significant dysregulation of post transcriptional gene silencing machinery and multiple microRNA host genes that are potential tumor suppressors and proto-oncogenes including MIR22HG, MIR17HG and MIR21HG. The MIR22HG, a tumor-suppressor gene was one of the highest upregulated genes in the microarray data showing a 4.4 log fold upregulation under microgravity. Real time PCR validated the dysregulation in the host gene by demonstrating a 4.18 log fold upregulation of the miR-22 microRNA. Microarray data also showed dysregulation of direct targets of miR-22, SP1, CDK6 and CCNA2. PMID:26295583

  2. Interspecies activity correlations reveal functional correspondence between monkey and human brain areas.

    PubMed

    Mantini, Dante; Hasson, Uri; Betti, Viviana; Perrucci, Mauro G; Romani, Gian Luca; Corbetta, Maurizio; Orban, Guy A; Vanduffel, Wim

    2012-02-05

    Evolution-driven functional changes in the primate brain are typically assessed by aligning monkey and human activation maps using cortical surface expansion models. These models use putative homologous areas as registration landmarks, assuming they are functionally correspondent. For cases in which functional changes have occurred in an area, this assumption prohibits to reveal whether other areas may have assumed lost functions. Here we describe a method to examine functional correspondences across species. Without making spatial assumptions, we assessed similarities in sensory-driven functional magnetic resonance imaging responses between monkey (Macaca mulatta) and human brain areas by temporal correlation. Using natural vision data, we revealed regions for which functional processing has shifted to topologically divergent locations during evolution. We conclude that substantial evolution-driven functional reorganizations have occurred, not always consistent with cortical expansion processes. This framework for evaluating changes in functional architecture is crucial to building more accurate evolutionary models.

  3. Metabolomics reveal 1-palmitoyl lysophosphatidylcholine production by peroxisome proliferator-activated receptor α.

    PubMed

    Takahashi, Haruya; Goto, Tsuyoshi; Yamazaki, Yota; Kamakari, Kosuke; Hirata, Mariko; Suzuki, Hideyuki; Shibata, Daisuke; Nakata, Rieko; Inoue, Hiroyasu; Takahashi, Nobuyuki; Kawada, Teruo

    2015-02-01

    PPARα is well known as a master regulator of lipid metabolism. PPARα activation enhances fatty acid oxidation and decreases the levels of circulating and cellular lipids in obese diabetic patients. Although PPARα target genes are widely known, little is known about the alteration of plasma and liver metabolites during PPARα activation. Here, we report that metabolome analysis-implicated upregulation of many plasma lysoGP species during bezafibrate (PPARα agonist) treatment. In particular, 1-palmitoyl lysophosphatidylcholine [LPC(16:0)] is increased by bezafibrate treatment in both plasma and liver. In mouse primary hepatocytes, the secretion of LPC(16:0) increased on PPARα activation, and this effect was attenuated by PPARα antagonist treatment. We demonstrated that Pla2g7 gene expression levels in the murine hepatocytes were increased by PPARα activation, and the secretion of LPC(16:0) was suppressed by Pla2g7 siRNA treatment. Interestingly, LPC(16:0) activates PPARα and induces the expression of PPARα target genes in hepatocytes. Furthermore, we showed that LPC(16:0) has the ability to recover glucose uptake in adipocytes induced insulin resistance. These results reveal that LPC(16:0) is induced by PPARα activation in hepatocytes; LPC(16:0) contributes to the upregulation of PPARα target genes in hepatocytes and the recovery of glucose uptake in insulin-resistant adipocytes. PMID:25510248

  4. The Significance of Turning Passive Into Active in Control Mastery Theory

    PubMed Central

    FOREMAN, STEVEN A.

    1996-01-01

    Turning passive into active was first described by Freud but was later given expanded importance by Weiss. This new conceptualization of turning passive into active as an interpersonal communication and test has made a major contribution to the clinical treatment of difficult patients. This article reviews "control mastery" theory and puts its notion of passive-into-active testing into perspective with regard to Freud’s original conception as well as other conceptions, such as identification with the aggressor and projective identification. Formulation and the treatment of patients are illustrated with clinical examples. PMID:22700271

  5. Knockin of Cre Gene at Ins2 Locus Reveals No Cre Activity in Mouse Hypothalamic Neurons

    PubMed Central

    Li, Ling; Gao, Lin; Wang, Kejia; Ma, Xianhua; Chang, Xusheng; Shi, Jian-Hui; Zhang, Ye; Yin, Kai; Liu, Zhimin; Shi, Yuguang; Xie, Zhifang; Zhang, Weiping J.

    2016-01-01

    The recombination efficiency and cell specificity of Cre driver lines are critical for exploring pancreatic β cell biology with the Cre/LoxP approach. Some commonly used Cre lines are based on the short Ins2 promoter fragment and show recombination activity in hypothalamic neurons; however, whether this stems from endogenous Ins2 promoter activity remains controversial. In this study, we generated Ins2-Cre knockin mice with a targeted insertion of IRES-Cre at the Ins2 locus and demonstrated with a cell lineage tracing study that the Ins2 gene is not transcriptionally active in the hypothalamus. The Ins2-Cre driver line displayed robust Cre expression and activity in pancreatic β cells without significant alterations in insulin expression. In the brain, Cre activity was mainly restricted to the choroid plexus, without significant recombination detected in the hippocampus or hypothalamus by the LacZ or fluorescent tdTomato reporters. Furthermore, Ins2-Cre mice exhibited normal glucose tolerance and insulin secretion upon glucose stimulation in vivo. In conclusion, this Ins2-Cre driver line allowed high-fidelity detection of endogenous Ins2 promoter activity in vivo, and the negative activity in the hypothalamus demonstrated that this system is a promising alternative tool for studying β cell biology. PMID:26830324

  6. PCNA immunoreactivity revealing normal proliferative activity in the brain of adult Lampetra planeri (Bloch, 1784).

    PubMed

    Margotta, Vito; Caronti, Brunella; Colombari, Paolo Tito; Castiglia, Riccardo

    2007-01-01

    It is now well known that the Teleosts among Osteichthyes, Urodele and Anuran Amphibians, Lacertilian Reptiles possess encephalic natural proliferative activities even into adulthood, as demonstrated by a great number of researches performed both under normal and various experimental conditions. Few years ago we have undertaken in adult heterothermic vertebrates a reappraisal on spontaneous cerebral proliferative events involving some organisms (Podarcis sicula, Triturus carnifex, Rana esculenta, Carassius carassius) representative of these vertebrates and belonging to the same or phylogenetically similar species used by previous researchers in studies having the same object. In our investigations, these performances were revealed by a proliferative immunocytochemical marker, the Proliferating Cell Nuclear Antigen (PCNA). At this point of our study in the scenario emerging from findings a missing piece is represented by Petromyzontidae. To fill up this gap in the present investigation, using our usual test, we have paid attention to adult specimens of Lampetra planeri. The obtained immunostaining panorama has revealed the presence of a considerable number of spontaneous proliferative activities. These events might differ in quantity, in various encephalic districts. PCNA-labelled cells appeared scattered in the cranial portion of olfactory bulbs, while the PCNA expression has been observed steadily localized with a distinctly continous distribution in cells interposed among the ependymal epithelium which lines the cavities of the proximal portion of the olfactory region and of the cerebral ventricles. DNA synthesis activity has been also found in cells scattered in the telencephalic, diencephalic, mesencephalic and medulla oblongata periventricular grey. This immunoreactivity was not revealable in the cerebellum. Our findings are discussed in the light of bibliographic news.

  7. [Activation and inhibitory types of brain neuronal sinchronisation: genesis and functional significance].

    PubMed

    Shul'gina, G I

    2007-01-01

    The generalization of studies of the systemic work of cortical neurons during the information processing initiated in Livanov's laboratory allows us to make the following conclusions in terms of the modem state of the problem. In different brain structures, there is a considerable degree of correlation between neuronal activities and slow potential oscillations. In the state of rest or deep extinction, the synchronization of brain neurons increases by the inhibitory type. In the active state of the brain, the degree of neuronal synchronization increases by the activation type. Both processes are determined by the involvement of the whole brain inhibitory or activation systems, respectively. A relative augmentation of inhibitory processes results in a restriction of information transmission in the cortex and prevents its fixation in memory of the system. A decrease in inhibition facilitates the excitation thransmission in the interconnected brain structures. Synchronous convergence of ordered polse flows ensures the information fixation during learning.

  8. Diagnostic significance of the pancreatic displacement with extrapancreatic oval-shaped low activity area on scintigram.

    PubMed

    Watanabe, K; Nakayama, C; Kamoi, I; Matsuura, K

    1977-01-01

    To aid in the differential diagnosis of upper abdominal tumors, pancreatic scintigraphy was performed in 62 cases. The findings were rather characteristic for pancreatic cysts; namely, pancreatic displacement and, adjacently, an oval-shaped activity area whose count was lower than background. Pancreatic displacement was observed with comparatively large retroperitoneal masses. Low activity areas were observed in cystic lesions. Both findings were noted in 7 (54%) of 13 pancreatic cyst cases. Among the 12 cases with these findings, 7 (58%) had pancreatic cysts.

  9. High-throughput Protease Activity Cytometry Reveals Dose-dependent Heterogeneity in PMA-mediated ADAM17 Activation†

    PubMed Central

    Wu, Lidan; Claas, Allison M.; Sarkar, Aniruddh; Lauffenburger, Douglas A.; Han, Jongyoon

    2015-01-01

    As key components of autocrine signaling, pericellular proteases, A Disintegrin and Metalloproteinases (ADAMs) in particular, are known to impact the microenvironment of individual cells and have significant implications in various pathological situations including cancer, inflammatory and vascular diseases.1-3 There is great incentive to develop a high-throughput platform for single-cell measurement of pericellular protease activity, as it is essential for studying the heterogeneity of protease response and the corresponding cell behavioral consequences. In this work, we developed a microfluidic platform to simultaneously monitor protease activity of many single cells in a time-dependent manner. This platform isolates individual microwells rapidly on demand and thus allows single-cell activity measurement of both cell-surface and secreted proteases by confining individual cells with diffusive FRET-based substrates. With this platform, we observed dose-dependent heterogeneous protease activation of HepG2 cells treated with phorbol 12-myristate 13-acetate (PMA). To study the temporal behavior of PMA-induced protease response, we monitored the pericellular protease activity of the same single cells during three different time periods and revealed the diversity in the dynamic patterns of single-cell protease activity profile upon PMA stimulation. The unique temporal information of single-cell protease response can help unveil the complicated functional role of pericellular proteases. PMID:25832727

  10. Cofactor bypass variants reveal a conformational control mechanism governing cell wall polymerase activity.

    PubMed

    Markovski, Monica; Bohrhunter, Jessica L; Lupoli, Tania J; Uehara, Tsuyoshi; Walker, Suzanne; Kahne, Daniel E; Bernhardt, Thomas G

    2016-04-26

    To fortify their cytoplasmic membrane and protect it from osmotic rupture, most bacteria surround themselves with a peptidoglycan (PG) exoskeleton synthesized by the penicillin-binding proteins (PBPs). As their name implies, these proteins are the targets of penicillin and related antibiotics. We and others have shown that the PG synthases PBP1b and PBP1a of Escherichia coli require the outer membrane lipoproteins LpoA and LpoB, respectively, for their in vivo function. Although it has been demonstrated that LpoB activates the PG polymerization activity of PBP1b in vitro, the mechanism of activation and its physiological relevance have remained unclear. We therefore selected for variants of PBP1b (PBP1b*) that bypass the LpoB requirement for in vivo function, reasoning that they would shed light on LpoB function and its activation mechanism. Several of these PBP1b variants were isolated and displayed elevated polymerization activity in vitro, indicating that the activation of glycan polymer growth is indeed one of the relevant functions of LpoB in vivo. Moreover, the location of amino acid substitutions causing the bypass phenotype on the PBP1b structure support a model in which polymerization activation proceeds via the induction of a conformational change in PBP1b initiated by LpoB binding to its UB2H domain, followed by its transmission to the glycosyl transferase active site. Finally, phenotypic analysis of strains carrying a PBP1b* variant revealed that the PBP1b-LpoB complex is most likely not providing an important physical link between the inner and outer membranes at the division site, as has been previously proposed. PMID:27071112

  11. Adaptability and selectivity of human peroxisome proliferator-activated receptor (PPAR) pan agonists revealed from crystal structures

    SciTech Connect

    Oyama, Takuji; Toyota, Kenji; Waku, Tsuyoshi; Hirakawa, Yuko; Nagasawa, Naoko; Kasuga, Jun-ichi; Hashimoto, Yuichi; Miyachi, Hiroyuki; Morikawa, Kosuke

    2009-08-01

    The structures of the ligand-binding domains (LBDs) of human peroxisome proliferator-activated receptors (PPARα, PPARγ and PPARδ) in complexes with a pan agonist, an α/δ dual agonist and a PPARδ-specific agonist were determined. The results explain how each ligand is recognized by the PPAR LBDs at an atomic level. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family, which is defined as transcriptional factors that are activated by the binding of ligands to their ligand-binding domains (LBDs). Although the three PPAR subtypes display different tissue distribution patterns and distinct pharmacological profiles, they all are essentially related to fatty-acid and glucose metabolism. Since the PPARs share similar three-dimensional structures within the LBDs, synthetic ligands which simultaneously activate two or all of the PPARs could be potent candidates in terms of drugs for the treatment of abnormal metabolic homeostasis. The structures of several PPAR LBDs were determined in complex with synthetic ligands, derivatives of 3-(4-alkoxyphenyl)propanoic acid, which exhibit unique agonistic activities. The PPARα and PPARγ LBDs were complexed with the same pan agonist, TIPP-703, which activates all three PPARs and their crystal structures were determined. The two LBD–ligand complex structures revealed how the pan agonist is adapted to the similar, but significantly different, ligand-binding pockets of the PPARs. The structures of the PPARδ LBD in complex with an α/δ-selective ligand, TIPP-401, and with a related δ-specific ligand, TIPP-204, were also determined. The comparison between the two PPARδ complexes revealed how each ligand exhibits either a ‘dual selective’ or ‘single specific’ binding mode.

  12. Active sensing associated with spatial learning reveals memory-based attention in an electric fish.

    PubMed

    Jun, James J; Longtin, André; Maler, Leonard

    2016-05-01

    Active sensing behaviors reveal what an animal is attending to and how it changes with learning. Gymnotus sp, a gymnotiform weakly electric fish, generates an electric organ discharge (EOD) as discrete pulses to actively sense its surroundings. We monitored freely behaving gymnotid fish in a large dark "maze" and extracted their trajectories and EOD pulse pattern and rate while they learned to find food with electrically detectable landmarks as cues. After training, they more rapidly found food using shorter, more stereotyped trajectories and spent more time near the food location. We observed three forms of active sensing: sustained high EOD rates per unit distance (sampling density), transient large increases in EOD rate (E-scans) and stereotyped scanning movements (B-scans) were initially strong at landmarks and food, but, after learning, intensified only at the food location. During probe (no food) trials, after learning, the fish's search area and intense active sampling was still centered on the missing food location, but now also increased near landmarks. We hypothesize that active sensing is a behavioral manifestation of attention and essential for spatial learning; the fish use spatial memory of landmarks and path integration to reach the expected food location and confine their attention to this region. PMID:26961107

  13. Active-Site Monovalent Cations Revealed in a 1.55 Å Resolution Hammerhead Ribozyme Structure

    PubMed Central

    Anderson, Michael; Schultz, Eric P.; Martick, Monika; Scott, William G.

    2013-01-01

    We have obtained a 1.55 Å crystal structure of a hammerhead ribozyme derived from Schistosoma mansoni in conditions that permit detailed observations of Na+ ion binding in the ribozyme's active site. At least two such Na+ ions are observed. The first Na+ ion binds to the N7 of G10.1 and the adjacent A9 phosphate in a manner identical to that previously observed for divalent cations. A second Na+ ion binds to the Hoogsteen face of G12, the general base in the hammerhead cleavage reaction, thereby potentially dissipating the negative charge of the catalytically active enolate form of the nucleotide base. A potential but more ambiguous third site bridges the A9 and scissile phosphates in a manner consistent with previous predictions. Hammerhead ribozymes have been observed to be active in the presence of high concentrations of monovalent cations, including Na+, but the mechanism by which monovalent cations substitute for divalent cations in hammerhead catalysis remains unclear. Our results enable us to suggest that Na+ directly and specifically substitutes for divalent cations in the hammerhead active site. The detailed geometry of the pre-catalytic active site complex is also revealed with a new level of precision, thanks to the quality of the electron density maps obtained from what is currently the highest resolution ribozyme structure in the protein data bank. PMID:23711504

  14. Single-Molecule Imaging Reveals the Activation Dynamics of Intracellular Protein Smad3 on Cell Membrane

    NASA Astrophysics Data System (ADS)

    Li, Nan; Yang, Yong; He, Kangmin; Zhang, Fayun; Zhao, Libo; Zhou, Wei; Yuan, Jinghe; Liang, Wei; Fang, Xiaohong

    2016-09-01

    Smad3 is an intracellular protein that plays a key role in propagating transforming growth factor β (TGF-β) signals from cell membrane to nucleus. However whether the transient process of Smad3 activation occurs on cell membrane and how it is regulated remains elusive. Using advanced live-cell single-molecule fluorescence microscopy to image and track fluorescent protein-labeled Smad3, we observed and quantified, for the first time, the dynamics of individual Smad3 molecules docking to and activation on the cell membrane. It was found that Smad3 docked to cell membrane in both unstimulated and stimulated cells, but with different diffusion rates and dissociation kinetics. The change in its membrane docking dynamics can be used to study the activation of Smad3. Our results reveal that Smad3 binds with type I TGF-β receptor (TRI) even in unstimulated cells. Its activation is regulated by TRI phosphorylation but independent of receptor endocytosis. This study offers new information on TGF-β/Smad signaling, as well as a new approach to investigate the activation of intracellular signaling proteins for a better understanding of their functions in signal transduction.

  15. A chromatin activity based chemoproteomic approach reveals a transcriptional repressome for gene-specific silencing

    PubMed Central

    Liu, Cui; Yu, Yanbao; Liu, Feng; Wei, Xin; Wrobel, John A.; Gunawardena, Harsha P.; Zhou, Li; Jin, Jian; Chen, Xian

    2015-01-01

    Immune cells develop endotoxin tolerance (ET) after prolonged stimulation. ET increases the level of a repression mark H3K9me2 in the transcriptional-silent chromatin specifically associated with pro-inflammatory genes. However, it is not clear what proteins are functionally involved in this process. Here we show that a novel chromatin activity based chemoproteomic (ChaC) approach can dissect the functional chromatin protein complexes that regulate ET-associated inflammation. Using UNC0638 that binds the enzymatically active H3K9-specific methyltransferase G9a/GLP, ChaC reveals that G9a is constitutively active at a G9a-dependent mega-dalton repressome in primary endotoxin-tolerant macrophages. G9a/GLP broadly impacts the ET-specific reprogramming of the histone code landscape, chromatin remodeling, and the activities of select transcription factors. We discover that the G9a-dependent epigenetic environment promotes the transcriptional repression activity of c-Myc for gene-specific co-regulation of chronic inflammation. ChaC may be also applicable to dissect other functional protein complexes in the context of phenotypic chromatin architectures. PMID:25502336

  16. Single-Molecule Imaging Reveals the Activation Dynamics of Intracellular Protein Smad3 on Cell Membrane.

    PubMed

    Li, Nan; Yang, Yong; He, Kangmin; Zhang, Fayun; Zhao, Libo; Zhou, Wei; Yuan, Jinghe; Liang, Wei; Fang, Xiaohong

    2016-01-01

    Smad3 is an intracellular protein that plays a key role in propagating transforming growth factor β (TGF-β) signals from cell membrane to nucleus. However whether the transient process of Smad3 activation occurs on cell membrane and how it is regulated remains elusive. Using advanced live-cell single-molecule fluorescence microscopy to image and track fluorescent protein-labeled Smad3, we observed and quantified, for the first time, the dynamics of individual Smad3 molecules docking to and activation on the cell membrane. It was found that Smad3 docked to cell membrane in both unstimulated and stimulated cells, but with different diffusion rates and dissociation kinetics. The change in its membrane docking dynamics can be used to study the activation of Smad3. Our results reveal that Smad3 binds with type I TGF-β receptor (TRI) even in unstimulated cells. Its activation is regulated by TRI phosphorylation but independent of receptor endocytosis. This study offers new information on TGF-β/Smad signaling, as well as a new approach to investigate the activation of intracellular signaling proteins for a better understanding of their functions in signal transduction. PMID:27641076

  17. Single-Molecule Imaging Reveals the Activation Dynamics of Intracellular Protein Smad3 on Cell Membrane

    PubMed Central

    Li, Nan; Yang, Yong; He, Kangmin; Zhang, Fayun; Zhao, Libo; Zhou, Wei; Yuan, Jinghe; Liang, Wei; Fang, Xiaohong

    2016-01-01

    Smad3 is an intracellular protein that plays a key role in propagating transforming growth factor β (TGF-β) signals from cell membrane to nucleus. However whether the transient process of Smad3 activation occurs on cell membrane and how it is regulated remains elusive. Using advanced live-cell single-molecule fluorescence microscopy to image and track fluorescent protein-labeled Smad3, we observed and quantified, for the first time, the dynamics of individual Smad3 molecules docking to and activation on the cell membrane. It was found that Smad3 docked to cell membrane in both unstimulated and stimulated cells, but with different diffusion rates and dissociation kinetics. The change in its membrane docking dynamics can be used to study the activation of Smad3. Our results reveal that Smad3 binds with type I TGF-β receptor (TRI) even in unstimulated cells. Its activation is regulated by TRI phosphorylation but independent of receptor endocytosis. This study offers new information on TGF-β/Smad signaling, as well as a new approach to investigate the activation of intracellular signaling proteins for a better understanding of their functions in signal transduction. PMID:27641076

  18. An MHC-defined primate model reveals significant rejection of bone marrow after mixed-chimerism induction despite full MHC matching

    PubMed Central

    Larsen, Christian P.; Page, Andrew; Linzie, Kelly Hamby; Russell, Maria; Deane, Taylor; Stempora, Linda; Strobert, Elizabeth; Penedo, Maria Cecilia T.; Ward, Thea; Wiseman, Roger; O'Connor, David; Miller, Weston; Sen, Sharon; Singh, Karnail; Kean, Leslie S.

    2010-01-01

    In murine models, mixed hematopoietic chimerism-induction leads to robust immune tolerance. However, translation to primates and to patients has been difficult. In this study, we used a novel MHC-defined rhesus macaque model to examine the impact of MHC matching on the stability of costimulation blockade/sirolimus-mediated chimerism, and to probe possible mechanisms of bone marrow rejection after non-myeloablative transplant. Using busulfan-based pre-transplant preparation and maintenance immunosuppression with sirolimus, as well as CD28- and CD154-blockade, all recipients demonstrated donor engraftment after transplant. However, the mixed-chimerism that resulted was compartmentalized, with recipients demonstrating significantly higher whole blood chimerism compared to T cell chimerism Thus, the vast majority of T cells present post-transplant were recipient- rather than donor-derived. Surprisingly, even in MHC-matched transplants, rejection of donor hematopoiesis predominated after immunosuppression withdrawal. Weaning of immunosuppression was associated with a surge of antigen-experienced T cells, and transplant rejection was associated with the acquisition of donor-directed T cell alloreactivity. These results suggest that a reservoir of alloreactive cells was present despite prior costimulation blockade and sirolimus, and that the post-immunosuppression lymphocytic rebound may have lead to a phenotypic shift in these recipient T cells towards an activated, antigen experienced phenotype, and ultimately, to transplant rejection. PMID:20849552

  19. Significant role of climatic trends on hydrothermal activity Coso Hot Springs, California

    SciTech Connect

    Lofgren, B.E. )

    1990-05-01

    The hydrothermal features of Coso Hot Springs have attracted visitors for 130 yr and scientific investigators for two decades. In 1978, anticipating effects of major geothermal developments nearby, the Naval Weapons Center (NWC) initiated a comprehensive monitoring program at a dozen hydrothermal sites in the Coso Hot Springs area. Nine years of monitoring preceded power production in the nearby Coso geothermal field in July 1987. During this period, steam was rising from numerous vents and gently boiling mud pots. Local rainfall caused increased boiling activity in several mud pots, with some overflowing during wet periods. Then in August 1988, a year after geothermal power production began major changes in hot spring activity commenced. Small mud pots and steamers started to grow and coalesce. In March 1989, mud-pot activity became more violent. Many buried wells failed causing surface activity in other areas to diminish. During ensuing months, large mud cones developed and much of the steam and boiling water occurred in a few major pots. Because the abrupt changes in hydrothermal activity followed so closely after nearby geothermal production began, the obvious cause has been attributed to geothermal developments. Studies of NWC baseline monitoring data indicate, however, that no effects of geothermal developments have been felt in the hot springs area. Rainfall and barometric effects account for most of the fluctuations in records of the past decade. Early accounts and field evidence suggest similar changes have occurred in the past.

  20. Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways.

    PubMed

    Kohlhoff, Kai J; Shukla, Diwakar; Lawrenz, Morgan; Bowman, Gregory R; Konerding, David E; Belov, Dan; Altman, Russ B; Pande, Vijay S

    2014-01-01

    Simulations can provide tremendous insight into the atomistic details of biological mechanisms, but micro- to millisecond timescales are historically only accessible on dedicated supercomputers. We demonstrate that cloud computing is a viable alternative that brings long-timescale processes within reach of a broader community. We used Google's Exacycle cloud-computing platform to simulate two milliseconds of dynamics of a major drug target, the G-protein-coupled receptor β2AR. Markov state models aggregate independent simulations into a single statistical model that is validated by previous computational and experimental results. Moreover, our models provide an atomistic description of the activation of a G-protein-coupled receptor and reveal multiple activation pathways. Agonists and inverse agonists interact differentially with these pathways, with profound implications for drug design. PMID:24345941

  1. Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways.

    PubMed

    Kohlhoff, Kai J; Shukla, Diwakar; Lawrenz, Morgan; Bowman, Gregory R; Konerding, David E; Belov, Dan; Altman, Russ B; Pande, Vijay S

    2014-01-01

    Simulations can provide tremendous insight into the atomistic details of biological mechanisms, but micro- to millisecond timescales are historically only accessible on dedicated supercomputers. We demonstrate that cloud computing is a viable alternative that brings long-timescale processes within reach of a broader community. We used Google's Exacycle cloud-computing platform to simulate two milliseconds of dynamics of a major drug target, the G-protein-coupled receptor β2AR. Markov state models aggregate independent simulations into a single statistical model that is validated by previous computational and experimental results. Moreover, our models provide an atomistic description of the activation of a G-protein-coupled receptor and reveal multiple activation pathways. Agonists and inverse agonists interact differentially with these pathways, with profound implications for drug design.

  2. Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways

    NASA Astrophysics Data System (ADS)

    Kohlhoff, Kai J.; Shukla, Diwakar; Lawrenz, Morgan; Bowman, Gregory R.; Konerding, David E.; Belov, Dan; Altman, Russ B.; Pande, Vijay S.

    2014-01-01

    Simulations can provide tremendous insight into the atomistic details of biological mechanisms, but micro- to millisecond timescales are historically only accessible on dedicated supercomputers. We demonstrate that cloud computing is a viable alternative that brings long-timescale processes within reach of a broader community. We used Google's Exacycle cloud-computing platform to simulate two milliseconds of dynamics of a major drug target, the G-protein-coupled receptor β2AR. Markov state models aggregate independent simulations into a single statistical model that is validated by previous computational and experimental results. Moreover, our models provide an atomistic description of the activation of a G-protein-coupled receptor and reveal multiple activation pathways. Agonists and inverse agonists interact differentially with these pathways, with profound implications for drug design.

  3. The Social and Economic Significance of Recreation Activities in the Marine Environment.

    ERIC Educational Resources Information Center

    Ditton, Robert B.

    Although the data obtained by an Outdoor Recreation Resources Review Commission in 1960 indicated that 44 percent of participants in outdoor recreation prefer water-based activities, the potential demand for recreation within the coastal zone is much greater than that study indicates, because the unfulfilled recreational demands of the urban…

  4. An investigation of herpes simplex virus promoter activity compatible with latency establishment reveals VP16-independent activation of immediate-early promoters in sensory neurones.

    PubMed

    Proença, João T; Coleman, Heather M; Nicoll, Michael P; Connor, Viv; Preston, Christopher M; Arthur, Jane; Efstathiou, Stacey

    2011-11-01

    Herpes simplex virus (HSV) type-1 establishes lifelong latency in sensory neurones and it is widely assumed that latency is the consequence of a failure to initiate virus immediate-early (IE) gene expression. However, using a Cre reporter mouse system in conjunction with Cre-expressing HSV-1 recombinants we have previously shown that activation of the IE ICP0 promoter can precede latency establishment in at least 30% of latently infected cells. During productive infection of non-neuronal cells, IE promoter activation is largely dependent on the transactivator VP16 a late structural component of the virion. Of significance, VP16 has recently been shown to exhibit altered regulation in neurones; where its de novo synthesis is necessary for IE gene expression during both lytic infection and reactivation from latency. In the current study, we utilized the Cre reporter mouse model system to characterize the full extent of viral promoter activity compatible with cell survival and latency establishment. In contrast to the high frequency activation of representative IE promoters prior to latency establishment, cell marking using a virus recombinant expressing Cre under VP16 promoter control was very inefficient. Furthermore, infection of neuronal cultures with VP16 mutants reveals a strong VP16 requirement for IE promoter activity in non-neuronal cells, but not sensory neurones. We conclude that only IE promoter activation can efficiently precede latency establishment and that this activation is likely to occur through a VP16-independent mechanism. PMID:21752961

  5. Using the Significant Learning Taxonomy and Active Learning to Improve Accounting Education

    ERIC Educational Resources Information Center

    Killian, Larita J.; Brandon, Christopher D.

    2009-01-01

    Like other members of the academy, accounting professors are challenged to improve student learning. We must help students move beyond the "bean counter" role and develop higher-level skills such as analysis, synthesis, and problem-solving. The Significant Learning Taxonomy was used as a template to improve learning in an introductory accounting…

  6. Microfluidic Investigation Reveals Distinct Roles for Actin Cytoskeleton and Myosin II Activity in Capillary Leukocyte Trafficking

    PubMed Central

    Gabriele, Sylvain; Benoliel, Anne-Marie; Bongrand, Pierre; Théodoly, Olivier

    2009-01-01

    Circulating leukocyte sequestration in pulmonary capillaries is arguably the initiating event of lung injury in acute respiratory distress syndrome. We present a microfluidic investigation of the roles of actin organization and myosin II activity during the different stages of leukocyte trafficking through narrow capillaries (entry, transit and shape relaxation) using specific drugs (latrunculin A, jasplakinolide, and blebbistatin). The deformation rate during entry reveals that cell stiffness depends strongly on F-actin organization and hardly on myosin II activity, supporting a microfilament role in leukocyte sequestration. In the transit stage, cell friction is influenced by stiffness, demonstrating that the actin network is not completely broken after a forced entry into a capillary. Conversely, membrane unfolding was independent of leukocyte stiffness. The surface area of sequestered leukocytes increased by up to 160% in the absence of myosin II activity, showing the major role of molecular motors in microvilli wrinkling and zipping. Finally, cell shape relaxation was largely independent of both actin organization and myosin II activity, whereas a deformed state was required for normal trafficking through capillary segments. PMID:19450501

  7. Rapid ester biosynthesis screening reveals a high activity alcohol-O-acyltransferase (AATase) from tomato fruit.

    PubMed

    Lin, Jyun-Liang; Zhu, Jie; Wheeldon, Ian

    2016-05-01

    Ethyl and acetate esters are naturally produced in various yeasts, plants, and bacteria. The biosynthetic pathways that produce these esters share a common reaction step, the condensation of acetyl/acyl-CoA with an alcohol by alcohol-O-acetyl/acyltransferase (AATase). Recent metabolic engineering efforts exploit AATase activity to produce fatty acid ethyl esters as potential diesel fuel replacements as well as short- and medium-chain volatile esters as fragrance and flavor compounds. These efforts have been limited by the lack of a rapid screen to quantify ester biosynthesis. Enzyme engineering efforts have also been limited by the lack of a high throughput screen for AATase activity. Here, we developed a high throughput assay for AATase activity and used this assay to discover a high activity AATase from tomato fruit, Solanum lycopersicum (Atf-S.l). Atf1-S.l exhibited broad specificity towards acyl-CoAs with chain length from C4 to C10 and was specific towards 1-pentanol. The AATase screen also revealed new acyl-CoA substrate specificities for Atf1, Atf2, Eht1, and Eeb1 from Saccharomyces cerevisiae, and Atf-C.m from melon fruit, Cucumis melo, thus increasing the pool of characterized AATases that can be used in ester biosynthesis of ester-based fragrance and flavor compounds as well as fatty acid ethyl ester biofuels. PMID:26814045

  8. Comprehensive analysis of protein digestion using six trypsins reveals the origin of trypsin as a significant source of variability in proteomics1

    PubMed Central

    Walmsley, Scott J.; Rudnick, Paul A.; Liang, Yuxue; Dong, Qian; Stein, Stephen E.; Nesvizhskii, Alexey I.

    2014-01-01

    Trypsin is an endoprotease commonly used for sample preparation in proteomics experiments. Importantly, protein digestion is dependent on multiple factors, including the trypsin origin and digestion conditions. In-depth characterization of trypsin activity could lead to improved reliability of peptide detection and quantitation in both targeted and discovery proteomics studies. To this end, we assembled a data analysis pipeline and suite of visualization tools for quality control and comprehensive characterization of pre-analytical variability in proteomics experiments. Using these tools, we evaluated six available proteomics-grade trypsins and their digestion of a single purified protein, human serum albumin (HSA). HSA was aliquoted and then digested for 2 or 18 hours for each trypsin, and the resulting digests were desalted and analyzed in triplicate by reversed phase liquid chromatography - tandem mass spectrometry. Peptides were identified and quantified using the NIST MSQC pipeline and a comprehensive HSA mass spectral library. We performed a statistical analysis of peptide abundances from different digests, and further visualized the data using the principal component analysis and quantitative protein “sequence maps”. While the performance of individual trypsins across repeat digests was reproducible, significant differences were observed depending on the origin of the trypsin (i.e., bovine vs. porcine). Bovine trypsins produced a higher number of peptides containing missed cleavages, whereas porcine trypsins produced more semi-tryptic peptides. In addition, many cleavage sites showed variable digestion kinetics patterns, evident from the comparison of peptide abundances in 2 hour vs. 18 hour digests. Overall, this work illustrates effects of an often neglected source of variability in proteomics experiments: the origin of the trypsin. PMID:24116745

  9. Camelid Ig V genes reveal significant human homology not seen in therapeutic target genes, providing for a powerful therapeutic antibody platform

    PubMed Central

    Klarenbeek, Alex; Mazouari, Khalil El; Desmyter, Aline; Blanchetot, Christophe; Hultberg, Anna; de Jonge, Natalie; Roovers, Rob C; Cambillau, Christian; Spinelli, Sylvia; Del-Favero, Jurgen; Verrips, Theo; de Haard, Hans J; Achour, Ikbel

    2015-01-01

    Camelid immunoglobulin variable (IGV) regions were found homologous to their human counterparts; however, the germline V repertoires of camelid heavy and light chains are still incomplete and their therapeutic potential is only beginning to be appreciated. We therefore leveraged the publicly available HTG and WGS databases of Lama pacos and Camelus ferus to retrieve the germline repertoire of V genes using human IGV genes as reference. In addition, we amplified IGKV and IGLV genes to uncover the V germline repertoire of Lama glama and sequenced BAC clones covering part of the Lama pacos IGK and IGL loci. Our in silico analysis showed that camelid counterparts of all human IGKV and IGLV families and most IGHV families could be identified, based on canonical structure and sequence homology. Interestingly, this sequence homology seemed largely restricted to the Ig V genes and was far less apparent in other genes: 6 therapeutically relevant target genes differed significantly from their human orthologs. This contributed to efficient immunization of llamas with the human proteins CD70, MET, interleukin (IL)-1β and IL-6, resulting in large panels of functional antibodies. The in silico predicted human-homologous canonical folds of camelid-derived antibodies were confirmed by X-ray crystallography solving the structure of 2 selected camelid anti-CD70 and anti-MET antibodies. These antibodies showed identical fold combinations as found in the corresponding human germline V families, yielding binding site structures closely similar to those occurring in human antibodies. In conclusion, our results indicate that active immunization of camelids can be a powerful therapeutic antibody platform. PMID:26018625

  10. Functional Mapping of Protein Kinase A Reveals Its Importance in Adult Schistosoma mansoni Motor Activity

    PubMed Central

    de Saram, Paulu S. R.; Ressurreição, Margarida; Davies, Angela J.; Rollinson, David; Emery, Aidan M.; Walker, Anthony J.

    2013-01-01

    Cyclic AMP (cAMP)-dependent protein kinase/protein kinase A (PKA) is the major transducer of cAMP signalling in eukaryotic cells. Here, using laser scanning confocal microscopy and ‘smart’ anti-phospho PKA antibodies that exclusively detect activated PKA, we provide a detailed in situ analysis of PKA signalling in intact adult Schistosoma mansoni, a causative agent of debilitating human intestinal schistosomiasis. In both adult male and female worms, activated PKA was consistently found associated with the tegument, oral and ventral suckers, oesophagus and somatic musculature. In addition, the seminal vesicle and gynaecophoric canal muscles of the male displayed activated PKA whereas in female worms activated PKA localized to the ootype wall, the ovary, and the uterus particularly around eggs during expulsion. Exposure of live worms to the PKA activator forskolin (50 µM) resulted in striking PKA activation in the central and peripheral nervous system including at nerve endings at/near the tegument surface. Such neuronal PKA activation was also observed without forskolin treatment, but only in a single batch of worms. In addition, PKA activation within the central and peripheral nervous systems visibly increased within 15 min of worm-pair separation when compared to that observed in closely coupled worm pairs. Finally, exposure of adult worms to forskolin induced hyperkinesias in a time and dose dependent manner with 100 µM forskolin significantly increasing the frequency of gross worm movements to 5.3 times that of control worms (P≤0.001). Collectively these data are consistent with PKA playing a central part in motor activity and neuronal communication, and possibly interplay between these two systems in S. mansoni. This study, the first to localize a protein kinase when exclusively in an activated state in adult S. mansoni, provides valuable insight into the intricacies of functional protein kinase signalling in the context of whole schistosome physiology

  11. Functional mapping of protein kinase A reveals its importance in adult Schistosoma mansoni motor activity.

    PubMed

    de Saram, Paulu S R; Ressurreição, Margarida; Davies, Angela J; Rollinson, David; Emery, Aidan M; Walker, Anthony J

    2013-01-01

    Cyclic AMP (cAMP)-dependent protein kinase/protein kinase A (PKA) is the major transducer of cAMP signalling in eukaryotic cells. Here, using laser scanning confocal microscopy and 'smart' anti-phospho PKA antibodies that exclusively detect activated PKA, we provide a detailed in situ analysis of PKA signalling in intact adult Schistosoma mansoni, a causative agent of debilitating human intestinal schistosomiasis. In both adult male and female worms, activated PKA was consistently found associated with the tegument, oral and ventral suckers, oesophagus and somatic musculature. In addition, the seminal vesicle and gynaecophoric canal muscles of the male displayed activated PKA whereas in female worms activated PKA localized to the ootype wall, the ovary, and the uterus particularly around eggs during expulsion. Exposure of live worms to the PKA activator forskolin (50 µM) resulted in striking PKA activation in the central and peripheral nervous system including at nerve endings at/near the tegument surface. Such neuronal PKA activation was also observed without forskolin treatment, but only in a single batch of worms. In addition, PKA activation within the central and peripheral nervous systems visibly increased within 15 min of worm-pair separation when compared to that observed in closely coupled worm pairs. Finally, exposure of adult worms to forskolin induced hyperkinesias in a time and dose dependent manner with 100 µM forskolin significantly increasing the frequency of gross worm movements to 5.3 times that of control worms (P≤0.001). Collectively these data are consistent with PKA playing a central part in motor activity and neuronal communication, and possibly interplay between these two systems in S. mansoni. This study, the first to localize a protein kinase when exclusively in an activated state in adult S. mansoni, provides valuable insight into the intricacies of functional protein kinase signalling in the context of whole schistosome physiology.

  12. Young asteroidal fluid activity revealed by absolute age from apatite in carbonaceous chondrite

    PubMed Central

    Zhang, Ai-Cheng; Li, Qiu-Li; Yurimoto, Hisayoshi; Sakamoto, Naoya; Li, Xian-Hua; Hu, Sen; Lin, Yang-Ting; Wang, Ru-Cheng

    2016-01-01

    Chondritic meteorites, consisting of the materials that have formed in the early solar system (ESS), have been affected by late thermal events and fluid activity to various degrees. Determining the timing of fluid activity in ESS is of fundamental importance for understanding the nature, formation, evolution and significance of fluid activity in ESS. Previous investigations have determined the relative ages of fluid activity with short-lived isotope systematics. Here we report an absolute 207Pb/206Pb isochron age (4,450±50 Ma) of apatite from Dar al Gani (DaG) 978, a type ∼3.5, ungrouped carbonaceous chondrite. The petrographic, mineralogical and geochemical features suggest that the apatite in DaG 978 should have formed during metamorphism in the presence of a fluid. Therefore, the apatite age represents an absolute age for fluid activity in an asteroidal setting. An impact event could have provided the heat to activate this young fluid activity in ESS. PMID:27682449

  13. Therapeutic significance and pharmacological activities of antidiarrheal medicinal plants mention in Ayurveda: A review

    PubMed Central

    Mishra, Ashish; Seth, Ankit; Maurya, Santosh Kumar

    2016-01-01

    Diarrhea is a serious problem affecting 3-5 billion people per year around the world, especially children of below 5 years. 70% of the world population uses traditional and indigenous medicine for their primary health care. The facts of these indigenous remedies are passed verbally and sometimes as documents. Since ancient time, Ayurveda is the main system of healing in South East Asian countries. Indian literature from ayurvedic texts and other books claim the potency of several plants in the treatment of diarrhea. As the global prospective of ayurvedic medicine is increasing, interest regarding the scientific basis of their action is parallely increasing. Researchers are doing experiments to establish the relation between the claimed action and observed pharmacological activities. In the present article, an attempt was made to compile the scientific basis of medicinal plants used to cure diarrhea in Ayurveda. Literature was collected via electronic search (PubMed, ScienceDirect, Medline, and Google Scholar) from published articles that reports antidiarrheal activity of plants that were mentioned in Ayurveda classics. A total of 109 plant species belonging to 58 families were reported for their antidiarrheal activity. Several Indian medicinal plants have demonstrated promising antidiarrheal effects, but the studies on the antidiarrheal potentials of these plants are not taken beyond proof of concept stage. It is hoped that the article would stimulate future clinical studies because of the paucity of knowledge in this area. PMID:27366356

  14. Therapeutic significance and pharmacological activities of antidiarrheal medicinal plants mention in Ayurveda: A review.

    PubMed

    Mishra, Ashish; Seth, Ankit; Maurya, Santosh Kumar

    2016-01-01

    Diarrhea is a serious problem affecting 3-5 billion people per year around the world, especially children of below 5 years. 70% of the world population uses traditional and indigenous medicine for their primary health care. The facts of these indigenous remedies are passed verbally and sometimes as documents. Since ancient time, Ayurveda is the main system of healing in South East Asian countries. Indian literature from ayurvedic texts and other books claim the potency of several plants in the treatment of diarrhea. As the global prospective of ayurvedic medicine is increasing, interest regarding the scientific basis of their action is parallely increasing. Researchers are doing experiments to establish the relation between the claimed action and observed pharmacological activities. In the present article, an attempt was made to compile the scientific basis of medicinal plants used to cure diarrhea in Ayurveda. Literature was collected via electronic search (PubMed, ScienceDirect, Medline, and Google Scholar) from published articles that reports antidiarrheal activity of plants that were mentioned in Ayurveda classics. A total of 109 plant species belonging to 58 families were reported for their antidiarrheal activity. Several Indian medicinal plants have demonstrated promising antidiarrheal effects, but the studies on the antidiarrheal potentials of these plants are not taken beyond proof of concept stage. It is hoped that the article would stimulate future clinical studies because of the paucity of knowledge in this area. PMID:27366356

  15. Significant Modules and Biological Processes between Active Components of Salvia miltiorrhiza Depside Salt and Aspirin

    PubMed Central

    Xie, Yanming; Wang, Lianxin; Zhang, Yingying; Gu, Hao; Chai, Yan

    2016-01-01

    The aim of this study is to examine and compare the similarities and differences between active components of S. miltiorrhiza depside salt and aspirin using perspective of pharmacological molecular networks. Active components of S. miltiorrhiza depside salt and aspirin's related genes were identified via the STITCH4.0 and GeneCards Database. A text search engine (Agilent Literature Search 2.71) and MCODE software were applied to construct network and divide modules, respectively. Finally, 32, 2, and 28 overlapping genes, modules, and pathways were identified between active components of S. miltiorrhiza depside salt and aspirin. A multidimensional framework of drug network showed that two networks reflected commonly in human aortic endothelial cells and atherosclerosis process. Aspirin plays a more important role in metabolism, such as the well-known AA metabolism pathway and other lipid or carbohydrate metabolism pathways. S. miltiorrhiza depside salt still plays a regulatory role in type II diabetes mellitus, insulin resistance, and adipocytokine signaling pathway. Therefore, this study suggests that aspirin combined with S. miltiorrhiza depside salt may be more efficient in treatment of CHD patients, especially those with diabetes mellitus or hyperlipidemia. Further clinical trials to confirm this hypothesis are still needed. PMID:27069488

  16. Characterization of the circulating hemocytes in mud crab (Scylla olivacea) revealed phenoloxidase activity.

    PubMed

    Mangkalanan, Seksan; Sanguanrat, Piyachat; Utairangsri, Tanatchaporn; Sritunyalucksana, Kallaya; Krittanai, Chartchai

    2014-05-01

    This study focused on an isolation and characterization of the circulating hemocytes in mud crab, Scylla olivacea. Isolation of specific cell types of hemocytes from crab hemolymph was accomplished by using 60% Percoll density gradient centrifugation. Four separated bands of the hemocytes were successfully obtained. Characterization of these isolated hemocytes by light microscope using trypan blue-rose bengal staining, rose bengal-hematoxilin staining, and phase contrast revealed four distinct types of hemocyte cells. Using their specific morphology and granularity, they were identified as hyaline cell (HC), small granular cell (SGC), large granular cell (LGC) and mixed granular cell (MGC). Transmission electron microscopy (TEM) revealed more details on specific cell size, size of cytoplasmic granule, and nuclear to cytoplasmic ratio, and confirmed the classification. Relative abundance of these cells types in the hemolymph of an adult crab were 15.50±8.22% for HC, 55.50±7.15% for SGC, 13.50±5.28% for LGC, and 15.50±3.50% for MGC. Proteomic analysis of protein expression for each specific cell types by two-dimensional electrophoresis identified two highly abundant proteins, prophenoloxidase (ProPO) and peroxinectin in LGC. Determination of phenoloxidase (PO) activity in each isolated cell types using in vitro and in situ chemical assays confirmed the presence of PO activity only in LGC. Based on an increased PO activity of crab hemolymph during the course of White Spot Syndrome Virus (WSSV) infection, these results suggest that prophenoloxidase pathway was employed for host defense mechanism against WSSV and it may link to the role of large granular hemocyte.

  17. Active populations of rare microbes in oceanic environments as revealed by bromodeoxyuridine incorporation and 454 tag sequencing.

    PubMed

    Hamasaki, Koji; Taniguchi, Akito; Tada, Yuya; Kaneko, Ryo; Miki, Takeshi

    2016-02-01

    The "rare biosphere" consisting of thousands of low-abundance microbial taxa is important as a seed bank or a gene pool to maintain microbial functional redundancy and robustness of the ecosystem. Here we investigated contemporaneous growth of diverse microbial taxa including rare taxa and determined their variability in environmentally distinctive locations along a north-south transect in the Pacific Ocean in order to assess which taxa were actively growing and how environmental factors influenced bacterial community structures. A bromodeoxyuridine-labeling technique in combination with PCR amplicon pyrosequencing of 16S rRNA genes gave 215-793 OTUs from 1200 to 3500 unique sequences in the total communities and 175-299 OTUs nearly 860 to 1800 sequences in the active communities. Unexpectedly, many of the active OTUs were not detected in the total fractions. Among these active but rare OTUs, some taxa (2-4% of rare OTUs) showed much higher abundance (>0.10% of total reads) in the active fraction than in the total fraction, suggesting that their contribution to bacterial community productivity or growth was much larger than that expected from their standing stocks at each location. An ordination plot by the principal component analysis presented that bacterial community compositions among 4 sampling locations and between total and active fractions were distinctive with each other. A redundancy analysis revealed that the variability of community compositions significantly correlated to seawater temperature and dissolved oxygen concentration. Also, a variation partitioning analysis showed that the environmental factors explained 49% of the variability of community compositions and the distance only explained 4.0% of its variability. These results implied very dynamic change of community structures due to environmental filtering. The active bacterial populations are more diverse and spread further in rare biosphere than we have ever seen. This study implied that rare

  18. Active populations of rare microbes in oceanic environments as revealed by bromodeoxyuridine incorporation and 454 tag sequencing.

    PubMed

    Hamasaki, Koji; Taniguchi, Akito; Tada, Yuya; Kaneko, Ryo; Miki, Takeshi

    2016-02-01

    The "rare biosphere" consisting of thousands of low-abundance microbial taxa is important as a seed bank or a gene pool to maintain microbial functional redundancy and robustness of the ecosystem. Here we investigated contemporaneous growth of diverse microbial taxa including rare taxa and determined their variability in environmentally distinctive locations along a north-south transect in the Pacific Ocean in order to assess which taxa were actively growing and how environmental factors influenced bacterial community structures. A bromodeoxyuridine-labeling technique in combination with PCR amplicon pyrosequencing of 16S rRNA genes gave 215-793 OTUs from 1200 to 3500 unique sequences in the total communities and 175-299 OTUs nearly 860 to 1800 sequences in the active communities. Unexpectedly, many of the active OTUs were not detected in the total fractions. Among these active but rare OTUs, some taxa (2-4% of rare OTUs) showed much higher abundance (>0.10% of total reads) in the active fraction than in the total fraction, suggesting that their contribution to bacterial community productivity or growth was much larger than that expected from their standing stocks at each location. An ordination plot by the principal component analysis presented that bacterial community compositions among 4 sampling locations and between total and active fractions were distinctive with each other. A redundancy analysis revealed that the variability of community compositions significantly correlated to seawater temperature and dissolved oxygen concentration. Also, a variation partitioning analysis showed that the environmental factors explained 49% of the variability of community compositions and the distance only explained 4.0% of its variability. These results implied very dynamic change of community structures due to environmental filtering. The active bacterial populations are more diverse and spread further in rare biosphere than we have ever seen. This study implied that rare

  19. Phosphoproteomic Analysis of KSHV-Infected Cells Reveals Roles of ORF45-Activated RSK during Lytic Replication

    PubMed Central

    Avey, Denis; Tepper, Sarah; Li, Wenwei; Turpin, Zachary; Zhu, Fanxiu

    2015-01-01

    Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) is an oncogenic virus which has adapted unique mechanisms to modulate the cellular microenvironment of its human host. The pathogenesis of KSHV is intimately linked to its manipulation of cellular signaling pathways, including the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway. We have previously shown that KSHV ORF45 contributes to the sustained activation of both ERK and p90 ribosomal S6 kinase (RSK, a major functional mediator of ERK/MAPK signaling) during KSHV lytic replication. ORF45-activated RSK is required for optimal KSHV lytic gene expression and progeny virion production, though the underlying mechanisms downstream of this activation are still unclear. We hypothesized that the activation of RSK by ORF45 causes differential phosphorylation of cellular and viral substrates, affecting biological processes essential for efficient KSHV lytic replication. Accordingly, we observed widespread and significant differences in protein phosphorylation upon induction of lytic replication. Mass-spectrometry-based phosphoproteomic screening identified putative substrates of ORF45-activated RSK in KSHV-infected cells. Bioinformatic analyses revealed that nuclear proteins, including several transcriptional regulators, were overrepresented among these candidates. We validated the ORF45/RSK-dependent phosphorylation of several putative substrates by employing KSHV BAC mutagenesis, kinase inhibitor treatments, and/or CRISPR-mediated knockout of RSK in KSHV-infected cells. Furthermore, we assessed the consequences of knocking out these substrates on ORF45/RSK-dependent regulation of gene expression and KSHV progeny virion production. Finally, we show data to support that ORF45 regulates the translational efficiency of a subset of viral/cellular genes with complex secondary structure in their 5’ UTR. Altogether, these data shed light on the mechanisms by which KSHV ORF45 manipulates

  20. Dissociated functional significance of decision-related activity in the primate dorsal stream.

    PubMed

    Katz, Leor N; Yates, Jacob L; Pillow, Jonathan W; Huk, Alexander C

    2016-07-04

    During decision making, neurons in multiple brain regions exhibit responses that are correlated with decisions. However, it remains uncertain whether or not various forms of decision-related activity are causally related to decision making. Here we address this question by recording and reversibly inactivating the lateral intraparietal (LIP) and middle temporal (MT) areas of rhesus macaques performing a motion direction discrimination task. Neurons in area LIP exhibited firing rate patterns that directly resembled the evidence accumulation process posited to govern decision making, with strong correlations between their response fluctuations and the animal's choices. Neurons in area MT, in contrast, exhibited weak correlations between their response fluctuations and choices, and had firing rate patterns consistent with their sensory role in motion encoding. The behavioural impact of pharmacological inactivation of each area was inversely related to their degree of decision-related activity: while inactivation of neurons in MT profoundly impaired psychophysical performance, inactivation in LIP had no measurable impact on decision-making performance, despite having silenced the very clusters that exhibited strong decision-related activity. Although LIP inactivation did not impair psychophysical behaviour, it did influence spatial selection and oculomotor metrics in a free-choice control task. The absence of an effect on perceptual decision making was stable over trials and sessions and was robust to changes in stimulus type and task geometry, arguing against several forms of compensation. Thus, decision-related signals in LIP do not appear to be critical for computing perceptual decisions, and may instead reflect secondary processes. Our findings highlight a dissociation between decision correlation and causation, showing that strong neuron-decision correlations do not necessarily offer direct access to the neural computations underlying decisions.

  1. UNESCO active learning approach in optics and photonics leads to significant change in Morocco

    NASA Astrophysics Data System (ADS)

    Berrada, K.; Channa, R.; Outzourhit, A.; Azizan, M.; Oueriagli, A.

    2014-07-01

    There are many difficulties in teaching science and technology in developing countries. Several different teaching strategies have to be applied in these cases. More specifically, for developing countries competencies in teaching science in the introductory classroom has attracted much attention. As a specific example we will consider the Moroccan system. In most developing countries everything is moving so slowly that the progress stays static for development. Also, any change needs time, effort and engagement. In our case we discovered that many teachers feel uncomfortable when introducing new teaching methods and evaluation in classes at introductory physics. However, the introduction of an Active Learning in our curricula showed difficulties that students have in understanding physics and especially concepts. Students were interested in having Active Learning courses much more than passive and traditional ones. Changing believes on physical phenomena and reality of the world students become more attractive and their way of thinking Science changed. The main philosophy of fostering modern hands-on learning techniques -adapted to local needs and availability of teaching resources- is elaborated. The Active Learning program provides the teachers with a conceptual evaluation instrument, drawn from relevant physics education research, giving teachers an important tool to measure student learning. We will try to describe the UNESCO Chair project in physics created in 2010 at Cadi Ayyad University since our first experience with UNESCO ALOP program. Many efforts have been done so far and the project helps now to develop more national and international collaborations between universities and Regional Academies of Education and Training. As a new result of these actions and according to our local needs, the translation of the ALOP program into Arabic is now available under the auspice of UNESCO and encouragement of international partners SPIE, ICTP, ICO and OSA.

  2. Dissociated functional significance of decision-related activity in the primate dorsal stream.

    PubMed

    Katz, Leor N; Yates, Jacob L; Pillow, Jonathan W; Huk, Alexander C

    2016-07-14

    During decision making, neurons in multiple brain regions exhibit responses that are correlated with decisions. However, it remains uncertain whether or not various forms of decision-related activity are causally related to decision making. Here we address this question by recording and reversibly inactivating the lateral intraparietal (LIP) and middle temporal (MT) areas of rhesus macaques performing a motion direction discrimination task. Neurons in area LIP exhibited firing rate patterns that directly resembled the evidence accumulation process posited to govern decision making, with strong correlations between their response fluctuations and the animal's choices. Neurons in area MT, in contrast, exhibited weak correlations between their response fluctuations and choices, and had firing rate patterns consistent with their sensory role in motion encoding. The behavioural impact of pharmacological inactivation of each area was inversely related to their degree of decision-related activity: while inactivation of neurons in MT profoundly impaired psychophysical performance, inactivation in LIP had no measurable impact on decision-making performance, despite having silenced the very clusters that exhibited strong decision-related activity. Although LIP inactivation did not impair psychophysical behaviour, it did influence spatial selection and oculomotor metrics in a free-choice control task. The absence of an effect on perceptual decision making was stable over trials and sessions and was robust to changes in stimulus type and task geometry, arguing against several forms of compensation. Thus, decision-related signals in LIP do not appear to be critical for computing perceptual decisions, and may instead reflect secondary processes. Our findings highlight a dissociation between decision correlation and causation, showing that strong neuron-decision correlations do not necessarily offer direct access to the neural computations underlying decisions. PMID:27376476

  3. Patient with Macular Disease, Good Visual Acuity, and Central Visual Field Disruption and Significant Difficulties with Activities of Daily Living

    ERIC Educational Resources Information Center

    Fletcher, Donald C.; Schuchard, Ronald A.; Walker, Joseph P.; Raskauskas, Paul A.

    2008-01-01

    It is generally appreciated that patients with macular disease frequently experience reduced visual acuity. It is not as widely appreciated that they often have significant central visual field disruption, which, by itself, can cause significant problems with activities of daily living, such as reading and driving, even when they maintain good…

  4. Comparative Proteomics Analysis Reveals L-Arginine Activates Ethanol Degradation Pathways in HepG2 Cells

    PubMed Central

    Yan, Guokai; Lestari, Retno; Long, Baisheng; Fan, Qiwen; Wang, Zhichang; Guo, Xiaozhen; Yu, Jie; Hu, Jun; Yang, Xingya; Chen, Changqing; Liu, Lu; Li, Xiuzhi; Purnomoadi, Agung; Achmadi, Joelal; Yan, Xianghua

    2016-01-01

    L-Arginine (Arg) is a versatile amino acid that plays crucial roles in a wide range of physiological and pathological processes. In this study, to investigate the alteration induced by Arg supplementation in proteome scale, isobaric tags for relative and absolute quantification (iTRAQ) based proteomic approach was employed to comparatively characterize the differentially expressed proteins between Arg deprivation (Ctrl) and Arg supplementation (+Arg) treated human liver hepatocellular carcinoma (HepG2) cells. A total of 21 proteins were identified as differentially expressed proteins and these 21 proteins were all up-regulated by Arg supplementation. Six amino acid metabolism-related proteins, mostly metabolic enzymes, showed differential expressions. Intriguingly, Ingenuity Pathway Analysis (IPA) based pathway analysis suggested that the three ethanol degradation pathways were significantly altered between Ctrl and +Arg. Western blotting and enzymatic activity assays validated that the key enzymes ADH1C, ALDH1A1, and ALDH2, which are mainly involved in ethanol degradation pathways, were highly differentially expressed, and activated between Ctrl and +Arg in HepG2 cells. Furthermore, 10 mM Arg significantly attenuated the cytotoxicity induced by 100 mM ethanol treatment (P < 0.0001). This study is the first time to reveal that Arg activates ethanol degradation pathways in HepG2 cells. PMID:26983598

  5. Significance of active growth faulting on marsh accretion processes in the lower Pearl River, Louisiana

    NASA Astrophysics Data System (ADS)

    Yeager, Kevin M.; Brunner, Charlotte A.; Kulp, Mark A.; Fischer, Dane; Feagin, Rusty A.; Schindler, Kimberly J.; Prouhet, Jeremiah; Bera, Gopal

    2012-06-01

    Neotectonic processes influence marsh accretion in the lower Pearl River valley. Active growth faults are suggested by groupings of ponded river channel sections, transverse and linear river channel sections, and down- and across-valley contrasts in channel sinuosity. Seismic profiles identified several likely, fault-induced structural anomalies, two of which parallel the axes of surface distributary networks. Lithostratigraphy and biostratigraphy of six cores from across a suspected fault in the West Middle River, combined with 14C-based age control, yielded evidence of vertical offsets, indicating that this river section is on the plane of a growth fault. These data were used to estimate fault slip rates over two time intervals, 1.2 mm/y over the last 1300 yr, and 0.2 mm yr- 1 over the last 3700 yr, and delineated a sinusoidal pattern of deformation moving distally from the fault, which we interpret as resulting from fault-propagation folding. Higher rates of sediment accumulation (of the order of cm yr- 1 from 210Pbxs and 137Cs activity data) on the down-thrown side are consistent with sedimentary response to increased accommodation space, and mass-based sediment accumulation rates (g cm- 2 yr- 1) exhibit a pattern inverse of that shown by fault-driven sinusoidal deformation. We contend that near-surface growth faults are critically important to driving accretion rates and marsh response to sea-level rise.

  6. [The dream as mind's "organizer": neuropsychological contribution into the function and significance of the oneiric activity].

    PubMed

    Riboldi, A

    1994-06-01

    The author examines the oneiric activity in a neuropsychologic prospect, as he considers this approach as valid and capable of giving good results for the understanding of psychic phenomena. After explaining synthetically the principles of the psychophysiologic school of Chicago, of the neuro-physiologic school of professor M. Jouvet in Lyon, and the theoretic hypotheses derived from clinical knowledge like that of the neurologist O. Sacks, the author develops Jouvet's principle of the dream as "endogenous phylogenetic learning". The author is of the opinion that the dream, from a psycho-biological standpoint, has such features that it can be considered as a process that is very similar to the creative one, as intended by S. Arieti, and that has its roots in the "homo naturalis". The oneiric activity seems to be able to implement a creative synthesis between nature and culture, between soma and psyche, between rational world and archetypalinstinctive world, in compliance with the fundamental creative process on which the evolution is based, as explained by K. Lorenz and Teilhard de Chardin with the expressions "unity from diversity" and "créer c'est unir". Therefore, it can be an instrument capable of helping the contemporary man, whose identity is threatened by the excessive discrepancy between the rational conscious process, that is conditioned by the extremely quick cultural transformation (mainly due to technology) and the unconscious archetypal-instinctive process, which is connected with the slow phylogenetic evolution.

  7. An in vitro screening with emerging contaminants reveals inhibition of carboxylesterase activity in aquatic organisms.

    PubMed

    Solé, Montserrat; Sanchez-Hernandez, Juan C

    2015-12-01

    Pharmaceuticals and personal care products (PPCPs) form part of the new generation of pollutants present in many freshwater and marine ecosystems. Although environmental concentrations of these bioactive substances are low, they cause sublethal effects (e.g., enzyme inhibition) in non-target organisms. However, little is known on metabolism of PPCPs by non-mammal species. Herein, an in vitro enzyme trial was performed to explore sensitivity of carboxylesterase (CE) activity of aquatic organisms to fourteen PPCPs. The esterase activity was determined in the liver of Mediterranean freshwater fish (Barbus meridionalis and Squalius laietanus), coastal marine fish (Dicentrarchus labrax and Solea solea), middle-slope fish (Trachyrhynchus scabrus), deep-sea fish (Alepocephalus rostratus and Cataetix laticeps), and in the digestive gland of a decapod crustacean (Aristeus antennatus). Results showed that 100μM of the lipid regulators simvastatin and fenofibrate significantly inhibited (30-80% of controls) the CE activity of all target species. Among the personal care products, nonylphenol and triclosan were strong esterase inhibitors in most species (36-68% of controls). Comparison with literature data suggests that fish CE activity is as sensitive to inhibition by some PPCPs as that of mammals, although their basal activity levels are lower than in mammals. Pending further studies on the interaction between PPCPs and CE activity, we postulate that this enzyme may act as a molecular sink for certain PPCPs in a comparable way than that described for the organophosphorus pesticides. PMID:26562051

  8. An in vitro screening with emerging contaminants reveals inhibition of carboxylesterase activity in aquatic organisms.

    PubMed

    Solé, Montserrat; Sanchez-Hernandez, Juan C

    2015-12-01

    Pharmaceuticals and personal care products (PPCPs) form part of the new generation of pollutants present in many freshwater and marine ecosystems. Although environmental concentrations of these bioactive substances are low, they cause sublethal effects (e.g., enzyme inhibition) in non-target organisms. However, little is known on metabolism of PPCPs by non-mammal species. Herein, an in vitro enzyme trial was performed to explore sensitivity of carboxylesterase (CE) activity of aquatic organisms to fourteen PPCPs. The esterase activity was determined in the liver of Mediterranean freshwater fish (Barbus meridionalis and Squalius laietanus), coastal marine fish (Dicentrarchus labrax and Solea solea), middle-slope fish (Trachyrhynchus scabrus), deep-sea fish (Alepocephalus rostratus and Cataetix laticeps), and in the digestive gland of a decapod crustacean (Aristeus antennatus). Results showed that 100μM of the lipid regulators simvastatin and fenofibrate significantly inhibited (30-80% of controls) the CE activity of all target species. Among the personal care products, nonylphenol and triclosan were strong esterase inhibitors in most species (36-68% of controls). Comparison with literature data suggests that fish CE activity is as sensitive to inhibition by some PPCPs as that of mammals, although their basal activity levels are lower than in mammals. Pending further studies on the interaction between PPCPs and CE activity, we postulate that this enzyme may act as a molecular sink for certain PPCPs in a comparable way than that described for the organophosphorus pesticides.

  9. Comparative proteomic analysis reveals activation of mucosal innate immune signaling pathways during cholera.

    PubMed

    Ellis, Crystal N; LaRocque, Regina C; Uddin, Taher; Krastins, Bryan; Mayo-Smith, Leslie M; Sarracino, David; Karlsson, Elinor K; Rahman, Atiqur; Shirin, Tahmina; Bhuiyan, Taufiqur R; Chowdhury, Fahima; Khan, Ashraful Islam; Ryan, Edward T; Calderwood, Stephen B; Qadri, Firdausi; Harris, Jason B

    2015-03-01

    Vibrio cholerae O1 is a major cause of acute watery diarrhea in over 50 countries. Evidence suggests that V. cholerae O1 may activate inflammatory pathways, and a recent study of a Bangladeshi population showed that variants in innate immune genes play a role in mediating susceptibility to cholera. We analyzed human proteins present in the small intestine of patients infected with V. cholerae O1 to characterize the host response to this pathogen. We collected duodenal biopsy specimens from patients with acute cholera after stabilization and again 30 days after initial presentation. Peptides extracted from biopsy specimens were sequenced and quantified using label-free mass spectrometry and SEQUEST. Twenty-seven host proteins were differentially abundant between the acute and convalescent stages of infection; the majority of these have known roles in innate defense, cytokine production, and apoptosis. Immunostaining confirmed that two proteins, WARS and S100A8, were more abundant in lamina propria cells during the acute stage of cholera. Analysis of the differentially abundant proteins revealed the activation of key regulators of inflammation by the innate immune system, including Toll-like receptor 4, nuclear factor kappa-light-chain-enhancer of activated B cells, mitogen-activated protein kinases, and caspase-dependent inflammasomes. Interleukin-12β (IL-12β) was a regulator of several proteins that were activated during cholera, and we confirmed that IL-12β was produced by lymphocytes recovered from duodenal biopsy specimens of cholera patients. Our study shows that a broad inflammatory response is generated in the gut early after onset of cholera, which may be critical in the development of long-term mucosal immunity against V. cholerae O1.

  10. Lost for emotion words: What motor and limbic brain activity reveals about autism and semantic theory

    PubMed Central

    Moseley, Rachel L.; Shtyrov, Yury; Mohr, Bettina; Lombardo, Michael V.; Baron-Cohen, Simon; Pulvermüller, Friedemann

    2015-01-01

    Autism spectrum conditions (ASC) are characterised by deficits in understanding and expressing emotions and are frequently accompanied by alexithymia, a difficulty in understanding and expressing emotion words. Words are differentially represented in the brain according to their semantic category and these difficulties in ASC predict reduced activation to emotion-related words in limbic structures crucial for affective processing. Semantic theories view ‘emotion actions’ as critical for learning the semantic relationship between a word and the emotion it describes, such that emotion words typically activate the cortical motor systems involved in expressing emotion actions such as facial expressions. As ASC are also characterised by motor deficits and atypical brain structure and function in these regions, motor structures would also be expected to show reduced activation during emotion-semantic processing. Here we used event-related fMRI to compare passive processing of emotion words in comparison to abstract verbs and animal names in typically-developing controls and individuals with ASC. Relatively reduced brain activation in ASC for emotion words, but not matched control words, was found in motor areas and cingulate cortex specifically. The degree of activation evoked by emotion words in the motor system was also associated with the extent of autistic traits as revealed by the Autism Spectrum Quotient. We suggest that hypoactivation of motor and limbic regions for emotion word processing may underlie difficulties in processing emotional language in ASC. The role that sensorimotor systems and their connections might play in the affective and social-communication difficulties in ASC is discussed. PMID:25278250

  11. Lost for emotion words: what motor and limbic brain activity reveals about autism and semantic theory.

    PubMed

    Moseley, Rachel L; Shtyrov, Yury; Mohr, Bettina; Lombardo, Michael V; Baron-Cohen, Simon; Pulvermüller, Friedemann

    2015-01-01

    Autism spectrum conditions (ASC) are characterised by deficits in understanding and expressing emotions and are frequently accompanied by alexithymia, a difficulty in understanding and expressing emotion words. Words are differentially represented in the brain according to their semantic category and these difficulties in ASC predict reduced activation to emotion-related words in limbic structures crucial for affective processing. Semantic theories view 'emotion actions' as critical for learning the semantic relationship between a word and the emotion it describes, such that emotion words typically activate the cortical motor systems involved in expressing emotion actions such as facial expressions. As ASC are also characterised by motor deficits and atypical brain structure and function in these regions, motor structures would also be expected to show reduced activation during emotion-semantic processing. Here we used event-related fMRI to compare passive processing of emotion words in comparison to abstract verbs and animal names in typically-developing controls and individuals with ASC. Relatively reduced brain activation in ASC for emotion words, but not matched control words, was found in motor areas and cingulate cortex specifically. The degree of activation evoked by emotion words in the motor system was also associated with the extent of autistic traits as revealed by the Autism Spectrum Quotient. We suggest that hypoactivation of motor and limbic regions for emotion word processing may underlie difficulties in processing emotional language in ASC. The role that sensorimotor systems and their connections might play in the affective and social-communication difficulties in ASC is discussed.

  12. Zebrafish reporter lines reveal in vivo signaling pathway activities involved in pancreatic cancer.

    PubMed

    Schiavone, Marco; Rampazzo, Elena; Casari, Alessandro; Battilana, Giusy; Persano, Luca; Moro, Enrico; Liu, Shu; Leach, Steve D; Tiso, Natascia; Argenton, Francesco

    2014-07-01

    Pancreatic adenocarcinoma, one of the worst malignancies of the exocrine pancreas, is a solid tumor with increasing incidence and mortality in industrialized countries. This condition is usually driven by oncogenic KRAS point mutations and evolves into a highly aggressive metastatic carcinoma due to secondary gene mutations and unbalanced expression of genes involved in the specific signaling pathways. To examine in vivo the effects of KRAS(G12D) during pancreatic cancer progression and time correlation with cancer signaling pathway activities, we have generated a zebrafish model of pancreatic adenocarcinoma in which eGFP-KRAS(G12D) expression was specifically driven to the pancreatic tissue by using the GAL4/UAS conditional expression system. Outcrossing the inducible oncogenic KRAS(G12D) line with transgenic zebrafish reporters, harboring specific signaling responsive elements of transcriptional effectors, we were able to follow TGFβ, Notch, Bmp and Shh activities during tumor development. Zebrafish transgenic lines expressing eGFP-KRAS(G12D) showed normal exocrine pancreas development until 3 weeks post fertilization (wpf). From 4 to 24 wpf we observed several degrees of acinar lesions, characterized by an increase in mesenchymal cells and mixed acinar/ductal features, followed by progressive bowel and liver infiltrations and, finally, highly aggressive carcinoma. Moreover, live imaging analysis of the exocrine pancreatic tissue revealed an increasing number of KRAS-positive cells and progressive activation of TGFβ and Notch pathways. Increase in TGFβ, following KRAS(G12D) activation, was confirmed in a concomitant model of medulloblastoma (MDB). Notch and Shh signaling activities during tumor onset were different between MDB and pancreatic adenocarcinoma, indicating a tissue-specific regulation of cell signaling pathways. Moreover, our results show that a living model of pancreatic adenocarcinoma joined with cell signaling reporters is a suitable tool for

  13. Functional activity maps based on significance measures and Independent Component Analysis.

    PubMed

    Martínez-Murcia, F J; Górriz, J M; Ramírez, J; Puntonet, C G; Illán, I A

    2013-07-01

    The use of functional imaging has been proven very helpful for the process of diagnosis of neurodegenerative diseases, such as Alzheimer's Disease (AD). In many cases, the analysis of these images is performed by manual reorientation and visual interpretation. Therefore, new statistical techniques to perform a more quantitative analysis are needed. In this work, a new statistical approximation to the analysis of functional images, based on significance measures and Independent Component Analysis (ICA) is presented. After the images preprocessing, voxels that allow better separation of the two classes are extracted, using significance measures such as the Mann-Whitney-Wilcoxon U-Test (MWW) and Relative Entropy (RE). After this feature selection step, the voxels vector is modelled by means of ICA, extracting a few independent components which will be used as an input to the classifier. Naive Bayes and Support Vector Machine (SVM) classifiers are used in this work. The proposed system has been applied to two different databases. A 96-subjects Single Photon Emission Computed Tomography (SPECT) database from the "Virgen de las Nieves" Hospital in Granada, Spain, and a 196-subjects Positron Emission Tomography (PET) database from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Values of accuracy up to 96.9% and 91.3% for SPECT and PET databases are achieved by the proposed system, which has yielded many benefits over methods proposed on recent works.

  14. Multimodal imaging reveals temporal and spatial microglia and matrix metalloproteinase activity after experimental stroke

    PubMed Central

    Zinnhardt, Bastian; Viel, Thomas; Wachsmuth, Lydia; Vrachimis, Alexis; Wagner, Stefan; Breyholz, Hans-Jörg; Faust, Andreas; Hermann, Sven; Kopka, Klaus; Faber, Cornelius; Dollé, Frédéric; Pappata, Sabina; Planas, Anna M; Tavitian, Bertrand; Schäfers, Michael; Sorokin, Lydia M; Kuhlmann, Michael T; Jacobs, Andreas H

    2015-01-01

    Stroke is the most common cause of death and disability from neurologic disease in humans. Activation of microglia and matrix metalloproteinases (MMPs) is involved in positively and negatively affecting stroke outcome. Novel, noninvasive, multimodal imaging methods visualizing microglial and MMP alterations were employed. The spatio-temporal dynamics of these parameters were studied in relation to blood flow changes. Micro positron emission tomography (μPET) using [18F]BR-351 showed MMP activity within the first days after transient middle cerebral artery occlusion (tMCAo), followed by increased [18F]DPA-714 uptake as a marker for microglia activation with a maximum at 14 days after tMCAo. The inflammatory response was spatially located in the infarct core and in adjacent (penumbral) tissue. For the first time, multimodal imaging based on PET, single photon emission computed tomography, and magnetic resonance imaging revealed insight into the spatio-temporal distribution of critical parameters of poststroke inflammation. This allows further evaluation of novel treatment paradigms targeting the postischemic inflammation. PMID:26126867

  15. Stepwise multiphoton activation fluorescence reveals a new method of melanin detection.

    PubMed

    Lai, Zhenhua; Kerimo, Josef; Mega, Yair; Dimarzio, Charles A

    2013-06-01

    The stepwise multiphoton activated fluorescence (SMPAF) of melanin, activated by a continuous-wave mode near infrared (NIR) laser, reveals a broad spectrum extending from the visible spectra to the NIR and has potential application for a low-cost, reliable method of detecting melanin. SMPAF images of melanin in mouse hair and skin are compared with conventional multiphoton fluorescence microscopy and confocal reflectance microscopy (CRM). By combining CRM with SMPAF, we can locate melanin reliably. However, we have the added benefit of eliminating background interference from other components inside mouse hair and skin. The melanin SMPAF signal from the mouse hair is a mixture of a two-photon process and a third-order process. The melanin SMPAF emission spectrum is activated by a 1505.9-nm laser light, and the resulting spectrum has a peak at 960 nm. The discovery of the emission peak may lead to a more energy-efficient method of background-free melanin detection with less photo-bleaching.

  16. A chimeric prokaryotic pentameric ligand–gated channel reveals distinct pathways of activation

    PubMed Central

    Schmandt, Nicolaus; Velisetty, Phanindra; Chalamalasetti, Sreevatsa V.; Stein, Richard A.; Bonner, Ross; Talley, Lauren; Parker, Mark D.; Mchaourab, Hassane S.; Yee, Vivien C.; Lodowski, David T.

    2015-01-01

    Recent high resolution structures of several pentameric ligand–gated ion channels have provided unprecedented details of their molecular architecture. However, the conformational dynamics and structural rearrangements that underlie gating and allosteric modulation remain poorly understood. We used a combination of electrophysiology, double electron–electron resonance (DEER) spectroscopy, and x-ray crystallography to investigate activation mechanisms in a novel functional chimera with the extracellular domain (ECD) of amine-gated Erwinia chrysanthemi ligand–gated ion channel, which is activated by primary amines, and the transmembrane domain of Gloeobacter violaceus ligand–gated ion channel, which is activated by protons. We found that the chimera was independently gated by primary amines and by protons. The crystal structure of the chimera in its resting state, at pH 7.0 and in the absence of primary amines, revealed a closed-pore conformation and an ECD that is twisted with respect to the transmembrane region. Amine- and pH-induced conformational changes measured by DEER spectroscopy showed that the chimera exhibits a dual mode of gating that preserves the distinct conformational changes of the parent channels. Collectively, our findings shed light on both conserved and divergent features of gating mechanisms in this class of channels, and will facilitate the design of better allosteric modulators. PMID:26415570

  17. Stepwise multiphoton activation fluorescence reveals a new method of melanin detection

    NASA Astrophysics Data System (ADS)

    Lai, Zhenhua; Kerimo, Josef; Mega, Yair; DiMarzio, Charles A.

    2013-06-01

    The stepwise multiphoton activated fluorescence (SMPAF) of melanin, activated by a continuous-wave mode near infrared (NIR) laser, reveals a broad spectrum extending from the visible spectra to the NIR and has potential application for a low-cost, reliable method of detecting melanin. SMPAF images of melanin in mouse hair and skin are compared with conventional multiphoton fluorescence microscopy and confocal reflectance microscopy (CRM). By combining CRM with SMPAF, we can locate melanin reliably. However, we have the added benefit of eliminating background interference from other components inside mouse hair and skin. The melanin SMPAF signal from the mouse hair is a mixture of a two-photon process and a third-order process. The melanin SMPAF emission spectrum is activated by a 1505.9-nm laser light, and the resulting spectrum has a peak at 960 nm. The discovery of the emission peak may lead to a more energy-efficient method of background-free melanin detection with less photo-bleaching.

  18. Community Lenses Revealing the Role of Sociocultural Environment on Physical Activity

    PubMed Central

    Belon, Ana Paula; Nieuwendyk, Laura M.; Vallianatos, Helen; Nykiforuk, Candace I. J.

    2016-01-01

    Purpose To identify perceptions of how sociocultural environment enabled and hindered physical activity (PA) participation. Design Community-based participatory research. Setting Two semirural and two urban communities located in Alberta, Canada. Participants Thirty-five people (74.3% females, 71.4% aged 25–64 years) across the four communities. Method PhotoVoice activities occurred over 3 months during the spring of 2009. Participants were asked to document perceived environmental attributes that might foster or inhibit PA in their community. Photographs and narratives were shared in one-on-one interviews. Line-by-line coding of the transcripts was independently conducted by two researchers using an inductive approach. Codes were arranged into themes and subthemes, which were then organized into the Analysis Grid for Environments Linked to Obesity (ANGELO) framework. Results Six main themes (accompanied by subthemes) emerged: sociocultural aesthetics, safety, social involvement, PA motivation, cultural ideas of recreation, and car culture. Representative quotes and photographs illustrate enablers and obstacles identified by participants. Conclusion This PhotoVoice study revealed how aspects of participants’ sociocultural environments shaped their decisions to be physically active. Providing more PA resources is only one step in the promotion of supportive environments. Strategies should also account for the beautification and maintenance of communities, increasing feelings of safety, enhancement of social support among community members, popularization of PA, and mitigating car culture, among others. PMID:25973966

  19. Activity in human visual and parietal cortex reveals object-based attention in working memory.

    PubMed

    Peters, Benjamin; Kaiser, Jochen; Rahm, Benjamin; Bledowski, Christoph

    2015-02-25

    Visual attention enables observers to select behaviorally relevant information based on spatial locations, features, or objects. Attentional selection is not limited to physically present visual information, but can also operate on internal representations maintained in working memory (WM) in service of higher-order cognition. However, only little is known about whether attention to WM contents follows the same principles as attention to sensory stimuli. To address this question, we investigated in humans whether the typically observed effects of object-based attention in perception are also evident for object-based attentional selection of internal object representations in WM. In full accordance with effects in visual perception, the key behavioral and neuronal characteristics of object-based attention were observed in WM. Specifically, we found that reaction times were shorter when shifting attention to memory positions located on the currently attended object compared with equidistant positions on a different object. Furthermore, functional magnetic resonance imaging and multivariate pattern analysis of visuotopic activity in visual (areas V1-V4) and parietal cortex revealed that directing attention to one position of an object held in WM also enhanced brain activation for other positions on the same object, suggesting that attentional selection in WM activates the entire object. This study demonstrated that all characteristic features of object-based attention are present in WM and thus follows the same principles as in perception.

  20. Dynamic exometabolome analysis reveals active metabolic pathways in non-replicating mycobacteria.

    PubMed

    Zimmermann, Michael; Kuehne, Andreas; Boshoff, Helena I; Barry, Clifton E; Zamboni, Nicola; Sauer, Uwe

    2015-11-01

    An organism's metabolic activity leaves an extracellular footprint and dynamic changes in this exometabolome inform about nutrient uptake, waste disposal and signalling activities. Using non-targeted mass spectrometry, we report exometabolome dynamics of hypoxia-induced, non-replicating mycobacteria that are thought to play a role in latent tuberculosis. Despite evidence of active metabolism, little is known about the mechanisms enabling obligate aerobic mycobacteria to cope with hypoxia, resulting in long-term survival and increased chemotherapeutic tolerance. The dynamics of 379 extracellular compounds of Mycobacterium smegmatis were deconvoluted with a genome-scale metabolic reaction-pair network to generate hypotheses about intracellular pathway usage. Time-resolved (13) C-tracing and mutant experiments then demonstrated a crucial, energy-generating role of asparagine utilization and non-generic usage of the glyoxylate shunt for hypoxic fitness. Experiments with M. bovis and M. tuberculosis revealed the general relevance of asparagine fermentation and a variable contribution of the glyoxylate shunt to non-replicative, hypoxic survival between the three species.

  1. Dynamic Allostery of the Catabolite Activator Protein Revealed by Interatomic Forces.

    PubMed

    Louet, Maxime; Seifert, Christian; Hensen, Ulf; Gräter, Frauke

    2015-08-01

    The Catabolite Activator Protein (CAP) is a showcase example for entropic allostery. For full activation and DNA binding, the homodimeric protein requires the binding of two cyclic AMP (cAMP) molecules in an anti-cooperative manner, the source of which appears to be largely of entropic nature according to previous experimental studies. We here study at atomic detail the allosteric regulation of CAP with Molecular dynamics (MD) simulations. We recover the experimentally observed entropic penalty for the second cAMP binding event with our recently developed force covariance entropy estimator and reveal allosteric communication pathways with Force Distribution Analyses (FDA). Our observations show that CAP binding results in characteristic changes in the interaction pathways connecting the two cAMP allosteric binding sites with each other, as well as with the DNA binding domains. We identified crucial relays in the mostly symmetric allosteric activation network, and suggest point mutants to test this mechanism. Our study suggests inter-residue forces, as opposed to coordinates, as a highly sensitive measure for structural adaptations that, even though minute, can very effectively propagate allosteric signals. PMID:26244893

  2. Treponema denticola cystalysin exhibits significant alanine racemase activity accompanied by transamination: mechanistic implications.

    PubMed Central

    Bertoldi, Mariarita; Cellini, Barbara; Paiardini, Alessandro; Di Salvo, Martino; Borri Voltattorni, Carla

    2003-01-01

    To obtain information on the reaction specificity of cystalysin from the spirochaete bacterium Treponema denticola, the interaction with L- and D-alanine has been investigated. Binding of both alanine enantiomers leads to the appearance of an external aldimine absorbing at 429 nm and of a band absorbing at 498 nm, indicative of a quinonoid species. Racemization and transamination reactions were observed to occur with both alanine isomers as substrates. The steady-state kinetic parameters for racemization, k (cat) and K (m), for L-alanine are 1.05+/-0.03 s(-1) and 10+/-1 mM respectively, whereas those for D-alanine are 1.4+/-0.1 s(-1) and 10+/-1 mM. During the reaction of cystalysin with L- or D-alanine, a time-dependent loss of beta-elimination activity occurs concomitantly with the conversion of the pyridoxal 5'-phosphate (PLP) coenzyme into pyridoxamine 5'-phosphate (PMP). The catalytic efficiency of the half-transamination of L-alanine is found to be 5.3x10(-5) mM(-1) x s(-1), 5-fold higher when compared with that of D-alanine. The partition ratio between racemization and half-transamination reactions is 2.3x10(3) for L-alanine and 1.4x10(4) for D-alanine. The pH dependence of the kinetic parameters for both the reactions shows that the enzyme possesses a single ionizing residue with p K values of 6.5-6.6, which must be unprotonated for catalysis. Addition of pyruvate converts the PMP form of the enzyme back into the PLP form and causes the concomitant recovery of beta-elimination activity. In contrast with other PLP enzymes studied so far, but similar to alanine racemases, the apoform of the enzyme abstracted tritium from C4' of both (4' S)- and (4' R)-[4'-(3)H]PMP in the presence of pyruvate. Together with molecular modelling of the putative binding sites of L- and D-alanine at the active site of the enzyme, the implications of these studies for the mechanisms of the side reactions catalysed by cystalysin are discussed. PMID:12519070

  3. [Mononuclear phagocytes in the cerebrospinal fluid. Studies on the clinical significance and factors of activation].

    PubMed

    Weitbrecht, W U

    1984-09-27

    Examination of 1050 cerebrospinal fluid samples showed, that mononuclear phagocytes contribute only slightly to the explanation of affections of the CNS except they are containing specific particles e.g. iron. Further investigations on patients with concussion, herniation of the intervertebral disk and cerebral infarction turned out, that the relative proportion of mononuclear phagocytes and qualitative cytological changes correlate with the extent of the CNS lesion. Phagocytosis of India ink was studied dependent on milieu and different mediators. Phagocytosis correlates with alpha-1-glycoproteid and the relative part of mononuclear phagocytes in cerebrospinal fluid. It depends on pH, various ions and mediators (adrenalin, histamine, prostaglandines, cAMP, cGMP). DNA-contents of the nucleus was measured by cytophotometria. No signs of proliferation (tetraploidia) were found. The slightly increased contents of nuclear DNA of some phagocytes was interpreted as a metabolically active DNA.

  4. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants

    PubMed Central

    Zhang, Tong; Shao, Ming-Fei; Ye, Lin

    2012-01-01

    Activated sludge (AS) contains highly complex microbial communities. In this study, PCR-based 454 pyrosequencing was applied to investigate the bacterial communities of AS samples from 14 sewage treatment plants of Asia (mainland China, Hong Kong, and Singapore), and North America (Canada and the United States). A total of 259 K effective sequences of 16S rRNA gene V4 region were obtained from these AS samples. These sequences revealed huge amount of operational taxonomic units (OTUs) in AS, that is, 1183–3567 OTUs in a sludge sample, at 3% cutoff level and sequencing depth of 16 489 sequences. Clear geographical differences among the AS samples from Asia and North America were revealed by (1) cluster analyses based on abundances of OTUs or the genus/family/order assigned by Ribosomal Database Project (RDP) and (2) the principal coordinate analyses based on OTUs abundances, RDP taxa abundances and UniFrac of OTUs and their distances. In addition to certain unique bacterial populations in each AS sample, some genera were dominant, and core populations shared by multiple samples, including two commonly reported genera of Zoogloea and Dechloromonas, three genera not frequently reported (i.e., Prosthecobacter, Caldilinea and Tricoccus) and three genera not well described so far (i.e., Gp4 and Gp6 in Acidobacteria and Subdivision3 genera incertae sedis of Verrucomicrobia). Pyrosequencing analyses of multiple AS samples in this study also revealed the minority populations that are hard to be explored by traditional molecular methods and showed that a large proportion of sequences could not be assigned to taxonomic affiliations even at the phylum/class levels. PMID:22170428

  5. The elastase-PK101 structure: Mechanism of an ultrasensitive activity-based probe revealed

    SciTech Connect

    Lechtenberg, Bernhard C.; Robinson, Howard R.; Kasperkiewicz, Paulina; Drag, Marcin; Riedl, Stefan J.

    2015-01-22

    Human neutrophil elastase (HNE) plays a central role in neutrophil host defense, but its broad specificity makes HNE a difficult target for both inhibitor and probe development. Recently, we identified the unnatural amino acid containing activity-based probe PK101, which exhibits astounding sensitivity and selectivity for HNE, yet completely lacks mechanistic explanation for its unique characteristics. Here, we present the crystal structure of the HNE-PK101 complex which not only reveals the basis for PK101 ultrasensitivity but also uncovers so far unrecognized HNE features. Strikingly, the Nle(O-Bzl) function in the P4 position of PK101 reveals and leverages an “exo-pocket” on HNE as a critical factor for selectivity. Furthermore, the PK101 P3 position harbors a methionine dioxide function, which mimics a post-translationally oxidized methionine residue and forms a critical hydrogen bond to the backbone amide of Gly219 of HNE. Gly219 resides in a Gly–Gly motif that is unique to HNE, yet compulsory for this interaction. Consequently, this feature enables HNE to accommodate substrates that have undergone methionine oxidation, which constitutes a hallmark post-translational modification of neutrophil signaling.

  6. The elastase-PK101 structure: Mechanism of an ultrasensitive activity-based probe revealed

    DOE PAGES

    Lechtenberg, Bernhard C.; Robinson, Howard R.; Kasperkiewicz, Paulina; Drag, Marcin; Riedl, Stefan J.

    2015-01-22

    Human neutrophil elastase (HNE) plays a central role in neutrophil host defense, but its broad specificity makes HNE a difficult target for both inhibitor and probe development. Recently, we identified the unnatural amino acid containing activity-based probe PK101, which exhibits astounding sensitivity and selectivity for HNE, yet completely lacks mechanistic explanation for its unique characteristics. Here, we present the crystal structure of the HNE-PK101 complex which not only reveals the basis for PK101 ultrasensitivity but also uncovers so far unrecognized HNE features. Strikingly, the Nle(O-Bzl) function in the P4 position of PK101 reveals and leverages an “exo-pocket” on HNE asmore » a critical factor for selectivity. Furthermore, the PK101 P3 position harbors a methionine dioxide function, which mimics a post-translationally oxidized methionine residue and forms a critical hydrogen bond to the backbone amide of Gly219 of HNE. Gly219 resides in a Gly–Gly motif that is unique to HNE, yet compulsory for this interaction. Consequently, this feature enables HNE to accommodate substrates that have undergone methionine oxidation, which constitutes a hallmark post-translational modification of neutrophil signaling.« less

  7. A contrast agent recognizing activated platelets reveals murine cerebral malaria pathology undetectable by conventional MRI

    PubMed Central

    von zur Muhlen, Constantin; Sibson, Nicola R.; Peter, Karlheinz; Campbell, Sandra J.; Wilainam, Panop; Grau, Georges E.; Bode, Christoph; Choudhury, Robin P.; Anthony, Daniel C.

    2008-01-01

    Human and murine cerebral malaria are associated with elevated levels of cytokines in the brain and adherence of platelets to the microvasculature. Here we demonstrated that the accumulation of platelets in the brain microvasculature can be detected with MRI, using what we believe to be a novel contrast agent, at a time when the pathology is undetectable by conventional MRI. Ligand-induced binding sites (LIBS) on activated platelet glycoprotein IIb/IIIa receptors were detected in the brains of malaria-infected mice 6 days after inoculation with Plasmodium berghei using microparticles of iron oxide (MPIOs) conjugated to a single-chain antibody specific for the LIBS (LIBS-MPIO). No binding of the LIBS-MPIO contrast agent was detected in uninfected animals. A combination of LIBS-MPIO MRI, confocal microscopy, and transmission electron microscopy revealed that the proinflammatory cytokine TNF-α, but not IL-1β or lymphotoxin-α (LT-α), induced adherence of platelets to cerebrovascular endothelium. Peak platelet adhesion was found 12 h after TNF-α injection and was readily detected with LIBS-MPIO contrast-enhanced MRI. Temporal studies revealed that the level of MPIO-induced contrast was proportional to the number of platelets bound. Thus, the LIBS-MPIO contrast agent enabled noninvasive detection of otherwise undetectable cerebral pathology by in vivo MRI before the appearance of clinical disease, highlighting the potential of targeted contrast agents for diagnostic, mechanistic, and therapeutic studies. PMID:18274670

  8. Structures of two superoxide dismutases from Bacillus anthracis reveal a novel active centre

    SciTech Connect

    Boucher, Ian W.; Kalliomaa, Anne K.; Levdikov, Vladimir M.; Blagova, Elena V.; Fogg, Mark J.; Brannigan, James A. Wilson, Keith S.; Wilkinson, Anthony J.

    2005-07-01

    The crystal structures of two manganese superoxide dismutases from B. anthracis were solved by X-ray crystallography using molecular replacement. The BA4499 and BA5696 genes of Bacillus anthracis encode proteins homologous to manganese superoxide dismutase, suggesting that this organism has an expanded repertoire of antioxidant proteins. Differences in metal specificity and quaternary structure between the dismutases of prokaryotes and higher eukaryotes may be exploited in the development of therapeutic antibacterial compounds. Here, the crystal structure of two Mn superoxide dismutases from B. anthracis solved to high resolution are reported. Comparison of their structures reveals that a highly conserved residue near the active centre is substituted in one of the proteins and that this is a characteristic feature of superoxide dismutases from the B. cereus/B. anthracis/B. thuringiensis group of organisms.

  9. Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation

    PubMed Central

    Jinek, Martin; Jiang, Fuguo; Taylor, David W.; Sternberg, Samuel H.; Kaya, Emine; Ma, Enbo; Anders, Carolin; Hauer, Michael; Zhou, Kaihong; Lin, Steven; Kaplan, Matias; Iavarone, Anthony T.; Charpentier, Emmanuelle; Nogales, Eva; Doudna, Jennifer A.

    2014-01-01

    Type II CRISPR (clustered regularly interspaced short palindromic repeats)–Cas (CRISPR-associated) systems use an RNA-guided DNA endonuclease, Cas9, to generate double-strand breaks in invasive DNA during an adaptive bacterial immune response. Cas9 has been harnessed as a powerful tool for genome editing and gene regulation in many eukaryotic organisms. We report 2.6 and 2.2 angstrom resolution crystal structures of two major Cas9 enzyme subtypes, revealing the structural core shared by all Cas9 family members. The architectures of Cas9 enzymes define nucleic acid binding clefts, and single-particle electron microscopy reconstructions show that the two structural lobes harboring these clefts undergo guide RNA–induced reorientation to form a central channel where DNA substrates are bound. The observation that extensive structural rearrangements occur before target DNA duplex binding implicates guide RNA loading as a key step in Cas9 activation. PMID:24505130

  10. Newly identified essential amino acid residues affecting Δ8-sphingolipid desaturase activity revealed by site-directed mutagenesis.

    PubMed

    Li, Shu-Fen; Song, Li-Ying; Zhang, Guo-Jun; Yin, Wei-Bo; Chen, Yu-Hong; Wang, Richard R-C; Hu, Zan-Min

    2011-12-01

    In order to identify amino acid residues crucial for the enzymatic activity of Δ(8)-sphingolipid desaturases, a sequence comparison was performed among Δ(8)-sphingolipid desaturases and Δ(6)-fatty acid desaturases from various plants. In addition to the known conserved cytb(5) (cytochrome b(5)) HPGG motif and three conserved histidine boxes, they share additional 15 completely conserved residues. A series of site-directed mutants were generated using our previously isolated Δ(8)-sphingolipid desaturase gene from Brassica rapa to evaluate the importance of these residues to the enzyme function. The mutants were functionally characterized by heterologous expression in yeast, allowing the identification of the products of the enzymes. The results revealed that residues H63, N203, D208, D210, and G368 were obligatorily required for the enzymatic activity, and substitution of the residues F59, W190, W345, L369 and Q372 markedly decreased the enzyme activity. Among them, replacement of the residues W190, L369 and Q372 also has significant influence on the ratio of the two enzyme products. Information obtained in this work provides the molecular basis for the Δ(8)-sphingolipid desaturase activity and aids in our understanding of the structure-function relationships of the membrane-bound desaturases.

  11. Physical Connectivity Mapping by Circular Permutation of Human Telomerase RNA Reveals New Regions Critical for Activity and Processivity.

    PubMed

    Mefford, Melissa A; Zappulla, David C

    2015-01-01

    Telomerase is a specialized ribonucleoprotein complex that extends the 3' ends of chromosomes to counteract telomere shortening. However, increased telomerase activity is associated with ∼90% of human cancers. The telomerase enzyme minimally requires an RNA (hTR) and a specialized reverse transcriptase protein (TERT) for activity in vitro. Understanding the structure-function relationships within hTR has important implications for human disease. For the first time, we have tested the physical-connectivity requirements in the 451-nucleotide hTR RNA using circular permutations, which reposition the 5' and 3' ends. Our extensive in vitro analysis identified three classes of hTR circular permutants with altered function. First, circularly permuting 3' of the template causes specific defects in repeat-addition processivity, revealing that the template recognition element found in ciliates is conserved in human telomerase RNA. Second, seven circular permutations residing within the catalytically important core and CR4/5 domains completely abolish telomerase activity, unveiling mechanistically critical portions of these domains. Third, several circular permutations between the core and CR4/5 significantly increase telomerase activity. Our extensive circular permutation results provide insights into the architecture and coordination of human telomerase RNA and highlight where the RNA could be targeted for the development of antiaging and anticancer therapeutics. PMID:26503788

  12. The structure of Plasmodium falciparum serine hydroxymethyltransferase reveals a novel redox switch that regulates its activities

    SciTech Connect

    Chitnumsub, Penchit Ittarat, Wanwipa; Jaruwat, Aritsara; Noytanom, Krittikar; Amornwatcharapong, Watcharee; Pornthanakasem, Wichai; Chaiyen, Pimchai; Yuthavong, Yongyuth; Leartsakulpanich, Ubolsree

    2014-06-01

    The crystal structure of P. falciparum SHMT revealed snapshots of an intriguing disulfide/sulfhydryl switch controlling the functional activity. Plasmodium falciparum serine hydroxymethyltransferase (PfSHMT), an enzyme in the dTMP synthesis cycle, is an antimalarial target because inhibition of its expression or function has been shown to be lethal to the parasite. As the wild-type enzyme could not be crystallized, protein engineering of residues on the surface was carried out. The surface-engineered mutant PfSHMT-F292E was successfully crystallized and its structure was determined at 3 Å resolution. The PfSHMT-F292E structure is a good representation of PfSHMT as this variant revealed biochemical properties similar to those of the wild type. Although the overall structure of PfSHMT is similar to those of other SHMTs, unique features including the presence of two loops and a distinctive cysteine pair formed by Cys125 and Cys364 in the tetrahydrofolate (THF) substrate binding pocket were identified. These structural characteristics have never been reported in other SHMTs. Biochemical characterization and mutation analysis of these two residues confirm that they act as a disulfide/sulfhydryl switch to regulate the THF-dependent catalytic function of the enzyme. This redox switch is not present in the human enzyme, in which the cysteine pair is absent. The data reported here can be further exploited as a new strategy to specifically disrupt the activity of the parasite enzyme without interfering with the function of the human enzyme.

  13. Dynamic measurement of extracellular opioid activity: status quo, challenges, and significance in rewarded behaviors.

    PubMed

    Murphy, Niall P

    2015-01-21

    Opioid peptides are the endogenous ligands of opioid receptors, which are also the molecular target of naturally occurring and synthetic opiates, such as morphine and heroin. Since their discovery in the 1970s, opioid peptides, which are found widely throughout the central nervous system and the periphery, have been intensely studied because of their involvement in pain and pleasure. Over the years, our understanding of opioid peptides has widened to cover a multitude of functions, including learning and memory, affective state, gastrointestinal transit, feeding, immune function, and metabolism. Unsurprisingly, aberrant opioid activity is implicated in numerous pathologies, including drug addiction, overeating, pain, depression, and obesity. To date, virtually all preclinical and clinical studies aimed at understanding the function of endogenous opioids have relied upon manipulating endogenous opioid fluxes using opioid receptor ligands or genetic manipulations of opioid receptors and endogenous opioids. Difficulties in directly monitoring endogenous opioid fluxes, particularly in the central nervous system, have presented a major obstacle to fully understanding endogenous opioid function. This review summarizes these challenges and offers suggestions for future goals while focusing on the neurobiology of reward, specifically drawing attention to studies that have succeeded in dynamically measuring opioid peptides. PMID:25585132

  14. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice.

    PubMed

    Liu, Linchuan; Tong, Hongning; Xiao, Yunhua; Che, Ronghui; Xu, Fan; Hu, Bin; Liang, Chengzhen; Chu, Jinfang; Li, Jiayang; Chu, Chengcai

    2015-09-01

    Grain size is one of the key factors determining grain yield. However, it remains largely unknown how grain size is regulated by developmental signals. Here, we report the identification and characterization of a dominant mutant big grain1 (Bg1-D) that shows an extra-large grain phenotype from our rice T-DNA insertion population. Overexpression of BG1 leads to significantly increased grain size, and the severe lines exhibit obviously perturbed gravitropism. In addition, the mutant has increased sensitivities to both auxin and N-1-naphthylphthalamic acid, an auxin transport inhibitor, whereas knockdown of BG1 results in decreased sensitivities and smaller grains. Moreover, BG1 is specifically induced by auxin treatment, preferentially expresses in the vascular tissue of culms and young panicles, and encodes a novel membrane-localized protein, strongly suggesting its role in regulating auxin transport. Consistent with this finding, the mutant has increased auxin basipetal transport and altered auxin distribution, whereas the knockdown plants have decreased auxin transport. Manipulation of BG1 in both rice and Arabidopsis can enhance plant biomass, seed weight, and yield. Taking these data together, we identify a novel positive regulator of auxin response and transport in a crop plant and demonstrate its role in regulating grain size, thus illuminating a new strategy to improve plant productivity. PMID:26283354

  15. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice.

    PubMed

    Liu, Linchuan; Tong, Hongning; Xiao, Yunhua; Che, Ronghui; Xu, Fan; Hu, Bin; Liang, Chengzhen; Chu, Jinfang; Li, Jiayang; Chu, Chengcai

    2015-09-01

    Grain size is one of the key factors determining grain yield. However, it remains largely unknown how grain size is regulated by developmental signals. Here, we report the identification and characterization of a dominant mutant big grain1 (Bg1-D) that shows an extra-large grain phenotype from our rice T-DNA insertion population. Overexpression of BG1 leads to significantly increased grain size, and the severe lines exhibit obviously perturbed gravitropism. In addition, the mutant has increased sensitivities to both auxin and N-1-naphthylphthalamic acid, an auxin transport inhibitor, whereas knockdown of BG1 results in decreased sensitivities and smaller grains. Moreover, BG1 is specifically induced by auxin treatment, preferentially expresses in the vascular tissue of culms and young panicles, and encodes a novel membrane-localized protein, strongly suggesting its role in regulating auxin transport. Consistent with this finding, the mutant has increased auxin basipetal transport and altered auxin distribution, whereas the knockdown plants have decreased auxin transport. Manipulation of BG1 in both rice and Arabidopsis can enhance plant biomass, seed weight, and yield. Taking these data together, we identify a novel positive regulator of auxin response and transport in a crop plant and demonstrate its role in regulating grain size, thus illuminating a new strategy to improve plant productivity.

  16. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice

    PubMed Central

    Liu, Linchuan; Tong, Hongning; Xiao, Yunhua; Che, Ronghui; Xu, Fan; Hu, Bin; Liang, Chengzhen; Chu, Jinfang; Li, Jiayang; Chu, Chengcai

    2015-01-01

    Grain size is one of the key factors determining grain yield. However, it remains largely unknown how grain size is regulated by developmental signals. Here, we report the identification and characterization of a dominant mutant big grain1 (Bg1-D) that shows an extra-large grain phenotype from our rice T-DNA insertion population. Overexpression of BG1 leads to significantly increased grain size, and the severe lines exhibit obviously perturbed gravitropism. In addition, the mutant has increased sensitivities to both auxin and N-1-naphthylphthalamic acid, an auxin transport inhibitor, whereas knockdown of BG1 results in decreased sensitivities and smaller grains. Moreover, BG1 is specifically induced by auxin treatment, preferentially expresses in the vascular tissue of culms and young panicles, and encodes a novel membrane-localized protein, strongly suggesting its role in regulating auxin transport. Consistent with this finding, the mutant has increased auxin basipetal transport and altered auxin distribution, whereas the knockdown plants have decreased auxin transport. Manipulation of BG1 in both rice and Arabidopsis can enhance plant biomass, seed weight, and yield. Taking these data together, we identify a novel positive regulator of auxin response and transport in a crop plant and demonstrate its role in regulating grain size, thus illuminating a new strategy to improve plant productivity. PMID:26283354

  17. Drug and food-deprivation modulation of activity in rats given chronic dietary lead: significance of type of activity measure.

    PubMed

    Yamamoto, B K; Kutscher, C L

    1981-09-01

    In Experiment 1, rats were given a 1% lead acetate diet from Day 100 of life to the termination of the experiment. After 82 days of lead feeding behavioral tests were started. Lead exposure increased wheel-turning hyperactivity produced by food deprivation and phenylethylamine injection. Lead produced no activity change in the unchallenged condition. In the open field, lead-exposure rats were less responsive to the stimulating action of PEA and amphetamine and to the sedating action of pentobarbital. In Experiment 2, the interaction of lead with food deprivation of PEA on wheel-turning was replicated in naive animals given only a 32-day exposure. Chemical analysis was made of tissues. Ingested lead entered the brain. Regional steady-state levels of brain norepinephrine, dopamine and serotonin were not altered by lead treatment when measured following four days of starvation at a time when lead-induced behavioral change was distinct. It was concluded that pharmacological challenges on activity may be sensitive indicators of lead exposure, but the type of activity measure is critical. PMID:7291253

  18. The significance of different health institutions and their respective contributions of active pharmaceutical ingredients to wastewater.

    PubMed

    Herrmann, Manuel; Olsson, Oliver; Fiehn, Rainer; Herrel, Markus; Kümmerer, Klaus

    2015-12-01

    Active pharmaceutical ingredients (APIs) have been frequently found in the environment. It is, however, still not quite clear who is mainly responsible for API emissions. Hospitals have been considered to be the main contributing point sources for wastewater (WW) discharge of APIs. However, recent studies have shown that the contribution of hospitals to the input of APIs into the aquatic environment is quite low. Due to demographic change and the increase of psychiatric diseases, health institutions (HIs) such as psychiatric hospitals and nursing homes are likely to be important sources as well, but no data is available in this respect. This study aims to assess the impact of HIs and to provide a methodology to measure their respective contributions. Drawing on pharmaceutical consumption data for the years 2010, 2011, and 2012, this study identified API usage patterns for a psychiatric hospital (146 beds), a nursing home (286 inhabitants), and a general hospital (741 beds), the latter of which comprises three separate locations. All the HIs are located in two sub-regions of a county district with about 400,000 citizens in southwestern Germany. A selection of neurological drugs was quantified in the sewer of these facilities to evaluate the correlation between consumption and emission. The API contribution of HIs was assessed by comparing the specific consumption in the facilities with the consumption in households, expressed as the emission potential (IEP). The study shows that the usage patterns of APIs in the psychiatric hospital and the nursing home were different from the general hospital. Neurological drugs such as anticonvulsants, psycholeptics, and psychoanaleptics were mainly consumed in the psychiatric hospital and the nursing home (74% and 65%, respectively). Predicted and average measured concentrations in the effluent of the investigated HIs differed mostly by less than one order of magnitude. Therefore, the consumption-based approach is a useful method

  19. The significance of different health institutions and their respective contributions of active pharmaceutical ingredients to wastewater.

    PubMed

    Herrmann, Manuel; Olsson, Oliver; Fiehn, Rainer; Herrel, Markus; Kümmerer, Klaus

    2015-12-01

    Active pharmaceutical ingredients (APIs) have been frequently found in the environment. It is, however, still not quite clear who is mainly responsible for API emissions. Hospitals have been considered to be the main contributing point sources for wastewater (WW) discharge of APIs. However, recent studies have shown that the contribution of hospitals to the input of APIs into the aquatic environment is quite low. Due to demographic change and the increase of psychiatric diseases, health institutions (HIs) such as psychiatric hospitals and nursing homes are likely to be important sources as well, but no data is available in this respect. This study aims to assess the impact of HIs and to provide a methodology to measure their respective contributions. Drawing on pharmaceutical consumption data for the years 2010, 2011, and 2012, this study identified API usage patterns for a psychiatric hospital (146 beds), a nursing home (286 inhabitants), and a general hospital (741 beds), the latter of which comprises three separate locations. All the HIs are located in two sub-regions of a county district with about 400,000 citizens in southwestern Germany. A selection of neurological drugs was quantified in the sewer of these facilities to evaluate the correlation between consumption and emission. The API contribution of HIs was assessed by comparing the specific consumption in the facilities with the consumption in households, expressed as the emission potential (IEP). The study shows that the usage patterns of APIs in the psychiatric hospital and the nursing home were different from the general hospital. Neurological drugs such as anticonvulsants, psycholeptics, and psychoanaleptics were mainly consumed in the psychiatric hospital and the nursing home (74% and 65%, respectively). Predicted and average measured concentrations in the effluent of the investigated HIs differed mostly by less than one order of magnitude. Therefore, the consumption-based approach is a useful method

  20. Significance of an Active Volcanic Front in the Far Western Aleutian Arc

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G. M.; Kelemen, P. B.; Hoernle, K.

    2015-12-01

    Discovery of a volcanic front west of Buldir Volcano, the western-most emergent Aleutian volcano, demonstrates that the surface expression of Aleutian volcanism falls below sea level just west of 175.9° E longitude, but is otherwise continuous from mainland Alaska to Kamchatka. The newly discovered sites of western Aleutian seafloor volcanism are the Ingenstrem Depression, a 60 km-long structural depression just west of Buldir, and an unnamed area 300 km further west, referred to as the Western Cones. These locations fall along a volcanic front that stretches from Buldir to Piip Seamount near the Komandorsky Islands. Western Aleutian seafloor volcanic rocks include large quantities of high-silica andesite and dacite, which define a highly calc-alkaline igneous series and carry trace element signatures that are unmistakably subduction-related. This indicates that subducting oceanic lithosphere is present beneath the westernmost Aleutian arc. The rarity of earthquakes below depths of 200 km indicates that the subducting plate is unusually hot. Some seafloor volcanoes are 6-8 km wide at the base, and so are as large as many emergent Aleutian volcanoes. The seafloor volcanoes are submerged in water depths >3000 m because they sit on oceanic lithosphere of the Bering Sea. The volcanic front is thus displaced to the north of the ridge of arc crust that underlies the western Aleutian Islands. This displacement, which developed since approximately 6 Ma when volcanism was last active on the islands, must be a consequence of oblique convergence in a system where the subducting plate and large blocks of arc crust are both moving primarily in an arc-parallel sense. The result is a hot-slab system where low subduction rates probably limit advection of hot mantle to the subarc, and produce a relatively cool and perhaps stagnant mantle wedge. The oceanic setting and highly oblique subduction geometry also severely limit rates of sediment subduction, so the volcanic rocks, which

  1. A MICROARRAY ANALYSIS OF GENE EXPRESSION IN THE EMBRYONIC FORELIMB OF THE C57BL/6J MOUSE REVEALS SIGNIFICANT ALTERATIONS METABOLIC AND DEVELOPMENTAL REGULATION FOLLOWING ETHANOL EXPOSURE.

    EPA Science Inventory

    The observation of transcriptional changes following embryonic ethanol exposure may provide significant insights into the biological response to ethanol exposure. In this study, we used microarray analysis to examine the transcriptional response of the developing limb to a dose ...

  2. Crimean–Congo hemorrhagic fever virus nucleoprotein reveals endonuclease activity in bunyaviruses

    PubMed Central

    Guo, Yu; Wang, Wenming; Ji, Wei; Deng, Maping; Sun, Yuna; Zhou, Honggang; Yang, Cheng; Deng, Fei; Wang, Hualin; Hu, Zhihong; Lou, Zhiyong; Rao, Zihe

    2012-01-01

    Crimean–Congo hemorrhagic fever virus (CCHFV), a virus with high mortality in humans, is a member of the genus Nairovirus in the family Bunyaviridae, and is a causative agent of severe hemorrhagic fever (HF). It is classified as a biosafety level 4 pathogen and a potential bioterrorism agent due to its aerosol infectivity and its ability to cause HF outbreaks with high case fatality (∼30%). However, little is known about the structural features and function of nucleoproteins (NPs) in the Bunyaviridae, especially in CCHFV. Here we report a 2.3-Å resolution crystal structure of the CCHFV nucleoprotein. The protein has a racket-shaped overall structure with distinct “head” and “stalk” domains and differs significantly with NPs reported so far from other negative-sense single-stranded RNA viruses. Furthermore, CCHFV NP shows a distinct metal-dependent DNA-specific endonuclease activity. Single residue mutations in the predicted active site resulted in a significant reduction in the observed endonuclease activity. Our results present a new folding mechanism and function for a negative-strand RNA virus nucleoprotein, extend our structural insight into bunyavirus NPs, and provide a potential target for antiviral drug development to treat CCHFV infection. PMID:22421137

  3. Spores of many common airborne fungi reveal no ice nucleation activity in oil immersion freezing experiments

    NASA Astrophysics Data System (ADS)

    Pummer, B. G.; Atanasova, L.; Bauer, H.; Bernardi, J.; Druzhinina, I. S.; Fröhlich-Nowoisky, J.; Grothe, H.

    2013-12-01

    Fungal spores are ubiquitous biological aerosols, which are considered to act as ice nuclei. In this study the ice nucleation (IN) activity of spores harvested from 29 fungal strains belonging to 21 different species was tested in the immersion freezing mode by microscopic observation of water-in-oil emulsions. Spores of 8 of these strains were also investigated in a microdroplet freezing array instrument. The focus was laid on species of economical, ecological or sanitary significance. Besides common molds (Ascomycota), some representatives of the widespread group of mushrooms (Basidiomycota) were also investigated. Fusarium avenaceum was the only sample showing IN activity at relatively high temperatures (about 264 K), while the other investigated fungal spores showed no freezing above 248 K. Many of the samples indeed froze at homogeneous ice nucleation temperatures (about 237 K). In combination with other studies, this suggests that only a limited number of species may act as atmospheric ice nuclei. This would be analogous to what is already known for the bacterial ice nuclei. Apart from that, we selected a set of fungal strains from different sites and exposed them to occasional freezing stress during their cultivation. This was in order to test if the exposure to a cold environment encourages the expression of ice nuclei during growth as a way of adaptation. Although the total protein expression was altered by this treatment, it had no significant impact on the IN activity.

  4. A Systematic Analysis Reveals Heterogeneous Changes in the Endocytic Activities of Cancer Cells

    PubMed Central

    Elkin, Sarah R.; Bendris, Nawal; Reis, Carlos R.; Zhou, Yunyun; Xie, Yang; Huffman, Kenneth E.; Minna, John D.; Schmid, Sandra L.

    2016-01-01

    Metastasis is a multistep process requiring cancer cell signaling, invasion, migration, survival, and proliferation. These processes require dynamic modulation of cell surface proteins by endocytosis. Given this functional connection, it has been suggested that endocytosis is dysregulated in cancer. To test this, we developed In-Cell ELISA assays to measure three different endocytic pathways: clathrin-mediated endocytosis, caveolae-mediated endocytosis, and clathrin-independent endocytosis and compared these activities using two different syngeneic models for normal and oncogene-transformed human lung epithelial cells. We found that all endocytic activities were reduced in the transformed versus normal counterparts. However, when we screened 29 independently isolated non–small cell lung cancer (NSCLC) cell lines to determine whether these changes were systematic, we observed significant heterogeneity. Nonetheless, using hierarchical clustering based on their combined endocytic properties, we identified two phenotypically distinct clusters of NSCLCs. One co-clustered with mutations in KRAS, a mesenchymal phenotype, increased invasion through collagen and decreased growth in soft agar, whereas the second was enriched in cells with an epithelial phenotype. Interestingly, the two clusters also differed significantly in clathrin-independent internalization and surface expression of CD44 and CD59. Taken together, our results suggest that endocytotic alterations in cancer cells that affect cell surface expression of critical molecules have a significant influence on cancer-relevant phenotypes, with potential implications for interventions to control cancer by modulating endocytic dynamics. PMID:26359453

  5. Quantitative Proteomics Reveals the Induction of Mitophagy in Tumor Necrosis Factor-α-activated (TNFα) Macrophages*

    PubMed Central

    Bell, Christina; English, Luc; Boulais, Jonathan; Chemali, Magali; Caron-Lizotte, Olivier; Desjardins, Michel; Thibault, Pierre

    2013-01-01

    Macrophages play an important role in innate and adaptive immunity as professional phagocytes capable of internalizing and degrading pathogens to derive antigens for presentation to T cells. They also produce pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) that mediate local and systemic responses and direct the development of adaptive immunity. The present work describes the use of label-free quantitative proteomics to profile the dynamic changes of proteins from resting and TNF-α-activated mouse macrophages. These analyses revealed that TNF-α activation of macrophages led to the down-regulation of mitochondrial proteins and the differential regulation of several proteins involved in vesicle trafficking and immune response. Importantly, we found that the down-regulation of mitochondria proteins occurred through mitophagy and was specific to TNF-α, as other cytokines such as IL-1β and IFN-γ had no effect on mitochondria degradation. Furthermore, using a novel antigen presentation system, we observed that the induction of mitophagy by TNF-α enabled the processing and presentation of mitochondrial antigens at the cell surface by MHC class I molecules. These findings highlight an unsuspected role of TNF-α in mitophagy and expanded our understanding of the mechanisms responsible for MHC presentation of self-antigens. PMID:23674617

  6. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge.

    PubMed

    Zhang, Tong; Zhang, Xu-Xiang; Ye, Lin

    2011-01-01

    The overuse or misuse of antibiotics has accelerated antibiotic resistance, creating a major challenge for the public health in the world. Sewage treatment plants (STPs) are considered as important reservoirs for antibiotic resistance genes (ARGs) and activated sludge characterized with high microbial density and diversity facilitates ARG horizontal gene transfer (HGT) via mobile genetic elements (MGEs). However, little is known regarding the pool of ARGs and MGEs in sludge microbiome. In this study, the transposon aided capture (TRACA) system was employed to isolate novel plasmids from activated sludge of one STP in Hong Kong, China. We also used Illumina Hiseq 2000 high-throughput sequencing and metagenomics analysis to investigate the plasmid metagenome. Two novel plasmids were acquired from the sludge microbiome by using TRACA system and one novel plasmid was identified through metagenomics analysis. Our results revealed high levels of various ARGs as well as MGEs for HGT, including integrons, transposons and plasmids. The application of the TRACA system to isolate novel plasmids from the environmental metagenome, coupled with subsequent high-throughput sequencing and metagenomic analysis, highlighted the prevalence of ARGs and MGEs in microbial community of STPs.

  7. Voltage-Sensitive Dyes And Imaging Techniques Reveal New Patterns Of Electrical Activity In Heart Cortex

    NASA Astrophysics Data System (ADS)

    Salama, Guy

    1988-04-01

    Voltage-sensitive dyes bind to the plasms membrane of excitable cells (ie., muscle or nerve cells) and exhibit fluorescence and/or absorption changes that vary linearly with changes in transmembrane electrical potential. These potentiometric optical probes can be used to measure local changes in transmembrane potential by monitoring optical signals from dye molecules bound to the surface membrane. Consequently, when excitable cells are stained with such a dye and are stimulated to fire an electrical impulse (ie., an action potential (AP)), the changes in dye fluorescence have the characteristic shape and time course of APs recorded with an intracellular micro-electrode. Potentiometric dyes in conjuction with imaging techniques can now be used to visualize complex patterns and propagation of electrical activity. With photodiode arrays on video imaging techniques, patterns of biological electrical activity can be obtained with high temporal and spatial resolution which could not be obtained by conventional micro-electrodes. These methods reveal new details and offer powerful approaches to study fundamental problem in cardiac electrophysiology, communication in nerve networks, and the organization of cortical neurons.

  8. High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase

    PubMed Central

    Gajula, Kiran S.; Huwe, Peter J.; Mo, Charlie Y.; Crawford, Daniel J.; Stivers, James T.; Radhakrishnan, Ravi; Kohli, Rahul M.

    2014-01-01

    Antibody maturation is a critical immune process governed by the enzyme activation-induced deaminase (AID), a member of the AID/APOBEC DNA deaminase family. AID/APOBEC deaminases preferentially target cytosine within distinct preferred sequence motifs in DNA, with specificity largely conferred by a small 9–11 residue protein loop that differs among family members. Here, we aimed to determine the key functional characteristics of this protein loop in AID and to thereby inform our understanding of the mode of DNA engagement. To this end, we developed a methodology (Sat-Sel-Seq) that couples saturation mutagenesis at each position across the targeting loop, with iterative functional selection and next-generation sequencing. This high-throughput mutational analysis revealed dominant characteristics for residues within the loop and additionally yielded enzymatic variants that enhance deaminase activity. To rationalize these functional requirements, we performed molecular dynamics simulations that suggest that AID and its hyperactive variants can engage DNA in multiple specific modes. These findings align with AID's competing requirements for specificity and flexibility to efficiently drive antibody maturation. Beyond insights into the AID-DNA interface, our Sat-Sel-Seq approach also serves to further expand the repertoire of techniques for deep positional scanning and may find general utility for high-throughput analysis of protein function. PMID:25064858

  9. Context Differences Reveal Insulator and Activator Functions of a Su(Hw) Binding Region

    PubMed Central

    Wehling, Misty D.; Geyer, Pamela K.

    2008-01-01

    Insulators are DNA elements that divide chromosomes into independent transcriptional domains. The Drosophila genome contains hundreds of binding sites for the Suppressor of Hairy-wing [Su(Hw)] insulator protein, corresponding to locations of the retroviral gypsy insulator and non-gypsy binding regions (BRs). The first non-gypsy BR identified, 1A-2, resides in cytological region 1A. Using a quantitative transgene system, we show that 1A-2 is a composite insulator containing enhancer blocking and facilitator elements. We discovered that 1A-2 separates the yellow (y) gene from a previously unannotated, non-coding RNA gene, named yar for y-achaete (ac) intergenic RNA. The role of 1A-2 was elucidated using homologous recombination to excise these sequences from the natural location, representing the first deletion of any Su(Hw) BR in the genome. Loss of 1A-2 reduced yar RNA accumulation, without affecting mRNA levels from the neighboring y and ac genes. These data indicate that within the 1A region, 1A-2 acts an activator of yar transcription. Taken together, these studies reveal that the properties of 1A-2 are context-dependent, as this element has both insulator and enhancer activities. These findings imply that the function of non-gypsy Su(Hw) BRs depends on the genomic environment, predicting that Su(Hw) BRs represent a diverse collection of genomic regulatory elements. PMID:18704163

  10. Inner workings of thrombolites: spatial gradients of metabolic activity as revealed by metatranscriptome profiling

    PubMed Central

    Mobberley, J. M.; Khodadad, C. L. M.; Visscher, P. T.; Reid, R. P.; Hagan, P.; Foster, J. S.

    2015-01-01

    Microbialites are sedimentary deposits formed by the metabolic interactions of microbes and their environment. These lithifying microbial communities represent one of the oldest ecosystems on Earth, yet the molecular mechanisms underlying the function of these communities are poorly understood. In this study, we used comparative metagenomic and metatranscriptomic analyses to characterize the spatial organization of the thrombolites of Highborne Cay, The Bahamas, an actively forming microbialite system. At midday, there were differences in gene expression throughout the spatial profile of the thrombolitic mat with a high abundance of transcripts encoding genes required for photosynthesis, nitrogen fixation and exopolymeric substance production in the upper three mm of the mat. Transcripts associated with denitrification and sulfate reduction were in low abundance throughout the depth profile, suggesting these metabolisms were less active during midday. Comparative metagenomics of the Bahamian thrombolites with other known microbialite ecosystems from across the globe revealed that, despite many shared core pathways, the thrombolites represented genetically distinct communities. This study represents the first time the metatranscriptome of living microbialite has been characterized and offers a new molecular perspective on those microbial metabolisms, and their underlying genetic pathways, that influence the mechanisms of carbonate precipitation in lithifying microbial mat ecosystems. PMID:26213359

  11. Inner workings of thrombolites: spatial gradients of metabolic activity as revealed by metatranscriptome profiling

    NASA Astrophysics Data System (ADS)

    Mobberley, J. M.; Khodadad, C. L. M.; Visscher, P. T.; Reid, R. P.; Hagan, P.; Foster, J. S.

    2015-07-01

    Microbialites are sedimentary deposits formed by the metabolic interactions of microbes and their environment. These lithifying microbial communities represent one of the oldest ecosystems on Earth, yet the molecular mechanisms underlying the function of these communities are poorly understood. In this study, we used comparative metagenomic and metatranscriptomic analyses to characterize the spatial organization of the thrombolites of Highborne Cay, The Bahamas, an actively forming microbialite system. At midday, there were differences in gene expression throughout the spatial profile of the thrombolitic mat with a high abundance of transcripts encoding genes required for photosynthesis, nitrogen fixation and exopolymeric substance production in the upper three mm of the mat. Transcripts associated with denitrification and sulfate reduction were in low abundance throughout the depth profile, suggesting these metabolisms were less active during midday. Comparative metagenomics of the Bahamian thrombolites with other known microbialite ecosystems from across the globe revealed that, despite many shared core pathways, the thrombolites represented genetically distinct communities. This study represents the first time the metatranscriptome of living microbialite has been characterized and offers a new molecular perspective on those microbial metabolisms, and their underlying genetic pathways, that influence the mechanisms of carbonate precipitation in lithifying microbial mat ecosystems.

  12. Pyruvate dehydrogenase kinase-4 structures reveal a metastable open conformation fostering robust core-free basal activity.

    PubMed

    Wynn, R Max; Kato, Masato; Chuang, Jacinta L; Tso, Shih-Chia; Li, Jun; Chuang, David T

    2008-09-12

    Human pyruvate dehydrogenase complex (PDC) is down-regulated by pyruvate dehydrogenase kinase (PDK) isoforms 1-4. PDK4 is overexpressed in skeletal muscle in type 2 diabetes, resulting in impaired glucose utilization. Here we show that human PDK4 has robust core-free basal activity, which is considerably higher than activity levels of other PDK isoforms stimulated by the PDC core. PDK4 binds the L3 lipoyl domain, but its activity is not significantly stimulated by any individual lipoyl domains or the core of PDC. The 2.0-A crystal structures of the PDK4 dimer with bound ADP reveal an open conformation with a wider active-site cleft, compared with that in the closed conformation epitomized by the PDK2-ADP structure. The open conformation in PDK4 shows partially ordered C-terminal cross-tails, in which the conserved DW (Asp(394)-Trp(395)) motif from one subunit anchors to the N-terminal domain of the other subunit. The open conformation fosters a reduced binding affinity for ADP, facilitating the efficient removal of product inhibition by this nucleotide. Alteration or deletion of the DW-motif disrupts the C-terminal cross-tail anchor, resulting in the closed conformation and the nearly complete inactivation of PDK4. Fluorescence quenching and enzyme activity data suggest that compounds AZD7545 and dichloroacetate lock PDK4 in the open and the closed conformational states, respectively. We propose that PDK4 with bound ADP exists in equilibrium between the open and the closed conformations. The favored metastable open conformation is responsible for the robust basal activity of PDK4 in the absence of the PDC core. PMID:18658136

  13. Differential biological significance of tissue-type and urokinase-type plasminogen activator in human breast cancer.

    PubMed Central

    Yamashita, J.; Ogawa, M.; Yamashita, S.; Nakashima, Y.; Saishoji, T.; Nomura, K.; Inada, K.; Kawano, I.

    1993-01-01

    Plasminogen activator (PA) is a serine protease existing in two forms known as tissue-type (t-PA) and urokinase-type (u-PA). To examine whether PA is related to the postoperative clinical course of human breast cancer, total PA activity, t-PA activity, u-PA activity, and immunoreactive t-PA were determined in tissue extracts from 144 breast cancer specimens. The patients were initially divided into four groups according to the postoperative clinical course: Group I (83 patients who are disease-free), Group II (20 patients whose first metastases were found only in bone), Group III (19 patients whose first metastases were found in both bone and lung), and Group IV (22 patients whose first metastases were found only in lung). Total PA activity was significantly lower in Groups, II, III and IV than in Group I. Both t-PA activity and t-PA antigen levels were also significantly lower in Groups II, III and IV than in Group I, while no significant difference was found in u-PA activity among these groups, indicating that low activity of total PA in Groups II, III and IV was due to a decrease in t-PA but not in u-PA. In the multivariate analyses, t-PA activity was found to be an independent prognostic factor for relapse-free survival. When four groups of patients were further analysed in terms of nodal status, both t-PA activity and antigen levels were markedly decreased in the node-negative Group II compared with the node-negative Groups III and IV or with the node-positive Groups II, III and IV. Of additional interest, u-PA activity was significantly higher in node-positive patients than in node-negative patients with any group. The clinico-pathologic analyses of the patients in this series showed that node involvement and lymphatic invasion were more frequently positive in Groups III and IV than in Groups I and II. When 144 breast cancers were categorised in terms of combinations of oestrogen receptor (ER) and progesterone receptor (PgR) status, breast cancers which were

  14. Characterization of CLL exosomes reveals a distinct microRNA signature and enhanced secretion by activation of BCR signaling

    PubMed Central

    Yeh, Yuh-Ying; Ozer, Hatice Gulcin; Lehman, Amy M.; Maddocks, Kami; Yu, Lianbo; Byrd, John C.

    2015-01-01

    Multiple studies show that chronic lymphocytic leukemia (CLL) cells are heavily dependent on their microenvironment for survival. Communication between CLL cells and the microenvironment is mediated through direct cell contact, soluble factors, and extracellular vesicles. Exosomes are small particles enclosed with lipids, proteins, and small RNAs that can convey biological materials to surrounding cells. Our data herein demonstrate that CLL cells release significant amounts of exosomes in plasma that exhibit abundant CD37, CD9, and CD63 expression. Our work also pinpoints the regulation of B-cell receptor (BCR) signaling in the release of CLL exosomes: BCR activation by α-immunoglobulin (Ig)M induces exosome secretion, whereas BCR inactivation via ibrutinib impedes α-IgM-stimulated exosome release. Moreover, analysis of serial plasma samples collected from CLL patients on an ibrutinib clinical trial revealed that exosome plasma concentration was significantly decreased following ibrutinib therapy. Furthermore, microRNA (miR) profiling of plasma-derived exosomes identified a distinct exosome microRNA signature, including miR-29 family, miR-150, miR-155, and miR-223 that have been associated with CLL disease. Interestingly, expression of exosome miR-150 and miR-155 increases with BCR activation. In all, this study successfully characterized CLL exosomes, demonstrated the control of BCR signaling in the release of CLL exosomes, and uncovered a disease-relevant exosome microRNA profile. PMID:25833959

  15. Fractal analysis reveals subclasses of neurons and suggests an explanation of their spontaneous activity.

    PubMed

    Favela, Luis H; Coey, Charles A; Griff, Edwin R; Richardson, Michael J

    2016-07-28

    The present work used fractal time series analysis (detrended fluctuation analysis; DFA) to examine the spontaneous activity of single neurons in an anesthetized animal model, specifically, the mitral cells in the rat main olfactory bulb. DFA bolstered previous research in suggesting two subclasses of mitral cells. Although there was no difference in the fractal scaling of the interspike interval series at the shorter timescales, there was a significant difference at longer timescales. Neurons in Group B exhibited fractal, power-law scaled interspike intervals, whereas neurons in Group A exhibited random variation. These results raise questions about the role of these different cells within the olfactory bulb and potential explanations of their dynamics. Specifically, self-organized criticality has been proposed as an explanation of fractal scaling in many natural systems, including neural systems. However, this theory is based on certain assumptions that do not clearly hold in the case of spontaneous neural activity, which likely reflects intrinsic cell dynamics rather than activity driven by external stimulation. Moreover, it is unclear how self-organized criticality might account for the random dynamics observed in Group A, and how these random dynamics might serve some functional role when embedded in the typical activity of the olfactory bulb. These theoretical considerations provide direction for additional experimental work. PMID:27189719

  16. Magnetic resonance spectroscopy reveals that activated monocytes contribute to neuronal injury in SIV neuroAIDS

    PubMed Central

    Williams, Kenneth; Westmoreland, Susan; Greco, Jane; Ratai, Eva; Lentz, Margaret; Kim, Woong-Ki; Fuller, Robert A.; Kim, John P.; Autissier, Patrick; Sehgal, Prahbat K.; Schinazi, Raymond F.; Bischofberger, Norbert; Piatak, Michael; Lifson, Jeffrey D.; Masliah, Eliezer; González, R. Gilberto

    2005-01-01

    Difficulties in understanding the mechanisms of HIV neuropathogenesis include the inability to study dynamic processes of infection, cumulative effects of the virus, and contributing host immune responses. We used 1H magnetic resonance spectroscopy and studied monocyte activation and progression of CNS neuronal injury in a CD8 lymphocyte depletion model of neuroAIDS in SIV-infected rhesus macaque monkeys. We found early, consistent neuronal injury coincident with viremia and SIV infection/activation of monocyte subsets and sought to define the role of plasma virus and monocytes in contributing to CNS disease. Antiretroviral therapy with essentially non–CNS-penetrating agents resulted in slightly decreased levels of plasma virus, a significant reduction in the number of activated and infected monocytes, and rapid, near-complete reversal of neuronal injury. Robust macrophage accumulation and productive virus replication were found in brains of infected and CD8 lymphocyte–depleted animals, but no detectable virus and few scattered infiltrating macrophages were observed in CD8 lymphocyte–depleted animals compared with animals not receiving antiretroviruses that were sacrificed at the same time after infection. These results underscore the role of activated monocytes and monocyte infection outside of the brain in driving CNS disease. PMID:16110325

  17. Glycan structure of Gc Protein-derived Macrophage Activating Factor as revealed by mass spectrometry.

    PubMed

    Borges, Chad R; Rehder, Douglas S

    2016-09-15

    Disagreement exists regarding the O-glycan structure attached to human vitamin D binding protein (DBP). Previously reported evidence indicated that the O-glycan of the Gc1S allele product is the linear core 1 NeuNAc-Gal-GalNAc-Thr trisaccharide. Here, glycan structural evidence is provided from glycan linkage analysis and over 30 serial glycosidase-digestion experiments which were followed by analysis of the intact protein by electrospray ionization mass spectrometry (ESI-MS). Results demonstrate that the O-glycan from the Gc1F protein is the same linear trisaccharide found on the Gc1S protein and that the hexose residue is galactose. In addition, the putative anti-cancer derivative of DBP known as Gc Protein-derived Macrophage Activating Factor (GcMAF, which is formed by the combined action of β-galactosidase and neuraminidase upon DBP) was analyzed intact by ESI-MS, revealing that the activating E. coli β-galactosidase cleaves nothing from the protein-leaving the glycan structure of active GcMAF as a Gal-GalNAc-Thr disaccharide, regardless of the order in which β-galactosidase and neuraminidase are applied. Moreover, glycosidase digestion results show that α-N-Acetylgalactosamindase (nagalase) lacks endoglycosidic function and only cleaves the DBP O-glycan once it has been trimmed down to a GalNAc-Thr monosaccharide-precluding the possibility of this enzyme removing the O-glycan trisaccharide from cancer-patient DBP in vivo.

  18. Electrocorticography reveals the temporal dynamics of posterior parietal cortical activity during recognition memory decisions.

    PubMed

    Gonzalez, Alex; Hutchinson, J Benjamin; Uncapher, Melina R; Chen, Janice; LaRocque, Karen F; Foster, Brett L; Rangarajan, Vinitha; Parvizi, Josef; Wagner, Anthony D

    2015-09-01

    Theories of the neurobiology of episodic memory predominantly focus on the contributions of medial temporal lobe structures, based on extensive lesion, electrophysiological, and imaging evidence. Against this backdrop, functional neuroimaging data have unexpectedly implicated left posterior parietal cortex (PPC) in episodic retrieval, revealing distinct activation patterns in PPC subregions as humans make memory-related decisions. To date, theorizing about the functional contributions of PPC has been hampered by the absence of information about the temporal dynamics of PPC activity as retrieval unfolds. Here, we leveraged electrocorticography to examine the temporal profile of high gamma power (HGP) in dorsal PPC subregions as participants made old/new recognition memory decisions. A double dissociation in memory-related HGP was observed, with activity in left intraparietal sulcus (IPS) and left superior parietal lobule (SPL) differing in time and sign for recognized old items (Hits) and correctly rejected novel items (CRs). Specifically, HGP in left IPS increased for Hits 300-700 ms poststimulus onset, and decayed to baseline ∼200 ms preresponse. By contrast, HGP in left SPL increased for CRs early after stimulus onset (200-300 ms) and late in the memory decision (from 700 ms to response). These memory-related effects were unique to left PPC, as they were not observed in right PPC. Finally, memory-related HGP in left IPS and SPL was sufficiently reliable to enable brain-based decoding of the participant's memory state at the single-trial level, using multivariate pattern classification. Collectively, these data provide insights into left PPC temporal dynamics as humans make recognition memory decisions. PMID:26283375

  19. Glycan structure of Gc Protein-derived Macrophage Activating Factor as revealed by mass spectrometry.

    PubMed

    Borges, Chad R; Rehder, Douglas S

    2016-09-15

    Disagreement exists regarding the O-glycan structure attached to human vitamin D binding protein (DBP). Previously reported evidence indicated that the O-glycan of the Gc1S allele product is the linear core 1 NeuNAc-Gal-GalNAc-Thr trisaccharide. Here, glycan structural evidence is provided from glycan linkage analysis and over 30 serial glycosidase-digestion experiments which were followed by analysis of the intact protein by electrospray ionization mass spectrometry (ESI-MS). Results demonstrate that the O-glycan from the Gc1F protein is the same linear trisaccharide found on the Gc1S protein and that the hexose residue is galactose. In addition, the putative anti-cancer derivative of DBP known as Gc Protein-derived Macrophage Activating Factor (GcMAF, which is formed by the combined action of β-galactosidase and neuraminidase upon DBP) was analyzed intact by ESI-MS, revealing that the activating E. coli β-galactosidase cleaves nothing from the protein-leaving the glycan structure of active GcMAF as a Gal-GalNAc-Thr disaccharide, regardless of the order in which β-galactosidase and neuraminidase are applied. Moreover, glycosidase digestion results show that α-N-Acetylgalactosamindase (nagalase) lacks endoglycosidic function and only cleaves the DBP O-glycan once it has been trimmed down to a GalNAc-Thr monosaccharide-precluding the possibility of this enzyme removing the O-glycan trisaccharide from cancer-patient DBP in vivo. PMID:27503803

  20. Characterization of the Biocontrol Activity of Pseudomonas fluorescens Strain X Reveals Novel Genes Regulated by Glucose

    PubMed Central

    Kremmydas, Gerasimos F.; Tampakaki, Anastasia P.; Georgakopoulos, Dimitrios G.

    2013-01-01

    Pseudomonas fluorescens strain X, a bacterial isolate from the rhizosphere of bean seedlings, has the ability to suppress damping-off caused by the oomycete Pythium ultimum. To determine the genes controlling the biocontrol activity of strain X, transposon mutagenesis, sequencing and complementation was performed. Results indicate that, biocontrol ability of this isolate is attributed to gcd gene encoding glucose dehydrogenase, genes encoding its co-enzyme pyrroloquinoline quinone (PQQ), and two genes (sup5 and sup6) which seem to be organized in a putative operon. This operon (named supX) consists of five genes, one of which encodes a non-ribosomal peptide synthase. A unique binding site for a GntR-type transcriptional factor is localized upstream of the supX putative operon. Synteny comparison of the genes in supX revealed that they are common in the genus Pseudomonas, but with a low degree of similarity. supX shows high similarity only to the mangotoxin operon of Ps. syringae pv. syringae UMAF0158. Quantitative real-time PCR analysis indicated that transcription of supX is strongly reduced in the gcd and PQQ-minus mutants of Ps. fluorescens strain X. On the contrary, transcription of supX in the wild type is enhanced by glucose and transcription levels that appear to be higher during the stationary phase. Gcd, which uses PQQ as a cofactor, catalyses the oxidation of glucose to gluconic acid, which controls the activity of the GntR family of transcriptional factors. The genes in the supX putative operon have not been implicated before in the biocontrol of plant pathogens by pseudomonads. They are involved in the biosynthesis of an antimicrobial compound by Ps. fluorescens strain X and their transcription is controlled by glucose, possibly through the activity of a GntR-type transcriptional factor binding upstream of this putative operon. PMID:23596526

  1. Characterization of the biocontrol activity of pseudomonas fluorescens strain X reveals novel genes regulated by glucose.

    PubMed

    Kremmydas, Gerasimos F; Tampakaki, Anastasia P; Georgakopoulos, Dimitrios G

    2013-01-01

    Pseudomonas fluorescens strain X, a bacterial isolate from the rhizosphere of bean seedlings, has the ability to suppress damping-off caused by the oomycete Pythium ultimum. To determine the genes controlling the biocontrol activity of strain X, transposon mutagenesis, sequencing and complementation was performed. Results indicate that, biocontrol ability of this isolate is attributed to gcd gene encoding glucose dehydrogenase, genes encoding its co-enzyme pyrroloquinoline quinone (PQQ), and two genes (sup5 and sup6) which seem to be organized in a putative operon. This operon (named supX) consists of five genes, one of which encodes a non-ribosomal peptide synthase. A unique binding site for a GntR-type transcriptional factor is localized upstream of the supX putative operon. Synteny comparison of the genes in supX revealed that they are common in the genus Pseudomonas, but with a low degree of similarity. supX shows high similarity only to the mangotoxin operon of Ps. syringae pv. syringae UMAF0158. Quantitative real-time PCR analysis indicated that transcription of supX is strongly reduced in the gcd and PQQ-minus mutants of Ps. fluorescens strain X. On the contrary, transcription of supX in the wild type is enhanced by glucose and transcription levels that appear to be higher during the stationary phase. Gcd, which uses PQQ as a cofactor, catalyses the oxidation of glucose to gluconic acid, which controls the activity of the GntR family of transcriptional factors. The genes in the supX putative operon have not been implicated before in the biocontrol of plant pathogens by pseudomonads. They are involved in the biosynthesis of an antimicrobial compound by Ps. fluorescens strain X and their transcription is controlled by glucose, possibly through the activity of a GntR-type transcriptional factor binding upstream of this putative operon.

  2. Structures of BmrR-Drug Complexes Reveal a Rigid Multidrug Binding Pocket And Transcription Activation Through Tyrosine Expulsion

    SciTech Connect

    Newberry, K.J.; Huffman, J.L.; Miller, M.C.; Vazquez-Laslop, N.; Neyfakh, A.A.; Brennan, R.G.

    2009-05-22

    BmrR is a member of the MerR family and a multidrug binding transcription factor that up-regulates the expression of the bmr multidrug efflux transporter gene in response to myriad lipophilic cationic compounds. The structural mechanism by which BmrR binds these chemically and structurally different drugs and subsequently activates transcription is poorly understood. Here, we describe the crystal structures of BmrR bound to rhodamine 6G (R6G) or berberine (Ber) and cognate DNA. These structures reveal each drug stacks against multiple aromatic residues with their positive charges most proximal to the carboxylate group of Glu-253 and that, unlike other multidrug binding pockets, that of BmrR is rigid. Substitution of Glu-253 with either alanine (E253A) or glutamine (E253Q) results in unpredictable binding affinities for R6G, Ber, and tetraphenylphosphonium. Moreover, these drug binding studies reveal that the negative charge of Glu-253 is not important for high affinity binding to Ber and tetraphenylphosphonium but plays a more significant, but unpredictable, role in R6G binding. In vitro transcription data show that E253A and E253Q are constitutively active, and structures of the drug-free E253A-DNA and E253Q-DNA complexes support a transcription activation mechanism requiring the expulsion of Tyr-152 from the multidrug binding pocket. In sum, these data delineate the mechanism by which BmrR binds lipophilic, monovalent cationic compounds and suggest the importance of the redundant negative electrostatic nature of this rigid drug binding pocket that can be used to discriminate against molecules that are not substrates of the Bmr multidrug efflux pump.

  3. The crystal structure of Escherichia coli heat shock protein YedU reveals three potential catalytic active sites

    PubMed Central

    Zhao, Yonghong; Liu, Deqian; Kaluarachchi, Warna D.; Bellamy, Henry D.; White, Mark A.; Fox, Robert O.

    2003-01-01

    The mRNA of Escherichia coli yedU gene is induced 31-fold upon heat shock. The 31-kD YedU protein, also calls Hsp31, is highly conserved in several human pathogens and has chaperone activity. We solved the crystal structure of YedU at 2.2 Å resolution. YedU monomer has an α/β/α sandwich domain and a small α/β domain. YedU is a dimer in solution, and its crystal structure indicates that a significant amount of surface area is buried upon dimerization. There is an extended hydrophobic patch that crosses the dimer interface on the surface of the protein. This hydrophobic patch is likely the substrate-binding site responsible for the chaperone activity. The structure also reveals a potential protease-like catalytic triad composed of Cys184, His185, and Asp213, although no enzymatic activity could be identified. YedU coordinates a metal ion using His85, His122, and Glu90. This 2-His-1-carboxylate motif is present in carboxypeptidase A (a zinc enzyme), and a number of dioxygenases and hydroxylases that utilize iron as a cofactor, suggesting another potential function for YedU. PMID:14500888

  4. Extensive hydrothermal activity revealed by multi-tracer survey in the Wallis and Futuna region (SW Pacific)

    NASA Astrophysics Data System (ADS)

    Konn, C.; Fourré, E.; Jean-Baptiste, P.; Donval, J. P.; Guyader, V.; Birot, D.; Alix, A. S.; Gaillot, A.; Perez, F.; Dapoigny, A.; Pelleter, E.; Resing, J. A.; Charlou, J. L.; Fouquet, Y.

    2016-10-01

    The study area is close to the Wallis and Futuna Islands in the French EEZ. It exists on the western boundary of the fastest tectonic area in the world at the junction of the Lau and North-Fiji basins. At this place, the unstable back-arc accommodates the plate motion in three ways: (i) the north Fiji transform fault, (ii) numerous unstable spreading ridges, and (iii) large areas of recent volcanic activity. This instability creates bountiful opportunity for hydrothermal discharge to occur. Based on geochemical (CH4, TDM, 3He) and geophysical (nephelometry) tracer surveys: (1) no hydrothermal activity could be found on the Futuna Spreading Centre (FSC) which sets the western limit of hydrothermal activity; (2) four distinct hydrothermal active areas were identified: Kulo Lasi Caldera, Amanaki Volcano, Fatu Kapa and Tasi Tulo areas; (3) extensive and diverse hydrothermal manifestations were observed and especially a 2D distribution of the sources. At Kulo Lasi, our data and especially tracer ratios (CH4/3He 50×106 and CH4/TDM 4.5) reveal a transient CH4 input, with elevated levels of CH4 measured in 2010, that had vanished in 2011, most likely caused by an eruptive magmatic event. By contrast at Amanaki, vertical tracer profiles and tracer ratios point to typical seawater/basalt interactions. Fatu Kapa is characterised by a substantial spatial variability of the hydrothermal water column anomalies, most likely due to widespread focused and diffuse hydrothermal discharge in the area. In the Tasi Tulo zone, the hydrothermal signal is characterised by a total lack of turbidity, although other tracer anomalies are in the same range as in nearby Fatu Kapa. The background data set revealed the presence of a Mn and 3He chronic plume due to the extensive and cumulative venting over the entire area. To that respect, we believe that the joined domain composed of our active area and the nearby active area discovered in the East by Lupton et al. (2012) highly contribute to the

  5. Crystal structure of P58(IPK) TPR fragment reveals the mechanism for its molecular chaperone activity in UPR.

    PubMed

    Tao, Jiahui; Petrova, Kseniya; Ron, David; Sha, Bingdong

    2010-04-16

    P58(IPK) might function as an endoplasmic reticulum molecular chaperone to maintain protein folding homeostasis during unfolded protein responses. P58(IPK) contains nine tetratricopeptide repeat (TPR) motifs and a C-terminal J-domain within its primary sequence. To investigate the mechanism by which P58(IPK) functions to promote protein folding within the endoplasmic reticulum, we have determined the crystal structure of P58(IPK) TPR fragment to 2.5 A resolution by the SAD method. The crystal structure of P58(IPK) revealed three domains (I-III) with similar folds and each domain contains three TPR motifs. An ELISA assay indicated that P58(IPK) acts as a molecular chaperone by interacting with misfolded proteins such as luciferase and rhodanese. The P58(IPK) structure reveals a conserved hydrophobic patch located in domain I that might be involved in binding the misfolded polypeptides. Structure-based mutagenesis for the conserved hydrophobic residues located in domain I significantly reduced the molecular chaperone activity of P58(IPK).

  6. What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event-related potential as revealed by independent component analysis.

    PubMed

    Debener, Stefan; Makeig, Scott; Delorme, Arnaud; Engel, Andreas K

    2005-03-01

    To better understand whether voluntary attention affects how the brain processes novel events, variants of the auditory novelty oddball paradigm were presented to two different groups of human volunteers. One group of subjects (n=16) silently counted rarely presented 'infrequent' tones (p=0.10), interspersed with 'novel' task-irrelevant unique environmental sounds (p=0.10) and frequently presented 'standard' tones (p=0.80). A second group of subjects (n=17) silently counted the 'novel' environmental sounds, the 'infrequent' tones now serving as the task-irrelevant deviant events. Analysis of event-related potentials (ERPs) recorded from 63 scalp channels suggested a spatiotemporal overlap of fronto-central novelty P3 and centro-parietal P3 (P3b) ERP features in both groups. Application of independent component analysis (ICA) to concatenated single trials revealed two independent component clusters that accounted for portions of the novelty P3 and P3b response features, respectively. The P3b-related ICA cluster contributed to the novelty P3 amplitude response to novel environmental sounds. In contrast to the scalp ERPs, the amplitude of the novelty P3 related cluster was not affected by voluntary attention, that is, by the target/nontarget distinction. This result demonstrates the usefulness of ICA for disentangling spatiotemporally overlapping ERP processes and provides evidence that task irrelevance is not a necessary feature of novelty processing.

  7. High-resolution melting analysis of the spa locus reveals significant diversity within sequence type 93 methicillin-resistant Staphylococcus aureus from northern Australia.

    PubMed

    Tong, S Y C; Lilliebridge, R A; Holt, D C; McDonald, M I; Currie, B J; Giffard, P M

    2009-12-01

    High-resolution melting analysis is an inherently robust, easy and inexpensive approach to the examination of genomic regions containing single-nucleotide polymorphisms and hypervariable loci. Staphylococcus aureus sequence type (ST) 93 is a singleton, Panton-Valentine leukocidin-positive clone unique to Australia. A high-resolution melting-based method for the identification of ST93 was developed, and a similar approach was used to reveal diversity within the spa locus of this lineage. Statistical and graphical methods that account for instrumental and operator-dependent variation in high-resolution melting curves were developed, to allow greater confidence and reproducibility in deciding whether another curve is truly different from the baseline curve of an amplicon with known sequence. The data support a very early acquisition, or multiple independent acquisitions, of SCCmec by ST93 methicillin-susceptible S. aureus (MSSA), and the coexistence of MSSA and methicillin-resistant S. aureus versions of the same lineage within northern Australia.

  8. Active methanotrophs in two contrasting North American peatland ecosystems revealed using DNA-SIP.

    PubMed

    Gupta, Varun; Smemo, Kurt A; Yavitt, Joseph B; Basiliko, Nathan

    2012-02-01

    The active methanotroph community was investigated in two contrasting North American peatlands, a nutrient-rich sedge fen and nutrient-poor Sphagnum bog using in vitro incubations and (13)C-DNA stable-isotope probing (SIP) to measure methane (CH(4)) oxidation rates and label active microbes followed by fingerprinting and sequencing of bacterial and archaeal 16S rDNA and methane monooxygenase (pmoA and mmoX) genes. Rates of CH(4) oxidation were slightly, but significantly, faster in the bog and methanotrophs belonged to the class Alphaproteobacteria and were similar to other methanotrophs of the genera Methylocystis, Methylosinus, and Methylocapsa or Methylocella detected in, or isolated from, European bogs. The fen had a greater phylogenetic diversity of organisms that had assimilated (13)C, including methanotrophs from both the Alpha- and Gammaproteobacteria classes and other potentially non-methanotrophic organisms that were similar to bacteria detected in a UK and Finnish fen. Based on similarities between bacteria in our sites and those in Europe, including Russia, we conclude that site physicochemical characteristics rather than biogeography controlled the phylogenetic diversity of active methanotrophs and that differences in phylogenetic diversity between the bog and fen did not relate to measured CH(4) oxidation rates. A single crenarchaeon in the bog site appeared to be assimilating (13)C in 16S rDNA; however, its phylogenetic similarity to other CO(2)-utilizing archaea probably indicates that this organism is not directly involved in CH(4) oxidation in peat.

  9. A Link between ORC-Origin Binding Mechanisms and Origin Activation Time Revealed in Budding Yeast

    PubMed Central

    Hoggard, Timothy; Shor, Erika; Müller, Carolin A.; Nieduszynski, Conrad A.; Fox, Catherine A.

    2013-01-01

    Eukaryotic DNA replication origins are selected in G1-phase when the origin recognition complex (ORC) binds chromosomal positions and triggers molecular events culminating in the initiation of DNA replication (a.k.a. origin firing) during S-phase. Each chromosome uses multiple origins for its duplication, and each origin fires at a characteristic time during S-phase, creating a cell-type specific genome replication pattern relevant to differentiation and genome stability. It is unclear whether ORC-origin interactions are relevant to origin activation time. We applied a novel genome-wide strategy to classify origins in the model eukaryote Saccharomyces cerevisiae based on the types of molecular interactions used for ORC-origin binding. Specifically, origins were classified as DNA-dependent when the strength of ORC-origin binding in vivo could be explained by the affinity of ORC for origin DNA in vitro, and, conversely, as ‘chromatin-dependent’ when the ORC-DNA interaction in vitro was insufficient to explain the strength of ORC-origin binding in vivo. These two origin classes differed in terms of nucleosome architecture and dependence on origin-flanking sequences in plasmid replication assays, consistent with local features of chromatin promoting ORC binding at ‘chromatin-dependent’ origins. Finally, the ‘chromatin-dependent’ class was enriched for origins that fire early in S-phase, while the DNA-dependent class was enriched for later firing origins. Conversely, the latest firing origins showed a positive association with the ORC-origin DNA paradigm for normal levels of ORC binding, whereas the earliest firing origins did not. These data reveal a novel association between ORC-origin binding mechanisms and the regulation of origin activation time. PMID:24068963

  10. Ribosome•RelA structures reveal the mechanism of stringent response activation

    PubMed Central

    Loveland, Anna B; Bah, Eugene; Madireddy, Rohini; Zhang, Ying; Brilot, Axel F; Grigorieff, Nikolaus; Korostelev, Andrei A

    2016-01-01

    Stringent response is a conserved bacterial stress response underlying virulence and antibiotic resistance. RelA/SpoT-homolog proteins synthesize transcriptional modulators (p)ppGpp, allowing bacteria to adapt to stress. RelA is activated during amino-acid starvation, when cognate deacyl-tRNA binds to the ribosomal A (aminoacyl-tRNA) site. We report four cryo-EM structures of E. coli RelA bound to the 70S ribosome, in the absence and presence of deacyl-tRNA accommodating in the 30S A site. The boomerang-shaped RelA with a wingspan of more than 100 Å wraps around the A/R (30S A-site/RelA-bound) tRNA. The CCA end of the A/R tRNA pins the central TGS domain against the 30S subunit, presenting the (p)ppGpp-synthetase domain near the 30S spur. The ribosome and A/R tRNA are captured in three conformations, revealing hitherto elusive states of tRNA engagement with the ribosomal decoding center. Decoding-center rearrangements are coupled with the step-wise 30S-subunit 'closure', providing insights into the dynamics of high-fidelity tRNA decoding. DOI: http://dx.doi.org/10.7554/eLife.17029.001 PMID:27434674

  11. Detailed investigation of the microbial community in foaming activated sludge reveals novel foam formers

    PubMed Central

    Guo, Feng; Wang, Zhi-Ping; Yu, Ke; Zhang, T.

    2015-01-01

    Foaming of activated sludge (AS) causes adverse impacts on wastewater treatment operation and hygiene. In this study, we investigated the microbial communities of foam, foaming AS and non-foaming AS in a sewage treatment plant via deep-sequencing of the taxonomic marker genes 16S rRNA and mycobacterial rpoB and a metagenomic approach. In addition to Actinobacteria, many genera (e.g., Clostridium XI, Arcobacter, Flavobacterium) were more abundant in the foam than in the AS. On the other hand, deep-sequencing of rpoB did not detect any obligate pathogenic mycobacteria in the foam. We found that unknown factors other than the abundance of Gordonia sp. could determine the foaming process, because abundance of the same species was stable before and after a foaming event over six months. More interestingly, although the dominant Gordonia foam former was the closest with G. amarae, it was identified as an undescribed Gordonia species by referring to the 16S rRNA gene, gyrB and, most convincingly, the reconstructed draft genome from metagenomic reads. Our results, based on metagenomics and deep sequencing, reveal that foams are derived from diverse taxa, which expands previous understanding and provides new insight into the underlying complications of the foaming phenomenon in AS. PMID:25560234

  12. Revealing microbial functional activities in the Red Sea sponge Stylissa carteri by metatranscriptomics.

    PubMed

    Moitinho-Silva, Lucas; Seridi, Loqmane; Ryu, Taewoo; Voolstra, Christian R; Ravasi, Timothy; Hentschel, Ute

    2014-12-01

    Sponges are important components of marine benthic environments and are associated with microbial symbionts that carry out ecologically relevant functions. Stylissa carteri is an abundant, low-microbial abundance species in the Red Sea. We aimed to achieve the functional and taxonomic characterization of the most actively expressed prokaryotic genes in S. carteri. Prokaryotic mRNA was enriched from sponge total RNA, sequenced using Illumina HiSeq technology and annotated using the metagenomics Rapid Annotation using Subsystem Technology (MG-RAST) pipeline. We detected high expression of archaeal ammonia oxidation and photosynthetic carbon fixation by members of the genus Synechococcus. Functions related to stress response and membrane transporters were among the most highly expressed by S. carteri symbionts. Unexpectedly, gene functions related to methylotrophy were highly expressed by gammaproteobacterial symbionts. The presence of seawater-derived microbes is indicated by the phylogenetic proximity of organic carbon transporters to orthologues of members from the SAR11 clade. In summary, we revealed the most expressed functions of the S. carteri-associated microbial community and linked them to the dominant taxonomic members of the microbiome. This work demonstrates the applicability of metatranscriptomics to explore poorly characterized symbiotic consortia and expands our knowledge of the ecologically relevant functions carried out by coral reef sponge symbionts.

  13. Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus

    PubMed Central

    Byrska-Bishop, Marta; VanDorn, Daniel; Campbell, Amy E.; Betensky, Marisol; Arca, Philip R.; Yao, Yu; Gadue, Paul; Costa, Fernando F.; Nemiroff, Richard L.; Blobel, Gerd A.; French, Deborah L.; Hardison, Ross C.; Weiss, Mitchell J.; Chou, Stella T.

    2015-01-01

    Germline GATA1 mutations that result in the production of an amino-truncated protein termed GATA1s (where s indicates short) cause congenital hypoplastic anemia. In patients with trisomy 21, similar somatic GATA1s-producing mutations promote transient myeloproliferative disease and acute megakaryoblastic leukemia. Here, we demonstrate that induced pluripotent stem cells (iPSCs) from patients with GATA1-truncating mutations exhibit impaired erythroid potential, but enhanced megakaryopoiesis and myelopoiesis, recapitulating the major phenotypes of the associated diseases. Similarly, in developmentally arrested GATA1-deficient murine megakaryocyte-erythroid progenitors derived from murine embryonic stem cells (ESCs), expression of GATA1s promoted megakaryopoiesis, but not erythropoiesis. Transcriptome analysis revealed a selective deficiency in the ability of GATA1s to activate erythroid-specific genes within populations of hematopoietic progenitors. Although its DNA-binding domain was intact, chromatin immunoprecipitation studies showed that GATA1s binding at specific erythroid regulatory regions was impaired, while binding at many nonerythroid sites, including megakaryocytic and myeloid target genes, was normal. Together, these observations indicate that lineage-specific GATA1 cofactor associations are essential for normal chromatin occupancy and provide mechanistic insights into how GATA1s mutations cause human disease. More broadly, our studies underscore the value of ESCs and iPSCs to recapitulate and study disease phenotypes. PMID:25621499

  14. ACTIVE LONGITUDES REVEALED BY LARGE-SCALE AND LONG-LIVED CORONAL STREAMERS

    SciTech Connect

    Li Jing

    2011-07-10

    We use time-series ultraviolet full sun images to construct limb-synoptic maps of the Sun. On these maps, large-scale, long-lived coronal streamers appear as repetitive sinusoid-like arcs projected over the polar regions. They are caused by high altitude plasma produced from sunspot-rich regions at latitudes generally far from the poles. The non-uniform longitudinal distribution of these streamers reveals four longitudinal zones at the surface of the Sun from which sunspots erupt preferentially over the 5 year observing interval (2006 January to 2011 April). Spots in these zones (or clusters) have individual lifetimes short compared to the lifetimes of the coronal features which they sustain, and they erupt at different times. The four sunspot clusters contain >75% of all numbered sunspots in this period. They occupy two distinct longitudinal zones separated by {approx}180{sup 0} and each spanning {approx}100{sup 0} in longitude. The rotation rates of the spot clusters are {approx}5% faster than the rates at both the surface and the bottom of the convection zone. While no convincing theoretical framework exists to interpret the sunspot clusters in the longitude-time space, their persistent and nonuniform distribution indicates long-lived, azimuthal structures beneath the surface, and are compatible with the existence of previously reported active longitudes on the Sun.

  15. Metagenomic analysis reveals the prevalence of biodegradation genes for organic pollutants in activated sludge.

    PubMed

    Fang, Hua; Cai, Lin; Yu, Yunlong; Zhang, Tong

    2013-02-01

    The abundance, diversity, and distribution of biodegradation genes (BDGs) and phenol degradation genes (PDGs) in activated sludge (AS) from two wastewater treatment plants (WWTPs) at different sampling times were assessed by metagenomic analysis using a total of 15 datasets derived from Illumina high-throughput sequencing and BLAST comparisons to BDGs and PDGs databases. The results showed that the abundance (0.015-0.030%) and diversity of BDGs in AS varied with the WWTP and the sampling times. The p450 and pmo genes were the most abundant genes in the BDGs and PDGs subgroups, respectively. MG-RAST analysis revealed that 87 detected bacterial genera potentially capable of degrading pollutants were mostly affiliated with Proteobacteria (59.8%), Bacteroidetes (17.2%), and Actinobacteria (9.2%). Mycobacterium, belonging to Actinobacteria, was found to be the most abundant genus (23.4%). This method could be used to monitor an AS's biodegradation ability for organic pollutants and to evaluate its wastewater treatment efficiency.

  16. Multimodular biosensors reveal a novel platform for activation of G proteins by growth factor receptors

    PubMed Central

    Midde, Krishna K.; Aznar, Nicolas; Laederich, Melanie B.; Ma, Gary S.; Kunkel, Maya T.; Newton, Alexandra C.; Ghosh, Pradipta

    2015-01-01

    Environmental cues are transmitted to the interior of the cell via a complex network of signaling hubs. Receptor tyrosine kinases (RTKs) and trimeric G proteins are two such major signaling hubs in eukaryotes. Conventionally, canonical signal transduction via trimeric G proteins is thought to be triggered exclusively by G protein-coupled receptors. Here we used molecular engineering to develop modular fluorescent biosensors that exploit the remarkable specificity of bimolecular recognition, i.e., of both G proteins and RTKs, and reveal the workings of a novel platform for activation of G proteins by RTKs in single living cells. Comprised of the unique modular makeup of guanidine exchange factor Gα-interacting vesicle-associated protein (GIV)/girdin, a guanidine exchange factor that links G proteins to a variety of RTKs, these biosensors provide direct evidence that RTK–GIV–Gαi ternary complexes are formed in living cells and that Gαi is transactivated within minutes after growth factor stimulation at the plasma membrane. Thus, GIV-derived biosensors provide a versatile strategy for visualizing, monitoring, and manipulating the dynamic association of Gαi with RTKs for noncanonical transactivation of G proteins in cells and illuminate a fundamental signaling event regulated by GIV during diverse cellular processes and pathophysiologic states. PMID:25713130

  17. Multimodular biosensors reveal a novel platform for activation of G proteins by growth factor receptors.

    PubMed

    Midde, Krishna K; Aznar, Nicolas; Laederich, Melanie B; Ma, Gary S; Kunkel, Maya T; Newton, Alexandra C; Ghosh, Pradipta

    2015-03-01

    Environmental cues are transmitted to the interior of the cell via a complex network of signaling hubs. Receptor tyrosine kinases (RTKs) and trimeric G proteins are two such major signaling hubs in eukaryotes. Conventionally, canonical signal transduction via trimeric G proteins is thought to be triggered exclusively by G protein-coupled receptors. Here we used molecular engineering to develop modular fluorescent biosensors that exploit the remarkable specificity of bimolecular recognition, i.e., of both G proteins and RTKs, and reveal the workings of a novel platform for activation of G proteins by RTKs in single living cells. Comprised of the unique modular makeup of guanidine exchange factor Gα-interacting vesicle-associated protein (GIV)/girdin, a guanidine exchange factor that links G proteins to a variety of RTKs, these biosensors provide direct evidence that RTK-GIV-Gαi ternary complexes are formed in living cells and that Gαi is transactivated within minutes after growth factor stimulation at the plasma membrane. Thus, GIV-derived biosensors provide a versatile strategy for visualizing, monitoring, and manipulating the dynamic association of Gαi with RTKs for noncanonical transactivation of G proteins in cells and illuminate a fundamental signaling event regulated by GIV during diverse cellular processes and pathophysiologic states.

  18. Detailed investigation of the microbial community in foaming activated sludge reveals novel foam formers

    NASA Astrophysics Data System (ADS)

    Guo, Feng; Wang, Zhi-Ping; Yu, Ke; Zhang, T.

    2015-01-01

    Foaming of activated sludge (AS) causes adverse impacts on wastewater treatment operation and hygiene. In this study, we investigated the microbial communities of foam, foaming AS and non-foaming AS in a sewage treatment plant via deep-sequencing of the taxonomic marker genes 16S rRNA and mycobacterial rpoB and a metagenomic approach. In addition to Actinobacteria, many genera (e.g., Clostridium XI, Arcobacter, Flavobacterium) were more abundant in the foam than in the AS. On the other hand, deep-sequencing of rpoB did not detect any obligate pathogenic mycobacteria in the foam. We found that unknown factors other than the abundance of Gordonia sp. could determine the foaming process, because abundance of the same species was stable before and after a foaming event over six months. More interestingly, although the dominant Gordonia foam former was the closest with G. amarae, it was identified as an undescribed Gordonia species by referring to the 16S rRNA gene, gyrB and, most convincingly, the reconstructed draft genome from metagenomic reads. Our results, based on metagenomics and deep sequencing, reveal that foams are derived from diverse taxa, which expands previous understanding and provides new insight into the underlying complications of the foaming phenomenon in AS.

  19. Revealing a new activity of the human Dicer DUF283 domain in vitro.

    PubMed

    Kurzynska-Kokorniak, Anna; Pokornowska, Maria; Koralewska, Natalia; Hoffmann, Weronika; Bienkowska-Szewczyk, Krystyna; Figlerowicz, Marek

    2016-01-01

    The ribonuclease Dicer is a multidomain enzyme that plays a fundamental role in the biogenesis of small regulatory RNAs (srRNAs), which control gene expression by targeting complementary transcripts and inducing their cleavage or repressing their translation. Recent studies of Dicer's domains have permitted to propose their roles in srRNA biogenesis. For all of Dicer's domains except one, called DUF283 (domain of unknown function), their involvement in RNA substrate recognition, binding or cleavage has been postulated. For DUF283, the interaction with Dicer's protein partners has been the only function suggested thus far. In this report, we demonstrate that the isolated DUF283 domain from human Dicer is capable of binding single-stranded nucleic acids in vitro. We also show that DUF283 can act as a nucleic acid annealer that accelerates base-pairing between complementary RNA/DNA molecules in vitro. We further demonstrate an annealing activity of full length human Dicer. The overall results suggest that Dicer, presumably through its DUF283 domain, might facilitate hybridization between short RNAs and their targets. The presented findings reveal the complex nature of Dicer, whose functions may extend beyond the biogenesis of srRNAs. PMID:27045313

  20. Analysis of Y chromosome STR haplotypes in the European part of Russia reveals high diversities but non-significant genetic distances between populations.

    PubMed

    Roewer, Lutz; Willuweit, Sascha; Krüger, Carmen; Nagy, Marion; Rychkov, Sergey; Morozowa, Irina; Naumova, Oksana; Schneider, Yuriy; Zhukova, Olga; Stoneking, Mark; Nasidze, Ivan

    2008-05-01

    A total of 17 Y-specific STR loci were studied in 12 districts of the European part of Russia aiming to ascertain the amount of substructure required for the construction of a representative regional database. All groups exhibited high haplotype diversities but low inter-population variance as measured by an analysis of molecular variance. However, when Western Russia is taken as a whole, the genetic distances to the neighbouring populations were significant. Whereas gradual change in the Y chromosome pool exists between Russia and the Slavic-speaking populations to the West, remarkable discontinuities were observed with neighbouring populations in the East, North and South.

  1. Plant Food Delphinidin-3-Glucoside Significantly Inhibits Platelet Activation and Thrombosis: Novel Protective Roles against Cardiovascular Diseases

    PubMed Central

    Yang, Yan; Shi, Zhenyin; Reheman, Adili; Jin, Joseph W.; Li, Conglei; Wang, Yiming; Andrews, Marc C.; Chen, Pingguo; Zhu, Guangheng; Ling, Wenhua; Ni, Heyu

    2012-01-01

    Delphinidin-3-glucoside (Dp-3-g) is one of the predominant bioactive compounds of anthocyanins in many plant foods. Although several anthocyanin compounds have been reported to be protective against cardiovascular diseases (CVDs), the direct effect of anthocyanins on platelets, the key players in atherothrombosis, has not been studied. The roles of Dp-3-g in platelet function are completely unknown. The present study investigated the effects of Dp-3-g on platelet activation and several thrombosis models in vitro and in vivo. We found that Dp-3-g significantly inhibited human and murine platelet aggregation in both platelet-rich plasma and purified platelets. It also markedly reduced thrombus growth in human and murine blood in perfusion chambers at both low and high shear rates. Using intravital microscopy, we observed that Dp-3-g decreased platelet deposition, destabilized thrombi, and prolonged the time required for vessel occlusion. Dp-3-g also significantly inhibited thrombus growth in a carotid artery thrombosis model. To elucidate the mechanisms, we examined platelet activation markers via flow cytometry and found that Dp-3-g significantly inhibited the expression of P-selectin, CD63, CD40L, which reflect platelet α- and δ-granule release, and cytosol protein secretion, respectively. We further demonstrated that Dp-3-g downregulated the expression of active integrin αIIbβ3 on platelets, and attenuated fibrinogen binding to platelets following agonist treatment, without interfering with the direct interaction between fibrinogen and integrin αIIbβ3. We found that Dp-3-g reduced phosphorylation of adenosine monophosphate-activated protein kinase, which may contribute to the observed inhibitory effects on platelet activation. Thus, Dp-3-g significantly inhibits platelet activation and attenuates thrombus growth at both arterial and venous shear stresses, which likely contributes to its protective roles against thrombosis and CVDs. PMID:22624015

  2. Neuronal activity significantly reduces water displacement: DWI of a vital rat spinal cord with no hemodynamic effect.

    PubMed

    Tirosh, Nitzan; Nevo, Uri

    2013-08-01

    Changes in the diffusion weighted MRI (DWI) signal were observed to be correlated with neuronal activity during chemically induced brain activity, epileptic seizures, or visual stimulation. These changes suggest a possible reduction in water displacement that accompanies neuronal activity, but were possibly affected by other physiological mechanisms such as blood oxygenation level and blood flow. We developed an imaging experiment of an excised and vital newborn rat spinal cord to examine the effect of neuronal function on the displacement of water molecules as measured by DWI signal. This approach provides a DWI experiment of a vital mammalian CNS tissue in the absence of some of the systemic sources of noise. We detected a significant and reproducible drop with an average value of 19.5 ± 1.6% (mean ± SE) upon activation. The drop repeated itself in three orthogonal directions. ADC values corresponded to an oblate anisotropy. This result was validated by high resolution DWI of a fixed tissue, imaged with an ultra-high field MRI. The results support our working hypothesis that water displacement is affected by neuronal activation. These results further imply that water displacement might serve as a potential marker for brain function, and that, although commonly viewed as wholly electrochemical, neuronal activity includes a significant mechanical dimension that affects water displacement.

  3. Geometric morphometric analysis of Colombian Anopheles albimanus (Diptera: Culicidae) reveals significant effect of environmental factors on wing traits and presence of a metapopulation

    PubMed Central

    Gómez, Giovan F.; Márquez, Edna J.; Gutiérrez, Lina A.; Conn, Jan E.; Correa, Margarita M.

    2015-01-01

    Anopheles albimanus is a major malaria mosquito vector in Colombia. In the present study, wing variability (size and shape) in An. albimanus populations from Colombian Maracaibo and Chocó bio-geographical eco-regions and the relationship of these phenotypic traits with environmental factors were evaluated. Microsatellite and morphometric data facilitated a comparison of the genetic and phenetic structure of this species. Wing size was influenced by elevation and relative humidity, whereas wing shape was affected by these two variables and also by rainfall, latitude, temperature and eco-region. Significant differences in mean shape between populations and eco-regions were detected, but they were smaller than those at the intra-population level. Correct assignment based on wing shape was low at the population level (<58%) and only slightly higher (>70%) at the eco-regional level, supporting the low population structure inferred from microsatellite data. Wing size was similar among populations with no significant differences between eco-regions. Population relationships in the genetic tree did not agree with those from the morphometric data; however, both datasets consistently reinforced a panmictic population of An. albimanus. Overall, site-specific population differentiation is not strongly supported by wing traits or genotypic data. We hypothesize that the metapopulation structure of An. albimanus throughout these Colombian eco-regions is favoring plasticity in wing traits, a relevant characteristic of species living under variable environmental conditions and colonizing new habitats. PMID:24704285

  4. Stability of active mantle upwelling revealed by net characteristics of plate tectonics.

    PubMed

    Conrad, Clinton P; Steinberger, Bernhard; Torsvik, Trond H

    2013-06-27

    Viscous convection within the mantle is linked to tectonic plate motions and deforms Earth's surface across wide areas. Such close links between surface geology and deep mantle dynamics presumably operated throughout Earth's history, but are difficult to investigate for past times because the history of mantle flow is poorly known. Here we show that the time dependence of global-scale mantle flow can be deduced from the net behaviour of surface plate motions. In particular, we tracked the geographic locations of net convergence and divergence for harmonic degrees 1 and 2 by computing the dipole and quadrupole moments of plate motions from tectonic reconstructions extended back to the early Mesozoic era. For present-day plate motions, we find dipole convergence in eastern Asia and quadrupole divergence in both central Africa and the central Pacific. These orientations are nearly identical to the dipole and quadrupole orientations of underlying mantle flow, which indicates that these 'net characteristics' of plate motions reveal deeper flow patterns. The positions of quadrupole divergence have not moved significantly during the past 250 million years, which suggests long-term stability of mantle upwelling beneath Africa and the Pacific Ocean. These upwelling locations are positioned above two compositionally and seismologically distinct regions of the lowermost mantle, which may organize global mantle flow as they remain stationary over geologic time. PMID:23803848

  5. Stability of active mantle upwelling revealed by net characteristics of plate tectonics.

    PubMed

    Conrad, Clinton P; Steinberger, Bernhard; Torsvik, Trond H

    2013-06-27

    Viscous convection within the mantle is linked to tectonic plate motions and deforms Earth's surface across wide areas. Such close links between surface geology and deep mantle dynamics presumably operated throughout Earth's history, but are difficult to investigate for past times because the history of mantle flow is poorly known. Here we show that the time dependence of global-scale mantle flow can be deduced from the net behaviour of surface plate motions. In particular, we tracked the geographic locations of net convergence and divergence for harmonic degrees 1 and 2 by computing the dipole and quadrupole moments of plate motions from tectonic reconstructions extended back to the early Mesozoic era. For present-day plate motions, we find dipole convergence in eastern Asia and quadrupole divergence in both central Africa and the central Pacific. These orientations are nearly identical to the dipole and quadrupole orientations of underlying mantle flow, which indicates that these 'net characteristics' of plate motions reveal deeper flow patterns. The positions of quadrupole divergence have not moved significantly during the past 250 million years, which suggests long-term stability of mantle upwelling beneath Africa and the Pacific Ocean. These upwelling locations are positioned above two compositionally and seismologically distinct regions of the lowermost mantle, which may organize global mantle flow as they remain stationary over geologic time.

  6. Bovine Teat Microbiome Analysis Revealed Reduced Alpha Diversity and Significant Changes in Taxonomic Profiles in Quarters with a History of Mastitis

    PubMed Central

    Falentin, Hélène; Rault, Lucie; Nicolas, Aurélie; Bouchard, Damien S.; Lassalas, Jacques; Lamberton, Philippe; Aubry, Jean-Marc; Marnet, Pierre-Guy; Le Loir, Yves; Even, Sergine

    2016-01-01

    Mastitis is a mammary gland inflammatory disease often due to bacterial infections. Like many other infections, it used to be considered as a host-pathogen interaction driven by host and bacterial determinants. Until now, the involvement of the bovine mammary gland microbiota in the host-pathogen interaction has been poorly investigated, and mainly during the infectious episode. In this study, the bovine teat microbiome was investigated in 31 quarters corresponding to 27 animals, which were all free of inflammation at sampling time but which had different histories regarding mastitis: from no episode of mastitis on all the previous lactations (Healthy quarter, Hq) to one or several clinical mastitis events (Mastitic quarter, Mq). Several quarters whose status was unclear (possible history of subclinical mastitis) were classified as NDq. Total bacterial DNA was extracted from foremilk samples and swab samples of the teat canal. Taxonomic profiles were determined by pyrosequencing on 16s amplicons of the V3-4 region. Hq quarters showed a higher diversity compared to Mq ones (Shannon index: ~8 and 6, respectively). Clustering of the quarters based on their bacterial composition made it possible to separate Mq and Hq quarters into two separate clusters (C1 and C2, respectively). Discriminant analysis of taxonomic profiles between these clusters revealed several differences and allowed the identification of taxonomic markers in relation to mastitis history. C2 quarters were associated with a higher proportion of the Clostridia class (including genera such as Ruminococcus, Oscillospira, Roseburia, Dorea, etc.), the Bacteroidetes phylum (Prevotella, Bacteroides, Paludibacter, etc.), and the Bifidobacteriales order (Bifidobacterium), whereas C1 quarters showed a higher proportion of the Bacilli class (Staphylococcus) and Chlamydiia class. These results indicate that microbiota is altered in udders which have already developed mastitis, even far from the infectious episode

  7. Bovine Teat Microbiome Analysis Revealed Reduced Alpha Diversity and Significant Changes in Taxonomic Profiles in Quarters with a History of Mastitis.

    PubMed

    Falentin, Hélène; Rault, Lucie; Nicolas, Aurélie; Bouchard, Damien S; Lassalas, Jacques; Lamberton, Philippe; Aubry, Jean-Marc; Marnet, Pierre-Guy; Le Loir, Yves; Even, Sergine

    2016-01-01

    Mastitis is a mammary gland inflammatory disease often due to bacterial infections. Like many other infections, it used to be considered as a host-pathogen interaction driven by host and bacterial determinants. Until now, the involvement of the bovine mammary gland microbiota in the host-pathogen interaction has been poorly investigated, and mainly during the infectious episode. In this study, the bovine teat microbiome was investigated in 31 quarters corresponding to 27 animals, which were all free of inflammation at sampling time but which had different histories regarding mastitis: from no episode of mastitis on all the previous lactations (Healthy quarter, Hq) to one or several clinical mastitis events (Mastitic quarter, Mq). Several quarters whose status was unclear (possible history of subclinical mastitis) were classified as NDq. Total bacterial DNA was extracted from foremilk samples and swab samples of the teat canal. Taxonomic profiles were determined by pyrosequencing on 16s amplicons of the V3-4 region. Hq quarters showed a higher diversity compared to Mq ones (Shannon index: ~8 and 6, respectively). Clustering of the quarters based on their bacterial composition made it possible to separate Mq and Hq quarters into two separate clusters (C1 and C2, respectively). Discriminant analysis of taxonomic profiles between these clusters revealed several differences and allowed the identification of taxonomic markers in relation to mastitis history. C2 quarters were associated with a higher proportion of the Clostridia class (including genera such as Ruminococcus, Oscillospira, Roseburia, Dorea, etc.), the Bacteroidetes phylum (Prevotella, Bacteroides, Paludibacter, etc.), and the Bifidobacteriales order (Bifidobacterium), whereas C1 quarters showed a higher proportion of the Bacilli class (Staphylococcus) and Chlamydiia class. These results indicate that microbiota is altered in udders which have already developed mastitis, even far from the infectious episode

  8. A new dinucleotide repeat polymorphism at the telomere of chromosome 21q reveals a significant difference between male and female rates of recombination

    SciTech Connect

    Blouin, J.L.; Gos, A.; Morris, M.A.

    1995-08-01

    We have used a half-YAC containing the human chromosome 21 long-arm telomere to clone, map, and characterize a new dinucleotide repeat polymorphism (D21S1575) close to 21qter. The marker is <120 kb from the telomeric (TTAGGG){sub n} sequences and is the most distal highly polymorphic marker on chromosome 21q. This marker has a heterozygosity of 71% because of a variable (TA){sub n} repeat embedded within a long interspersed element (LINE) element. Genotyping of the CEPH families and linkage analysis provided a more accurate determination of the full length of the chromosome 21 genetic map. A highly significant difference was detected between male and female recombination rates in the telomeric region: in the most telomeric 2.3 Mb of chromosome 21q, recombination was only observed in male meioses. 35 refs., 4 figs., 2 tabs.

  9. Revealing the significance and polyphase tectonothermal evolution of a major metamorphic unit in an orogen: the central Sanandaj-Sirjan zone, Zagros Mts., Iran

    NASA Astrophysics Data System (ADS)

    Shakerardakani, Farzaneh; Neubauer, Franz; Genser, Johann; Liu, Xiaoming; Dong, Yunpeng; Monfaredi, Behzad; Benroider, Manfred; Finger, Fritz; Waitzinger, Michael

    2016-04-01

    The Dorud-Azna region in the central Sanandaj-Sirjan metamorphic belt plays a key role in promoting the tectonic evolution of Zagros orogen, within the frame of the Arabia-Eurasia collision zone. From footwall to hangingwall, structural data combined with the U-Pb zircon and extensive 40Ar-39Ar mineral dating survey demonstrate three metamorphosed tectonic units, which include: (1) The Triassic June complex is metamorphosed within greenschist facies conditions, overlain by (2) the amphibolite-grade metamorphic Galeh-Doz orthogneiss, which is intruded by mafic dykes, and (3) the Amphibolite-Metagabbro unit. To the east, these units were intruded by the Jurassic Darijune gabbro. We present U-Pb detrital zircon ages of a garnet-micaschist from the Amphibolite-Metagabbro unit, which yield six distinctive age groups, including a previously unrecognized Late Grenvillian age population at ~0.93 to 0.99 Ga. We speculate that this unique Late Grenvillian group coupled with biogeographic evidence suggests either relationship with the South China craton or to the "Gondwana superfan". The laser ablation ICP-MS U-Pb zircon ages of 608 ± 18 Ma and 588 ± 41 Ma of the granitic Galeh-Doz orthogneiss reveals a Panafrican basement same as known from the Yazd block of Central Iran. Geochemistry and Sr-Nd isotopes of alkaline and subalkaline mafic dykes within the Galeh-Doz orthogneiss show OIB-type to MORB-type and indicate involvement of both depleted and enriched sources for its genesis. The new 40Ar-39Ar amphibole age of ca. 322.2 ± 3.9 Ma from the alkaline mafic dyke implies Carboniferous cooling age after intrusion. The metagabbros (including the Dare-Hedavand metagabbro with a 206Pb/238U age of 314.6 ± 3.7 Ma) and amphibolites with E-MORB geochemical signature of the Amphibolite-Metagabbro unit represent an Upper Paleozoic rift. The geochemical composition of the Triassic greenschist facies metamorphosed June complex, implying formation in a same, but younger tectonic

  10. Gastrointestinal tract radionuclide activity on In-111 labeled leukocyte imaging: clinical significance in patients with fever of unknown origin

    SciTech Connect

    Datz, F.L.; Thorne, D.A.

    1986-09-01

    To determine the frequency and clinical significance of indium-111 labeled leukocyte activity in the gastrointestinal (GI) tract of patients with fever of unknown origin, we reviewed 312 leukocyte studies involving 271 patients. Radionuclide activity was noted in the bowel in 59 cases. Of these, only 27 were due to the infection or inflammatory disease that caused the patient's fever. The 32 false-positive results were due primarily to swallowed leukocytes or bleeding. In two cases, no explanation was found for the activity in the GI tract. We conclude that bowel activity on In-111 labeled leukocyte scans in patients with fever of unknown origin often does not correlate with the true cause of the patient's fever.

  11. Significance of the C-terminal domain of Erwinia uredovora ice nucleation-active protein (Ina U).

    PubMed

    Michigami, Y; Abe, K; Obata, H; Arai, S

    1995-12-01

    Ice nucleation-active (Ina) proteins of bacterial origin comprise three distinct domains, i.e., N-terminal (N-), central repeat (R-), and C-terminal (C-) domains, among which the R-domain is essential, and its length may be correlated with the ice nucleation activity. In addition, the short C-terminal domain of about 50 amino acid residues is indispensable for the activity. Using the Ina U protein of Erwinia uredovora, we carried out precise mutational analyses of its C-terminus. The ice nucleation activity (T50) assay showed that the C-terminal 12 amino acids were not necessary, and a deletion mutant (delta C29) with a new C-terminal, Met29 (numbered from the first amino acid residue of the C-domain and corresponding to Met1022), exhibited almost the same activity as the wild-type Ina U protein did. However, deletion of the C-terminal 13 residues including Met29 resulted in almost complete loss of the activity. In the deletion mutant (delta C29), amino acid replacement of the C-terminus, Met29, showed that the activity was retained when Met29 was replaced with a neutral, aromatic, or basic amino acid (Gly, Phe, or Lys), but was lost on the replacement with an acidic amino acid (Asp or Glu). In addition, two other residues in the C-terminal region commonly present in all Ina proteins were examined as to their importance, and it was shown that one of these residues, Tyr27, is important for the activity, although it is not exclusively required; the activity was lost to a great extent when this residue was replaced with Gly or Ala, but to a lesser extent when it was replaced with Leu. These results suggest that significance of the secondary and/or tertiary structure of the C-terminal region of the Ina U protein for the ice nucleation activity. PMID:8720147

  12. Phosphoproteomic analysis of induced resistance reveals activation of signal transduction processes by beneficial and pathogenic interaction in grapevine.

    PubMed

    Perazzolli, Michele; Palmieri, Maria Cristina; Matafora, Vittoria; Bachi, Angela; Pertot, Ilaria

    2016-05-20

    Protein phosphorylation regulates several key processes of the plant immune system. Protein kinases and phosphatases are pivotal regulators of defense mechanisms elicited by resistance inducers. However, the phosphorylation cascades that trigger the induced resistance mechanisms in plants have not yet been deeply investigated. The beneficial fungus Trichoderma harzianum T39 (T39) induces resistance against grapevine downy mildew (Plasmopara viticola), but its efficacy could be further improved by a better understanding of the cellular regulations involved. We investigated quantitative changes in the grapevine phosphoproteome during T39-induced resistance to get an overview of regulatory mechanisms of downy mildew resistance. Immunodetection experiments revealed activation of the 45 and 49kDa kinases by T39 treatment both before and after pathogen inoculation, and the phosphoproteomic analysis identified 103 phosphopeptides that were significantly affected by the phosphorylation cascades during T39-induced resistance. Peptides affected by T39 treatment showed comparable phosphorylation levels after P. viticola inoculation, indicating activation of the microbial recognition machinery before pathogen infection. Phosphorylation profiles of proteins related to photosynthetic processes and protein ubiquitination indicated a partial overlap of cellular responses in T39-treated and control plants. However, phosphorylation changes of proteins involved in response to stimuli, signal transduction, hormone signaling, gene expression regulation, and RNA metabolism were exclusively elicited by P. viticola inoculation in T39-treated plants. These results highlighted the relevance of phosphorylation changes during T39-induced resistance and identified key regulator candidates of the grapevine defense against downy mildew. PMID:27010348

  13. Transcriptomic Analysis of Tail Regeneration in the Lizard Anolis carolinensis Reveals Activation of Conserved Vertebrate Developmental and Repair Mechanisms

    PubMed Central

    Hutchins, Elizabeth D.; Markov, Glenn J.; Eckalbar, Walter L.; George, Rajani M.; King, Jesse M.; Tokuyama, Minami A.; Geiger, Lauren A.; Emmert, Nataliya; Ammar, Michael J.; Allen, April N.; Siniard, Ashley L.; Corneveaux, Jason J.; Fisher, Rebecca E.; Wade, Juli; DeNardo, Dale F.; Rawls, J. Alan; Huentelman, Matthew J.; Wilson-Rawls, Jeanne; Kusumi, Kenro

    2014-01-01

    Lizards, which are amniote vertebrates like humans, are able to lose and regenerate a functional tail. Understanding the molecular basis of this process would advance regenerative approaches in amniotes, including humans. We have carried out the first transcriptomic analysis of tail regeneration in a lizard, the green anole Anolis carolinensis, which revealed 326 differentially expressed genes activating multiple developmental and repair mechanisms. Specifically, genes involved in wound response, hormonal regulation, musculoskeletal development, and the Wnt and MAPK/FGF pathways were differentially expressed along the regenerating tail axis. Furthermore, we identified 2 microRNA precursor families, 22 unclassified non-coding RNAs, and 3 novel protein-coding genes significantly enriched in the regenerating tail. However, high levels of progenitor/stem cell markers were not observed in any region of the regenerating tail. Furthermore, we observed multiple tissue-type specific clusters of proliferating cells along the regenerating tail, not localized to the tail tip. These findings predict a different mechanism of regeneration in the lizard than the blastema model described in the salamander and the zebrafish, which are anamniote vertebrates. Thus, lizard tail regrowth involves the activation of conserved developmental and wound response pathways, which are potential targets for regenerative medical therapies. PMID:25140675

  14. Transcriptomic analysis of tail regeneration in the lizard Anolis carolinensis reveals activation of conserved vertebrate developmental and repair mechanisms.

    PubMed

    Hutchins, Elizabeth D; Markov, Glenn J; Eckalbar, Walter L; George, Rajani M; King, Jesse M; Tokuyama, Minami A; Geiger, Lauren A; Emmert, Nataliya; Ammar, Michael J; Allen, April N; Siniard, Ashley L; Corneveaux, Jason J; Fisher, Rebecca E; Wade, Juli; DeNardo, Dale F; Rawls, J Alan; Huentelman, Matthew J; Wilson-Rawls, Jeanne; Kusumi, Kenro

    2014-01-01

    Lizards, which are amniote vertebrates like humans, are able to lose and regenerate a functional tail. Understanding the molecular basis of this process would advance regenerative approaches in amniotes, including humans. We have carried out the first transcriptomic analysis of tail regeneration in a lizard, the green anole Anolis carolinensis, which revealed 326 differentially expressed genes activating multiple developmental and repair mechanisms. Specifically, genes involved in wound response, hormonal regulation, musculoskeletal development, and the Wnt and MAPK/FGF pathways were differentially expressed along the regenerating tail axis. Furthermore, we identified 2 microRNA precursor families, 22 unclassified non-coding RNAs, and 3 novel protein-coding genes significantly enriched in the regenerating tail. However, high levels of progenitor/stem cell markers were not observed in any region of the regenerating tail. Furthermore, we observed multiple tissue-type specific clusters of proliferating cells along the regenerating tail, not localized to the tail tip. These findings predict a different mechanism of regeneration in the lizard than the blastema model described in the salamander and the zebrafish, which are anamniote vertebrates. Thus, lizard tail regrowth involves the activation of conserved developmental and wound response pathways, which are potential targets for regenerative medical therapies.

  15. Shotgun metagenomic data reveals significant abundance but low diversity of "Candidatus Scalindua" marine anammox bacteria in the Arabian Sea oxygen minimum zone.

    PubMed

    Villanueva, Laura; Speth, Daan R; van Alen, Theo; Hoischen, Alexander; Jetten, Mike S M

    2014-01-01

    Anaerobic ammonium oxidizing (anammox) bacteria are responsible for a significant portion of the loss of fixed nitrogen from the oceans, making them important players in the global nitrogen cycle. To date, marine anammox bacteria found in both water columns and sediments worldwide belong almost exclusively to "Candidatus Scalindua" species. Recently the genome assembly of a marine anammox enrichment culture dominated by "Candidatus Scalindua profunda" became available and can now be used as a template to study metagenome data obtained from various oxygen minimum zones (OMZs). Here, we sequenced genomic DNA from suspended particulate matter recovered at the upper (170 m deep) and center (600 m) area of the OMZ in the Arabian Sea by SOLiD and Ion Torrent technology. The genome of "Candidatus Scalindua profunda" served as a template to collect reads. Based on the mapped reads marine anammox Abundance was estimated to be at least 0.4% in the upper and 1.7% in the center area. Single nucleotide variation (SNV) analysis was performed to assess diversity of the "Candidatus Scalindua" populations. Most highly covered were the two diagnostic anammox genes hydrazine synthase (scal_01318c, hzsA) and hydrazine dehydrogenase (scal_03295, hdh), while other genes involved in anammox metabolism (narGH, nirS, amtB, focA, and ACS) had a lower coverage but could still be assembled and analyzed. The results show that "Candidatus Scalindua" is abundantly present in the Arabian Sea OMZ, but that the diversity within the ecosystem is relatively low.

  16. A re-evaluation of the palaeoclimatic significance of phosphorus variability in speleothems revealed by high-resolution synchrotron micro XRF mapping

    NASA Astrophysics Data System (ADS)

    Frisia, S.; Borsato, A.; Drysdale, R. N.; Paul, B.; Greig, A.; Cotte, M.

    2012-07-01

    The distribution of phosphorous (P) in one modern and two Early Pliocene speleothems formed in low-lying, Christmas Island and the coastal Nullarbor caves wet settings in Australia is here investigated by microscopy and ultra-high resolution chemical mapping. Monitoring data in the modern setting suggest that co-precipitation of P with calcite occurs when the drip rate decreases, the aquifer is progressively drained and microbial mats possibly aid in the formation of concentrating phosphates. A bulk partition coefficient is proposed, which indicates that the P enrichment in the speleothem could be accounted for by inorganic processes. Our interpretation of the hydrological significance of P incorporation in wet, tropical speleothems is then used to interpret P peaks associated with micritic and stromatolithic layers in the two Early Pliocene stalagmites from the Nullarbor. From these observations it is speculated that dry periods may have interrupted the wet climate regime at ca. 4 Myr ago, hinting at a possible early onset of the Pleistocene climate mode.

  17. Quantitative proteomics reveals significant changes in cell shape and an energy shift after IPTG induction via an optimized SILAC approach for Escherichia coli.

    PubMed

    Ping, Lingyan; Zhang, Heng; Zhai, Linhui; Dammer, Eric B; Duong, Duc M; Li, Ning; Yan, Zili; Wu, Junzhu; Xu, Ping

    2013-12-01

    Stable isotope labeling by amino acids in cell culture (SILAC) has been widely used in yeast, mammalian cells, and even some multicellular organisms. However, the lack of optimized SILAC media limits its application in Escherichia coli, the most commonly used model organism. We optimized SILACE medium (SILAC medium created in this study for E. coli) for nonauxotrophic E. coli with high growth speed and complete labeling efficiency of the whole proteome in 12 generations. We applied a swapped SILAC workflow and pure null experiment with the SILACE medium using E. coli BL21 (DE3) cells hosting a recombinant plasmid coding for glutathione-S-transferase (GST) and ubiquitin binding domain before and after isopropyl thiogalactoside (IPTG) induction. Finally, we identified 1251 proteins with a significant change in abundance. Pathway analysis suggested that cell growth and fissiparism were inhibited accompanied by the down-regulation of proteins related to energy and metabolism, cell division, and the cell cycle, resulting in the size and shape change of the induced cells. Taken together, the results confirm the development of SILACE medium suitable for efficient and complete labeling of E. coli cells and a data filtering strategy for SILAC-based quantitative proteomics studies of E. coli.

  18. Paternity analysis reveals significant isolation and near neighbor pollen dispersal in small Cariniana legalis Mart. Kuntze populations in the Brazilian Atlantic Forest.

    PubMed

    Tambarussi, Evandro V; Boshier, David; Vencovsky, Roland; Freitas, Miguel L M; Sebbenn, Alexandre M

    2015-12-01

    Throughout the world, large trees are increasingly rare. Cariniana legalis is the tallest tree species of the Brazilian Atlantic Forest, reaching up to 60 m in height. Due to extensive deforestation of the Atlantic Forest, remnant C. legalis populations are small and spatially isolated, requiring the development of strategies for their conservation. For in situ and ex situ genetic conservation to be effective, it is important to understand the levels and patterns of spatial genetic structure (SGS), and gene flow. We investigated SGS and pollen flow in three small, physically isolated C. legalis stands using microsatellite loci. We measured, mapped, and sampled all C. legalis trees in the three stands: 65 trees from Ibicatu population, 22 trees from MGI, and 4 trees from MGII. We also collected and genotyped 600 seeds from Ibicatu, 250 seeds from MGI, and 200 seeds from MGII. Significant SGS was detected in Ibicatu up to 150 m, but substantial levels of external pollen flow were also detected in Ibicatu (8%), although not in MGI (0.4%) or MGII (0%). Selfing was highest in MGII (18%), the smallest group of trees, compared to MGI (6.4%) and Ibicatu (6%). In MGI and MGII, there was a strong pattern of mating among near-neighbors. Seed collection strategies for breeding, in situ and ex situ conservation and ecological restoration, must ensure collection from seed trees located at distances greater than 350 m and from several forest fragments. PMID:27069608

  19. Characterization of 10-Hydroxygeraniol Dehydrogenase from Catharanthus roseus Reveals Cascaded Enzymatic Activity in Iridoid Biosynthesis

    PubMed Central

    Krithika, Ramakrishnan; Srivastava, Prabhakar Lal; Rani, Bajaj; Kolet, Swati P.; Chopade, Manojkumar; Soniya, Mantri; Thulasiram, Hirekodathakallu V.

    2015-01-01

    Catharanthus roseus [L.] is a major source of the monoterpene indole alkaloids (MIAs), which are of significant interest due to their therapeutic value. These molecules are formed through an intermediate, cis-trans-nepetalactol, a cyclized product of 10-oxogeranial. One of the key enzymes involved in the biosynthesis of MIAs is an NAD(P)+ dependent oxidoreductase system, 10-hydroxygeraniol dehydrogenase (Cr10HGO), which catalyses the formation of 10-oxogeranial from 10-hydroxygeraniol via 10-oxogeraniol or 10-hydroxygeranial. This work describes the cloning and functional characterization of Cr10HGO from C. roseus and its role in the iridoid biosynthesis. Substrate specificity studies indicated that, Cr10HGO has good activity on substrates such as 10-hydroxygeraniol, 10-oxogeraniol or 10-hydroxygeranial over monohydroxy linear terpene derivatives. Further it was observed that incubation of 10-hydroxygeraniol with Cr10HGO and iridoid synthase (CrIDS) in the presence of NADP+ yielded a major metabolite, which was characterized as (1R, 4aS, 7S, 7aR)-nepetalactol by comparing its retention time, mass fragmentation pattern, and co-injection studies with that of the synthesized compound. These results indicate that there is concerted activity of Cr10HGO with iridoid synthase in the formation of (1R, 4aS, 7S, 7aR)-nepetalactol, an important intermediate in iridoid biosynthesis. PMID:25651761

  20. Deep sequencing of subseafloor eukaryotic rRNA reveals active Fungi across marine subsurface provinces.

    PubMed

    Orsi, William; Biddle, Jennifer F; Edgcomb, Virginia

    2013-01-01

    The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Because DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA) is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA by amplicon pyrosequencing, unique profiles of Fungi were found across a range of marine subsurface provinces including ridge flanks, continental margins, and abyssal plains. Subseafloor fungal populations exhibit statistically significant correlations with total organic carbon (TOC), nitrate, sulfide, and dissolved inorganic carbon (DIC). These correlations are supported by terminal restriction length polymorphism (TRFLP) analyses of fungal rRNA. Geochemical correlations with fungal pyrosequencing and TRFLP data from this geographically broad sample set suggests environmental selection of active Fungi in the marine subsurface. Within the same dataset, ancient rRNA signatures were recovered from plants and diatoms in marine sediments ranging from 0.03 to 2.7 million years old, suggesting that rRNA from some eukaryotic taxa may be much more stable than previously considered in the marine subsurface.

  1. Length and activity of the root apical meristem revealed in vivo by infrared imaging

    PubMed Central

    Bizet, François; Hummel, Irène; Bogeat-Triboulot, Marie-Béatrice

    2015-01-01

    Understanding how cell division and cell elongation influence organ growth and development is a long-standing issue in plant biology. In plant roots, most of the cell divisions occur in a short and specialized region, the root apical meristem (RAM). Although RAM activity has been suggested to be of high importance to understand how roots grow and how the cell cycle is regulated, few experimental and numeric data are currently available. The characterization of the RAM is difficult and essentially based upon cell length measurements through destructive and time-consuming microscopy approaches. Here, a new non-invasive method is described that couples infrared light imaging and kinematic analyses and that allows in vivo measurements of the RAM length. This study provides a detailed description of the RAM activity, especially in terms of cell flux and cell division rate. We focused on roots of hydroponic grown poplars and confirmed our method on maize roots. How the RAM affects root growth rate is studied by taking advantage of the high inter-individual variability of poplar root growth. An osmotic stress was applied and did not significantly affect the RAM length, highlighting its homeostasis in short to middle-term responses. The methodology described here simplifies a lot experimental procedures, allows an increase in the number of individuals that can be taken into account in experiments, and means new experiments can be formulated that allow temporal monitoring of the RAM length. PMID:25540436

  2. Proteomic analysis of tylosin-resistant Mycoplasma gallisepticum reveals enzymatic activities associated with resistance

    PubMed Central

    Xia, Xi; Wu, Congming; Cui, Yaowen; Kang, Mengjiao; Li, Xiaowei; Ding, Shuangyang; Shen, Jianzhong

    2015-01-01

    Mycoplasma gallisepticum is a significant pathogenic bacterium that infects poultry, causing chronic respiratory disease and sinusitis in chickens and turkeys, respectively. M. gallisepticum infection poses a substantial economic threat to the poultry industry, and this threat is made worse by the emergence of antibiotic-resistant strains. The mechanisms of resistance are often difficult to determine; for example, little is known about antibiotic resistance of M. gallisepticum at the proteome level. In this study, we performed comparative proteomic analyses of an antibiotic (tylosin)-resistant M. gallisepticum mutant and a susceptible parent strain using a combination of two-dimensional differential gel electrophoresis and nano-liquid chromatography-quadrupole-time of flight mass spectrometry. Thirteen proteins were identified as differentially expressed in the resistant strain compared to the susceptible strain. Most of these proteins were related to catalytic activity, including catalysis that promotes the formylation of initiator tRNA and energy production. Elongation factors Tu and G were over-expressed in the resistant strains, and this could promote the binding of tRNA to ribosomes and catalyze ribosomal translocation, the coordinated movement of tRNA, and conformational changes in the ribosome. Taken together, our results indicate that M. gallisepticum develops resistance to tylosin by regulating associated enzymatic activities. PMID:26584633

  3. Deep Sequencing of Subseafloor Eukaryotic rRNA Reveals Active Fungi across Marine Subsurface Provinces

    PubMed Central

    Orsi, William; Biddle, Jennifer F.; Edgcomb, Virginia

    2013-01-01

    The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Because DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA) is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA by amplicon pyrosequencing, unique profiles of Fungi were found across a range of marine subsurface provinces including ridge flanks, continental margins, and abyssal plains. Subseafloor fungal populations exhibit statistically significant correlations with total organic carbon (TOC), nitrate, sulfide, and dissolved inorganic carbon (DIC). These correlations are supported by terminal restriction length polymorphism (TRFLP) analyses of fungal rRNA. Geochemical correlations with fungal pyrosequencing and TRFLP data from this geographically broad sample set suggests environmental selection of active Fungi in the marine subsurface. Within the same dataset, ancient rRNA signatures were recovered from plants and diatoms in marine sediments ranging from 0.03 to 2.7 million years old, suggesting that rRNA from some eukaryotic taxa may be much more stable than previously considered in the marine subsurface. PMID:23418556

  4. Widely Used Pesticides with Previously Unknown Endocrine Activity Revealed as in Vitro Antiandrogens

    PubMed Central

    Orton, Frances; Rosivatz, Erika; Scholze, Martin; Kortenkamp, Andreas

    2011-01-01

    Background Evidence suggests that there is widespread decline in male reproductive health and that antiandrogenic pollutants may play a significant role. There is also a clear disparity between pesticide exposure and data on endocrine disruption, with most of the published literature focused on pesticides that are no longer registered for use in developed countries. Objective We used estimated human exposure data to select pesticides to test for antiandrogenic activity, focusing on highest use pesticides. Methods We used European databases to select 134 candidate pesticides based on highest exposure, followed by a filtering step according to known or predicted receptor-mediated antiandrogenic potency, based on a previously published quantitative structure–activity relationship (QSAR) model. In total, 37 pesticides were tested for in vitro androgen receptor (AR) antagonism. Of these, 14 were previously reported to be AR antagonists (“active”), 4 were predicted AR antagonists using the QSAR, 6 were predicted to not be AR antagonists (“inactive”), and 13 had unknown activity, which were “out of domain” and therefore could not be classified with the QSAR (“unknown”). Results All 14 pesticides with previous evidence of AR antagonism were confirmed as antiandrogenic in our assay, and 9 previously untested pesticides were identified as antiandrogenic (dimethomorph, fenhexamid, quinoxyfen, cyprodinil, λ-cyhalothrin, pyrimethanil, fludioxonil, azinphos-methyl, pirimiphos-methyl). In addition, we classified 7 compounds as androgenic. Conclusions Due to estimated antiandrogenic potency, current use, estimated exposure, and lack of previous data, we strongly recommend that dimethomorph, fludioxonil, fenhexamid, imazalil, ortho-phenylphenol, and pirimiphos-methyl be tested for antiandrogenic effects in vivo. The lack of human biomonitoring data for environmentally relevant pesticides presents a barrier to current risk assessment of pesticides on humans. PMID

  5. Structure of the nisin leader peptidase NisP revealing a C-terminal autocleavage activity.

    PubMed

    Xu, Yueyang; Li, Xin; Li, Ruiqing; Li, Shanshan; Ni, Hongqian; Wang, Hui; Xu, Haijin; Zhou, Weihong; Saris, Per E J; Yang, Wen; Qiao, Mingqiang; Rao, Zihe

    2014-06-01

    Nisin is a widely used antibacterial lantibiotic polypeptide produced by Lactococcus lactis. NisP belongs to the subtilase family and functions in the last step of nisin maturation as the leader-peptide peptidase. Deletion of the nisP gene in LAC71 results in the production of a non-active precursor peptide with the leader peptide unremoved. Here, the 1.1 Å resolution crystal structure of NisP is reported. The structure shows similarity to other subtilases, which can bind varying numbers of Ca atoms. However, no calcium was found in this NisP structure, and the predicted calcium-chelating residues were placed so as to not allow NisP to bind a calcium ion in this conformation. Interestingly, a short peptide corresponding to its own 635-647 sequence was found to bind to the active site of NisP. Biochemical assays and native mass-spectrometric analysis confirmed that NisP possesses an auto-cleavage site between residues Arg647 and Ser648. Further, it was shown that NisP mutated at the auto-cleavage site (R647P/S648P) had full catalytic activity for nisin leader-peptide cleavage, although the C-terminal region of NisP was no longer cleaved. Expressing this mutant in L. lactis LAC71 did not affect the production of nisin but did decrease the proliferation rate of the bacteria, suggesting the biological significance of the C-terminal auto-cleavage of NisP. PMID:24914961

  6. Structure of the nisin leader peptidase NisP revealing a C-terminal autocleavage activity.

    PubMed

    Xu, Yueyang; Li, Xin; Li, Ruiqing; Li, Shanshan; Ni, Hongqian; Wang, Hui; Xu, Haijin; Zhou, Weihong; Saris, Per E J; Yang, Wen; Qiao, Mingqiang; Rao, Zihe

    2014-06-01

    Nisin is a widely used antibacterial lantibiotic polypeptide produced by Lactococcus lactis. NisP belongs to the subtilase family and functions in the last step of nisin maturation as the leader-peptide peptidase. Deletion of the nisP gene in LAC71 results in the production of a non-active precursor peptide with the leader peptide unremoved. Here, the 1.1 Å resolution crystal structure of NisP is reported. The structure shows similarity to other subtilases, which can bind varying numbers of Ca atoms. However, no calcium was found in this NisP structure, and the predicted calcium-chelating residues were placed so as to not allow NisP to bind a calcium ion in this conformation. Interestingly, a short peptide corresponding to its own 635-647 sequence was found to bind to the active site of NisP. Biochemical assays and native mass-spectrometric analysis confirmed that NisP possesses an auto-cleavage site between residues Arg647 and Ser648. Further, it was shown that NisP mutated at the auto-cleavage site (R647P/S648P) had full catalytic activity for nisin leader-peptide cleavage, although the C-terminal region of NisP was no longer cleaved. Expressing this mutant in L. lactis LAC71 did not affect the production of nisin but did decrease the proliferation rate of the bacteria, suggesting the biological significance of the C-terminal auto-cleavage of NisP.

  7. Novel nitrifiers and comammox in a full-scale hybrid biofilm and activated sludge reactor revealed by metagenomic approach.

    PubMed

    Chao, Yuanqing; Mao, Yanping; Yu, Ke; Zhang, Tong

    2016-09-01

    Biofilms are widely used in wastewater treatment for their particular enhancement of nitrogen removal and other significant advantages. In this study, the diversity and potential functions of nitrogen removal bacteria in suspended activated sludge (AS) and biofilm of a full-scale hybrid reactor were uncovered by metagenomes (∼34 Gb), coupled with PCR-based 454 reads (>33 K reads). The results indicated that the diversity and abundance of nitrifiers and denitrifiers in biofilm did not surpass that in AS, while more nitrification and denitrification genes were indeed found in biofilm than AS, suggesting that the increased nitrogen removal ability by applying biofilm might be attributed to the enhancement of removal efficiency, rather than the biomass accumulation of nitrogen removal bacteria. The gene annotation and phylogenetic analysis results revealed that AS and biofilm samples consisted of 6.0 % and 9.4 % of novel functional genes for nitrogen removal and 18 % and 30 % of new Nitrospira species for nitrite-oxidizing bacteria, respectively. Moreover, the identification of Nitrospira-like amoA genes provided metagenomic evidence for the presence of complete ammonia oxidizer (comammox) with the functional potential to perform the complete oxidation of ammonia to nitrate. These findings have significant implications in expanding our knowledge of the biological nitrogen transformations in wastewater treatment. PMID:27287850

  8. Synchrotron X-ray imaging reveals a correlation of tumor copper speciation with Clioquinol's anticancer activity

    SciTech Connect

    Barrea, Raul A.; Chen, Di; Irving, Thomas C.; Dou, Q. Ping

    2009-10-21

    Tumor development and metastasis depend on angiogenesis that requires certain growth factors, proteases, and the trace element copper (Cu). Recent studies suggest that Cu could be used as a novel target for cancer therapies. Clioquinol (CQ), an antibiotic that is able to form stable complexes with Cu or zinc (Zn), has shown proteasome-inhibitory, androgen receptor-suppressing, apoptosis-inducing, and antitumor activities in human cancer cells and xenografts. The mechanisms underlying the interaction of CQ with cellular Cu, the alteration of the Cu/Zn ratio and the antitumor role of CQ in vivo have not been fully elucidated. We report here that Cu accumulates in tumor tissue and that the Cu/Zn balances in tumor, but not normal, tissue change significantly after the treatment with CQ. Cu speciation analysis showed that the Cu(I) species is predominant in both normal and tumor tissues and that Cu(II) content was significantly increased in tumor, but not normal tissue after CQ treatment. Our findings indicate that CQ can interact with cellular Cu in vivo, dysregulates the Cu/Zn balance and is able to convert Cu(I) to Cu(II) in tumor tissue. This conversion of Cu(I) to Cu(II) may be associated with CQ-induced proteasome inhibition and growth suppression in the human prostate tumor xenografts.

  9. Phage display-mediated discovery of novel tyrosinase-targeting tetrapeptide inhibitors reveals the significance of N-terminal preference of cysteine residues and their functional sulfur atom.

    PubMed

    Lee, Yu-Ching; Hsiao, Nai-Wan; Tseng, Tien-Sheng; Chen, Wang-Chuan; Lin, Hui-Hsiung; Leu, Sy-Jye; Yang, Ei-Wen; Tsai, Keng-Chang

    2015-02-01

    Tyrosinase, a key copper-containing enzyme involved in melanin biosynthesis, is closely associated with hyperpigmentation disorders, cancer, and neurodegenerative diseases, and as such, it is an essential target in medicine and cosmetics. Known tyrosinase inhibitors possess adverse side effects, and there are no safety regulations; therefore, it is necessary to develop new inhibitors with fewer side effects and less toxicity. Peptides are exquisitely specific to their in vivo targets, with high potencies and relatively few off-target side effects. Thus, we systematically and comprehensively investigated the tyrosinase-inhibitory abilities of N- and C-terminal cysteine/tyrosine-containing tetrapeptides by constructing a phage-display random tetrapeptide library and conducting computational molecular docking studies on novel tyrosinase tetrapeptide inhibitors. We found that N-terminal cysteine-containing tetrapeptides exhibited the most potent tyrosinase-inhibitory abilities. The positional preference of cysteine residues at the N terminus in the tetrapeptides significantly contributed to their tyrosinase-inhibitory function. The sulfur atom in cysteine moieties of N- and C-terminal cysteine-containing tetrapeptides coordinated with copper ions, which then tightly blocked substrate-binding sites. N- and C-terminal tyrosine-containing tetrapeptides functioned as competitive inhibitors against mushroom tyrosinase by using the phenol ring of tyrosine to stack with the imidazole ring of His263, thus competing for the substrate-binding site. The N-terminal cysteine-containing tetrapeptide CRVI exhibited the strongest tyrosinase-inhibitory potency (with an IC50 of 2.7 ± 0.5 μM), which was superior to those of the known tyrosinase inhibitors (arbutin and kojic acid) and outperformed kojic acid-tripeptides, mimosine-FFY, and short-sequence oligopeptides at inhibiting mushroom tyrosinase.

  10. Comparative Proteomic Characterization of 4 Human Liver-Derived Single Cell Culture Models Reveals Significant Variation in the Capacity for Drug Disposition, Bioactivation, and Detoxication

    PubMed Central

    Sison-Young, Rowena L. C.; Mitsa, Dimitra; Jenkins, Rosalind E.; Mottram, David; Alexandre, Eliane; Richert, Lysiane; Aerts, Hélène; Weaver, Richard J.; Jones, Robert P.; Johann, Esther; Hewitt, Philip G.; Ingelman-Sundberg, Magnus; Goldring, Christopher E. P.; Kitteringham, Neil R.; Park, B. Kevin

    2015-01-01

    In vitro preclinical models for the assessment of drug-induced liver injury (DILI) are usually based on cryopreserved primary human hepatocytes (cPHH) or human hepatic tumor-derived cell lines; however, it is unclear how well such cell models reflect the normal function of liver cells. The physiological, pharmacological, and toxicological phenotyping of available cell-based systems is necessary in order to decide the testing purpose for which they are fit. We have therefore undertaken a global proteomic analysis of 3 human-derived hepatic cell lines (HepG2, Upcyte, and HepaRG) in comparison with cPHH with a focus on drug metabolizing enzymes and transport proteins (DMETs), as well as Nrf2-regulated proteins. In total, 4946 proteins were identified, of which 2722 proteins were common across all cell models, including 128 DMETs. Approximately 90% reduction in expression of cytochromes P450 was observed in HepG2 and Upcyte cells, and approximately 60% in HepaRG cells relative to cPHH. Drug transporter expression was also lower compared with cPHH with the exception of MRP3 and P-gp (MDR1) which appeared to be significantly expressed in HepaRG cells. In contrast, a high proportion of Nrf2-regulated proteins were more highly expressed in the cell lines compared with cPHH. The proteomic database derived here will provide a rational basis for the context-specific selection of the most appropriate ‘hepatocyte-like’ cell for the evaluation of particular cellular functions associated with DILI and, at the same time, assist in the construction of a testing paradigm which takes into account the in vivo disposition of a new drug. PMID:26160117

  11. Significant Association between Sulfate-Reducing Bacteria and Uranium-Reducing Microbial Communities as Revealed by a Combined Massively Parallel Sequencing-Indicator Species Approach

    SciTech Connect

    Cardenas, Erick; Leigh, Mary Beth; Marsh, Terence; Tiedje, James M.; Wu, Wei-min; Luo, Jian; Ginder-Vogel, Matthew; Kitanidis, Peter K.; Criddle, Craig; Carley, Jack M; Carroll, Sue L; Gentry, Terry J; Watson, David B; Gu, Baohua; Jardine, Philip M; Zhou, Jizhong

    2010-10-01

    Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 M and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared.

  12. Comprehensive analysis of HPV16 integration in OSCC reveals no significant impact of physical status on viral oncogene and virally disrupted human gene expression.

    PubMed

    Olthof, Nadine C; Speel, Ernst-Jan M; Kolligs, Jutta; Haesevoets, Annick; Henfling, Mieke; Ramaekers, Frans C S; Preuss, Simon F; Drebber, Uta; Wieland, Ulrike; Silling, Steffi; Lam, Wan L; Vucic, Emily A; Kremer, Bernd; Klussmann, Jens-P; Huebbers, Christian U

    2014-01-01

    Infection with high-risk human papillomavirus (HPV) type 16 is an independent risk factor for the development of oropharyngeal squamous cell carcinomas (OSCC). However, it is unclear whether viral integration is an essential hallmark in the carcinogenic process of OSCC and whether HPV integration correlates with the level of viral gene transcription and influences the expression of disrupted host genes. We analyzed 75 patients with OSCC. HPV16-positivity was proven by p16(INK4A) immunohistochemistry, PCR and FISH. Viral integration was examined using DIPS- as well as APOT-PCR. Viral E2, E6 and E7 gene expression levels were quantified by quantitative reverse transcriptase (RT-q)PCR. Expression levels of 7 human genes disrupted by the virus were extracted from mRNA expression profiling data of 32 OSCCs. Viral copy numbers were assessed by qPCR in 73 tumors. We identified 37 HPV16-human fusion products indicating viral integration in 29 (39%) OSCC. In the remaining tumors (61%) only episome-derived PCR products were detected. When comparing OSCC with or without an integration-derived fusion product, we did not find significant differences in the mean RNA expression of viral genes E2, E6 and E7 or the viral copy numbers per cell, nor did the RNA expression of the HPV-disrupted genes differ from either group of OSCC. In conclusion, our data do not support the hypothesis that integration affects the levels of viral and/or HPV-disrupted human gene transcripts. Thus constitutive, rather than a high level, of expression of oncogene transcripts appears to be required in HPV-related OSCC. PMID:24586376

  13. Comparative Proteomic Characterization of 4 Human Liver-Derived Single Cell Culture Models Reveals Significant Variation in the Capacity for Drug Disposition, Bioactivation, and Detoxication.

    PubMed

    Sison-Young, Rowena L C; Mitsa, Dimitra; Jenkins, Rosalind E; Mottram, David; Alexandre, Eliane; Richert, Lysiane; Aerts, Hélène; Weaver, Richard J; Jones, Robert P; Johann, Esther; Hewitt, Philip G; Ingelman-Sundberg, Magnus; Goldring, Christopher E P; Kitteringham, Neil R; Park, B Kevin

    2015-10-01

    In vitro preclinical models for the assessment of drug-induced liver injury (DILI) are usually based on cryopreserved primary human hepatocytes (cPHH) or human hepatic tumor-derived cell lines; however, it is unclear how well such cell models reflect the normal function of liver cells. The physiological, pharmacological, and toxicological phenotyping of available cell-based systems is necessary in order to decide the testing purpose for which they are fit. We have therefore undertaken a global proteomic analysis of 3 human-derived hepatic cell lines (HepG2, Upcyte, and HepaRG) in comparison with cPHH with a focus on drug metabolizing enzymes and transport proteins (DMETs), as well as Nrf2-regulated proteins. In total, 4946 proteins were identified, of which 2722 proteins were common across all cell models, including 128 DMETs. Approximately 90% reduction in expression of cytochromes P450 was observed in HepG2 and Upcyte cells, and approximately 60% in HepaRG cells relative to cPHH. Drug transporter expression was also lower compared with cPHH with the exception of MRP3 and P-gp (MDR1) which appeared to be significantly expressed in HepaRG cells. In contrast, a high proportion of Nrf2-regulated proteins were more highly expressed in the cell lines compared with cPHH. The proteomic database derived here will provide a rational basis for the context-specific selection of the most appropriate 'hepatocyte-like' cell for the evaluation of particular cellular functions associated with DILI and, at the same time, assist in the construction of a testing paradigm which takes into account the in vivo disposition of a new drug.

  14. Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by a combined massively parallel sequencing-indicator species approach.

    PubMed

    Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K; Jardine, Philip M; Zhou, Jizhong; Criddle, Craig S; Marsh, Terence L; Tiedje, James M

    2010-10-01

    Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 μM and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared. PMID:20729318

  15. Significantly greater expression of ER, PR, and ECAD in advanced-stage low-grade ovarian serous carcinoma as revealed by immunohistochemical analysis.

    PubMed

    Wong, Kwong-Kwok; Lu, Karen H; Malpica, Anais; Bodurka, Diane C; Shvartsman, Hyun S; Schmandt, Rosemarie E; Thornton, Angela D; Deavers, Michael T; Silva, Elvio G; Gershenson, David M

    2007-10-01

    A 2-tier system that classifies ovarian serous carcinoma (OSC) as low grade or high grade is gaining acceptance. Women with low-grade OSC generally have higher 5-year survival rates than do women with high-grade OSC. We examined the expression of various markers to further understand the molecular differences between low-grade and high-grade OSCs: the potential therapeutic targets or prognostic markers Her-2/neu, estrogen receptor, and progesterone receptor (PR); the metastasis-associated markers cyclin D1 (BCL1), E-cadherin, matrix metalloproteinase (MMP) 2, and MMP-9; and the cell proliferation-associated markers BCL1, Ki-67 antigen (Ki-67), and p53. For this immunohistochemical analysis, we used paraffin-embedded specimens from 47 patients with advanced-stage low-grade OSC and from 49 patients with advanced-stage high-grade OSC. Our results showed that low-grade tumors expressed significantly higher levels of estrogen receptor, PR, and E-cadherin than did high-grade tumors, suggesting the involvement of gonadal steroid hormones, especially in the pathogenesis of low-grade OSC; the PR positivity was also observed in the stromal component of these low-grade tumors. On the other hand, high-grade tumors trended toward increased expression of MMP-9, BCL1, p53, and Ki-67, and robust MMP-9 positivity was observed in the stromal component of these high-grade tumors. These differences may lead to the development of different therapeutic strategies for women with either the low-grade or the high-grade form of OSC.

  16. A combined massively parallel sequencing indicator species approach revealed significant association between sulfate-reducing bacteria and uranium-reducing microbial communities

    SciTech Connect

    Cardenas, Erick; Wu, Wei-min; Leigh, Mary Beth; Carley, Jack M; Carroll, Sue L; Gentry, Terry; Luo, Jian; Watson, David B; Gu, Baohua; Ginder-Vogel, Matthew A.; Kitanidis, Peter K.; Jardine, Philip; Kelly, Shelly D; Zhou, Jizhong; Criddle, Craig; Marsh, Terence; Tiedje, James

    2010-08-01

    Massively parallel sequencing has provided a more affordable and high throughput method to study microbial communities, although it has been mostly used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium (VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee, USA. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 {micro}M, and created geochemical gradients in electron donors from the inner loop injection well towards the outer loop and down-gradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical created conditions. Castellaniella, and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity; while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. Abundance of these bacteria as well as the Fe(III)- and U(VI)-reducer Geobacter correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to the electron donor addition and by the groundwater flow path. A false discovery rate approach was implemented to discard false positives by chance given the large amount of data compared.

  17. Significant Association between Sulfate-Reducing Bacteria and Uranium-Reducing Microbial Communities as Revealed by a Combined Massively Parallel Sequencing-Indicator Species Approach▿ †

    PubMed Central

    Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K.; Jardine, Philip M.; Zhou, Jizhong; Criddle, Craig S.; Marsh, Terence L.; Tiedje, James M.

    2010-01-01

    Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 μM and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared. PMID:20729318

  18. Modulation of ethylene responses by OsRTH1 overexpression reveals the biological significance of ethylene in rice seedling growth and development.

    PubMed

    Zhang, Wei; Zhou, Xin; Wen, Chi-Kuang

    2012-06-01

    Overexpression of Arabidopsis Reversion-To-ethylene Sensitivity1 (RTE1) results in whole-plant ethylene insensitivity dependent on the ethylene receptor gene Ethylene Response1 (ETR1). However, overexpression of the tomato RTE1 homologue Green Ripe (GR) delays fruit ripening but does not confer whole-plant ethylene insensitivity. It was decided to investigate whether aspects of ethylene-induced growth and development of the monocotyledonous model plant rice could be modulated by rice RTE1 homologues (OsRTH genes). Results from a cross-species complementation test in Arabidopsis showed that OsRTH1 overexpression complemented the rte1-2 loss-of-function mutation and conferred whole-plant ethylene insensitivity in an ETR1-dependent manner. In contrast, OsRTH2 and OsRTH3 overexpression did not complement rte1-2 or confer ethylene insensitivity. In rice, OsRTH1 overexpression substantially prevented ethylene-induced alterations in growth and development, including leaf senescence, seedling leaf elongation and development, coleoptile elongation or curvature, and adventitious root development. Results of subcellular localizations of OsRTHs, each fused with the green fluorescent protein, in onion epidermal cells suggested that the three OsRTHs were predominantly localized to the Golgi. OsRTH1 may be an RTE1 orthologue of rice and modulate rice ethylene responses. The possible roles of auxins and gibberellins in the ethylene-induced alterations in growth were evaluated and the biological significance of ethylene in the early stage of rice seedling growth is discussed.

  19. Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by a combined massively parallel sequencing-indicator species approach.

    PubMed

    Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K; Jardine, Philip M; Zhou, Jizhong; Criddle, Craig S; Marsh, Terence L; Tiedje, James M

    2010-10-01

    Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 μM and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared.

  20. Zephycandidine A, the First Naturally Occurring Imidazo[1,2-f]phenanthridine Alkaloid from Zephyranthes candida, Exhibits Significant Anti-tumor and Anti-acetylcholinesterase Activities

    PubMed Central

    Zhan, Guanqun; Qu, Xiaolan; Liu, Junjun; Tong, Qingyi; Zhou, Junfei; Sun, Bin; Yao, Guangmin

    2016-01-01

    Zephycandidine A (1), the first naturally occurring imidazo[1,2-f]phenanthridine alkaloid, was isolated from Zephyranthes candida (Amaryllidaceae). The structure of 1 was elucidated by spectroscopic analyses and NMR calculation, and a plausible biogenetic pathway for zephycandidine A (1) was proposed. Zephycandidine A (1) exhibited significant cytotoxicity against five cancer cell lines with IC50 values ranging from 1.98 to 7.03 μM with selectivity indices as high as 10 when compared to the normal Beas-2B cell. Further studies suggested that zephycandidine A (1) induces apoptosis in leukemia cells by the activation of caspase-3, upregulation of Bax, downregulation of Bcl-2, and degradation of PARP expression. In addition, zephycandidine A (1) showed acetylcholinesterase (AChE) inhibitory activity, and the docking studies of zephycandidine A (1) and galanthamine (2) with AChE revealed that interactions with W286 and Y337 are necessary. PMID:27658482

  1. Zephycandidine A, the First Naturally Occurring Imidazo[1,2-f]phenanthridine Alkaloid from Zephyranthes candida, Exhibits Significant Anti-tumor and Anti-acetylcholinesterase Activities

    NASA Astrophysics Data System (ADS)

    Zhan, Guanqun; Qu, Xiaolan; Liu, Junjun; Tong, Qingyi; Zhou, Junfei; Sun, Bin; Yao, Guangmin

    2016-09-01

    Zephycandidine A (1), the first naturally occurring imidazo[1,2-f]phenanthridine alkaloid, was isolated from Zephyranthes candida (Amaryllidaceae). The structure of 1 was elucidated by spectroscopic analyses and NMR calculation, and a plausible biogenetic pathway for zephycandidine A (1) was proposed. Zephycandidine A (1) exhibited significant cytotoxicity against five cancer cell lines with IC50 values ranging from 1.98 to 7.03 μM with selectivity indices as high as 10 when compared to the normal Beas-2B cell. Further studies suggested that zephycandidine A (1) induces apoptosis in leukemia cells by the activation of caspase-3, upregulation of Bax, downregulation of Bcl-2, and degradation of PARP expression. In addition, zephycandidine A (1) showed acetylcholinesterase (AChE) inhibitory activity, and the docking studies of zephycandidine A (1) and galanthamine (2) with AChE revealed that interactions with W286 and Y337 are necessary.

  2. Increased Small Dense LDL and Decreased Paraoxonase Enzyme Activity Reveals Formation of an Atherogenic Risk in Streptozotocin-Induced Diabetic Guinea Pigs.

    PubMed

    Aslan, Mutay; Ozcan, Filiz; Kucuksayan, Ertan

    2013-01-01

    This study aimed to investigate LDL subfraction distribution as well as serum cholesteryl ester transfer protein (CETP), lecithin-cholesterol acyltransferase (LCAT), and paraoxonase (PON1) activity in streptozotocin-induced diabetic guinea pigs. Materials/Methods. Guinea pigs were given a single intraperitoneal (ip) injection of streptozotocin (STZ) and animals having fasting blood glucose levels greater than 200 mg/dl, were considered diabetic. Protein levels of LCAT and CETP were determined via ELISA. Paraoxonase activity was measured kinetically by the formation of phenol while LDL subfraction analysis was done by disc polyacrylamide gel electrophoresis. Results. Plasma glucose and high-density lipoprotein (HDL) cholesterol were significantly increased while total cholesterol and LDL cholesterol were significantly decreased in diabetic guinea pigs compared to controls. LDL subfraction analysis revealed a significant decrease in nonatherogenic LDL-2 subfraction and a significant increase in atherogenic LDL-4 subfraction in diabetic guinea pigs compared to controls. Plasma CETP and PON1 levels were significantly decreased while LCAT showed no significant difference in diabetic guinea pigs compared to controls. Conclusion. Decreased non-atherogenic LDL-1, LDL-2 subfractions, increased small dense LDL-4 subfraction, and decreased PON1 activity, reveals formation of an atherogenic risk in diabetic guinea pigs. Decrease in CETP levels supports the observed increase in HDL cholesterol levels in diabetic guinea pigs. PMID:23691522

  3. Metatranscriptome Analysis of Aquifer Samples Reveals Unexpected Metabolic Lifestyles Relevant to Active Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Beller, H. R.; Jewell, T. N. M.; Karaoz, U.; Banfield, J. F.; Brodie, E.; Williams, K. H.

    2015-12-01

    Modern molecular ecology techniques are revealing the metabolic potential of uncultivated microorganisms, but there is still much to be learned about the actual biogeochemical roles of microbes that have cultivated relatives. Here, we present metatranscriptomic and metagenomic data from a field study that provides evidence of coupled redox processes that have not been documented in cultivated relatives and, indeed, represent strains with metabolic traits that are novel with respect to closely related isolates. The data come from omics analysis of groundwater samples collected during an experiment in which nitrate (a native electron acceptor) was injected into a perennially suboxic aquifer in Rifle (CO). Transcriptional data indicated that just two groups of chemolithoautotrophic bacteria accounted for a very large portion (~80%) of overall community gene expression: (1) members of the Fe(II)-oxidizing Gallionellaceae family and (2) strains of the S-oxidizing species, Sulfurimonas denitrificans. Metabolic lifestyles for Gallionellaceae strains that were novel compared to cultivated representatives included nitrate-dependent Fe(II) oxidation and S oxidation. Evidence for these metabolisms included highly correlated temporal expression in binned data of nitrate reductase (e.g., narGHI) genes (which have never been reported in Gallionellaceae genomes) and Fe(II) oxidation genes (e.g., mtoA) or S oxidation genes (e.g., dsrE, aprA). Of the two most active strains of S. denitrificans, only one showed strong expression of S oxidation genes, whereas the other was apparently using an unexpected (as-yet unidentified) primary electron donor. Transcriptional data added considerable interpretive value to this study, as (1) metagenomic data would not have highlighted these organisms, which had a disproportionately large role in community metabolism relative to their populations, and (2) co-expression of coupled pathway genes could not be predicted based solely on metagenomic data.

  4. Transcriptional Analysis of a Dehalococcoides-Containing Microbial Consortium Reveals Prophage Activation

    PubMed Central

    Waller, Alison S.; Hug, Laura A.; Mo, Kaiguo; Radford, Devon R.; Maxwell, Karen L.

    2012-01-01

    Chlorinated solvents are among the most prevalent groundwater contaminants in the industrialized world. Biodegradation with Dehalococcoides-containing mixed cultures is an effective remediation technology. To elucidate transcribed genes in a Dehalococcoides-containing mixed culture, a shotgun metagenome microarray was created and used to investigate gene transcription during vinyl chloride (VC) dechlorination and during starvation (no chlorinated compounds) by a microbial enrichment culture called KB-1. In both treatment conditions, methanol was amended as an electron donor. Subsequently, spots were sequenced that contained the genes most differentially transcribed between the VC-degrading and methanol-only conditions, as well as spots with the highest intensities. Sequencing revealed that during VC degradation Dehalococcoides genes involved in transcription, translation, metabolic energy generation, and amino acid and lipid metabolism and transport were overrepresented in the transcripts compared to the average Dehalococcoides genome. KB-1 rdhA14 (vcrA) was the only reductive dehalogenase homologous (RDH) gene with higher transcript levels during VC degradation, while multiple RDH genes had higher transcript levels in the absence of VC. Numerous hypothetical genes from Dehalococcoides also had higher transcript levels in methanol-only treatments, indicating that many uncharacterized proteins are involved in cell maintenance in the absence of chlorinated substrates. In addition, microarray results prompted biological experiments confirming that electron acceptor limiting conditions activated a Dehalococcoides prophage. Transcripts from Spirochaetes, Chloroflexi, Geobacter, and methanogens demonstrate the importance of non-Dehalococcoides organisms to the culture, and sequencing of identified shotgun clones of interest provided information for follow-on targeted studies. PMID:22179237

  5. Transcriptional analysis of a Dehalococcoides-containing microbial consortium reveals prophage activation.

    PubMed

    Waller, Alison S; Hug, Laura A; Mo, Kaiguo; Radford, Devon R; Maxwell, Karen L; Edwards, Elizabeth A

    2012-02-01

    Chlorinated solvents are among the most prevalent groundwater contaminants in the industrialized world. Biodegradation with Dehalococcoides-containing mixed cultures is an effective remediation technology. To elucidate transcribed genes in a Dehalococcoides-containing mixed culture, a shotgun metagenome microarray was created and used to investigate gene transcription during vinyl chloride (VC) dechlorination and during starvation (no chlorinated compounds) by a microbial enrichment culture called KB-1. In both treatment conditions, methanol was amended as an electron donor. Subsequently, spots were sequenced that contained the genes most differentially transcribed between the VC-degrading and methanol-only conditions, as well as spots with the highest intensities. Sequencing revealed that during VC degradation Dehalococcoides genes involved in transcription, translation, metabolic energy generation, and amino acid and lipid metabolism and transport were overrepresented in the transcripts compared to the average Dehalococcoides genome. KB-1 rdhA14 (vcrA) was the only reductive dehalogenase homologous (RDH) gene with higher transcript levels during VC degradation, while multiple RDH genes had higher transcript levels in the absence of VC. Numerous hypothetical genes from Dehalococcoides also had higher transcript levels in methanol-only treatments, indicating that many uncharacterized proteins are involved in cell maintenance in the absence of chlorinated substrates. In addition, microarray results prompted biological experiments confirming that electron acceptor limiting conditions activated a Dehalococcoides prophage. Transcripts from Spirochaetes, Chloroflexi, Geobacter, and methanogens demonstrate the importance of non-Dehalococcoides organisms to the culture, and sequencing of identified shotgun clones of interest provided information for follow-on targeted studies.

  6. Multichannel detrended fluctuation analysis reveals synchronized patterns of spontaneous spinal activity in anesthetized cats.

    PubMed

    Rodríguez, Erika E; Hernández-Lemus, Enrique; Itzá-Ortiz, Benjamín A; Jiménez, Ismael; Rudomín, Pablo

    2011-01-01

    The analysis of the interaction and synchronization of relatively large ensembles of neurons is fundamental for the understanding of complex functions of the nervous system. It is known that the temporal synchronization of neural ensembles is involved in the generation of specific motor, sensory or cognitive processes. Also, the intersegmental coherence of spinal spontaneous activity may indicate the existence of synaptic neural pathways between different pairs of lumbar segments. In this study we present a multichannel version of the detrended fluctuation analysis method (mDFA) to analyze the correlation dynamics of spontaneous spinal activity (SSA) from time series analysis. This method together with the classical detrended fluctuation analysis (DFA) were used to find out whether the SSA recorded in one or several segments in the spinal cord of the anesthetized cat occurs either in a random or in an organized manner. Our results are consistent with a non-random organization of the sets of neurons involved in the generation of spontaneous cord dorsum potentials (CDPs) recorded either from one lumbar segment (DFA-α mean = 1.04[Formula: see text]0.09) or simultaneously from several lumbar segments (mDFA-α mean = 1.01[Formula: see text]0.06), where α = 0.5 indicates randomness while α = 0.5 indicates long-term correlations. To test the sensitivity of the mDFA method we also examined the effects of small spinal lesions aimed to partially interrupt connectivity between neighboring lumbosacral segments. We found that the synchronization and correlation between the CDPs recorded from the L5 and L6 segments in both sides of the spinal cord were reduced when a lesion comprising the left dorsal quadrant was performed between the segments L5 and L6 (mDFA-[Formula: see text] = 0.992 as compared to initial conditions mDFA-α = 1.186). The synchronization and correlation were reduced even further after a similar additional right spinal lesion (mDFA-α = 0.924). In contrast

  7. Multichannel detrended fluctuation analysis reveals synchronized patterns of spontaneous spinal activity in anesthetized cats.

    PubMed

    Rodríguez, Erika E; Hernández-Lemus, Enrique; Itzá-Ortiz, Benjamín A; Jiménez, Ismael; Rudomín, Pablo

    2011-01-01

    The analysis of the interaction and synchronization of relatively large ensembles of neurons is fundamental for the understanding of complex functions of the nervous system. It is known that the temporal synchronization of neural ensembles is involved in the generation of specific motor, sensory or cognitive processes. Also, the intersegmental coherence of spinal spontaneous activity may indicate the existence of synaptic neural pathways between different pairs of lumbar segments. In this study we present a multichannel version of the detrended fluctuation analysis method (mDFA) to analyze the correlation dynamics of spontaneous spinal activity (SSA) from time series analysis. This method together with the classical detrended fluctuation analysis (DFA) were used to find out whether the SSA recorded in one or several segments in the spinal cord of the anesthetized cat occurs either in a random or in an organized manner. Our results are consistent with a non-random organization of the sets of neurons involved in the generation of spontaneous cord dorsum potentials (CDPs) recorded either from one lumbar segment (DFA-α mean = 1.04[Formula: see text]0.09) or simultaneously from several lumbar segments (mDFA-α mean = 1.01[Formula: see text]0.06), where α = 0.5 indicates randomness while α = 0.5 indicates long-term correlations. To test the sensitivity of the mDFA method we also examined the effects of small spinal lesions aimed to partially interrupt connectivity between neighboring lumbosacral segments. We found that the synchronization and correlation between the CDPs recorded from the L5 and L6 segments in both sides of the spinal cord were reduced when a lesion comprising the left dorsal quadrant was performed between the segments L5 and L6 (mDFA-[Formula: see text] = 0.992 as compared to initial conditions mDFA-α = 1.186). The synchronization and correlation were reduced even further after a similar additional right spinal lesion (mDFA-α = 0.924). In contrast

  8. The significant drop in physical activity among children on holidays in a small town in the Tohoku district.

    PubMed

    Mitsui, Takahiro; Barajima, Tomoko; Kanachi, Michihiko; Shimaoka, Kiyoshi

    2010-01-01

    In Japan, there is a higher incidence of childhood obesity in the Tohoku district than in other areas. It is known that reduced physical activity is associated with increased body weight, but little is known about the physical activity patterns of children in this area. Accordingly, this study was designed to measure the physical activity of 145 children (73 boys and 72 girls) in Hashikami Town, Aomori Prefecture. Physical activity was assessed through a questionnaire as well as through two weeks of pedometer use. Boys spent more time engaging in physical activity than girls did, reporting 9.5 (0.6-22.0) versus 7.0 (1.2-21.5) hours per week [median (range)] (p=0.002). On school days, boys took an average of 13,586+/-4,386 (mean+/-SD) steps per day, while girls took 12,248+/-4,112; on holidays, boys took 9,531+/-4,557, while girls took 9,419+/-4,524. There was no significant sex-based difference in the number of steps per day (F=1.197, p=0.276), but both boys and girls significantly reduced the number of steps they took on holidays (F=116.537, p<0.001). In addition, 36 (24.8%) children reduced the number of steps they took by more than 50% on holidays compared to school days. In general, the participants engaged in the internationally recommended amounts of physical activity. Yet their reduced level of physical activity on holidays seems to be a matter for concern, as it is a possible cause of the higher incidence of childhood obesity in this area.

  9. Dual-color STED microscopy reveals a sandwich structure of Bassoon and Piccolo in active zones of adult and aged mice

    PubMed Central

    Nishimune, Hiroshi; Badawi, Yomna; Mori, Shuuichi; Shigemoto, Kazuhiro

    2016-01-01

    Presynaptic active zones play a pivotal role as synaptic vesicle release sites for synaptic transmission, but the molecular architecture of active zones in mammalian neuromuscular junctions (NMJs) at sub-diffraction limited resolution remains unknown. Bassoon and Piccolo are active zone specific cytosolic proteins essential for active zone assembly in NMJs, ribbon synapses, and brain synapses. These proteins are thought to colocalize and share some functions at active zones. Here, we report an unexpected finding of non-overlapping localization of these two proteins in mouse NMJs revealed using dual-color stimulated emission depletion (STED) super resolution microscopy. Piccolo puncta sandwiched Bassoon puncta and aligned in a Piccolo-Bassoon-Piccolo structure in adult NMJs. P/Q-type voltage-gated calcium channel (VGCC) puncta colocalized with Bassoon puncta. The P/Q-type VGCC and Bassoon protein levels decreased significantly in NMJs from aged mouse. In contrast, the Piccolo levels in NMJs from aged mice were comparable to levels in adult mice. This study revealed the molecular architecture of active zones in mouse NMJs at sub-diffraction limited resolution, and described the selective degeneration mechanism of active zone proteins in NMJs from aged mice. Interestingly, the localization pattern of active zone proteins described herein is similar to active zone structures described using electron microscope tomography. PMID:27321892

  10. Dual-color STED microscopy reveals a sandwich structure of Bassoon and Piccolo in active zones of adult and aged mice.

    PubMed

    Nishimune, Hiroshi; Badawi, Yomna; Mori, Shuuichi; Shigemoto, Kazuhiro

    2016-06-20

    Presynaptic active zones play a pivotal role as synaptic vesicle release sites for synaptic transmission, but the molecular architecture of active zones in mammalian neuromuscular junctions (NMJs) at sub-diffraction limited resolution remains unknown. Bassoon and Piccolo are active zone specific cytosolic proteins essential for active zone assembly in NMJs, ribbon synapses, and brain synapses. These proteins are thought to colocalize and share some functions at active zones. Here, we report an unexpected finding of non-overlapping localization of these two proteins in mouse NMJs revealed using dual-color stimulated emission depletion (STED) super resolution microscopy. Piccolo puncta sandwiched Bassoon puncta and aligned in a Piccolo-Bassoon-Piccolo structure in adult NMJs. P/Q-type voltage-gated calcium channel (VGCC) puncta colocalized with Bassoon puncta. The P/Q-type VGCC and Bassoon protein levels decreased significantly in NMJs from aged mouse. In contrast, the Piccolo levels in NMJs from aged mice were comparable to levels in adult mice. This study revealed the molecular architecture of active zones in mouse NMJs at sub-diffraction limited resolution, and described the selective degeneration mechanism of active zone proteins in NMJs from aged mice. Interestingly, the localization pattern of active zone proteins described herein is similar to active zone structures described using electron microscope tomography.

  11. Ultrasound reveals negligible cocontraction during isometric plantar flexion and dorsiflexion despite the presence of antagonist electromyographic activity.

    PubMed

    Raiteri, Brent J; Cresswell, Andrew G; Lichtwark, Glen A

    2015-05-15

    Because of the approximate linear relationship between muscle force and muscle activity, muscle forces are often estimated during maximal voluntary isometric contractions (MVICs) from torque and surface electromyography (sEMG) measurements. However, sEMG recordings from a target muscle may contain cross-talk originating from nearby muscles, which could lead to erroneous force estimates. Here we used ultrasound imaging to measure in vivo muscle fascicle length (Lf) changes and sEMG to measure muscle activity of the tibialis anterior, medial gastrocnemius, lateral gastrocnemius, and soleus muscles during ramp MVICs in plantar and dorsiflexion directions (n = 8). After correcting longitudinal Lf changes for ankle rotation, the antagonist Lf at peak antagonist root-mean-square (RMS) amplitude were significantly longer than the agonist Lf at this sEMG-matched level. On average, Lf shortened from resting length by 1.29 to 2.90 mm when muscles acted as agonists and lengthened from resting length by 0.43 to 1.16 mm when muscles acted as antagonists (depending on the muscle of interest). The lack of fascicle shortening when muscles acted as antagonists indicates that cocontraction was likely to be negligible, despite cocontraction as determined by sEMG of between 7 and 23% MVIC across all muscles. Different interelectrode distances (IEDs) over the plantar flexors revealed significantly higher antagonist RMS amplitudes for the 4-cm IEDs compared with the 2-cm IEDs, which further indicates that cross-talk was present. Consequently, investigators should be wary about performing agonist torque corrections for isometric plantar flexion and dorsiflexion based on the antagonist sEMG trace and predicted antagonist moment.

  12. Altered Spontaneous Activity in Patients with Persistent Somatoform Pain Disorder Revealed by Regional Homogeneity.

    PubMed

    Huang, Tianming; Zhao, Zhiyong; Yan, Chao; Lu, Jing; Li, Xuzhou; Tang, Chaozheng; Fan, Mingxia; Luo, Yanli

    2016-01-01

    Persistent somatoform pain disorder (PSPD) is a mental disorder un-associated with any somatic injury and can cause severe somatosensory and emotional impairments in patients. However, so far, the neuro-pathophysiological mechanism of the functional impairments in PSPD is still unclear. The present study assesses the difference in regional spontaneous activity between PSPD and healthy controls (HC) during a resting state, in order to elucidate the neural mechanisms underlying PSPD. Resting-state functional Magnetic Resonance Imaging data were obtained from 13 PSPD patients and 23 age- and gender-matched HC subjects in this study. Kendall's coefficient of concordance was used to measure regional homogeneity (ReHo), and a two-sample t-test was subsequently performed to investigate the ReHo difference between PSPD and HC. Additionally, the correlations between the mean ReHo of each survived area and the clinical assessments were further analyzed. Compared with the HC group, patients with PSPD exhibited decreased ReHo in the bilateral primary somatosensory cortex, posterior cerebellum, and occipital lobe, while increased ReHo in the prefrontal cortex (PFC) and default mode network (including the medial PFC, right inferior parietal lobe (IPL), and left supramarginal gyrus). In addition, significant positive correlations were found between the mean ReHo of both right IPL and left supramarginal gyrus and participants' Self-Rating Anxiety Scale (SAS) scores, and between the mean ReHo of the left middle frontal gyrus and Visual Analogue Scale (VAS) scores. Our results suggest that abnormal spontaneous brain activity in specific brain regions during a resting state may be associated with the dysfunctions in pain, memory and emotional processing commonly observed in patients with PSPD. These findings help us to understand the neural mechanisms underlying PSPD and suggest that the ReHo metric could be used as a clinical marker for PSPD. PMID:26977802

  13. Altered Spontaneous Activity in Patients with Persistent Somatoform Pain Disorder Revealed by Regional Homogeneity

    PubMed Central

    Yan, Chao; Lu, Jing; Li, Xuzhou; Tang, Chaozheng; Fan, Mingxia; Luo, Yanli

    2016-01-01

    Persistent somatoform pain disorder (PSPD) is a mental disorder un-associated with any somatic injury and can cause severe somatosensory and emotional impairments in patients. However, so far, the neuro-pathophysiological mechanism of the functional impairments in PSPD is still unclear. The present study assesses the difference in regional spontaneous activity between PSPD and healthy controls (HC) during a resting state, in order to elucidate the neural mechanisms underlying PSPD. Resting-state functional Magnetic Resonance Imaging data were obtained from 13 PSPD patients and 23 age- and gender-matched HC subjects in this study. Kendall’s coefficient of concordance was used to measure regional homogeneity (ReHo), and a two-sample t-test was subsequently performed to investigate the ReHo difference between PSPD and HC. Additionally, the correlations between the mean ReHo of each survived area and the clinical assessments were further analyzed. Compared with the HC group, patients with PSPD exhibited decreased ReHo in the bilateral primary somatosensory cortex, posterior cerebellum, and occipital lobe, while increased ReHo in the prefrontal cortex (PFC) and default mode network (including the medial PFC, right inferior parietal lobe (IPL), and left supramarginal gyrus). In addition, significant positive correlations were found between the mean ReHo of both right IPL and left supramarginal gyrus and participants’ Self-Rating Anxiety Scale (SAS) scores, and between the mean ReHo of the left middle frontal gyrus and Visual Analogue Scale (VAS) scores. Our results suggest that abnormal spontaneous brain activity in specific brain regions during a resting state may be associated with the dysfunctions in pain, memory and emotional processing commonly observed in patients with PSPD. These findings help us to understand the neural mechanisms underlying PSPD and suggest that the ReHo metric could be used as a clinical marker for PSPD. PMID:26977802

  14. Tectonic activity revealed by morphostructural analysis: Development of the Sierra de la Candelaria range, northwestern Argentina

    NASA Astrophysics Data System (ADS)

    Barcelona, H.; Peri, G.; Tobal, J.; Sagripanti, L.; Favetto, A.

    2014-12-01

    The tectonically active broken foreland of NW Argentina is a recent analog of the eastern margin of the Puna plateau during Mio-Pliocene times and likely of other broken forelands worldwide. In order to evaluate active tectonism in the broken foreland of the NW Argentine Andes, we examined the complex geomorphology in the vicinity of the basement-cored Sierra de la Candelaria range at ˜26°S and deciphered multiple episodes of crustal deformation spanning the Pliocene to the Quaternary. Digital elevation models, satellite images and geological data within a GIS environment allowed us to analyze the terrain, drainage networks, river dynamics and structure, as well as to obtain detailed geomorphological mapping, active tectonic indices, longitudinal river profiles and structural sections. Three morphostructural segments were defined based on the structural features, the differential vertical dissection pattern over the basement, the faulted Pliocene to recent deposits, the stepwise propagation of anticlines and the distortion over the fluvial system. By combining the several lines of evidence, we concluded that the Sierra de la Candelaria range was subjected to a multi-stage development. The first stage uplifted the central segment concomitant with the formation of the surrounding ranges and with the main partition phase of the foreland. After a significant time lapse, the mountain range was subjected to southward thick-skinned growth and northward growth via stepwise thin-skinned deformation and exerted control over the dynamics of the Río Rosario. Taking into account the surrounding basins and ranges of the Sierra de la Candelaria, the southern Santa Bárbara System is characterized by partially isolated intramontane basins (Choromoro and Rosario) limited by shielded ranges that caused moisture block and shows continuous deformation. These features were related to early stages of a broken foreland evolution model and modern analogs were found at the northern

  15. Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics.

    PubMed

    Mo, Charlie Y; Manning, Sara A; Roggiani, Manuela; Culyba, Matthew J; Samuels, Amanda N; Sniegowski, Paul D; Goulian, Mark; Kohli, Rahul M

    2016-01-01

    The bacterial SOS response is a DNA damage repair network that is strongly implicated in both survival and acquired drug resistance under antimicrobial stress. The two SOS regulators, LexA and RecA, have therefore emerged as potential targets for adjuvant therapies aimed at combating resistance, although many open questions remain. For example, it is not well understood whether SOS hyperactivation is a viable therapeutic approach or whether LexA or RecA is a better target. Furthermore, it is important to determine which antimicrobials could serve as the best treatment partners with SOS-targeting adjuvants. Here we derived Escherichia coli strains that have mutations in either lexA or recA genes in order to cover the full spectrum of possible SOS activity levels. We then systematically analyzed a wide range of antimicrobials by comparing the mean inhibitory concentrations (MICs) and induced mutation rates for each drug-strain combination. We first show that significant changes in MICs are largely confined to DNA-damaging antibiotics, with strains containing a constitutively repressed SOS response impacted to a greater extent than hyperactivated strains. Second, antibiotic-induced mutation rates were suppressed when SOS activity was reduced, and this trend was observed across a wider spectrum of antibiotics. Finally, perturbing either LexA or RecA proved to be equally viable strategies for targeting the SOS response. Our work provides support for multiple adjuvant strategies, while also suggesting that the combination of an SOS inhibitor with a DNA-damaging antibiotic could offer the best potential for lowering MICs and decreasing acquired drug resistance. IMPORTANCE Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role in

  16. Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics

    PubMed Central

    Mo, Charlie Y.; Manning, Sara A.; Roggiani, Manuela; Culyba, Matthew J.; Samuels, Amanda N.; Sniegowski, Paul D.; Goulian, Mark

    2016-01-01

    ABSTRACT The bacterial SOS response is a DNA damage repair network that is strongly implicated in both survival and acquired drug resistance under antimicrobial stress. The two SOS regulators, LexA and RecA, have therefore emerged as potential targets for adjuvant therapies aimed at combating resistance, although many open questions remain. For example, it is not well understood whether SOS hyperactivation is a viable therapeutic approach or whether LexA or RecA is a better target. Furthermore, it is important to determine which antimicrobials could serve as the best treatment partners with SOS-targeting adjuvants. Here we derived Escherichia coli strains that have mutations in either lexA or recA genes in order to cover the full spectrum of possible SOS activity levels. We then systematically analyzed a wide range of antimicrobials by comparing the mean inhibitory concentrations (MICs) and induced mutation rates for each drug-strain combination. We first show that significant changes in MICs are largely confined to DNA-damaging antibiotics, with strains containing a constitutively repressed SOS response impacted to a greater extent than hyperactivated strains. Second, antibiotic-induced mutation rates were suppressed when SOS activity was reduced, and this trend was observed across a wider spectrum of antibiotics. Finally, perturbing either LexA or RecA proved to be equally viable strategies for targeting the SOS response. Our work provides support for multiple adjuvant strategies, while also suggesting that the combination of an SOS inhibitor with a DNA-damaging antibiotic could offer the best potential for lowering MICs and decreasing acquired drug resistance. IMPORTANCE Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role

  17. Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics.

    PubMed

    Mo, Charlie Y; Manning, Sara A; Roggiani, Manuela; Culyba, Matthew J; Samuels, Amanda N; Sniegowski, Paul D; Goulian, Mark; Kohli, Rahul M

    2016-01-01

    The bacterial SOS response is a DNA damage repair network that is strongly implicated in both survival and acquired drug resistance under antimicrobial stress. The two SOS regulators, LexA and RecA, have therefore emerged as potential targets for adjuvant therapies aimed at combating resistance, although many open questions remain. For example, it is not well understood whether SOS hyperactivation is a viable therapeutic approach or whether LexA or RecA is a better target. Furthermore, it is important to determine which antimicrobials could serve as the best treatment partners with SOS-targeting adjuvants. Here we derived Escherichia coli strains that have mutations in either lexA or recA genes in order to cover the full spectrum of possible SOS activity levels. We then systematically analyzed a wide range of antimicrobials by comparing the mean inhibitory concentrations (MICs) and induced mutation rates for each drug-strain combination. We first show that significant changes in MICs are largely confined to DNA-damaging antibiotics, with strains containing a constitutively repressed SOS response impacted to a greater extent than hyperactivated strains. Second, antibiotic-induced mutation rates were suppressed when SOS activity was reduced, and this trend was observed across a wider spectrum of antibiotics. Finally, perturbing either LexA or RecA proved to be equally viable strategies for targeting the SOS response. Our work provides support for multiple adjuvant strategies, while also suggesting that the combination of an SOS inhibitor with a DNA-damaging antibiotic could offer the best potential for lowering MICs and decreasing acquired drug resistance. IMPORTANCE Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role in

  18. Overexpression of PAD1 and FDC1 results in significant cinnamic acid decarboxylase activity in Saccharomyces cerevisiae.

    PubMed

    Richard, Peter; Viljanen, Kaarina; Penttilä, Merja

    2015-01-01

    The S. cerevisiae PAD1 gene had been suggested to code for a cinnamic acid decarboxylase, converting trans-cinnamic acid to styrene. This was suggested for the reason that the over-expression of PAD1 resulted in increased tolerance toward cinnamic acid, up to 0.6 mM. We show that by over-expression of the PAD1 together with the FDC1 the cinnamic acid decarboxylase activity can be increased significantly. The strain over-expressing PAD1 and FDC1 tolerated cinnamic acid concentrations up to 10 mM. The cooperation of Pad1p and Fdc1p is surprising since the PAD1 has a mitochondrial targeting sequence and the FDC1 codes for a cytosolic protein. The cinnamic acid decarboxylase activity was also seen in the cell free extract. The activity was 0.019 μmol per minute and mg of extracted protein. The overexpression of PAD1 and FDC1 resulted also in increased activity with the hydroxycinnamic acids ferulic acid, p-coumaric acid and caffeinic acid. This activity was not seen when FDC1 was overexpressed alone. An efficient cinnamic acid decarboxylase is valuable for the genetic engineering of yeast strains producing styrene. Styrene can be produced from endogenously produced L-phenylalanine which is converted by a phenylalanine ammonia lyase to cinnamic acid and then by a decarboxylase to styrene.

  19. PCNA immunoreactivity revealing normal proliferative activity in the brain of an adult Elasmobranch, Torpedo marmorata.

    PubMed

    Margotta, Vito

    2007-01-01

    The brain of adult heterothermic vertebrates can be already provided of quiescent cells, scattered ("matrix cells") and/or clustered ("matrix areas"). These typical cells, in some regions located at or near ventricular surfaces and at peri-ependymal layers, in other territories populating their framework, maintain some embryonic properties and are responsible of normal or variously experimentally induced proliferative activities. On these topics there are a great number of reports concerning Teleostean Osteichthyes, Urodele and Anuran Amphibians, Lacertilian Reptiles. At the contrary, only few are the contributions regarding the Petromyzontidae. Involving an immunocytochemical marker, the Proliferating Cell Nuclear Antigen (PCNA), revealing proliferative events, in the last years we have undertaken a reappraisal focused on these encephalic performances in normal adult poikilothermal vertebrates. To provide a valid comparison between our results and the literature data, our choice of the specimens was based on the desire to employ organisms belonging to the same or phylogenetically close species used by previous Authors in similar studies. In our immunocytochemical panorama there is a substantial agreement between our contributions and bibliographic references concerning natural encephalic proliferative phenomena in these vertebrates. At this point of our study, the last missing piece was represented by the Chondrichthyes about which the literature data are lacking. In order to fill this gap, the aim of the present research is to investigate, involving the same PCNA test, whether proliferative events also persist in the brain of adult cartilaginous fishes. The immunostaining images obtained in the Elasmo branch Torpedo marmorata, well-known for the emission of high electrical discharges, exhibit undifferentiated cells in relationship with the ependymal epithelium lining the cavities of all cerebral districts; some other neuroblasts are scattered in the mesencephalic

  20. Comparative analysis of carbohydrate active enzymes in Clostridium termitidis CT1112 reveals complex carbohydrate degradation ability.

    PubMed

    Munir, Riffat I; Schellenberg, John; Henrissat, Bernard; Verbeke, Tobin J; Sparling, Richard; Levin, David B

    2014-01-01

    Clostridium termitidis strain CT1112 is an anaerobic, gram positive, mesophilic, cellulolytic bacillus isolated from the gut of the wood-feeding termite, Nasutitermes lujae. It produces biofuels such as hydrogen and ethanol from cellulose, cellobiose, xylan, xylose, glucose, and other sugars, and therefore could be used for biofuel production from biomass through consolidated bioprocessing. The first step in the production of biofuel from biomass by microorganisms is the hydrolysis of complex carbohydrates present in biomass. This is achieved through the presence of a repertoire of secreted or complexed carbohydrate active enzymes (CAZymes), sometimes organized in an extracellular organelle called cellulosome. To assess the ability and understand the mechanism of polysaccharide hydrolysis in C. termitidis, the recently sequenced strain CT1112 of C. termitidis was analyzed for both CAZymes and cellulosomal components, and compared to other cellulolytic bacteria. A total of 355 CAZyme sequences were identified in C. termitidis, significantly higher than other Clostridial species. Of these, high numbers of glycoside hydrolases (199) and carbohydrate binding modules (95) were identified. The presence of a variety of CAZymes involved with polysaccharide utilization/degradation ability suggests hydrolysis potential for a wide range of polysaccharides. In addition, dockerin-bearing enzymes, cohesion domains and a cellulosomal gene cluster were identified, indicating the presence of potential cellulosome assembly.

  1. Laser speckle contrast reveals cerebral blood flow dynamics evoked by optogenetically controlled neuronal activity

    NASA Astrophysics Data System (ADS)

    Li, Nan; Thakor, Nitish V.; Pelled, Galit

    2013-03-01

    As a critical basis of functional brain imaging, neurovascular coupling describes the link between neuronal and hemodynamic changes. The majority of in vivo neurovascular coupling studies was performed by inducing sensory stimulation via afferent inputs. Unfortunately such an approach results in recruiting of multiple types of cells, which confounds the explanation of neuronal roles in stimulus evoked hemodynamic changes. Recently optogenetics has emerged to provide immediate control of neurons by exciting or inhibiting genetically engineered neurons expressing light sensitive proteins. However, there is a need for optical methods capable of imaging the concurrent hemodynamic changes. We utilize laser speckle contrast imaging (LSCI) to obtain high resolution display of cerebral blood flow (CBF) in the vicinity of the targeted neural population. LSCI is a minimally invasive method for imaging CBF in microvessels through thinned skull, and produces images with high spatiotemporal resolution, wide field of view. In the integrated system light sources with different wavelengths and band-passing/blocking filters were used to allow simultaneous optical manipulation of neuronal activities and optical imaging of corresponding CBF. Experimental studies were carried out in a rodent model expressing channalrhodopsin (ChR2) in excitatory neurons in the somatosensory cortex (S1). The results demonstrated significant increases of CBF in response to ChR2 stimulation (exciting neuronal firing) comparable to the CBF response to contralateral forepaw stimulation. The approach promises to be an exciting minimally invasive method to study neurovascular coupling. The complete system provides a novel approach for broad neuroscience applications.

  2. Prefrontal activation during two Japanese Stroop tasks revealed with multi-channel near-infrared spectroscopy.

    PubMed

    Watanabe, Yukina; Sumitani, Satsuki; Hosokawa, Mai; Ohmori, Tetsuro

    2015-01-01

    The Stroop task is sometimes used in psychiatric research to elicit prefrontal activity, which presumably reflects cognitive functioning. Although there are two Stroop tasks (Kana script and Kanji script) in Japan, it is unclear whether these tasks elicit the same hemoglobin changes. Moreover, it is unclear whether psychological conditions or characteristics influence hemoglobin changes in the Japanese Stroop task. The aim of this study was to clarify whether hemoglobin changes elicited by the two Japanese Stroop tasks accurately reflected cognitive functioning. Hemoglobin changes were measured with multi-channel near-infrared spectroscopy (NIRS) in 100 healthy Japanese participants performing two Japanese Stroop tasks. The Beck-Depression Inventory (BDI), State-Trait-Anxiety Inventory (STAI), and Maudsley Obsessive Compulsive Inventory (MOCI) were administered to participants to identify psychological conditions or personality characteristics. Compared with the Kanji task, the Kana task produced a greater Stroop effect and a larger increase in oxyhemoglobin (oxy-Hb) concentration. Moreover there were no significant correlations between oxy-Hb concentration and BDI, STAI-trait, STAI-state, or MOCI scores. Therefore we found that a participant's psychological conditions or characteristics did not influence the hemodynamic changes during either task. These data suggest the Kana Stroop task is more useful than the Kanji Stroop task for NIRS studies in psychiatric research.

  3. Spaceflight and simulated microgravity cause a significant reduction of key gene expression in early T-cell activation.

    PubMed

    Martinez, Emily M; Yoshida, Miya C; Candelario, Tara Lynne T; Hughes-Fulford, Millie

    2015-03-15

    Healthy immune function depends on precise regulation of lymphocyte activation. During the National Aeronautics and Space Administration (NASA) Apollo and Shuttle eras, multiple spaceflight studies showed depressed lymphocyte activity under microgravity (μg) conditions. Scientists on the ground use two models of simulated μg (sμg): 1) the rotating wall vessel (RWV) and 2) the random positioning machine (RPM), to study the effects of altered gravity on cell function before advancing research to the true μg when spaceflight opportunities become available on the International Space Station (ISS). The objective of this study is to compare the effects of true μg and sμg on the expression of key early T-cell activation genes in mouse splenocytes from spaceflight and ground animals. For the first time, we compared all three conditions of microgravity spaceflight, RPM, and RWV during immune gene activation of Il2, Il2rα, Ifnγ, and Tagap; moreover, we confirm two new early T-cell activation genes, Iigp1 and Slamf1. Gene expression for all samples was analyzed using quantitative real-time PCR (qRT-PCR). Our results demonstrate significantly increased gene expression in activated ground samples with suppression of mouse immune function in spaceflight, RPM, and RWV samples. These findings indicate that sμg models provide an excellent test bed for scientists to develop baseline studies and augment true μg in spaceflight experiments. Ultimately, sμg and spaceflight studies in lymphocytes may provide insight into novel regulatory pathways, benefiting both future astronauts and those here on earth suffering from immune disorders. PMID:25568077

  4. Spaceflight and simulated microgravity cause a significant reduction of key gene expression in early T-cell activation

    PubMed Central

    Martinez, Emily M.; Yoshida, Miya C.; Candelario, Tara Lynne T.

    2015-01-01

    Healthy immune function depends on precise regulation of lymphocyte activation. During the National Aeronautics and Space Administration (NASA) Apollo and Shuttle eras, multiple spaceflight studies showed depressed lymphocyte activity under microgravity (μg) conditions. Scientists on the ground use two models of simulated μg (sμg): 1) the rotating wall vessel (RWV) and 2) the random positioning machine (RPM), to study the effects of altered gravity on cell function before advancing research to the true μg when spaceflight opportunities become available on the International Space Station (ISS). The objective of this study is to compare the effects of true μg and sμg on the expression of key early T-cell activation genes in mouse splenocytes from spaceflight and ground animals. For the first time, we compared all three conditions of microgravity spaceflight, RPM, and RWV during immune gene activation of Il2, Il2rα, Ifnγ, and Tagap; moreover, we confirm two new early T-cell activation genes, Iigp1 and Slamf1. Gene expression for all samples was analyzed using quantitative real-time PCR (qRT-PCR). Our results demonstrate significantly increased gene expression in activated ground samples with suppression of mouse immune function in spaceflight, RPM, and RWV samples. These findings indicate that sμg models provide an excellent test bed for scientists to develop baseline studies and augment true μg in spaceflight experiments. Ultimately, sμg and spaceflight studies in lymphocytes may provide insight into novel regulatory pathways, benefiting both future astronauts and those here on earth suffering from immune disorders. PMID:25568077

  5. In vitro activity of colistin against biofilm by Pseudomonas aeruginosa is significantly improved under "cystic fibrosis-like" physicochemical conditions.

    PubMed

    Pompilio, Arianna; Crocetta, Valentina; Pomponio, Stefano; Fiscarelli, Ersilia; Di Bonaventura, Giovanni

    2015-08-01

    The impact of physicochemical conditions observed in cystic fibrosis (CF) lung on colistin activity against both planktonic and biofilm P. aeruginosa cells was evaluated. MIC, minimum bactericidal concentration (MBC), and minimum biofilm eradication concentration (MBEC) values were assessed against 12 CF strains both under "CF-like" (anaerobiosis, pH6.4) and "standard" (aerobiosis, pH7.4) conditions. The activity of colistin was significantly higher under "CF-like" conditions compared to "standard" ones, both against planktonic (MIC90: 1 and 4 μg/mL, respectively) and biofilm (MBEC90: 512 and 1.024 μg/mL, respectively) cells, as confirmed by scanning electron microscopy. Improved activity was not related to biofilm matrix amount. It may be necessary to adequately "rethink" the protocols used for in vitro assessment of colistin activity, by considering physicochemical and microbiological features in the CF lung at the site of infection. This could provide a more favorable therapeutic index, rationale for administration of lower doses, probably resulting in reduced toxicity and emergence of resistant clones.

  6. Selective activation of SHP2 activity by cisplatin revealed by a novel chemical probe-based assay

    SciTech Connect

    Kuo, Chun-Chen; Chu, Chi-Yuan; Lin, Jing-Jer; Lo, Lee-Chiang

    2010-01-01

    Src homology-2 (SH2) domain-containing phosphatase 2 (SHP2) is known to participate in several different signaling pathways to mediate cell growth, survival, migration, and differentiation. However, due to the lack of proper analytical tools, it is unclear whether the phosphatase activity of SHP2 is activated in most studies. We have previously developed an activity-based probe LCL2 that formed covalent linkage with catalytically active protein tyrosine phosphatases (PTPs). Here, by combining LCL2 with a SHP2 specific antibody, we established an assay system that enables the direct monitoring of SHP2 activity upon cisplatin treatment of cancer cells. The protocol is advantageous over conventional colorimetric or in-gel PTP assays as it is specific and does not require the use of radioisotope reagents. Using this assay, we found SHP2 activity was selectively activated by cisplatin. Moreover, the activation of SHP2 appeared to be specific for cisplatin as other DNA damage agents failed to activate the activity. Although the role of SHP2 activation by cisplatin treatments is still unclear to us, our results provide the first direct evidence for the activation of SHP2 during cisplatin treatments. More importantly, the concept of using activity-based probe in conjunction with target-specific antibodies could be extended to other enzyme classes.

  7. CD10-Equipped Melanoma Cells Acquire Highly Potent Tumorigenic Activity: A Plausible Explanation of Their Significance for a Poor Prognosis.

    PubMed

    Oba, Junna; Nakahara, Takeshi; Hashimoto-Hachiya, Akiko; Liu, Min; Abe, Takeru; Hagihara, Akihito; Yokomizo, Takehiko; Furue, Masutaka

    2016-01-01

    CD10 has been widely used in cancer diagnosis. We previously demonstrated that its expression in melanoma increased with tumor progression and predicted poor patient survival. However, the mechanism by which CD10 promotes melanoma progression remains unclear. In order to elucidate the role of CD10 in melanoma, we established CD10-overexpressing A375 melanoma cells and performed DNA microarray and qRT-PCR analyses to identify changes in the gene expression profile. The microarray analysis revealed that up-regulated genes in CD10-A375 were mostly involved in cell proliferation, angiogenesis, and resistance to apoptosis; down-regulated genes mostly belonged to the categories associated with cell adhesion and migration. Accordingly, in functional experiments, CD10-A375 showed significantly greater cell proliferation in vitro and higher tumorigenicity in vivo; CD10 enzymatic inhibitors, thiorphan and phosphoramidon, significantly blocked the tumor growth of CD10-A375 in mice. In migration and invasion assays, CD10-A375 displayed lower migratory and invasive capacity than mock-A375. CD10 augmented melanoma cell resistance to apoptosis mediated by etoposide and gemcitabine. These findings indicate that CD10 may promote tumor progression by regulating the expression profiles of genes related to cell proliferation, angiogenesis, and resistance to apoptosis. PMID:26881775

  8. CD10-Equipped Melanoma Cells Acquire Highly Potent Tumorigenic Activity: A Plausible Explanation of Their Significance for a Poor Prognosis

    PubMed Central

    Hashimoto-Hachiya, Akiko; Liu, Min; Abe, Takeru; Hagihara, Akihito; Yokomizo, Takehiko; Furue, Masutaka

    2016-01-01

    CD10 has been widely used in cancer diagnosis. We previously demonstrated that its expression in melanoma increased with tumor progression and predicted poor patient survival. However, the mechanism by which CD10 promotes melanoma progression remains unclear. In order to elucidate the role of CD10 in melanoma, we established CD10-overexpressing A375 melanoma cells and performed DNA microarray and qRT–PCR analyses to identify changes in the gene expression profile. The microarray analysis revealed that up-regulated genes in CD10-A375 were mostly involved in cell proliferation, angiogenesis, and resistance to apoptosis; down-regulated genes mostly belonged to the categories associated with cell adhesion and migration. Accordingly, in functional experiments, CD10-A375 showed significantly greater cell proliferation in vitro and higher tumorigenicity in vivo; CD10 enzymatic inhibitors, thiorphan and phosphoramidon, significantly blocked the tumor growth of CD10-A375 in mice. In migration and invasion assays, CD10-A375 displayed lower migratory and invasive capacity than mock-A375. CD10 augmented melanoma cell resistance to apoptosis mediated by etoposide and gemcitabine. These findings indicate that CD10 may promote tumor progression by regulating the expression profiles of genes related to cell proliferation, angiogenesis, and resistance to apoptosis. PMID:26881775

  9. The mechanism and significance of synergistic induction of the expression of plasminogen activator inhibitor-1 by glucocorticoid and transforming growth factor beta in human ovarian cancer cells.

    PubMed

    Pan, Xiao-yu; Wang, Yan; Su, Jie; Huang, Gao-xiang; Cao, Dong-mei; Qu, Shen; Lu, Jian

    2015-05-15

    Plasminogen activator inhibitor-1 (PAI-1) plays a key role in tissue remodeling and tumor development by suppression of plasminogen activator function. Glucocorticoids (GCs) and transforming growth factor beta (TGF-β) signal pathways cross-talk to regulate gene expression, but the mechanism is poorly understood. Here we investigated the mechanism and significance of co-regulation of PAI-1 by TGF-β and dexamethasone (DEX), a synthetic glucocorticoid in ovarian cancer cells. We found that TGF-β and DEX showed rapidly synergistic induction of PAI-1 expression, which contributed to the early pro-adhesion effects. The synergistic induction effect was accomplished by several signal pathways, including GC receptor (GR) pathway and TGF-β-activated p38MAPK, ERK and Smad3 pathways. TGF-β-activated p38MAPK and ERK pathways cross-talked with GR pathway to augment the expression of PAI-1 through enhancing DEX-induced GR phosphorylation at Ser211 in ovarian cancer cells. These findings reveal possible novel mechanisms by which TGF-β pathways cooperatively cross-talk with GR pathway to regulate gene expression.

  10. Plasma Thrombin Generation and Sensitivity to Activated Protein C Among Patients With Myeloma and Monoclonal Gammopathy of Undetermined Significance.

    PubMed

    Crowley, Maeve P; Kevane, Barry; O'Shea, Susan I; Quinn, Shane; Egan, Karl; Gilligan, Oonagh M; Ní Áinle, Fionnuala

    2016-09-01

    The etiology of the prothrombotic state in myeloma has yet to be definitively characterized. Similarly, while recent evidence suggests that patients with monoclonal gammopathy of undetermined significance (MGUS) may also be at increased risk of thrombosis, the magnitude and the etiology of this risk have also yet to be defined. The present study aims to characterize patterns of plasma thrombin generation and sensitivity to the anticoagulant activity of activated protein C (APC) at the time of initial diagnosis of myeloma and in response to therapy in comparison to that observed among patients with MGUS and matched, healthy volunteers. Patients presenting with newly diagnosed/newly relapsed myeloma (n = 8), MGUS (n = 8), and matched healthy volunteers (n = 8) were recruited. Plasma thrombin generation was determined by calibrated automated thrombography. Peak thrombin generation was significantly higher in patients with myeloma (383.4 ± 33.4 nmol/L) and MGUS (353.4 ± 16.5 nmol/L) compared to healthy volunteers (276.7 ± 20.8 nmol/L; P < .05). In the presence of APC, endogenous thrombin potential was significantly lower in control plasma (228.6 ± 44.5 nmol/L × min) than in either myeloma (866.2 ± 241.3 nmol/L × min, P = .01) or MGUS plasma (627 ± 91.5 nmol/L × min, P = .003). Within the myeloma cohort, peak thrombin generation was significantly higher at diagnosis (353.2 ± 15.9 nmol/L) than following completion of the third cycle of therapy (282.1 ± 15.2 nmol/L; P < .005). Moreover, sensitivity to APC increased progressively with each cycle of chemotherapy. Further study of the etiology and evolving patterns of hypercoagulability among patients with these conditions is warranted and may have future implications for thromboprophylaxis strategies. PMID:26759370

  11. A biosensor for the protease TACE reveals actin damage induced TACE activation

    PubMed Central

    Chapnick, Douglas A.; Bunker, Eric; Liu, Xuedong

    2016-01-01

    Ligand shedding has gained increased attention as a major posttranslational modification mechanism used by cells to respond to diverse environmental conditions. The TACEadam17 protease is a critical mediator of such ligand shedding, regulating the maturation and release of an impressive range of extracellular substrates that drive diverse cellular responses. Exactly how this protease is itself activated remains unclear, in part due to the lack of available tools to measure TACE activity with temporal and spatial resolution in live cells. We have developed a FRET based biosensor for TACE activity (TSen), which is capable of reporting TACE activation kinetics in live cells with a high degree of specificity. TSen was used in combination with chemical biology to probe the dependence of various means of TACE activation on p38 and Erk kinase activities, as well as to identify a novel connection between actin cytoskeletal disruption and TACE activation. Such cytoskeletal disruption leads to rapid and robust TACE activation in some cell types and accumulation of TACE at the plasma membrane, allowing for increased cleavage of endogenous substrates. Our study highlights both the versatility of TSen as a tool to understand the mechanisms of TACE activation in live cells and the importance of actin cytoskeletal integrity as a modulator of TACE activity. PMID:25714465

  12. Uncertainty of knee joint muscle activity during knee joint torque exertion: the significance of controlling adjacent joint torque.

    PubMed

    Nozaki, Daichi; Nakazawa, Kimitaka; Akai, Masami

    2005-09-01

    In the single-joint torque exertion task, which has been widely used to control muscle activity, only the relevant joint torque is specified. However, the neglect of the neighboring joint could make the procedure unreliable, considering our previous result that even monoarticular muscle activity level is indefinite without specifying the adjacent joint torque. Here we examined the amount of hip joint torque generated with knee joint torque and its influence on the activity of the knee joint muscles. Twelve healthy subjects were requested to exert various levels of isometric knee joint torque. The knee and hip joint torques were obtained by using a custom-made device. Because no information about hip joint torque was provided to the subjects, the hip joint torque measured here was a secondary one associated with the task. The amount of hip joint torque varied among subjects, indicating that they adopted various strategies to achieve the task. In some subjects, there was a considerable internal variability in the hip joint torque. Such variability was not negligible, because the knee joint muscle activity level with respect to the knee joint torque, as quantified by surface electromyography (EMG), changed significantly when the subjects were requested to change the strategy. This change occurred in a very systematic manner: in the case of the knee extension, as the hip flexion torque was larger, the activity of mono- and biarticular knee extensors decreased and increased, respectively. These results indicate that the conventional single knee joint torque exertion has the drawback that the intersubject and/or intertrial variability is inevitable in the relative contribution among mono- and biarticular muscles because of the uncertainty of the hip joint torque. We discuss that the viewpoint that both joint torques need to be considered will bring insights into various controversial problems such as the shape of the EMG-force relationship, neural factors that help

  13. Alanine-Scanning Mutational Analysis of Durancin GL Reveals Residues Important for Its Antimicrobial Activity.

    PubMed

    Ju, Xingrong; Chen, Xinquan; Du, Lihui; Wu, Xueyou; Liu, Fang; Yuan, Jian

    2015-07-22

    Durancin GL is a novel class IIa bacteriocin with 43 residues produced by Enterococcus durans 41D. This bacteriocin demonstrates narrow inhibition spectrum and potent antimicrobial activity against several Listeria monocytogenes strains, including nisin-resistant L. monocytogenes NR30. A systematic alanine-scanning mutational analysis with site-directed mutagenesis was performed to analyze durancin GL residues important for antimicrobial activity and specificity. Results showed that three mutations lost their antimicrobial activity, ten mutations demonstrated a decreased effect on the activity, and seven mutations exhibited relatively high activity. With regard to inhibitory spectrum, four mutants demonstrated a narrower antimicrobial spectrum than wild-type durancin GL. Another four mutants displayed a broader target cell spectrum and increased potency relative to wild-type durancin GL. These findings broaden our understanding of durancin GL residues important for its antimicrobial activity and contribute to future rational design of variants with increased potency.

  14. Alanine-Scanning Mutational Analysis of Durancin GL Reveals Residues Important for Its Antimicrobial Activity.

    PubMed

    Ju, Xingrong; Chen, Xinquan; Du, Lihui; Wu, Xueyou; Liu, Fang; Yuan, Jian

    2015-07-22

    Durancin GL is a novel class IIa bacteriocin with 43 residues produced by Enterococcus durans 41D. This bacteriocin demonstrates narrow inhibition spectrum and potent antimicrobial activity against several Listeria monocytogenes strains, including nisin-resistant L. monocytogenes NR30. A systematic alanine-scanning mutational analysis with site-directed mutagenesis was performed to analyze durancin GL residues important for antimicrobial activity and specificity. Results showed that three mutations lost their antimicrobial activity, ten mutations demonstrated a decreased effect on the activity, and seven mutations exhibited relatively high activity. With regard to inhibitory spectrum, four mutants demonstrated a narrower antimicrobial spectrum than wild-type durancin GL. Another four mutants displayed a broader target cell spectrum and increased potency relative to wild-type durancin GL. These findings broaden our understanding of durancin GL residues important for its antimicrobial activity and contribute to future rational design of variants with increased potency. PMID:26168032

  15. A FRET biosensor reveals spatiotemporal activation and functions of aurora kinase A in living cells

    PubMed Central

    Bertolin, Giulia; Sizaire, Florian; Herbomel, Gaëtan; Reboutier, David; Prigent, Claude; Tramier, Marc

    2016-01-01

    Overexpression of AURKA is a major hallmark of epithelial cancers. It encodes the multifunctional serine/threonine kinase aurora A, which is activated at metaphase and is required for cell cycle progression; assessing its activation in living cells is mandatory for next-generation drug design. We describe here a Förster's resonance energy transfer (FRET) biosensor detecting the conformational changes of aurora kinase A induced by its autophosphorylation on Thr288. The biosensor functionally replaces the endogenous kinase in cells and allows the activation of the kinase to be followed throughout the cell cycle. Inhibiting the catalytic activity of the kinase prevents the conformational changes of the biosensor. Using this approach, we discover that aurora kinase A activates during G1 to regulate the stability of microtubules in cooperation with TPX2 and CEP192. These results demonstrate that the aurora kinase A biosensor is a powerful tool to identify new regulatory pathways controlling aurora kinase A activation. PMID:27624869

  16. A FRET biosensor reveals spatiotemporal activation and functions of aurora kinase A in living cells.

    PubMed

    Bertolin, Giulia; Sizaire, Florian; Herbomel, Gaëtan; Reboutier, David; Prigent, Claude; Tramier, Marc

    2016-01-01

    Overexpression of AURKA is a major hallmark of epithelial cancers. It encodes the multifunctional serine/threonine kinase aurora A, which is activated at metaphase and is required for cell cycle progression; assessing its activation in living cells is mandatory for next-generation drug design. We describe here a Förster's resonance energy transfer (FRET) biosensor detecting the conformational changes of aurora kinase A induced by its autophosphorylation on Thr288. The biosensor functionally replaces the endogenous kinase in cells and allows the activation of the kinase to be followed throughout the cell cycle. Inhibiting the catalytic activity of the kinase prevents the conformational changes of the biosensor. Using this approach, we discover that aurora kinase A activates during G1 to regulate the stability of microtubules in cooperation with TPX2 and CEP192. These results demonstrate that the aurora kinase A biosensor is a powerful tool to identify new regulatory pathways controlling aurora kinase A activation. PMID:27624869

  17. Sphingosine-1-phosphate receptor 1 reporter mice reveal receptor activation sites in vivo

    PubMed Central

    Kono, Mari; Tucker, Ana E.; Tran, Jennifer; Bergner, Jennifer B.; Turner, Ewa M.; Proia, Richard L.

    2014-01-01

    Activation of the GPCR sphingosine-1-phosphate receptor 1 (S1P1) by sphingosine-1-phosphate (S1P) regulates key physiological processes. S1P1 activation also has been implicated in pathologic processes, including autoimmunity and inflammation; however, the in vivo sites of S1P1 activation under normal and disease conditions are unclear. Here, we describe the development of a mouse model that allows in vivo evaluation of S1P1 activation. These mice, known as S1P1 GFP signaling mice, produce a S1P1 fusion protein containing a transcription factor linked by a protease cleavage site at the C terminus as well as a β-arrestin/protease fusion protein. Activated S1P1 recruits the β-arrestin/protease, resulting in the release of the transcription factor, which stimulates the expression of a GFP reporter gene. Under normal conditions, S1P1 was activated in endothelial cells of lymphoid tissues and in cells in the marginal zone of the spleen, while administration of an S1P1 agonist promoted S1P1 activation in endothelial cells and hepatocytes. In S1P1 GFP signaling mice, LPS-mediated systemic inflammation activated S1P1 in endothelial cells and hepatocytes via hematopoietically derived S1P. These data demonstrate that S1P1 GFP signaling mice can be used to evaluate S1P1 activation and S1P1-active compounds in vivo. Furthermore, this strategy could be potentially applied to any GPCR to identify sites of receptor activation during normal physiology and disease. PMID:24667638

  18. Characterization of AhR agonists reveals antagonistic activity in European herring gull (Larus argentatus) eggs.

    PubMed

    Muusse, Martine; Christensen, Guttorm; Gomes, Tânia; Kočan, Anton; Langford, Katherine; Tollefsen, Knut Erik; Vaňková, Lenka; Thomas, Kevin V

    2015-05-01

    European herring gull (Larus argentatus) eggs from two Norwegian islands, Musvær in the south east and Reiaren in Northern Norway, were screened for dioxins, furans, and dioxin-like and selected non-dioxin-like polychlorinated biphenyls (PCBs), and subjected to non-target analysis to try to identify the aryl hydrocarbon receptor (AhR) agonists, responsible for elevated levels measured using the dioxin responsive chemically activated luciferase expression (DR-CALUX) assay. Eggs from Musvær contained chemically calculated toxic equivalent (WHO TEQ) levels of between 109 and 483 pg TEQ/g lw, and between 82 and 337 pg TEQ/g lw was determined in eggs from Reiaren. In particular PCB126 contributed highly to the total TEQ (69-82%). In 19 of the 23 samples the calculated WHO TEQ was higher than the TEQCALUX. Using CALUX specific relative effect potencies (REPs), the levels were lower at between 77 and 292 pg/g lw in eggs from Musvær and between 55 and 223 pg/g lw in eggs from Reiaren, which was higher than the TEQCALUX in 16 of the 23 samples. However, the means of the REP values and the TEQCALUX were not significantly different. This suggests the presence of compounds that can elicit antagonist effects, with a low binding affinity to the AhR. Non-target analysis identified the presence of hexachlorobenzene (HCB) (quantified at 9.6-185 pg/g lw) but neither this compound nor high concentrations of PCB126 and non-dioxin-like PCBs could explain the differences between the calculated TEQ or REP values and the TEQCALUX. Even though, for most AhR agonists, the sensitivity of herring gulls is not known, the reported levels can be considered to represent a risk for biological effects in the developing embryo, compared to LC50 values in chicken embryos. For human consumers of herring gull eggs, these eggs contain TEQ levels up to four times higher than the maximum tolerable weekly intake.

  19. Novel Molecular Insights into Classical and Alternative Activation States of Microglia as Revealed by Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-based Proteomics*

    PubMed Central

    Bell-Temin, Harris; Culver-Cochran, Ashley E.; Chaput, Dale; Carlson, Christina M.; Kuehl, Melanie; Burkhardt, Brant R.; Bickford, Paula C.; Liu, Bin; Stevens, Stanley M.

    2015-01-01

    Microglia, the resident immune cells of the brain, have been shown to display a complex spectrum of roles that span from neurotrophic to neurotoxic depending on their activation status. Microglia can be classified into four stages of activation, M1, which most closely matches the classical (pro-inflammatory) activation stage, and the alternative activation stages M2a, M2b, and M2c. The alternative activation stages have not yet been comprehensively analyzed through unbiased, global-scale protein expression profiling. In this study, BV2 mouse immortalized microglial cells were stimulated with agonists specific for each of the four stages and total protein expression for 4644 protein groups was quantified using SILAC-based proteomic analysis. After validating induction of the various stages through a targeted cytokine assay and Western blotting of activation states, the data revealed novel insights into the similarities and differences between the various states. The data identify several protein groups whose expression in the anti-inflammatory, pro-healing activation states are altered presumably to curtail inflammatory activation through differential protein expression, in the M2a state including CD74, LYN, SQST1, TLR2, and CD14. The differential expression of these proteins promotes healing, limits phagocytosis, and limits activation of reactive nitrogen species through toll-like receptor cascades. The M2c state appears to center around the down-regulation of a key member in the formation of actin-rich phagosomes, SLP-76. In addition, the proteomic data identified a novel activation marker, DAB2, which is involved in clathrin-mediated endocytosis and is significantly different between M2a and either M1 or M2b states. Western blot analysis of mouse primary microglia stimulated with the various agonists of the classical and alternative activation states revealed a similar trend of DAB2 expression compared with BV2 cells. PMID:26424600

  20. Novel Molecular Insights into Classical and Alternative Activation States of Microglia as Revealed by Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-based Proteomics.

    PubMed

    Bell-Temin, Harris; Culver-Cochran, Ashley E; Chaput, Dale; Carlson, Christina M; Kuehl, Melanie; Burkhardt, Brant R; Bickford, Paula C; Liu, Bin; Stevens, Stanley M

    2015-12-01

    Microglia, the resident immune cells of the brain, have been shown to display a complex spectrum of roles that span from neurotrophic to neurotoxic depending on their activation status. Microglia can be classified into four stages of activation, M1, which most closely matches the classical (pro-inflammatory) activation stage, and the alternative activation stages M2a, M2b, and M2c. The alternative activation stages have not yet been comprehensively analyzed through unbiased, global-scale protein expression profiling. In this study, BV2 mouse immortalized microglial cells were stimulated with agonists specific for each of the four stages and total protein expression for 4644 protein groups was quantified using SILAC-based proteomic analysis. After validating induction of the various stages through a targeted cytokine assay and Western blotting of activation states, the data revealed novel insights into the similarities and differences between the various states. The data identify several protein groups whose expression in the anti-inflammatory, pro-healing activation states are altered presumably to curtail inflammatory activation through differential protein expression, in the M2a state including CD74, LYN, SQST1, TLR2, and CD14. The differential expression of these proteins promotes healing, limits phagocytosis, and limits activation of reactive nitrogen species through toll-like receptor cascades. The M2c state appears to center around the down-regulation of a key member in the formation of actin-rich phagosomes, SLP-76. In addition, the proteomic data identified a novel activation marker, DAB2, which is involved in clathrin-mediated endocytosis and is significantly different between M2a and either M1 or M2b states. Western blot analysis of mouse primary microglia stimulated with the various agonists of the classical and alternative activation states revealed a similar trend of DAB2 expression compared with BV2 cells.

  1. The major human pregnane X receptor (PXR) splice variant, PXR.2, exhibits significantly diminished ligand-activated transcriptional regulation.

    PubMed

    Lin, Yvonne S; Yasuda, Kazuto; Assem, Mahfoud; Cline, Cynthia; Barber, Joe; Li, Chia-Wei; Kholodovych, Vladyslav; Ai, Ni; Chen, J Don; Welsh, William J; Ekins, Sean; Schuetz, Erin G

    2009-06-01

    The pregnane X receptor (PXR; PXR.1) can be activated by structurally diverse lipophilic ligands. PXR.2, an alternatively spliced form of PXR, lacks 111 nucleotides encoding 37 amino acids in the ligand binding domain. PXR.2 bound a classic CYP3A4 PXR response element (PXRE) in electrophoretic mobility shift assays, but transfected PXR.2 failed to transactivate a CYP3A4-promoter-luciferase reporter plasmid in HepG2 cells treated with various PXR ligands. Cotransfection experiments showed that PXR.2 behaved as a dominant negative, interfering with PXR.1/rifampin activation of CYP3A4-PXRE-LUC. In HepG2 and LS180 cells stably transduced with PXR.1, PXR target genes (CYP3A4, MDR1, CYP2B6, and UGT1A1) were higher than mock-transduced cells in the absence of ligand and were further induced in the presence of rifampin. In contrast, PXR.2 stably introduced into the same host cells failed to induce target genes over levels in mock-transfected cells after drug treatment. Our homology modeling suggests that ligands bind PXR.1 more favorably, probably because of the presence of a key disordered loop region, which is missing in PXR.2. Yeast two-hybrid assays revealed that, even in the presence of ligand, the corepressors remain tightly bound to PXR.2, and coactivators are unable to bind at helix 12. In summary, PXR.2 can bind to PXREs but fails to transactivate target genes because ligands do not bind the ligand binding domain of PXR.2 productively, corepressors remain tightly bound, and coactivators are not recruited to PXR.2. PMID:19251824

  2. Equilibrium physics breakdown reveals the active nature of red blood cell flickering

    NASA Astrophysics Data System (ADS)

    Turlier, Herve; Fedosov, Dmitry; Auth, Thorsten; Gov, Nir S.; Sykes, Cecile; Joanny, Jean-Francois; Gompper, Gerhard; Betz, Timo

    2015-03-01

    Red blood cell membrane flickering stimulated an abundant biological, biophysical and biochemical literature over the past 50 years. While the phenomenon has been interpreted as thermal fluctuations of the cell membrane, recent results suggest the involvement of metabolic processes. However, to date there is no direct and conclusive evidence that an active force drives membrane flickering. By comparing membrane undulations and active microrheology measurements on single human erythrocytes, we show that flickering is partly driven by an active metabolic process, as it does not satisfy the equilibrium fluctuation-dissipation relation on timescales slower than 100ms. Analytical and numerical models of the red blood cell reproduce experimental results. The analytical model assumes that membrane activity results from reversible binding of the elastic spectrin network to the lipid bilayer and predicts active fluctuations to increase with local curvature and extensional prestress in the cytoskeleton. Our mean-field calculation shows that the strength and kinetics of the binding activity regulates thereupon both passive and active mechanical properties of the red blood cell. Numerical simulations explore other possible origins of active forces on the membrane and predict coherent timescales for the molecular underlying metabolic processes.

  3. Activity profiling of vacuolar processing enzymes reveals a role for VPE during oomycete infection.

    PubMed

    Misas-Villamil, Johana C; Toenges, Gerrit; Kolodziejek, Izabella; Sadaghiani, Amir M; Kaschani, Farnusch; Colby, Thomas; Bogyo, Matthew; van der Hoorn, Renier A L

    2013-02-01

    Vacuolar processing enzymes (VPEs) are important cysteine proteases that are implicated in the maturation of seed storage proteins, and programmed cell death during plant-microbe interactions and development. Here, we introduce a specific, cell-permeable, activity-based probe for VPEs. This probe is highly specific for all four Arabidopsis VPEs, and labeling is activity-dependent, as illustrated by sensitivity for inhibitors, pH and reducing agents. We show that the probe can be used for in vivo imaging and displays multiple active isoforms of VPEs in various tissues and in both monocot and dicot plant species. Thus, VPE activity profiling is a robust, simple and powerful tool for plant research for a wide range of applications. Using VPE activity profiling, we discovered that VPE activity is increased during infection with the oomycete pathogen Hyaloperonospora arabidopsidis (Hpa). The enhanced VPE activity is host-derived and EDS1-independent. Sporulation of Hpa is reduced on vpe mutant plants, demonstrating a role for VPE during compatible interactions that is presumably independent of programmed cell death. Our data indicate that, as an obligate biotroph, Hpa takes advantage of increased VPE activity in the host, e.g. to mediate protein turnover and nutrient release.

  4. Purification and properties of a beta-galactosidase from carambola fruit with significant activity towards cell wall polysaccharides.

    PubMed

    Balasubramaniam, Sumathi; Lee, Heng Chin; Lazan, Hamid; Othman, Roohaida; Ali, Zainon Mohd

    2005-01-01

    beta-Galactosidase (EC. 3.2.1.23) from ripe carambola (Averrhoa carambola L. cv. B10) fruit was fractionated through a combination of ion exchange and gel filtration chromatography into four isoforms, viz. beta-galactosidase I, II, III and IV. This beta-galactosidases had apparent native molecular masses of 84, 77, 58 and 130 kDa, respectively. beta-Galactosidase I, the predominant isoform, was purified to electrophoretic homogeneity; analysis of the protein by SDS-PAGE revealed two subunits with molecular masses of 48 and 36 kDa. N-terminal amino acid sequence of the respective polypeptides shared high similarities albeit at different domains, with the deduced amino acid sequence of certain plant beta-galactosidases, thus, explaining the observed low similarity between the two subunits. beta-Galactosidase I was probably a heterodimer that have glycoprotein properties and a pI value of 7.2, with one of the potential glycosylation sites appeared to reside within the 48-kDa-polypeptide. The purified beta-galactosidase I was substantially active in hydrolyzing (1-->4)beta-linked spruce and a mixture of (1-->3)beta- and (1-->6)beta-linked gum arabic galactans. This isoform also had the capability to solubilize and depolymerize structurally intact pectins as well as to modify alkaline-soluble hemicelluloses, reflecting in part changes that occur during ripening.

  5. Structures, chemotaxonomic significance, cytotoxic and Na(+),K(+)-ATPase inhibitory activities of new cardenolides from Asclepias curassavica.

    PubMed

    Zhang, Rong-Rong; Tian, Hai-Yan; Tan, Ya-Fang; Chung, Tse-Yu; Sun, Xiao-Hui; Xia, Xue; Ye, Wen-Cai; Middleton, David A; Fedosova, Natalya; Esmann, Mikael; Tzen, Jason T C; Jiang, Ren-Wang

    2014-11-28

    Five new cardenolide lactates (1–5) and one new dioxane double linked cardenolide glycoside (17) along with 15 known compounds (6–16 and 18–21) were isolated from the ornamental milkweed Asclepias curassavica. Their structures were elucidated by extensive spectroscopic methods (IR, UV, MS, 1D- and 2D-NMR). The molecular structures and absolute configurations of 1–3 and 17 were further confirmed by single-crystal X-ray diffraction analysis. Simultaneous isolation of dioxane double linked cardenolide glycosides (17–21) and cardenolide lactates (1–5) provided unique chemotaxonomic markers for this genus. Compounds 1–21 were evaluated for the inhibitory activities against DU145 prostate cancer cells. The dioxane double linked cardenolide glycosides showed the most potent cytotoxic effect followed by normal cardenolides and cardenolide lactates, while the C21 steroids were non-cytotoxic. Enzymatic assay established a correlation between the cytotoxic effects in DU145 cancer cells and the Ki for the inhibition of Na(+),K(+)-ATPase. Molecular docking analysis revealed relatively strong H-bond interactions between the bottom of the binding cavity and compounds 18 or 20, and explained why the dioxane double linked cardenolide glycosides possessed higher inhibitory potency on Na(+),K(+)-ATPase than the cardenolide lactate. PMID:25270760

  6. Significant decrease of ADP release rate underlies the potent activity of dimethylenastron to inhibit mitotic kinesin Eg5 and cancer cell proliferation

    SciTech Connect

    Sun, Linlin; Sun, Xiaodong; Xie, Songbo; Yu, Haiyang; Zhong, Diansheng

    2014-05-09

    Highlights: • DIMEN displays higher anti-proliferative activity than enastron. • DIMEN induced mitotic arrest and apoptosis more significantly than enastron. • DIMEN blocked the conformational change of ADP-binding pocket more effectively. • DIMEN hindered ADP release more potently than enastron. - Abstract: Eg5 is a mitotic kinesin that plays a crucial role in the formation of bipolar mitotic spindles, by hydrolyzing ATP to push apart anti-parallel microtubules. Dimethylenastron is potent specific small molecule inhibitor of Eg5. The mechanism by which dimethylenastron inhibits Eg5 function remains unclear. By comparing with enastron, here we report that dimethylenastron prevents the growth of pancreatic and lung cancer cells more effectively, by halting mitotic progression and triggering apoptosis. We analyze their interactions with ADP-bound Eg5 crystal structure, and find that dimethylenastron binds Eg5 motor domain with higher affinity. In addition, dimethylenastron allosterically blocks the conformational change of the “sandwich”-like ADP-binding pocket more effectively. We subsequently use biochemical approach to reveal that dimethylenastron slows ADP release more significantly than enastron. These data thus provide biological, structural and mechanistic insights into the potent inhibitory activity of dimethylenastron.

  7. A trial-by-trial analysis reveals more intense physical activity is associated with better cognitive control performance in attention-deficit/hyperactivity disorder.

    PubMed

    Hartanto, T A; Krafft, C E; Iosif, A M; Schweitzer, J B

    2016-01-01

    Hyperactivity is a key symptom and the most observable manifestation of attention-deficit/hyperactivity disorder (ADHD). The over-activity associated with ADHD can cause specific challenges in academic settings, extracurricular activities and social relationships. Cognitive control challenges are also well established in ADHD. The current study included 44 children between the ages of 10 and 17 diagnosed with ADHD or who were typically developing (TD), all of whom had no psychiatric co-morbidity or significant learning disorders. Participants wore an actometer on their ankle while performing a flanker paradigm in order to objectively measure their rates of activity in association with cognitive control. Analyses assessed the relationship between frequency and intensity of activity to task accuracy on a trial-by-trial basis. A significant interaction effect between group and performance revealed that more intense movement was associated with better performance in the ADHD group but not in the TD group. The ADHD group demonstrated more intense activity than the TD group during correct (but not error) trials. Within-group, children with ADHD generated higher intensity movements in their correct trials compared to their error trials, whereas the TD group did not demonstrate any within-group differences. These findings suggest that excessive motoric activity associated with clinically significant ADHD symptoms may reflect compensatory efforts to modulate attention and alertness. Future research should systematically explore the relationship between motion in ADHD and how it might be used to improve cognitive performance.

  8. A Trial by Trial Analysis Reveals More Intense Physical Activity is Associated with Better Cognitive Control Performance in Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Hartanto, T.A.; Krafft, C.E.; Iosif, A.M.; Schweitzer, J.B.

    2015-01-01

    Hyperactivity is a key symptom and the most observable manifestation of Attention-Deficit/Hyperactivity Disorder (ADHD). The over-activity associated with ADHD can cause specific challenges in academic settings, extracurricular activities and social relationships. Cognitive control challenges are also well-established in ADHD. The current study included 44 children between the ages of 10 and 17 diagnosed with ADHD or who were typically developing (TD), all of whom had no psychiatric co-morbidity or significant learning disorders. Participants wore an actometer on their ankle while performing a flanker paradigm in order to objectively measure their rates of activity in association with cognitive control. Analyses assessed the relationship between frequency and intensity of activity to task accuracy on trial by trial basis. A significant interaction effect between group and performance revealed that more intense movement was associated with better performance in the ADHD, but not TD group. The ADHD group demonstrated more intense activity than the TD group during correct (but not error) trials. Within-group, children with ADHD generated higher intensity movements in their correct trials compared to their error trials, whereas the TD group did not demonstrate any within-group differences. These findings suggest that excessive motoric activity associated with clinically significant ADHD symptoms may reflect compensatory efforts to modulate attention and alertness. Future research should systematically explore the relationship between motion in ADHD and how it might be used to improve cognitive performance. PMID:26059476

  9. Equilibrium physics breakdown reveals the active nature of red blood cell flickering

    NASA Astrophysics Data System (ADS)

    Turlier, H.; Fedosov, D. A.; Audoly, B.; Auth, T.; Gov, N. S.; Sykes, C.; Joanny, J.-F.; Gompper, G.; Betz, T.

    2016-05-01

    Red blood cells, or erythrocytes, are seen to flicker under optical microscopy, a phenomenon initially described as thermal fluctuations of the cell membrane. But recent studies have suggested the involvement of non-equilibrium processes, without definitively ruling out equilibrium interpretations. Using active and passive microrheology to directly compare the membrane response and fluctuations on single erythrocytes, we report here a violation of the fluctuation-dissipation relation, which is a direct demonstration of the non-equilibrium nature of flickering. With an analytical model of the composite erythrocyte membrane and realistic stochastic simulations, we show that several molecular mechanisms may explain the active fluctuations, and we predict their kinetics. We demonstrate that tangential metabolic activity in the network formed by spectrin, a cytoskeletal protein, can generate curvature-mediated active membrane motions. We also show that other active membrane processes represented by direct normal force dipoles may explain the observed membrane activity. Our findings provide solid experimental and theoretical frameworks for future investigations of the origin and function of active motion in cells.

  10. Resting state cerebral blood flow and objective motor activity reveal basal ganglia dysfunction in schizophrenia.

    PubMed

    Walther, Sebastian; Federspiel, Andrea; Horn, Helge; Razavi, Nadja; Wiest, Roland; Dierks, Thomas; Strik, Werner; Müller, Thomas Jörg

    2011-05-31

    Reduced motor activity has been reported in schizophrenia and was associated with subtype, psychopathology and medication. Still, little is known about the neurobiology of motor retardation. To identify neural correlates of motor activity, resting state cerebral blood flow (CBF) was correlated with objective motor activity of the same day. Participants comprised 11 schizophrenia patients and 14 controls who underwent magnetic resonance imaging with arterial spin labeling and wrist actigraphy. Patients had reduced activity levels and reduced perfusion of the left parahippocampal gyrus, left middle temporal gyrus, right thalamus, and right prefrontal cortex. In controls, but not in schizophrenia, CBF was correlated with activity in the right thalamic ventral anterior (VA) nucleus, a key module within basal ganglia-cortical motor circuits. In contrast, only in schizophrenia patients positive correlations of CBF and motor activity were found in bilateral prefrontal areas and in the right rostral cingulate motor area (rCMA). Grey matter volume correlated with motor activity only in the left posterior cingulate cortex of the patients. The findings suggest that basal ganglia motor control is impaired in schizophrenia. In addition, CBF of cortical areas critical for motor control was associated with volitional motor behavior, which may be a compensatory mechanism for basal ganglia dysfunction.

  11. Single-Molecule Nanocatalysis Reveals Catalytic Activation Energy of Single Nanocatalysts.

    PubMed

    Chen, Tao; Zhang, Yuwei; Xu, Weilin

    2016-09-28

    By monitoring the temperature-dependent catalytic activity of single Au nanocatalysts for a fluorogenic reaction, we derive the activation energies via multiple methods for two sequential catalytic steps (product formation and dissociation) on single nanocatalysts. The wide distributions of activation energies across multiple individual nanocatalysts indicate a huge static heterogeneity among the individual nanocatalysts. The compensation effect and isokinetic relationship of catalytic reactions are observed at the single particle level. This study exemplifies another function of single-molecule nanocatalysis and improves our understanding of heterogeneous catalysis.

  12. The crystal structure of the cysteine protease Xylellain from Xylella fastidiosa reveals an intriguing activation mechanism.

    PubMed

    Leite, Ney Ribeiro; Faro, Aline Regis; Dotta, Maria Amélia Oliva; Faim, Livia Maria; Gianotti, Andreia; Silva, Flavio Henrique; Oliva, Glaucius; Thiemann, Otavio Henrique

    2013-02-14

    Xylella fastidiosa is responsible for a wide range of economically important plant diseases. We report here the crystal structure and kinetic data of Xylellain, the first cysteine protease characterized from the genome of the pathogenic X. fastidiosa strain 9a5c. Xylellain has a papain-family fold, and part of the N-terminal sequence blocks the enzyme active site, thereby mediating protein activity. One novel feature identified in the structure is the presence of a ribonucleotide bound outside the active site. We show that this ribonucleotide plays an important regulatory role in Xylellain enzyme kinetics, possibly functioning as a physiological mediator.

  13. Nonexercise Activity Thermogenesis is Significantly Lower in Type 2 Diabetic Patients With Mental Disorders Than in Those Without Mental Disorders

    PubMed Central

    Hamasaki, Hidetaka; Ezaki, Osamu; Yanai, Hidekatsu

    2016-01-01

    Abstract Physical activity improves health in patients with mental disorders. Nonexercise activity thermogenesis (NEAT) represents energy expenditure due to daily physical activities other than volitional exercise. We aimed to evaluate NEAT in type 2 diabetic patients with and without accompanying mental disorders. Between September 2010 and September 2014, we studied 150 patients with type 2 diabetes, 50 of whom also had a diagnosis of mental disorder, such as schizophrenia or mood disorder. We evaluated their NEAT in structured interviews using a validated questionnaire, and investigated differences in NEAT score and metabolic parameters between patients with and without mental disorders. The NEAT score was significantly lower in patients with mental disorders than in those without (56.3 ± 9.9 vs 61.9 ± 12.1; P = 0.005). Patients with mental disorders had significantly higher triglyceride (184.5 ± 116.3 vs 146.4 ± 78.4 mg/dL; P = 0.02) and insulin levels (18.7 ± 20.1 vs 11.2 ± 8.5 μU/mL; P = 0.006), and significantly lower B-type natriuretic peptide (12.1 ± 13.3 vs 26.3 ± 24.8 pg/mL; P < 0.001) and brachial-ankle pulse wave velocity levels (1501 ± 371 vs 1699 ± 367 cm/s; P = 0.003) than patients without mental disorders. In patients with schizophrenia, specifically, NEAT showed a negative correlation with hemoglobin A1c levels (β = −0.493, P = 0.031), and a positive correlation with high-density lipoprotein cholesterol (β = 0.519, P = 0.023) and B-type natriuretic peptide levels (β = 0.583, P = 0.02). Our results suggest that NEAT may be beneficial for the management of obesity, insulin sensitivity, and lipid profiles in patients with mental disorders. Incorporating NEAT into interventions for type 2 diabetes in patients with mental disorders, especially schizophrenia, shows promise and warrants further investigation. PMID:26765475

  14. Clonidine as a sensitizing agent in the forced swimming test for revealing antidepressant activity.

    PubMed

    Bourin, M; Colombel, M C; Malinge, M; Bradwejn, J

    1991-11-01

    The forced swimming test (FST) in mice has failed to predict antidepressant activity for drugs having beta adrenoreceptor agonist activity and for serotonin uptake inhibitors. We investigated the potential for clonidine to render the FST sensitive to antidepressants by using a behaviorally inactive dose of this agent (0.1 mg/kg). All antidepressants studied (tricyclics, 5-HT uptake inhibitors, iprindole, mianserin, viloxazine, trazodone) showed either activity at lower doses or activity at previously inactive doses. The effect appeared specific because it did not appear with drugs other than antidepressants (diazepam, chlorpromazine, sulpiride, atropine), except for amphetamine and apomorphine which have a strong effect on the dopaminergic system. The use of behaviorally subactive doses of clonidine may thus provide an important means of increasing the sensitivity of the forced swimming test.

  15. Structure of Escherichia coli tyrosine Kinase Etk Reveals a Novel Activation Mechanism

    SciTech Connect

    Lee,D.; Zheng, J.; She, Y.; Jia, Z.

    2008-01-01

    While protein tyrosine (Tyr) kinases (PTKs) have been extensively characterized in eukaryotes, far less is known about their emerging counterparts in prokaryotes. The inner-membrane Wzc/Etk protein belongs to the bacterial PTK family, which has an important function in regulating the polymerization and transport of virulence-determining capsular polysaccharide (CPS). The kinase uses a unique two-step activation process involving intra-phosphorylation of a Tyr residue, although the molecular mechanism remains unknown. Herein, we report the first crystal structure of a bacterial PTK, the C-terminal kinase domain of Escherichia coli Tyr kinase (Etk) at 2.5-Angstroms resolution. The fold of the Etk kinase domain differs markedly from that of eukaryotic PTKs. Based on the observed structure and supporting mass spectrometric evidence of Etk, a unique activation mechanism is proposed that involves the phosphorylated Tyr residue, Y574, at the active site and its specific interaction with a previously unidentified key Arg residue, R614, to unblock the active site. Both in vitro kinase activity and in vivo antibiotics resistance studies using structure-guided mutants further support the novel activation mechanism.

  16. Activity Patterns of Free-Ranging Koalas (Phascolarctos cinereus) Revealed by Accelerometry

    PubMed Central

    Ryan, Michelle A.; Whisson, Desley A.; Holland, Greg J.; Arnould, John P. Y.

    2013-01-01

    An understanding of koala activity patterns is important for measuring the behavioral response of this species to environmental change, but to date has been limited by the logistical challenges of traditional field methodologies. We addressed this knowledge gap by using tri-axial accelerometer data loggers attached to VHF radio collars to examine activity patterns of adult male and female koalas in a high-density population at Cape Otway, Victoria, Australia. Data were obtained from 27 adult koalas over two 7-d periods during the breeding season: 12 in the early-breeding season in November 2010, and 15 in the late-breeding season in January 2011. Multiple 15 minute observation blocks on each animal were used for validation of activity patterns determined from the accelerometer data loggers. Accelerometry was effective in distinguishing between inactive (sleeping, resting) and active (grooming, feeding and moving) behaviors. Koalas were more active during the early-breeding season with a higher index of movement (overall dynamic body acceleration [ODBA]) for both males and females. Koalas showed a distinct temporal pattern of behavior, with most activity occurring from mid-afternoon to early morning. Accelerometry has potential for examining fine-scale behavior of a wide range of arboreal and terrestrial species. PMID:24224050

  17. Active mechanics in living oocytes reveal molecular-scale force kinetics

    NASA Astrophysics Data System (ADS)

    Ahmed, Wylie; Fodor, Etienne; Almonacid, Maria; Bussonnier, Matthias; Verlhac, Marie-Helene; Gov, Nir; Visco, Paolo; van Wijland, Frederic; Betz, Timo

    Unlike traditional materials, living cells actively generate forces at the molecular scale that change their structure and mechanical properties. This nonequilibrium activity is essential for cellular function, and drives processes such as cell division. Single molecule studies have uncovered the detailed force kinetics of isolated motor proteins in-vitro, however their behavior in-vivo has been elusive due to the complex environment inside the cell. Here, we quantify active forces and intracellular mechanics in living oocytes using in-vivo optical trapping and laser interferometry of endogenous vesicles. We integrate an experimental and theoretical framework to connect mesoscopic measurements of nonequilibrium properties to the underlying molecular- scale force kinetics. Our results show that force generation by myosin-V drives the cytoplasmic-skeleton out-of-equilibrium (at frequencies below 300 Hz) and actively softens the environment. In vivo myosin-V activity generates a force of F ~ 0 . 4 pN, with a power-stroke of length Δx ~ 20 nm and duration τ ~ 300 μs, that drives vesicle motion at vv ~ 320 nm/s. This framework is widely applicable to characterize living cells and other soft active materials.

  18. Dynamic BRG1 Recruitment during T Helper Differentiation and Activation Reveals Distal Regulatory Elements▿§

    PubMed Central

    De, Supriyo; Wurster, Andrea L.; Precht, Patricia; Wood, William H.; Becker, Kevin G.; Pazin, Michael J.

    2011-01-01

    T helper cell differentiation and activation require specific transcriptional programs accompanied by changes in chromatin structure. However, little is known about the chromatin remodeling enzymes responsible. We performed genome-wide analysis to determine the general principles of BRG1 binding, followed by analysis of specific genes to determine whether these general rules were typical of key T cell genes. We found that binding of the remodeling protein BRG1 was programmed by both lineage and activation signals. BRG1 binding positively correlated with gene activity at protein-coding and microRNA (miRNA) genes. BRG1 binding was found at promoters and distal regions, including both novel and previously validated distal regulatory elements. Distal BRG1 binding correlated with expression, and novel distal sites in the Gata3 locus possessed enhancer-like activity, suggesting a general role for BRG1 in long-distance gene regulation. BRG1 recruitment to distal sites in Gata3 was impaired in cells lacking STAT6, a transcription factor that regulates lineage-specific genes. Together, these findings suggest that BRG1 interprets both differentiation and activation signals and plays a causal role in gene regulation, chromatin structure, and cell fate. Our findings suggest that BRG1 binding is a useful marker for identifying active cis-regulatory regions in protein-coding and miRNA genes. PMID:21262765

  19. Dynamic BRG1 recruitment during T helper differentiation and activation reveals distal regulatory elements.

    PubMed

    De, Supriyo; Wurster, Andrea L; Precht, Patricia; Wood, William H; Becker, Kevin G; Pazin, Michael J

    2011-04-01

    T helper cell differentiation and activation require specific transcriptional programs accompanied by changes in chromatin structure. However, little is known about the chromatin remodeling enzymes responsible. We performed genome-wide analysis to determine the general principles of BRG1 binding, followed by analysis of specific genes to determine whether these general rules were typical of key T cell genes. We found that binding of the remodeling protein BRG1 was programmed by both lineage and activation signals. BRG1 binding positively correlated with gene activity at protein-coding and microRNA (miRNA) genes. BRG1 binding was found at promoters and distal regions, including both novel and previously validated distal regulatory elements. Distal BRG1 binding correlated with expression, and novel distal sites in the Gata3 locus possessed enhancer-like activity, suggesting a general role for BRG1 in long-distance gene regulation. BRG1 recruitment to distal sites in Gata3 was impaired in cells lacking STAT6, a transcription factor that regulates lineage-specific genes. Together, these findings suggest that BRG1 interprets both differentiation and activation signals and plays a causal role in gene regulation, chromatin structure, and cell fate. Our findings suggest that BRG1 binding is a useful marker for identifying active cis-regulatory regions in protein-coding and miRNA genes.

  20. Transcriptomic Analysis of Musca domestica to Reveal Key Genes of the Prophenoloxidase-Activating System.

    PubMed

    Li, Dianxiang; Liang, Yongli; Wang, Xianwei; Wang, Lei; Qi, Mei; Yu, Yang; Luan, Yuanyuan

    2015-09-01

    The proPO system regulates melanization in arthropods. However, the genes that are involved in the proPO system in housefly Musca domestica remain unclear. Thus, this study analyzed the combined transcriptome obtained from M. domestica larvae, pupae, and adults that were either normal or bacteria-challenged by an Escherichia coli and Staphylococcus aureus mixture. A total of 54,821,138 clean reads (4.93 Gb) were yielded by Illumina sequencing, which were de novo assembled into 89,842 unigenes. Of the 89,842 unigenes, based on a similarity search with known genes in other insects, 24 putative genes related to the proPO system were identified. Eight of the identified genes encoded for peptidoglycan recognition receptors, two encoded for prophenoloxidases, three encoded for prophenoloxidase-activating enzymes, and 11 encoded for serine proteinase inhibitors. The expression levels of these identified genes were investigated by qRT-PCR assay, which were consistent with expected activation process of the proPO system, and their activation functions were confirmed by the measurement of phenoloxidase activity in bacteria-infected larvae after proPO antibody blockage, suggesting these candidate genes might have potentially different roles in the activation of proPO system. Collectively, this study has provided the comprehensive transcriptomic data of an insect and some fundamental basis toward achieving understanding of the activation mechanisms and immune functions of the proPO system in M. domestica.

  1. Transcriptomic Analysis of Musca domestica to Reveal Key Genes of the Prophenoloxidase-Activating System

    PubMed Central

    Li, Dianxiang; Liang, Yongli; Wang, Xianwei; Wang, Lei; Qi, Mei; Yu, Yang; Luan, Yuanyuan

    2015-01-01

    The proPO system regulates melanization in arthropods. However, the genes that are involved in the proPO system in housefly Musca domestica remain unclear. Thus, this study analyzed the combined transcriptome obtained from M. domestica larvae, pupae, and adults that were either normal or bacteria-challenged by an Escherichia coli and Staphylococcus aureus mixture. A total of 54,821,138 clean reads (4.93 Gb) were yielded by Illumina sequencing, which were de novo assembled into 89,842 unigenes. Of the 89,842 unigenes, based on a similarity search with known genes in other insects, 24 putative genes related to the proPO system were identified. Eight of the identified genes encoded for peptidoglycan recognition receptors, two encoded for prophenoloxidases, three encoded for prophenoloxidase-activating enzymes, and 11 encoded for serine proteinase inhibitors. The expression levels of these identified genes were investigated by qRT-PCR assay, which were consistent with expected activation process of the proPO system, and their activation functions were confirmed by the measurement of phenoloxidase activity in bacteria-infected larvae after proPO antibody blockage, suggesting these candidate genes might have potentially different roles in the activation of proPO system. Collectively, this study has provided the comprehensive transcriptomic data of an insect and some fundamental basis toward achieving understanding of the activation mechanisms and immune functions of the proPO system in M. domestica. PMID:26156588

  2. Increase of electrodermal activity of heart meridian during physical exercise: the significance of electrical values in acupuncture and diagnostic importance.

    PubMed

    Pontarollo, Francesco; Rapacioli, Giuliana; Bellavite, Paolo

    2010-08-01

    Electric field measurements of skin potential and electrical currents are physiological indicators of electrodermal activity (EDA) and have been associated with a variety of sensory, cognitive and emotional stimuli. The aim of this study was to investigate the EDA at some hand acupoints before, during and after a physical exercise. EDA of eight points located at the corner of fingernails of hands was measured in 10 healthy young volunteers before, during and after a 14-min acute exercise in a bicycle ergometer. In pre-exercise resting state the parameters were stable and similar between the 8 different tested points, while during exercise a significant increase of current (from 1000-2000 to 4000-8000 nA) was observed, with the maximal values related to the point located on the ulnar side of the little finger, at the base of the nail, corresponding to the Shao chong (HT9) of heart meridian.

  3. Increase of electrodermal activity of heart meridian during physical exercise: the significance of electrical values in acupuncture and diagnostic importance.

    PubMed

    Pontarollo, Francesco; Rapacioli, Giuliana; Bellavite, Paolo

    2010-08-01

    Electric field measurements of skin potential and electrical currents are physiological indicators of electrodermal activity (EDA) and have been associated with a variety of sensory, cognitive and emotional stimuli. The aim of this study was to investigate the EDA at some hand acupoints before, during and after a physical exercise. EDA of eight points located at the corner of fingernails of hands was measured in 10 healthy young volunteers before, during and after a 14-min acute exercise in a bicycle ergometer. In pre-exercise resting state the parameters were stable and similar between the 8 different tested points, while during exercise a significant increase of current (from 1000-2000 to 4000-8000 nA) was observed, with the maximal values related to the point located on the ulnar side of the little finger, at the base of the nail, corresponding to the Shao chong (HT9) of heart meridian. PMID:20621275

  4. Mutational and Structural Analyses of Caldanaerobius polysaccharolyticus Man5B Reveal Novel Active Site Residues for Family 5 Glycoside Hydrolases

    PubMed Central

    Han, Yejun; Burnett, Alanna; Nagasawa, Naoko; Mackie, Roderick I.; Nakamura, Haruki; Morikawa, Kosuke; Cann, Isaac

    2013-01-01

    CpMan5B is a glycoside hydrolase (GH) family 5 enzyme exhibiting both β-1,4-mannosidic and β-1,4-glucosidic cleavage activities. To provide insight into the amino acid residues that contribute to catalysis and substrate specificity, we solved the structure of CpMan5B at 1.6 Å resolution. The structure revealed several active site residues (Y12, N92 and R196) in CpMan5B that are not present in the active sites of other structurally resolved GH5 enzymes. Residue R196 in GH5 enzymes is thought to be strictly conserved as a histidine that participates in an electron relay network with the catalytic glutamates, but we show that an arginine fulfills a functionally equivalent role and is found at this position in every enzyme in subfamily GH5_36, which includes CpMan5B. Residue N92 is required for full enzymatic activity and forms a novel bridge over the active site that is absent in other family 5 structures. Our data also reveal a role of Y12 in establishing the substrate preference for CpMan5B. Using these molecular determinants as a probe allowed us to identify Man5D from Caldicellulosiruptor bescii as a mannanase with minor endo-glucanase activity. PMID:24278284

  5. How community environment shapes physical activity: perceptions revealed through the PhotoVoice method.

    PubMed

    Belon, Ana Paula; Nieuwendyk, Laura M; Vallianatos, Helen; Nykiforuk, Candace I J

    2014-09-01

    A growing body of evidence shows that community environment plays an important role in individuals' physical activity engagement. However, while attributes of the physical environment are widely investigated, sociocultural, political, and economic aspects of the environment are often neglected. This article helps to fill these knowledge gaps by providing a more comprehensive understanding of multiple dimensions of the community environment relative to physical activity. The purpose of this study was to qualitatively explore how people's experiences and perceptions of their community environments affect their abilities to engage in physical activity. A PhotoVoice method was used to identify barriers to and opportunities for physical activity among residents in four communities in the province of Alberta, Canada, in 2009. After taking pictures, the thirty-five participants shared their perceptions of those opportunities and barriers in their community environments during individual interviews. Using the Analysis Grid for Environments Linked to Obesity (ANGELO) framework, themes emerging from these photo-elicited interviews were organized in four environment types: physical, sociocultural, economic, and political. The data show that themes linked to the physical (56.6%) and sociocultural (31.4%) environments were discussed more frequently than the themes of the economic (5.9%) and political (6.1%) environments. Participants identified nuanced barriers and opportunities for physical activity, which are illustrated by their quotes and photographs. The findings suggest that a myriad of factors from physical, sociocultural, economic, and political environments influence people's abilities to be physically active in their communities. Therefore, adoption of a broad, ecological perspective is needed to address the barriers and build upon the opportunities described by participants to make communities more healthy and active.

  6. Complex Regulation Pattern of IRF3 Activation Revealed by a Novel Dimerization Reporter System.

    PubMed

    Wang, Zining; Ji, Jingyun; Peng, Di; Ma, Feng; Cheng, Genhong; Qin, F Xiao-Feng

    2016-05-15

    Induction of type I IFN (IFN-I) is essential for host antiviral immune responses. However, IFN-I also plays divergent roles in antibacterial immunity, persistent viral infections, autoimmune diseases, and tumorigenesis. IFN regulatory factor 3 (IRF3) is the master transcription factor that controls IFN-I production via phosphorylation-dependent dimerization in most cell types in response to viral infections and various innate stimuli by pathogen-associated molecular patterns (PAMPs). To monitor the dynamic process of IRF3 activation, we developed a novel IRF3 dimerization reporter based on bimolecular luminescence complementation (BiLC) techniques, termed the IRF3-BiLC reporter. Robust induction of luciferase activity of the IRF3-BiLC reporter was observed upon viral infection and PAMP stimulation with a broad dynamic range. Knockout of TANK-binding kinase 1, the critical upstream kinase of IRF3, as well as the mutation of serine 386, the essential phosphorylation site of IRF3, completely abolished the luciferase activity of IRF3-BiLC reporter, confirming the authenticity of IRF3 activation. Taken together, these results demonstrated that the IRF3-BiLC reporter is a highly specific, reliable, and sensitive system to measure IRF3 activity. Using this reporter system, we further observed that the temporal pattern and magnitude of IRF3 activation induced by various PAMPs are highly complex with distinct cell type-specific characteristics, and IRF3 dimerization is a direct regulatory node for IFN-α/β receptor-mediated feed-forward regulation and crosstalk with other pathways. Therefore, the IRF3-BiLC reporter has multiple potential applications, including mechanistic studies as well as the identification of novel compounds that can modulate IRF3 activation. PMID:27045107

  7. Sulfur Use Efficiency Is a Significant Determinant of Drought Stress Tolerance in Relation to Photosynthetic Activity in Brassica napus Cultivars.

    PubMed

    Lee, Bok-Rye; Zaman, Rashed; Avice, Jean-Christophe; Ourry, Alain; Kim, Tae-Hwan

    2016-01-01

    To investigate the varietal difference in sulfur use efficiency (SUE) and drought stress tolerance, Brassica napus 'Mosa' and 'Saturnin' were exposed to polyethylene glycol (PEG)-induced drought stress for 72 h. Direct quantification of S uptake, de novo synthesis of amino acids and proteins was performed by tracing (34)S. The responses of photosynthetic activity in relation to SUE were also examined. The total amount of newly absorbed S decreased with drought stress in both cultivars but the decrease rate was significantly higher in Mosa (-64%) than in Saturnin (-41%). Drought stress also decreased the amount of S assimilated into amino acids ((34)S-amino acids) and proteins ((34)S-proteins). The total amount of S incorporated into amino acids and proteins was generally higher in Saturnin (663.7 μg S per plant) than in Mosa (337.3 μg S per plant). The estimation of SUE based on S uptake (SUpE) and S assimilation (SUaE) showed that SUE was much higher in Saturnin than in Mosa. The inhibition of photosynthetic activity including Rubisco protein degradation caused by drought stress was much lower in the cultivar with higher SUE (Saturnin). The present study clearly indicates that the genotype with higher SUE is more tolerant to PEG-induced drought stress. PMID:27092167

  8. Sulfur Use Efficiency Is a Significant Determinant of Drought Stress Tolerance in Relation to Photosynthetic Activity in Brassica napus Cultivars

    PubMed Central

    Lee, Bok-Rye; Zaman, Rashed; Avice, Jean-Christophe; Ourry, Alain; Kim, Tae-Hwan

    2016-01-01

    To investigate the varietal difference in sulfur use efficiency (SUE) and drought stress tolerance, Brassica napus ‘Mosa’ and ‘Saturnin’ were exposed to polyethylene glycol (PEG)-induced drought stress for 72 h. Direct quantification of S uptake, de novo synthesis of amino acids and proteins was performed by tracing 34S. The responses of photosynthetic activity in relation to SUE were also examined. The total amount of newly absorbed S decreased with drought stress in both cultivars but the decrease rate was significantly higher in Mosa (-64%) than in Saturnin (-41%). Drought stress also decreased the amount of S assimilated into amino acids (34S-amino acids) and proteins (34S-proteins). The total amount of S incorporated into amino acids and proteins was generally higher in Saturnin (663.7 μg S per plant) than in Mosa (337.3 μg S per plant). The estimation of SUE based on S uptake (SUpE) and S assimilation (SUaE) showed that SUE was much higher in Saturnin than in Mosa. The inhibition of photosynthetic activity including Rubisco protein degradation caused by drought stress was much lower in the cultivar with higher SUE (Saturnin). The present study clearly indicates that the genotype with higher SUE is more tolerant to PEG-induced drought stress. PMID:27092167

  9. Structural interpretation of activity cliffs revealed by systematic analysis of structure-activity relationships in analog series.

    PubMed

    Sisay, Mihiret T; Peltason, Lisa; Bajorath, Jürgen

    2009-10-01

    Discontinuity in structure-activity relationships (SARs) is caused by so-called activity cliffs and represents one of the major caveats in SAR modeling and lead optimization. At activity cliffs, small structural modifications of compounds lead to substantial differences in potency that are essentially unpredictable using quantitative structure-activity relationship (QSAR) methods. In order to better understand SAR discontinuity at the molecular level of detail, we have analyzed different compound series in combinatorial analog graphs and determined substitution patterns that introduce activity cliffs of varying magnitude. So identified SAR determinants were then analyzed on the basis of complex crystal structures to enable a structural interpretation of SAR discontinuity and underlying activity cliffs. In some instances, SAR discontinuity detected within analog series could be well rationalized on the basis of structural data, whereas in others a structural explanation was not possible. This reflects the intrinsic complexity of small molecule SARs and suggests that the analysis of short-range receptor-ligand interactions seen in X-ray structures is insufficient to comprehensively account for SAR discontinuity. However, in other cases, SAR information extracted from ligands was incomplete but could be deduced taking X-ray data into account. Thus, taken together, these findings illustrate the complementarity of ligand-based SAR analysis and structural information. PMID:19761254

  10. From Blame to Punishment: Disrupting Prefrontal Cortex Activity Reveals Norm Enforcement Mechanisms.

    PubMed

    Buckholtz, Joshua W; Martin, Justin W; Treadway, Michael T; Jan, Katherine; Zald, David H; Jones, Owen; Marois, René

    2015-09-23

    The social welfare provided by cooperation depends on the enforcement of social norms. Determining blameworthiness and assigning a deserved punishment are two cognitive cornerstones of norm enforcement. Although prior work has implicated the dorsolateral prefrontal cortex (DLPFC) in norm-based judgments, the relative contribution of this region to blameworthiness and punishment decisions remains poorly understood. Here, we used repetitive transcranial magnetic stimulation (rTMS) and fMRI to determine the specific role of DLPFC function in norm-enforcement behavior. DLPFC rTMS reduced punishment for wrongful acts without affecting blameworthiness ratings, and fMRI revealed punishment-selective DLPFC recruitment, suggesting that these two facets of norm-based decision making are neurobiologically dissociable. Finally, we show that DLPFC rTMS affects punishment decision making by altering the integration of information about culpability and harm. Together, these findings reveal a selective, causal role for DLPFC in norm enforcement: representational integration of the distinct information streams used to make punishment decisions. PMID:26386518

  11. From Blame to Punishment: Disrupting Prefrontal Cortex Activity Reveals Norm Enforcement Mechanisms.

    PubMed

    Buckholtz, Joshua W; Martin, Justin W; Treadway, Michael T; Jan, Katherine; Zald, David H; Jones, Owen; Marois, René

    2015-09-23

    The social welfare provided by cooperation depends on the enforcement of social norms. Determining blameworthiness and assigning a deserved punishment are two cognitive cornerstones of norm enforcement. Although prior work has implicated the dorsolateral prefrontal cortex (DLPFC) in norm-based judgments, the relative contribution of this region to blameworthiness and punishment decisions remains poorly understood. Here, we used repetitive transcranial magnetic stimulation (rTMS) and fMRI to determine the specific role of DLPFC function in norm-enforcement behavior. DLPFC rTMS reduced punishment for wrongful acts without affecting blameworthiness ratings, and fMRI revealed punishment-selective DLPFC recruitment, suggesting that these two facets of norm-based decision making are neurobiologically dissociable. Finally, we show that DLPFC rTMS affects punishment decision making by altering the integration of information about culpability and harm. Together, these findings reveal a selective, causal role for DLPFC in norm enforcement: representational integration of the distinct information streams used to make punishment decisions.

  12. Gas-Phase Ambient Air Contaminants Exhibit Significant Dioxin-like and Estrogen-like Activity in Vitro

    PubMed Central

    Klein, Gail P.; Hodge, Erin M.; Diamond, Miriam L.; Yip, Amelia; Dann, Tom; Stern, Gary; Denison, Michael S.; Harper, Patricia A.

    2006-01-01

    Several adverse health effects, such as respiratory and cardiovascular morbidity, have been linked to exposure to particulate matter in ambient air; however, the biologic activity of gas-phase ambient organic air contaminants has not been examined as thoroughly. Using aryl hydrocarbon receptor (AHR)–based and estrogen receptor (ER)–based cell bioassay systems, we assessed the dioxin-like and estrogenic activities of gas-phase organic ambient air contaminants compared with those of particulate-phase contaminants using samples collected between seasons over 2 years from an urban and a rural location in the Greater Toronto Area, Canada. The concentration of the sum (∑) of polycyclic aromatic hydrocarbons, which was highest in the gas phase, was 10–100 times more abundant than that of ∑polychlorinated biphenyls, ∑nitro-polycyclic aromatic hydrocarbons, and ∑organochlorine pesticides, and 103 to 104 times more abundant than ∑polychlorinated dibenzo-p-dioxins/dibenzofurans. Gas-phase samples induced significant AHR- and ER-dependent gene expression. The activity of the gas-phase samples was greater than that of the particulate-phase samples in the estrogen assay and, in one case, in the AHR assay. We found no strong associations between either summer or winter seasons or urban or rural locations in the relative efficacy of the extracts in either the ER or AHR assay despite differences in chemical composition, concentrations, and abundance. Our results suggest that mechanistic studies of the health effects of ambient air must consider gas and particulate phases because chemicals present in both phases can affect AHR and ER signaling pathways. PMID:16675423

  13. Small-angle neutron and X-ray scattering reveal conformational changes in rhodopsin activation

    NASA Astrophysics Data System (ADS)

    Shrestha, Utsab R.; Bhowmik, Debsindhu; Perera, Suchitrhanga M. C. D.; Chawla, Udeep; Struts, Andrey V.; Graziono, Vito; Pingali, Sai Venkatesh; Heller, William T.; Qian, Shuo; Brown, Michael F.; Chu, Xiang-Qiang

    2015-03-01

    Understanding G-protein-coupled receptor (GPCR) activation plays a crucial role in the development of novel improved molecular drugs. During photo-activation, the retinal chromophore of the visual GPCR rhodopsin isomerizes from 11-cis to all-trans conformation, yielding an equilibrium between inactive Meta-I and active Meta-II states. The principal goals of this work are to address whether the activation of rhodopsin leads to a single state or a conformational ensemble, and how protein organizational structure changes with detergent environment in solution. We use both small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS) techniques to answer the above questions. For the first time we observe the change in protein conformational ensemble upon photo-activation by SANS with contrast variation, which enables the separate study of the protein structure within the detergent assembly. In addition, SAXS study of protein structure within detergent assembly suggests that the detergent molecules form a belt of monolayer (micelle) around protein with different geometrical shapes to keep the protein in folded state.

  14. Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera.

    PubMed

    Neukum, G; Jaumann, R; Hoffmann, H; Hauber, E; Head, J W; Basilevsky, A T; Ivanov, B A; Werner, S C; van Gasselt, S; Murray, J B; McCord, T

    2004-12-23

    The large-area coverage at a resolution of 10-20 metres per pixel in colour and three dimensions with the High Resolution Stereo Camera Experiment on the European Space Agency Mars Express Mission has made it possible to study the time-stratigraphic relationships of volcanic and glacial structures in unprecedented detail and give insight into the geological evolution of Mars. Here we show that calderas on five major volcanoes on Mars have undergone repeated activation and resurfacing during the last 20 per cent of martian history, with phases of activity as young as two million years, suggesting that the volcanoes are potentially still active today. Glacial deposits at the base of the Olympus Mons escarpment show evidence for repeated phases of activity as recently as about four million years ago. Morphological evidence is found that snow and ice deposition on the Olympus construct at elevations of more than 7,000 metres led to episodes of glacial activity at this height. Even now, water ice protected by an insulating layer of dust may be present at high altitudes on Olympus Mons.

  15. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    SciTech Connect

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  16. Structural investigation of heteroyohimbine alkaloid synthesis reveals active site elements that control stereoselectivity.

    PubMed

    Stavrinides, Anna; Tatsis, Evangelos C; Caputi, Lorenzo; Foureau, Emilien; Stevenson, Clare E M; Lawson, David M; Courdavault, Vincent; O'Connor, Sarah E

    2016-01-01

    Plants produce an enormous array of biologically active metabolites, often with stereochemical variations on the same molecular scaffold. These changes in stereochemistry dramatically impact biological activity. Notably, the stereoisomers of the heteroyohimbine alkaloids show diverse pharmacological activities. We reported a medium chain dehydrogenase/reductase (MDR) from Catharanthus roseus that catalyses formation of a heteroyohimbine isomer. Here we report the discovery of additional heteroyohimbine synthases (HYSs), one of which produces a mixture of diastereomers. The crystal structures for three HYSs have been solved, providing insight into the mechanism of reactivity and stereoselectivity, with mutation of one loop transforming product specificity. Localization and gene silencing experiments provide a basis for understanding the function of these enzymes in vivo. This work sets the stage to explore how MDRs evolved to generate structural and biological diversity in specialized plant metabolism and opens the possibility for metabolic engineering of new compounds based on this scaffold. PMID:27418042

  17. Structural investigation of heteroyohimbine alkaloid synthesis reveals active site elements that control stereoselectivity

    PubMed Central

    Stavrinides, Anna; Tatsis, Evangelos C.; Caputi, Lorenzo; Foureau, Emilien; Stevenson, Clare E. M.; Lawson, David M.; Courdavault, Vincent; O'Connor, Sarah E.

    2016-01-01

    Plants produce an enormous array of biologically active metabolites, often with stereochemical variations on the same molecular scaffold. These changes in stereochemistry dramatically impact biological activity. Notably, the stereoisomers of the heteroyohimbine alkaloids show diverse pharmacological activities. We reported a medium chain dehydrogenase/reductase (MDR) from Catharanthus roseus that catalyses formation of a heteroyohimbine isomer. Here we report the discovery of additional heteroyohimbine synthases (HYSs), one of which produces a mixture of diastereomers. The crystal structures for three HYSs have been solved, providing insight into the mechanism of reactivity and stereoselectivity, with mutation of one loop transforming product specificity. Localization and gene silencing experiments provide a basis for understanding the function of these enzymes in vivo. This work sets the stage to explore how MDRs evolved to generate structural and biological diversity in specialized plant metabolism and opens the possibility for metabolic engineering of new compounds based on this scaffold. PMID:27418042

  18. Structural basis for PPAR partial or full activation revealed by a novel ligand binding mode

    NASA Astrophysics Data System (ADS)

    Capelli, Davide; Cerchia, Carmen; Montanari, Roberta; Loiodice, Fulvio; Tortorella, Paolo; Laghezza, Antonio; Cervoni, Laura; Pochetti, Giorgio; Lavecchia, Antonio

    2016-10-01

    The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors involved in the regulation of the metabolic homeostasis and therefore represent valuable therapeutic targets for the treatment of metabolic diseases. The development of more balanced drugs interacting with PPARs, devoid of the side-effects showed by the currently marketed PPARγ full agonists, is considered the major challenge for the pharmaceutical companies. Here we present a structure-based virtual screening approach that let us identify a novel PPAR pan-agonist with a very attractive activity profile and its crystal structure in the complex with PPARα and PPARγ, respectively. In PPARα this ligand occupies a new pocket whose filling is allowed by the ligand-induced switching of the F273 side chain from a closed to an open conformation. The comparison between this pocket and the corresponding cavity in PPARγ provides a rationale for the different activation of the ligand towards PPARα and PPARγ, suggesting a novel basis for ligand design.

  19. Brain Activation of Negative Feedback in Rule Acquisition Revealed in a Segmented Wisconsin Card Sorting Test

    PubMed Central

    Wang, Jing; Cao, Bihua; Cai, Xueli; Gao, Heming; Li, Fuhong

    2015-01-01

    The present study is to investigate the brain activation associated with the informative value of negative feedback in rule acquisition. In each trial of a segmented Wisconsin Card Sorting Test, participants were provided with three reference cards and one target card, and were asked to match one of three reference cards to the target card based on a classification rule. Participants received feedback after each match. Participants would acquire the rule after one negative feedback (1-NF condition) or two successive negative feedbacks (2-NF condition). The functional magnetic resonance imaging (fMRI) results indicated that lateral prefrontal-to-parietal cortices were more active in the 2-NF condition than in the 1-NF condition. The activation in the right lateral prefrontal cortex and left posterior parietal cortex increased gradually with the amount of negative feedback. These results demonstrate that the informative value of negative feedback in rule acquisition might be modulated by the lateral prefronto-parietal loop. PMID:26469519

  20. Radiation inactivation analysis of influenza virus reveals different target sizes for fusion, leakage, and neuraminidase activities

    SciTech Connect

    Gibson, S.; Jung, C.Y.; Takahashi, M.; Lenard, J.

    1986-10-07

    The size of the functional units responsible for several activities carried out by the influenza virus envelope glycoproteins was determined by radiation inactivation analysis. Neuraminidase activity, which resides in the glycoprotein NA, was inactivated exponentially with an increasing radiation dose, yielding a target size of 94 +/- 5 kilodaltons (kDa), in reasonable agreement with that of the disulfide-bonded dimer (120 kDa). All the other activities studied are properties of the HA glycoprotein and were normalized to the known molecular weight of the neuraminidase dimer. Virus-induced fusion activity was measured by two phospholipid dilution assays: relief of energy transfer between N-(7-nitro-2,1,3-benzoxadiazol-4-yl)dipalmitoyl-L-alpha- phosphatidylethanolamine (N-NBD-PE) and N-(lissamine rhodamine B sulfonyl)-dioleoyl-L-alpha-phosphatidylethanolamine (N-Rh-PE) in target liposomes and relief of self-quenching of N-Rh-PE in target liposomes. Radiation inactivation of fusion activity proceeded exponentially with radiation dose, yielding normalized target sizes of 68 +/- 6 kDa by assay i and 70 +/- 4 kDa by assay ii. These values are close to the molecular weight of a single disulfide-bonded (HA1 + HA2) unit (75 kDa), the monomer of the HA trimer. A single monomer is thus inactivated by each radiation event, and each monomer (or some part of it) constitutes a minimal functional unit capable of mediating fusion. Virus-induced leakage of calcein from target liposomes and virus-induced leakage of hemoglobin from erythrocytes (hemolysis) both showed more complex inactivation behavior: a pronounced shoulder was present in both inactivation curves, followed by a steep drop in activity at higher radiation levels.

  1. Revealing the activation pathway for TMEM16A chloride channels from macroscopic currents and kinetic models.

    PubMed

    Contreras-Vite, Juan A; Cruz-Rangel, Silvia; De Jesús-Pérez, José J; Figueroa, Iván A Aréchiga; Rodríguez-Menchaca, Aldo A; Pérez-Cornejo, Patricia; Hartzell, H Criss; Arreola, Jorge

    2016-07-01

    TMEM16A (ANO1), the pore-forming subunit of calcium-activated chloride channels, regulates several physiological and pathophysiological processes such as smooth muscle contraction, cardiac and neuronal excitability, salivary secretion, tumour growth and cancer progression. Gating of TMEM16A is complex because it involves the interplay between increases in intracellular calcium concentration ([Ca(2+)]i), membrane depolarization, extracellular Cl(-) or permeant anions and intracellular protons. Our goal here was to understand how these variables regulate TMEM16A gating and to explain four observations. (a) TMEM16A is activated by voltage in the absence of intracellular Ca(2+). (b) The Cl(-) conductance is decreased after reducing extracellular Cl(-) concentration ([Cl(-)]o). (c) ICl is regulated by physiological concentrations of [Cl(-)]o. (d) In cells dialyzed with 0.2 μM [Ca(2+)]i, Cl(-) has a bimodal effect: at [Cl(-)]o <30 mM TMEM16A current activates with a monoexponential time course, but above 30 mM, [Cl(-)]o ICl activation displays fast and slow kinetics. To explain the contribution of Vm, Ca(2+) and Cl(-) to gating, we developed a 12-state Markov chain model. This model explains TMEM16A activation as a sequential, direct, and Vm-dependent binding of two Ca(2+) ions coupled to a Vm-dependent binding of an external Cl(-) ion, with Vm-dependent transitions between states. Our model predicts that extracellular Cl(-) does not alter the apparent Ca(2+) affinity of TMEM16A, which we corroborated experimentally. Rather, extracellular Cl(-) acts by stabilizing the open configuration induced by Ca(2+) and by contributing to the Vm dependence of activation. PMID:27138167

  2. Revealing the activation pathway for TMEM16A chloride channels from macroscopic currents and kinetic models.

    PubMed

    Contreras-Vite, Juan A; Cruz-Rangel, Silvia; De Jesús-Pérez, José J; Figueroa, Iván A Aréchiga; Rodríguez-Menchaca, Aldo A; Pérez-Cornejo, Patricia; Hartzell, H Criss; Arreola, Jorge

    2016-07-01

    TMEM16A (ANO1), the pore-forming subunit of calcium-activated chloride channels, regulates several physiological and pathophysiological processes such as smooth muscle contraction, cardiac and neuronal excitability, salivary secretion, tumour growth and cancer progression. Gating of TMEM16A is complex because it involves the interplay between increases in intracellular calcium concentration ([Ca(2+)]i), membrane depolarization, extracellular Cl(-) or permeant anions and intracellular protons. Our goal here was to understand how these variables regulate TMEM16A gating and to explain four observations. (a) TMEM16A is activated by voltage in the absence of intracellular Ca(2+). (b) The Cl(-) conductance is decreased after reducing extracellular Cl(-) concentration ([Cl(-)]o). (c) ICl is regulated by physiological concentrations of [Cl(-)]o. (d) In cells dialyzed with 0.2 μM [Ca(2+)]i, Cl(-) has a bimodal effect: at [Cl(-)]o <30 mM TMEM16A current activates with a monoexponential time course, but above 30 mM, [Cl(-)]o ICl activation displays fast and slow kinetics. To explain the contribution of Vm, Ca(2+) and Cl(-) to gating, we developed a 12-state Markov chain model. This model explains TMEM16A activation as a sequential, direct, and Vm-dependent binding of two Ca(2+) ions coupled to a Vm-dependent binding of an external Cl(-) ion, with Vm-dependent transitions between states. Our model predicts that extracellular Cl(-) does not alter the apparent Ca(2+) affinity of TMEM16A, which we corroborated experimentally. Rather, extracellular Cl(-) acts by stabilizing the open configuration induced by Ca(2+) and by contributing to the Vm dependence of activation.

  3. Determination of the physiological 2:2 TLR5:flagellin activation stoichiometry revealed by the activity of a fusion receptor

    SciTech Connect

    Ivičak-Kocjan, Karolina; Panter, Gabriela; Benčina, Mojca; Jerala, Roman

    2013-05-24

    Highlights: •The chimeric protein fusing flagellin to the TLR5 ectodomain is constitutively active. •Mutation P736H within the BB-loop of TLR5 TIR domain renders the receptor inactive. •The R90D mutation in flagellin inactivated autoactivation of the chimeric protein. •The 2:2 stoichiometry of the TLR5:flagellin complex is physiologically relevant. -- Abstract: Toll-like receptor 5 (TLR5) recognizes flagellin of most flagellated bacteria, enabling activation of the MyD88-dependent signaling pathway. The recently published crystal structure of a truncated zebrafish TLR5 ectodomain in complex with an inactive flagellin fragment indicated binding of two flagellin molecules to a TLR5 homodimer, however this complex did not dimerize in solution. In the present study, we aimed to determine the physiological stoichiometry of TLR5:flagellin activation by the use of a chimeric protein composed of an active flagellin fragment linked to the N-terminus of human TLR5 (SF-TLR5). This construct was constitutively active. Inactivation by the R90D mutation within flagellin demonstrated that autoactivation of the chimeric protein depended solely on the specific interaction between TLR5 and flagellin. Addition of wild-type hTLR5 substantially lowered autoactivation of SF-TLR5 in a concentration dependent manner, an effect which was reversible by the addition of exogenous Salmonella typhimurium flagellin, indicating the biological activity of a TLR5:flagellin complex with a 2:2 stoichiometry. These results, in addition to the combinations of inactive P736H mutation within the BB-loop of the TIR domain of TLR5 and SF-TLR5, further confirm the mechanism of TLR5 activation.

  4. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    SciTech Connect

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Bælum, Jacob; Taş, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Philipp; Priemé, Anders

    2015-04-30

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.

  5. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    DOE PAGES

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Bælum, Jacob; Taş, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Philipp; Priemé, Anders

    2015-04-30

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy numbermore » of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.« less

  6. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    PubMed Central

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Bælum, Jacob; Taş, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Philipp; Priemé, Anders

    2015-01-01

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below −10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface. PMID:25983731

  7. Ensemble Activation of G-Protein -Coupled Receptors Revealed by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Chu, Xiang-Qiang; Perera, Suchithranga; Shrestha, Utsab; Chawla, Udeep; Struts, Andrey; Qian, Shuo; Brown, Michael

    2014-03-01

    Rhodopsin is a G-protein -coupled receptor (GPCR) involved in visual light perception and occurs naturally in a membrane lipid environment. Rhodopsin photoactivation yields cis-trans isomerization of retinal giving equilibrium between inactive Meta-I and active Meta-II states. Does photoactivation lead to a single Meta-II conformation, or do substates exist as described by an ensemble-activation mechanism (EAM)? We use small-angle neutron scattering (SANS) to investigate conformational changes in rhodopsin-detergent and rhodopsin-lipid complexes upon photoactivation. Meta-I state is stabilized in CHAPS-solubilized rhodopsin, while Meta-II is trapped in DDM-solubilized rhodopsin. SANS data are acquired from 80% D2O solutions and at contrast-matching points for both DDM and CHAPS samples. Our experiments demonstrate that for detergent-solubilized rhodopsin, SANS with contrast variation can detect structural differences between the rhodopsin dark-state, Meta-I, Meta-II, and ligand-free opsin states. Dark-state rhodopsin has more conformational flexibility in DDM micelles compared to CHAPS, which is consistent with an ensemble of activated Meta-II states. Furthermore, time-resolved SANS enables study of the time-dependent structural transitions between Meta-I and Meta-II, which is crucial to understanding the ensemble-based activation.

  8. Reconstituted B cell receptor signaling reveals carbohydrate-dependent mode of activation

    PubMed Central

    Villar, Rina F.; Patel, Jinal; Weaver, Grant C.; Kanekiyo, Masaru; Wheatley, Adam K.; Yassine, Hadi M.; Costello, Catherine E.; Chandler, Kevin B.; McTamney, Patrick. M.; Nabel, Gary J.; McDermott, Adrian B.; Mascola, John R.; Carr, Steven A.; Lingwood, Daniel

    2016-01-01

    Activation of immune cells (but not B cells) with lectins is widely known. We used the structurally defined interaction between influenza hemagglutinin (HA) and its cell surface receptor sialic acid (SA) to identify a B cell receptor (BCR) activation modality that proceeded through non-cognate interactions with antigen. Using a new approach to reconstitute antigen-receptor interactions in a human reporter B cell line, we found that sequence-defined BCRs from the human germline repertoire could be triggered by both complementarity to influenza HA and a separate mode of signaling that relied on multivalent ligation of BCR sialyl-oligosaccharide. The latter suggested a new mechanism for priming naïve B cell responses and manifested as the induction of SA-dependent pan-activation by peripheral blood B cells. BCR crosslinking in the absence of complementarity is a superantigen effect induced by some microbial products to subvert production of antigen-specific immune responses. B cell superantigen activity through affinity for BCR carbohydrate is discussed. PMID:27796362

  9. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics

    EPA Science Inventory

    We developed a quantitative method for estimating resource allocation strategies of microbial communities based on the proportional activities of four, key extracellular enzymes, 1,4-ß-glucosidase (BG), leucine amino-peptidase (LAP), 1,4-ß-N-acetylglucosaminidase (NAG...

  10. How Force Might Activate Talin's Vinculin Binding Sites: SMD Reveals a Structural Mechanism

    PubMed Central

    Hytönen, Vesa P; Vogel, Viola

    2008-01-01

    Upon cell adhesion, talin physically couples the cytoskeleton via integrins to the extracellular matrix, and subsequent vinculin recruitment is enhanced by locally applied tensile force. Since the vinculin binding (VB) sites are buried in the talin rod under equilibrium conditions, the structural mechanism of how vinculin binding to talin is force-activated remains unknown. Taken together with experimental data, a biphasic vinculin binding model, as derived from steered molecular dynamics, provides high resolution structural insights how tensile mechanical force applied to the talin rod fragment (residues 486–889 constituting helices H1–H12) might activate the VB sites. Fragmentation of the rod into three helix subbundles is prerequisite to the sequential exposure of VB helices to water. Finally, unfolding of a VB helix into a completely stretched polypeptide might inhibit further binding of vinculin. The first events in fracturing the H1–H12 rods of talin1 and talin2 in subbundles are similar. The proposed force-activated α-helix swapping mechanism by which vinculin binding sites in talin rods are exposed works distinctly different from that of other force-activated bonds, including catch bonds. PMID:18282082

  11. Beyond Rhyme or Reason: ERPs Reveal Task-Specific Activation of Orthography on Spoken Language

    ERIC Educational Resources Information Center

    Pattamadilok, Chotiga; Perre, Laetitia; Ziegler, Johannes C.

    2011-01-01

    Metaphonological tasks, such as rhyme judgment, have been the primary tool for the investigation of the effects of orthographic knowledge on spoken language. However, it has been recently argued that the orthography effect in rhyme judgment does not reflect the automatic activation of orthographic codes but rather stems from sophisticated response…

  12. Transcriptomic sequencing reveals a set of unique genes activated by butyrate-induced histone modification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate is a nutritional element with strong epigenetic regulatory activity as an inhibitor of histone deacetylases (HDACs). Based on the analysis of differentially expressed genes induced by butyrate in the bovine epithelial cell using deep RNA-sequencing technology (RNA-seq), a set of unique gen...

  13. Single molecule microscopy reveals mechanistic insight into RNA polymerase II preinitiation complex assembly and transcriptional activity

    PubMed Central

    Horn, Abigail E.; Kugel, Jennifer F.; Goodrich, James A.

    2016-01-01

    Transcription by RNA polymerase II (Pol II) is a complex process that requires general transcription factors and Pol II to assemble on DNA into preinitiation complexes that can begin RNA synthesis upon binding of NTPs (nucleoside triphosphate). The pathways by which preinitiation complexes form, and how this impacts transcriptional activity are not completely clear. To address these issues, we developed a single molecule system using TIRF (total internal reflection fluorescence) microscopy and purified human transcription factors, which allows us to visualize transcriptional activity at individual template molecules. We see that stable interactions between polymerase II (Pol II) and a heteroduplex DNA template do not depend on general transcription factors; however, transcriptional activity is highly dependent upon TATA-binding protein, TFIIB and TFIIF. We also found that subsets of general transcription factors and Pol II can form stable complexes that are precursors for functional transcription complexes upon addition of the remaining factors and DNA. Ultimately we found that Pol II, TATA-binding protein, TFIIB and TFIIF can form a quaternary complex in the absence of promoter DNA, indicating that a stable network of interactions exists between these proteins independent of promoter DNA. Single molecule studies can be used to learn how different modes of preinitiation complex assembly impact transcriptional activity. PMID:27112574

  14. Structures of Down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition.

    PubMed

    Soundararajan, Meera; Roos, Annette K; Savitsky, Pavel; Filippakopoulos, Panagis; Kettenbach, Arminja N; Olsen, Jesper V; Gerber, Scott A; Eswaran, Jeyanthy; Knapp, Stefan; Elkins, Jonathan M

    2013-06-01

    Dual-specificity tyrosine-(Y)-phosphorylation-regulated kinases (DYRKs) play key roles in brain development, regulation of splicing, and apoptosis, and are potential drug targets for neurodegenerative diseases and cancer. We present crystal structures of one representative member of each DYRK subfamily: DYRK1A with an ATP-mimetic inhibitor and consensus peptide, and DYRK2 including NAPA and DH (DYRK homology) box regions. The current activation model suggests that DYRKs are Ser/Thr kinases that only autophosphorylate the second tyrosine of the activation loop YxY motif during protein translation. The structures explain the roles of this tyrosine and of the DH box in DYRK activation and provide a structural model for DYRK substrate recognition. Phosphorylation of a library of naturally occurring peptides identified substrate motifs that lack proline in the P+1 position, suggesting that DYRK1A is not a strictly proline-directed kinase. Our data also show that DYRK1A wild-type and Y321F mutant retain tyrosine autophosphorylation activity. PMID:23665168

  15. Structures of Down Syndrome Kinases, DYRKs, Reveal Mechanisms of Kinase Activation and Substrate Recognition

    PubMed Central

    Soundararajan, Meera; Roos, Annette K.; Savitsky, Pavel; Filippakopoulos, Panagis; Kettenbach, Arminja N.; Olsen, Jesper V.; Gerber, Scott A.; Eswaran, Jeyanthy; Knapp, Stefan; Elkins, Jonathan M.

    2013-01-01

    Summary Dual-specificity tyrosine-(Y)-phosphorylation-regulated kinases (DYRKs) play key roles in brain development, regulation of splicing, and apoptosis, and are potential drug targets for neurodegenerative diseases and cancer. We present crystal structures of one representative member of each DYRK subfamily: DYRK1A with an ATP-mimetic inhibitor and consensus peptide, and DYRK2 including NAPA and DH (DYRK homology) box regions. The current activation model suggests that DYRKs are Ser/Thr kinases that only autophosphorylate the second tyrosine of the activation loop YxY motif during protein translation. The structures explain the roles of this tyrosine and of the DH box in DYRK activation and provide a structural model for DYRK substrate recognition. Phosphorylation of a library of naturally occurring peptides identified substrate motifs that lack proline in the P+1 position, suggesting that DYRK1A is not a strictly proline-directed kinase. Our data also show that DYRK1A wild-type and Y321F mutant retain tyrosine autophosphorylation activity. PMID:23665168

  16. Event-related potentials reveal early activation of body part representations in action concept comprehension.

    PubMed

    Lu, Aitao; Liu, Jing; Zhang, John X

    2012-03-01

    With tasks involving action concept comprehension, many fMRI studies have reported brain activations in sensori-motor regions specific to effectors of the referent action. There is relatively less evidence whether such activations reflect early semantic access or late conceptual re-processing. Here we recorded event-related potentials when participants recognized noun-verb pairs. For Congruent pairs, the verb was the one most commonly associated with the noun (e.g., football-kick). Compared with a control condition, verbs in Congruent pairs showed priming effects in the time windows of 100-150 ms and 210-260 ms. Such activation seems to be specific to body part but not other aspects of the action as similar priming effect was also found when the noun and verb involved different actions though sharing the same body part (e.g., football-jump), documenting for the first time the early activation of body part representations in action concept comprehension. PMID:22306088

  17. Event-related potentials reveal early activation of body part representations in action concept comprehension.

    PubMed

    Lu, Aitao; Liu, Jing; Zhang, John X

    2012-03-01

    With tasks involving action concept comprehension, many fMRI studies have reported brain activations in sensori-motor regions specific to effectors of the referent action. There is relatively less evidence whether such activations reflect early semantic access or late conceptual re-processing. Here we recorded event-related potentials when participants recognized noun-verb pairs. For Congruent pairs, the verb was the one most commonly associated with the noun (e.g., football-kick). Compared with a control condition, verbs in Congruent pairs showed priming effects in the time windows of 100-150 ms and 210-260 ms. Such activation seems to be specific to body part but not other aspects of the action as similar priming effect was also found when the noun and verb involved different actions though sharing the same body part (e.g., football-jump), documenting for the first time the early activation of body part representations in action concept comprehension.

  18. Multichannel brain recordings in behaving Drosophila reveal oscillatory activity and local coherence in response to sensory stimulation and circuit activation

    PubMed Central

    Paulk, Angelique C.; Zhou, Yanqiong; Stratton, Peter; Liu, Li

    2013-01-01

    Neural networks in vertebrates exhibit endogenous oscillations that have been associated with functions ranging from sensory processing to locomotion. It remains unclear whether oscillations may play a similar role in the insect brain. We describe a novel “whole brain” readout for Drosophila melanogaster using a simple multichannel recording preparation to study electrical activity across the brain of flies exposed to different sensory stimuli. We recorded local field potential (LFP) activity from >2,000 registered recording sites across the fly brain in >200 wild-type and transgenic animals to uncover specific LFP frequency bands that correlate with: 1) brain region; 2) sensory modality (olfactory, visual, or mechanosensory); and 3) activity in specific neural circuits. We found endogenous and stimulus-specific oscillations throughout the fly brain. Central (higher-order) brain regions exhibited sensory modality-specific increases in power within narrow frequency bands. Conversely, in sensory brain regions such as the optic or antennal lobes, LFP coherence, rather than power, best defined sensory responses across modalities. By transiently activating specific circuits via expression of TrpA1, we found that several circuits in the fly brain modulate LFP power and coherence across brain regions and frequency domains. However, activation of a neuromodulatory octopaminergic circuit specifically increased neuronal coherence in the optic lobes during visual stimulation while decreasing coherence in central brain regions. Our multichannel recording and brain registration approach provides an effective way to track activity simultaneously across the fly brain in vivo, allowing investigation of functional roles for oscillations in processing sensory stimuli and modulating behavior. PMID:23864378

  19. Structure of inorganic pyrophosphatase from Staphylococcus aureus reveals conformational flexibility of the active site.

    PubMed

    Gajadeera, Chathurada S; Zhang, Xinyi; Wei, Yinan; Tsodikov, Oleg V

    2015-02-01

    Cytoplasmic inorganic pyrophosphatase (PPiase) is an enzyme essential for survival of organisms, from bacteria to human. PPiases are divided into two structurally distinct families: family I PPiases are Mg(2+)-dependent and present in most archaea, eukaryotes and prokaryotes, whereas the relatively less understood family II PPiases are Mn(2+)-dependent and present only in some archaea, bacteria and primitive eukaryotes. Staphylococcus aureus (SA), a dangerous pathogen and a frequent cause of hospital infections, contains a family II PPiase (PpaC), which is an attractive potential target for development of novel antibacterial agents. We determined a crystal structure of SA PpaC in complex with catalytic Mn(2+) at 2.1Å resolution. The active site contains two catalytic Mn(2+) binding sites, each half-occupied, reconciling the previously observed 1:1 Mn(2+):enzyme stoichiometry with the presence of two divalent metal ion sites in the apo-enzyme. Unexpectedly, despite the absence of the substrate or products in the active site, the two domains of SA PpaC form a closed active site, a conformation observed in structures of other family II PPiases only in complex with substrate or product mimics. A region spanning residues 295-298, which contains a conserved substrate binding RKK motif, is flipped out of the active site, an unprecedented conformation for a PPiase. Because the mutant of Arg295 to an alanine is devoid of activity, this loop likely undergoes an induced-fit conformational change upon substrate binding and product dissociation. This closed conformation of SA PPiase may serve as an attractive target for rational design of inhibitors of this enzyme. PMID:25576794

  20. Flexibility in Anaerobic Metabolism as Revealed in a Mutant of Chlamydomonas reinhardtii Lacking Hydrogenase Activity

    SciTech Connect

    Dubini, A.; Mus, F.; Seibert, M.; Grossman, A. R.; Posewitz, M. C.

    2009-03-13

    The green alga Chlamydomonas reinhardtii has a network of fermentation pathways that become active when cells acclimate to anoxia. Hydrogenase activity is an important component of this metabolism, and we have compared metabolic and regulatory responses that accompany anaerobiosis in wild-type C. reinhardtii cells and a null mutant strain for the HYDEF gene (hydEF-1 mutant), which encodes an [FeFe] hydrogenase maturation protein. This mutant has no hydrogenase activity and exhibits elevated accumulation of succinate and diminished production of CO2 relative to the parental strain during dark, anaerobic metabolism. In the absence of hydrogenase activity, increased succinate accumulation suggests that the cells activate alternative pathways for pyruvate metabolism, which contribute to NAD(P)H reoxidation, and continued glycolysis and fermentation in the absence of O2. Fermentative succinate production potentially proceeds via the formation of malate, and increases in the abundance of mRNAs encoding two malateforming enzymes, pyruvate carboxylase and malic enzyme, are observed in the mutant relative to the parental strain following transfer of cells from oxic to anoxic conditions. Although C. reinhardtii has a single gene encoding pyruvate carboxylase, it has six genes encoding putative malic enzymes. Only one of the malic enzyme genes, MME4, shows a dramatic increase in expression (mRNA abundance) in the hydEF-1 mutant during anaerobiosis. Furthermore, there are marked increases in transcripts encoding fumarase and fumarate reductase, enzymes putatively required to convert malate to succinate. These results illustrate the marked metabolic flexibility of C. reinhardtii and contribute to the development of an informed model of anaerobic metabolism in this and potentially other algae.

  1. Fractionation of a herbal antidiarrheal medicine reveals eugenol as an inhibitor of Ca2+-Activated Cl- channel TMEM16A.

    PubMed

    Yao, Zhen; Namkung, Wan; Ko, Eun A; Park, Jinhong; Tradtrantip, Lukmanee; Verkman, A S

    2012-01-01

    The Ca(2+)-activated Cl(-) channel TMEM16A is involved in epithelial fluid secretion, smooth muscle contraction and neurosensory signaling. We identified a Thai herbal antidiarrheal formulation that inhibited TMEM16A Cl(-) conductance. C18-reversed-phase HPLC fractionation of the herbal formulation revealed >98% of TMEM16A inhibition activity in one out of approximately 20 distinct peaks. The purified, active compound was identified as eugenol (4-allyl-2-methoxyphenol), the major component of clove oil. Eugenol fully inhibited TMEM16A Cl(-) conductance with single-site IC(50)~150 µM. Eugenol inhibition of TMEM16A in interstitial cells of Cajal produced strong inhibition of intestinal contraction in mouse ileal segments. TMEM16A Cl(-) channel inhibition adds to the list of eugenol molecular targets and may account for some of its biological activities. PMID:22666439

  2. Fractionation of a Herbal Antidiarrheal Medicine Reveals Eugenol as an Inhibitor of Ca2+-Activated Cl− Channel TMEM16A

    PubMed Central

    Yao, Zhen; Namkung, Wan; Ko, Eun A.; Park, Jinhong; Tradtrantip, Lukmanee; Verkman, A. S.

    2012-01-01

    The Ca2+-activated Cl− channel TMEM16A is involved in epithelial fluid secretion, smooth muscle contraction and neurosensory signaling. We identified a Thai herbal antidiarrheal formulation that inhibited TMEM16A Cl− conductance. C18-reversed-phase HPLC fractionation of the herbal formulation revealed >98% of TMEM16A inhibition activity in one out of approximately 20 distinct peaks. The purified, active compound was identified as eugenol (4-allyl-2-methoxyphenol), the major component of clove oil. Eugenol fully inhibited TMEM16A Cl− conductance with single-site IC50∼150 µM. Eugenol inhibition of TMEM16A in interstitial cells of Cajal produced strong inhibition of intestinal contraction in mouse ileal segments. TMEM16A Cl− channel inhibition adds to the list of eugenol molecular targets and may account for some of its biological activities. PMID:22666439

  3. 10Be surface exposure dating reveals strong active deformation in the central Andean backarc interior

    NASA Astrophysics Data System (ADS)

    García Morabito, Ezequiel; Terrizzano, Carla; Zech, Roland; Willett, Sean; Yamin, Marcela; Haghipour, Negar; Wuethrich, Lorenz; Christl, Marcus; María Cortes, José; Ramos, Victor

    2016-04-01

    Understanding the deformation associated with active thrust wedges is essential to evaluate seismic hazard. How is active faulting distributed throughout the wedge, and how much deformation is taken up by individual structures? We address these questions for our study region, the central Andean backarc of Argentina. We combined a structural and geomorphological approach with surface exposure dating (10Be) of alluvial fans and strath terraces in two key localities at ~32° S: the Cerro Salinas, located in the active orogenic front of the Precordillera, and the Barreal block in the interior of the Andean mountain range. We analysed 22 surface samples and 6 depth profiles. At the thrust front, the oldest terrace (T1) yields an age of 100-130 ka, the intermediate terrace (T2) between 40-95 ka, and the youngest terrace (T3) an age of ~20 ka. In the Andean interior, T1´ dates to 117-146 ka, T2´ to ~70 ka, and T3´ to ~20 ka, all calculations assuming negligible erosion and using the scaling scheme for spallation based on Lal 1991, Stone 2000. Vertical slip rates of fault offsets are 0.3-0.5 mm/yr and of 0.6-1.2 mm/yr at the thrust front and in the Andean interior, respectively. Our results highlight: i) fault activity related to the growth of the Andean orogenic wedge is not only limited to a narrow thrust front zone. Internal structures have been active during the last 150 ka, ii) deformation rates in the Andean interior are comparable or even higher that those estimated and reported along the emerging thrust front, iii) distribution of active faulting seems to account for unsteady state conditions, and iv) seismic hazards may be more relevant in the internal parts of the Andean orogen than assumed so far. References Lal, D., 1991: Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104: 424-439. Stone, J.O., 2000: Air pressure and cosmogenic isotope production. Journal of Geophysical

  4. A Global Genomic Screening Strategy Reveals Genetic and Chemical Activators ofPeroxisome Proliferator-Activated Receptor alpha (PPARalpha)

    EPA Science Inventory

    A comprehensive survey of chemical, diet and genetic perturbations that activate PPARalpha in the mouse liver has not been carried out but would be useful to identify the factors that may contribute to PPARalpha-dependent liver tumors. A gene signature dependent on PPARalpha ac...

  5. Synthesis of Isomeric Phosphoubiquitin Chains Reveals that Phosphorylation Controls Deubiquitinase Activity and Specificity.

    PubMed

    Huguenin-Dezot, Nicolas; De Cesare, Virginia; Peltier, Julien; Knebel, Axel; Kristaryianto, Yosua Adi; Rogerson, Daniel T; Kulathu, Yogesh; Trost, Matthias; Chin, Jason W

    2016-07-26

    Ubiquitin is post-translationally modified by phosphorylation at several sites, but the consequences of these modifications are largely unknown. Here, we synthesize multi-milligram quantities of ubiquitin phosphorylated at serine 20, serine 57, and serine 65 via genetic code expansion. We use these phosphoubiquitins for the enzymatic assembly of 20 isomeric phosphoubiquitin dimers, with different sites of isopeptide linkage and/or phosphorylation. We discover that phosphorylation of serine 20 on ubiquitin converts UBE3C from a dual-specificity E3 ligase into a ligase that primarily synthesizes K48 chains. We profile the activity of 31 deubiquitinases on the isomeric phosphoubiquitin dimers in 837 reactions, and we discover that phosphorylation at distinct sites in ubiquitin can activate or repress cleavage of a particular linkage by deubiquitinases and that phosphorylation at a single site in ubiquitin can control the specificity of deubiquitinases for distinct ubiquitin linkages. PMID:27425610

  6. Rapid caspase-3 activation during apoptosis revealed using fluorescence-resonance energy transfer

    PubMed Central

    Tyas, Lorraine; Brophy, Victoria A.; Pope, Andrew; Rivett, A. Jennifer; Tavaré, Jeremy M.

    2000-01-01

    Caspase-3 is a crucial component of the apoptotic machinery in many cell types. Here, we report the timescale of caspase-3 activation in single living cells undergoing apoptosis. This was achieved by measuring the extent of fluorescence resonance energy transfer within a recombinant substrate containing cyan fluorescent protein (CFP) linked by a short peptide possessing the caspase-3 cleavage sequence, DEVD, to yellow fluorescent protein (YFP; i.e. CFP–DEVD–YFP). We demonstrate that, once initiated, the activation of caspase-3 is a very rapid process, taking 5 min or less to reach completion. Furthermore, this process occurs almost simultaneously with a depolarization of the mitochondrial membrane potential. These events occur just prior to the characteristic morphological changes associated with apoptosis. Our results clearly demonstrate that, once initiated, the commitment of cells to apoptosis is a remarkably rapid event when visualized at the single cell level. PMID:11256610

  7. Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes

    NASA Astrophysics Data System (ADS)

    Labernadie, Anna; Bouissou, Anaïs; Delobelle, Patrick; Balor, Stéphanie; Voituriez, Raphael; Proag, Amsha; Fourquaux, Isabelle; Thibault, Christophe; Vieu, Christophe; Poincloux, Renaud; Charrière, Guillaume M.; Maridonneau-Parini, Isabelle

    2014-11-01

    Podosomes are adhesion structures formed in monocyte-derived cells. They are F-actin-rich columns perpendicular to the substrate surrounded by a ring of integrins. Here, to measure podosome protrusive forces, we designed an innovative experimental setup named protrusion force microscopy (PFM), which consists in measuring by atomic force microscopy the deformation induced by living cells onto a compliant Formvar sheet. By quantifying the heights of protrusions made by podosomes onto Formvar sheets, we estimate that a single podosome generates a protrusion force that increases with the stiffness of the substratum, which is a hallmark of mechanosensing activity. We show that the protrusive force generated at podosomes oscillates with a constant period and requires combined actomyosin contraction and actin polymerization. Finally, we elaborate a model to explain the mechanical and oscillatory activities of podosomes. Thus, PFM shows that podosomes are mechanosensing cell structures exerting a protrusive force.

  8. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide.

    PubMed

    Xu, Junyuan; Kan, Yuhe; Huang, Rui; Zhang, Bingsen; Wang, Bolun; Wu, Kuang-Hsu; Lin, Yangming; Sun, Xiaoyan; Li, Qingfeng; Centi, Gabriele; Su, Dangsheng

    2016-05-23

    Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2 ). The investigation explores the origin of the catalyst's activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate-determining transfer of one electron to CO2 , which leads to the formation of carbon dioxide radical anion (CO2 (.-) ). The initial reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction. The doped nitrogen atoms stabilize the radical anion, thereby lowering the initial reduction barrier and improving the intrinsic activity. The most efficient nitrogen chemical state for this reaction is quaternary nitrogen, followed by pyridinic and pyrrolic nitrogen.

  9. Genome sequence of Wickerhamomyces anomalus DSM 6766 reveals genetic basis of biotechnologically important antimicrobial activities.

    PubMed

    Schneider, Jessica; Rupp, Oliver; Trost, Eva; Jaenicke, Sebastian; Passoth, Volkmar; Goesmann, Alexander; Tauch, Andreas; Brinkrolf, Karina

    2012-05-01

    The ascomycetous yeast Wickerhamomyces anomalus (formerly Pichia anomala and Hansenula anomala) exhibits antimicrobial activities and flavoring features that are responsible for its frequent association with food, beverage and feed products. However, limited information on the genetic background of this yeast and its multiple capabilities are currently available. Here, we present the draft genome sequence of the neotype strain W. anomalus DSM 6766. On the basis of pyrosequencing, a de novo assembly of this strain resulted in a draft genome sequence with a total size of 25.47 Mbp. An automatic annotation using RAPYD generated 11 512 protein-coding sequences. This annotation provided the basis to analyse metabolic capabilities, phylogenetic relationships, as well as biotechnologically important features and yielded novel candidate genes of W. anomalus DSM 6766 coding for proteins participating in antimicrobial activities. PMID:22292503

  10. Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes.

    PubMed

    Labernadie, Anna; Bouissou, Anaïs; Delobelle, Patrick; Balor, Stéphanie; Voituriez, Raphael; Proag, Amsha; Fourquaux, Isabelle; Thibault, Christophe; Vieu, Christophe; Poincloux, Renaud; Charrière, Guillaume M; Maridonneau-Parini, Isabelle

    2014-01-01

    Podosomes are adhesion structures formed in monocyte-derived cells. They are F-actin-rich columns perpendicular to the substrate surrounded by a ring of integrins. Here, to measure podosome protrusive forces, we designed an innovative experimental setup named protrusion force microscopy (PFM), which consists in measuring by atomic force microscopy the deformation induced by living cells onto a compliant Formvar sheet. By quantifying the heights of protrusions made by podosomes onto Formvar sheets, we estimate that a single podosome generates a protrusion force that increases with the stiffness of the substratum, which is a hallmark of mechanosensing activity. We show that the protrusive force generated at podosomes oscillates with a constant period and requires combined actomyosin contraction and actin polymerization. Finally, we elaborate a model to explain the mechanical and oscillatory activities of podosomes. Thus, PFM shows that podosomes are mechanosensing cell structures exerting a protrusive force. PMID:25385672

  11. Stepwise multi-photon activation fluorescence reveals a new method of melanoma imaging for dermatologists

    NASA Astrophysics Data System (ADS)

    Lai, Zhenhua; Lian, Christine; Ma, Jie; Yu, Jingyi; Gu, Zetong; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2014-02-01

    Previous research has shown that the stepwise multi-photon activated fluorescence (SMPAF) of melanin, activated by a continuous-wave (CW) mode near infrared (NIR) laser, is a low cost and reliable method of detecting melanin. SMPAF images of melanin in a mouse hair and a formalin fixed mouse melanoma were compared with conventional multiphoton fluorescence microscopy (MPFM) images and confocal reflectance microscopy (CRM) images, all of which were acquired at an excitation wavelength of 920 nm, to further prove the effectiveness of SMPAF in detecting melanin. SMPAF images add specificity for melanin detection to MPFM images and CRM images. Melanin SMPAF can be a promising technology to enable melanoma imaging for dermatologists.

  12. Suzaku Observations of Luminous Quasars: Revealing the Nature of High-energy Blazar Emission in Low-level Activity States

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Carrigan, S.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Colafrancesco, S.; Conrad, J.; Cutini, S.; Dermer, C. D.; de Palma, F.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Frailis, M.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grandi, P.; Grenier, I. A.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hayashida, M.; Horan, D.; Hughes, R. E.; Itoh, R.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Mazziotta, M. N.; McEnery, J. E.; McGlynn, S.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.;