Science.gov

Sample records for activity score cas

  1. Dual nuclease activity of a Cas2 protein in CRISPR-Cas subtype I-B of Leptospira interrogans.

    PubMed

    Dixit, Bhuvan; Ghosh, Karukriti Kaushik; Fernandes, Gary; Kumar, Pankaj; Gogoi, Prerana; Kumar, Manish

    2016-04-01

    Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 carries a set of cas genes associated with CRISPR-Cas subtype I-B. Herein, we report for the first time active transcription of a set of cas genes (cas1 to cas8) of L. interrogans where cas4, cas1, cas2 and cas6, cas3, cas8, cas7, cas5 are clustered together in two independent operons. As an initial step toward comprehensive understanding of CRISPR-Cas system in spirochete, the biochemical study of one of the core Leptospira Cas2 proteins (Lep_Cas2) showed nuclease activity on both DNA and RNA in a nonspecific manner. Additionally, unlike other known Cas2 proteins, Lep_Cas2 showed metal-independent RNase activity and preferential activity on RNA over DNA. These results provide insight for understanding Cas2 diversity existing in the prokaryotic adaptive immune system.

  2. Nucleosomes Inhibit Cas9 Endonuclease Activity in Vitro.

    PubMed

    Hinz, John M; Laughery, Marian F; Wyrick, John J

    2015-12-08

    During Cas9 genome editing in eukaryotic cells, the bacterial Cas9 enzyme cleaves DNA targets within chromatin. To understand how chromatin affects Cas9 targeting, we characterized Cas9 activity on nucleosome substrates in vitro. We find that Cas9 endonuclease activity is strongly inhibited when its target site is located within the nucleosome core. In contrast, the nucleosome structure does not affect Cas9 activity at a target site within the adjacent linker DNA. Analysis of target sites that partially overlap with the nucleosome edge indicates that the accessibility of the protospacer-adjacent motif (PAM) is the critical determinant of Cas9 activity on a nucleosome.

  3. Guide RNA functional modules direct Cas9 activity and orthogonality.

    PubMed

    Briner, Alexandra E; Donohoue, Paul D; Gomaa, Ahmed A; Selle, Kurt; Slorach, Euan M; Nye, Christopher H; Haurwitz, Rachel E; Beisel, Chase L; May, Andrew P; Barrangou, Rodolphe

    2014-10-23

    The RNA-guided Cas9 endonuclease specifically targets and cleaves DNA in a sequence-dependent manner and has been widely used for programmable genome editing. Cas9 activity is dependent on interactions with guide RNAs, and evolutionarily divergent Cas9 nucleases have been shown to work orthogonally. However, the molecular basis of selective Cas9:guide-RNA interactions is poorly understood. Here, we identify and characterize six conserved modules within native crRNA:tracrRNA duplexes and single guide RNAs (sgRNAs) that direct Cas9 endonuclease activity. We show the bulge and nexus are necessary for DNA cleavage and demonstrate that the nexus and hairpins are instrumental in defining orthogonality between systems. In contrast, the crRNA:tracrRNA complementary region can be modified or partially removed. Collectively, our results establish guide RNA features that drive DNA targeting by Cas9 and open new design and engineering avenues for CRISPR technologies.

  4. Structural plasticity and in vivo activity of Cas1 from the type I-F CRISPR-Cas system.

    PubMed

    Wilkinson, Max E; Nakatani, Yoshio; Staals, Raymond H J; Kieper, Sebastian N; Opel-Reading, Helen K; McKenzie, Rebecca E; Fineran, Peter C; Krause, Kurt L

    2016-04-15

    CRISPR-Cas systems are adaptive immune systems in prokaryotes that provide protection against viruses and other foreign DNA. In the adaptation stage, foreign DNA is integrated into CRISPR (clustered regularly interspaced short palindromic repeat) arrays as new spacers. These spacers are used in the interference stage to guide effector CRISPR associated (Cas) protein(s) to target complementary foreign invading DNA. Cas1 is the integrase enzyme that is central to the catalysis of spacer integration. There are many diverse types of CRISPR-Cas systems, including type I-F systems, which are typified by a unique Cas1-Cas2-3 adaptation complex. In the present study we characterize the Cas1 protein of the potato phytopathogen Pectobacterium atrosepticum, an important model organism for understanding spacer acquisition in type I-F CRISPR-Cas systems. We demonstrate by mutagenesis that Cas1 is essential for adaptation in vivo and requires a conserved aspartic acid residue. By X-ray crystallography, we show that although P. atrosepticum Cas1 adopts a fold conserved among other Cas1 proteins, it possesses remarkable asymmetry as a result of structural plasticity. In particular, we resolve for the first time a flexible, asymmetric loop that may be unique to type I-F Cas1 proteins, and we discuss the implications of these structural features for DNA binding and enzymatic activity.

  5. Interference activity of a minimal Type I CRISPR–Cas system from Shewanella putrefaciens

    PubMed Central

    Dwarakanath, Srivatsa; Brenzinger, Susanne; Gleditzsch, Daniel; Plagens, André; Klingl, Andreas; Thormann, Kai; Randau, Lennart

    2015-01-01

    Type I CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)–Cas (CRISPR-associated) systems exist in bacterial and archaeal organisms and provide immunity against foreign DNA. The Cas protein content of the DNA interference complexes (termed Cascade) varies between different CRISPR-Cas subtypes. A minimal variant of the Type I-F system was identified in proteobacterial species including Shewanella putrefaciens CN-32. This variant lacks a large subunit (Csy1), Csy2 and Csy3 and contains two unclassified cas genes. The genome of S. putrefaciens CN-32 contains only five Cas proteins (Cas1, Cas3, Cas6f, Cas1821 and Cas1822) and a single CRISPR array with 81 spacers. RNA-Seq analyses revealed the transcription of this array and the maturation of crRNAs (CRISPR RNAs). Interference assays based on plasmid conjugation demonstrated that this CRISPR-Cas system is active in vivo and that activity is dependent on the recognition of the dinucleotide GG PAM (Protospacer Adjacent Motif) sequence and crRNA abundance. The deletion of cas1821 and cas1822 reduced the cellular crRNA pool. Recombinant Cas1821 was shown to form helical filaments bound to RNA molecules, which suggests its role as the Cascade backbone protein. A Cascade complex was isolated which contained multiple Cas1821 copies, Cas1822, Cas6f and mature crRNAs. PMID:26350210

  6. Cas9 gRNA engineering for genome editing, activation and repression.

    PubMed

    Kiani, Samira; Chavez, Alejandro; Tuttle, Marcelle; Hall, Richard N; Chari, Raj; Ter-Ovanesyan, Dmitry; Qian, Jason; Pruitt, Benjamin W; Beal, Jacob; Vora, Suhani; Buchthal, Joanna; Kowal, Emma J K; Ebrahimkhani, Mohammad R; Collins, James J; Weiss, Ron; Church, George

    2015-11-01

    We demonstrate that by altering the length of Cas9-associated guide RNA (gRNA) we were able to control Cas9 nuclease activity and simultaneously perform genome editing and transcriptional regulation with a single Cas9 protein. We exploited these principles to engineer mammalian synthetic circuits with combined transcriptional regulation and kill functions governed by a single multifunctional Cas9 protein.

  7. Cas9 gRNA engineering for genome editing, activation and repression

    SciTech Connect

    Kiani, Samira; Chavez, Alejandro; Tuttle, Marcelle; Hall, Richard N.; Chari, Raj; Ter-Ovanesyan, Dmitry; Qian, Jason; Pruitt, Benjamin W.; Beal, Jacob; Vora, Suhani; Buchthal, Joanna; Kowal, Emma J. K.; Ebrahimkhani, Mohammad R.; Collins, James J.; Weiss, Ron; Church, George

    2015-09-07

    Here we demonstrate that by altering the length of Cas9-associated guide RNA(gRNA) we were able to control Cas9 nuclease activity and simultaneously perform genome editing and transcriptional regulation with a single Cas9 protein. We exploited these principles to engineer mammalian synthetic circuits with combined transcriptional regulation and kill functions governed by a single multifunctional Cas9 protein.

  8. Orthogonal gene knock out and activation with a catalytically active Cas9 nuclease

    PubMed Central

    Dahlman, James E.; Abudayyeh, Omar O.; Joung, Julia; Gootenberg, Jonathan S.; Zhang, Feng; Konermann, Silvana

    2015-01-01

    We have developed a CRISPR-based method that uses catalytically active Cas9 and distinct sgRNA constructs to knock out and activate different genes in the same cell. These sgRNAs, with 14 15 bp target sequences and MS2 binding loops, can activate gene expression using an active Cas9 nuclease, without inducing DSBs. We use these ‘dead RNAs’ to perform orthogonal gene knockout and transcriptional activation in human cells. PMID:26436575

  9. Cas9 gRNA engineering for genome editing, activation and repression

    PubMed Central

    Kiani, Samira; Chavez, Alejandro; Tuttle, Marcelle; Hall, Richard N; Chari, Raj; Ter-Ovanesyan, Dmitry; Qian, Jason; Pruitt, Benjamin W; Beal, Jacob; Vora, Suhani; Buchthal, Joanna; Kowal, Emma J K; Ebrahimkhani, Mohammad R; Collins, James J; Weiss, Ron; Church, George

    2015-01-01

    We demonstrate that by altering the length of Cas9-associated guide RNA(gRNA) we were able to control Cas9 nuclease activity and simultaneously perform genome editing and transcriptional regulation with a single Cas9 protein. We exploited these principles to engineer mammalian synthetic circuits with combined transcriptional regulation and kill functions governed by a single multifunctional Cas9 protein. PMID:26344044

  10. Examination of CRISPR/Cas9 design tools and the effect of target site accessibility on Cas9 activity.

    PubMed

    Lee, Ciaran M; Davis, Timothy H; Bao, Gang

    2017-03-16

    The recent adaptation of the CRISPR/Cas9 system for targeted genome engineering has led to its widespread applications in many fields worldwide. In order to better understand the design rules of CRISPR/Cas9 systems, several groups have carried out large library-based screens leading to some insight into sequence preferences among highly active target sites. To facilitate CRISPR/Cas9 design these studies have spawned a plethora of gRNA design tools with algorithms based solely on direct or indirect sequence features. Here we demonstrate that the predictive power of these tools is poor, suggesting that sequence features alone cannot accurately inform the cutting efficiency of a particular CRISPR/Cas9 gRNA design. Furthermore we demonstrate that DNA target site accessibility influences the activity of CRISPR/Cas9. With further optimisation we hypothesise that it will be possible to increase the predictive power of gRNA design tools by including both sequence and target site accessibility metrics. This article is protected by copyright. All rights reserved.

  11. Nuclease activity of Legionella pneumophila Cas2 promotes intracellular infection of amoebal host cells.

    PubMed

    Gunderson, Felizza F; Mallama, Celeste A; Fairbairn, Stephanie G; Cianciotto, Nicholas P

    2015-03-01

    Legionella pneumophila, the primary agent of Legionnaires' disease, flourishes in both natural and man-made environments by growing in a wide variety of aquatic amoebae. Recently, we determined that the Cas2 protein of L. pneumophila promotes intracellular infection of Acanthamoeba castellanii and Hartmannella vermiformis, the two amoebae most commonly linked to cases of disease. The Cas2 family of proteins is best known for its role in the bacterial and archeal clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein (Cas) system that constitutes a form of adaptive immunity against phage and plasmid. However, the infection event mediated by L. pneumophila Cas2 appeared to be distinct from this function, because cas2 mutants exhibited infectivity defects in the absence of added phage or plasmid and since mutants lacking the CRISPR array or any one of the other cas genes were not impaired in infection ability. We now report that the Cas2 protein of L. pneumophila has both RNase and DNase activities, with the RNase activity being more pronounced. By characterizing a catalytically deficient version of Cas2, we determined that nuclease activity is critical for promoting infection of amoebae. Also, introduction of Cas2, but not its catalytic mutant form, into a strain of L. pneumophila that naturally lacks a CRISPR-Cas locus caused that strain to be 40- to 80-fold more infective for amoebae, unequivocally demonstrating that Cas2 facilitates the infection process independently of any other component encoded within the CRISPR-Cas locus. Finally, a cas2 mutant was impaired for infection of Willaertia magna but not Naegleria lovaniensis, suggesting that Cas2 promotes infection of most but not all amoebal hosts.

  12. Nuclease Activity of Legionella pneumophila Cas2 Promotes Intracellular Infection of Amoebal Host Cells

    PubMed Central

    Gunderson, Felizza F.; Mallama, Celeste A.; Fairbairn, Stephanie G.

    2014-01-01

    Legionella pneumophila, the primary agent of Legionnaires' disease, flourishes in both natural and man-made environments by growing in a wide variety of aquatic amoebae. Recently, we determined that the Cas2 protein of L. pneumophila promotes intracellular infection of Acanthamoeba castellanii and Hartmannella vermiformis, the two amoebae most commonly linked to cases of disease. The Cas2 family of proteins is best known for its role in the bacterial and archeal clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) system that constitutes a form of adaptive immunity against phage and plasmid. However, the infection event mediated by L. pneumophila Cas2 appeared to be distinct from this function, because cas2 mutants exhibited infectivity defects in the absence of added phage or plasmid and since mutants lacking the CRISPR array or any one of the other cas genes were not impaired in infection ability. We now report that the Cas2 protein of L. pneumophila has both RNase and DNase activities, with the RNase activity being more pronounced. By characterizing a catalytically deficient version of Cas2, we determined that nuclease activity is critical for promoting infection of amoebae. Also, introduction of Cas2, but not its catalytic mutant form, into a strain of L. pneumophila that naturally lacks a CRISPR-Cas locus caused that strain to be 40- to 80-fold more infective for amoebae, unequivocally demonstrating that Cas2 facilitates the infection process independently of any other component encoded within the CRISPR-Cas locus. Finally, a cas2 mutant was impaired for infection of Willaertia magna but not Naegleria lovaniensis, suggesting that Cas2 promotes infection of most but not all amoebal hosts. PMID:25547789

  13. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation.

    PubMed

    Jinek, Martin; Jiang, Fuguo; Taylor, David W; Sternberg, Samuel H; Kaya, Emine; Ma, Enbo; Anders, Carolin; Hauer, Michael; Zhou, Kaihong; Lin, Steven; Kaplan, Matias; Iavarone, Anthony T; Charpentier, Emmanuelle; Nogales, Eva; Doudna, Jennifer A

    2014-03-14

    Type II CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems use an RNA-guided DNA endonuclease, Cas9, to generate double-strand breaks in invasive DNA during an adaptive bacterial immune response. Cas9 has been harnessed as a powerful tool for genome editing and gene regulation in many eukaryotic organisms. We report 2.6 and 2.2 angstrom resolution crystal structures of two major Cas9 enzyme subtypes, revealing the structural core shared by all Cas9 family members. The architectures of Cas9 enzymes define nucleic acid binding clefts, and single-particle electron microscopy reconstructions show that the two structural lobes harboring these clefts undergo guide RNA-induced reorientation to form a central channel where DNA substrates are bound. The observation that extensive structural rearrangements occur before target DNA duplex binding implicates guide RNA loading as a key step in Cas9 activation.

  14. Structural roles of guide RNAs in the nuclease activity of Cas9 endonuclease

    PubMed Central

    Lim, Youngbin; Bak, So Young; Sung, Keewon; Jeong, Euihwan; Lee, Seung Hwan; Kim, Jin-Soo; Bae, Sangsu; Kim, Seong Keun

    2016-01-01

    The type II CRISPR-associated protein Cas9 recognizes and cleaves target DNA with the help of two guide RNAs (gRNAs; tracrRNA and crRNA). However, the detailed mechanisms and kinetics of these gRNAs in the Cas9 nuclease activity are unclear. Here, we investigate the structural roles of gRNAs in the CRISPR-Cas9 system by single-molecule spectroscopy and reveal a new conformation of inactive Cas9 that is thermodynamically more preferable than active apo-Cas9. We find that tracrRNA prevents Cas9 from changing into the inactive form and leads to the Cas9:gRNA complex. For the Cas9:gRNA complex, we identify sub-conformations of the RNA–DNA heteroduplex during R-loop expansion. Our single-molecule study indicates that the kinetics of the sub-conformations is controlled by the complementarity between crRNA and target DNA. We conclude that both tracrRNA and crRNA regulate the conformations and kinetics of the Cas9 complex, which are crucial in the DNA cleavage activity of the CRISPR-Cas9 system. PMID:27804953

  15. Structural roles of guide RNAs in the nuclease activity of Cas9 endonuclease.

    PubMed

    Lim, Youngbin; Bak, So Young; Sung, Keewon; Jeong, Euihwan; Lee, Seung Hwan; Kim, Jin-Soo; Bae, Sangsu; Kim, Seong Keun

    2016-11-02

    The type II CRISPR-associated protein Cas9 recognizes and cleaves target DNA with the help of two guide RNAs (gRNAs; tracrRNA and crRNA). However, the detailed mechanisms and kinetics of these gRNAs in the Cas9 nuclease activity are unclear. Here, we investigate the structural roles of gRNAs in the CRISPR-Cas9 system by single-molecule spectroscopy and reveal a new conformation of inactive Cas9 that is thermodynamically more preferable than active apo-Cas9. We find that tracrRNA prevents Cas9 from changing into the inactive form and leads to the Cas9:gRNA complex. For the Cas9:gRNA complex, we identify sub-conformations of the RNA-DNA heteroduplex during R-loop expansion. Our single-molecule study indicates that the kinetics of the sub-conformations is controlled by the complementarity between crRNA and target DNA. We conclude that both tracrRNA and crRNA regulate the conformations and kinetics of the Cas9 complex, which are crucial in the DNA cleavage activity of the CRISPR-Cas9 system.

  16. Disease activity in Graves' ophthalmopathy: diagnosis with orbital MR imaging and correlation with clinical score.

    PubMed

    Tortora, Fabio; Cirillo, Mario; Ferrara, Marco; Belfiore, Maria Paola; Carella, Carlo; Caranci, Ferdinando; Cirillo, Sossio

    2013-10-01

    In Graves' ophthalmopathy (GO) it is important to distinguish acute inflammation at an early stage, responsive to immunosuppressive treatment, from inactive fibrotic end stage disease, unresponsive to the same treatment. The purpose of this study was to identify the most relevant signal intensities on orbital MR imaging with contrast administration both to classify patients according to their clinical activity score (defined by a cut-off value of 3) and to make a prediction of patient's CAS. Such threshold was considered as widely used in literature. Sixteen consecutive patients with a diagnosis of GO in different phases of thyroid disease based on clinical and orbital MR imaging signs, and six normal volunteers were examined. Orbital MR imaging was performed on a 1.5 Tesla MR Unit. MR scans were assessed by an experienced neuroradiologist, blinded to the clinical examinations. We found a statistical correlation between CAS and both STIR and contrast enhanced T1-weighted sequences. There was also a statistically significant correlation between STIR and contrast-enhanced T1 images disclosing the possibility of avoiding the injection of contrast medium. Our study proved that signal intensity values on STIR sequence increase in the inflammatory oedematous phase of disease. We confirmed the correlation between signal intensities on this sequence and CAS, showing an increase in signal intensity proportional to the CAS value. So we validated MRI use to establish the activity phase of disease more sensitively than CAS alone.

  17. A newly discovered Bordetella species carries a transcriptionally active CRISPR-Cas with a small Cas9 endonuclease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cas9 endonuclease of the Type II-a clustered regularly interspersed short palindromic repeats (CRISPR), of Streptococcus pyogenes (SpCas9) has been adapted as a widely used tool for genome editing and genome engineering. Herein, we describe a gene encoding a novel Cas9 ortholog (BpsuCas9) and th...

  18. A Biophysical Model of CRISPR/Cas9 Activity for Rational Design of Genome Editing and Gene Regulation

    PubMed Central

    Farasat, Iman; Salis, Howard M.

    2016-01-01

    The ability to precisely modify genomes and regulate specific genes will greatly accelerate several medical and engineering applications. The CRISPR/Cas9 (Type II) system binds and cuts DNA using guide RNAs, though the variables that control its on-target and off-target activity remain poorly characterized. Here, we develop and parameterize a system-wide biophysical model of Cas9-based genome editing and gene regulation to predict how changing guide RNA sequences, DNA superhelical densities, Cas9 and crRNA expression levels, organisms and growth conditions, and experimental conditions collectively control the dynamics of dCas9-based binding and Cas9-based cleavage at all DNA sites with both canonical and non-canonical PAMs. We combine statistical thermodynamics and kinetics to model Cas9:crRNA complex formation, diffusion, site selection, reversible R-loop formation, and cleavage, using large amounts of structural, biochemical, expression, and next-generation sequencing data to determine kinetic parameters and develop free energy models. Our results identify DNA supercoiling as a novel mechanism controlling Cas9 binding. Using the model, we predict Cas9 off-target binding frequencies across the lambdaphage and human genomes, and explain why Cas9’s off-target activity can be so high. With this improved understanding, we propose several rules for designing experiments for minimizing off-target activity. We also discuss the implications for engineering dCas9-based genetic circuits. PMID:26824432

  19. The New State of the Art: Cas9 for Gene Activation and Repression

    PubMed Central

    La Russa, Marie F.

    2015-01-01

    CRISPR-Cas9 technology has rapidly changed the landscape for how biologists and bioengineers study and manipulate the genome. Derived from the bacterial adaptive immune system, CRISPR-Cas9 has been coopted and repurposed for a variety of new functions, including the activation or repression of gene expression (termed CRISPRa or CRISPRi, respectively). This represents an exciting alternative to previously used repression or activation technologies such as RNA interference (RNAi) or the use of gene overexpression vectors. We have only just begun exploring the possibilities that CRISPR technology offers for gene regulation and the control of cell identity and behavior. In this review, we describe the recent advances of CRISPR-Cas9 technology for gene regulation and outline advantages and disadvantages of CRISPRa and CRISPRi (CRISPRa/i) relative to alternative technologies. PMID:26370509

  20. Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference

    SciTech Connect

    Beloglazova, Natalia; Petit, Pierre; Flick, Robert; Brown, Greg; Savchenko, Alexei; Yakunin, Alexander F.

    2012-03-15

    Clustered regularly interspaced short palindromic repeats (CRISPRs) and Cas proteins represent an adaptive microbial immunity system against viruses and plasmids. Cas3 proteins have been proposed to play a key role in the CRISPR mechanism through the direct cleavage of invasive DNA. Here, we show that the Cas3 HD domain protein MJ0384 from Methanocaldococcus jannaschii cleaves endonucleolytically and exonucleolytically (3'-5') single-stranded DNAs and RNAs, as well as 3'-flaps, splayed arms, and R-loops. The degradation of branched DNA substrates by MJ0384 is stimulated by the Cas3 helicase MJ0383 and ATP. The crystal structure of MJ0384 revealed the active site with two bound metal cations and together with site-directed mutagenesis suggested a catalytic mechanism. Our studies suggest that the Cas3 HD nucleases working together with the Cas3 helicases can completely degrade invasive DNAs through the combination of endo- and exonuclease activities.

  1. Potent and Targeted Activation of Latent HIV-1 Using the CRISPR/dCas9 Activator Complex.

    PubMed

    Saayman, Sheena M; Lazar, Daniel C; Scott, Tristan A; Hart, Jonathan R; Takahashi, Mayumi; Burnett, John C; Planelles, Vicente; Morris, Kevin V; Weinberg, Marc S

    2016-03-01

    HIV-1 provirus integration results in a persistent latently infected reservoir that is recalcitrant to combined antiretroviral therapy (cART) with lifelong treatment being the only option. The "shock and kill" strategy aims to eradicate latent HIV by reactivating proviral gene expression in the context of cART treatment. Gene-specific transcriptional activation can be achieved using the RNA-guided CRISPR-Cas9 system comprising single guide RNAs (sgRNAs) with a nuclease-deficient Cas9 mutant (dCas9) fused to the VP64 transactivation domain (dCas9-VP64). We engineered this system to target 23 sites within the long terminal repeat promoter of HIV-1 and identified a "hotspot" for activation within the viral enhancer sequence. Activating sgRNAs transcriptionally modulated the latent proviral genome across multiple different in vitro latency cell models including T cells comprising a clonally integrated mCherry-IRES-Tat (LChIT) latency system. We detected consistent and effective activation of latent virus mediated by activator sgRNAs, whereas latency reversal agents produced variable activation responses. Transcriptomic analysis revealed dCas9-VP64/sgRNAs to be highly specific, while the well-characterized chemical activator TNFα induced widespread gene dysregulation. CRISPR-mediated gene activation represents a novel system which provides enhanced efficiency and specificity in a targeted latency reactivation strategy and represents a promising approach to a "functional cure" of HIV/AIDS.

  2. Actin polymerization-dependent activation of Cas-L promotes immunological synapse stability

    PubMed Central

    Santos, Luís C; Blair, David A; Kumari, Sudha; Cammer, Michael; Iskratsch, Thomas; Herbin, Olivier; Alexandropoulos, Konstantina; Dustin, Michael L; Sheetz, Michael P

    2016-01-01

    The immunological synapse formed between a T-cell and an antigen-presenting cell is important for cell–cell communication during T-cell-mediated immune responses. Immunological synapse formation begins with stimulation of the T-cell receptor (TCR). TCR microclusters are assembled and transported to the center of the immunological synapse in an actin polymerization-dependent process. However, the physical link between TCR and actin remains elusive. Here we show that lymphocyte-specific Crk-associated substrate (Cas-L), a member of a force sensing protein family, is required for transport of TCR microclusters and for establishing synapse stability. We found that Cas-L is phosphorylated at TCR microclusters in an actin polymerization-dependent fashion. Furthermore, Cas-L participates in a positive feedback loop leading to amplification of Ca2+ signaling, inside–out integrin activation, and actomyosin contraction. We propose a new role for Cas-L in T-cell activation as a mechanical transducer linking TCR microclusters to the underlying actin network and coordinating multiple actin-dependent structures in the immunological synapse. Our studies highlight the importance of mechanotransduction processes in T-cell-mediated immune responses. PMID:27359298

  3. Targeted HIV-1 Latency Reversal Using CRISPR/Cas9-Derived Transcriptional Activator Systems.

    PubMed

    Bialek, Julia K; Dunay, Gábor A; Voges, Maike; Schäfer, Carola; Spohn, Michael; Stucka, Rolf; Hauber, Joachim; Lange, Ulrike C

    2016-01-01

    CRISPR/Cas9 technology is currently considered the most advanced tool for targeted genome engineering. Its sequence-dependent specificity has been explored for locus-directed transcriptional modulation. Such modulation, in particular transcriptional activation, has been proposed as key approach to overcome silencing of dormant HIV provirus in latently infected cellular reservoirs. Currently available agents for provirus activation, so-called latency reversing agents (LRAs), act indirectly through cellular pathways to induce viral transcription. However, their clinical performance remains suboptimal, possibly because reservoirs have diverse cellular identities and/or proviral DNA is intractable to the induced pathways. We have explored two CRISPR/Cas9-derived activator systems as targeted approaches to induce dormant HIV-1 proviral DNA. These systems recruit multiple transcriptional activation domains to the HIV 5' long terminal repeat (LTR), for which we have identified an optimal target region within the LTR U3 sequence. Using this target region, we demonstrate transcriptional activation of proviral genomes via the synergistic activation mediator complex in various in culture model systems for HIV latency. Observed levels of induction are comparable or indeed higher than treatment with established LRAs. Importantly, activation is complete, leading to production of infective viral particles. Our data demonstrate that CRISPR/Cas9-derived technologies can be applied to counteract HIV latency and may therefore represent promising novel approaches in the quest for HIV elimination.

  4. Targeted HIV-1 Latency Reversal Using CRISPR/Cas9-Derived Transcriptional Activator Systems

    PubMed Central

    Bialek, Julia K.; Dunay, Gábor A.; Voges, Maike; Schäfer, Carola; Spohn, Michael; Stucka, Rolf; Hauber, Joachim; Lange, Ulrike C.

    2016-01-01

    CRISPR/Cas9 technology is currently considered the most advanced tool for targeted genome engineering. Its sequence-dependent specificity has been explored for locus-directed transcriptional modulation. Such modulation, in particular transcriptional activation, has been proposed as key approach to overcome silencing of dormant HIV provirus in latently infected cellular reservoirs. Currently available agents for provirus activation, so-called latency reversing agents (LRAs), act indirectly through cellular pathways to induce viral transcription. However, their clinical performance remains suboptimal, possibly because reservoirs have diverse cellular identities and/or proviral DNA is intractable to the induced pathways. We have explored two CRISPR/Cas9-derived activator systems as targeted approaches to induce dormant HIV-1 proviral DNA. These systems recruit multiple transcriptional activation domains to the HIV 5’ long terminal repeat (LTR), for which we have identified an optimal target region within the LTR U3 sequence. Using this target region, we demonstrate transcriptional activation of proviral genomes via the synergistic activation mediator complex in various in culture model systems for HIV latency. Observed levels of induction are comparable or indeed higher than treatment with established LRAs. Importantly, activation is complete, leading to production of infective viral particles. Our data demonstrate that CRISPR/Cas9-derived technologies can be applied to counteract HIV latency and may therefore represent promising novel approaches in the quest for HIV elimination. PMID:27341108

  5. Programmed Self-Assembly of an Active P22-Cas9 Nanocarrier System.

    PubMed

    Qazi, Shefah; Miettinen, Heini M; Wilkinson, Royce A; McCoy, Kimberly; Douglas, Trevor; Wiedenheft, Blake

    2016-03-07

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) RNA-guided endonucleases are powerful new tools for targeted genome engineering. These nucleases provide an efficient and precise method for manipulating eukaryotic genomes; however, delivery of these reagents to specific cell-types remains challenging. Virus-like particles (VLPs) derived from bacteriophage P22, are robust supramolecular protein cage structures with demonstrated utility for cell type-specific delivery of encapsulated cargos. Here, we genetically fuse Cas9 to a truncated form of the P22 scaffold protein, which acts as a template for capsid assembly as well as a specific encapsulation signal for Cas9. Our results indicate that Cas9 and a single-guide RNA are packaged inside the P22 VLP, and activity assays indicate that this RNA-guided endonuclease is functional for sequence-specific cleavage of dsDNA targets. This work demonstrates the potential for developing P22 as a delivery vehicle for cell specific targeting of Cas9.

  6. p130Cas alters the differentiation potential of mammary luminal progenitors by deregulating c-Kit activity.

    PubMed

    Tornillo, Giusy; Elia, Angela Rita; Castellano, Isabella; Spadaro, Michela; Bernabei, Paola; Bisaro, Brigitte; Camacho-Leal, Maria Del Pilar; Pincini, Alessandra; Provero, Paolo; Sapino, Anna; Turco, Emilia; Defilippi, Paola; Cabodi, Sara

    2013-07-01

    It has recently been proposed that defective differentiation of mammary luminal progenitors predisposes to basal-like breast cancer. However, the molecular and cellular mechanisms involved are still unclear. Here, we describe that the adaptor protein p130Cas is a crucial regulator of mouse mammary epithelial cell (MMEC) differentiation. Using a transgenic mouse model, we show that forced p130Cas overexpression in the luminal progenitor cell compartment results in the expansion of luminal cells, which aberrantly display basal cell features and reduced differentiation in response to lactogenic stimuli. Interestingly, MMECs overexpressing p130Cas exhibit hyperactivation of the tyrosine kinase receptor c-Kit. In addition, we demonstrate that the constitutive c-Kit activation alone mimics p130Cas overexpression, whereas c-Kit downregulation is sufficient to re-establish proper differentiation of p130Cas overexpressing cells. Overall, our data indicate that high levels of p130Cas, via abnormal c-Kit activation, promote mammary luminal cell plasticity, thus providing the conditions for the development of basal-like breast cancer. Consistently, p130Cas is overexpressed in human triple-negative breast cancer, further suggesting that p130Cas upregulation may be a priming event for the onset of basal-like breast cancer.

  7. Nucleosomes Selectively Inhibit Cas9 Off-target Activity at a Site Located at the Nucleosome Edge.

    PubMed

    Hinz, John M; Laughery, Marian F; Wyrick, John J

    2016-11-25

    Nucleosomes affect Cas9 binding and activity at on-target sites, but their impact at off-target sites is unknown. To investigate how nucleosomes affect Cas9 cleavage at off-target sites in vitro, we used a single guide RNA (sgRNA) that has been previously shown to efficiently direct Cas9 cleavage at the edge of the strongly positioned 601 nucleosome. Our data indicate that single mismatches between the sgRNA and DNA target have relatively little effect on Cas9 cleavage of naked DNA substrates, but strongly inhibit cleavage of nucleosome substrates, particularly when the mismatch is in the sgRNA "seed" region. These findings indicate that nucleosomes may enhance Cas9 specificity by inhibiting cleavage of off-target sites at the nucleosome edge.

  8. Photometric and Polarimetric Activity of the Herbig Ae Star VX Cas

    NASA Astrophysics Data System (ADS)

    Shakhovskoi, D. N.; Rostopchina, A. N.; Grinin, V. P.; Minikulov, N. Kh.

    2003-04-01

    We present the results of our simultaneous photometric and polarimetric observations of the Herbig Ae/Be star VX Cas acquired in 1987 2001. The star belongs to the UX Ori subtype of young variable stars and exhibits a rather low level of photometric activity: only six Algol-like minima with amplitudes ΔV>1m were recorded in 15 years of observations. Two of these minima, in 1998 and 2001, were the deepest in the history of the star’s photometric studies, with V amplitudes of about 2m. In each case, the dimming was accompanied by an increase in the linear polarization in agreement with the law expected for variable circumstellar extinction. The highest V polarization was about 5%. Observations of VX Cas in the deep minima revealed a turnover of the color tracks, typical of stars of this type and due to an increased contribution from radiation scattered in the circumstellar disk. We separated the observed polarization of VX Cas into interstellar (P is) and intrinsic (P in) components. Their position angles differ by approximately 60°, with P is dominating in the bright state and P in dominating during the deep minima. The competition of these two polarization components leads to changes in both the degree and position angle of the polarization during the star’s brightness variations. Generally speaking, in terms of the behavior of the brightness, color indices, and linear polarization, VX Cas is similar to other UX Ori stars studied by us earlier. A number of episodes of photometric and polarimetric activity suggest that, in their motion along highly eccentric orbits, circumstellar gas and dust clouds can enter the close vicinity of the star (and be disrupted there).

  9. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity.

    PubMed

    Nuñez, James K; Kranzusch, Philip J; Noeske, Jonas; Wright, Addison V; Davies, Christopher W; Doudna, Jennifer A

    2014-06-01

    The initial stage of CRISPR-Cas immunity involves the integration of foreign DNA spacer segments into the host genomic CRISPR locus. The nucleases Cas1 and Cas2 are the only proteins conserved among all CRISPR-Cas systems, yet the molecular functions of these proteins during immunity are unknown. Here we show that Cas1 and Cas2 from Escherichia coli form a stable complex that is essential for spacer acquisition and determine the 2.3-Å-resolution crystal structure of the Cas1-Cas2 complex. Mutations that perturb Cas1-Cas2 complex formation disrupt CRISPR DNA recognition and spacer acquisition in vivo. Active site mutants of Cas2, unlike those of Cas1, can still acquire new spacers, thus indicating a nonenzymatic role of Cas2 during immunity. These results reveal the universal roles of Cas1 and Cas2 and suggest a mechanism by which Cas1-Cas2 complexes specify sites of CRISPR spacer integration.

  10. Pemphigus vulgaris activity score and assessment of convergent validity.

    PubMed

    Chams-Davatchi, Cheyda; Rahbar, Ziba; Daneshpazhooh, Maryam; Mortazavizadeh, Seyed Mohammad Ali; Akhyani, Maryam; Esmaili, Nafiseh; Balighi, Kamran

    2013-05-07

    Pemphigus is a rare autoimmune blistering disease with different phenotypes. The evaluation of therapeutic interventions requires a reliable, valid and feasible to use measurement. However, there is no gold standard to measure the disease activity in clinical trials. In this study we aimed to introduce the pemphigus vulgaris activity score (PVAS) measurement and to assess the convergent validity with the experts' opinion of disease activity. In PVAS scoring, the distribution of pemphigus vulgaris antigen expression in different anatomical regions is taking in to account with special consideration of the healing process. PVAS is a 0-18 scale, based on the extent of mucocutaneous involvement, type of lesion and the presence of Nikolsky's sign. The sum of the scores of total number of lesions, number of different anatomic regions involvement and Nikolsky's sign is weighted by the type of lesion. In the present study, PVAS was assessed in 50 patients diagnosed with pemphigus vulgaris by one dermatologist. Independently, five blinded experts scored all the patients through physician's global assessment (PGA). The convergent validity with experts' opinion was assessed. The Spearman coefficient of correlation showed the acceptable value of 0.751 (95%CI: 0.534- 0.876). PVAS is a valid, objective and simple-to-use scoring measurement. It showed a good correlation with PGA of pemphigus disease activity in Iranian patients with pemphigus vulgaris.

  11. Double-stranded endonuclease activity in Bacillus halodurans clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas2 protein.

    PubMed

    Nam, Ki Hyun; Ding, Fran; Haitjema, Charles; Huang, Qingqiu; DeLisa, Matthew P; Ke, Ailong

    2012-10-19

    The CRISPR (clustered regularly interspaced short palindromic repeats) system is a prokaryotic RNA-based adaptive immune system against extrachromosomal genetic elements. Cas2 is a universally conserved core CRISPR-associated protein required for the acquisition of new spacers for CRISPR adaptation. It was previously characterized as an endoribonuclease with preference for single-stranded (ss)RNA. Here, we show using crystallography, mutagenesis, and isothermal titration calorimetry that the Bacillus halodurans Cas2 (Bha_Cas2) from the subtype I-C/Dvulg CRISPR instead possesses metal-dependent endonuclease activity against double-stranded (ds)DNA. This activity is consistent with its putative function in producing new spacers for insertion into the 5'-end of the CRISPR locus. Mutagenesis and isothermal titration calorimetry studies revealed that a single divalent metal ion (Mg(2+) or Mn(2+)), coordinated by a symmetric Asp pair in the Bha_Cas2 dimer, is involved in the catalysis. We envision that a pH-dependent conformational change switches Cas2 into a metal-binding competent conformation for catalysis. We further propose that the distinct substrate preferences among Cas2 proteins may be determined by the sequence and structure in the β1-α1 loop.

  12. Membrane bioreactor (MBR) sludge inoculation in a hybrid process scheme concept to assist overloaded conventional activated sludge (CAS) process operations.

    PubMed

    Fenu, A; Roels, J; Van Damme, S; Wambecq, T; Weemaes, M; Thoeye, C; De Gueldre, G; Van De Steene, B

    2012-01-01

    This study analyzes the effect of inoculating membrane bioreactor (MBR) sludge in a parallel-operated overloaded conventional activated sludge (CAS) system. Modelling studies that showed the beneficial effect of this inoculation were confirmed though full scale tests. Total nitrogen (TN) removal in the CAS increased and higher nitrate formation rates were achieved. During MBR sludge inoculation, the TN removal in the CAS was proven to be dependent on MBR sludge loading. Special attention was given to the effect of inoculation on sludge quality. The MBR flocs, grown without selection pressure, were clearly distinct from the more compact flocs in the CAS system and also contained more filamentous bacteria. After inoculation the MBR flocs did not evolve into good-settling compact flocs, resulting in a decreasing sludge quality. During high flow conditions the effluent CAS contained more suspended solids. Sludge volume index, however, did not increase. Laboratory tests were held to determine the threshold volume of MBR sludge to be seeded into the CAS reactor. Above 16-30%, supernatant turbidity and scum formation increased markedly.

  13. Specific induction of endogenous viral restriction factors using CRISPR/Cas-derived transcriptional activators.

    PubMed

    Bogerd, Hal P; Kornepati, Anand V R; Marshall, Joy B; Kennedy, Edward M; Cullen, Bryan R

    2015-12-29

    Whereas several mammalian proteins can restrict the replication of HIV-1 and other viruses, these are often not expressed in relevant target cells. A potential method to inhibit viral replication might therefore be to use synthetic transcription factors to induce restriction factor expression. In particular, mutants of the RNA-guided DNA binding protein Cas9 that have lost their DNA cleavage activity could be used to recruit transcription activation domains to specific promoters. However, initial experiments revealed only weak activation unless multiple promoter-specific single guide RNAs (sgRNAs) were used. Recently, the recruitment of multiple transcription activation domains by a single sgRNA, modified to contain MS2-derived stem loops that recruit fusion proteins consisting of the MS2 coat protein linked to transcription activation domains, was reported to induce otherwise silent cellular genes. Here, we demonstrate that such "synergistic activation mediators" can induce the expression of two restriction factors, APOBEC3G (A3G) and APOBEC3B (A3B), in human cells that normally lack these proteins. We observed modest activation of endogenous A3G or A3B expression using single sgRNAs but high expression when two sgRNAs were used. Whereas the induced A3G and A3B proteins both blocked infection by an HIV-1 variant lacking a functional vif gene by inducing extensive dC-to-dU editing, only the induced A3B protein inhibited wild-type HIV-1. These data demonstrate that Cas9-derived transcriptional activators have the potential to be used for screens for endogenous genes that affect virus replication and raise the possibility that synthetic transcription factors might prove clinically useful if efficient delivery mechanisms could be developed.

  14. Fluctuation of the CaS -sequestering activity of permeabilized sea urchin embryos during the cell cycle

    SciTech Connect

    Suprynowicz, F.A.; Mazia, D.

    1985-04-01

    The authors have followed the sequestration of CaS by intracellular compartments in sea urchin embryos through the first cell cycles. To gain biochemical access to these compartments, the embryos were permeabilized by brief exposure to an intense electric field. Sequestration was determined as the retention of tracer, UVCa, after filtration of aliquots on Millipore filters. The permeabilized cells sequester CaS at a constant rate for at least 20 min. The CaS -sequestering activities of embryos that are permeabilized at successive stages of the first cell cycle (one-cell stage) progressively increase to 5 times the initial level. The rate of sequestration is maximal during telophase and, in some populations of zygotes, is nearly as great throughout prophase. Over the course of the second cell cycle (two-cell stage), the activity undergoes a 2-fold oscillation that bears the same temporal relationship to mitosis as the previous fluctuation.

  15. The development of the disease activity score (DAS) and the disease activity score using 28 joint counts (DAS28).

    PubMed

    van Riel, P L C M

    2014-01-01

    In rheumatoid arthritis, disease activity cannot be measured using a single variable. The Disease Activity Score (DAS) has been developed as a quantitative index to be able to measure, study and manage disease activity in RA in daily clinical practice, clinical trials, and long term observational studies. The DAS is a continuous measure of RA disease activity that combines information from swollen joints, tender joints, acute phase response and patient self-report of general health. Cut points were developed to classify patients in remission, as well as low, moderate, and severe disease activity in the 1990s. DAS-based EULAR response criteria were primarily developed to be used in clinical trials to classify individual patients as non-, moderate, or good responders, depending on the magnitude of change and absolute level of disease activity at the conclusion of the test.

  16. Cas9 Functionally Opens Chromatin

    PubMed Central

    Barkal, Amira A.; Srinivasan, Sharanya; Hashimoto, Tatsunori; Gifford, David K.; Sherwood, Richard I.

    2016-01-01

    Using a nuclease-dead Cas9 mutant, we show that Cas9 reproducibly induces chromatin accessibility at previously inaccessible genomic loci. Cas9 chromatin opening is sufficient to enable adjacent binding and transcriptional activation by the settler transcription factor retinoic acid receptor at previously unbound motifs. Thus, we demonstrate a new use for Cas9 in increasing surrounding chromatin accessibility to alter local transcription factor binding. PMID:27031353

  17. Measuring and Reducing Off-Target Activities of Programmable Nucleases Including CRISPR-Cas9.

    PubMed

    Koo, Taeyoung; Lee, Jungjoon; Kim, Jin-Soo

    2015-06-01

    Programmable nucleases, which include zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and RNA-guided engineered nucleases (RGENs) repurposed from the type II clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system are now widely used for genome editing in higher eukaryotic cells and whole organisms, revolutionising almost every discipline in biological research, medicine, and biotechnology. All of these nucleases, however, induce off-target mutations at sites homologous in sequence with on-target sites, limiting their utility in many applications including gene or cell therapy. In this review, we compare methods for detecting nuclease off-target mutations. We also review methods for profiling genome-wide off-target effects and discuss how to reduce or avoid off-target mutations.

  18. An active immune defense with a minimal CRISPR (clustered regularly interspaced short palindromic repeats) RNA and without the Cas6 protein.

    PubMed

    Maier, Lisa-Katharina; Stachler, Aris-Edda; Saunders, Sita J; Backofen, Rolf; Marchfelder, Anita

    2015-02-13

    The prokaryotic immune system CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) is a defense system that protects prokaryotes against foreign DNA. The short CRISPR RNAs (crRNAs) are central components of this immune system. In CRISPR-Cas systems type I and III, crRNAs are generated by the endonuclease Cas6. We developed a Cas6b-independent crRNA maturation pathway for the Haloferax type I-B system in vivo that expresses a functional crRNA, which we termed independently generated crRNA (icrRNA). The icrRNA is effective in triggering degradation of an invader plasmid carrying the matching protospacer sequence. The Cas6b-independent maturation of the icrRNA allowed mutation of the repeat sequence without interfering with signals important for Cas6b processing. We generated 23 variants of the icrRNA and analyzed them for activity in the interference reaction. icrRNAs with deletions or mutations of the 3' handle are still active in triggering an interference reaction. The complete 3' handle could be removed without loss of activity. However, manipulations of the 5' handle mostly led to loss of interference activity. Furthermore, we could show that in the presence of an icrRNA a strain without Cas6b (Δcas6b) is still active in interference.

  19. Occurrence and activity of a type II CRISPR-Cas system in Lactobacillus gasseri.

    PubMed

    Sanozky-Dawes, Rosemary; Selle, Kurt; O'Flaherty, Sarah; Klaenhammer, Todd; Barrangou, Rodolphe

    2015-09-01

    Bacteria encode clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated genes (cas), which collectively form an RNA-guided adaptive immune system against invasive genetic elements. In silico surveys have revealed that lactic acid bacteria harbour a prolific and diverse set of CRISPR-Cas systems. Thus, the natural evolutionary role of CRISPR-Cas systems may be investigated in these ecologically, industrially, scientifically and medically important microbes. In this study, 17 Lactobacillus gasseri strains were investigated and 6 harboured a type II-A CRISPR-Cas system, with considerable diversity in array size and spacer content. Several of the spacers showed similarity to phage and plasmid sequences, which are typical targets of CRISPR-Cas immune systems. Aligning the protospacers facilitated inference of the protospacer adjacent motif sequence, determined to be 5'-NTAA-3' flanking the 3' end of the protospacer. The system in L. gasseri JV-V03 and NCK 1342 interfered with transforming plasmids containing sequences matching the most recently acquired CRISPR spacers in each strain. We report the distribution and function of a native type II-A CRISPR-Cas system in the commensal species L. gasseri. Collectively, these results open avenues for applications for bacteriophage protection and genome modification in L. gasseri, and contribute to the fundamental understanding of CRISPR-Cas systems in bacteria.

  20. [The NAS system: Nursing Activities Score in mobile technology].

    PubMed

    Catalan, Vanessa Menezes; Silveira, Denise Tolfo; Neutzling, Agnes Ludwig; Martinato, Luísa Helena Machado; Borges, Gilberto Cabral de Mello

    2011-12-01

    The objective of this study was to present the computerized structure that enables the use of the Nursing Activities Score (NAS) in mobile technology. It is a project for the development of technology production based on software engineering, founded on the theory of systems development life cycle. The NAS system was built in two modules: the search module, which is accessed using a personal computer (PC), and Data Collection module, which is accessed through a mobile device (Smartphone). The NAS system was constructed to allow other forms, in addition to the NAS tool, to be included in the future. Thus, it is understood that the development of the NAS will bring nurses closer to mobile technology and facilitate their accessibility to the data of the instrument relating to patients, thus assisting in decision-making and in staffing to provide nursing care.

  1. sgRNA Scorer 2.0: A Species-Independent Model To Predict CRISPR/Cas9 Activity.

    PubMed

    Chari, Raj; Yeo, Nan Cher; Chavez, Alejandro; Church, George M

    2017-02-10

    It has been possible to create tools to predict single guide RNA (sgRNA) activity in the CRISPR/Cas9 system derived from Streptococcus pyogenes due to the large amount of data that has been generated in sgRNA library screens. However, with the discovery of additional CRISPR systems from different bacteria, which show potent activity in eukaryotic cells, the approach of generating large data sets for each of these systems to predict their activity is not tractable. Here, we present a new guide RNA tool that can predict sgRNA activity across multiple CRISPR systems. In addition to predicting activity for Cas9 from S. pyogenes and Streptococcus thermophilus CRISPR1, we experimentally demonstrate that our algorithm can predict activity for Cas9 from Staphylococcus aureus and S. thermophilus CRISPR3. We also have made available a new version of our software, sgRNA Scorer 2.0, which will allow users to identify sgRNA sites for any PAM sequence of interest.

  2. An Efficient Visual Screen for CRISPR/Cas9 Activity in Arabidopsis thaliana.

    PubMed

    Hahn, Florian; Mantegazza, Otho; Greiner, André; Hegemann, Peter; Eisenhut, Marion; Weber, Andreas P M

    2017-01-01

    The CRISPR/Cas9 system enables precision editing of the genome of the model plant Arabidopsis thaliana and likely of any other organism. Tools and methods for further developing and optimizing this widespread and versatile system in Arabidopsis would hence be welcomed. Here, we designed a generic vector system that can be used to clone any sgRNA sequence in a plant T-DNA vector containing an ubiquitously expressed Cas9 gene. With this vector, we explored two alternative marker systems for tracking Cas9-mediated gene-editing in vivo: BIALAPHOS RESISTANCE (BAR) and GLABROUS1 (GL1). BAR confers resistance to glufosinate and is widely used as a positive selection marker; GL1 is required for the formation of trichomes. Reversion of a frameshift null BAR allele to a functional one by Cas9-mediated gene editing yielded a higher than expected number of plants that are resistant to glufosinate. Surprisingly, many of those plants did not display reversion of the BAR gene through the germline. We hypothesize that few BAR revertant cells in a highly chimeric plant likely provide system-wide resistance to glufosinate and thus we suggest that BAR is not suitable as marker for tracking Cas9-mediated gene-editing. Targeting the GL1 gene for disruption with Cas9 provided clearly visible phenotypes of partially and completely glabrous plants. 50% of the analyzed T1 plants produced descendants with a chimeric phenotype and we could recover fully homozygous plants in the T3 generation with high efficiency. We propose that targeting of GL1 is suitable for assessing and optimizing Cas9-mediated gene-editing in Arabidopsis.

  3. An Efficient Visual Screen for CRISPR/Cas9 Activity in Arabidopsis thaliana

    PubMed Central

    Hahn, Florian; Mantegazza, Otho; Greiner, André; Hegemann, Peter; Eisenhut, Marion; Weber, Andreas P. M.

    2017-01-01

    The CRISPR/Cas9 system enables precision editing of the genome of the model plant Arabidopsis thaliana and likely of any other organism. Tools and methods for further developing and optimizing this widespread and versatile system in Arabidopsis would hence be welcomed. Here, we designed a generic vector system that can be used to clone any sgRNA sequence in a plant T-DNA vector containing an ubiquitously expressed Cas9 gene. With this vector, we explored two alternative marker systems for tracking Cas9-mediated gene-editing in vivo: BIALAPHOS RESISTANCE (BAR) and GLABROUS1 (GL1). BAR confers resistance to glufosinate and is widely used as a positive selection marker; GL1 is required for the formation of trichomes. Reversion of a frameshift null BAR allele to a functional one by Cas9-mediated gene editing yielded a higher than expected number of plants that are resistant to glufosinate. Surprisingly, many of those plants did not display reversion of the BAR gene through the germline. We hypothesize that few BAR revertant cells in a highly chimeric plant likely provide system-wide resistance to glufosinate and thus we suggest that BAR is not suitable as marker for tracking Cas9-mediated gene-editing. Targeting the GL1 gene for disruption with Cas9 provided clearly visible phenotypes of partially and completely glabrous plants. 50% of the analyzed T1 plants produced descendants with a chimeric phenotype and we could recover fully homozygous plants in the T3 generation with high efficiency. We propose that targeting of GL1 is suitable for assessing and optimizing Cas9-mediated gene-editing in Arabidopsis. PMID:28174584

  4. Printing and Scoring Activities, Final Report, Year 11, National Assessment of Educational Progress.

    ERIC Educational Resources Information Center

    Education Commission of the States, Denver, CO. National Assessment of Educational Progress.

    This report summarizes all Year 11 National Assessment of Educational Progress activities performed under Westinghouse DataScore Systems contracts. The general time frame for DataScore's contract activities runs from March 1979 through October 1980 (with the exception of the Year 10 Art Scoring activities which were projected for February 1981…

  5. Regulation of Gene Editing Activity Directed by Single-Stranded Oligonucleotides and CRISPR/Cas9 Systems.

    PubMed

    Bialk, Pawel; Rivera-Torres, Natalia; Strouse, Bryan; Kmiec, Eric B

    2015-01-01

    Single-stranded DNA oligonucleotides (ssODNs) can direct the repair of a single base mutation in human genes. While the regulation of this gene editing reaction has been partially elucidated, the low frequency with which repair occurs has hampered development toward clinical application. In this work a CRISPR/Cas9 complex is employed to induce double strand DNA breakage at specific sites surrounding the nucleotide designated for exchange. The result is a significant elevation in ssODN-directed gene repair, validated by a phenotypic readout. By analysing reaction parameters, we have uncovered restrictions on gene editing activity involving CRISPR/Cas9 complexes. First, ssODNs that hybridize to the non-transcribed strand direct a higher level of gene repair than those that hybridize to the transcribed strand. Second, cleavage must be proximal to the targeted mutant base to enable higher levels of gene editing. Third, DNA cleavage enables a higher level of gene editing activity as compared to single-stranded DNA nicks, created by modified Cas9 (Nickases). Fourth, we calculated the hybridization potential and free energy levels of ssODNs that are complementary to the guide RNA sequences of CRISPRs used in this study. We find a correlation between free energy potential and the capacity of single-stranded oligonucleotides to inhibit specific DNA cleavage activity, thereby indirectly reducing gene editing activity. Our data provide novel information that might be taken into consideration in the design and usage of CRISPR/Cas9 systems with ssODNs for gene editing.

  6. Implementation of the Simple Endoscopic Activity Score in Crohn's Disease

    PubMed Central

    Koutroumpakis, Efstratios; Katsanos, Konstantinos H.

    2016-01-01

    Simple Endoscopic Score for Crohn's Disease (SES-CD) was developed as an attempt to simplify Crohn's Disease Endoscopic Index of Severity (CDEIS). Since it was constructed from CDEIS, SES-CD performs comparably but also carries similar limitations. Several studies have utilized SES-CD scoring to describe disease severity or response to therapy. Some of them used SES-CD score as a continuous variable while others utilized certain cutoff values to define severity grades. All SES-CD cutoff values reported in published clinical trials were empirically selected by experts. Although in most of the studies that used SEC-CD scoring to define disease severity, a score <3 reflected inactive disease, no study is using score 0 to predefine inactivity. Studies applying SES-CD to define response to treatment used score 0. There is no optimal SES-CD cut-off for endoscopic remission. The quantification of mucosal healing using SES-CD scoring has not been standardized yet. As the definition of mucosal healing by SES-CD is unset, the concept of deep remission is also still evolving. Serum and fecal biomarkers as well as new radiologic imaging techniques are complementary to SES-CD. Current practice as well as important changes in endoscopy should be taken into consideration when defining SES-CD cutoffs. The optimal timing of SES-CD scoring to assess mucosal healing is not defined yet. To conclude, SES-CD represents a valuable tool. However, a consensus agreement on its optimal use is required. PMID:27184635

  7. Auditory short-term memory activation during score reading.

    PubMed

    Simoens, Veerle L; Tervaniemi, Mari

    2013-01-01

    Performing music on the basis of reading a score requires reading ahead of what is being played in order to anticipate the necessary actions to produce the notes. Score reading thus not only involves the decoding of a visual score and the comparison to the auditory feedback, but also short-term storage of the musical information due to the delay of the auditory feedback during reading ahead. This study investigates the mechanisms of encoding of musical information in short-term memory during such a complicated procedure. There were three parts in this study. First, professional musicians participated in an electroencephalographic (EEG) experiment to study the slow wave potentials during a time interval of short-term memory storage in a situation that requires cross-modal translation and short-term storage of visual material to be compared with delayed auditory material, as it is the case in music score reading. This delayed visual-to-auditory matching task was compared with delayed visual-visual and auditory-auditory matching tasks in terms of EEG topography and voltage amplitudes. Second, an additional behavioural experiment was performed to determine which type of distractor would be the most interfering with the score reading-like task. Third, the self-reported strategies of the participants were also analyzed. All three parts of this study point towards the same conclusion according to which during music score reading, the musician most likely first translates the visual score into an auditory cue, probably starting around 700 or 1300 ms, ready for storage and delayed comparison with the auditory feedback.

  8. Auditory Short-Term Memory Activation during Score Reading

    PubMed Central

    Simoens, Veerle L.; Tervaniemi, Mari

    2013-01-01

    Performing music on the basis of reading a score requires reading ahead of what is being played in order to anticipate the necessary actions to produce the notes. Score reading thus not only involves the decoding of a visual score and the comparison to the auditory feedback, but also short-term storage of the musical information due to the delay of the auditory feedback during reading ahead. This study investigates the mechanisms of encoding of musical information in short-term memory during such a complicated procedure. There were three parts in this study. First, professional musicians participated in an electroencephalographic (EEG) experiment to study the slow wave potentials during a time interval of short-term memory storage in a situation that requires cross-modal translation and short-term storage of visual material to be compared with delayed auditory material, as it is the case in music score reading. This delayed visual-to-auditory matching task was compared with delayed visual-visual and auditory-auditory matching tasks in terms of EEG topography and voltage amplitudes. Second, an additional behavioural experiment was performed to determine which type of distractor would be the most interfering with the score reading-like task. Third, the self-reported strategies of the participants were also analyzed. All three parts of this study point towards the same conclusion according to which during music score reading, the musician most likely first translates the visual score into an auditory cue, probably starting around 700 or 1300 ms, ready for storage and delayed comparison with the auditory feedback. PMID:23326487

  9. Fate of antibiotics in activated sludge followed by ultrafiltration (CAS-UF) and in a membrane bioreactor (MBR).

    PubMed

    Sahar, Eyal; Messalem, Rami; Cikurel, Haim; Aharoni, Avi; Brenner, Asher; Godehardt, Manuel; Jekel, Martin; Ernst, Mathias

    2011-10-15

    The fates of several macrolide, sulphonamide, and trimethoprim antibiotics contained in the raw sewage of the Tel-Aviv wastewater treatment plant (WWTP) were investigated after the sewage was treated using either a full-scale conventional activated sludge (CAS) system coupled with a subsequent ultrafiltration (UF) step or a pilot membrane bioreactor (MBR) system. Antibiotics removal in the MBR system, once it achieved stable operation, was 15-42% higher than that of the CAS system. This advantage was reduced to a maximum of 20% when a UF was added to the CAS. It was hypothesized that the contribution of membrane separation (in both systems) to antibiotics removal was due either to sorption to biomass (rather than improvement in biodegradation) or to enmeshment in the membrane biofilm (since UF membrane pores are significantly larger than the contaminant molecules). Batch experiments with MBR biomass showed a markedly high potential for sorption of the tested antibiotics onto the biomass. Moreover, methanol extraction of MBR biomass released significant amounts of sorbed antibiotics. This finding implies that more attention must be devoted to the management of excess sludge.

  10. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors.

    PubMed

    Hu, Jiabiao; Lei, Yong; Wong, Wing-Ki; Liu, Senquan; Lee, Kai-Chuen; He, Xiangjun; You, Wenxing; Zhou, Rui; Guo, Jun-Tao; Chen, Xiongfong; Peng, Xianlu; Sun, Hao; Huang, He; Zhao, Hui; Feng, Bo

    2014-04-01

    The newly developed transcription activator-like effector protein (TALE) and clustered regularly interspaced short palindromic repeats/Cas9 transcription factors (TF) offered a powerful and precise approach for modulating gene expression. In this article, we systematically investigated the potential of these new tools in activating the stringently silenced pluripotency gene Oct4 (Pou5f1) in mouse and human somatic cells. First, with a number of TALEs and sgRNAs targeting various regions in the mouse and human Oct4 promoters, we found that the most efficient TALE-VP64s bound around -120 to -80 bp, while highly effective sgRNAs targeted from -147 to -89-bp upstream of the transcription start sites to induce high activity of luciferase reporters. In addition, we observed significant transcriptional synergy when multiple TFs were applied simultaneously. Although individual TFs exhibited marginal activity to up-regulate endogenous gene expression, optimized combinations of TALE-VP64s could enhance endogenous Oct4 transcription up to 30-fold in mouse NIH3T3 cells and 20-fold in human HEK293T cells. More importantly, the enhancement of OCT4 transcription ultimately generated OCT4 proteins. Furthermore, examination of different epigenetic modifiers showed that histone acetyltransferase p300 could enhance both TALE-VP64 and sgRNA/dCas9-VP64 induced transcription of endogenous OCT4. Taken together, our study suggested that engineered TALE-TF and dCas9-TF are useful tools for modulating gene expression in mammalian cells.

  11. Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR–Cas system

    PubMed Central

    Elmore, Joshua R.; Sheppard, Nolan F.; Ramia, Nancy; Deighan, Trace; Li, Hong; Terns, Rebecca M.; Terns, Michael P.

    2016-01-01

    CRISPR–Cas systems eliminate nucleic acid invaders in bacteria and archaea. The effector complex of the Type III-B Cmr system cleaves invader RNAs recognized by the CRISPR RNA (crRNA ) of the complex. Here we show that invader RNAs also activate the Cmr complex to cleave DNA. As has been observed for other Type III systems, Cmr eliminates plasmid invaders in Pyrococcus furiosus by a mechanism that depends on transcription of the crRNA target sequence within the plasmid. Notably, we found that the target RNA per se induces DNA cleavage by the Cmr complex in vitro. DNA cleavage activity does not depend on cleavage of the target RNA but notably does require the presence of a short sequence adjacent to the target sequence within the activating target RNA (rPAM [RNA protospacer-adjacent motif]). The activated complex does not require a target sequence (or a PAM) in the DNA substrate. Plasmid elimination by the P. furiosus Cmr system also does not require the Csx1 (CRISPR-associated Rossman fold [CARF] superfamily) protein. Plasmid silencing depends on the HD nuclease and Palm domains of the Cmr2 (Cas10 superfamily) protein. The results establish the Cmr complex as a novel DNA nuclease activated by invader RNAs containing a crRNA target sequence and a rPAM. PMID:26848045

  12. Photospheric Activity in Selected Be STARS: lambda Eri and gamma Cas

    NASA Technical Reports Server (NTRS)

    Smith, Myron A.

    1994-01-01

    Recent observations of rapid variations in optical He I lines, X-rays, and FUV wavelengths in the prototypical classical Be stars lambda Eri and star gamma Cas hint that the violent processes occur on the surfaces of these stars almost all the time. We suggest that of these phenomena show greater similarities with magnetic flaring than any other process through to occur on stars.

  13. CRISPRscan: designing highly efficient sgRNAs for CRISPR/Cas9 targeting in vivo

    PubMed Central

    Moreno-Mateos, Miguel A.; Vejnar, Charles E.; Beaudoin, Jean-Denis; Fernandez, Juan P.; Mis, Emily K.; Khokha, Mustafa K.; Giraldez, Antonio J.

    2015-01-01

    CRISPR/Cas9 technology provides a powerful system for genome engineering. However, variable activity across different single guide RNAs (sgRNAs) remains a significant limitation. We have analyzed the molecular features that influence sgRNA stability, activity and loading into Cas9 in vivo. We observe that guanine enrichment and adenine depletion increase sgRNA stability and activity, while loading, nucleosome positioning and Cas9 off-target binding are not major determinants. We additionally identified truncated and 5′ mismatch-containing sgRNAs as efficient alternatives to canonical sgRNAs. Based on these results, we created a predictive sgRNA-scoring algorithm (CRISPRscan.org) that effectively captures the sequence features affecting Cas9/sgRNA activity in vivo. Finally, we show that targeting Cas9 to the germ line using a Cas9-nanos-3′-UTR fusion can generate maternal-zygotic mutants, increase viability and reduce somatic mutations. Together, these results provide novel insights into the determinants that influence Cas9 activity and a framework to identify highly efficient sgRNAs for genome targeting in vivo. PMID:26322839

  14. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9

    PubMed Central

    Donovan, Katherine F.; Smith, Ian; Tothova, Zuzana; Wilen, Craig; Orchard, Robert; Virgin, Herbert W.; Root, David E.

    2015-01-01

    CRISPR-Cas9-based genetic screens are a powerful new tool in biology. By simply altering the sequence of the single-guide RNA (sgRNA), Cas9 can be reprogrammed to target different sites in the genome with relative ease, but the on-target activity and off-target effects of individual sgRNAs can vary widely. Here, we use recently-devised sgRNA design rules to create human and mouse genome-wide libraries, perform positive and negative selection screens and observe that the use of these rules produced improved results. Additionally, we profile the off-target activity of thousands of sgRNAs and develop a metric to predict off-target sites. We incorporate these findings from large-scale, empirical data to improve our computational design rules and create optimized sgRNA libraries that maximize on-target activity and minimize off-target effects to enable more effective and efficient genetic screens and genome engineering. PMID:26780180

  15. A Census of the Class of X-ray Active γ Cas Stars

    NASA Astrophysics Data System (ADS)

    Smith, M. A.; de Oliveira, R. L.; Motch, C.

    2016-11-01

    “γ Cas stars” are perhaps the primary contributors to the total hard X-ray flux from Galactic B stars. We review basic properties of 12 suspected or known members of this class. The sample extends out to 6-7 kpc and is finally sufficient to compare such basic properties as spectral type, rotation rate, binarity/Blue Straggler status, Hα lobe structure EWHα, Lx, temperature of the dominant X-ray emitting plasma component (kThot), and ranges in Lx and kThot.

  16. Nursing Activities Score: nursing work load in a burns Intensive Care Unit1

    PubMed Central

    Camuci, Marcia Bernadete; Martins, Júlia Trevisan; Cardeli, Alexandrina Aparecida Maciel; Robazzi, Maria Lúcia do Carmo Cruz

    2014-01-01

    Objective to evaluate the nursing work load in a Burns Intensive Care Unit according to the Nursing Activities Score. Method an exploratory, descriptive cross-sectional study with a quantitative approach. The Nursing Activities Score was used for data collection between October 2011 and May 2012, totalling 1,221 measurements, obtained from 50 patients' hospital records. Data for qualitative variables was described in tables; for the quantitative variables, calculations using statistical measurements were used. Results the mean score for the Nursing Activities Score was 70.4% and the median was 70.3%, corresponding to the percentage of the time spent on direct care to the patient in 24 hours. Conclusion the Nursing Activities Score provided information which involves the process of caring for patients hospitalized in a Burns Intensive Care Unit, and indicated that there is a high work load for the nursing team of the sector studied. PMID:26107842

  17. Longitudinal associations between physical activity and depression scores in Swedish women followed 32 years

    PubMed Central

    Gudmundsson, Pia; Lindwall, Magnus; Gustafson, Deborah R.; Östling, Svante; Hällström, Tore; Waern, Margda; Skoog, Ingmar

    2015-01-01

    Objective Physical activity is negatively associated with depressive symptoms. However, few studies consider dynamic associations of changes in physical activity and reciprocal relationships. This study aimed to perform comprehensive evaluations of relationships between physical activity and depression scores in women followed from mid- to late-life. Method The Prospective Population Study of Women in Gothenburg, Sweden provided repeated measures of self-reported physical activity and depressive symptoms between 1974–2005 (baseline N=676, 84.5 % response rate). Depressive symptoms were assessed using the Montgomery-Åsberg Depression Rating Scale and physical activity was evaluated by the Saltin-Grimby Physical Activity Level Scale. Latent growth curve analyses were used to evaluate associations of change and cross-lagged models were used to study the reciprocal relationship between physical activity and depression scores. Results At baseline, lower levels of physical activity were related to higher depression scores. Individuals with decreasing physical activity over time evidenced higher depression scores at 32 year follow-up. Higher average baseline depression score was related to declining levels of physical activity at subsequent examinations. Conclusion Reduced physical activity may be a long-term consequence of depression. It is important to address individual changes in physical activity and not merely absolute levels of physical activity in relationship to depression. PMID:25865488

  18. The Relationship Between Physical Activity and the Metabolic Syndrome Score in Children

    PubMed Central

    McKune, Andrew J.; Brophy, Patricia; Geyer, Gabriel; Hickner, Robert C.

    2015-01-01

    The relationship between physical activity levels and the metabolic syndrome (MetSyn) score was examined in 72 boys and girls (9.5 ± 1.2 years). A fasting blood draw was obtained; waist circumference and blood pressure measured, and an accelerometer was worn for 5 days. Established cut points were used to estimate time spent in moderate, vigorous, moderate-to-vigorous (MVPA), and total physical activity. A continuous MetSyn score was created from blood pressure, waist circumference, high-density-lipoprotein, triglyceride, and glucose values. Regression analysis was used to examine the relationship between physical activity levels, the MetSyn score, and its related components. Logistic regression was used to examine the association between meeting physical activity recommendations, the MetSyn score, and its related components. All analyses were controlled for body mass index group, age, sex, and race. Time spent in different physical activity levels or meeting physical activity recommendations (OR: 0.87, 95%CI: 0.69-1.09) was not related with the MetSyn score after controlling for potential confounders (p>0.05). Moderate physical activity, MVPA, and meeting physical activity recommendations were related to a lower diastolic blood pressure (p<0.05). No other relationships were observed (p>0.05). While physical activity participation was not related with the MetSyn, lower diastolic blood pressure values were related to higher physical activity levels. PMID:25902555

  19. CasExpress reveals widespread and diverse patterns of cell survival of caspase-3 activation during development in vivo

    PubMed Central

    Ding, Austin Xun; Sun, Gongping; Argaw, Yewubdar G; Wong, Jessica O; Easwaran, Sreesankar; Montell, Denise J

    2016-01-01

    Caspase-3 carries out the executioner phase of apoptosis, however under special circumstances, cells can survive its activity. To document systematically where and when cells survive caspase-3 activation in vivo, we designed a system, CasExpress, which drives fluorescent protein expression, transiently or permanently, in cells that survive caspase-3 activation in Drosophila. We discovered widespread survival of caspase-3 activity. Distinct spatial and temporal patterns emerged in different tissues. Some cells activated caspase-3 during their normal development in every cell and in every animal without evidence of apoptosis. In other tissues, such as the brain, expression was sporadic both temporally and spatially and overlapped with periods of apoptosis. In adults, reporter expression was evident in a large fraction of cells in most tissues of every animal; however the precise patterns varied. Inhibition of caspase activity in wing discs reduced wing size demonstrating functional significance. The implications of these patterns are discussed. DOI: http://dx.doi.org/10.7554/eLife.10936.001 PMID:27058168

  20. Relationships between spatial activities and scores on the mental rotation test as a function of sex.

    PubMed

    Ginn, Sheryl R; Pickens, Stefanie J

    2005-06-01

    Previous results suggested that female college students' scores on the Mental Rotations Test might be related to their prior experience with spatial tasks. For example, women who played video games scored better on the test than their non-game-playing peers, whereas playing video games was not related to men's scores. The present study examined whether participation in different types of spatial activities would be related to women's performance on the Mental Rotations Test. 31 men and 59 women enrolled at a small, private church-affiliated university and majoring in art or music as well as students who participated in intercollegiate athletics completed the Mental Rotations Test. Women's scores on the Mental Rotations Test benefitted from experience with spatial activities; the more types of experience the women had, the better their scores. Thus women who were athletes, musicians, or artists scored better than those women who had no experience with these activities. The opposite results were found for the men. Efforts are currently underway to assess how length of experience and which types of experience are related to scores.

  1. Quantitative Structure‐activity Relationship (QSAR) Models for Docking Score Correction

    PubMed Central

    Yamasaki, Satoshi; Yasumatsu, Isao; Takeuchi, Koh; Kurosawa, Takashi; Nakamura, Haruki

    2016-01-01

    Abstract In order to improve docking score correction, we developed several structure‐based quantitative structure activity relationship (QSAR) models by protein‐drug docking simulations and applied these models to public affinity data. The prediction models used descriptor‐based regression, and the compound descriptor was a set of docking scores against multiple (∼600) proteins including nontargets. The binding free energy that corresponded to the docking score was approximated by a weighted average of docking scores for multiple proteins, and we tried linear, weighted linear and polynomial regression models considering the compound similarities. In addition, we tried a combination of these regression models for individual data sets such as IC50, Ki, and %inhibition values. The cross‐validation results showed that the weighted linear model was more accurate than the simple linear regression model. Thus, the QSAR approaches based on the affinity data of public databases should improve docking scores. PMID:28001004

  2. Evaluating Transcription Factor Activity Changes by Scoring Unexplained Target Genes in Expression Data

    PubMed Central

    Berchtold, Evi; Csaba, Gergely; Zimmer, Ralf

    2016-01-01

    Several methods predict activity changes of transcription factors (TFs) from a given regulatory network and measured expression data. But available gene regulatory networks are incomplete and contain many condition-dependent regulations that are not relevant for the specific expression measurement. It is not known which combination of active TFs is needed to cause a change in the expression of a target gene. A method to systematically evaluate the inferred activity changes is missing. We present such an evaluation strategy that indicates for how many target genes the observed expression changes can be explained by a given set of active TFs. To overcome the problem that the exact combination of active TFs needed to activate a gene is typically not known, we assume a gene to be explained if there exists any combination for which the predicted active TFs can possibly explain the observed change of the gene. We introduce the i-score (inconsistency score), which quantifies how many genes could not be explained by the set of activity changes of TFs. We observe that, even for these minimal requirements, published methods yield many unexplained target genes, i.e. large i-scores. This holds for all methods and all expression datasets we evaluated. We provide new optimization methods to calculate the best possible (minimal) i-score given the network and measured expression data. The evaluation of this optimized i-score on a large data compendium yields many unexplained target genes for almost every case. This indicates that currently available regulatory networks are still far from being complete. Both the presented Act-SAT and Act-A* methods produce optimal sets of TF activity changes, which can be used to investigate the difficult interplay of expression and network data. A web server and a command line tool to calculate our i-score and to find the active TFs associated with the minimal i-score is available from https://services.bio.ifi.lmu.de/i-score. PMID:27723775

  3. Schizotypal perceptual aberrations of time: correlation between score, behavior and brain activity.

    PubMed

    Arzy, Shahar; Mohr, Christine; Molnar-Szakacs, Istvan; Blanke, Olaf

    2011-01-18

    A fundamental trait of the human self is its continuum experience of space and time. Perceptual aberrations of this spatial and temporal continuity is a major characteristic of schizophrenia spectrum disturbances--including schizophrenia, schizotypal personality disorder and schizotypy. We have previously found the classical Perceptual Aberration Scale (PAS) scores, related to body and space, to be positively correlated with both behavior and temporo-parietal activation in healthy participants performing a task involving self-projection in space. However, not much is known about the relationship between temporal perceptual aberration, behavior and brain activity. To this aim, we composed a temporal Perceptual Aberration Scale (tPAS) similar to the traditional PAS. Testing on 170 participants suggested similar performance for PAS and tPAS. We then correlated tPAS and PAS scores to participants' performance and neural activity in a task of self-projection in time. tPAS scores correlated positively with reaction times across task conditions, as did PAS scores. Evoked potential mapping and electrical neuroimaging showed self-projection in time to recruit a network of brain regions at the left anterior temporal cortex, right temporo-parietal junction, and occipito-temporal cortex, and duration of activation in this network positively correlated with tPAS and PAS scores. These data demonstrate that schizotypal perceptual aberrations of both time and space, as reflected by tPAS and PAS scores, are positively correlated with performance and brain activation during self-projection in time in healthy individuals along the schizophrenia spectrum.

  4. Schizotypal Perceptual Aberrations of Time: Correlation between Score, Behavior and Brain Activity

    PubMed Central

    Arzy, Shahar; Mohr, Christine; Molnar-Szakacs, Istvan; Blanke, Olaf

    2011-01-01

    A fundamental trait of the human self is its continuum experience of space and time. Perceptual aberrations of this spatial and temporal continuity is a major characteristic of schizophrenia spectrum disturbances – including schizophrenia, schizotypal personality disorder and schizotypy. We have previously found the classical Perceptual Aberration Scale (PAS) scores, related to body and space, to be positively correlated with both behavior and temporo-parietal activation in healthy participants performing a task involving self-projection in space. However, not much is known about the relationship between temporal perceptual aberration, behavior and brain activity. To this aim, we composed a temporal Perceptual Aberration Scale (tPAS) similar to the traditional PAS. Testing on 170 participants suggested similar performance for PAS and tPAS. We then correlated tPAS and PAS scores to participants' performance and neural activity in a task of self-projection in time. tPAS scores correlated positively with reaction times across task conditions, as did PAS scores. Evoked potential mapping and electrical neuroimaging showed self-projection in time to recruit a network of brain regions at the left anterior temporal cortex, right temporo-parietal junction, and occipito-temporal cortex, and duration of activation in this network positively correlated with tPAS and PAS scores. These data demonstrate that schizotypal perceptual aberrations of both time and space, as reflected by tPAS and PAS scores, are positively correlated with performance and brain activation during self-projection in time in healthy individuals along the schizophrenia spectrum. PMID:21267456

  5. Genome modification by CRISPR/Cas9.

    PubMed

    Ma, Yuanwu; Zhang, Lianfeng; Huang, Xingxu

    2014-12-01

    Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas)9-mediated genome modification enables us to edit the genomes of a variety of organisms rapidly and efficiently. The advantages of the CRISPR-Cas9 system have made it an increasingly popular genetic engineering tool for biological and therapeutic applications. Moreover, CRISPR-Cas9 has been employed to recruit functional domains that repress/activate gene expression or label specific genomic loci in living cells or organisms, in order to explore developmental mechanisms, gene expression regulation, and animal behavior. One major concern about this system is its specificity; although CRISPR-Cas9-mediated off-target mutation has been broadly studied, more efforts are required to further improve the specificity of CRISPR-Cas9. We will also discuss the potential applications of CRISPR-Cas9.

  6. Activating human genes with zinc finger proteins, transcription activator-like effectors and CRISPR/Cas9 for gene therapy and regenerative medicine.

    PubMed

    Gersbach, Charles A; Perez-Pinera, Pablo

    2014-08-01

    New technologies have recently been developed to control the expression of human genes in their native genomic context by engineering synthetic transcription factors that can be targeted to any DNA sequence. The ability to precisely regulate any gene as it occurs naturally in the genome provides a means to address a variety of diseases and disorders. This approach also circumvents some of the traditional challenges of gene therapy. In this editorial, we review the technologies that have enabled targeted human gene activation, including the engineering of transcription factors based on zinc finger proteins, transcription activator-like effectors and the CRISPR/Cas9 system. Additionally, we highlight examples in which these methods have been developed for therapeutic applications and discuss challenges and opportunities.

  7. Efficacy of CPITN sextant scores for detection of periodontitis disease activity.

    PubMed

    Rams, T E; Listgarten, M A; Slots, J

    1996-04-01

    The relationship between CPITN sextant scores and periodontitis recurrence at individual tooth sites was evaluated in a longitudinal study in 83 treated adult periodontitis patients receiving systematic 3-month maintenance care. At baseline and semi-annual examinations over 36 months, CPITN scores were assigned to each dentition sextant using probing depths and gingival index scores, and relative periodontal attachment level was assessed at individual tooth sites using an occlusal reference stent. Periodontitis recurrence was defined as any periodontal site exhibiting either a probing depth increase of > or = 3 mm from baseline, or a probing depth increase of > or = 1 mm from baseline together with a loss of relative periodontal attachment of > or = 2 mm from baseline. 49 (59.0%) subjects developed periodontitis recurrence in 147 (29.8%) sextants at 181 (2.2%) individual periodontal sites during the 36-month study period. Baseline CPITN scores of 4 were more common in disease-active subjects than clinically-stable subjects (p = 0.003, t-test), and were associated with a statistically significant 1.66 relative risk of periodontitis recurrence within 36 months. CPITN sextant scores of 3 or 4 showed low specificity and low positive predictive values as indicators of periodontitis recurrence at > or = 1 individual sites within the affected sextant. In comparison, low CPITN sextant scores (0-2) provided high specificity (96.2-100%), high positive predictive values (99.5-100%), and a summary odds ratio of 24.2 as an indicator of clinical stability at all periodontal sites within a given dentition sextant. Changes in sextant scores for CPITN over 6-month periods showed no relationship with periodontitis recurrence at individual periodontal sites. This study suggests that while CPITN is inadequate for detection of periodontitis recurrence, low CPITN scores provide rapid presumptive identification of clinically-stable sextants in adult periodontitis patients on maintenance

  8. High-temperature protein G is essential for activity of the Escherichia coli clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system.

    PubMed

    Yosef, Ido; Goren, Moran G; Kiro, Ruth; Edgar, Rotem; Qimron, Udi

    2011-12-13

    Prokaryotic DNA arrays arranged as clustered regularly interspaced short palindromic repeats (CRISPR), along with their associated proteins, provide prokaryotes with adaptive immunity by RNA-mediated targeting of alien DNA or RNA matching the sequences between the repeats. Here, we present a thorough screening system for the identification of bacterial proteins participating in immunity conferred by the Escherichia coli CRISPR system. We describe the identification of one such protein, high-temperature protein G (HtpG), a homolog of the eukaryotic chaperone heat-shock protein 90. We demonstrate that in the absence of htpG, the E. coli CRISPR system loses its suicidal activity against λ prophage and its ability to provide immunity from lysogenization. Transcomplementation of htpG restores CRISPR activity. We further show that inactivity of the CRISPR system attributable to htpG deficiency can be suppressed by expression of Cas3, a protein that is essential for its activity. Accordingly, we also find that the steady-state level of overexpressed Cas3 is significantly enhanced following HtpG expression. We conclude that HtpG is a newly identified positive modulator of the CRISPR system that is essential for maintaining functional levels of Cas3.

  9. Estimates of genetic parameters among scale activity scores, growth, and fatness in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic parameters for scale activity score were estimated from generations 5, 6, and 7 of a randomly selected, composite population composed of Duroc, Large White, and two sources of Landrace (n = 2,186). At approximately 156 d of age, pigs were weighed (WT) and ultrasound backfat measurements (BF1...

  10. The Disease Activity Score (DAS) and the Disease Activity Score using 28 joint counts (DAS28) in the management of rheumatoid arthritis.

    PubMed

    van Riel, Piet L C M; Renskers, Lisanne

    2016-01-01

    In rheumatoid arthritis (RA), disease activity cannot be measured in all individual patients according to a single variable. The Disease Activity Score (DAS) and the DAS28 have been developed to measure disease activity in RA both in daily clinical practice as well as in clinical trials on a group as well as individual level. The DAS/DAS28 is a continuous measure of RA disease activity that combines information from swollen joints, tender joints, acute phase response and general health. The DAS-based EULAR response criteria were primarily developed to be used in clinical trials. The EULAR response criteria classify individual patients as non-, moderate, or good responders, dependent on the magnitude of change and level of disease activity reached. In addition, already in the early nineties, cut points were developed to categorise patients in remission. The DAS28 is incorporated in several electronic patient records and web-based systems for monitoring purposes in daily clinical practice. In addition to this, it is being used in combination with patient-reported outcome measures (PROMs) to facilitate self-monitoring.

  11. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference.

    PubMed

    Hochstrasser, Megan L; Taylor, David W; Bhat, Prashant; Guegler, Chantal K; Sternberg, Samuel H; Nogales, Eva; Doudna, Jennifer A

    2014-05-06

    In bacteria, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) DNA-targeting complex Cascade (CRISPR-associated complex for antiviral defense) uses CRISPR RNA (crRNA) guides to bind complementary DNA targets at sites adjacent to a trinucleotide signature sequence called the protospacer adjacent motif (PAM). The Cascade complex then recruits Cas3, a nuclease-helicase that catalyzes unwinding and cleavage of foreign double-stranded DNA (dsDNA) bearing a sequence matching that of the crRNA. Cascade comprises the CasA-E proteins and one crRNA, forming a structure that binds and unwinds dsDNA to form an R loop in which the target strand of the DNA base pairs with the 32-nt RNA guide sequence. Single-particle electron microscopy reconstructions of dsDNA-bound Cascade with and without Cas3 reveal that Cascade positions the PAM-proximal end of the DNA duplex at the CasA subunit and near the site of Cas3 association. The finding that the DNA target and Cas3 colocalize with CasA implicates this subunit in a key target-validation step during DNA interference. We show biochemically that base pairing of the PAM region is unnecessary for target binding but critical for Cas3-mediated degradation. In addition, the L1 loop of CasA, previously implicated in PAM recognition, is essential for Cas3 activation following target binding by Cascade. Together, these data show that the CasA subunit of Cascade functions as an essential partner of Cas3 by recognizing DNA target sites and positioning Cas3 adjacent to the PAM to ensure cleavage.

  12. CAS77 and CAS7276: A Review.

    ERIC Educational Resources Information Center

    Harrison, Isom, Jr.

    This paper describes the content, organization, specifications, and methods of use of the CAS77 and CAS7276 online files of worldwide chemical literature, databases produced by Chemical Abstracts Service and available from System Development Corporation (SDC). The scope of the databases, their unit record, their data elements, their modes of…

  13. In vitro enzymology of Cas9.

    PubMed

    Anders, Carolin; Jinek, Martin

    2014-01-01

    Cas9 is a bacterial RNA-guided endonuclease that uses base pairing to recognize and cleave target DNAs with complementarity to the guide RNA. The programmable sequence specificity of Cas9 has been harnessed for genome editing and gene expression control in many organisms. Here, we describe protocols for the heterologous expression and purification of recombinant Cas9 protein and for in vitro transcription of guide RNAs. We describe in vitro reconstitution of the Cas9-guide RNA ribonucleoprotein complex and its use in endonuclease activity assays. The methods outlined here enable mechanistic characterization of the RNA-guided DNA cleavage activity of Cas9 and may assist in further development of the enzyme for genetic engineering applications.

  14. Nursing Activities Score and workload in the intensive care unit of a university hospital

    PubMed Central

    Altafin, Juliana Aparecida Morini; Grion, Cintia Magalhães Carvalho; Tanita, Marcos Toshyiuki; Festti, Josiane; Cardoso, Lucienne Tibery Queiroz; Veiga, Caio Fabrício Fonseca; Kamiji, Danielle; Barbosa, Álan Roger Gomes; Matsubara, Caio Cesar Takeshi; Lara, Aline Bobato; Lopes, Cesar Castello Branco; Blum, Djavani; Matsuo, Tiemi

    2014-01-01

    Objective The nursing workload consists of the time spent by the nursing staff to perform the activities for which they are responsible, whether directly or indirectly related to patient care. The aim of this study was to evaluate the nursing workload in an adult intensive care unit at a university hospital using the Nursing Activities Score (NAS) instrument. Methods A longitudinal, prospective study that involved the patients admitted to the intensive care unit of a university hospital between March and December 2008. The data were collected daily to calculate the NAS, the Acute Physiology and Chronic Health Evaluation (APACHE II), the Sequential Organ Failure Assessment (SOFA) and the Therapeutic Intervention Scoring System (TISS-28) of patients until they left the adult intensive care unit or after 90 days of hospitalization. The level of significance was set at 5%. Results In total, 437 patients were evaluated, which resulted in an NAS of 74.4%. The type of admission, length of stay in the intensive care unit and the patients’ condition when leaving the intensive care unit and hospital were variables associated with differences in the nursing workload. There was a moderate correlation between the mean NAS and APACHE II severity score (r=0.329), the mean organic dysfunction SOFA score (r=0.506) and the mean TISS-28 score (r=0.600). Conclusion We observed a high nursing workload in this study. These results can assist in planning the size of the staff required. The workload was influenced by clinical characteristics, including an increased workload required for emergency surgical patients and patients who died. PMID:25295824

  15. Development and First Validation of a Disease Activity Score for Gout

    PubMed Central

    Carrara, Greta; Viroli, Cinzia; Cimmino, Marco A.; Taylor, William J.; Manara, Maria; Govoni, Marcello; Salaffi, Fausto; Punzi, Leonardo; Montecucco, Carlomaurizio; Matucci‐Cerinic, Marco; Minisola, Giovanni; Ariani, Alarico; Galossi, Alessandra; Lauriti, Ciro; Fracassi, Elena; Idolazzi, Luca; Bardelli, Marco; Selvi, Enrico; Tirri, Enrico; Furini, Federica; Inverardi, Flora; Calabrò, Andrea; Porta, Francesco; Bittelli, Raffaele; Venturino, Francesco; Capsoni, Franco; Prevete, Immacolata; Sebastiani, Giandomenico; Selmi, Carlo; Fabbriciani, Gianluigi; D'Avola, Giovanni; Botticella, Giulia; Serale, Francesca; Seminara, Giulia; D'Alessandro, Giuseppe; Santo, Leonardo; Longato, Lorena; Zaccara, Eleonora; Sinigaglia, Luigi; Atteritano, Marco; Broggini, Marco; Caprioli, Marta; Favero, Marta; Sallì, Salvatore; Scarati, Marco; Parisi, Simone; Malavolta, Nazzarena; Corvaglia, Stefania; Scarpato, Salvatore; Veneto, Vittorio

    2016-01-01

    Objective To develop a new composite disease activity score for gout and provide its first validation. Methods Disease activity has been defined as the ongoing presence of urate deposits that lead to acute arthritis and joint damage. Every measure for each Outcome Measures in Rheumatology core domain was considered. A 3‐step approach (factor analysis, linear discriminant analysis, and linear regression) was applied to derive the Gout Activity Score (GAS). Decision to change treatment or 6‐month flare count were used as the surrogate criteria of high disease activity. Baseline and 12‐month followup data of 446 patients included in the Kick‐Off of the Italian Network for Gout cohort were used. Construct‐ and criterion‐related validity were tested. External validation on an independent sample is reported. Results Factor analysis identified 5 factors: patient‐reported outcomes, joint examination, flares, tophi, and serum uric acid (sUA). Discriminant function analysis resulted in a correct classification of 79%. Linear regression analysis identified a first candidate GAS including 12‐month flare count, sUA, visual analog scale (VAS) of pain, VAS global activity assessment, swollen and tender joint counts, and a cumulative measure of tophi. Alternative scores were also developed. The developed GAS demonstrated a good correlation with functional disability (criterion validity) and discrimination between patient‐ and physician‐reported measures of active disease (construct validity). The results were reproduced in the external sample. Conclusion This study developed and validated a composite measure of disease activity in gout. Further testing is required to confirm its generalizability, responsiveness, and usefulness in assisting with clinical decisions. PMID:26815286

  16. A Comparison of Brunt Criteria, the Non Alcoholic Fatty Liver Disease Activity Score (NAS) & a Proposed NAS-including fibrosis as Valid Diagnostic Scores for NASH

    PubMed Central

    Santiago-Rolón, Amarilys; Purcell, Dagmary; Rosado, Kathia; Toro, Doris H.

    2016-01-01

    Objective Non-alcoholic steatohepatitis (NASH) can result in cirrhosis and end stage liver disease. It is of utmost importance to differentiate NASH from simple steatosis. The aim of this study is to determine the prevalence of NASH in Latino veterans with metabolic syndrome and compare histologic grading using Brunt Criteria, the NAFLD activity score (NAS), and a proposed NAS score including fibrosis. Methods Veterans with metabolic syndrome, hepatic steatosis and elevation of ALT/AST who underwent a liver biopsy from 2004-2010 were included in this study. Biopsies were evaluated by a single blinded Hepatopathologist. Steatosis, lobular inflammation, ballooning and fibrosis were graded per specimen. Each biopsy was evaluated using Brunt criteria, NAS and NAS plus fibrosis. Results Sixty patients were included in this study, 88.3% men with a mean age of 50.4 (± 12.8). 50.0% met criteria for NASH according to the Brunt system. When classifying biopsies using NAS, only 30.0% (18/60) had a score ≥5, while when adding fibrosis, the number of patients with a score ≥5 increased to 33 (55.0%). When evaluating the predictive ability of the two scoring systems, we found that NAS including fibrosis had a higher sensitivity than NAS (86.7% vs. 40.0%) and a lower specificity (76.7% vs. 80.0%). Conclusion In our population with metabolic syndrome and altered liver function tests, about 50-55% had steatohepatitis. There were significant differences between the scoring systems. When using NAS-plus-fibrosis more patients were recognized and the sensitivity increased. Further validation studies are required to evaluate this proposed NAS scoring System. PMID:26602577

  17. CRISPR/Cas9-mediated knockout of p22phox leads to loss of Nox1 and Nox4, but not Nox5 activity.

    PubMed

    Prior, Kim-Kristin; Leisegang, Matthias S; Josipovic, Ivana; Löwe, Oliver; Shah, Ajay M; Weissmann, Norbert; Schröder, Katrin; Brandes, Ralf P

    2016-10-01

    The NADPH oxidases are important transmembrane proteins producing reactive oxygen species (ROS). Within the Nox family, different modes of activation can be discriminated. Nox1-3 are dependent on different cytosolic subunits, Nox4 seems to be constitutively active and Nox5 is directly activated by calcium. With the exception of Nox5, all Nox family members are thought to depend on the small transmembrane protein p22phox. With the discovery of the CRISPR/Cas9-system, a tool to alter genomic DNA sequences has become available. So far, this method has not been widely used in the redox community. On such basis, we decided to study the requirement of p22phox in the Nox complex using CRISPR/Cas9-mediated knockout. Knockout of the gene of p22phox, CYBA, led to an ablation of activity of Nox4 and Nox1 but not of Nox5. Production of hydrogen peroxide or superoxide after knockout could be rescued with either human or rat p22phox, but not with the DUOX-maturation factors DUOXA1/A2. Furthermore, different mutations of p22phox were studied regarding the influence on Nox4-dependent H2O2 production. P22phox Q130* and Y121H affected maturation and activity of Nox4. Hence, Nox5-dependent O2(•-) production is independent of p22phox, but native p22phox is needed for maturation of Nox4 and production of H2O2.

  18. Highly efficient Cas9-mediated transcriptional programming.

    PubMed

    Chavez, Alejandro; Scheiman, Jonathan; Vora, Suhani; Pruitt, Benjamin W; Tuttle, Marcelle; P R Iyer, Eswar; Lin, Shuailiang; Kiani, Samira; Guzman, Christopher D; Wiegand, Daniel J; Ter-Ovanesyan, Dmitry; Braff, Jonathan L; Davidsohn, Noah; Housden, Benjamin E; Perrimon, Norbert; Weiss, Ron; Aach, John; Collins, James J; Church, George M

    2015-04-01

    The RNA-guided nuclease Cas9 can be reengineered as a programmable transcription factor. However, modest levels of gene activation have limited potential applications. We describe an improved transcriptional regulator obtained through the rational design of a tripartite activator, VP64-p65-Rta (VPR), fused to nuclease-null Cas9. We demonstrate its utility in activating endogenous coding and noncoding genes, targeting several genes simultaneously and stimulating neuronal differentiation of human induced pluripotent stem cells (iPSCs).

  19. Translating DPYD genotype into DPD phenotype: using the DPYD gene activity score.

    PubMed

    Henricks, Linda M; Lunenburg, Carin A T C; Meulendijks, Didier; Gelderblom, Hans; Cats, Annemieke; Swen, Jesse J; Schellens, Jan H M; Guchelaar, Henk-Jan

    2015-01-01

    The dihydropyrimidine dehydrogenase enzyme (DPD, encoded by the gene DPYD) plays a key role in the metabolism of fluoropyrimidines. DPD deficiency occurs in 4-5% of the population and is associated with severe fluoropyrimidine-related toxicity. Several SNPs in DPYD have been described that lead to absent or reduced enzyme activity, including DPYD*2A, DPYD*13, c.2846A>T and c.1236G>A/haplotype B3. Since these SNPs differ in their effect on DPD enzyme activity, a differentiated dose adaption is recommended. We propose the gene activity score for translating DPYD genotype into phenotype, accounting for differences in functionality of SNPs. This method can be used to standardize individualized fluoropyrimidine dose adjustments, resulting in optimal safety and effectiveness.

  20. Comparison of chiropractic student scores before and after utilizing active learning techniques in a classroom setting.

    PubMed

    Guagliardo, Joseph G; Hoiriis, Kathryn T

    2013-01-01

    Objective : We report the differences in final examination scores achieved by students at the culmination of two different teaching strategies in an introductory skills course. Methods : Multiple choice examination scores from six consecutive academic calendar sessions over 18 months (n = 503) were compared. Two groups were used: Cohort A (n = 290) represented students who were enrolled in the course 3 consecutive academic sessions before an instructional change and Cohort B (n = 213) included students who were enrolled in 3 consecutive academic sessions following the instructional change, which included a more active learning format. Statistical analyses used were 2-tailed independent t-test, one-way ANOVA, Tukey's honestly significant difference (HSD), and effect size. Results : The 2-tailed independent t-test revealed a significant difference between the two groups (t = -3.71, p < .001; 95% confidence interval [CI] 1.29-4.20). Significant difference was found in the highest performing subgroup compared to the lowest performing subgroup in Cohort A (F = 3.343, p = .037). For Cohort A subgroups 1 and 2, Tukey's HSD was p < .028. In Cohort B, no difference was found among subgroups (F = 1.912, p = .150, HSD p > .105). Conclusion : Compared to previous versions of the same course taught by the same instructor, the students in the new course design performed better, suggesting that using active learning techniques helps improve student achievement.

  1. Alimentary Habits, Physical Activity, and Framingham Global Risk Score in Metabolic Syndrome

    PubMed Central

    Soares, Thays Soliman; Piovesan, Carla Haas; Gustavo, Andréia da Silva; Macagnan, Fabrício Edler; Bodanese, Luiz Carlos; Feoli, Ana Maria Pandolfo

    2014-01-01

    Background Metabolic syndrome is a complex disorder represented by a set of cardiovascular risk factors. A healthy lifestyle is strongly related to improve Quality of Life and interfere positively in the control of risk factors presented in this condition. Objective To evaluate the effect of a program of lifestyle modification on the Framingham General Cardiovascular Risk Profile in subjects diagnosed with metabolic syndrome. Methods A sub-analysis study of a randomized clinical trial controlled blind that lasted three months. Participants were randomized into four groups: dietary intervention + placebo (DIP), dietary intervention + supplementation of omega 3 (fish oil 3 g/day) (DIS3), dietary intervention + placebo + physical activity (DIPE) and dietary intervention + physical activity + supplementation of omega 3 (DIS3PE). The general cardiovascular risk profile of each individual was calculated before and after the intervention. Results The study included 70 subjects. Evaluating the score between the pre and post intervention yielded a significant value (p < 0.001). We obtained a reduction for intermediate risk in 25.7% of subjects. After intervention, there was a significant reduction (p < 0.01) on cardiovascular age, this being more significant in groups DIP (5.2%) and DIPE (5.3%). Conclusion Proposed interventions produced beneficial effects for reducing cardiovascular risk score. This study emphasizes the importance of lifestyle modification in the prevention and treatment of cardiovascular diseases. PMID:24652053

  2. Comparison of chiropractic student scores before and after utilizing active learning techniques in a classroom setting

    PubMed Central

    Guagliardo, Joseph G.; Hoiriis, Kathryn T.

    2013-01-01

    Objective We report the differences in final examination scores achieved by students at the culmination of two different teaching strategies in an introductory skills course. Methods Multiple choice examination scores from six consecutive academic calendar sessions over 18 months (n = 503) were compared. Two groups were used: Cohort A (n = 290) represented students who were enrolled in the course 3 consecutive academic sessions before an instructional change and Cohort B (n = 213) included students who were enrolled in 3 consecutive academic sessions following the instructional change, which included a more active learning format. Statistical analyses used were 2-tailed independent t-test, one-way ANOVA, Tukey's honestly significant difference (HSD), and effect size. Results The 2-tailed independent t-test revealed a significant difference between the two groups (t = −3.71, p < .001; 95% confidence interval [CI] 1.29–4.20). Significant difference was found in the highest performing subgroup compared to the lowest performing subgroup in Cohort A (F = 3.343, p = .037). For Cohort A subgroups 1 and 2, Tukey's HSD was p < .028. In Cohort B, no difference was found among subgroups (F = 1.912, p = .150, HSD p > .105). Conclusion Compared to previous versions of the same course taught by the same instructor, the students in the new course design performed better, suggesting that using active learning techniques helps improve student achievement. PMID:23964739

  3. [CAS General Standards 2012

    ERIC Educational Resources Information Center

    Council for the Advancement of Standards in Higher Education, 2011

    2011-01-01

    The mission of the Council for the Advancement of Standards in Higher Education (CAS) is to promote the improvement of programs and services to enhance the quality of student learning and development. CAS is a consortium of professional associations who work collaboratively to develop and promulgate standards and guidelines and to encourage…

  4. Nursing activities score (NAS): a proposal for practical application in intensive care units.

    PubMed

    Gonçalves, Leilane Andrade; Padilha, Katia Grillo; Cardoso Sousa, Regina M

    2007-12-01

    For over 30 years in an attempt to demonstrate the cost-benefit ratio of the intensive care unit (ICU) a variety of tools have been developed to measure not only the severity of illness of the patient but also to capture the true cost of nursing workload. In this context, the nursing activities score (NAS) was developed as a result of modifications to the therapeutic interventions scoring system-28 (TISS-28). The NAS is a tool to measure nursing workload ICU and it has been shown to be twice as effective in measuring how nurses spend their time caring for critically ill patients than the TISS-28. This paper discuss the introduction of the NAS into everyday use in an intensive care unit in Brazil and highlights the challenges of standardisation of operational definitions, training requirements and accurate completion of the documentation when using such a tool. The rationale and steps undertaken to achieve this are outlined and the benefits of such a process are highlighted.

  5. Evaluating Computer Automated Scoring: Issues, Methods, and an Empirical Illustration

    ERIC Educational Resources Information Center

    Yang, Yongwei; Buckendahl, Chad W.; Juszkiewicz, Piotr J.; Bhola, Dennison S.

    2005-01-01

    With the continual progress of computer technologies, computer automated scoring (CAS) has become a popular tool for evaluating writing assessments. Research of applications of these methodologies to new types of performance assessments is still emerging. While research has generally shown a high agreement of CAS system generated scores with those…

  6. Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity.

    PubMed

    Nuñez, James K; Lee, Amy S Y; Engelman, Alan; Doudna, Jennifer A

    2015-03-12

    Bacteria and archaea insert spacer sequences acquired from foreign DNAs into CRISPR loci to generate immunological memory. The Escherichia coli Cas1-Cas2 complex mediates spacer acquisition in vivo, but the molecular mechanism of this process is unknown. Here we show that the purified Cas1-Cas2 complex integrates oligonucleotide DNA substrates into acceptor DNA to yield products similar to those generated by retroviral integrases and transposases. Cas1 is the catalytic subunit and Cas2 substantially increases integration activity. Protospacer DNA with free 3'-OH ends and supercoiled target DNA are required, and integration occurs preferentially at the ends of CRISPR repeats and at sequences adjacent to cruciform structures abutting AT-rich regions, similar to the CRISPR leader sequence. Our results demonstrate the Cas1-Cas2 complex to be the minimal machinery that catalyses spacer DNA acquisition and explain the significance of CRISPR repeats in providing sequence and structural specificity for Cas1-Cas2-mediated adaptive immunity.

  7. Interpreting the multi-biomarker disease activity score in the context of tocilizumab treatment for patients with rheumatoid arthritis.

    PubMed

    Reiss, William G; Devenport, Jenny N; Low, Jason M; Wu, George; Sasso, Eric H

    2016-02-01

    The multi-biomarker disease activity (MBDA) score measures 12 proteins involved in the pathophysiology of rheumatoid arthritis (RA) to assess disease activity (DA). Previous studies demonstrated correlations between MBDA and clinical DA scores with some RA therapies. In this analysis, the relationship between DA and MBDA scores and changes in MBDA component biomarkers were evaluated in tocilizumab (TCZ)-treated patients. Patients from the ACT-RAY study were included in this analysis if they had DA measures and serum collected at pre-specified time points with sufficient serum for MBDA testing at ≥1 visit. Descriptive statistics, associations between outcomes, and percentage agreement between DA categories were calculated. Seventy-eight patients were included and were similar to the ACT-RAY population. Correlations between MBDA score and DAS28-CRP were ρ = 0.50 at baseline and ρ = 0.26 at week 24. Agreement between low/moderate/high categories of MBDA score and DAS28-CRP was observed for 77.1 % of patients at baseline and 23.7 % at week 24. Mean changes from baseline to weeks 4, 12, and 24 were proportionately smaller for MBDA score than DAS28-CRP. Unlike some other MBDA biomarkers, interleukin-6 (IL-6) concentrations increased in most patients during TCZ treatment. Correlations and agreement between MBDA and DAS28-CRP or CDAI scores were lower at week 24 versus baseline. The proportionately smaller magnitude of response observed for MBDA score versus DAS28-CRP may be due to the influence of the increase in IL-6 concentrations on MBDA score. Thus, MBDA scores obtained during TCZ treatment should be interpreted cautiously and in the context of available clinical information.

  8. To examine the relationship between the Functional Movement Screen and the Landing Error Scoring System in an active collegiate population.

    PubMed

    Everard, E; Harrison, Aj; Lyons, M

    2016-07-25

    In recent years there has been an increasing focus on movement screening as the principal aspect of pre-participation testing. Two of the most common movement screening tools are the Functional Movement Screen (FMS) and the Landing Error Scoring System (LESS). Several studies have examined the reliability and validity of these tools but so far there have been no studies comparing the results of these two screening tools against each other. Therefore, the purpose of this study was to determine the relationship between Functional Movement Screen (FMS) scores and Landing Error Scoring System (LESS) scores. Ninety-eight male college athletes actively competing in sport (Gaelic games, soccer, athletics, boxing/mixed martial arts, Olympic weight lifting) participated in the study and performed the FMS and LESS screens. Both the 21 point and 100 point scoring systems were used to score the FMS. Spearman's correlation coefficients were used to determine the relationship between the two screening scores. The results showed a significant moderate correlation between FMS and LESS scores (rho 100 and 21 point = -.528; -.487; p< .001). In addition, r values of .26 and .23 indicate a poor shared variance between the two screens. The results indicate that performing well in one of the screens does not necessarily equate to performing well in the other. This has practical implications as it highlights that both screens may assess different movement patterns and should not be used as a substitute for each other.

  9. Physical activity and better medication compliance improve mini-mental state examination scores in the elderly.

    PubMed

    Guimarães, Fabiana Costa; Amorim, Paulo Roberto dos Santos; Reis, Fernando Fonseca dos; Bonoto, Robson Teixeira; Oliveira, Wederson Candido de; Moura, Tiago Augusto da Silva; Assis, Cláudia Loures de; Palotás, András; Lima, Luciana Moreira

    2015-01-01

    In addition to hypertension, dyslipidemia, atherosclerosis, and diabetes, a sedentary lifestyle plays a pivotal role in cerebro- and cardiovascular disease and progressive cognitive decline, including vascular dementia and Alzheimer's disease. The present study investigated whether controlling the key risks and participating in physical activity have a beneficial impact on these disorders. Elderly volunteers were enrolled in a 3-month program that consisted of structured exercise three times per week. The daily routine, medical treatment, and vital parameters were evaluated and correlated with the subjects' neuropsychiatric status. High blood pressure was found in 40% of the participants, with no significant differences between the sexes. A higher proportion of females (55%) than males (18%) forgot to take their medication during the observation period. Significant negative correlations were found between Mini-Mental State Examination (MMSE) scores and age, lack of a caregiver, and increased pulse rate before or after exercise. These results suggest that the presence of home assistance and subsequent improvement in medication compliance, vital parameter optimization, and regular physical activity may yield better MMSE results and a lower risk for cerebro- and cardiovascular disease.

  10. Comparison of contemporary risk scores for predicting outcomes after surgery for active infective endocarditis.

    PubMed

    Wang, Tom Kai Ming; Oh, Timothy; Voss, Jamie; Gamble, Greg; Kang, Nicholas; Pemberton, James

    2015-03-01

    Decision making regarding surgery for acute bacterial endocarditis is complex given its heterogeneity and often fatal course. Few studies have investigated the utility of operative risk scores in this setting. Endocarditis-specific scores have recently been developed. We assessed the prognostic utility of contemporary risk scores for mortality and morbidity after endocarditis surgery. Additive and logistic EuroSCORE I, EuroSCORE II, additive Society of Thoracic Surgeon's (STS) Endocarditis Score and additive De Feo-Cotrufo Score were retrospectively calculated for patients undergoing surgery for endocarditis during 2005-2011. Pre-specified primary outcomes were operative mortality, composite morbidity and mortality during follow-up. A total of 146 patients were included with an operative mortality of 6.8 % followed for 4.1 ± 2.4 years. Mean scores were additive EuroSCORE I: 8.0 ± 2.5, logistic EuroSCORE I: 13.2 ± 10.1 %, EuroSCORE II: 9.1 % ± 9.4 %, STS Score: 32.2 ± 13.5 and De Feo-Cotrufo Score: 14.6 ± 9.2. Corresponding areas under curve (AUC) for operative mortality 0.653, 0.645, 0.656, 0.699 and 0.744; for composite morbidity were 0.623, 0.625, 0.720, 0.714 and 0.774; and long-term mortality 0.588, 0.579, 0.686, 0.735 and 0.751. The best tool for post-operative stroke was EuroSCORE II: AUC 0.837; for ventilation >24 h and return to theatre the De Feo-Cotrufo Scores were: AUC 0.821 and 0.712. Pre-operative inotrope or intra-aortic balloon pump treatment, previous coronary bypass grafting and dialysis were independent predictors of operative and long-term mortality. In conclusion, risk models developed specifically from endocarditis surgeries and incorporating endocarditis variables have improved prognostic ability of outcomes, and can play an important role in the decision making towards surgery for endocarditis.

  11. Protein engineering of Cas9 for enhanced function.

    PubMed

    Oakes, Benjamin L; Nadler, Dana C; Savage, David F

    2014-01-01

    CRISPR/Cas systems act to protect the cell from invading nucleic acids in many bacteria and archaea. The bacterial immune protein Cas9 is a component of one of these CRISPR/Cas systems and has recently been adapted as a tool for genome editing. Cas9 is easily targeted to bind and cleave a DNA sequence via a complementary RNA; this straightforward programmability has gained Cas9 rapid acceptance in the field of genetic engineering. While this technology has developed quickly, a number of challenges regarding Cas9 specificity, efficiency, fusion protein function, and spatiotemporal control within the cell remain. In this work, we develop a platform for constructing novel proteins to address these open questions. We demonstrate methods to either screen or select active Cas9 mutants and use the screening technique to isolate functional Cas9 variants with a heterologous PDZ domain inserted within the protein. As a proof of concept, these methods lay the groundwork for the future construction of diverse Cas9 proteins. Straightforward and accessible techniques for genetic editing are helping to elucidate biology in new and exciting ways; a platform to engineer new functionalities into Cas9 will help forge the next generation of genome-modifying tools.

  12. Inhibition of CRISPR-Cas9 with Bacteriophage Proteins.

    PubMed

    Rauch, Benjamin J; Silvis, Melanie R; Hultquist, Judd F; Waters, Christopher S; McGregor, Michael J; Krogan, Nevan J; Bondy-Denomy, Joseph

    2017-01-12

    Bacterial CRISPR-Cas systems utilize sequence-specific RNA-guided nucleases to defend against bacteriophage infection. As a countermeasure, numerous phages are known that produce proteins to block the function of class 1 CRISPR-Cas systems. However, currently no proteins are known to inhibit the widely used class 2 CRISPR-Cas9 system. To find these inhibitors, we searched cas9-containing bacterial genomes for the co-existence of a CRISPR spacer and its target, a potential indicator for CRISPR inhibition. This analysis led to the discovery of four unique type II-A CRISPR-Cas9 inhibitor proteins encoded by Listeria monocytogenes prophages. More than half of L. monocytogenes strains with cas9 contain at least one prophage-encoded inhibitor, suggesting widespread CRISPR-Cas9 inactivation. Two of these inhibitors also blocked the widely used Streptococcus pyogenes Cas9 when assayed in Escherichia coli and human cells. These natural Cas9-specific "anti-CRISPRs" present tools that can be used to regulate the genome engineering activities of CRISPR-Cas9.

  13. Does body mass index (BMI) influence the Ankylosing Spondylitis Disease Activity Score in axial spondyloarthritis?

    PubMed Central

    Rubio Vargas, Roxana; van den Berg, Rosaline; van Lunteren, Miranda; Ez-Zaitouni, Zineb; Bakker, Pauline A C; Dagfinrud, Hanne; Ramonda, Roberta; Landewé, Robert; Molenaar, Esmeralda; van Gaalen, Floris A; van der Heijde, Désirée

    2016-01-01

    Objective Obesity is associated with elevated C reactive protein (CRP) levels. The Ankylosing Spondylitis Disease Activity Score (ASDAS) combines patient-reported outcomes (PROs) and CRP. We evaluated the effect of body mass index (BMI) on CRP and on ASDAS, and studied if ASDAS can be used in obese axial spondyloarthritis (axSpA) patients to assess disease activity. Methods Baseline data of patients with chronic back pain of short duration included in the SPondyloArthritis Caught Early (SPACE) cohort were used. Collected data included BMI and ASDAS. Patients were classified according to the ASAS axSpA classification criteria and BMI (overweight ≥25 and obese ≥30). Correlation and linear regression analyses were performed to assess the relation between BMI and ASDAS. Linear regression models were performed to assess if age or gender were effect modifiers in the relation between BMI and CRP, and between BMI and ASDAS. Results In total, 428 patients were analysed (n=168 axSpA; n=260 no-axSpA). The mean age was 31.1 years, 36.9% were male, 26.4% were overweight and 13.3% obese, median CRP was 3 mg/L and the mean ASDAS was 2.6. Gender was the only factor modifying the relationship between BMI and CRP as BMI had an influence on CRP only in females (β=0.35; p<0.001). Correlations between BMI and CRP or PROs were generally weak, and only significant for CRP in female patients. BMI was not related to ASDAS in axSpA patients. Conclusions ASDAS is not affected by BMI in axSpA patients. Therefore, based on our data it is not necessary to take BMI in consideration when assessing disease activity using ASDAS in axSpA patients. PMID:27403336

  14. Predicting Disease-Related Subnetworks for Type 1 Diabetes Using a New Network Activity Score

    PubMed Central

    Gao, Shouguo; Jia, Shuang; Hessner, Martin J.

    2012-01-01

    Abstract In this study we investigated the advantage of including network information in prioritizing disease genes of type 1 diabetes (T1D). First, a naïve Bayesian network (NBN) model was developed to integrate information from multiple data sources and to define a T1D-involvement probability score (PS) for each individual gene. The algorithm was validated using known functional candidate genes as a benchmark. Genes with higher PS were found to be more likely to appear in T1D-related publications. Next a new network activity metric was proposed to evaluate the T1D relevance of protein-protein interaction (PPI) subnetworks. The metric considered the contribution both from individual genes and from network topological characteristics. The predictions were confirmed by several independent datasets, including a genome wide association study (GWAS), and two large-scale human gene expression studies. We found that novel candidate genes in the T1D subnetworks showed more significant associations with T1D than genes predicted using PS alone. Interestingly, most novel candidates were not encoded within the human leukocyte antigen (HLA) region, and their expression levels showed correlation with disease only in cohorts with low-risk HLA genotypes. The results suggested the importance of mapping disease gene networks in dissecting the genetics of complex diseases, and offered a general approach to network-based disease gene prioritization from multiple data sources. PMID:22917479

  15. Is anterior cruciate ligament surgery technique important in rehabilitation and activity scores?

    PubMed Central

    Kilinc, Bekir Eray; Kara, Adnan; Celik, Haluk; Oc, Yunus; Camur, Savas

    2016-01-01

    To compare the two different anterior cruciate ligament surgery techniques’ effect in rehabilitation and activity performance. Fifty-five patients were evaluated. Twenty-seven patients with transtibial technique (TT), 28 with anatomic single-bundle technique (AT) included. Tegner Activity Scale (TAS) was performed at preoperation and follow-up. The returning time of the sport and work was evaluated at follow-up. Single-leg hop test was performed at follow-up. Outcomes were compared between the two groups. The determined length difference between the operated knee and the intact knee was compared between the two groups. Average age of TT and AT was 27.9±6.4 yr, 28.3±6 yr, respectively. There was a significant difference between the two groups in duration of returning to sport. TT group had higher duration to return to sport (P<0.01). No difference between the two groups in duration of returning to work (P>0.05). There was a significant difference between the two groups. TT group had significantly higher values than AT group (P<0.01). No difference in TAS between the two techniques at preoperation and at last follow-up (P>0.05). The increase of TAS in patients who had AT was higher than the patients who had TT (P>0.05). No difference in single-leg hop test at 55%–65%, 65%–75%, and 85%–95% level (P>0.05). In this test at 75%–85% TT group had higher values than AT group (P<0.05), AT group had higher values at 95%–105% level (P<0.05). Good short and long-term knee outcome scores depend on rehabilitation protocol after surgery. Surgery technique should provide the adequate stability in rehabilitation period. AT obtains better outcomes in rehabilitation. PMID:27419120

  16. Harnessing CRISPR-Cas9 immunity for genetic engineering.

    PubMed

    Charpentier, Emmanuelle; Marraffini, Luciano A

    2014-06-01

    CRISPR-Cas encodes an adaptive immune system that defends prokaryotes against infectious viruses and plasmids. Immunity is mediated by Cas nucleases, which use small RNA guides (the crRNAs) to specify a cleavage site within the genome of invading nucleic acids. In type II CRISPR-Cas systems, the DNA-cleaving activity is performed by a single enzyme Cas9 guided by an RNA duplex. Using synthetic single RNA guides, Cas9 can be reprogrammed to create specific double-stranded DNA breaks in the genomes of a variety of organisms, ranging from human cells to bacteria, and thus constitutes a powerful tool for genetic engineering. Here we describe recent advancements in our understanding of type II CRISPR-Cas immunity and how these studies led to revolutionary genome editing applications.

  17. Highly efficient Cas9-mediated transcriptional programming

    DOE PAGES

    Chavez, Alejandro; Scheiman, Jonathan; Vora, Suhani; ...

    2015-03-02

    The RNA-guided nuclease Cas9 can be reengineered as a programmable transcription factor. However, modest levels of gene activation have limited potential applications. Here we describe an improved transcriptional regulator through the rational design of a tripartite activator, VP64-p65-Rta (VPR), fused to nuclease-null Cas9. Here, we demonstrate its utility in activating endogenous coding and non-coding genes, targeting several genes simultaneously and stimulating neuronal differentiation of human induced pluripotent stem cells (iPSCs).

  18. Foreign DNA capture during CRISPR–Cas adaptive immunity

    PubMed Central

    Nuñez, James K.; Harrington, Lucas B.; Kranzusch, Philip J.; Engelman, Alan N.; Doudna, Jennifer A.

    2015-01-01

    Bacteria and archaea generate adaptive immunity against phages and plasmids by integrating foreign DNA of specific 30–40 base pair (bp) lengths into clustered regularly interspaced short palindromic repeats (CRISPR) loci as spacer segments1–6. The universally conserved Cas1–Cas2 integrase complex catalyzes spacer acquisition using a direct nucleophilic integration mechanism similar to retroviral integrases and transposases7–13. How the Cas1–Cas2 complex selects foreign DNA substrates for integration remains unknown. Here we present X-ray crystal structures of the Escherichia coli Cas1–Cas2 complex bound to cognate 33 nucleotide (nt) protospacer DNA substrates. The protein complex creates a curved binding surface spanning the length of the DNA and splays the ends of the protospacer to allow each terminal nucleophilic 3′–OH to enter a channel leading into the Cas1 active sites. Phosphodiester backbone interactions between the protospacer and the proteins explain the sequence-nonspecific substrate selection observed in vivo2–4. Our results uncover the structural basis for foreign DNA capture and the mechanism by which Cas1–Cas2 functions as a molecular ruler to dictate the sequence architecture of CRISPR loci. PMID:26503043

  19. Foreign DNA capture during CRISPR-Cas adaptive immunity.

    PubMed

    Nuñez, James K; Harrington, Lucas B; Kranzusch, Philip J; Engelman, Alan N; Doudna, Jennifer A

    2015-11-26

    Bacteria and archaea generate adaptive immunity against phages and plasmids by integrating foreign DNA of specific 30-40-base-pair lengths into clustered regularly interspaced short palindromic repeat (CRISPR) loci as spacer segments. The universally conserved Cas1-Cas2 integrase complex catalyses spacer acquisition using a direct nucleophilic integration mechanism similar to retroviral integrases and transposases. How the Cas1-Cas2 complex selects foreign DNA substrates for integration remains unknown. Here we present X-ray crystal structures of the Escherichia coli Cas1-Cas2 complex bound to cognate 33-nucleotide protospacer DNA substrates. The protein complex creates a curved binding surface spanning the length of the DNA and splays the ends of the protospacer to allow each terminal nucleophilic 3'-OH to enter a channel leading into the Cas1 active sites. Phosphodiester backbone interactions between the protospacer and the proteins explain the sequence-nonspecific substrate selection observed in vivo. Our results uncover the structural basis for foreign DNA capture and the mechanism by which Cas1-Cas2 functions as a molecular ruler to dictate the sequence architecture of CRISPR loci.

  20. Expanding the CRISPR Toolbox: Targeting RNA with Cas13b.

    PubMed

    Barrangou, Rodolphe; Gersbach, Charles A

    2017-02-16

    In this issue of Molecular Cell, Smargon et al. (2017) unearth Cas13b from type VI-B CRISPR-Cas immune systems and characterize its RNA-guided, RNA-targeting activity, including regulation by the novel co-factors Csx27 and Csx28, as well as non-specific collateral RNA damage.

  1. Psychometric Properties of the Scores on the Behavioral Inhibition and Activation Scales in a Sample of Norwegian Children

    ERIC Educational Resources Information Center

    Bjornebekk, Gunnar

    2009-01-01

    The primary aim of this study was to examine the psychometric properties of the scores on a version for children of the Carver and White Behavioral Inhibition and Activation scales (the BIS-BAS scales). This involved administering the BIS-BAS scales, the Positive and Negative Affect Schedule, the Junior Eysenck Personality Questionnaire…

  2. Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators.

    PubMed

    Polstein, Lauren R; Perez-Pinera, Pablo; Kocak, D Dewran; Vockley, Christopher M; Bledsoe, Peggy; Song, Lingyun; Safi, Alexias; Crawford, Gregory E; Reddy, Timothy E; Gersbach, Charles A

    2015-08-01

    Genome engineering technologies based on the CRISPR/Cas9 and TALE systems are enabling new approaches in science and biotechnology. However, the specificity of these tools in complex genomes and the role of chromatin structure in determining DNA binding are not well understood. We analyzed the genome-wide effects of TALE- and CRISPR-based transcriptional activators in human cells using ChIP-seq to assess DNA-binding specificity and RNA-seq to measure the specificity of perturbing the transcriptome. Additionally, DNase-seq was used to assess genome-wide chromatin remodeling that occurs as a result of their action. Our results show that these transcription factors are highly specific in both DNA binding and gene regulation and are able to open targeted regions of closed chromatin independent of gene activation. Collectively, these results underscore the potential for these technologies to make precise changes to gene expression for gene and cell therapies or fundamental studies of gene function.

  3. Can Contemporary Patients with Biopsy Gleason Score 3+4 Be Eligible for Active Surveillance?

    PubMed Central

    Kwon, Ohseong; Kim, Tae Jin; Lee, In Jae; Byun, Seok-Soo; Lee, Sang Eun; Hong, Sung Kyu

    2014-01-01

    Introduction We analyzed whether expansion of existing active surveillance (AS) protocols to include men with biopsy Gleason score (GS) 3+4 prostate cancer (PCa) would significantly alter pathologic and biochemical outcomes of potential candidates of AS. Methods Among patients who underwent radical prostatectomy at our center between 2006 and 2013, we identified 577 patients (group A) who preoperatively fulfilled at least one of 6 different AS criteria. Also, we identified 217 patients (group B) with biopsy GS 3+4 but fulfilled non-GS criteria from at least one of 6 AS criteria. Designating group C as expanded group incorporating all patients in group A and B, we compared risk of unfavorable disease (pathologic GS ≥4+3 and/or pathologic T stage ≥pT3a) and biochemical recurrence (BCR)-free survival between groups. Results Rates of unfavorable disease were not significantly different between patients of group A and C who met AS criteria from 5 institutions (all p>0.05), not including University of Toronto (p<0.001). Also BCR-free survivals were not significantly different between patients in group A and C meeting each of 6 AS criteria (all p>0.05). Among group B, PSAD>0.15 ng/mL/cm3 (p = 0.011) and tumor length of biopsy GS 3+4 core>4 mm (p = 0.007) were significant predictors of unfavorable disease. When these two criteria were newly applied in defining group B, rates of unfavorable disease in group A and B was 15.6% and 14.7%, respectively (p = 0.886). Conclusion Overall rate of pathologically aggressive PCa harbored by potential candidates for AS may not be increased significantly with expansion of criteria to biopsy GS 3+4 under most contemporary AS protocols. PSAD and tumor length of biopsy GS 3+4 core may be useful predictors of more aggressive disease among potential candidates for AS with biopsy GS 3+4. PMID:25268898

  4. The cerebrospinal fluid HIV risk score for assessing central nervous system activity in persons with HIV.

    PubMed

    Hammond, Edward R; Crum, Rosa M; Treisman, Glenn J; Mehta, Shruti H; Marra, Christina M; Clifford, David B; Morgello, Susan; Simpson, David M; Gelman, Benjamin B; Ellis, Ronald J; Grant, Igor; Letendre, Scott L; McArthur, Justin C

    2014-08-01

    Detectable human immunodeficiency virus (HIV) RNA in the cerebrospinal fluid (CSF) is associated with central nervous system (CNS) complications. We developed the CSF HIV risk score through prediction modeling to estimate the risk of detectable CSF HIV RNA (threshold >50 copies/mL) to help identify persons who might benefit most from CSF monitoring. We used baseline data from 1,053 participants receiving combination antiretroviral therapy who were enrolled in the 6-center, US-based CNS HIV Antiretroviral Therapy Effects Research (CHARTER) prospective cohort in 2004-2007. Plasma HIV RNA, CNS penetration effectiveness, duration of combination antiretroviral therapy, medication adherence, race, and depression status were retained correlates of CSF HIV RNA, displaying good discrimination (C statistic = 0.90, 95% confidence interval (CI): 0.87, 0.93) and calibration (Hosmer-Lemeshow P = 0.85). The CSF HIV risk score ranges from 0 to 42 points, with a mean of 15.4 (standard deviation, 7.3) points. At risk scores greater than 25, the probability of detecting CSF HIV RNA was at least 42.9% (95% CI: 36.6, 49.6). For each 1-point increase, the odds of detecting CSF HIV RNA increased by 26% (odds ratio = 1.26, 95% CI: 1.21, 1.31; P < 0.01). The risk score correlates with detection of CSF HIV RNA. It represents an advance in HIV management and monitoring of CNS effects, providing a potentially useful tool for clinicians.

  5. The Cerebrospinal Fluid HIV Risk Score for Assessing Central Nervous System Activity in Persons With HIV

    PubMed Central

    Hammond, Edward R.; Crum, Rosa M.; Treisman, Glenn J.; Mehta, Shruti H.; Marra, Christina M.; Clifford, David B.; Morgello, Susan; Simpson, David M.; Gelman, Benjamin B.; Ellis, Ronald J.; Grant, Igor; Letendre, Scott L.; McArthur, Justin C.

    2014-01-01

    Detectable human immunodeficiency virus (HIV) RNA in the cerebrospinal fluid (CSF) is associated with central nervous system (CNS) complications. We developed the CSF HIV risk score through prediction modeling to estimate the risk of detectable CSF HIV RNA (threshold >50 copies/mL) to help identify persons who might benefit most from CSF monitoring. We used baseline data from 1,053 participants receiving combination antiretroviral therapy who were enrolled in the 6-center, US-based CNS HIV Antiretroviral Therapy Effects Research (CHARTER) prospective cohort in 2004–2007. Plasma HIV RNA, CNS penetration effectiveness, duration of combination antiretroviral therapy, medication adherence, race, and depression status were retained correlates of CSF HIV RNA, displaying good discrimination (C statistic = 0.90, 95% confidence interval (CI): 0.87, 0.93) and calibration (Hosmer-Lemeshow P = 0.85). The CSF HIV risk score ranges from 0 to 42 points, with a mean of 15.4 (standard deviation, 7.3) points. At risk scores greater than 25, the probability of detecting CSF HIV RNA was at least 42.9% (95% CI: 36.6, 49.6). For each 1-point increase, the odds of detecting CSF HIV RNA increased by 26% (odds ratio = 1.26, 95% CI: 1.21, 1.31; P < 0.01). The risk score correlates with detection of CSF HIV RNA. It represents an advance in HIV management and monitoring of CNS effects, providing a potentially useful tool for clinicians. PMID:24966216

  6. New CRISPR-Cas systems from uncultivated microbes.

    PubMed

    Burstein, David; Harrington, Lucas B; Strutt, Steven C; Probst, Alexander J; Anantharaman, Karthik; Thomas, Brian C; Doudna, Jennifer A; Banfield, Jillian F

    2017-02-09

    CRISPR-Cas systems provide microbes with adaptive immunity by employing short DNA sequences, termed spacers, that guide Cas proteins to cleave foreign DNA. Class 2 CRISPR-Cas systems are streamlined versions, in which a single RNA-bound Cas protein recognizes and cleaves target sequences. The programmable nature of these minimal systems has enabled researchers to repurpose them into a versatile technology that is broadly revolutionizing biological and clinical research. However, current CRISPR-Cas technologies are based solely on systems from isolated bacteria, leaving the vast majority of enzymes from organisms that have not been cultured untapped. Metagenomics, the sequencing of DNA extracted directly from natural microbial communities, provides access to the genetic material of a huge array of uncultivated organisms. Here, using genome-resolved metagenomics, we identify a number of CRISPR-Cas systems, including the first reported Cas9 in the archaeal domain of life, to our knowledge. This divergent Cas9 protein was found in little-studied nanoarchaea as part of an active CRISPR-Cas system. In bacteria, we discovered two previously unknown systems, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. Notably, all required functional components were identified by metagenomics, enabling validation of robust in vivo RNA-guided DNA interference activity in Escherichia coli. Interrogation of environmental microbial communities combined with in vivo experiments allows us to access an unprecedented diversity of genomes, the content of which will expand the repertoire of microbe-based biotechnologies.

  7. New CRISPR–Cas systems from uncultivated microbes

    NASA Astrophysics Data System (ADS)

    Burstein, David; Harrington, Lucas B.; Strutt, Steven C.; Probst, Alexander J.; Anantharaman, Karthik; Thomas, Brian C.; Doudna, Jennifer A.; Banfield, Jillian F.

    2016-12-01

    CRISPR–Cas systems provide microbes with adaptive immunity by employing short DNA sequences, termed spacers, that guide Cas proteins to cleave foreign DNA. Class 2 CRISPR–Cas systems are streamlined versions, in which a single RNA-bound Cas protein recognizes and cleaves target sequences. The programmable nature of these minimal systems has enabled researchers to repurpose them into a versatile technology that is broadly revolutionizing biological and clinical research. However, current CRISPR–Cas technologies are based solely on systems from isolated bacteria, leaving the vast majority of enzymes from organisms that have not been cultured untapped. Metagenomics, the sequencing of DNA extracted directly from natural microbial communities, provides access to the genetic material of a huge array of uncultivated organisms. Here, using genome-resolved metagenomics, we identify a number of CRISPR–Cas systems, including the first reported Cas9 in the archaeal domain of life, to our knowledge. This divergent Cas9 protein was found in little-studied nanoarchaea as part of an active CRISPR–Cas system. In bacteria, we discovered two previously unknown systems, CRISPR–CasX and CRISPR–CasY, which are among the most compact systems yet discovered. Notably, all required functional components were identified by metagenomics, enabling validation of robust in vivo RNA-guided DNA interference activity in Escherichia coli. Interrogation of environmental microbial communities combined with in vivo experiments allows us to access an unprecedented diversity of genomes, the content of which will expand the repertoire of microbe-based biotechnologies.

  8. Apgar Scores

    MedlinePlus

    ... because she is blue and not pink. Most newborn infants have Apgar scores greater than 7. Because their ... between 8 and 10. A small percentage of newborns have Apgar scores of less than ... low scores than infants with normal births. These scores may reflect difficulties ...

  9. Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization.

    PubMed

    Senturk, Serif; Shirole, Nitin H; Nowak, Dawid G; Corbo, Vincenzo; Pal, Debjani; Vaughan, Alexander; Tuveson, David A; Trotman, Lloyd C; Kinney, Justin B; Sordella, Raffaella

    2017-02-22

    The CRISPR/Cas9 system is a powerful tool for studying gene function. Here, we describe a method that allows temporal control of CRISPR/Cas9 activity based on conditional Cas9 destabilization. We demonstrate that fusing an FKBP12-derived destabilizing domain to Cas9 (DD-Cas9) enables conditional Cas9 expression and temporal control of gene editing in the presence of an FKBP12 synthetic ligand. This system can be easily adapted to co-express, from the same promoter, DD-Cas9 with any other gene of interest without co-modulation of the latter. In particular, when co-expressed with inducible Cre-ER(T2), our system enables parallel, independent manipulation of alleles targeted by Cas9 and traditional recombinase with single-cell specificity. We anticipate this platform will be used for the systematic characterization and identification of essential genes, as well as the investigation of the interactions between functional genes.

  10. Physical Activity Level Improves the Predictive Accuracy of Cardiovascular Disease Risk Score: The ATTICA Study (2002–2012)

    PubMed Central

    Georgousopoulou, Ekavi N.; Panagiotakos, Demosthenes B.; Bougatsas, Dimitrios; Chatzigeorgiou, Michael; Kavouras, Stavros A.; Chrysohoou, Christina; Skoumas, Ioannis; Tousoulis, Dimitrios; Stefanadis, Christodoulos; Pitsavos, Christos

    2016-01-01

    Background: Although physical activity (PA) has long been associated with cardiovascular disease (CVD), assessment of PA status has never been used as a part of CVD risk prediction tools. The aim of the present work was to examine whether the inclusion of PA status in a CVD risk model improves its predictive accuracy. Methods: Data from the 10-year follow-up (2002–2012) of the n = 2020 participants (aged 18–89 years) of the ATTICA prospective study were used to test the research hypothesis. The HellenicSCORE (that incorporates age, sex, smoking, total cholesterol, and systolic blood pressure levels) was calculated to estimate the baseline 10-year CVD risk; assessment of PA status was based on the International Physical Activity Questionnaire. The estimated CVD risk was tested against the observed 10-year incidence (i.e., development of acute coronary syndromes, stroke, or other CVD according to the World Health Organization [WHO]-International Classification of Diseases [ICD]-10 criteria). Changes in the predictive ability of the nested CVD risk model that contained the HellenicSCORE plus PA assessment were evaluated using Harrell's C and net reclassification index. Results: Both HellenicSCORE and PA status were predictors of future CVD events (P < 0.05). However, the estimating classification bias of the model that included only the HellenicSCORE was significantly reduced when PA assessment was included (Harrel's C = 0.012, P = 0.032); this reduction remained significant even when adjusted for diabetes mellitus and dietary habits (P < 0.05). Conclusions: CVD risk scores seem to be more accurate by incorporating individuals’ PA status; thus, may be more effective tools in primary prevention by efficiently allocating CVD candidates. PMID:27076890

  11. CRISPR-Cas Technologies and Applications in Food Bacteria.

    PubMed

    Stout, Emily; Klaenhammer, Todd; Barrangou, Rodolphe

    2017-02-28

    Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins form adaptive immune systems that occur in many bacteria and most archaea. In addition to protecting bacteria from phages and other invasive mobile genetic elements, CRISPR-Cas molecular machines can be repurposed as tool kits for applications relevant to the food industry. A primary concern of the food industry has long been the proper management of food-related bacteria, with a focus on both enhancing the outcomes of beneficial microorganisms such as starter cultures and probiotics and limiting the presence of detrimental organisms such as pathogens and spoilage microorganisms. This review introduces CRISPR-Cas as a novel set of technologies to manage food bacteria and offers insights into CRISPR-Cas biology. It primarily focuses on the applications of CRISPR-Cas systems and tools in starter cultures and probiotics, encompassing strain-typing, phage resistance, plasmid vaccination, genome editing, and antimicrobial activity.

  12. Guide RNA engineering for versatile Cas9 functionality

    PubMed Central

    Nowak, Chance M.; Lawson, Seth; Zerez, Megan; Bleris, Leonidas

    2016-01-01

    The Clustered Regularly Interspaced Short Palindromic Repeats system allows a single guide RNA (sgRNA) to direct a protein with combined helicase and nuclease activity to the DNA. Streptococcus pyogenes Cas9 (SpCas9), a CRISPR-associated protein, has revolutionized our ability to probe and edit the human genome in vitro and in vivo. Arguably, the true modularity of the Cas9 platform is conferred through the ease of sgRNA programmability as well as the degree of modifications the sgRNA can tolerate without compromising its association with SpCas9 and function. In this review, we focus on the properties and recent engineering advances of the sgRNA component in Cas9-mediated genome targeting. PMID:27733506

  13. The Effects of Activating Prior Topic and Metacognitive Knowledge on Text Comprehension Scores

    ERIC Educational Resources Information Center

    Kostons, Danny; van der Werf, Greetje

    2015-01-01

    Background: Research on prior knowledge activation has consistently shown that activating learners' prior knowledge has beneficial effects on learning. If learners activate their prior knowledge, this activated knowledge serves as a framework for establishing relationships between the knowledge they already possess and new information provided to…

  14. Optimization of genome editing through CRISPR-Cas9 engineering.

    PubMed

    Zhang, Jian-Hua; Adikaram, Poorni; Pandey, Mritunjay; Genis, Allison; Simonds, William F

    2016-04-01

    CRISPR (Clustered Regularly-Interspaced Short Palindromic Repeats)-Cas9 (CRISPR associated protein 9) has rapidly become the most promising genome editing tool with great potential to revolutionize medicine. Through guidance of a 20 nucleotide RNA (gRNA), CRISPR-Cas9 finds and cuts target protospacer DNA precisely 3 base pairs upstream of a PAM (Protospacer Adjacent Motif). The broken DNA ends are repaired by either NHEJ (Non-Homologous End Joining) resulting in small indels, or by HDR (Homology Directed Repair) for precise gene or nucleotide replacement. Theoretically, CRISPR-Cas9 could be used to modify any genomic sequences, thereby providing a simple, easy, and cost effective means of genome wide gene editing. However, the off-target activity of CRISPR-Cas9 that cuts DNA sites with imperfect matches with gRNA have been of significant concern because clinical applications require 100% accuracy. Additionally, CRISPR-Cas9 has unpredictable efficiency among different DNA target sites and the PAM requirements greatly restrict its genome editing frequency. A large number of efforts have been made to address these impeding issues, but much more is needed to fully realize the medical potential of CRISPR-Cas9. In this article, we summarize the existing problems and current advances of the CRISPR-Cas9 technology and provide perspectives for the ultimate perfection of Cas9-mediated genome editing.

  15. AutoDock-GIST: Incorporating Thermodynamics of Active-Site Water into Scoring Function for Accurate Protein-Ligand Docking.

    PubMed

    Uehara, Shota; Tanaka, Shigenori

    2016-11-23

    Water plays a significant role in the binding process between protein and ligand. However, the thermodynamics of water molecules are often underestimated, or even ignored, in protein-ligand docking. Usually, the free energies of active-site water molecules are substantially different from those of waters in the bulk region. The binding of a ligand to a protein causes a displacement of these waters from an active site to bulk, and this displacement process substantially contributes to the free energy change of protein-ligand binding. The free energy of active-site water molecules can be calculated by grid inhomogeneous solvation theory (GIST), using molecular dynamics (MD) and the trajectory of a target protein and water molecules. Here, we show a case study of the combination of GIST and a docking program and discuss the effectiveness of the displacing gain of unfavorable water in protein-ligand docking. We combined the GIST-based desolvation function with the scoring function of AutoDock4, which is called AutoDock-GIST. The proposed scoring function was assessed employing 51 ligands of coagulation factor Xa (FXa), and results showed that both scoring accuracy and docking success rate were improved. We also evaluated virtual screening performance of AutoDock-GIST using FXa ligands in the directory of useful decoys-enhanced (DUD-E), thus finding that the displacing gain of unfavorable water is effective for a successful docking campaign.

  16. Apgar score

    MedlinePlus

    ... the baby's: Breathing effort Heart rate Muscle tone Reflexes Skin color Each category is scored with 0, ... scores 2 for muscle tone. Grimace response or reflex irritability is a term describing response to stimulation, ...

  17. The role of Cas8 in type I CRISPR interference.

    PubMed

    Cass, Simon D B; Haas, Karina A; Stoll, Britta; Alkhnbashi, Omer S; Sharma, Kundan; Urlaub, Henning; Backofen, Rolf; Marchfelder, Anita; Bolt, Edward L

    2015-05-05

    CRISPR (clustered regularly interspaced short palindromic repeat) systems provide bacteria and archaea with adaptive immunity to repel invasive genetic elements. Type I systems use 'cascade' [CRISPR-associated (Cas) complex for antiviral defence] ribonucleoprotein complexes to target invader DNA, by base pairing CRISPR RNA (crRNA) to protospacers. Cascade identifies PAMs (protospacer adjacent motifs) on invader DNA, triggering R-loop formation and subsequent DNA degradation by Cas3. Cas8 is a candidate PAM recognition factor in some cascades. We analysed Cas8 homologues from type IB CRISPR systems in archaea Haloferax volcanii (Hvo) and Methanothermobacter thermautotrophicus (Mth). Cas8 was essential for CRISPR interference in Hvo and purified Mth Cas8 protein responded to PAM sequence when binding to nucleic acids. Cas8 interacted physically with Cas5-Cas7-crRNA complex, stimulating binding to PAM containing substrates. Mutation of conserved Cas8 amino acid residues abolished interference in vivo and altered catalytic activity of Cas8 protein in vitro. This is experimental evidence that Cas8 is important for targeting Cascade to invader DNA.

  18. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function

    PubMed Central

    Isaac, R Stefan; Jiang, Fuguo; Doudna, Jennifer A; Lim, Wendell A; Narlikar, Geeta J; Almeida, Ricardo

    2016-01-01

    The CRISPR-Cas9 bacterial surveillance system has become a versatile tool for genome editing and gene regulation in eukaryotic cells, yet how CRISPR-Cas9 contends with the barriers presented by eukaryotic chromatin is poorly understood. Here we investigate how the smallest unit of chromatin, a nucleosome, constrains the activity of the CRISPR-Cas9 system. We find that nucleosomes assembled on native DNA sequences are permissive to Cas9 action. However, the accessibility of nucleosomal DNA to Cas9 is variable over several orders of magnitude depending on dynamic properties of the DNA sequence and the distance of the PAM site from the nucleosome dyad. We further find that chromatin remodeling enzymes stimulate Cas9 activity on nucleosomal templates. Our findings imply that the spontaneous breathing of nucleosomal DNA together with the action of chromatin remodelers allow Cas9 to effectively act on chromatin in vivo. DOI: http://dx.doi.org/10.7554/eLife.13450.001 PMID:27130520

  19. Development of an activity disease score in patients with uveitis (UVEDAI).

    PubMed

    Pato, Esperanza; Martin-Martinez, Mª Auxiliadora; Castelló, Adela; Méndez-Fernandez, Rosalía; Muñoz-Fernández, Santiago; Cordero-Coma, Miguel; Martinez-Costa, Lucia; Valls, Elia; Reyes, Miguel; Francisco, Félix; Esteban, Mar; Fonollosa, Alex; Sanchez-Alonso, Fernando; Fernández-Espartero, Cruz; Diaz-Valle, Teresa; Carrasco, José Miguel; Beltran-Catalán, Emma; Hernández-Garfella, Marisa; Hernández, María Victoria; Pelegrin, Laura; Blanco, Ricardo; Diaz-Valle, David

    2017-04-01

    To develop a disease activity index for patients with uveitis (UVEDAI) encompassing the relevant domains of disease activity considered important among experts in this field. The steps for designing UVEDAI were: (a) Defining the construct and establishing the domains through a formal judgment of experts, (b) A two-round Delphi study with a panel of 15 experts to determine the relevant items, (c) Selection of items: A logistic regression model was developed that set ocular inflammatory activity as the dependent variable. The construct "uveitis inflammatory activity" was defined as any intraocular inflammation that included external structures (cornea) in addition to uvea. Seven domains and 15 items were identified: best-corrected visual acuity, inflammation of the anterior chamber (anterior chamber cells, hypopyon, the presence of fibrin, active posterior keratic precipitates and iris nodules), intraocular pressure, inflammation of the vitreous cavity (vitreous haze, snowballs and snowbanks), central macular edema, inflammation of the posterior pole (the presence and number of choroidal/retinal lesions, vascular inflammation and papillitis), and global assessment from both (patient and physician). From all the variables studied in the multivariate model, anterior chamber cell grade, vitreous haze, central macular edema, inflammatory vessel sheathing, papillitis, choroidal/retinal lesions and patient evaluation were included in UVEDAI. UVEDAI is an index designed to assess the global ocular inflammatory activity in patients with uveitis. It might prove worthwhile to motorize the activity of this extraarticular manifestation of some rheumatic diseases.

  20. Searching for discrimination rules in protease proteolytic cleavage activity using genetic programming with a min-max scoring function.

    PubMed

    Yang, Zheng Rong; Thomson, Rebecca; Hodgman, T Charles; Dry, Jonathan; Doyle, Austin K; Narayanan, Ajit; Wu, XiKun

    2003-11-01

    This paper presents an algorithm which is able to extract discriminant rules from oligopeptides for protease proteolytic cleavage activity prediction. The algorithm is developed using genetic programming. Three important components in the algorithm are a min-max scoring function, the reverse Polish notation (RPN) and the use of minimum description length. The min-max scoring function is developed using amino acid similarity matrices for measuring the similarity between an oligopeptide and a rule, which is a complex algebraic equation of amino acids rather than a simple pattern sequence. The Fisher ratio is then calculated on the scoring values using the class label associated with the oligopeptides. The discriminant ability of each rule can therefore be evaluated. The use of RPN makes the evolutionary operations simpler and therefore reduces the computational cost. To prevent overfitting, the concept of minimum description length is used to penalize over-complicated rules. A fitness function is therefore composed of the Fisher ratio and the use of minimum description length for an efficient evolutionary process. In the application to four protease datasets (Trypsin, Factor Xa, Hepatitis C Virus and HIV protease cleavage site prediction), our algorithm is superior to C5, a conventional method for deriving decision trees.

  1. Clinical performance of two visual scoring systems in detecting and assessing activity status of occlusal caries in primary teeth.

    PubMed

    Braga, M M; Ekstrand, K R; Martignon, S; Imparato, J C P; Ricketts, D N J; Mendes, F M

    2010-01-01

    This study aimed to compare the clinical performance of two sets of visual scoring criteria for detecting caries severity and assessing caries activity status in occlusal surfaces. Two visual scoring systems--the Nyvad criteria (NY) and the ICDAS-II including an adjunct system for lesion activity assessment (ICDAS-LAA)--were compared using 763 primary molars of 139 children aged 3-12 years. The examinations were performed by 2 calibrated examiners. A subsample (n = 50) was collected after extraction and histology with 0.1% red methyl dye was performed to validate lesion depth and activity. The reproducibility of the indices was calculated (kappa test) and ROC analysis was performed to assess their validity and related parameters were compared using McNemar's test. The association between the indices and with the histological examination was evaluated using Spearman's correlation coefficient (r(s)). Visual criteria showed excellent reproducibility both regarding severity (NY: 0.94; ICDAS-II: 0.91) and activity (NY: 0.90; LAA: 0.91). The NY and LAA showed good association in caries activity assessment (r(s) = 0.88; 95% CI = 0.86-0.89; p < 0.001). Nevertheless, considering only cavitated lesions, this association was not significant (p > 0.05). Concerning the severity, both indices presented similar validity parameters. At D2 threshold, the sensitivity was higher for NY (NY = 0.87; ICDAS = 0.61, p < 0.05). Regarding activity status, NY showed higher specificities and accuracies. In conclusion, NY and ICDAS-II criteria are comparable and present good reproducibility and validity to detect caries lesions and estimate their severities, but the LAA seems to overestimate the caries activity assessment of cavitated lesions compared to NY.

  2. How much structuring is beneficial with regard to examination scores? A prospective study of three forms of active learning.

    PubMed

    Reinhardt, Claus H; Rosen, Evelyne N

    2012-09-01

    Many studies have demonstrated a superiority of active learning forms compared with traditional lecture. However, there is still debate as to what degree structuring is necessary with regard to high exam outcomes. Seventy-five students from a premedical school were randomly attributed to an active lecture group, a cooperative group, or a collaborative learning group. The active lecture group received lectures with questions to resolve at the end of the lecture. At the same time, the cooperative group and the collaborative group had to work on a problem and prepare presentations for their answers. The collaborative group worked in a mostly self-directed manner; the cooperative group had to follow a time schedule. For the additional work of preparing the poster presentation, the collaborative and cooperative groups were allowed 50% more working time. In part 1, all groups worked on the citric acid cycle, and in part 2, all groups worked on molecular genetics. Collaborative groups had to work on tasks and prepare presentations for their answers. At the end of each part, all three groups were subjected to the same exam. Additionally, in the collaborative and cooperative groups, the presentations were marked. All evaluations were performed by two independent examiners. Exam results of the active lecture groups were highest. Results of the cooperative group were nonsignificantly lower than the active lecture group and significantly higher than the collaborative group. The presentation quality was nonsignificantly higher in the collaborative group compared with the cooperative group. This study shows that active lecturing produced the highest exam results, which significantly differed from collaborative learning results. The additional elaboration in the cooperative and collaborative learning setting yielded the high presentation quality but apparently could not contribute further to exam scores. Cooperative learning seems to be a good compromise if high exam and

  3. Scoring Package

    National Institute of Standards and Technology Data Gateway

    NIST Scoring Package (PC database for purchase)   The NIST Scoring Package (Special Database 1) is a reference implementation of the draft Standard Method for Evaluating the Performance of Systems Intended to Recognize Hand-printed Characters from Image Data Scanned from Forms.

  4. Propensity Scores

    ERIC Educational Resources Information Center

    Luellen, Jason K.; Shadish, William R.; Clark, M. H.

    2005-01-01

    Propensity score analysis is a relatively recent statistical innovation that is useful in the analysis of data from quasi-experiments. The goal of propensity score analysis is to balance two non-equivalent groups on observed covariates to get more accurate estimates of the effects of a treatment on which the two groups differ. This article…

  5. Chemical and Biophysical Modulation of Cas9 for Tunable Genome Engineering.

    PubMed

    Nuñez, James K; Harrington, Lucas B; Doudna, Jennifer A

    2016-03-18

    The application of the CRISPR-Cas9 system for genome engineering has revolutionized the ability to interrogate genomes of mammalian cells. Programming the Cas9 endonuclease to induce DNA breaks at specified sites is achieved by simply modifying the sequence of its cognate guide RNA. Although Cas9-mediated genome editing has been shown to be highly specific, cleavage events at off-target sites have also been reported. Minimizing, and eventually abolishing, unwanted off-target cleavage remains a major goal of the CRISPR-Cas9 technology before its implementation for therapeutic use. Recent efforts have turned to chemical biology and biophysical approaches to engineer inducible genome editing systems for controlling Cas9 activity at the transcriptional and protein levels. Here, we review recent advancements to modulate Cas9-mediated genome editing by engineering split-Cas9 constructs, inteins, small molecules, protein-based dimerizing domains, and light-inducible systems.

  6. Primary processing of CRISPR RNA by the endonuclease Cas6 in Staphylococcus epidermidis.

    PubMed

    Wakefield, Noelle; Rajan, Rakhi; Sontheimer, Erik J

    2015-10-07

    In many bacteria and archaea, an adaptive immune system (CRISPR-Cas) provides immunity against foreign genetic elements. This system uses CRISPR RNAs (crRNAs) derived from the CRISPR array, along with CRISPR-associated (Cas) proteins, to target foreign nucleic acids. In most CRISPR systems, endonucleolytic processing of crRNA precursors (pre-crRNAs) is essential for the pathway. Here we study the Cas6 endonuclease responsible for crRNA processing in the Type III-A CRISPR-Cas system from Staphylococcus epidermidis RP62a, a model for Type III-A CRISPR-Cas systems, and define substrate requirements for SeCas6 activity. We find that SeCas6 is necessary and sufficient for full-length crRNA biogenesis in vitro, and that it relies on both sequence and stem-loop structure in the 3' half of the CRISPR repeat for recognition and processing.

  7. Predictors of active cancer thromboembolic outcomes. RIETE experience of the Khorana score in cancer-associated thrombosis.

    PubMed

    Tafur, Alfonso J; Caprini, Joseph A; Cote, Lauren; Trujillo-Santos, Javier; Del Toro, Jorge; Garcia-Bragado, Fernando; Tolosa, Carles; Barillari, Giovanni; Visona, Adriana; Monreal, Manuel

    2017-03-09

    Even though the Khorana risk score (KRS) has been validated to predict against the development of VTE among patients with cancer, it has a low positive predictive value. It is also unknown whether the score predicts outcomes in patients with cancer with established VTE. We selected a cohort of patients with active cancer from the RIETE (Registro Informatizado Enfermedad TromboEmbolica) registry to assess the prognostic value of the KRS at inception in predicting the likelihood of VTE recurrences, major bleeding and mortality during the course of anticoagulant therapy. We analysed 7948 consecutive patients with cancer-associated VTE. Of these, 2253 (28 %) scored 0 points, 4550 (57 %) 1-2 points and 1145 (14 %) scored ≥3 points. During the course of anticoagulation, amongst patient with low, moderate and high risk KRS, the rate of VTE recurrences was of 6.21 (95 %CI: 4.99-7.63), 11.2 (95 %CI: 9.91-12.7) and 19.4 (95 %CI: 15.4-24.1) events per 100 patient-years; the rate of major bleeding of 5.24 (95 %CI: 4.13-6.56), 10.3 (95 %CI: 9.02-11.7) and 19.4 (95 %CI: 15.4-24.1) bleeds per 100 patient-years and the mortality rate of 25.3 (95 %CI: 22.8-28.0), 58.5 (95 %CI: 55.5-61.7) and 120 (95 %CI: 110-131) deaths per 100 patient-years, respectively. The C-statistic was 0.53 (0.50-0.56) for recurrent VTE, 0.56 (95 %CI: 0.54-0.59) for major bleeding and 0.54 (95 %CI: 0.52-0.56) for death. In conclusion, most VTEs occur in patients with low or moderate risk scores. The KRS did not accurately predict VTE recurrence, major bleeding, or mortality among patients with cancer-associated thrombosis.

  8. Systems view of adipogenesis via novel omics-driven and tissue-specific activity scoring of network functional modules

    NASA Astrophysics Data System (ADS)

    Nassiri, Isar; Lombardo, Rosario; Lauria, Mario; Morine, Melissa J.; Moyseos, Petros; Varma, Vijayalakshmi; Nolen, Greg T.; Knox, Bridgett; Sloper, Daniel; Kaput, Jim; Priami, Corrado

    2016-07-01

    The investigation of the complex processes involved in cellular differentiation must be based on unbiased, high throughput data processing methods to identify relevant biological pathways. A number of bioinformatics tools are available that can generate lists of pathways ranked by statistical significance (i.e. by p-value), while ideally it would be desirable to functionally score the pathways relative to each other or to other interacting parts of the system or process. We describe a new computational method (Network Activity Score Finder - NASFinder) to identify tissue-specific, omics-determined sub-networks and the connections with their upstream regulator receptors to obtain a systems view of the differentiation of human adipocytes. Adipogenesis of human SBGS pre-adipocyte cells in vitro was monitored with a transcriptomic data set comprising six time points (0, 6, 48, 96, 192, 384 hours). To elucidate the mechanisms of adipogenesis, NASFinder was used to perform time-point analysis by comparing each time point against the control (0 h) and time-lapse analysis by comparing each time point with the previous one. NASFinder identified the coordinated activity of seemingly unrelated processes between each comparison, providing the first systems view of adipogenesis in culture. NASFinder has been implemented into a web-based, freely available resource associated with novel, easy to read visualization of omics data sets and network modules.

  9. Systems view of adipogenesis via novel omics-driven and tissue-specific activity scoring of network functional modules

    PubMed Central

    Nassiri, Isar; Lombardo, Rosario; Lauria, Mario; Morine, Melissa J.; Moyseos, Petros; Varma, Vijayalakshmi; Nolen, Greg T.; Knox, Bridgett; Sloper, Daniel; Kaput, Jim; Priami, Corrado

    2016-01-01

    The investigation of the complex processes involved in cellular differentiation must be based on unbiased, high throughput data processing methods to identify relevant biological pathways. A number of bioinformatics tools are available that can generate lists of pathways ranked by statistical significance (i.e. by p-value), while ideally it would be desirable to functionally score the pathways relative to each other or to other interacting parts of the system or process. We describe a new computational method (Network Activity Score Finder - NASFinder) to identify tissue-specific, omics-determined sub-networks and the connections with their upstream regulator receptors to obtain a systems view of the differentiation of human adipocytes. Adipogenesis of human SBGS pre-adipocyte cells in vitro was monitored with a transcriptomic data set comprising six time points (0, 6, 48, 96, 192, 384 hours). To elucidate the mechanisms of adipogenesis, NASFinder was used to perform time-point analysis by comparing each time point against the control (0 h) and time-lapse analysis by comparing each time point with the previous one. NASFinder identified the coordinated activity of seemingly unrelated processes between each comparison, providing the first systems view of adipogenesis in culture. NASFinder has been implemented into a web-based, freely available resource associated with novel, easy to read visualization of omics data sets and network modules. PMID:27385551

  10. Systems view of adipogenesis via novel omics-driven and tissue-specific activity scoring of network functional modules.

    PubMed

    Nassiri, Isar; Lombardo, Rosario; Lauria, Mario; Morine, Melissa J; Moyseos, Petros; Varma, Vijayalakshmi; Nolen, Greg T; Knox, Bridgett; Sloper, Daniel; Kaput, Jim; Priami, Corrado

    2016-07-07

    The investigation of the complex processes involved in cellular differentiation must be based on unbiased, high throughput data processing methods to identify relevant biological pathways. A number of bioinformatics tools are available that can generate lists of pathways ranked by statistical significance (i.e. by p-value), while ideally it would be desirable to functionally score the pathways relative to each other or to other interacting parts of the system or process. We describe a new computational method (Network Activity Score Finder - NASFinder) to identify tissue-specific, omics-determined sub-networks and the connections with their upstream regulator receptors to obtain a systems view of the differentiation of human adipocytes. Adipogenesis of human SBGS pre-adipocyte cells in vitro was monitored with a transcriptomic data set comprising six time points (0, 6, 48, 96, 192, 384 hours). To elucidate the mechanisms of adipogenesis, NASFinder was used to perform time-point analysis by comparing each time point against the control (0 h) and time-lapse analysis by comparing each time point with the previous one. NASFinder identified the coordinated activity of seemingly unrelated processes between each comparison, providing the first systems view of adipogenesis in culture. NASFinder has been implemented into a web-based, freely available resource associated with novel, easy to read visualization of omics data sets and network modules.

  11. Validity of PALMS GPS Scoring of Active and Passive Travel Compared to SenseCam

    PubMed Central

    Carlson, Jordan A.; Jankowska, Marta M.; Meseck, Kristin; Godbole, Suneeta; Natarajan, Loki; Raab, Fredric; Demchak, Barry; Patrick, Kevin; Kerr, Jacqueline

    2014-01-01

    Purpose To assess validity of the Personal Activity Location Measurement System (PALMS) for deriving time spent walking/running, bicycling, and in vehicle, using SenseCam as the comparison. Methods 40 adult cyclists wore a Qstarz BT-Q1000XT GPS data logger and SenseCam (camera worn around neck capturing multiple images every minute) for a mean of 4 days. PALMS used distance and speed between GPS points to classify whether each minute was part of a trip (yes/no), and if so, the trip mode (walking/running, bicycling, in vehicle). SenseCam images were annotated to create the same classifications (i.e., trip yes/no and mode). 2×2 contingency tables and confusion matrices were calculated at the minute-level for PALMS vs. SenseCam classifications. Mixed-effects linear regression models estimated agreement (mean differences and intraclass correlations [ICCs]) between PALMS and SenseCam with regards to minutes/day in each mode. Results Minute-level sensitivity, specificity, and negative predictive value were ≥88%, and positive predictive value was ≥75% for non mode-specific trip detection. 72–80% of outdoor walking/running minutes, 73% of bicycling minutes, and 74–76% of in-vehicle minutes were correctly classified by PALMS. For minutes/day, PALMS had a mean bias (i.e., amount of over or under estimation) of 2.4–3.1 minutes (11–15%) for walking/running, 2.3–2.9 minutes (7–9%) for bicycling, and 4.3–5 minutes (15–17%) for vehicle time. ICCs were ≥.80 for all modes. Conclusions PALMS has validity for processing GPS data to objectively measure time walking/running, bicycling, and in vehicle in population studies. Assessing travel patterns is one of many valuable applications of GPS in physical activity research that can improve our understanding of the determinants and health outcomes of active transportation as well as its impact on physical activity. PMID:25010407

  12. The Reliability of Disease Activity Score in 28 Joints–C-Reactive Protein Might Be Overestimated in a Subgroup of Rheumatoid Arthritis Patients, When the Score Is Solely Based on Subjective Parameters

    PubMed Central

    Jensen Hansen, Inger Marie; Asmussen Andreasen, Rikke; van Bui Hansen, Mark Nam; Emamifar, Amir

    2017-01-01

    Background Disease Activity Score in 28 Joints (DAS28) is a scoring system to evaluate disease activity and treatment response in rheumatoid arthritis (RA). A DAS28 score of greater than 3.2 is a well-described limit for treatment intensification; however, the reliability of DAS28 might be overestimated. Objective The aim of this study was to evaluate the reliability of DAS28 in RA, especially focusing on a subgroup of patients with a DAS28 score of greater than 3.2. Methods Data from RA patients registered in the local part of Danish DANBIO Registry were collected in May 2015. Patients were categorized into 2 groups: First, those with DAS28 >3.2 with at least one swollen joint (SJ) or elevated C-reactive protein (CRP) (“objective group”), and second, patients with a DAS28 >3.2 who had no SJ, and CRP values were within the reference range (“subjective group”). Disease Activity Score in 28 Joints, Clinical Disease Activity Index, and Health Assessment Questionnaire scores were calculated for each group. We defined new score, DAS28 subjective, to focus on subjective parameters. Results Two hundred thirty patients were included; 198 (86.1%) and 32 (13.9%) patients were in the objective and subjective groups, respectively. Patients in the subjective group had lower mean values of DAS28 (P < 0.001) and Evaluator Global Assessment (P < 0.001) with less common immunoglobulin M rheumatoid factor (P < 0.001) and anti–cyclic citrullinated peptide positivity (P = 0.02) and contrarily higher mean values of tender joints (P = 0.04) and DAS28 based on subjective parameters (P = 0.003) compared with the objective group. Conclusions Rheumatoid arthritis scoring systems should be used cautiously in patients who are considered for treatment intensification. Patients with central sensitization and psychological problems and those with false-positive diagnosis of RA are at high risk of overtreatment. PMID:27870649

  13. Characterization and evolution of Salmonella CRISPR-Cas systems.

    PubMed

    Shariat, Nikki; Timme, Ruth E; Pettengill, James B; Barrangou, Rodolphe; Dudley, Edward G

    2015-02-01

    Prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated genes) systems provide adaptive immunity from invasive genetic elements and encompass three essential features: (i) cas genes, (ii) a CRISPR array composed of spacers and direct repeats and (iii) an AT-rich leader sequence upstream of the array. We performed in-depth sequence analysis of the CRISPR-Cas systems in >600 Salmonella, representing four clinically prevalent serovars. Each CRISPR-Cas feature is extremely conserved in the Salmonella, and the CRISPR1 locus is more highly conserved than CRISPR2. Array composition is serovar-specific, although no convincing evidence of recent spacer acquisition against exogenous nucleic acids exists. Only 12% of spacers match phage and plasmid sequences and self-targeting spacers are associated with direct repeat variants. High nucleotide identity (>99.9%) exists across the cas operon among isolates of a single serovar and in some cases this conservation extends across divergent serovars. These observations reflect historical CRISPR-Cas immune activity, showing that this locus has ceased undergoing adaptive events. Intriguingly, the high level of conservation across divergent serovars shows that the genetic integrity of these inactive loci is maintained over time, contrasting with the canonical view that inactive CRISPR loci degenerate over time. This thorough characterization of Salmonella CRISPR-Cas systems presents new insights into Salmonella CRISPR evolution, particularly with respect to cas gene conservation, leader sequences, organization of direct repeats and protospacer matches. Collectively, our data suggest that Salmonella CRISPR-Cas systems are no longer immunogenic; rather, their impressive conservation indicates they may have an alternative function in Salmonella.

  14. Characterization and evolution of Salmonella CRISPR-Cas systems.

    PubMed

    Shariat, Nikki; Timme, Ruth E; Pettengill, James B; Barrangou, Rodolphe; Dudley, Edward G

    2015-02-01

    Prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated genes) systems provide adaptive immunity from invasive genetic elements and encompass three essential features: (i) cas genes, (ii) a CRISPR array composed of spacers and direct repeats and (iii) an AT-rich leader sequence upstream of the array. We performed in-depth sequence analysis of the CRISPR-Cas systems in >600 Salmonella, representing four clinically prevalent serovars. Each CRISPR-Cas feature is extremely conserved in the Salmonella, and the CRISPR1 locus is more highly conserved than CRISPR2. Array composition is serovar-specific, although no convincing evidence of recent spacer acquisition against exogenous nucleic acids exists. Only 12 % of spacers match phage and plasmid sequences and self-targeting spacers are associated with direct repeat variants. High nucleotide identity (>99.9 %) exists across the cas operon among isolates of a single serovar and in some cases this conservation extends across divergent serovars. These observations reflect historical CRISPR-Cas immune activity, showing that this locus has ceased undergoing adaptive events. Intriguingly, the high level of conservation across divergent serovars shows that the genetic integrity of these inactive loci is maintained over time, contrasting with the canonical view that inactive CRISPR loci degenerate over time. This thorough characterization of Salmonella CRISPR-Cas systems presents new insights into Salmonella CRISPR evolution, particularly with respect to cas gene conservation, leader sequences, organization of direct repeats and protospacer matches. Collectively, our data suggest that Salmonella CRISPR-Cas systems are no longer immunogenic; rather, their impressive conservation indicates they may have an alternative function in Salmonella.

  15. Nucleosomes impede Cas9 access to DNA in vivo and in vitro

    PubMed Central

    Horlbeck, Max A; Witkowsky, Lea B; Guglielmi, Benjamin; Replogle, Joseph M; Gilbert, Luke A; Villalta, Jacqueline E; Torigoe, Sharon E; Tjian, Robert; Weissman, Jonathan S

    2016-01-01

    The prokaryotic CRISPR (clustered regularly interspaced palindromic repeats)-associated protein, Cas9, has been widely adopted as a tool for editing, imaging, and regulating eukaryotic genomes. However, our understanding of how to select single-guide RNAs (sgRNAs) that mediate efficient Cas9 activity is incomplete, as we lack insight into how chromatin impacts Cas9 targeting. To address this gap, we analyzed large-scale genetic screens performed in human cell lines using either nuclease-active or nuclease-dead Cas9 (dCas9). We observed that highly active sgRNAs for Cas9 and dCas9 were found almost exclusively in regions of low nucleosome occupancy. In vitro experiments demonstrated that nucleosomes in fact directly impede Cas9 binding and cleavage, while chromatin remodeling can restore Cas9 access. Our results reveal a critical role of eukaryotic chromatin in dictating the targeting specificity of this transplanted bacterial enzyme, and provide rules for selecting Cas9 target sites distinct from and complementary to those based on sequence properties. DOI: http://dx.doi.org/10.7554/eLife.12677.001 PMID:26987018

  16. UPDRS activity of daily living score as a marker of Parkinson's disease progression.

    PubMed

    Harrison, Madaline B; Wylie, Scott A; Frysinger, Robert C; Patrie, James T; Huss, Diane S; Currie, Lillian J; Wooten, G Frederick

    2009-01-30

    The activities of daily living (ADL) subscore of the Unified Parkinson's Disease Rating Scale (UPDRS) captures the impact of Parkinson's disease (PD) on daily function and may be less affected than other subsections by variability associated with drug cycle and motor fluctuations. We examined UPDRS mentation, ADL and motor subscores in 888 patients with idiopathic PD. Multiple linear regression analyses determined the association between disease duration and UPDRS subscores as a function of medication status at examination and in a subset of patients with multiple examinations. Independent of medication status and across cross-sectional and longitudinal analyses, ADL subscores showed a stronger and more stable association with disease duration than other UPDRS subscores after adjusting for age of disease onset. The association between disease duration and the motor subscore depended on medication status. The strong association between ADL subscore and disease duration in PD suggests that this measure may serve as a better marker of disease progression than signs and symptoms assessed in other UPDRS sections.

  17. Effects of a therapeutic climbing program on muscle activation and SF-36 scores of patients with lower back pain.

    PubMed

    Kim, Se-Hun; Seo, Dong-Yel

    2015-03-01

    [Purpose] This study examined the effects of lumbar stability exercises on chronic lower back pain by using a therapeutic climbing program on lumbar muscle activity and function. [Subjects and Methods] Thirty adult subjects with chronic back pain participated. The subjects were assigned to 2 exercise groups, namely the lumbar stabilization (Mat Ex) and therapeutic climbing exercise groups (TC Ex). Each group trained for 30 minutes, 3 times a week for 4 weeks. The Short-form 36-item Questionnaire (SF-36) was administered and the surface electromyographic (sEMG) activities of the lumbar muscles were measured. [Results] Both therapy groups showed significant increases in the SF-36 score, and the increase was greater in the TC Ex group. Significant increases in the sEMG activities of the lumbar muscles were found in both groups. The increases in the sEMG activities of the rectus abdominis and internal and external oblique muscles of the abdomen were greater in the TC Ex group than in the Mat Ex group. [Conclusion] These findings demonstrate that TC Ex, which is similar to normal lumbar stabilization exercise, is effective at activating and improving the function of the lumbar muscles. These results suggest that TC Ex has a positive impact on the stabilization of the lumbar region.

  18. Effects of a therapeutic climbing program on muscle activation and SF-36 scores of patients with lower back pain

    PubMed Central

    Kim, Se-Hun; Seo, Dong-Yel

    2015-01-01

    [Purpose] This study examined the effects of lumbar stability exercises on chronic lower back pain by using a therapeutic climbing program on lumbar muscle activity and function. [Subjects and Methods] Thirty adult subjects with chronic back pain participated. The subjects were assigned to 2 exercise groups, namely the lumbar stabilization (Mat Ex) and therapeutic climbing exercise groups (TC Ex). Each group trained for 30 minutes, 3 times a week for 4 weeks. The Short-form 36-item Questionnaire (SF-36) was administered and the surface electromyographic (sEMG) activities of the lumbar muscles were measured. [Results] Both therapy groups showed significant increases in the SF-36 score, and the increase was greater in the TC Ex group. Significant increases in the sEMG activities of the lumbar muscles were found in both groups. The increases in the sEMG activities of the rectus abdominis and internal and external oblique muscles of the abdomen were greater in the TC Ex group than in the Mat Ex group. [Conclusion] These findings demonstrate that TC Ex, which is similar to normal lumbar stabilization exercise, is effective at activating and improving the function of the lumbar muscles. These results suggest that TC Ex has a positive impact on the stabilization of the lumbar region. PMID:25931721

  19. Application of CRISPR/Cas9 for biomedical discoveries.

    PubMed

    Riordan, Sean M; Heruth, Daniel P; Zhang, Li Q; Ye, Shui Qing

    2015-01-01

    The Clustered Regions of Interspersed Palindromic Repeats-Cas9 (CRISPR/Cas9), a viral defense system found in bacteria and archaea, has emerged as a tour de force genome editing tool. The CRISPR/Cas9 system is much easier to customize and optimize because the site selection for DNA cleavage is guided by a short sequence of RNA rather than an engineered protein as in the systems of zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN), and meganucleases. Although it still suffers from some off-target effects, the CRISPR/Cas9 system has been broadly and successfully applied for biomedical discoveries in a number of areas. In this review, we present a brief history and development of the CRISPR system and focus on the application of this genome editing technology for biomedical discoveries. We then present concise concluding remarks and future directions for this fast moving field.

  20. Application of CRISPR/Cas9 to Autophagy Research.

    PubMed

    O'Prey, J; Sakamaki, J; Baudot, A D; New, M; Van Acker, T; Tooze, S A; Long, J S; Ryan, K M

    2017-01-01

    The ability to efficiently modulate autophagy activity is paramount in the study of the field. Conventional broad-range autophagy inhibitors and genetic manipulation using RNA interference (RNAi), although widely used in autophagy research, are often limited in specificity or efficacy. In this chapter, we address the problems of conventional autophagy-modulating tools by exploring the use of three different CRISPR/Cas9 systems to abrogate autophagy in numerous human and mouse cell lines. The first system generates cell lines constitutively deleted of ATG5 or ATG7 whereas the second and third systems express a Tet-On inducible-Cas9 that enables regulated deletion of ATG5 or ATG7. We observed the efficiency of autophagy inhibition using the CRISPR/Cas9 strategy to surpass that of RNAi, and successfully generated cells with complete and sustained autophagy disruption through the CRISPR/Cas9 technology.

  1. Rational design of a split-Cas9 enzyme complex

    SciTech Connect

    Wright, Addison V.; Sternberg, Samuel H.; Taylor, David W.; Staahl, Brett T.; Bardales, Jorge A.; Kornfeld, Jack E.; Doudna, Jennifer A.

    2015-02-23

    Cas9, an RNA-guided DNA endonuclease found in clustered regularly interspaced short palindromic repeats (CRISPR) bacterial immune systems, is a versatile tool for genome editing, transcriptional regulation, and cellular imaging applications. Structures of Streptococcus pyogenes Cas9 alone or bound to single-guide RNA (sgRNA) and target DNA revealed a bilobed protein architecture that undergoes major conformational changes upon guide RNA and DNA binding. To investigate the molecular determinants and relevance of the interlobe rearrangement for target recognition and cleavage, we designed a split-Cas9 enzyme in which the nuclease lobe and α-helical lobe are expressed as separate polypeptides. The lobes do not interact on their own, the sgRNA recruits them into a ternary complex that recapitulates the activity of full-length Cas9 and catalyzes site-specific DNA cleavage. The use of a modified sgRNA abrogates split-Cas9 activity by preventing dimerization, allowing for the development of an inducible dimerization system. We propose that split-Cas9 can act as a highly regulatable platform for genome-engineering applications.

  2. Rational design of a split-Cas9 enzyme complex

    DOE PAGES

    Wright, Addison V.; Sternberg, Samuel H.; Taylor, David W.; ...

    2015-02-23

    Cas9, an RNA-guided DNA endonuclease found in clustered regularly interspaced short palindromic repeats (CRISPR) bacterial immune systems, is a versatile tool for genome editing, transcriptional regulation, and cellular imaging applications. Structures of Streptococcus pyogenes Cas9 alone or bound to single-guide RNA (sgRNA) and target DNA revealed a bilobed protein architecture that undergoes major conformational changes upon guide RNA and DNA binding. To investigate the molecular determinants and relevance of the interlobe rearrangement for target recognition and cleavage, we designed a split-Cas9 enzyme in which the nuclease lobe and α-helical lobe are expressed as separate polypeptides. The lobes do not interactmore » on their own, the sgRNA recruits them into a ternary complex that recapitulates the activity of full-length Cas9 and catalyzes site-specific DNA cleavage. The use of a modified sgRNA abrogates split-Cas9 activity by preventing dimerization, allowing for the development of an inducible dimerization system. We propose that split-Cas9 can act as a highly regulatable platform for genome-engineering applications.« less

  3. Rational design of a split-Cas9 enzyme complex.

    PubMed

    Wright, Addison V; Sternberg, Samuel H; Taylor, David W; Staahl, Brett T; Bardales, Jorge A; Kornfeld, Jack E; Doudna, Jennifer A

    2015-03-10

    Cas9, an RNA-guided DNA endonuclease found in clustered regularly interspaced short palindromic repeats (CRISPR) bacterial immune systems, is a versatile tool for genome editing, transcriptional regulation, and cellular imaging applications. Structures of Streptococcus pyogenes Cas9 alone or bound to single-guide RNA (sgRNA) and target DNA revealed a bilobed protein architecture that undergoes major conformational changes upon guide RNA and DNA binding. To investigate the molecular determinants and relevance of the interlobe rearrangement for target recognition and cleavage, we designed a split-Cas9 enzyme in which the nuclease lobe and α-helical lobe are expressed as separate polypeptides. Although the lobes do not interact on their own, the sgRNA recruits them into a ternary complex that recapitulates the activity of full-length Cas9 and catalyzes site-specific DNA cleavage. The use of a modified sgRNA abrogates split-Cas9 activity by preventing dimerization, allowing for the development of an inducible dimerization system. We propose that split-Cas9 can act as a highly regulatable platform for genome-engineering applications.

  4. [Assessment of nursing workload in three groups of patients in a Spanish ICU using the Nursing Activities Score Scale].

    PubMed

    Carmona-Monge, Francisco Javier; Jara-Pérez, Ana; Quirós-Herranz, Cristina; Rollán-Rodríguez, Gloria; Cerrillo-González, Isabel; García-Gómez, Sonia; Martínez-Lareo, Montserrat; Marín-Morales, Dolores

    2013-04-01

    The purpose of this study was to assess the nursing workload at admission to and discharge from intensive care of three groups of patients (i.e., acute coronary syndrome, acute respiratory failure, and sepsis). A prospective, descriptive study was performed over a 27-month period and included 563 patients. The workload was assessed using the Nursing Activities Score scale. Significant differences in the workload were determined on the days of admission and discharge: the workload was higher in both cases for patients with acute respiratory failure and sepsis compared with patients diagnosed with acute coronary syndrome. This difference was maintained over the first seven days of their hospital stay. From day 8 on, the difference disappeared, and a workload balance was achieved in the three groups. Good staffing requires adequate tools for measuring care needs and understanding the workload required in the groups of patients who are most frequently admitted to intensive care.

  5. Does the APACHE II score predict performance of activities of daily living in patients discharged from a weaning center?

    PubMed Central

    Rojek-Jarmuła, Anna; Hombach, Rainer

    2016-01-01

    Introduction Data regarding the functional status of patients after prolonged mechanical ventilation are scarce, and little is known about its clinical predictors. Aim To investigate whether the Acute Physiology and Chronic Health Evaluation (APACHE) II score on admission may predict performance in activities of daily living on discharge from a weaning center. Material and methods All consecutive patients admitted between January 1, 2012 and December 31, 2013 were enrolled (n = 130). During this period, 15 subjects died, and 115 were successfully discharged (34 women; 81 men). APACHE II was calculated based on the worst values taken during the first 24 hours after admission. On discharge, the Barthel Index (BI) and its extended version, the Early Rehabilitation Barthel Index (ERBI), were assessed. Results Median BI was 20 points (IQR 5; 40), and ERBI was 20 points (–50; 40). There was no correlation between APACHE II and either BI (R = –0.07; p = 0.47) or ERBI (R = –0.07; p = 0.44). APACHE II predicted the need for assistance with bathing (AUROC = 0.833; p < 0.001), grooming (AUROC = 0.823; p < 0.001), toilet use (AUROC = 0.887; p < 0.001), and urination (AUROC = 0.658; p = 0.04). APACHE II had no impact on any ERBI items associated with ventilator weaning, including the need of further mechanical ventilation (AUROC = 0.534; p = 0.65) or tracheostomy (AUROC = 0.544; p = 0.42). Conclusions Although APACHE II cannot predict the overall functional status in patients discharged from a weaning center, it helps identify subjects who will need support with bathing, grooming, and toilet use. The APACHE II score is inadequate to predict performance in activities associated with further respiratory support. PMID:28096834

  6. Ectonucleotide pyrophosphatase/phosphodiesterase (E-NPP) and adenosine deaminase (ADA) activities in prostate cancer patients: influence of Gleason score, treatment and bone metastasis.

    PubMed

    Battisti, Vanessa; Maders, Liési D K; Bagatini, Margarete D; Battisti, Iara E; Bellé, Luziane P; Santos, Karen F; Maldonado, Paula A; Thomé, Gustavo R; Schetinger, Maria R C; Morsch, Vera M

    2013-04-01

    The relation between adenine nucleotides and cancer has already been described in literature. Considering that the enzymes ectonucleotide pyrophosphatase/phosphodiesterase (E-NPP) and adenosine deaminase (ADA) act together to control nucleotide levels, we aimed to investigate the role of these enzymes in prostate cancer (PCa). E-NPP and ADA activities were determined in serum and platelets of PCa patients and controls. We also verified the influence of the Gleason score, bone metastasis and treatment in the enzyme activities. Platelets and serum E-NPP activity increased, whereas ADA activity in serum decreased in PCa patients. In addition, Gleason score, metastasis and treatment influenced E-NPP and ADA activities. We may propose that E-NPP and ADA are involved in the development of PCa. Moreover, E-NPP and ADA activities are modified in PCa patients with distinct Gleason score, with bone metastasis, as well as in patients under treatment.

  7. Differences Between the "Chinese AMS Score" and the Lake Louise Score in the Diagnosis of Acute Mountain Sickness.

    PubMed

    Wu, Jialin; Gu, Haoran; Luo, Yongjun

    2016-05-01

    The Chinese AMS score (CAS) is used in clinical medicine and research to diagnosis acute mountain sickness (AMS). However, the Lake Louise Score (LLS) is the well-accepted standard for diagnosing AMS. The difference between the CAS and LLS questionnaires is that the CAS considers more nonspecific symptoms. The aim of the present study was to evaluate differences in AMS prevalence according to the LLS and CAS criteria. We surveyed 58 males who traveled from Chongqing (300 m) to Lhasa (3658 m) via the Qinghai-Tibet train. Cases of AMS were diagnosed using LLS and CAS questionnaires in a few railway stations at different evaluation areas along the road. We subsequently evaluated discrepancies in values related to the prevalence of AMS determined using the 2 types of questionnaires (CAS and LLS). The prevalence of CAS-diagnosed AMS indicated that the percentage of AMS cases among the 58 young men was 29.3% in Golmud, 60.3% in Tanggula, 63.8% in Lhasa, 22.4% on the first day after arrival in Lhasa, 27.6% on the second day, 24.1% on the third day, and 12.1% on the fourth day. The prevalence of LLS-diagnosed AMS in Golmud was 10.3%, 38% in Lhasa, and 6.9% on day 1, the prevalence in each station was lower than that as assessed by the CAS. Our experimental data indicate that AMS diagnoses ascertained using the CAS indicate a higher AMS prevalence than those ascertained using the LLS. Through statistical analysis, the CAS seems capable of effectively diagnosing AMS as validated by LLS (sensitivity 61.8%, specificity 92.7%).

  8. Screening and Scoring of Antimicrobial and Biological Activities of Italian Vulnerary Plants against Major Oral Pathogenic Bacteria

    PubMed Central

    Ferrazzano, Gianmaria F.; Roberto, Lia; Catania, Maria Rosaria; Chiaviello, Angela; De Natale, Antonino; Roscetto, Emanuela; Pinto, Gabriele; Pollio, Antonino; Ingenito, Aniello; Palumbo, Giuseppe

    2013-01-01

    This study aims to evaluate the activity of Italian vulnerary plants against the most important oral pathogenic bacteria. This estimate was accomplished through a fivefold process: (a) a review of ethnobotanical and microbiological data concerning the Italian vulnerary plants; (b) the development of a scoring system to rank the plants; (c) the comparative assessment of microbiological properties; (d) the assessment of potential cytotoxic effects on keratinocyte-like cells and gingival fibroblasts in culture by XTT cell viability assay; (e) clinical evaluation of the most suitable plant extract as antibacterial agent in a home-made mouthwash. The study assays hexane (H), ethanol (E), and water (W) extracts from 72 plants. The agar diffusion method was used to evaluate the activity against Streptococcus mutans, Streptococcus sobrinus, Lactobacillus casei, and Actinomyces viscosus. Twenty-two plants showed appreciable activity. The extracts showing the strongest antibacterial power were those from Cotinus coggygria Scop., Equisetum hyemale L., Helichrysum litoreum Guss, Juniperus communis L., and Phyllitis scolopendrium (L.) Newman subsp. scolopendrium. The potential cytotoxic effect of these extracts was assessed. On the basis of these observations, a mouth-rinse containing the ethanolic extract of H. litoreum has been tested in vivo, resulting in reduction of the salivary concentration of S. mutans. PMID:24302963

  9. Scoring Guidelines.

    ERIC Educational Resources Information Center

    Tamir, Pinchas; Doran, Rodney L.

    1992-01-01

    Scoring guidelines are given for four forms of the practical skills tests of the Second International Association for the Evaluation of Educational Improvement Science Study conducted in the following countries in the 1980s: (1) Hungary; (2) Japan; (3) Korea; (4) Singapore; (5) Israel; and (6) the United States. (SLD)

  10. Modified RNAs in CRISPR/Cas9: An Old Trick Works Again.

    PubMed

    Latorre, Alfonso; Latorre, Ana; Somoza, Álvaro

    2016-03-07

    Old tricks, new dog: CRISPR/Cas9 is a powerful tool for gene editing that requires an endonuclease (Cas9) and RNA strands. It has been shown that chemical modification of the RNA structures, an approach that has been used to improve the efficiency of RNA interference, can also be applied to enhance the activity of CRISPR/Cas9 and reduce its off-target effects.

  11. Potential pitfalls of CRISPR/Cas9-mediated genome editing.

    PubMed

    Peng, Rongxue; Lin, Guigao; Li, Jinming

    2016-04-01

    Recently, a novel technique named the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas)9 system has been rapidly developed. This genome editing tool has improved our ability tremendously with respect to exploring the pathogenesis of diseases and correcting disease mutations, as well as phenotypes. With a short guide RNA, Cas9 can be precisely directed to target sites, and functions as an endonuclease to efficiently produce breaks in DNA double strands. Over the past 30 years, CRISPR has evolved from the 'curious sequences of unknown biological function' into a promising genome editing tool. As a result of the incessant development in the CRISPR/Cas9 system, Cas9 co-expressed with custom guide RNAs has been successfully used in a variety of cells and organisms. This genome editing technology can also be applied to synthetic biology, functional genomic screening, transcriptional modulation and gene therapy. However, although CRISPR/Cas9 has a broad range of action in science, there are several aspects that affect its efficiency and specificity, including Cas9 activity, target site selection and short guide RNA design, delivery methods, off-target effects and the incidence of homology-directed repair. In the present review, we highlight the factors that affect the utilization of CRISPR/Cas9, as well as possible strategies for handling any problems. Addressing these issues will allow us to take better advantage of this technique. In addition, we also review the history and rapid development of the CRISPR/Cas system from the time of its initial discovery in 2012.

  12. Effect of atorvastatin and diet on non-alcoholic fatty liver disease activity score in hyperlipidemic chickens.

    PubMed

    Martín-Castillo, Antonia; Castells, Maria Teresa; Adánez, Gracia; Polo, Maria Teresa Sánchez; Pérez, Bartolomé García; Ayala, Ignacio

    2010-04-01

    Non-alcoholic steatohepatitis (NASH) is part of the spectrum of non-alcoholic fatty liver disease (NAFLD), which includes from simple steatosis and steatohepatitis, to the most severe cirrhosis and carcinoma, which develops in the absence of excessive alcohol intake. NAFLD is the most common liver disorder in affluent societies. There is no proven treatment for NAFLD/NASH. One of the most frequent adverse effects of statins is an increase in hepatic aminotransferases. Studies that evaluate if the benefits of statins overcome the risks in NASH are lacking. The present study was conceived to explore the effect of both atorvastatin and diet on regression of steatohepatitis, using a chicken experimental model induced by a hyperlipidemic diet (HD). Plasma lipid levels, liver enzymes and hepatic histopathology, as well as image analysis were performed to determine changes in liver lipid deposits and inflammatory infiltration. Features of steatosis, cell-ballooning, and inflammation were scored to obtain the NAFLD activity score (NAS). A severe level of steatosis was found in animals fed on HD. Atorvastatin treated groups showed smaller size of lipid deposits and a lower level of inflammation than non-treated groups. Atorvastatin therapy induced a significant reduction of hepatocellular damage, even though in the animals which continuously received a hyperlipidemic diet. The combination of atorvastatin therapy and a standard diet produced the lowest decrease of NAS. Our results show that atorvastatin therapy not only decreased plasmatic levels of cholesterol and triglycerides, but also induced a reduction of liver steatosis, inflammation and hepatocellular damage, without increasing plasmatic aminotransferase levels.

  13. Further Optimization of the Reliability of the 28-Joint Disease Activity Score in Patients with Early Rheumatoid Arthritis

    PubMed Central

    Siemons, Liseth; ten Klooster, Peter M.; Vonkeman, Harald E.; van de Laar, Mart A. F. J.; Glas, Cees A. W.

    2014-01-01

    Background The 28-joint Disease Activity Score (DAS28) combines scores on a 28-tender and swollen joint count (TJC28 and SJC28), a patient-reported measure for general health (GH), and an inflammatory marker (either the erythrocyte sedimentation rate [ESR] or the C-reactive protein [CRP]) into a composite measure of disease activity in rheumatoid arthritis (RA). This study examined the reliability of the DAS28 in patients with early RA using principles from generalizability theory and evaluated whether it could be increased by adjusting individual DAS28 component weights. Methods Patients were drawn from the DREAM registry and classified into a “fast response” group (N = 466) and “slow response” group (N = 80), depending on their pace of reaching remission. Composite reliabilities of the DAS28-ESR and DAS28-CRP were determined with the individual components' reliability, weights, variances, error variances, correlations and covariances. Weight optimization was performed by minimizing the error variance of the index. Results Composite reliabilities of 0.85 and 0.86 were found for the DAS28-ESR and DAS28-CRP, respectively, and were approximately equal across patients groups. Component reliabilities, however, varied widely both within and between sub-groups, ranging from 0.614 for GH (“slow response” group) to 0.912 for ESR (“fast response” group). Weight optimization increased composite reliability even further. In the total and “fast response” groups, this was achieved mostly by decreasing the weight of the TJC28 and GH. In the “slow response” group, though, the weights of the TJC28 and SJC28 were increased, while those of the inflammatory markers and GH were substantially decreased. Conclusions The DAS28-ESR and the DAS28-CRP are reliable instruments for assessing disease activity in early RA and reliability can be increased even further by adjusting component weights. Given the low reliability and weightings of the general health

  14. The CRISPR/Cas9 system targeting EGFR exon 17 abrogates NF-κB activation via epigenetic modulation of UBXN1 in EGFRwt/vIII glioma cells.

    PubMed

    Huang, Kai; Yang, Chao; Wang, Qi-Xue; Li, Yan-Sheng; Fang, Chuan; Tan, Yan-Li; Wei, Jian-Wei; Wang, Yun-Fei; Li, Xin; Zhou, Jun-Hu; Zhou, Bing-Cong; Yi, Kai-Kai; Zhang, Kai-Liang; Li, Jie; Kang, Chun-Sheng

    2017-03-01

    Worldwide, glioblastoma (GBM) is the most lethal and frequent intracranial tumor. Despite decades of study, the overall survival of GBM patients remains unchanged. epidermal growth factor receptor (EGFR) amplification and gene mutation are thought to be negatively correlated with prognosis. In this study, we used proteomics to determine that UBXN1 is a negative downstream regulator of the EGFR mutation vIII (EGFRvIII). Via bioinformatics analysis, we found that UBXN1 is a factor that can improve glioma patients' overall survival time. We also determined that the down-regulation of UBXN1 is mediated by the upregulation of H3K27me3 in the presence of EGFRvIII. Because NF-κB can be negatively regulated by UBXN1, we believe that EGFRwt/vIII activates NF-κB by suppressing UBXN1 expression. Importantly, we used the latest genomic editing tool, CRISPR/Cas9, to knockout EGFRwt/vIII on exon 17 and further proved that UBXN1 is negatively regulated by EGFRwt/vIII. Furthermore, knockout of EGFR/EGFRvIII could benefit GBM in vitro and in vivo, indicating that CRISPR/Cas9 is a promising therapeutic strategy for both EGFR amplification and EGFR mutation-bearing patients.

  15. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins.

    PubMed

    Bondy-Denomy, Joseph; Garcia, Bianca; Strum, Scott; Du, Mingjian; Rollins, MaryClare F; Hidalgo-Reyes, Yurima; Wiedenheft, Blake; Maxwell, Karen L; Davidson, Alan R

    2015-10-01

    The battle for survival between bacteria and the viruses that infect them (phages) has led to the evolution of many bacterial defence systems and phage-encoded antagonists of these systems. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated (cas) genes comprise an adaptive immune system that is one of the most widespread means by which bacteria defend themselves against phages. We identified the first examples of proteins produced by phages that inhibit a CRISPR-Cas system. Here we performed biochemical and in vivo investigations of three of these anti-CRISPR proteins, and show that each inhibits CRISPR-Cas activity through a distinct mechanism. Two block the DNA-binding activity of the CRISPR-Cas complex, yet do this by interacting with different protein subunits, and using steric or non-steric modes of inhibition. The third anti-CRISPR protein operates by binding to the Cas3 helicase-nuclease and preventing its recruitment to the DNA-bound CRISPR-Cas complex. In vivo, this anti-CRISPR can convert the CRISPR-Cas system into a transcriptional repressor, providing the first example-to our knowledge-of modulation of CRISPR-Cas activity by a protein interactor. The diverse sequences and mechanisms of action of these anti-CRISPR proteins imply an independent evolution, and foreshadow the existence of other means by which proteins may alter CRISPR-Cas function.

  16. Progress of application and off-target effects of CRISPR/Cas9.

    PubMed

    Wu, Zheng; Feng, Gu

    2015-10-01

    The clustered regulatory interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) system mediates genome editing and is revolutionizing genetic researches. Scientists are able to manipulate the gene of interest from any organism with CRISPR/Cas9. Compared with zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) technologies, the CRISPR/Cas9 technology provides an easy and efficient approach to manipulate the genome. In this system, sgRNA (Single guide RNA), a short RNA matching the targeted DNA fragment, guides the CRISPR/Cas9 to interrogate the genome. Because sgRNA can tolerate certain mismatches to the DNA targets and thereby promote undesired off-target mutagenesis, the key limit of this technology is off-target effects. To eliminate the off-target effects, different strategies have been adopted. In this review, we summarize the application of CRISPR/Cas9 and different strategies for addressing off-target effects.

  17. Integration and exchange of split dCas9 domains for transcriptional controls in mammalian cells

    PubMed Central

    Ma, Dacheng; Peng, Shuguang; Xie, Zhen

    2016-01-01

    Programmable and precise regulation of dCas9 functions in response to multiple molecular signals by using synthetic gene circuits will expand the application of the CRISPR-Cas technology. However, the application of CRISPR-Cas therapeutic circuits is still challenging due to the restrictive cargo size of existing viral delivery vehicles. Here, we construct logic AND circuits by integrating multiple split dCas9 domains, which is useful to reduce the size of synthetic circuits. In addition, we engineer sensory switches by exchanging split dCas9 domains, allowing differential regulations on one gene, or activating two different genes in response to cell-type specific microRNAs. Therefore, we provide a valuable split-dCas9 toolkit to engineer complex transcription controls, which may inspire new biomedical applications. PMID:27694915

  18. Stability of WISC-IV process scores.

    PubMed

    Ryan, Joseph J; Umfleet, Laura Glass; Kane, Alexa

    2013-01-01

    Forty-three students were administered on two occasions approximately 11 months apart the complete Wechsler Intelligence Scale for Children-Fourth Edition, including the seven process components of Block Design No Time Bonus, Digit Span Forward (DSF), Digit Span Backward (DSB), Cancellation Random (CAR), Cancellation Structured (CAS), Longest Digit Span Forward (LDSF), and Longest Digit Span Backward (LDSB). Mean ages at first and second testing were 7.77 years (SD = 1.91) and 8.74 years (SD = 1.93), respectively. Mean Full-Scale IQ at initial testing was 111.63 (SD = 10.71). Process score stability coefficients ranged from .75 on DSF to .32 on CAS. Discrepancy score stabilities ranged from .45 on DSF minus DSB to .05 on CAS minus CAR. Approximately 21% of participants increased their LDSF on retest, and 16.3% showed a gain on LDSB. Caution must be exercised when interpreting process scores, and interpretation of discrepancy scores should probably be avoided.

  19. Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes

    PubMed Central

    Fine, Eli J.; Appleton, Caleb M.; White, Douglas E.; Brown, Matthew T.; Deshmukh, Harshavardhan; Kemp, Melissa L.; Bao, Gang

    2015-01-01

    CRISPR/Cas9 systems have been used in a wide variety of biological studies; however, the large size of CRISPR/Cas9 presents challenges in packaging it within adeno-associated viruses (AAVs) for clinical applications. We identified a two-cassette system expressing pieces of the S. pyogenes Cas9 (SpCas9) protein which splice together in cellula to form a functional protein capable of site-specific DNA cleavage. With specific CRISPR guide strands, we demonstrated the efficacy of this system in cleaving the HBB and CCR5 genes in human HEK-293T cells as a single Cas9 and as a pair of Cas9 nickases. The trans-spliced SpCas9 (tsSpCas9) displayed ~35% of the nuclease activity compared with the wild-type SpCas9 (wtSpCas9) at standard transfection doses, but had substantially decreased activity at lower dosing levels. The greatly reduced open reading frame length of the tsSpCas9 relative to wtSpCas9 potentially allows for more complex and longer genetic elements to be packaged into an AAV vector including tissue-specific promoters, multiplexed guide RNA expression, and effector domain fusions to SpCas9. For unknown reasons, the tsSpCas9 system did not work in all cell types tested. The use of protein trans-splicing may help facilitate exciting new avenues of research and therapeutic applications through AAV-based delivery of CRISPR/Cas9 systems. PMID:26126518

  20. Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes.

    PubMed

    Ma, Enbo; Harrington, Lucas B; O'Connell, Mitchell R; Zhou, Kaihong; Doudna, Jennifer A

    2015-11-05

    Double-stranded DNA (dsDNA) cleavage by Cas9 is a hallmark of type II CRISPR-Cas immune systems. Cas9-guide RNA complexes recognize 20-base-pair sequences in DNA and generate a site-specific double-strand break, a robust activity harnessed for genome editing. DNA recognition by all studied Cas9 enzymes requires a protospacer adjacent motif (PAM) next to the target site. We show that Cas9 enzymes from evolutionarily divergent bacteria can recognize and cleave single-stranded DNA (ssDNA) by an RNA-guided, PAM-independent recognition mechanism. Comparative analysis shows that in contrast to the type II-A S. pyogenes Cas9 that is widely used for genome engineering, the smaller type II-C Cas9 proteins have limited dsDNA binding and unwinding activity and promiscuous guide RNA specificity. These results indicate that inefficiency of type II-C Cas9 enzymes for genome editing results from a limited ability to cleave dsDNA and suggest that ssDNA cleavage was an ancestral function of the Cas9 enzyme family.

  1. Single-stranded DNA cleavage by divergent CRISPR-Cas9 enzymes

    PubMed Central

    Ma, Enbo; Harrington, Lucas B.; O’Connell, Mitchell R.; Zhou, Kaihong; Doudna, Jennifer A.

    2015-01-01

    Summary Double-stranded DNA (dsDNA) cleavage by Cas9 is a hallmark of type II CRISPR-Cas immune systems. Cas9–guide RNA complexes recognize 20-base-pair sequences in DNA and generate a site-specific double-strand break, a robust activity harnessed for genome editing. DNA recognition by all studied Cas9 enzymes requires a protospacer adjacent motif (PAM) next to the target site. We show that Cas9 enzymes from evolutionarily divergent bacteria can recognize and cleave single-stranded DNA (ssDNA) by an RNA-guided, PAM-independent recognition mechanism. Comparative analysis shows that in contrast to the type II-A S. pyogenes Cas9 that is widely used for genome engineering, the smaller type II-C Cas9 proteins have limited dsDNA binding and unwinding activity and promiscuous guide-RNA specificity. These results indicate that inefficiency of type II-C Cas9 enzymes for genome editing results from a limited ability to cleave dsDNA, and suggest that ssDNA cleavage was an ancestral function of the Cas9 enzyme family. PMID:26545076

  2. Young Zanzibari Children with Iron Deficiency, Iron Deficiency Anemia, Stunting, or Malaria Have Lower Motor Activity Scores and Spend Less Time in Locomotion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Motor activity improves cognitive and social-emotional development through a child’s exploration of his or her physical and social environment. This study assessed anemia, iron deficiency, hemoglobin (Hb), length-for-age Z-score (LAZ), and malaria infection as predictors of motor activity in 771 chi...

  3. The radii of SU Cas and TU Cas

    NASA Technical Reports Server (NTRS)

    Niva, G. D.; Schmidt, E. G.

    1980-01-01

    It is possible to obtain the masses of Cepheid variables by several methods involving the pulsation theory. However, these masses are frequently smaller than those indicated by the theory of stellar evolution. The cause of this discrepancy is not fully understood. Since the pulsation theory indicates that there is a relation among the mass, the radius and the period, the discrepancy also manifests itself in the radii of these stars. With this in mind, radius determinations for two Cepheids, SU Cas and TU Cas, were undertaken. It is concluded that because of the agreement between the present radius and the beat radius of TU Cas, the pulsation theory is giving correct information about the radii of beat Cepheids. This implies that the luminosities of short period Cepheids have been overestimated. Thus, the solution to the mass discrepancy should perhaps be sought in the theory of stellar evolution or in the possibility of mass loss.

  4. Physical, antioxidant and structural characterization of blend films based on hsian-tsao gum (HG) and casein (CAS).

    PubMed

    Yang, Hui; Wen, Xiao Long; Guo, Shan Guang; Chen, Ming Tsao; Jiang, Ai Min; Lai, Lih-Shiuh

    2015-12-10

    The effects of hsian-tsao gum (HG) addition on the physical properties, antioxidant activities and structure of casein (CAS) film have been investigated. It has been observed that HG addition provided CAS film with better mechanical properties and resistant to moisture, stronger barrier properties against light and higher antioxidant activities than pure CAS film. Fourier transformation infrared (FTIR) data indicated that hydrogen bonding interactions and Maillard reactions occurred between CAS and HG, giving rise to a more compact structure than CAS film. The results of X-ray diffraction and differential scanning calorimetry (DSC) indicated that CAS and HG were compatible, and addition of HG destroyed the original crystalline domains of CAS film, and the blend films exhibited higher glass transition temperatures than CAS film. Moreover, nuclear magnetic resonance (NMR) analysis showed that HG addition significantly changed the mobility of water molecule in CAS film. Especially, ratio of the high mobility water of CAS/HG films significantly decreased as compared to CAS film.

  5. crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus.

    PubMed

    Karvelis, Tautvydas; Gasiunas, Giedrius; Miksys, Algirdas; Barrangou, Rodolphe; Horvath, Philippe; Siksnys, Virginijus

    2013-05-01

    The Cas9-crRNA complex of the Streptococcus thermophilus DGCC7710 CRISPR3-Cas system functions as an RNA-guided endonuclease with crRNA-directed target sequence recognition and protein-mediated DNA cleavage. We show here that an additional RNA molecule, tracrRNA (trans-activating CRISPR RNA), co-purifies with the Cas9 protein isolated from the heterologous E. coli strain carrying the S. thermophilus DGCC7710 CRISPR3-Cas system. We provide experimental evidence that tracrRNA is required for Cas9-mediated DNA interference both in vitro and in vivo. We show that Cas9 specifically promotes duplex formation between the precursor crRNA (pre-crRNA) transcript and tracrRNA, in vitro. Furthermore, the housekeeping RNase III contributes to primary pre-crRNA-tracrRNA duplex cleavage for mature crRNA biogenesis. RNase III, however, is not required in the processing of a short pre-crRNA transcribed from a minimal CRISPR array containing a single spacer. Finally, we show that an in vitro-assembled ternary Cas9-crRNA-tracrRNA complex cleaves DNA. This study further specifies the molecular basis for crRNA-based re-programming of Cas9 to specifically cleave any target DNA sequence for precise genome surgery. The processes for crRNA maturation and effector complex assembly established here will contribute to the further development of the Cas9 re-programmable system for genome editing applications.

  6. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9.

    PubMed

    Wang, Yi; Zhang, Zhong-Tian; Seo, Seung-Oh; Lynn, Patrick; Lu, Ting; Jin, Yong-Su; Blaschek, Hans P

    2016-12-01

    CRISPR-Cas9 has been explored as a powerful tool for genome engineering for many organisms. Meanwhile, dCas9 which lacks endonuclease activity but can still bind to target loci has been engineered for efficient gene transcription repression. Clostridium beijerinckii, an industrially significant species capable of biosolvent production, is generally difficult to metabolically engineer. Recently, we reported our work in developing customized CRISPR-Cas9 system for genome engineering in C. beijerinckii. However, in many cases, gene expression repression (rather than actual DNA mutation) is more desirable for various biotechnological applications. Here, we further demonstrated gene transcription repression in C. beijerinckii using CRISPR-dCas9. A small RNA promoter was employed to drive the expression of the single chimeric guide RNA targeting on the promoter region of amylase gene, while a constitutive thiolase promoter was used to drive Streptococcus pyogenes dCas9 expression. The growth assay on starch agar plates showed qualitatively significant repression of amylase activity in C. beijerinckii transformant with CRISPR-dCas9 compared to the control strain. Further amylase activity quantification demonstrated consistent repression (65-97% through the fermentation process) on the activity in the transformant with CRISPR-dCas9 versus in the control. Our results provided essential references for engineering CRISPR-dCas9 as an effective tool for tunable gene transcription repression in diverse microorganisms. Biotechnol. Bioeng. 2016;113: 2739-2743. © 2016 Wiley Periodicals, Inc.

  7. Efficient fdCas9 Synthetic Endonuclease with Improved Specificity for Precise Genome Engineering

    PubMed Central

    Aouida, Mustapha; Eid, Ayman; Ali, Zahir; Cradick, Thomas; Lee, Ciaran; Deshmukh, Harshavardhan; Atef, Ahmed; AbuSamra, Dina; Gadhoum, Samah Zeineb; Merzaban, Jasmeen; Bao, Gang; Mahfouz, Magdy

    2015-01-01

    The Cas9 endonuclease is used for genome editing applications in diverse eukaryotic species. A high frequency of off-target activity has been reported in many cell types, limiting its applications to genome engineering, especially in genomic medicine. Here, we generated a synthetic chimeric protein between the catalytic domain of the FokI endonuclease and the catalytically inactive Cas9 protein (fdCas9). A pair of guide RNAs (gRNAs) that bind to sense and antisense strands with a defined spacer sequence range can be used to form a catalytically active dimeric fdCas9 protein and generate double-strand breaks (DSBs) within the spacer sequence. Our data demonstrate an improved catalytic activity of the fdCas9 endonuclease, with a spacer range of 15–39 nucleotides, on surrogate reporters and genomic targets. Furthermore, we observed no detectable fdCas9 activity at known Cas9 off-target sites. Taken together, our data suggest that the fdCas9 endonuclease variant is a superior platform for genome editing applications in eukaryotic systems including mammalian cells. PMID:26225561

  8. p130Cas over-expression impairs mammary branching morphogenesis in response to estrogen and EGF.

    PubMed

    Camacho Leal, Maria del Pilar; Pincini, Alessandra; Tornillo, Giusy; Fiorito, Elisa; Bisaro, Brigitte; Di Luca, Elisa; Turco, Emilia; Defilippi, Paola; Cabodi, Sara

    2012-01-01

    p130Cas adaptor protein regulates basic processes such as cell cycle control, survival and migration. p130Cas over-expression has been related to mammary gland transformation, however the in vivo consequences of p130Cas over-expression during mammary gland morphogenesis are not known. In ex vivo mammary explants from MMTV-p130Cas transgenic mice, we show that p130Cas impairs the functional interplay between Epidermal Growth Factor Receptor (EGFR) and Estrogen Receptor (ER) during mammary gland development. Indeed, we demonstrate that p130Cas over-expression upon the concomitant stimulation with EGF and estrogen (E2) severely impairs mammary morphogenesis giving rise to enlarged multicellular spherical structures with altered architecture and absence of the central lumen. These filled acinar structures are characterized by increased cell survival and proliferation and by a strong activation of Erk1/2 MAPKs and Akt. Interestingly, antagonizing the ER activity is sufficient to re-establish branching morphogenesis and normal Erk1/2 MAPK activity. Overall, these results indicate that high levels of p130Cas expression profoundly affect mammary morphogenesis by altering epithelial architecture, survival and unbalancing Erk1/2 MAPKs activation in response to growth factors and hormones. These results suggest that alteration of morphogenetic pathways due to p130Cas over-expression might prime mammary epithelium to tumorigenesis.

  9. Attitude and CAS Use in Senior Secondary Mathematics: A Case Study of Seven Year 11 Students

    ERIC Educational Resources Information Center

    Cameron, Scott; Ball, Lynda

    2014-01-01

    This paper investigates the possible influence of attitude on seven Year 11 students' use of a Computer Algebra System (CAS) during a class activity where students could choose to use CAS or pen-and-paper in solving a range of problems. Investigation of anxiety, confidence, liking and usefulness through a survey and interview revealed that these…

  10. New CRISPR-Cas systems discovered.

    PubMed

    Yang, Hui; Patel, Dinshaw J

    2017-03-01

    In bacteria and archaea, CRISPR-Cas adaptive immune systems utilize RNA-guided endonucleases to defend against invasion by foreign nucleic acids of bacteriophage, virus and plasmid origin. In a recent paper published in Nature, Burstein et al. identified the first Cas9 protein in uncultivated archaea and two novel CRISPR-CasX and CRISPR-CasY systems in uncultivated bacteria by capitalizing on analysis of terabase-scale metagenomic datasets from natural uncultivated organisms.

  11. CAS-Induced Difficulties in Learning Mathematics?

    ERIC Educational Resources Information Center

    Jankvist, Uffe Thomas; Misfeldt, Morten

    2015-01-01

    In recent years computer algebra systems (CAS) have become an integrated part of the upper secondary school mathematics program. Despite the many positive possibilities of CAS, there also seems to be a flip side of the coin in relation to actual difficulties in learning mathematics, not least because a strong dependence on CAS for mathematical…

  12. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.

    PubMed

    Koonin, Eugene V; Makarova, Kira S

    2013-05-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails.

  13. Childhood Apraxia of Speech (CAS) in two patients with 16p11.2 microdeletion syndrome

    PubMed Central

    Raca, Gordana; Baas, Becky S; Kirmani, Salman; Laffin, Jennifer J; Jackson, Craig A; Strand, Edythe A; Jakielski, Kathy J; Shriberg, Lawrence D

    2013-01-01

    We report clinical findings that extend the phenotype of the ∼550 kb 16p11.2 microdeletion syndrome to include a rare, severe, and persistent pediatric speech sound disorder termed Childhood Apraxia of Speech (CAS). CAS is the speech disorder identified in a multigenerational pedigree (‘KE') in which half of the members have a mutation in FOXP2 that co-segregates with CAS, oromotor apraxia, and low scores on a nonword repetition task. Each of the two patients in the current report completed a 2-h assessment protocol that provided information on their cognitive, language, speech, oral mechanism, motor, and developmental histories and performance. Their histories and standard scores on perceptual and acoustic speech tasks met clinical and research criteria for CAS. Array comparative genomic hybridization analyses identified deletions at chromosome 16p11.2 in each patient. These are the first reported cases with well-characterized CAS in the 16p11.2 syndrome literature and the first report of this microdeletion in CAS genetics research. We discuss implications of findings for issues in both literatures. PMID:22909774

  14. Nutritional Quality of Breakfast and Physical Activity Independently Predict the Literacy and Numeracy Scores of Children after Adjusting for Socioeconomic Status

    ERIC Educational Resources Information Center

    O'Dea, Jennifer A.; Mugridge, Anna C.

    2012-01-01

    Health-related behaviors [physical activity (PA), nutritional quality of breakfast and sleep]; personal variables (self-esteem, attitudes to PA and gender) and socioeconomic status (SES) (school SES and parental education), were examined in relation to literacy and numeracy scores of 824 grade 3-7 children. Participants completed a questionnaire,…

  15. A Comparison of Self-Report Scales and Accelerometer-Determined Moderate to Vigorous Physical Activity Scores of Finnish School Students

    ERIC Educational Resources Information Center

    Gråstén, Arto; Watt, Anthony

    2016-01-01

    The current article provides an important insight into measurement differences between two commonly used self-reports and accelerometer-determined moderate to vigorous physical activity (MVPA) scores within matched samples across 1 school year. Participants were 998 fifth- through eighth-grade students who completed self-reports and 76 fifth- and…

  16. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage

    PubMed Central

    Jiang, Fuguo; Taylor, David W.; Chen, Janice S.; Kornfeld, Jack E.; Zhou, Kaihong; Thompson, Aubri J.; Nogales, Eva; Doudna, Jennifer A.

    2016-01-01

    Bacterial adaptive immunity and genome engineering involving the CRISPR (clustered regularly interspaced short palindromic repeats)–associated (Cas) protein Cas9 begin with RNA-guided DNA unwinding to form an RNA-DNA hybrid and a displaced DNA strand inside the protein. The role of this R-loop structure in positioning each DNA strand for cleavage by the two Cas9 nuclease domains is unknown. We determine molecular structures of the catalytically active Streptococcus pyogenes Cas9 R-loop that show the displaced DNA strand located near the RuvC nuclease domain active site. These protein-DNA interactions, in turn, position the HNH nuclease domain adjacent to the target DNA strand cleavage site in a conformation essential for concerted DNA cutting. Cas9 bends the DNA helix by 30°, providing the structural distortion needed for R-loop formation. PMID:26841432

  17. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage.

    PubMed

    Jiang, Fuguo; Taylor, David W; Chen, Janice S; Kornfeld, Jack E; Zhou, Kaihong; Thompson, Aubri J; Nogales, Eva; Doudna, Jennifer A

    2016-02-19

    Bacterial adaptive immunity and genome engineering involving the CRISPR (clustered regularly interspaced short palindromic repeats)-associated (Cas) protein Cas9 begin with RNA-guided DNA unwinding to form an RNA-DNA hybrid and a displaced DNA strand inside the protein. The role of this R-loop structure in positioning each DNA strand for cleavage by the two Cas9 nuclease domains is unknown. We determine molecular structures of the catalytically active Streptococcus pyogenes Cas9 R-loop that show the displaced DNA strand located near the RuvC nuclease domain active site. These protein-DNA interactions, in turn, position the HNH nuclease domain adjacent to the target DNA strand cleavage site in a conformation essential for concerted DNA cutting. Cas9 bends the DNA helix by 30°, providing the structural distortion needed for R-loop formation.

  18. D.C. Student Test Scores Show Uneven Progress. Data Snapshot

    ERIC Educational Resources Information Center

    DuPre, Mary

    2011-01-01

    Over the past five years, both DC Public Schools (DCPS) and public charter schools (PCS) have seen significant growth in secondary reading and math scores on the state test known as the District of Columbia Comprehensive Assessment System (DC CAS). However, scores have not improved as much at the elementary level. Reading and math scores for DCPS…

  19. Genome Editing in Human Cells Using CRISPR/Cas Nucleases.

    PubMed

    Wyvekens, Nicolas; Tsai, Shengdar Q; Joung, J Keith

    2015-10-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has been broadly adopted for highly efficient genome editing in a variety of model organisms and human cell types. Unlike previous genome editing technologies such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), CRISPR/Cas technology does not require complex protein engineering and can be utilized by any researcher proficient in basic molecular biology and cell culture techniques. This unit describes protocols for design and cloning of vectors expressing single or multiplex gRNAs, for transient transfection of human cell lines, and for quantitation of mutation frequencies by T7 endonuclease I assay. These protocols also include guidance for using two improvements that increase the specificity of CRISPR/Cas nucleases: truncated gRNAs and dimeric RNA-guided FokI nucleases.

  20. Pyo-pneumothorax tuberculeux: à propos de 18 cas

    PubMed Central

    Hicham, Souhi; Hanane, El Ouazzani; Hicham, Janah; Ismaïl, Rhorfi; Ahmed, Abid

    2016-01-01

    Le pyo-pneumothorax tuberculeux est une complication rare mais grave de la tuberculose pulmonaire évolutive. Nous rapportons une série de 18 cas de pyo-pneumothorax tuberculeux colligés au service de Pneumo-Phtisiologie de l'Hôpital Militaire d'Instruction Mohammed V de Rabat entre janvier 2005 et décembre 2009. Il s'agit de 15 hommes et 3 femmes d’âge moyen de 35 ans ±7 ans. 4 patients étaient diabétiques. Le tabagisme était retrouvé chez 9 cas. Le pyo-pneumothorax était du coté droit dans 13 cas. La radiographie thoracique avait montré des lésions cavitaires chez 15 patients et des lésions étendues et bilatérales chez 8 cas. La recherche de BK dans le liquide de tubage gastrique était positive chez 16 cas. Un drainage thoracique associé à un traitement antituberculeux selon le régime 2SRHZ/7RH et une kinésithérapie respiratoire ont été instaurés chez tous les cas. La durée moyenne de drainage pleural était de 4 semaines. Chez 3 cas on avait noté la persistance de la suppuration pleurale ayant nécessité une toilette pleurale sous thoracoscopie avec pleurectomie et exérèse pulmonaire limitée emportant la lésion parenchymateuse tuberculeuse et la persistance d'une volumineuse poche pleurale avec trouble ventilatoire restrictif ayant nécessité une décortication pleurale chirurgicale chez deux cas. L’évolution était favorable avec pachypleurite séquellaire minime chez le reste des cas. Le pyo-pneumothorax tuberculeux est une forme grave, qui est souvent en rapport avec une tuberculose cavitaire active. L’évolution est généralement trainante malgré le traitement antituberculeux et le drainage thoracique, d'où la nécessité d'un diagnostic et un traitement précoce de toute forme de tuberculose. PMID:27583090

  1. Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos

    PubMed Central

    Tu, Zhuchi; Yang, Weili; Yan, Sen; Yin, An; Gao, Jinquan; Liu, Xudong; Zheng, Yinghui; Zheng, Jiezhao; Li, Zhujun; Yang, Su; Li, Shihua; Guo, Xiangyu; Li, Xiao-Jiang

    2017-01-01

    CRISPR-Cas9 is a powerful new tool for genome editing, but this technique creates mosaic mutations that affect the efficiency and precision of its ability to edit the genome. Reducing mosaic mutations is particularly important for gene therapy and precision genome editing. Although the mechanisms underlying the CRSIPR/Cas9-mediated mosaic mutations remain elusive, the prolonged expression and activity of Cas9 in embryos could contribute to mosaicism in DNA mutations. Here we report that tagging Cas9 with ubiquitin-proteasomal degradation signals can facilitate the degradation of Cas9 in non-human primate embryos. Using embryo-splitting approach, we found that shortening the half-life of Cas9 in fertilized zygotes reduces mosaic mutations and increases its ability to modify genomes in non-human primate embryos. Also, injection of modified Cas9 in one-cell embryos leads to live monkeys with the targeted gene modifications. Our findings suggest that modifying Cas9 activity can be an effective strategy to enhance precision genome editing. PMID:28155910

  2. Participation in cognitively-stimulating activities is associated with brain structure and cognitive function in preclinical Alzheimer’s disease

    PubMed Central

    Schultz, Stephanie; Larson, Jordan; Oh, Jennifer; Koscik, Rebecca; Dowling, Maritza N.; Gallagher, Catherine L.; Carlsson, Cynthia M.; Rowley, Howard A.; Bendlin, Barbara B.; Asthana, Sanjay; Hermann, Bruce P.; Johnson, Sterling C.; Sager, Mark; LaRue, Asenath; Okonkwo, Ozioma C.

    2014-01-01

    This study tested the hypothesis that frequent participation in cognitively-stimulating activities, specifically those related to playing games and puzzles, is beneficial to brain health and cognition among middle-aged adults at increased risk for Alzheimer’s disease (AD). Three hundred twenty-nine cognitively normal, middle-aged adults (age range, 43.2–73.8 years) enrolled in the Wisconsin Registry for Alzheimer’s Prevention (WRAP) participated in this study. They reported their current engagement in cognitive activities using a modified version of the Cognitive Activity Scale (CAS), underwent a structural MRI scan, and completed a comprehensive cognitive battery. FreeSurfer was used to derive gray matter (GM) volumes from AD-related regions of interest (ROIs), and composite measures of episodic memory and executive function were obtained from the cognitive tests. Covariate-adjusted least squares analyses were used to examine the association between the Games item on the CAS (CAS-Games) and both GM volumes and cognitive composites. Higher scores on CAS-Games were associated with greater GM volumes in several ROIs including the hippocampus, posterior cingulate, anterior cingulate, and middle frontal gyrus. Similarly, CAS-Games scores were positively associated with scores on the Immediate Memory, Verbal Learning & Memory, and Speed & Flexibility domains. These findings were not modified by known risk factors for AD. In addition, the Total score on the CAS was not as sensitive as CAS-Games to the examined brain and cognitive measures. For some individuals, participation in cognitive activities pertinent to game playing may help prevent AD by preserving brain structures and cognitive functions vulnerable to AD pathophysiology. PMID:25358750

  3. Relation of Dietary Restraint Scores to Activation of Reward-Related Brain Regions in Response to Food Intake, Anticipated Intake, and Food Pictures

    PubMed Central

    Burger, Kyle S.; Stice, Eric

    2010-01-01

    Prospective studies indicate that individuals with elevated dietary restraint scores are at increased risk for future bulimic symptom onset, suggesting that these individuals may show hyper-responsivity of reward regions to food and food cues. Thus, we used functional magnetic resonance imaging (fMRI) to examine the relation of dietary restraint scores to activation of reward-related brain regions in response to receipt and anticipated receipt of chocolate milkshake and exposure to pictures of appetizing foods in 39 female adolescents (mean age = 15.5 ± 0.94). Dietary restraint scores were positively correlated with activation in the right orbitofrontal cortex (OFC) and bilateral dorsolateral prefrontal cortex (DLPFC) in response to milkshake receipt. However, dietary restraint scores did not correlate with activation in response to anticipated milkshake receipt or exposure to food pictures. Results indicate that individuals who report high dietary restraint have a hyper-responsivity in reward-related brain regions when food intake is occurring, which may increase risk for overeating and binge eating. PMID:21147234

  4. CRISPR-Cas immunity and mobile DNA: a new superfamily of DNA transposons encoding a Cas1 endonuclease.

    PubMed

    Hickman, Alison B; Dyda, Fred

    2014-01-01

    Mobile genetic elements such as DNA transposons are a feature of most genomes. The existence of novel DNA transposons can be inferred when whole genome sequencing reveals the presence of hallmarks of mobile elements such as terminal inverted repeats (TIRs) flanked by target site duplications (TSDs). A recent report describes a new superfamily of DNA transposons in the genomes of a few bacteria and archaea that possess TIRs and TSDs, and encode several conserved genes including a cas1 endonuclease gene, previously associated only with CRISPR-Cas adaptive immune systems. The data strongly suggests that these elements, designated 'casposons', are likely to be bona fide DNA transposons and that their Cas1 nucleases act as transposases and are possibly still active.

  5. Handedness and behavioural inhibition system/behavioural activation system (BIS/BAS) scores: A replication and extension of Wright, Hardie, and Wilson (2009).

    PubMed

    Beaton, Alan A; Kaack, Imogen H; Corr, Philip J

    2015-01-01

    The Annett Hand Preference Questionnaire (AHPQ) as modified by Briggs and Nebes was administered along with Carver and White's behavioural inhibition system (BIS) and behavioural activation system (BAS) scale and a shortened form of the Big Five personality questionnaire to 92 university students. After eliminating the data from five respondents who reported having changed handedness and one outlier, there was a significant sex difference in mean BIS scores, with females (n = 43) scoring higher than males (n = 43). Replicating the results of Wright, Hardie and Wilson, non-right-handers (n = 36) had significantly higher mean BIS score than right-handers (n = 50). Controlling for sex of participant, neuroticism and BAS sub-scale scores in hierarchical regression analyses left this BIS effect substantially unaffected. There was no handedness or sex difference on any of the three BAS sub-scales. Further analyses revealed no association between strength, as distinct from direction, of handedness and BIS (or BAS) scores. The findings are discussed with reference to recent developments in reinforcement sensitivity theory on which BIS/BAS variables are based.

  6. STRUCTURAL BIOLOGY. A Cas9-guide RNA complex preorganized for target DNA recognition.

    PubMed

    Jiang, Fuguo; Zhou, Kaihong; Ma, Linlin; Gressel, Saskia; Doudna, Jennifer A

    2015-06-26

    Bacterial adaptive immunity uses CRISPR (clustered regularly interspaced short palindromic repeats)-associated (Cas) proteins together with CRISPR transcripts for foreign DNA degradation. In type II CRISPR-Cas systems, activation of Cas9 endonuclease for DNA recognition upon guide RNA binding occurs by an unknown mechanism. Crystal structures of Cas9 bound to single-guide RNA reveal a conformation distinct from both the apo and DNA-bound states, in which the 10-nucleotide RNA "seed" sequence required for initial DNA interrogation is preordered in an A-form conformation. This segment of the guide RNA is essential for Cas9 to form a DNA recognition-competent structure that is poised to engage double-stranded DNA target sequences. We construe this as convergent evolution of a "seed" mechanism reminiscent of that used by Argonaute proteins during RNA interference in eukaryotes.

  7. CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems.

    PubMed

    Zhu, Lihua J; Holmes, Benjamin R; Aronin, Neil; Brodsky, Michael H

    2014-01-01

    CRISPR-Cas systems are a diverse family of RNA-protein complexes in bacteria that target foreign DNA sequences for cleavage. Derivatives of these complexes have been engineered to cleave specific target sequences depending on the sequence of a CRISPR-derived guide RNA (gRNA) and the source of the Cas9 protein. Important considerations for the design of gRNAs are to maximize aimed activity at the desired target site while minimizing off-target cleavage. Because of the rapid advances in the understanding of existing CRISPR-Cas9-derived RNA-guided nucleases and the development of novel RNA-guided nuclease systems, it is critical to have computational tools that can accommodate a wide range of different parameters for the design of target-specific RNA-guided nuclease systems. We have developed CRISPRseek, a highly flexible, open source software package to identify gRNAs that target a given input sequence while minimizing off-target cleavage at other sites within any selected genome. CRISPRseek will identify potential gRNAs that target a sequence of interest for CRISPR-Cas9 systems from different bacterial species and generate a cleavage score for potential off-target sequences utilizing published or user-supplied weight matrices with position-specific mismatch penalty scores. Identified gRNAs may be further filtered to only include those that occur in paired orientations for increased specificity and/or those that overlap restriction enzyme sites. For applications where gRNAs are desired to discriminate between two related sequences, CRISPRseek can rank gRNAs based on the difference between predicted cleavage scores in each input sequence. CRISPRseek is implemented as a Bioconductor package within the R statistical programming environment, allowing it to be incorporated into computational pipelines to automate the design of gRNAs for target sequences identified in a wide variety of genome-wide analyses. CRISPRseek is available under the GNU General Public Licence v3

  8. Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization

    PubMed Central

    Senturk, Serif; Shirole, Nitin H.; Nowak, Dawid G.; Corbo, Vincenzo; Pal, Debjani; Vaughan, Alexander; Tuveson, David A.; Trotman, Lloyd C.; Kinney, Justin B.; Sordella, Raffaella

    2017-01-01

    The CRISPR/Cas9 system is a powerful tool for studying gene function. Here, we describe a method that allows temporal control of CRISPR/Cas9 activity based on conditional Cas9 destabilization. We demonstrate that fusing an FKBP12-derived destabilizing domain to Cas9 (DD-Cas9) enables conditional Cas9 expression and temporal control of gene editing in the presence of an FKBP12 synthetic ligand. This system can be easily adapted to co-express, from the same promoter, DD-Cas9 with any other gene of interest without co-modulation of the latter. In particular, when co-expressed with inducible Cre-ERT2, our system enables parallel, independent manipulation of alleles targeted by Cas9 and traditional recombinase with single-cell specificity. We anticipate this platform will be used for the systematic characterization and identification of essential genes, as well as the investigation of the interactions between functional genes. PMID:28224990

  9. Surveillance and Processing of Foreign DNA by the Escherichia coli CRISPR-Cas System.

    PubMed

    Redding, Sy; Sternberg, Samuel H; Marshall, Myles; Gibb, Bryan; Bhat, Prashant; Guegler, Chantal K; Wiedenheft, Blake; Doudna, Jennifer A; Greene, Eric C

    2015-11-05

    CRISPR-Cas adaptive immune systems protect bacteria and archaea against foreign genetic elements. In Escherichia coli, Cascade (CRISPR-associated complex for antiviral defense) is an RNA-guided surveillance complex that binds foreign DNA and recruits Cas3, a trans-acting nuclease helicase for target degradation. Here, we use single-molecule imaging to visualize Cascade and Cas3 binding to foreign DNA targets. Our analysis reveals two distinct pathways dictated by the presence or absence of a protospacer-adjacent motif (PAM). Binding to a protospacer flanked by a PAM recruits a nuclease-active Cas3 for degradation of short single-stranded regions of target DNA, whereas PAM mutations elicit an alternative pathway that recruits a nuclease-inactive Cas3 through a mechanism that is dependent on the Cas1 and Cas2 proteins. These findings explain how target recognition by Cascade can elicit distinct outcomes and support a model for acquisition of new spacer sequences through a mechanism involving processive, ATP-dependent Cas3 translocation along foreign DNA.

  10. Surveillance and processing of foreign DNA by the Escherichia coli CRISPR-Cas system

    PubMed Central

    Redding, Sy; Sternberg, Samuel H.; Marshall, Myles; Gibb, Bryan; Bhat, Prashant; Guegler, Chantal K.; Wiedenheft, Blake; Doudna, Jennifer A.; Greene, Eric C.

    2015-01-01

    Summary CRISPR-Cas adaptive immune systems protect bacteria and archaea against foreign genetic elements. In Escherichia coli, Cascade (CRISPR-associated complex for antiviral defense) is an RNA-guided surveillance complex that binds foreign DNA and recruits Cas3, a trans-acting nuclease-helicase for target degradation. Here we use single-molecule imaging to visualize Cascade and Cas3 binding to foreign DNA targets. Our analysis reveals two distinct pathways, dictated by the presence or absence of a protospacer adjacent motif (PAM). Binding to a protospacer flanked by a PAM recruits a nuclease-active Cas3 for degradation of short singlestranded regions of target DNA, whereas PAM mutations elicit an alternative pathway that recruits a nuclease-inactive Cas3 through a mechanism that is dependent upon the Cas1 and Cas2 proteins. These findings explain how target recognition by Cascade can elicit distinct outcomes, and supports a model for acquisition of new spacer sequences through a mechanism involving processive, ATP-dependent Cas3 translocation along foreign DNA. PMID:26522594

  11. Measuring self-regulation in a physically active context: Psychometric analyses of scores derived from an observer-rated measure of self-regulation

    PubMed Central

    Lakes, Kimberley D.

    2014-01-01

    The purpose of this study is to report psychometric properties of scores obtained using a novel observer-rated measure of children’s self-regulation, the Response to Challenge Scale (RCS). The RCS was developed to rate children’s self-regulatory abilities in a physically active context (e.g., while completing a physical challenge course). The RCS and other study measures were administered in a private school sample of 207 children. Analyses of score distributions indicated that the RCS was able to capture variance among children in self-regulatory abilities; the distribution was normal for the Affective, Cognitive, and Total Self-Regulation scales. Validity analyses revealed significant positive correlations between Cognitive, Affective, Motor, and Total Self-Regulation and executive function task performance; significant negative correlations between Cognitive Regulation and teacher-rated hyperactivity and inattention; significant negative correlations between Affective, Motor, and Total Self-Regulation and teacher ratings of peer problems; and significant positive correlations between Cognitive and Affective Regulation and parent ratings of prosocial behavior. Parent and teacher rated Total Difficulties scores were both negatively correlated with RCS Total Self-Regulation scores. Results suggest that it is possible for observers to rate self-regulatory abilities in the context of physical activities, and that these ratings correspond with performance on tasks requiring executive function as well as teacher and parent ratings of children’s difficulties. PMID:25750662

  12. CRISPR/Cas9 Technologies.

    PubMed

    Williams, Bart O; Warman, Matthew L

    2017-02-23

    The Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) pathway is revolutionizing biological research. Modifications to this primitive prokaryotic immune system now enable scientists to efficiently edit DNA or modulate gene expression in living eukaryotic cells and organisms. Thus, many laboratories can now perform important experiments that previously were considered scientifically risky or too costly. Here, we describe the components of the CRISPR/Cas system that have been engineered for use in eukaryotes. We also explain how this system can be used to genetically modify cell lines and model organisms, or regulate gene expression in order to search for new participants in biological pathways. © 2017 American Society for Bone and Mineral Research.

  13. The Aspergillus fumigatus metacaspases CasA and CasB facilitate growth under conditions of endoplasmic reticulum stress.

    PubMed

    Richie, Daryl L; Miley, Michael D; Bhabhra, Ruchi; Robson, Geoffrey D; Rhodes, Judith C; Askew, David S

    2007-01-01

    We have examined the contribution of metacaspases to the growth and stress response of the opportunistic human mould pathogen, Aspergillus fumigatus, based on increasing evidence implicating the yeast metacaspase Yca1p in apoptotic-like programmed cell death. Single metacaspase-deficient mutants were constructed by targeted disruption of each of the two metacaspase genes in A. fumigatus, casA and casB, and a metacaspase-deficient mutant, DeltacasA/DeltacasB, was constructed by disrupting both genes. Stationary phase cultures of wild-type A. fumigatus were associated with the appearance of typical markers of apoptosis, including elevated proteolytic activity against caspase substrates, phosphatidylserine exposure on the outer leaflet of the membrane, and loss of viability. By contrast, phosphatidylserine exposure was not observed in stationary phase cultures of the DeltacasA/DeltacasB mutant, although caspase activity and viability was indistinguishable from wild type. The mutant retained wild-type virulence and showed no difference in sensitivity to a range of pro-apoptotic stimuli that have been reported to initiate yeast apoptosis. However, the DeltacasA/DeltacasB mutant showed a growth detriment in the presence of agents that disrupt endoplasmic reticulum homeostasis. These findings demonstrate that metacaspase activity in A. fumigatus contributes to the apoptotic-like loss of membrane phospholipid asymmetry at stationary phase, and suggest that CasA and CasB have functions that support growth under conditions of endoplasmic reticulum stress.

  14. Explicit treatment of active-site waters enhances quantum mechanical/implicit solvent scoring: Inhibition of CDK2 by new pyrazolo[1,5-a]pyrimidines.

    PubMed

    Hylsová, Michaela; Carbain, Benoit; Fanfrlík, Jindřich; Musilová, Lenka; Haldar, Susanta; Köprülüoğlu, Cemal; Ajani, Haresh; Brahmkshatriya, Pathik S; Jorda, Radek; Kryštof, Vladimír; Hobza, Pavel; Echalier, Aude; Paruch, Kamil; Lepšík, Martin

    2017-01-27

    We present comprehensive testing of solvent representation in quantum mechanics (QM)-based scoring of protein-ligand affinities. To this aim, we prepared 21 new inhibitors of cyclin-dependent kinase 2 (CDK2) with the pyrazolo[1,5-a]pyrimidine core, whose activities spanned three orders of magnitude. The crystal structure of a potent inhibitor bound to the active CDK2/cyclin A complex revealed that the biphenyl substituent at position 5 of the pyrazolo[1,5-a]pyrimidine scaffold was located in a previously unexplored pocket and that six water molecules resided in the active site. Using molecular dynamics, protein-ligand interactions and active-site water H-bond networks as well as thermodynamics were probed. Thereafter, all the inhibitors were scored by the QM approach utilizing the COSMO implicit solvent model. Such a standard treatment failed to produce a correlation with the experiment (R(2) = 0.49). However, the addition of the active-site waters resulted in significant improvement (R(2) = 0.68). The activities of the compounds could thus be interpreted by taking into account their specific noncovalent interactions with CDK2 and the active-site waters. In summary, using a combination of several experimental and theoretical approaches we demonstrate that the inclusion of explicit solvent effects enhance QM/COSMO scoring to produce a reliable structure-activity relationship with physical insights. More generally, this approach is envisioned to contribute to increased accuracy of the computational design of novel inhibitors.

  15. Walk Score®

    PubMed Central

    Brown, Scott C.; Pantin, Hilda; Lombard, Joanna; Toro, Matthew; Huang, Shi; Plater-Zyberk, Elizabeth; Perrino, Tatiana; Perez-Gomez, Gianna; Barrera-Allen, Lloyd; Szapocznik, José

    2013-01-01

    Background Walk Score® is a nationally and publicly available metric of neighborhood walkability based on proximity to amenities (e.g., retail, food, schools). However, few studies have examined the relationship of Walk Score to walking behavior. Purpose To examine the relationship of Walk Score to walking behavior in a sample of recent Cuban immigrants, who overwhelmingly report little choice in their selection of neighborhood built environments when they arrive in the U.S. Methods Participants were 391 recent healthy Cuban immigrants (M age=37.1 years) recruited within 90 days of arrival in the U.S., and assessed within 4 months of arrival (M=41.0 days in the U.S.), who resided throughout Miami-Dade County FL. Data on participants’ addresses, walking and sociodemographics were collected prospectively from 2008 to 2010. Analyses conducted in 2011 examined the relationship of Walk Score for each participant’s residential address in the U.S. to purposive walking, controlling for age, gender, education, BMI, days in the U.S., and habitual physical activity level in Cuba. Results For each 10-point increase in Walk Score, adjusting for covariates, there was a significant 19% increase in the likelihood of purposive walking, a 26% increase in the likelihood of meeting physical activity recommendations by walking, and 27% more minutes walked in the previous week. Conclusions Results suggest that Walk Score is associated with walking in a sample of recent immigrants who initially had little choice in where they lived in the U.S. These results support existing guidelines indicating that mixed land use (such as parks and restaurants near homes) should be included when designing walkable communities. PMID:23867028

  16. Rapid activity prediction of HIV-1 integrase inhibitors: harnessing docking energetic components for empirical scoring by chemometric and artificial neural network approaches

    NASA Astrophysics Data System (ADS)

    Thangsunan, Patcharapong; Kittiwachana, Sila; Meepowpan, Puttinan; Kungwan, Nawee; Prangkio, Panchika; Hannongbua, Supa; Suree, Nuttee

    2016-06-01

    Improving performance of scoring functions for drug docking simulations is a challenging task in the modern discovery pipeline. Among various ways to enhance the efficiency of scoring function, tuning of energetic component approach is an attractive option that provides better predictions. Herein we present the first development of rapid and simple tuning models for predicting and scoring inhibitory activity of investigated ligands docked into catalytic core domain structures of HIV-1 integrase (IN) enzyme. We developed the models using all energetic terms obtained from flexible ligand-rigid receptor dockings by AutoDock4, followed by a data analysis using either partial least squares (PLS) or self-organizing maps (SOMs). The models were established using 66 and 64 ligands of mercaptobenzenesulfonamides for the PLS-based and the SOMs-based inhibitory activity predictions, respectively. The models were then evaluated for their predictability quality using closely related test compounds, as well as five different unrelated inhibitor test sets. Weighting constants for each energy term were also optimized, thus customizing the scoring function for this specific target protein. Root-mean-square error (RMSE) values between the predicted and the experimental inhibitory activities were determined to be <1 (i.e. within a magnitude of a single log scale of actual IC50 values). Hence, we propose that, as a pre-functional assay screening step, AutoDock4 docking in combination with these subsequent rapid weighted energy tuning methods via PLS and SOMs analyses is a viable approach to predict the potential inhibitory activity and to discriminate among small drug-like molecules to target a specific protein of interest.

  17. Discriminant validity of the Ankylosing Spondylitis Disease Activity Score (ASDAS) in patients with non-radiographic axial spondyloarthritis and ankylosing spondylitis: a cohort study.

    PubMed

    Kilic, Erkan; Kilic, Gamze; Akgul, Ozgur; Ozgocmen, Salih

    2015-06-01

    The aim of this study was to assess discriminant validity of Ankylosing Spondylitis Disease Activity Score (ASDAS)-C-reactive protein (-CRP) and ASDAS-erythrocyte sedimentation rate (-ESR) and to compare with The Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) as clinical tools for the measurement of disease activity in patients with non-radiographic axial spondyloarthritis (nr-axSpA) and ankylosing spondylitis (AS). Also, the cut-off values for ASDAS-CRP in nr-axSpA and AS is revisited. Patients with axSpA were recruited from Erciyes Spondyloarthritis Cohort (ESPAC) and were assessed for disease activity, quality of life and functional measures. The discriminatory ability of ASDAS-CRP and ASDAS-ESR was assessed using standardized mean differences and receiver operating characteristic (ROC) curves analysis. Optimal cut-off values for disease activity scores were calculated. Two hundred and eighty-seven patients with axSpA (nr-axSpA:132, AS:155) were included in this study. Two ASDAS versions and BASDAI had good correlations with patient's and physician's global assessment in both groups. Discriminatory ability of ASDAS-CRP, ASDAS-ESR and BASDAI were similar in patients with nr-axSpA and AS when the patients were assigned into low and high disease activity according to the ASAS partial remission, patient's and physician's global assessment scores (based on the comparison of ROC curves). ASDAS cut-off values are quite similar between groups indicating that ASDAS-CRP works similarly well in nr-axSpA and AS. The performance of ASDAS to discriminate low and high disease activity and cut-off values are quite similar in patients with AS and non-radiographic axial SpA.

  18. Expanding CRISPR/Cas9 Genome Editing Capacity in Zebrafish Using SaCas9

    PubMed Central

    Feng, Yan; Chen, Cheng; Han, Yuxiang; Chen, Zelin; Lu, Xiaochan; Liang, Fang; Li, Song; Qin, Wei; Lin, Shuo

    2016-01-01

    The type II CRISPR/Cas9 system has been used widely for genome editing in zebrafish. However, the requirement for the 5′-NGG-3′ protospacer-adjacent motif (PAM) of Cas9 from Streptococcus pyogenes (SpCas9) limits its targeting sequences. Here, we report that a Cas9 ortholog from Staphylococcus aureus (SaCas9), and its KKH variant, successfully induced targeted mutagenesis with high frequency in zebrafish. Confirming previous findings, the SpCas9 variant, VQR, can also induce targeted mutations in zebrafish. Bioinformatics analysis of these new Cas targets suggests that the number of available target sites in the zebrafish genome can be greatly expanded. Collectively, the expanded target repertoire of Cas9 in zebrafish should further facilitate the utility of this organism for genetic studies of vertebrate biology. PMID:27317783

  19. Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome

    PubMed Central

    Müller, Maximilian; Lee, Ciaran M; Gasiunas, Giedrius; Davis, Timothy H; Cradick, Thomas J; Siksnys, Virginijus; Bao, Gang; Cathomen, Toni; Mussolino, Claudio

    2016-01-01

    RNA-guided nucleases (RGNs) based on the type II CRISPR-Cas9 system of Streptococcus pyogenes (Sp) have been widely used for genome editing in experimental models. However, the nontrivial level of off-target activity reported in several human cells may hamper clinical translation. RGN specificity depends on both the guide RNA (gRNA) and the protospacer adjacent motif (PAM) recognized by the Cas9 protein. We hypothesized that more stringent PAM requirements reduce the occurrence of off-target mutagenesis. To test this postulation, we generated RGNs based on two Streptococcus thermophilus (St) Cas9 proteins, which recognize longer PAMs, and performed a side-by-side comparison of the three RGN systems targeted to matching sites in two endogenous human loci, PRKDC and CARD11. Our results demonstrate that in samples with comparable on-target cleavage activities, significantly lower off-target mutagenesis was detected using St-based RGNs as compared to the standard Sp-RGNs. Moreover, similarly to SpCas9, the StCas9 proteins accepted truncated gRNAs, suggesting that the specificities of St-based RGNs can be further improved. In conclusion, our results show that Cas9 proteins with longer or more restrictive PAM requirements provide a safe alternative to SpCas9-based RGNs and hence a valuable option for future human gene therapy applications. PMID:26658966

  20. Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch

    PubMed Central

    Oakes, Benjamin L; Nadler, Dana C.; Flamholz, Avi; Fellmann, Christof; Staahl, Brett T.; Doudna, Jennifer A.; Savage, David F.

    2016-01-01

    The CRISPR-associated protein Cas9 from Streptococcus pyogenes is an RNA-guided DNA endonuclease with widespread utility for genome modification. However, the structural constraints limiting the engineering of Cas9 have not been determined. Here we experimentally profile Cas9 using randomized insertional mutagenesis and delineate hotspots in the structure capable of tolerating insertions of a PDZ domain without disrupting the enzyme’s binding and cleavage functions. Orthogonal domains or combinations of domains can be inserted into the identified sites with minimal functional consequence. To illustrate the utility of the identified sites, we construct an allosterically regulated Cas9 by insertion of the Estrogen Receptor α Ligand Binding Domain. This protein displayed robust, ligand-dependent activation in prokaryotic and eukaryotic cells, establishing a versatile one-component system for inducible and reversible Cas9 activation. Thus, domain insertion profiling facilitates the rapid generation of new Cas9 functionalities and provides useful data for future engineering of Cas9. PMID:27136077

  1. Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition

    PubMed Central

    Rollie, Clare; Schneider, Stefanie; Brinkmann, Anna Sophie; Bolt, Edward L; White, Malcolm F

    2015-01-01

    The adaptive prokaryotic immune system CRISPR-Cas provides RNA-mediated protection from invading genetic elements. The fundamental basis of the system is the ability to capture small pieces of foreign DNA for incorporation into the genome at the CRISPR locus, a process known as Adaptation, which is dependent on the Cas1 and Cas2 proteins. We demonstrate that Cas1 catalyses an efficient trans-esterification reaction on branched DNA substrates, which represents the reverse- or disintegration reaction. Cas1 from both Escherichia coli and Sulfolobus solfataricus display sequence specific activity, with a clear preference for the nucleotides flanking the integration site at the leader-repeat 1 boundary of the CRISPR locus. Cas2 is not required for this activity and does not influence the specificity. This suggests that the inherent sequence specificity of Cas1 is a major determinant of the adaptation process. DOI: http://dx.doi.org/10.7554/eLife.08716.001 PMID:26284603

  2. Litter Control Achievement - Ohio 4-H Club Score Sheet [and] Activity Guides 1 through 7. 4-H Pilot Program 918.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Cooperative Extension Service.

    Seven activity guides, evaluation sheet, and club scoresheet have been prepared for Ohio 4-H clubs' litter education program. Topics of the seven activity guides include: (1) general guidelines and types of activities; (2) little known facts about waste/litter; (3) guidelines for a walking tour; (4) fact sheet (questionnaire) related to garbage;…

  3. Automated large-scale file preparation, docking, and scoring: Evaluation of ITScore and STScore using the 2012 Community Structure-Activity Resource Benchmark

    PubMed Central

    Grinter, Sam Z.; Yan, Chengfei; Huang, Sheng-You; Jiang, Lin; Zou, Xiaoqin

    2013-01-01

    In this study, we use the recently released 2012 Community Structure-Activity Resource (CSAR) Dataset to evaluate two knowledge-based scoring functions, ITScore and STScore, and a simple force-field-based potential (VDWScore). The CSAR Dataset contains 757 compounds, most with known affinities, and 57 crystal structures. With the help of the script files for docking preparation, we use the full CSAR Dataset to evaluate the performances of the scoring functions on binding affinity prediction and active/inactive compound discrimination. The CSAR subset that includes crystal structures is used as well, to evaluate the performances of the scoring functions on binding mode and affinity predictions. Within this structure subset, we investigate the importance of accurate ligand and protein conformational sampling and find that the binding affinity predictions are less sensitive to non-native ligand and protein conformations than the binding mode predictions. We also find the full CSAR Dataset to be more challenging in making binding mode predictions than the subset with structures. The script files used for preparing the CSAR Dataset for docking, including scripts for canonicalization of the ligand atoms, are offered freely to the academic community. PMID:23656179

  4. What rheumatologists need to know about CRISPR/Cas9.

    PubMed

    Gibson, Gary J; Yang, Maozhou

    2017-02-09

    CRISPR/Cas9 genome editing technology has taken the research world by storm since its use in eukaryotes was first proposed in 2012. Publications describing advances in technology and new applications have continued at an unrelenting pace since that time. In this Review, we discuss the application of CRISPR/Cas9 for creating gene mutations - the application that initiated the current avalanche of interest - and new developments that have largely answered initial concerns about its specificity and ability to introduce new gene sequences. We discuss the new, diverse and rapidly growing adaptations of the CRISPR/Cas9 technique that enable activation, repression, multiplexing and gene screening. These developments have enabled researchers to create sophisticated tools for dissecting the function and inter-relatedness of genes, as well as noncoding regions of the genome, and to identify gene networks and noncoding regions that promote disease or confer disease susceptibility. These approaches are beginning to be used to interrogate complex and multilayered biological systems and to produce complex animal models of disease. CRISPR/Cas9 technology has enabled the application of new therapeutic approaches to treating disease in animal models, some of which are beginning to be seen in the first human clinical trials. We discuss the direct application of these techniques to rheumatic diseases, which are currently limited but are sure to increase rapidly in the near future.

  5. CRISPR-Cas9: from Genome Editing to Cancer Research

    PubMed Central

    Chen, Si; Sun, Heng; Miao, Kai; Deng, Chu-Xia

    2016-01-01

    Cancer development is a multistep process triggered by innate and acquired mutations, which cause the functional abnormality and determine the initiation and progression of tumorigenesis. Gene editing is a widely used engineering tool for generating mutations that enhance tumorigenesis. The recent developed clustered regularly interspaced short palindromic repeats-CRISPR-associated 9 (CRISPR-Cas9) system renews the genome editing approach into a more convenient and efficient way. By rapidly introducing genetic modifications in cell lines, organs and animals, CRISPR-Cas9 system extends the gene editing into whole genome screening, both in loss-of-function and gain-of-function manners. Meanwhile, the system accelerates the establishment of animal cancer models, promoting in vivo studies for cancer research. Furthermore, CRISPR-Cas9 system is modified into diverse innovative tools for observing the dynamic bioprocesses in cancer studies, such as image tracing for targeted DNA, regulation of transcription activation or repression. Here, we view recent technical advances in the application of CRISPR-Cas9 system in cancer genetics, large-scale cancer driver gene hunting, animal cancer modeling and functional studies. PMID:27994508

  6. CRISPR-Cas9: from Genome Editing to Cancer Research.

    PubMed

    Chen, Si; Sun, Heng; Miao, Kai; Deng, Chu-Xia

    2016-01-01

    Cancer development is a multistep process triggered by innate and acquired mutations, which cause the functional abnormality and determine the initiation and progression of tumorigenesis. Gene editing is a widely used engineering tool for generating mutations that enhance tumorigenesis. The recent developed clustered regularly interspaced short palindromic repeats-CRISPR-associated 9 (CRISPR-Cas9) system renews the genome editing approach into a more convenient and efficient way. By rapidly introducing genetic modifications in cell lines, organs and animals, CRISPR-Cas9 system extends the gene editing into whole genome screening, both in loss-of-function and gain-of-function manners. Meanwhile, the system accelerates the establishment of animal cancer models, promoting in vivo studies for cancer research. Furthermore, CRISPR-Cas9 system is modified into diverse innovative tools for observing the dynamic bioprocesses in cancer studies, such as image tracing for targeted DNA, regulation of transcription activation or repression. Here, we view recent technical advances in the application of CRISPR-Cas9 system in cancer genetics, large-scale cancer driver gene hunting, animal cancer modeling and functional studies.

  7. Campylobacter jejuni acquire new host-derived CRISPR spacers when in association with bacteriophages harboring a CRISPR-like Cas4 protein

    PubMed Central

    Hooton, Steven P. T.; Connerton, Ian F.

    2015-01-01

    Campylobacter jejuni is a worldwide cause of human diarrhoeal disease. Clustered Repetitively Interspaced Palindromic Repeats (CRISPRs) and associated proteins allow Bacteria and Archaea to evade bacteriophage and plasmid infection. Type II CRISPR systems are found in association with combinations of genes encoding the CRISPR-associated Cas1, Cas2, Cas4 or Csn2, and Cas9 proteins. C. jejuni possesses a minimal subtype II-C CRISPR system containing cas1, cas2, and cas9 genes whilst cas4 is notably absent. Cas4 proteins possess 5′-3′ exonuclease activity to create recombinogenic-ends for spacer acquisition. Here we report a conserved Cas4-like protein in Campylobacter bacteriophages that creates a novel split arrangement between the bacteriophage and host that represents a new twist in the bacteriophage/host co-evolutionary arms race. The continuous association of bacteriophage and host in the carrier state life cycle of C. jejuni provided an opportunity to study spacer acquisition in this species. Remarkably all the spacer sequences observed were of host origin. We hypothesize that Campylobacter bacteriophages can use Cas4-like protein to activate spacer acquisition to use host DNA as an effective decoy to bacteriophage DNA. Bacteria that acquire self-spacers and escape phage infection must overcome CRISPR-mediated autoimmunity either by loss of the interference functions leaving them susceptible to foreign DNA incursion or tolerate changes in gene regulation. PMID:25601859

  8. My Favorite American Monument. Kindergarten Activity. Schools of California Online Resources for Education (SCORE): Connecting California's Classrooms to the World.

    ERIC Educational Resources Information Center

    Pardes, Lupita

    For this kindergarten classroom activity, students are asked to pretend they have just won a trip to four historical sites: (1) Lincoln Memorial; (2) Mount Rushmore; (3) White House; and (4) Statue of Liberty. The activity instructs the students to keep a journal of the trip (taken via the Internet) so that a presentation can be given to the class…

  9. Let's Go! Kindergarten Activity. Schools of California Online Resources for Education (SCORE): Connecting California's Classrooms to the World.

    ERIC Educational Resources Information Center

    Kiesner, Eileen

    In this colorfully illustrated kindergarten activity, students read (and re-read) "My Blue Suitcase" (Sharon Katz), as an introduction to traveling. The book uses all of the basic forms of transportation and forms the transportation lesson outline. The activity gives the students the task of learning about each mode of transportation:…

  10. How Much Structuring Is Beneficial with Regard to Examination Scores? A Prospective Study of Three Forms of Active Learning

    ERIC Educational Resources Information Center

    Reinhardt, Claus H.; Rosen, Evelyne N.

    2012-01-01

    Many studies have demonstrated a superiority of active learning forms compared with traditional lecture. However, there is still debate as to what degree structuring is necessary with regard to high exam outcomes. Seventy-five students from a premedical school were randomly attributed to an active lecture group, a cooperative group, or a…

  11. Growth of Islam. Seventh Grade Activity. Schools of California Online Resources for Education (SCORE): Connecting California's Classrooms to the World.

    ERIC Educational Resources Information Center

    Houson, Judy

    This seventh grade activity asks students to gather data that will help them understand and appreciate the Islamic way of life and to learn to feel comfortable living with a Muslim family in Syria during the second semester of the school year. The activity states each student will be interviewed by a Fulbright official, expected to keep a…

  12. Rocks: A Concrete Activity That Introduces Normal Distribution, Sampling Error, Central Limit Theorem and True Score Theory

    ERIC Educational Resources Information Center

    Van Duzer, Eric

    2011-01-01

    This report introduces a short, hands-on activity that addresses a key challenge in teaching quantitative methods to students who lack confidence or experience with statistical analysis. Used near the beginning of the course, this activity helps students develop an intuitive insight regarding a number of abstract concepts which are key to…

  13. Missing gene identification using functional coherence scores

    PubMed Central

    Chitale, Meghana; Khan, Ishita K.; Kihara, Daisuke

    2016-01-01

    Reconstructing metabolic and signaling pathways is an effective way of interpreting a genome sequence. A challenge in a pathway reconstruction is that often genes in a pathway cannot be easily found, reflecting current imperfect information of the target organism. In this work, we developed a new method for finding missing genes, which integrates multiple features, including gene expression, phylogenetic profile, and function association scores. Particularly, for considering function association between candidate genes and neighboring proteins to the target missing gene in the network, we used Co-occurrence Association Score (CAS) and PubMed Association Score (PAS), which are designed for capturing functional coherence of proteins. We showed that adding CAS and PAS substantially improve the accuracy of identifying missing genes in the yeast enzyme-enzyme network compared to the cases when only the conventional features, gene expression, phylogenetic profile, were used. Finally, it was also demonstrated that the accuracy improves by considering indirect neighbors to the target enzyme position in the network using a proper network-topology-based weighting scheme. PMID:27552989

  14. Layer plate CAS assay for the quantitation of siderophore production and determination of exudation patterns for fungi.

    PubMed

    Andrews, Megan Y; Santelli, Cara M; Duckworth, Owen W

    2016-02-01

    The chrome azurol S (CAS) assay measures the chelating activity of siderophores, but its application (especially to fungi) is limited by toxicity issues. In this note, we describe a modified version of the CAS assay that is suitable for quantifying siderophore exudation for microorganisms, including fungi.

  15. Test facilities for SCORE-D

    NASA Astrophysics Data System (ADS)

    Greuel, Dirk; Deeken, Jan; Suslov, Dmitry; Schäfer, Klaus; Schlechtriem, Stefan

    2013-06-01

    The LOX/LH2 Staged Combustion Rocket Engine Demonstrator (SCORE-D) is part of ESA's Future Launcher Preparatory Program (FLPP). SCORE-D serves as a technology demonstrator in perspective of the development of the High Thrust Engine (HTE), which is designated as a candidate for the main stage engine of the Next Generation Launcher (NGL). To develop and test the SCORE-D engine, ESA investigates configurations of the test benches P3.2 and P5 at DLR test site in Lampoldshausen. For the SCORE-D Hot Combustion Devices (HCD) development, i.e. Pre-burner (PB) and thrust chamber assembly (TCA), the P3.2 test facility has to be modified for further usage. Recently, the first steps in this endeavor have been made with the evaluation of the necessary modifications to the facility. To accommodate the SCORE-D engine, it is foreseen to modify the P5 test facility in the coming years. In the last year, DLR has started the design phase for these modifications. In preparatory test programs at the P8 test facility, Astrium has conducted sub-scale hot combustion devices tests. While Astrium designed and manufactured the sub-scale assembly of the pre-burner and the main combustion chamber (MCC) for SCORE-D, DLR operated the P8 test facility.

  16. The CRISPR-Cas system for plant genome editing: advances and opportunities.

    PubMed

    Kumar, Vinay; Jain, Mukesh

    2015-01-01

    Genome editing is an approach in which a specific target DNA sequence of the genome is altered by adding, removing, or replacing DNA bases. Artificially engineered hybrid enzymes, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), and the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated protein) system are being used for genome editing in various organisms including plants. The CRISPR-Cas system has been developed most recently and seems to be more efficient and less time-consuming compared with ZFNs or TALENs. This system employs an RNA-guided nuclease, Cas9, to induce double-strand breaks. The Cas9-mediated breaks are repaired by cellular DNA repair mechanisms and mediate gene/genome modifications. Here, we provide a detailed overview of the CRISPR-Cas system and its adoption in different organisms, especially plants, for various applications. Important considerations and future opportunities for deployment of the CRISPR-Cas system in plants for numerous applications are also discussed. Recent investigations have revealed the implications of the CRISPR-Cas system as a promising tool for targeted genetic modifications in plants. This technology is likely to be more commonly adopted in plant functional genomics studies and crop improvement in the near future.

  17. The Neisseria meningitidis CRISPR-Cas9 System Enables Specific Genome Editing in Mammalian Cells

    PubMed Central

    Lee, Ciaran M; Cradick, Thomas J; Bao, Gang

    2016-01-01

    The clustered regularly-interspaced short palindromic repeats (CRISPR)—CRISPR-associated (Cas) system from Streptococcus pyogenes (Spy) has been successfully adapted for RNA-guided genome editing in a wide range of organisms. However, numerous reports have indicated that Spy CRISPR-Cas9 systems may have significant off-target cleavage of genomic DNA sequences differing from the intended on-target site. Here, we report the performance of the Neisseria meningitidis (Nme) CRISPR-Cas9 system that requires a longer protospacer-adjacent motif for site-specific cleavage, and present a comparison between the Spy and Nme CRISPR-Cas9 systems targeting the same protospacer sequence. The results with the native crRNA and tracrRNA as well as a chimeric single guide RNA for the Nme CRISPR-Cas9 system were also compared. Our results suggest that, compared with the Spy system, the Nme CRISPR-Cas9 system has similar or lower on-target cleavage activity but a reduced overall off-target effect on a genomic level when sites containing three or fewer mismatches are considered. Thus, the Nme CRISPR-Cas9 system may represent a safer alternative for precision genome engineering applications. PMID:26782639

  18. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9

    NASA Astrophysics Data System (ADS)

    Sternberg, Samuel H.; Redding, Sy; Jinek, Martin; Greene, Eric C.; Doudna, Jennifer A.

    2014-03-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA-DNA base-pairing to target foreign DNA in bacteria. Cas9-guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9-RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9-RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9-RNA. Competition assays provide evidence that DNA strand separation and RNA-DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 uses PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate scission of double-stranded DNA.

  19. The Neisseria meningitidis CRISPR-Cas9 System Enables Specific Genome Editing in Mammalian Cells.

    PubMed

    Lee, Ciaran M; Cradick, Thomas J; Bao, Gang

    2016-03-01

    The clustered regularly-interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system from Streptococcus pyogenes (Spy) has been successfully adapted for RNA-guided genome editing in a wide range of organisms. However, numerous reports have indicated that Spy CRISPR-Cas9 systems may have significant off-target cleavage of genomic DNA sequences differing from the intended on-target site. Here, we report the performance of the Neisseria meningitidis (Nme) CRISPR-Cas9 system that requires a longer protospacer-adjacent motif for site-specific cleavage, and present a comparison between the Spy and Nme CRISPR-Cas9 systems targeting the same protospacer sequence. The results with the native crRNA and tracrRNA as well as a chimeric single guide RNA for the Nme CRISPR-Cas9 system were also compared. Our results suggest that, compared with the Spy system, the Nme CRISPR-Cas9 system has similar or lower on-target cleavage activity but a reduced overall off-target effect on a genomic level when sites containing three or fewer mismatches are considered. Thus, the Nme CRISPR-Cas9 system may represent a safer alternative for precision genome engineering applications.

  20. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9.

    PubMed

    Sternberg, Samuel H; Redding, Sy; Jinek, Martin; Greene, Eric C; Doudna, Jennifer A

    2014-03-06

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA-DNA base-pairing to target foreign DNA in bacteria. Cas9-guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9-RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9-RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9-RNA. Competition assays provide evidence that DNA strand separation and RNA-DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 uses PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate scission of double-stranded DNA.

  1. Cas6 specificity and CRISPR RNA loading in a complex CRISPR-Cas system.

    PubMed

    Sokolowski, Richard D; Graham, Shirley; White, Malcolm F

    2014-06-01

    CRISPR-Cas is an adaptive prokaryotic immune system, providing protection against viruses and other mobile genetic elements. In type I and type III CRISPR-Cas systems, CRISPR RNA (crRNA) is generated by cleavage of a primary transcript by the Cas6 endonuclease and loaded into multisubunit surveillance/effector complexes, allowing homology-directed detection and cleavage of invading elements. Highly studied CRISPR-Cas systems such as those in Escherichia coli and Pseudomonas aeruginosa have a single Cas6 enzyme that is an integral subunit of the surveillance complex. By contrast, Sulfolobus solfataricus has a complex CRISPR-Cas system with three types of surveillance complexes (Cascade/type I-A, CSM/type III-A and CMR/type III-B), five Cas6 paralogues and two different CRISPR-repeat families (AB and CD). Here, we investigate the kinetic properties of two different Cas6 paralogues from S. solfataricus. The Cas6-1 subtype is specific for CD-family CRISPR repeats, generating crRNA by multiple turnover catalysis whilst Cas6-3 has a broader specificity and also processes a non-coding RNA with a CRISPR repeat-related sequence. Deep sequencing of crRNA in surveillance complexes reveals a biased distribution of spacers derived from AB and CD loci, suggesting functional coupling between Cas6 paralogues and their downstream effector complexes.

  2. CAS as Environments for Implementing Mathematical Microworlds.

    ERIC Educational Resources Information Center

    Alpers, Burkhard

    2002-01-01

    Investigates whether computer algebra systems (CAS) are suitable environments for implementing mathematical microworlds. Recalls what constitutes a microworld and explores how CAS can be used for implementation, stating potentials as well as limitations. Provides as an example the microworld "Formula 1", implemented in Maple Software. (Author/KHR)

  3. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum.

    PubMed

    Gao, Junping; Wang, Genhong; Ma, Sanyuan; Xie, Xiaodong; Wu, Xiangwei; Zhang, Xingtan; Wu, Yuqian; Zhao, Ping; Xia, Qingyou

    2015-01-01

    Genome editing is one of the most powerful tools for revealing gene function and improving crop plants. Recently, RNA-guided genome editing using the type II clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) system has been used as a powerful and efficient tool for genome editing in various organisms. Here, we report genome editing in tobacco (Nicotiana tabacum) mediated by the CRISPR/Cas9 system. Two genes, NtPDS and NtPDR6, were used for targeted mutagenesis. First, we examined the transient genome editing activity of this system in tobacco protoplasts, insertion and deletion (indel) mutations were observed with frequencies of 16.2-20.3% after transfecting guide RNA (gRNA) and the nuclease Cas9 in tobacco protoplasts. The two genes were also mutated using multiplexing gRNA at a time. Additionally, targeted deletions and inversions of a 1.8-kb fragment between two target sites in the NtPDS locus were demonstrated, while indel mutations were also detected at both the sites. Second, we obtained transgenic tobacco plants with NtPDS and NtPDR6 mutations induced by Cas9/gRNA. The mutation percentage was 81.8% for NtPDS gRNA4 and 87.5% for NtPDR6 gRNA2. Obvious phenotypes were observed, etiolated leaves for the psd mutant and more branches for the pdr6 mutant, indicating that highly efficient biallelic mutations occurred in both transgenic lines. No significant off-target mutations were obtained. Our results show that the CRISPR/Cas9 system is a useful tool for targeted mutagenesis of the tobacco genome.

  4. Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation

    PubMed Central

    Dominguez, Antonia A.; Lim, Wendell A.; Qi, Lei S.

    2016-01-01

    The bacterial CRISPR–Cas9 system has emerged as a multifunctional platform for sequence-specific regulation of gene expression. This Review describes the development of technologies based on nuclease-deactivated Cas9, termed dCas9, for RNA-guided genomic transcription regulation, both by repression through CRISPR interference (CRISPRi) and by activation through CRISPR activation (CRISPRa). We highlight different uses in diverse organisms, including bacterial and eukaryotic cells, and summarize current applications of harnessing CRISPR–dCas9 for multiplexed, inducible gene regulation, genome-wide screens and cell fate engineering. We also provide a perspective on future developments of the technology and its applications in biomedical research and clinical studies. PMID:26670017

  5. CAS

    SciTech Connect

    Martinez, B.; Pomeroy, G. )

    1989-12-02

    The Security Alarm System is a data acquisition and control system which collects data from intrusion sensors and displays the information in a real-time environment for operators. The Access Control System monitors and controls the movement of personnel with the use of card readers and biometrics hand readers.

  6. The prognostic significance of the Birmingham Vasculitis Activity Score (BVAS) with systemic vasculitis patients transferred to the intensive care unit (ICU)

    PubMed Central

    Biscetti, Federico; Carbonella, Angela; Parisi, Federico; Bosello, Silvia Laura; Schiavon, Franco; Padoan, Roberto; Gremese, Elisa; Ferraccioli, Gianfranco

    2016-01-01

    Abstract Systemic vasculitides represent a heterogeneous group of diseases that share clinical features including respiratory distress, renal dysfunction, and neurologic disorders. These diseases may often cause life-threatening complications requiring admission to an intensive care unit (ICU). The aim of the study was to evaluate the validity and responsiveness of Birmingham Vasculitis Activity Score (BVAS) score to predict survival in patients with systemic vasculitides admitted to ICU. A retrospective study was carried out from 2004 to 2014 in 18 patients with systemic vasculitis admitted to 2 different Rheumatology divisions and transferred to ICU due to clinical worsening, with a length of stay beyond 24 hours. We found that ICU mortality was significantly associated with higher BVAS scores performed in the ward (P = 0.01) and at the admission in ICU (P = 0.01), regardless of the value of Acute Physiology And Chronic Health Evaluation (APACHE II) scores (P = 0.50). We used receiver-operator characteristic (ROC) curve analysis to evaluate the possible cutoff value for the BVAS in the ward and in ICU and we found that a BVAS > 8 in the ward and that a BVAS > 10 in ICU might be a useful tool to predict in-ICU mortality. BVAS appears to be an excellent tool for assessing ICU mortality risk of systemic vasculitides patients admitted to specialty departments. Our experience has shown that performing the assessment at admission to the ward is more important than determining the evaluation before the clinical aggravation causing the transfer to ICU. PMID:27902615

  7. Consumption of Low-Calorie Sweeteners among U.S. Adults Is Associated with Higher Healthy Eating Index (HEI 2005) Scores and More Physical Activity

    PubMed Central

    Drewnowski, Adam; Rehm, Colin D.

    2014-01-01

    The possibility that low-calorie sweeteners (LCS) promote lower quality diets and, therefore, weight gain has been noted as a cause for concern. Data from a representative sample of 22,231 adults were obtained from five cycles of the National Health and Nutrition Examination Survey (1999–2008 NHANES). A single 24-hour recall was used to identify consumers of LCS beverages, foods and tabletop sweeteners. Diet quality was assessed using the Healthy Eating Index 2005 (HEI 2005) and its multiple subscores. Health behaviors of interest were physical activity, smoking and alcohol use. LCS consumers had higher HEI 2005 scores than did non-consumers, largely explained by better SoFAAS subscores (solid fats, added sugar and alcohol). LCS consumers had better HEI subscores for vegetables, whole grains and low-fat dairy, but worse subscores for saturated fat and sodium compared to non-consumers. Similar trends were observed for LCS beverages, tabletop LCS and LCS foods. Consumers of LCS were less likely to smoke and were more likely to engage in recreational physical activity. LCS use was associated with higher HEI 2005 scores, lower consumption of empty calories, less smoking and more physical activity. PMID:25329967

  8. Comparative assessments of CRISPR-Cas nucleases' cleavage efficiency in planta.

    PubMed

    Johnson, Ross A; Gurevich, Vyacheslav; Filler, Shdema; Samach, Aviva; Levy, Avraham A

    2015-01-01

    Custom-designed nucleases can enable precise plant genome editing by catalyzing DNA-breakage at specific targets to stimulate targeted mutagenesis or gene replacement. The CRISPR-Cas system, with its target-specifying RNA molecule to direct the Cas9 nuclease, is a recent addition to existing nucleases that bind and cleave the target through linked protein domains (e.g. TALENs and zinc-finger nucleases). We have conducted a comparative study of these different types of custom-designed nucleases and we have assessed various components of the CRISPR-Cas system. For this purpose, we have adapted our previously reported assay for cleavage-dependent luciferase gene correction in Nicotiana benthamiana leaves (Johnson et al. in Plant Mol Biol 82(3):207-221, 2013). We found that cleavage by CRISPR-Cas was more efficient than cleavage of the same target by TALENs. We also compared the cleavage efficiency of the Streptococcus pyogenes Cas9 protein based on expression using three different Cas9 gene variants. We found significant differences in cleavage efficiency between these variants, with human and Arabidopsis thaliana codon-optimized genes having the highest cleavage efficiencies. We compared the activity of 12 de novo-designed single synthetic guide RNA (sgRNA) constructs, and found their cleavage efficiency varied drastically when using the same Cas9 nuclease. Finally, we show that, for one of the targets tested with our assay, we could induce a germinally-transmitted deletion in a repeat array in A. thaliana. This work emphasizes the efficiency of the CRISPR-Cas system in plants. It also shows that further work is needed to be able to predict the optimal design of sgRNAs or Cas9 variants.

  9. Physical activity assessed with three different methods and the Framingham Risk Score on 10-year coronary heart disease risk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physical activity (PA) protects against coronary heart disease (CHD) by favorably altering several CHD risk factors. In order to best understand the true nature of the relationship between PA and CHD, the impact different PA assessment methods have on the relationships must first be clarified. The p...

  10. Effects of Crude Oil/Dispersant Mixture and Dispersant Components on PPARγ Activity in Vitro and in Vivo: Identification of Dioctyl Sodium Sulfosuccinate (DOSS; CAS #577-11-7) as a Probable Obesogen

    PubMed Central

    Temkin, Alexis M.; Bowers, Robert R.; Magaletta, Margaret E.; Holshouser, Steven; Maggi, Adriana; Ciana, Paolo; Guillette, Louis J.; Bowden, John A.; Kucklick, John R.; Baatz, John E.; Spyropoulos, Demetri D.

    2015-01-01

    adipocyte differentiation. Conclusions We conclude that DOSS is a putative obesogen worthy of further study, including epidemiological and clinical investigations into laxative prescriptions consisting of DOSS. Citation Temkin AM, Bowers RR, Magaletta ME, Holshouser S, Maggi A, Ciana P, Guillette LJ, Bowden JA, Kucklick JR, Baatz JE, Spyropoulos DD. 2016. Effects of crude oil/dispersant mixture and dispersant components on PPARγ activity in vitro and in vivo: identification of dioctyl sodium sulfosuccinate (DOSS; CAS #577-11-7) as a probable obesogen. Environ Health Perspect 124:112–119; http://dx.doi.org/10.1289/ehp.1409672 PMID:26135921

  11. Using the CRISPR-Cas System to Positively Select Mutants in Genes Essential for Its Function.

    PubMed

    Yosef, Ido; Goren, Moran G; Edgar, Rotem; Qimron, Udi

    2015-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR associated proteins (Cas) comprise a prokaryotic adaptive defense system against foreign nucleic acids. This defense is mediated by Cas proteins, which are guided by sequences flanked by the repeats, called spacers, to target nucleic acids. Spacers designed against the prokaryotic self chromosome are lethal to the prokaryotic cell. This self-killing of the bacterium by its own CRISPR-Cas system can be used to positively select genes that participate in this killing, as their absence will result in viable cells. Here we describe a positive selection assay that uses this feature to identify E. coli mutants encoding an inactive CRISPR-Cas system. The procedure includes establishment of an assay that detects this self-killing, generation of transposon insertion mutants in random genes, and selection of viable mutants, suspected as required for this lethal activity. This procedure enabled us to identify a novel gene, htpG, that is required for the activity of the CRISPR-Cas system. The procedures described here can be adjusted to various organisms to identify genes required for their CRISPR-Cas activity.

  12. Relationship between Bone-Specific Physical Activity Scores and Measures for Body Composition and Bone Mineral Density in Healthy Young College Women

    PubMed Central

    Kim, SoJung; So, Wi-Young; Kim, Jooyoung; Sung, Dong Jun

    2016-01-01

    Objective The purpose of this cross-sectional study was to investigate the relationship between bone-specific physical activity (BPAQ) scores, body composition, and bone mineral density (BMD) in healthy young college women. Methods Seventy-three college women (21.7 ± 1.8 years; 162.1 ± 4.6 cm; 53.9 ± 5.8 kg) between the ages of 19 and 26 years were recruited from the universities in Seoul and Gyeonggi province, South Korea. We used dual energy X-ray absorptiometry to measure the lumbar spine (L2-L4) and proximal femur BMD (left side; total hip, femoral neck). The BPAQ scores (past, pBPAQ; current, cBPAQ; total, tBPAQ) were used to obtain a comprehensive account of lifetime physical activity related to bone health. We used X-scan plus II instrumentation to measure height (cm), weight (kg), fat free mass (FFM, kg), percent body fat (%), and body mass index (BMI). Participants were asked to record their 24-hour food intake in a questionnaire. Results There were positive correlations between BPAQ scores and total hip (pBPAQ r = 0.308, p = 0.008; tBPAQ, r = 0.286, p = 0.014) and FN BMD (pBPAQ r = 0.309, p = 0.008; tBPAQ, r = 0.311, p = 0.007), while no significant relationships were found in cBPAQ (p > 0.05). When FFM, Vitamin D intake, cBPAQ, pBPAQ, and tBPAQ were included in a stepwise multiple linear regression analysis, FFM and pBPAQ were predictors of total hip, accounting for 16% (p = 0.024), while FFM and tBPAQ predicted 14% of the variance in FN (p = 0.015). Only FFM predicted 15% of the variance in L2-L4 (p = 0.004). There was a positive correlation between Vitamin D intake and L2-L4 (p = 0.025), but other dietary intakes variables were not significant (p > 0.05). Conclusions BPAQ-derived physical activity scores and FFM were positively associated with total hip and FN BMD in healthy young college women. Our study suggests that osteoporosis awareness and effective bone healthy behaviors for college women are required to prevent serious bone diseases later in

  13. An exploratory propensity score matched comparison of second-generation and first-generation baroreflex activation therapy systems.

    PubMed

    Wachter, Rolf; Halbach, Marcel; Bakris, George L; Bisognano, John D; Haller, Hermann; Beige, Joachim; Kroon, Abraham A; Nadim, Mitra K; Lovett, Eric G; Schafer, Jill E; de Leeuw, Peter W

    2016-12-16

    Baroreflex activation therapy (BAT) is a device-based therapy for patients with treatment-resistant hypertension. In a randomized, controlled trial, the first-generation system significantly reduced blood pressure (BP) versus sham. Although an open-label validation study of the second-generation system demonstrated similar BP reductions, controlled data are not presently available. Therefore, this investigation compares results of first- and second-generation BAT systems. Two cohorts of first-generation BAT system patients were generated with propensity matching to compare against the validation group of 30 second-generation subjects. The first cohort was drawn from the first-generation randomized trial sham group and the second cohort from the active therapy group. Safety and efficacy were compared for the second-generation group relative to the first generation. At 6 months, second-generation BAT outperformed first-generation sham systolic BP reduction by 20 ± 28 mm Hg (mean ± standard deviation, P = .008), while BP reduction in first- and second-generation active groups was similar. At 12 months, efficacy was comparable between all three groups after the sham group had received 6 months of therapy; 47% of second-generation patients achieved goal systolic BP of 140 mm Hg or less after 12 months, comparable to 50% of patients at goal in the first-generation group (P > .999). Implant procedure time, system/procedural safety, and pulse generator longevity improved with the second-generation system. Propensity-matched cohort analysis of the first- and second-generation BAT systems suggests similar therapeutic benefit and superior BP reduction of the second-generation system relative to sham control. Implantation procedure duration and perioperative safety were improved with the second-generation device. These findings should be validated in a prospective randomized trial.

  14. RXTE Observations of Cas A

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.; Lingenfelter, R. E.; Heindl, W. A.; Blanco, P. R.; Pelling, M. R.; Gruber, D. E.; Allen, G. E.; Jahoda, K.; Swank, J. H.; Woosley, S. E.; Nomoto, K.; Higdon, J. C.; Dermer, Charles D. (Editor); Strickman, Mark S. (Editor); Kurfess, James D. (Editor)

    1997-01-01

    The exciting detection by the COMPTEL instrument of the 1157 keV Ti-44 line from the supernova remnant Cas A sets important new constraints on supernova dynamics and nucleosynthesis. The Ti-44 decay also produces x-ray lines at 68 and 78 keV, whose flux should be essentially the same as that of the gamma ray line. The revised COMPTEL flux of 4 x l0(exp -5) cm(exp -2)s(exp -1) is very near the sensitivity limit for line detection by the HEXTE instrument on RXTE. We report on the results from two RXTE observations - 20 ks during In Orbit Checkout in January 1996 and 200 ks in April 1996. We also find a strong continuum emission suggesting cosmic ray electron acceleration in the remnant.

  15. Genome Editing in Escherichia coli with Cas9 and synthetic CRISPRs

    SciTech Connect

    Peng, Ze; Richardson, Sarah; Robinson, David; Deutsch, Samuel; Cheng, Jan-Fang

    2014-03-14

    Recently, the Cas9-CRISPR system has proven to be a useful tool for genome editing in eukaryotes, which repair the double stranded breaks made by Cas9 with non-homologous end joining or homologous recombination. Escherichia coli lacks non-homologous end joining and has a very low homologous recombination rate, effectively rendering targeted Cas9 activity lethal. We have developed a heat curable, serializable, plasmid based system for selectionless Cas9 editing in arbitrary E. coli strains that uses synthetic CRISPRs for targeting and -red to effect repairs of double stranded breaks. We have demonstrated insertions, substitutions, and multi-target deletions with our system, which we have tested in several strains.

  16. CRISPR/Cas9: an advanced tool for editing plant genomes.

    PubMed

    Samanta, Milan Kumar; Dey, Avishek; Gayen, Srimonta

    2016-10-01

    To meet current challenges in agriculture, genome editing using sequence-specific nucleases (SSNs) is a powerful tool for basic and applied plant biology research. Here, we describe the principle and application of available genome editing tools, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeat associated CRISPR/Cas9 system. Among these SSNs, CRISPR/Cas9 is the most recently characterized and rapidly developing genome editing technology, and has been successfully utilized in a wide variety of organisms. This review specifically illustrates the power of CRISPR/Cas9 as a tool for plant genome engineering, and describes the strengths and weaknesses of the CRISPR/Cas9 technology compared to two well-established genome editing tools, ZFNs and TALENs.

  17. Breaking-Cas—interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes

    PubMed Central

    Oliveros, Juan C.; Franch, Mònica; Tabas-Madrid, Daniel; San-León, David; Montoliu, Lluis; Cubas, Pilar; Pazos, Florencio

    2016-01-01

    The CRISPR/Cas technology is enabling targeted genome editing in multiple organisms with unprecedented accuracy and specificity by using RNA-guided nucleases. A critical point when planning a CRISPR/Cas experiment is the design of the guide RNA (gRNA), which directs the nuclease and associated machinery to the desired genomic location. This gRNA has to fulfil the requirements of the nuclease and lack homology with other genome sites that could lead to off-target effects. Here we introduce the Breaking-Cas system for the design of gRNAs for CRISPR/Cas experiments, including those based in the Cas9 nuclease as well as others recently introduced. The server has unique features not available in other tools, including the possibility of using all eukaryotic genomes available in ENSEMBL (currently around 700), placing variable PAM sequences at 5′ or 3′ and setting the guide RNA length and the scores per nucleotides. It can be freely accessed at: http://bioinfogp.cnb.csic.es/tools/breakingcas, and the code is available upon request. PMID:27166368

  18. Cas9-catalyzed DNA Cleavage Generates Staggered Ends: Evidence from Molecular Dynamics Simulations

    PubMed Central

    Zuo, Zhicheng; Liu, Jin

    2016-01-01

    The CRISPR-associated endonuclease Cas9 from Streptococcus pyogenes (spCas9) along with a single guide RNA (sgRNA) has emerged as a versatile toolbox for genome editing. Despite recent advances in the mechanism studies on spCas9-sgRNA-mediated double-stranded DNA (dsDNA) recognition and cleavage, it is still unclear how the catalytic Mg2+ ions induce the conformation changes toward the catalytic active state. It also remains controversial whether Cas9 generates blunt-ended or staggered-ended breaks with overhangs in the DNA. To investigate these issues, here we performed the first all-atom molecular dynamics simulations of the spCas9-sgRNA-dsDNA system with and without Mg2+ bound. The simulation results showed that binding of two Mg2+ ions at the RuvC domain active site could lead to structurally and energetically favorable coordination ready for the non-target DNA strand cleavage. Importantly, we demonstrated with our simulations that Cas9-catalyzed DNA cleavage produces 1-bp staggered ends rather than generally assumed blunt ends. PMID:27874072

  19. Cullin 5 destabilizes Cas to inhibit Src-dependent cell transformation.

    PubMed

    Teckchandani, Anjali; Laszlo, George S; Simó, Sergi; Shah, Khyati; Pilling, Carissa; Strait, Alexander A; Cooper, Jonathan A

    2014-02-01

    Phosphorylation-dependent protein ubiquitylation and degradation provides an irreversible mechanism to terminate protein kinase signaling. Here, we report that mammary epithelial cells require cullin-5-RING-E3-ubiquitin-ligase complexes (Cul5-CRLs) to prevent transformation by a Src-Cas signaling pathway. Removal of Cul5 stimulates growth-factor-independent growth and migration, membrane dynamics and colony dysmorphogenesis, which are all dependent on the endogenous tyrosine kinase Src. Src is activated in Cul5-deficient cells, but Src activation alone is not sufficient to cause transformation. We found that Cul5 and Src together stimulate degradation of the Src substrate p130Cas (Crk-associated substrate). Phosphorylation stimulates Cas binding to the Cul5-CRL adaptor protein SOCS6 and consequent proteasome-dependent degradation. Cas is necessary for the transformation of Cul5-deficient cells. Either knockdown of SOCS6 or use of a degradation-resistant Cas mutant stimulates membrane ruffling, but not other aspects of transformation. Our results show that endogenous Cul5 suppresses epithelial cell transformation by several pathways, including inhibition of Src-Cas-induced ruffling through SOCS6.

  20. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes

    SciTech Connect

    Carte, Jason; Wang, Ruiying; Li, Hong; Terns, Rebecca M.; Terns, Michael P.

    2010-11-09

    An RNA-based gene silencing pathway that protects bacteria and archaea from viruses and other genome invaders is hypothesized to arise from guide RNAs encoded by CRISPR loci and proteins encoded by the cas genes. CRISPR loci contain multiple short invader-derived sequences separated by short repeats. The presence of virus-specific sequences within CRISPR loci of prokaryotic genomes confers resistance against corresponding viruses. The CRISPR loci are transcribed as long RNAs that must be processed to smaller guide RNAs. Here we identified Pyrococcus furiosus Cas6 as a novel endoribonuclease that cleaves CRISPR RNAs within the repeat sequences to release individual invader targeting RNAs. Cas6 interacts with a specific sequence motif in the 5{prime} region of the CRISPR repeat element and cleaves at a defined site within the 3{prime} region of the repeat. The 1.8 angstrom crystal structure of the enzyme reveals two ferredoxin-like folds that are also found in other RNA-binding proteins. The predicted active site of the enzyme is similar to that of tRNA splicing endonucleases, and concordantly, Cas6 activity is metal-independent. cas6 is one of the most widely distributed CRISPR-associated genes. Our findings indicate that Cas6 functions in the generation of CRISPR-derived guide RNAs in numerous bacteria and archaea.

  1. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector.

    PubMed

    Kabadi, Ami M; Ousterout, David G; Hilton, Isaac B; Gersbach, Charles A

    2014-10-29

    Engineered DNA-binding proteins that manipulate the human genome and transcriptome have enabled rapid advances in biomedical research. In particular, the RNA-guided CRISPR/Cas9 system has recently been engineered to create site-specific double-strand breaks for genome editing or to direct targeted transcriptional regulation. A unique capability of the CRISPR/Cas9 system is multiplex genome engineering by delivering a single Cas9 enzyme and two or more single guide RNAs (sgRNAs) targeted to distinct genomic sites. This approach can be used to simultaneously create multiple DNA breaks or to target multiple transcriptional activators to a single promoter for synergistic enhancement of gene induction. To address the need for uniform and sustained delivery of multiplex CRISPR/Cas9-based genome engineering tools, we developed a single lentiviral system to express a Cas9 variant, a reporter gene and up to four sgRNAs from independent RNA polymerase III promoters that are incorporated into the vector by a convenient Golden Gate cloning method. Each sgRNA is efficiently expressed and can mediate multiplex gene editing and sustained transcriptional activation in immortalized and primary human cells. This delivery system will be significant to enabling the potential of CRISPR/Cas9-based multiplex genome engineering in diverse cell types.

  2. Cas9-catalyzed DNA Cleavage Generates Staggered Ends: Evidence from Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Zuo, Zhicheng; Liu, Jin

    2016-11-01

    The CRISPR-associated endonuclease Cas9 from Streptococcus pyogenes (spCas9) along with a single guide RNA (sgRNA) has emerged as a versatile toolbox for genome editing. Despite recent advances in the mechanism studies on spCas9-sgRNA-mediated double-stranded DNA (dsDNA) recognition and cleavage, it is still unclear how the catalytic Mg2+ ions induce the conformation changes toward the catalytic active state. It also remains controversial whether Cas9 generates blunt-ended or staggered-ended breaks with overhangs in the DNA. To investigate these issues, here we performed the first all-atom molecular dynamics simulations of the spCas9-sgRNA-dsDNA system with and without Mg2+ bound. The simulation results showed that binding of two Mg2+ ions at the RuvC domain active site could lead to structurally and energetically favorable coordination ready for the non-target DNA strand cleavage. Importantly, we demonstrated with our simulations that Cas9-catalyzed DNA cleavage produces 1-bp staggered ends rather than generally assumed blunt ends.

  3. The therapeutic application of CRISPR/Cas9 technologies for HIV

    PubMed Central

    Saayman, Sheena; Ali, Stuart A.; Morris, Kevin V.; Weinberg, Marc S.

    2015-01-01

    Introduction The use of antiretroviral therapy (ART) has led to a significant decrease in morbidity and mortality in HIV-infected individuals. Nevertheless gene-based therapies represent a promising therapeutic paradigm for HIV-1, as they have the potential for sustained viral inhibition and reduced treatment interventions. One new method amendable to a gene-based therapy is the clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 gene editing system. Areas covered CRISPR/Cas9 can be engineered to successfully modulate an array of disease-causing genetic elements. We discuss the diverse roles that CRISPR/Cas9 may play in targeting HIV and eradicating infection. The Cas9 nuclease coupled with one or more small guide RNAs (sgRNAs) can target the provirus to mediate excision of the integrated viral genome. Moreover, a modified nuclease deficient Cas9 fused to transcription activating domains may induce targeted activation of proviral gene expression allowing for the purging of the latent reservoirs. These technologies can also be exploited to target host dependency factors such as the co-receptor CCR5, thus preventing cellular entry of the virus. Expert opinion The diversity of the CRISPR/Cas9 technologies hold great promise for targeting different stages of the viral life cycle, and have the capacity for mediating an effective and sustained genetic therapy against HIV. PMID:25865334

  4. Cas9 specifies functional viral targets during CRISPR-Cas adaptation.

    PubMed

    Heler, Robert; Samai, Poulami; Modell, Joshua W; Weiner, Catherine; Goldberg, Gregory W; Bikard, David; Marraffini, Luciano A

    2015-03-12

    Clustered regularly interspaced short palindromic repeat (CRISPR) loci and their associated (Cas) proteins provide adaptive immunity against viral infection in prokaryotes. Upon infection, short phage sequences known as spacers integrate between CRISPR repeats and are transcribed into small RNA molecules that guide the Cas9 nuclease to the viral targets (protospacers). Streptococcus pyogenes Cas9 cleavage of the viral genome requires the presence of a 5'-NGG-3' protospacer adjacent motif (PAM) sequence immediately downstream of the viral target. It is not known whether and how viral sequences flanked by the correct PAM are chosen as new spacers. Here we show that Cas9 selects functional spacers by recognizing their PAM during spacer acquisition. The replacement of cas9 with alleles that lack the PAM recognition motif or recognize an NGGNG PAM eliminated or changed PAM specificity during spacer acquisition, respectively. Cas9 associates with other proteins of the acquisition machinery (Cas1, Cas2 and Csn2), presumably to provide PAM-specificity to this process. These results establish a new function for Cas9 in the genesis of prokaryotic immunological memory.

  5. Greater Independence in Activities of Daily Living is Associated with Higher Health-Related Quality of Life Scores in Nursing Home Residents with Dementia.

    PubMed

    Chan, Charice S; Slaughter, Susan E; Jones, C Allyson; Wagg, Adrian S

    2015-06-30

    Health-related quality of life (HRQL) for nursing home residents is important, however, the concept of quality of life is broad, encompasses many domains and is difficult to assess in people with dementia. Basic activities of daily living (ADL) are measured routinely in nursing homes using the Resident Assessment Instrument-Minimum Data Set Version 2.0 (RAI-MDS) and Functional Independence Measure (FIM) instrument. We examined the relationship between HRQL and ADL to assess the future possibility of ADL dependency level serving as a surrogate measure of HRQL in residents with dementia. To assess ADL, measures derived from the RAI-MDS and FIM data were gathered for 111 residents at the beginning of our study and at 6-month follow-up. Higher scores for independence in ADL were correlated with higher scores for a disease-specific HRQL measure, the Quality of Life-Alzheimer's Disease Scale. Preliminary evidence suggests that FIM-assessed ADL is associated with HRQL for these residents. The associations of the dressing and toileting items with HRQL were particularly strong. This finding suggests the importance of ADL function in HRQL. The RAI-MDS ADL scales should be used with caution to evaluate HRQL.

  6. Greater Independence in Activities of Daily Living is Associated with Higher Health-Related Quality of Life Scores in Nursing Home Residents with Dementia

    PubMed Central

    Chan, Charice S.; Slaughter, Susan E.; Jones, C. Allyson; Wagg, Adrian S.

    2015-01-01

    Health-related quality of life (HRQL) for nursing home residents is important, however, the concept of quality of life is broad, encompasses many domains and is difficult to assess in people with dementia. Basic activities of daily living (ADL) are measured routinely in nursing homes using the Resident Assessment Instrument-Minimum Data Set Version 2.0 (RAI-MDS) and Functional Independence Measure (FIM) instrument. We examined the relationship between HRQL and ADL to assess the future possibility of ADL dependency level serving as a surrogate measure of HRQL in residents with dementia. To assess ADL, measures derived from the RAI-MDS and FIM data were gathered for 111 residents at the beginning of our study and at 6-month follow-up. Higher scores for independence in ADL were correlated with higher scores for a disease-specific HRQL measure, the Quality of Life—Alzheimer’s Disease Scale. Preliminary evidence suggests that FIM-assessed ADL is associated with HRQL for these residents. The associations of the dressing and toileting items with HRQL were particularly strong. This finding suggests the importance of ADL function in HRQL. The RAI-MDS ADL scales should be used with caution to evaluate HRQL. PMID:27417776

  7. Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage

    PubMed Central

    Josephs, Eric A.; Kocak, D. Dewran; Fitzgibbon, Christopher J.; McMenemy, Joshua; Gersbach, Charles A.; Marszalek, Piotr E.

    2015-01-01

    CRISPR-associated endonuclease Cas9 cuts DNA at variable target sites designated by a Cas9-bound RNA molecule. Cas9's ability to be directed by single ‘guide RNA’ molecules to target nearly any sequence has been recently exploited for a number of emerging biological and medical applications. Therefore, understanding the nature of Cas9's off-target activity is of paramount importance for its practical use. Using atomic force microscopy (AFM), we directly resolve individual Cas9 and nuclease-inactive dCas9 proteins as they bind along engineered DNA substrates. High-resolution imaging allows us to determine their relative propensities to bind with different guide RNA variants to targeted or off-target sequences. Mapping the structural properties of Cas9 and dCas9 to their respective binding sites reveals a progressive conformational transformation at DNA sites with increasing sequence similarity to its target. With kinetic Monte Carlo (KMC) simulations, these results provide evidence of a ‘conformational gating’ mechanism driven by the interactions between the guide RNA and the 14th–17th nucleotide region of the targeted DNA, the stabilities of which we find correlate significantly with reported off-target cleavage rates. KMC simulations also reveal potential methodologies to engineer guide RNA sequences with improved specificity by considering the invasion of guide RNAs into targeted DNA duplex. PMID:26384421

  8. Comparison of the Disease Activity Score using Erythrocyte Sedimentation Rate and C-reactive Protein in African-Americans with Rheumatoid Arthritis

    PubMed Central

    Tamhane, Ashutosh; Redden, David T.; McGwin, Gerald; Brown, Elizabeth E.; Westfall, Andrew O.; Reynolds, Richard J.; Hughes, Laura B.; Conn, Doyt L.; Callahan, Leigh F.; Jonas, Beth L.; Smith, Edwin A.; Brasington, Richard D.; Moreland, Larry W.; Bridges, S. Louis

    2014-01-01

    INTRODUCTION The Disease Activity Score based on 28 joints (DAS28) has been increasingly used in clinical practice and research studies of rheumatoid arthritis (RA). Studies have reported discordance between DAS28 based on erythrocyte sedimentation rate (ESR) versus C-reactive protein (CRP) in RA patients. However such comparison is lacking in African-Americans with RA. METHODS This analysis included participants from the Consortium for the Longitudinal Evaluation of African Americans with Early Rheumatoid Arthritis (CLEAR) Registry which enrolls self-declared African-Americans with RA. Using tender and swollen joint counts separate ESR-based and CRP-based DAS28 scores (DAS28-ESR3 and DAS28-CRP3) were calculated, as were DAS28-ESR4 and DAS28-CRP4, which included the patient’s assessment of disease activity. The scores were compared using paired t-test, simple agreement and kappa, correlation coefficient and Bland-Altman plots. RESULTS Of the 233 included participants, 85% were women, mean age at enrollment was 52.6 years, and median disease duration at enrollment was 21 months. Mean DAS28-ESR3 was significantly higher than DAS28-CRP3 (4.8 vs. 3.9; p<0.001). Similarly, mean DAS28-ESR4 was significantly higher than DAS28-CRP4 (4.7 vs. 3.9; p<0.001). ESR-based DAS28 remained higher than CRP-based DAS28 even when stratified by age, sex, and disease duration. Overall agreement was not high between DAS28-ESR3 and DAS28-CRP3 (50%) or between DAS28-ESR4 and DAS28-CRP4 (59%). DAS28-CRP3 underestimated disease activity in 47% of the participants relative to DAS28-ESR3 and DAS28-CRP4 in 40% of the participants relative to DAS28-ESR4. CONCLUSION There was significant discordance between the ESR-based and CRP-based DAS28 which could impact clinical treatment decisions in African-Americans with RA. PMID:23950187

  9. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems

    PubMed Central

    Fonfara, Ines; Le Rhun, Anaïs; Chylinski, Krzysztof; Makarova, Kira S.; Lécrivain, Anne-Laure; Bzdrenga, Janek; Koonin, Eugene V.; Charpentier, Emmanuelle

    2014-01-01

    The CRISPR-Cas-derived RNA-guided Cas9 endonuclease is the key element of an emerging promising technology for genome engineering in a broad range of cells and organisms. The DNA-targeting mechanism of the type II CRISPR-Cas system involves maturation of tracrRNA:crRNA duplex (dual-RNA), which directs Cas9 to cleave invading DNA in a sequence-specific manner, dependent on the presence of a Protospacer Adjacent Motif (PAM) on the target. We show that evolution of dual-RNA and Cas9 in bacteria produced remarkable sequence diversity. We selected eight representatives of phylogenetically defined type II CRISPR-Cas groups to analyze possible coevolution of Cas9 and dual-RNA. We demonstrate that these two components are interchangeable only between closely related type II systems when the PAM sequence is adjusted to the investigated Cas9 protein. Comparison of the taxonomy of bacterial species that harbor type II CRISPR-Cas systems with the Cas9 phylogeny corroborates horizontal transfer of the CRISPR-Cas loci. The reported collection of dual-RNA:Cas9 with associated PAMs expands the possibilities for multiplex genome editing and could provide means to improve the specificity of the RNA-programmable Cas9 tool. PMID:24270795

  10. Regulation of the Type I-F CRISPR-Cas system by CRP-cAMP and GalM controls spacer acquisition and interference.

    PubMed

    Patterson, Adrian G; Chang, James T; Taylor, Corinda; Fineran, Peter C

    2015-07-13

    The CRISPR-Cas prokaryotic 'adaptive immune systems' represent a sophisticated defence strategy providing bacteria and archaea with protection from invading genetic elements, such as bacteriophages or plasmids. Despite intensive research into their mechanism and application, how CRISPR-Cas systems are regulated is less clear, and nothing is known about the regulation of Type I-F systems. We used Pectobacterium atrosepticum, a Gram-negative phytopathogen, to study CRISPR-Cas regulation, since it contains a single Type I-F system. The CRP-cAMP complex activated the cas operon, increasing the expression of the adaptation genes cas1 and cas2-3 in addition to the genes encoding the Csy surveillance complex. Mutation of crp or cyaA (encoding adenylate cyclase) resulted in reductions in both primed spacer acquisition and interference. Furthermore, we identified a galactose mutarotase, GalM, which reduced cas operon expression in a CRP- and CyaA-dependent manner. We propose that the Type I-F system senses metabolic changes, such as sugar availability, and regulates cas genes to initiate an appropriate defence response. Indeed, elevated glucose levels reduced cas expression in a CRP- and CyaA-dependent manner. Taken together, these findings highlight that a metabolite-sensing regulatory pathway controls expression of the Type I-F CRISPR-Cas system to modulate levels of adaptation and interference.

  11. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9.

    PubMed

    Du, Hongyang; Zeng, Xuanrui; Zhao, Meng; Cui, Xiaopei; Wang, Qing; Yang, Hui; Cheng, Hao; Yu, Deyue

    2016-01-10

    Gene targeting (GT) is of great significance for advancing basic plant research and crop improvement. Both TALENs (transcription activator-like effectors nucleases) and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated 9) systems have been developed for genome editing in eukaryotes, including crop plants. In this work, we present the comparative analysis of these two technologies for two soybean genome editing targets, GmPDS11 and GmPDS18. We found GT in soybean hairy roots with a single targeting efficiency range of 17.5-21.1% by TALENs, 11.7-18.1% by CRISPR/Cas9 using the AtU6-26 promoter, and 43.4-48.1% by CRISPR/Cas9 using the GmU6-16g-1 promoter, suggesting that the CRISPR/Cas9 using the GmU6-16g-1 promoter is probably a much more efficient tool compared to the other technologies. Similarly, our double mutation GT efficiency experiment with these three technologies displayed a targeting efficiency of 6.25% by TALENs, 12.5% by CRISPR/Cas9 using the AtU6-26 promoter, and 43.4-48.1% by CRISPR/Cas9 using the GmU6-16g-1 promoter, suggesting that CRISPR/Cas9 is still a better choice for simultaneous editing of multiple homoeoalleles. Furthermore, we observed albino and dwarf buds (PDS knock-out) by soybean transformation in cotyledon nodes. Our results demonstrated that both TALENs and CRISPR/Cas9 systems are powerful tools for soybean genome editing.

  12. Insert, remove or replace: A highly advanced genome editing system using CRISPR/Cas9.

    PubMed

    Ceasar, S Antony; Rajan, Vinothkumar; Prykhozhij, Sergey V; Berman, Jason N; Ignacimuthu, S

    2016-09-01

    The clustered, regularly interspaced, short palindromic repeat (CRISPR) and CRISPR associated protein 9 (Cas9) system discovered as an adaptive immunity mechanism in prokaryotes has emerged as the most popular tool for the precise alterations of the genomes of diverse species. CRISPR/Cas9 system has taken the world of genome editing by storm in recent years. Its popularity as a tool for altering genomes is due to the ability of Cas9 protein to cause double-stranded breaks in DNA after binding with short guide RNA molecules, which can be produced with dramatically less effort and expense than required for production of transcription-activator like effector nucleases (TALEN) and zinc-finger nucleases (ZFN). This system has been exploited in many species from prokaryotes to higher animals including human cells as evidenced by the literature showing increasing sophistication and ease of CRISPR/Cas9 as well as increasing species variety where it is applicable. This technology is poised to solve several complex molecular biology problems faced in life science research including cancer research. In this review, we highlight the recent advancements in CRISPR/Cas9 system in editing genomes of prokaryotes, fungi, plants and animals and provide details on software tools available for convenient design of CRISPR/Cas9 targeting plasmids. We also discuss the future prospects of this advanced molecular technology.

  13. Efficient gene targeting in mouse zygotes mediated by CRISPR/Cas9-protein.

    PubMed

    Jung, Chris J; Zhang, Junli; Trenchard, Elizabeth; Lloyd, Kent C; West, David B; Rosen, Barry; de Jong, Pieter J

    2017-04-01

    The CRISPR/Cas9 system has rapidly advanced targeted genome editing technologies. However, its efficiency in targeting with constructs in mouse zygotes via homology directed repair (HDR) remains low. Here, we systematically explored optimal parameters for targeting constructs in mouse zygotes via HDR using mouse embryonic stem cells as a model system. We characterized several parameters, including single guide RNA cleavage activity and the length and symmetry of homology arms in the construct, and we compared the targeting efficiency between Cas9, Cas9nickase, and dCas9-FokI. We then applied the optimized conditions to zygotes, delivering Cas9 as either mRNA or protein. We found that Cas9 nucleo-protein complex promotes highly efficient, multiplexed targeting of circular constructs containing reporter genes and floxed exons. This approach allows for a one-step zygote injection procedure targeting multiple genes to generate conditional alleles via homologous recombination, and simultaneous knockout of corresponding genes in non-targeted alleles via non-homologous end joining.

  14. Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration

    PubMed Central

    Kim, Kyoungmi; Park, Sung Wook; Kim, Jin Hyoung; Lee, Seung Hwan; Kim, Daesik; Koo, Taeyoung; Kim, Kwang-eun; Kim, Jeong Hun; Kim, Jin-Soo

    2017-01-01

    RNA-guided genome surgery using CRISPR-Cas9 nucleases has shown promise for the treatment of diverse genetic diseases. Yet, the potential of such nucleases for therapeutic applications in nongenetic diseases is largely unexplored. Here, we focus on age-related macular degeneration (AMD), a leading cause of blindness in adults, which is associated with retinal overexpression of, rather than mutations in, the VEGFA gene. Subretinal injection of preassembled, Vegfa gene–specific Cas9 ribonucleoproteins (RNPs) into the adult mouse eye gave rise to mutagenesis at the target site in the retinal pigment epithelium. Furthermore, Cas9 RNPs effectively reduced the area of laser-induced choroidal neovascularization (CNV) in a mouse model of AMD. Genome-wide profiling of Cas9 off-target effects via Digenome-seq showed that off-target mutations were rarely induced in the human genome. Because Cas9 RNPs can function immediately after in vivo delivery and are rapidly degraded by endogenous proteases, their activities are unlikely to be hampered by antibody- and cell-mediated adaptive immune systems. Our results demonstrate that in vivo genome editing with Cas9 RNPs has the potential for the local treatment for nongenetic degenerative diseases, expanding the scope of RNA-guided genome surgery to a new dimension. PMID:28209587

  15. Vinculin-p130Cas interaction is critical for focal adhesion dynamics and mechano-transduction.

    PubMed

    Goldmann, Wolfgang H

    2014-03-01

    Adherent cells, when mechanically stressed, show a wide range of responses including large-scale changes in their mechanical behaviour and gene expression pattern. This is in part facilitated by activating the focal adhesion (FA) protein p130Cas through force-induced conformational changes that lead to the phosphorylation by src family kinases. Janostiak et al. [Janostiak et al. Cell Mol Life Sci (2013) DOI 10.1007/s00018-013-1450-x] have reported that the phosphorylation site Y12 on the SH3 domain of p130Cas modulates the binding with vinculin, a prominent mechano-coupling protein in FAs. Tension changes in FAs (due to the anchorage of the SH3 domain and C-terminal) bring about an extension of the substrate domain of p130Cas by unmasking the phosphorylation sites. These observations demonstrate that vinculin is an important modulator of the p130Cas-mediated mechano-transduction pathway in cells. The central aim should be now to test that vinculin is critical for p130Cas incorporation into the focal adhesion complex and for transmitting forces to the p130Cas molecule.

  16. Exploring the potential of genome editing CRISPR-Cas9 technology.

    PubMed

    Singh, Vijai; Braddick, Darren; Dhar, Pawan Kumar

    2017-01-30

    CRISPR-Cas9 is an RNA-mediated adaptive immune system that protects bacteria and archaea from viruses or plasmids. Herein we discuss the recent development of CRISPR-Cas9 into a key technology for genome editing, targeting, and regulation in a wide range of organisms and cell types. It requires a custom designed single guide-RNA (sgRNA), a Cas9 endonuclease, and PAM sequences in the target region. The sgRNA-Cas9 complex binds to its target and creates a double-strand break (DSB) that can be repaired by non-homologous end joining (NHEJ) or by the homology-directed repair (HDR) pathway, modifying or permanently replacing the genomic target sequence. Additionally, we highlight recent advances in the repurposing of CRISPR-Cas9 for repression, activation, and loci imaging. In this review, we underline the current progress and the future potential of the CRISPR-Cas9 system towards biomedical, therapeutic, industrial, and biotechnological applications.

  17. CRISPR-Cas9 for medical genetic screens: applications and future perspectives.

    PubMed

    Xue, Hui-Ying; Ji, Li-Juan; Gao, Ai-Mei; Liu, Ping; He, Jing-Dong; Lu, Xiao-Jie

    2016-02-01

    CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated nuclease 9) systems have emerged as versatile and convenient (epi)genome editing tools and have become an important player in medical genetic research. CRISPR-Cas9 and its variants such as catalytically inactivated Cas9 (dead Cas9, dCas9) and scaffold-incorporating single guide sgRNA (scRNA) have been applied in various genomic screen studies. CRISPR screens enable high-throughput interrogation of gene functions in health and diseases. Compared with conventional RNAi screens, CRISPR screens incur less off-target effects and are more versatile in that they can be used in multiple formats such as knockout, knockdown and activation screens, and can target coding and non-coding regions throughout the genome. This powerful screen platform holds the potential of revolutionising functional genomic studies in the near future. Herein, we introduce the mechanisms of (epi)genome editing mediated by CRISPR-Cas9 and its variants, introduce the procedures and applications of CRISPR screen in functional genomics, compare it with conventional screen tools and at last discuss current challenges and opportunities and propose future directions.

  18. CRISPR/Cas9-mediated genome engineering and the promise of designer flies on demand.

    PubMed

    Gratz, Scott J; Wildonger, Jill; Harrison, Melissa M; O'Connor-Giles, Kate M

    2013-01-01

    The CRISPR/Cas9 system has attracted significant attention for its potential to transform genome engineering. We and others have recently shown that the RNA-guided Cas9 nuclease can be employed to engineer the Drosophila genome, and that these modifications are efficiently transmitted through the germline. A single targeting RNA can guide Cas9 to a specific genomic sequence where it induces double-strand breaks that, when imperfectly repaired, yield mutations. We have also demonstrated that 2 targeting RNAs can be used to generate large defined deletions and that Cas9 can catalyze gene replacement by homologous recombination. Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) have shown similar promise in Drosophila. However, the ease of producing targeting RNAs over the generation of unique sequence-directed nucleases to guide site-specific modifications makes the CRISPR/Cas9 system an appealingly accessible method for genome editing. From the initial planning stages, engineered flies can be obtained within a month. Here we highlight the variety of genome modifications facilitated by the CRISPR/Cas9 system along with key considerations for starting your own CRISPR genome engineering project.

  19. CRISPR-Cas: biology, mechanisms and relevance

    PubMed Central

    Hille, Frank

    2016-01-01

    Prokaryotes have evolved several defence mechanisms to protect themselves from viral predators. Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) display a prokaryotic adaptive immune system that memorizes previous infections by integrating short sequences of invading genomes—termed spacers—into the CRISPR locus. The spacers interspaced with repeats are expressed as small guide CRISPR RNAs (crRNAs) that are employed by Cas proteins to target invaders sequence-specifically upon a reoccurring infection. The ability of the minimal CRISPR-Cas9 system to target DNA sequences using programmable RNAs has opened new avenues in genome editing in a broad range of cells and organisms with high potential in therapeutical applications. While numerous scientific studies have shed light on the biochemical processes behind CRISPR-Cas systems, several aspects of the immunity steps, however, still lack sufficient understanding. This review summarizes major discoveries in the CRISPR-Cas field, discusses the role of CRISPR-Cas in prokaryotic immunity and other physiological properties, and describes applications of the system as a DNA editing technology and antimicrobial agent. This article is part of the themed issue ‘The new bacteriology’. PMID:27672148

  20. Genome engineering using the CRISPR-Cas9 system.

    PubMed

    Ran, F Ann; Hsu, Patrick D; Wright, Jason; Agarwala, Vineeta; Scott, David A; Zhang, Feng

    2013-11-01

    Targeted nucleases are powerful tools for mediating genome alteration with high precision. The RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system can be used to facilitate efficient genome engineering in eukaryotic cells by simply specifying a 20-nt targeting sequence within its guide RNA. Here we describe a set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies. To minimize off-target cleavage, we further describe a double-nicking strategy using the Cas9 nickase mutant with paired guide RNAs. This protocol provides experimentally derived guidelines for the selection of target sites, evaluation of cleavage efficiency and analysis of off-target activity. Beginning with target design, gene modifications can be achieved within as little as 1-2 weeks, and modified clonal cell lines can be derived within 2-3 weeks.

  1. Investigation of brightness changes of MZ Cas and TZ Cas in B- and V-light

    NASA Technical Reports Server (NTRS)

    Lukatskaya, F. I.; Kheylo, E. S.

    1973-01-01

    The results are presented concerning statistical processing of two-color observations of MZ Cas and TZ Cas. Light histograms, dispersion and statistical amplitudes are given. Light variations of the variables are represented by normal stochastic processes. Observational data are tabulated.

  2. Putting the CAS Standards to Work. Training Manual for the CAS Self Assessment Guides.

    ERIC Educational Resources Information Center

    Yerian, Jean M.; Miller, Theodore K., Ed.

    These 18 self-assessment guides and training manual from the Council for the Advancement of Standards (CAS) for Student Services/Development Programs translate the CAS Standards and Guidelines of 1986 into a format for self-study purposes. These self-study guides allow an institution to assure compliance with minimally-acceptable practice, gain an…

  3. Translation, Validation and Cross-Cultural Adaptation of a Simplified-Chinese Version of the Tegner Activity Score in Chinese Patients with Anterior Cruciate Ligament Injury

    PubMed Central

    Zhang, Dongxia; Jiang, Yanfang; Yang, Jie; Feng, Tao; Gong, Xi; Wang, Jianquan; Ao, Yingfang

    2016-01-01

    Aims To translate the English version of Tegner Activity Score into a Simplified-Chinese version (Tegner-C) and evaluate its psychometric properties. Methods Tegner-C was cross-culturally adapted according to established guidelines. The validity and reliability of Tegner-C were assessed in 78 participants, with 19–20 participants in each of the four groups: before anterior cruciate ligament reconstruction (pre-ACLR) group, 2–3 months after ACLR group, 3–12 months after ACLR group, and healthy control group. Each participant was asked to complete the Tegner-C and Chinese version of International Knee Documentation Committee Subjective Knee Form (IKDC-SKF-C) twice, with an interval of 5±2 days. Intra-class correlation coefficient (ICC2, 1) was used to assess the reliability and Spearman’s rank correlation was used for construct validity. Results The ICC2,1 was higher than 0.90 for all groups except in the pre-ACLR group, for which the ICC2,1 was 0.71 (0.41, 0.87) (All with p<0.001). The absolute reliability as evaluated by the smallest detectable change was 0.43, 2.12, 0.89, and 0.44 for the healthy control group, pre-ACLR group, 2–3 months after ACLR group, and 3–12 months after ACLR group, respectively. Neither a ceiling effect nor a floor effect was observed for any group. Significant difference was observed for both Tegner-C and IKDC-SKF-C scores between the control and the other three groups (all with p<0.001), and between pre-ACLR and the 2–3 months after ACLR group (p<0.001). Conclusions Tegner-C demonstrated comparable psychometric properties to the original English version and thus is reliable and valid for Chinese-speaking patients with ACL injury. PMID:27186880

  4. A Kinase-Independent Function of c-Src Mediates p130Cas Phosphorylation at the Serine-639 Site in Pressure Overloaded Myocardium.

    PubMed

    Palanisamy, Arun P; Suryakumar, Geetha; Panneerselvam, Kavin; Willey, Christopher D; Kuppuswamy, Dhandapani

    2015-12-01

    Early work in pressure overloaded (PO) myocardium shows that integrins mediate focal adhesion complex formation by recruiting the adaptor protein p130Cas (Cas) and nonreceptor tyrosine kinase c-Src. To explore c-Src role in Cas-associated changes during PO, we used a feline right ventricular in vivo PO model and a three-dimensional (3D) collagen-embedded adult cardiomyocyte in vitro model that utilizes a Gly-Arg-Gly-Asp-Ser (RGD) peptide for integrin stimulation. Cas showed slow electrophoretic mobility (band-shifting), recruitment to the cytoskeleton, and tyrosine phosphorylation at 165, 249, and 410 sites in both 48 h PO myocardium and 1 h RGD-stimulated cardiomyocytes. Adenoviral mediated expression of kinase inactive (negative) c-Src mutant with intact scaffold domains (KN-Src) in cardiomyocytes did not block the RGD stimulated changes in Cas. Furthermore, expression of KN-Src or kinase active c-Src mutant with intact scaffold function (A-Src) in two-dimensionally (2D) cultured cardiomyocytes was sufficient to cause Cas band-shifting, although tyrosine phosphorylation required A-Src. These data indicate that c-Src's adaptor function, but not its kinase function, is required for a serine/threonine specific phosphorylation(s) responsible for Cas band-shifting. To explore this possibility, Chinese hamster ovary cells that stably express Cas were infected with either β-gal or KN-Src adenoviruses and used for Cas immunoprecipitation combined with mass spectrometry analysis. In the KN-Src expressing cells, Cas showed phosphorylation at the serine-639 (human numbering) site. A polyclonal antibody raised against phospho-serine-639 detected Cas phosphorylation in 24-48 h PO myocardium. Our studies indicate that c-Src's adaptor function mediates serine-639 phosphorylation of Cas during integrin activation in PO myocardium.

  5. I can see CRISPR now, even when phage are gone: a view on alternative CRISPR-Cas functions from the prokaryotic envelope

    PubMed Central

    Ratner, Hannah K.; Sampson, Timothy R.; Weiss, David S.

    2015-01-01

    Purpose CRISPR-Cas systems are prokaryotic immune systems against invading nucleic acids that adapt as new environmental threats arise. There are emerging examples of CRISPR-Cas functions in bacterial physiology beyond their role in adaptive immunity. This highlights the poorly understood, but potentially common, moonlighting functions of these abundant systems. We propose that these non-canonical CRISPR-Cas activities have evolved to respond to stresses at the cell envelope. Recent findings Here, we discuss recent literature describing the impact of the extracellular environment on the regulation of CRISPR-Cas systems, and the influence of CRISPR-Cas activity on bacterial physiology. The described non-canonical CRISPR-Cas functions allow the bacterial cell to respond to the extracellular environment, primarily through changes in envelope physiology. Summary This review discusses the expanding non-canonical functions of CRISPR-Cas systems, including their roles in virulence, focusing mainly on their relationship to the cell envelope. We first examine the effects of the extracellular environment on regulation of CRISPR-Cas components, and then discuss the impact of CRISPR-Cas systems on bacterial physiology, focusing on their roles in influencing interactions with the environment including host organisms. PMID:25887612

  6. Differences Between the “Chinese AMS Score” and the Lake Louise Score in the Diagnosis of Acute Mountain Sickness

    PubMed Central

    Wu, Jialin; Gu, Haoran; Luo, Yongjun

    2016-01-01

    Abstract The Chinese AMS score (CAS) is used in clinical medicine and research to diagnosis acute mountain sickness (AMS). However, the Lake Louise Score (LLS) is the well-accepted standard for diagnosing AMS. The difference between the CAS and LLS questionnaires is that the CAS considers more nonspecific symptoms. The aim of the present study was to evaluate differences in AMS prevalence according to the LLS and CAS criteria. We surveyed 58 males who traveled from Chongqing (300 m) to Lhasa (3658 m) via the Qinghai-Tibet train. Cases of AMS were diagnosed using LLS and CAS questionnaires in a few railway stations at different evaluation areas along the road. We subsequently evaluated discrepancies in values related to the prevalence of AMS determined using the 2 types of questionnaires (CAS and LLS). The prevalence of CAS-diagnosed AMS indicated that the percentage of AMS cases among the 58 young men was 29.3% in Golmud, 60.3% in Tanggula, 63.8% in Lhasa, 22.4% on the first day after arrival in Lhasa, 27.6% on the second day, 24.1% on the third day, and 12.1% on the fourth day. The prevalence of LLS-diagnosed AMS in Golmud was 10.3%, 38% in Lhasa, and 6.9% on day 1, the prevalence in each station was lower than that as assessed by the CAS. Our experimental data indicate that AMS diagnoses ascertained using the CAS indicate a higher AMS prevalence than those ascertained using the LLS. Through statistical analysis, the CAS seems capable of effectively diagnosing AMS as validated by LLS (sensitivity 61.8%, specificity 92.7%). PMID:27227918

  7. Fingerprinting of music scores

    NASA Astrophysics Data System (ADS)

    Irons, Jonathan; Schmucker, Martin

    2004-06-01

    Publishers of sheet music are generally reluctant in distributing their content via the Internet. Although online sheet music distribution's advantages are numerous the potential risk of Intellectual Property Rights (IPR) infringement, e.g. illegal online distributions, disables any innovation propensity. While active protection techniques only deter external risk factors, additional technology is necessary to adequately treat further risk factors. For several media types including music scores watermarking technology has been developed, which ebeds information in data by suitable data modifications. Furthermore, fingerprinting or perceptual hasing methods have been developed and are being applied especially for audio. These methods allow the identification of content without prior modifications. In this article we motivate the development of watermarking and fingerprinting technologies for sheet music. Outgoing from potential limitations of watermarking methods we explain why fingerprinting methods are important for sheet music and address potential applications. Finally we introduce a condept for fingerprinting of sheet music.

  8. The Apgar Score.

    PubMed

    2015-10-01

    The Apgar score provides an accepted and convenient method for reporting the status of the newborn infant immediately after birth and the response to resuscitation if needed. The Apgar score alone cannot be considered as evidence of, or a consequence of, asphyxia; does not predict individual neonatal mortality or neurologic outcome; and should not be used for that purpose. An Apgar score assigned during resuscitation is not equivalent to a score assigned to a spontaneously breathing infant. The American Academy of Pediatrics and the American College of Obstetricians and Gynecologists encourage use of an expanded Apgar score reporting form that accounts for concurrent resuscitative interventions.

  9. Overview of CRISPR-Cas9 Biology.

    PubMed

    Ratner, Hannah K; Sampson, Timothy R; Weiss, David S

    2016-12-01

    Prokaryotes use diverse strategies to improve fitness in the face of different environmental threats and stresses, including those posed by mobile genetic elements (e.g., bacteriophages and plasmids). To defend against these elements, many bacteria and archaea use elegant, RNA-directed, nucleic acid-targeting adaptive restriction machineries called CRISPR -: Cas (CRISPR-associated) systems. While providing an effective defense against foreign genetic elements, these systems have also been observed to play critical roles in regulating bacterial physiology during environmental stress. Increasingly, CRISPR-Cas systems, in particular the Type II systems containing the Cas9 endonuclease, have been exploited for their ability to bind desired nucleic acid sequences, as well as direct sequence-specific cleavage of their targets. Cas9-mediated genome engineering is transcending biological research as a versatile and portable platform for manipulating genetic content in myriad systems. Here, we present a systematic overview of CRISPR-Cas history and biology, highlighting the revolutionary tools derived from these systems, which greatly expand the molecular biologists' toolkit.

  10. Breast Cancer Antiestrogen Resistance 3 (BCAR3) – p130Cas Interactions Promote Adhesion Disassembly and Invasion in Breast Cancer Cells

    PubMed Central

    Cross, Allison M.; Wilson, Ashley L.; Guerrero, Michael S.; Thomas, Keena S.; Bachir, Alexia I.; Kubow, Kristopher E.; Horwitz, A. Rick; Bouton, Amy H.

    2016-01-01

    Adhesion turnover is critical for cell motility and invasion. We previously demonstrated that the adaptor molecule Breast Cancer Antiestrogen Resistance 3 (BCAR3) promotes adhesion disassembly and breast tumor cell invasion. One of two established binding partners of BCAR3 is the adaptor molecule, p130Cas. In this study, we sought to determine whether signaling through the BCAR3/Cas complex was responsible for the cellular functions of BCAR3. We show that the entire pool of BCAR3 is in complex with Cas in invasive breast tumor cells and that these proteins co-localize in dynamic cellular adhesions. While accumulation of BCAR3 in adhesions did not require Cas binding, a direct interaction between BCAR3 and Cas was necessary for efficient dissociation of BCAR3 from adhesions. The dissociation rates of Cas and two other adhesion molecules, α-actinin and talin, were also significantly slower in the presence of a Cas-binding mutant of BCAR3, suggesting that turnover of the entire adhesion complex was delayed under these conditions. As was the case for adhesion turnover, BCAR3-Cas interactions were found to be important for BCAR3-mediated breast tumor cell chemotaxis toward serum and invasion in Matrigel. Previous work demonstrated that BCAR3 is a potent activator of Rac1, which in turn is an important regulator of adhesion dynamics and invasion. However, in contrast to wildtype BCAR3, ectopic expression of the Cas-binding mutant of BCAR3 failed to induce Rac1 activity in breast cancer cells. Together, these data show that the ability of BCAR3 to promote adhesion disassembly, tumor cell migration and invasion, and Rac1 activity is dependent on its ability to bind to Cas. The activity of BCAR3-Cas complexes as a functional unit in breast cancer is further supported by the co-expression of these molecules in multiple subtypes of human breast tumors. PMID:27109104

  11. Mapping health assessment questionnaire disability index (HAQ-DI) score, pain visual analog scale (VAS), and disease activity score in 28 joints (DAS28) onto the EuroQol-5D (EQ-5D) utility score with the KORean Observational study Network for Arthritis (KORONA) registry data.

    PubMed

    Kim, Hye-Lin; Kim, Dam; Jang, Eun Jin; Lee, Min-Young; Song, Hyun Jin; Park, Sun-Young; Cho, Soo-Kyung; Sung, Yoon-Kyoung; Choi, Chan-Bum; Won, Soyoung; Bang, So-Young; Cha, Hoon-Suk; Choe, Jung-Yoon; Chung, Won Tae; Hong, Seung-Jae; Jun, Jae-Bum; Kim, Jinseok; Kim, Seong-Kyu; Kim, Tae-Hwan; Kim, Tae-Jong; Koh, Eunmi; Lee, Hwajeong; Lee, Hye-Soon; Lee, Jisoo; Lee, Shin-Seok; Lee, Sung Won; Park, Sung-Hoon; Shim, Seung-Cheol; Yoo, Dae-Hyun; Yoon, Bo Young; Bae, Sang-Cheol; Lee, Eui-Kyung

    2016-04-01

    The aim of this study was to estimate the mapping model for EuroQol-5D (EQ-5D) utility values using the health assessment questionnaire disability index (HAQ-DI), pain visual analog scale (VAS), and disease activity score in 28 joints (DAS28) in a large, nationwide cohort of rheumatoid arthritis (RA) patients in Korea. The KORean Observational study Network for Arthritis (KORONA) registry data on 3557 patients with RA were used. Data were randomly divided into a modeling set (80 % of the data) and a validation set (20 % of the data). The ordinary least squares (OLS), Tobit, and two-part model methods were employed to construct a model to map to the EQ-5D index. Using a combination of HAQ-DI, pain VAS, and DAS28, four model versions were examined. To evaluate the predictive accuracy of the models, the root-mean-square error (RMSE) and mean absolute error (MAE) were calculated using the validation dataset. A model that included HAQ-DI, pain VAS, and DAS28 produced the highest adjusted R (2) as well as the lowest Akaike information criterion, RMSE, and MAE, regardless of the statistical methods used in modeling set. The mapping equation of the OLS method is given as EQ-5D = 0.95-0.21 × HAQ-DI-0.24 × pain VAS/100-0.01 × DAS28 (adjusted R (2) = 57.6 %, RMSE = 0.1654 and MAE = 0.1222). Also in the validation set, the RMSE and MAE were shown to be the smallest. The model with HAQ-DI, pain VAS, and DAS28 showed the best performance, and this mapping model enabled the estimation of an EQ-5D value for RA patients in whom utility values have not been measured.

  12. Customizing scoring functions for docking.

    PubMed

    Pham, Tuan A; Jain, Ajay N

    2008-05-01

    Empirical scoring functions used in protein-ligand docking calculations are typically trained on a dataset of complexes with known affinities with the aim of generalizing across different docking applications. We report a novel method of scoring-function optimization that supports the use of additional information to constrain scoring function parameters, which can be used to focus a scoring function's training towards a particular application, such as screening enrichment. The approach combines multiple instance learning, positive data in the form of ligands of protein binding sites of known and unknown affinity and binding geometry, and negative (decoy) data of ligands thought not to bind particular protein binding sites or known not to bind in particular geometries. Performance of the method for the Surflex-Dock scoring function is shown in cross-validation studies and in eight blind test cases. Tuned functions optimized with a sufficient amount of data exhibited either improved or undiminished screening performance relative to the original function across all eight complexes. Analysis of the changes to the scoring function suggest that modifications can be learned that are related to protein-specific features such as active-site mobility.

  13. Customizing scoring functions for docking

    NASA Astrophysics Data System (ADS)

    Pham, Tuan A.; Jain, Ajay N.

    2008-05-01

    Empirical scoring functions used in protein-ligand docking calculations are typically trained on a dataset of complexes with known affinities with the aim of generalizing across different docking applications. We report a novel method of scoring-function optimization that supports the use of additional information to constrain scoring function parameters, which can be used to focus a scoring function's training towards a particular application, such as screening enrichment. The approach combines multiple instance learning, positive data in the form of ligands of protein binding sites of known and unknown affinity and binding geometry, and negative (decoy) data of ligands thought not to bind particular protein binding sites or known not to bind in particular geometries. Performance of the method for the Surflex-Dock scoring function is shown in cross-validation studies and in eight blind test cases. Tuned functions optimized with a sufficient amount of data exhibited either improved or undiminished screening performance relative to the original function across all eight complexes. Analysis of the changes to the scoring function suggest that modifications can be learned that are related to protein-specific features such as active-site mobility.

  14. Versatile in vivo regulation of tumor phenotypes by dCas9-mediated transcriptional perturbation

    PubMed Central

    Braun, Christian J.; Bruno, Peter M.; Horlbeck, Max A.; Gilbert, Luke A.; Weissman, Jonathan S.; Hemann, Michael T.

    2016-01-01

    Targeted transcriptional regulation is a powerful tool to study genetic mediators of cellular behavior. Here, we show that catalytically dead Cas9 (dCas9) targeted to genomic regions upstream or downstream of the transcription start site allows for specific and sustainable gene-expression level alterations in tumor cells in vitro and in syngeneic immune-competent mouse models. We used this approach for a high-coverage pooled gene-activation screen in vivo and discovered previously unidentified modulators of tumor growth and therapeutic response. Moreover, by using dCas9 linked to an activation domain, we can either enhance or suppress target gene expression simply by changing the genetic location of dCas9 binding relative to the transcription start site. We demonstrate that these directed changes in gene-transcription levels occur with minimal off-target effects. Our findings highlight the use of dCas9-mediated transcriptional regulation as a versatile tool to reproducibly interrogate tumor phenotypes in vivo. PMID:27325776

  15. No evidence of inhibition of horizontal gene transfer by CRISPR-Cas on evolutionary timescales.

    PubMed

    Gophna, Uri; Kristensen, David M; Wolf, Yuri I; Popa, Ovidiu; Drevet, Christine; Koonin, Eugene V

    2015-09-01

    The CRISPR (clustered, regularly, interspaced, short, palindromic repeats)-Cas (CRISPR-associated genes) systems of archaea and bacteria provide adaptive immunity against viruses and other selfish elements and are believed to curtail horizontal gene transfer (HGT). Limiting acquisition of new genetic material could be one of the sources of the fitness cost of CRISPR-Cas maintenance and one of the causes of the patchy distribution of CRISPR-Cas among bacteria, and across environments. We sought to test the hypothesis that the activity of CRISPR-Cas in microbes is negatively correlated with the extent of recent HGT. Using three independent measures of HGT, we found no significant dependence between the length of CRISPR arrays, which reflects the activity of the immune system, and the estimated number of recent HGT events. In contrast, we observed a significant negative dependence between the estimated extent of HGT and growth temperature of microbes, which could be explained by the lower genetic diversity in hotter environments. We hypothesize that the relevant events in the evolution of resistance to mobile elements and proclivity for HGT, to which CRISPR-Cas systems seem to substantially contribute, occur on the population scale rather than on the timescale of species evolution.

  16. Sacroillite tuberculeuse: à propos de deux cas

    PubMed Central

    Diallo, Ismaël; Zabsonré, Joëlle Tiendrébéogo; Kambou, Bénilde Marie Ange Tiemtoré; Sondo, Apoline Kongnimissom; Sagna, Yempabou; Ouédraogo, Dieu-Donné

    2016-01-01

    La sacroiliite tuberculeuse est rare et de diagnostic difficile. Les auteurs rapportent deux cas. Il s'agissait dans le premier cas d'une patiente de 40 ans ayant une infection à VIH ; le diagnostic a été histologique après une biopsie chirurgicale. Le second cas a concerné un patient de 25 ans vivant en milieu carcéral chez qui le diagnostic a été établi sur la base des arguments cliniques, biologiques, radiologiques et l'efficacité du traitement ; l'intradermoréaction à la tuberculine était phlycténulaire. Le scanner a été indispensable au diagnostic lésionnel en montrant une érosion des berges et des abcès des parties molles. Le traitement a été médical et a fait appel aux antituberculeux. PMID:28292032

  17. Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28.

    PubMed

    Smargon, Aaron A; Cox, David B T; Pyzocha, Neena K; Zheng, Kaijie; Slaymaker, Ian M; Gootenberg, Jonathan S; Abudayyeh, Omar A; Essletzbichler, Patrick; Shmakov, Sergey; Makarova, Kira S; Koonin, Eugene V; Zhang, Feng

    2017-02-16

    CRISPR-Cas adaptive immune systems defend microbes against foreign nucleic acids via RNA-guided endonucleases. Using a computational sequence database mining approach, we identify two class 2 CRISPR-Cas systems (subtype VI-B) that lack Cas1 and Cas2 and encompass a single large effector protein, Cas13b, along with one of two previously uncharacterized associated proteins, Csx27 and Csx28. We establish that these CRISPR-Cas systems can achieve RNA interference when heterologously expressed. Through a combination of biochemical and genetic experiments, we show that Cas13b processes its own CRISPR array with short and long direct repeats, cleaves target RNA, and exhibits collateral RNase activity. Using an E. coli essential gene screen, we demonstrate that Cas13b has a double-sided protospacer-flanking sequence and elucidate RNA secondary structure requirements for targeting. We also find that Csx27 represses, whereas Csx28 enhances, Cas13b-mediated RNA interference. Characterization of these CRISPR systems creates opportunities to develop tools to manipulate and monitor cellular transcripts.

  18. Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS.

    PubMed

    Pul, Umit; Wurm, Reinhild; Arslan, Zihni; Geissen, René; Hofmann, Nina; Wagner, Rolf

    2010-03-01

    Inheritable bacterial defence systems against phage infection and foreign DNA, termed CRISPR (clustered regularly interspaced short palindromic repeats), consist of cas protein genes and repeat arrays interspaced with sequences originating from invaders. The Cas proteins together with processed small spacer-repeat transcripts (crRNAs) cause degradation of penetrated foreign DNA by unknown mechanisms. Here, we have characterized previously unidentified promoters of the Escherichia coli CRISPR arrays and cas protein genes. Transcription of precursor crRNA is directed by a promoter located within the CRISPR leader. A second promoter, directing cas gene transcription, is located upstream of the genes encoding proteins of the Cascade complex. Furthermore, we demonstrate that the DNA-binding protein H-NS is involved in silencing the CRISPR-cas promoters, resulting in cryptic Cas protein expression. Our results demonstrate an active involvement of H-NS in the induction of the CRISPR-cas system and suggest a potential link between two prokaryotic defence systems against foreign DNA.

  19. CRISPRtools: a flexible computational platform for performing CRISPR/Cas9 experiments in the mouse.

    PubMed

    Peterson, Kevin A; Beane, Glen L; Goodwin, Leslie O; Kutny, Peter M; Reinholdt, Laura G; Murray, Stephen A

    2017-03-09

    Genome editing using the CRISPR/Cas9 RNA-guided endonuclease system has rapidly become a driving force for discovery in modern biomedical research. This simple yet elegant system has been widely used to generate both loss-of-function alleles and precision knock-in mutations using single-stranded donor oligonucleotides. Our CRISPRtools platform supports both of these applications in order to facilitate the use of CRISPR/Cas9. While there are several tools that facilitate CRISPR/Cas9 design and screen for potential off-target sites, the process is typically performed sequentially on single genes, limiting scalability for large-scale programs. Here, the design principle underlying gene ablation is based upon using paired guides flanking a critical region/exon of interest to create deletions. Guide pairs are rank ordered based upon published efficiency scores and off-target analyses, and reported in a concise format for downstream implementation. The exon deletion strategy simplifies characterization of founder animals and is the strategy employed for the majority of knockouts in the mouse. In proof-of-principle experiments, the effectiveness of this approach is demonstrated using microinjection and electroporation to introduce CRISPR/Cas9 components into mouse zygotes to delete critical exons.

  20. Cas9-chromatin binding information enables more accurate CRISPR off-target prediction

    PubMed Central

    Singh, Ritambhara; Kuscu, Cem; Quinlan, Aaron; Qi, Yanjun; Adli, Mazhar

    2015-01-01

    The CRISPR system has become a powerful biological tool with a wide range of applications. However, improving targeting specificity and accurately predicting potential off-targets remains a significant goal. Here, we introduce a web-based CRISPR/Cas9 Off-target Prediction and Identification Tool (CROP-IT) that performs improved off-target binding and cleavage site predictions. Unlike existing prediction programs that solely use DNA sequence information; CROP-IT integrates whole genome level biological information from existing Cas9 binding and cleavage data sets. Utilizing whole-genome chromatin state information from 125 human cell types further enhances its computational prediction power. Comparative analyses on experimentally validated datasets show that CROP-IT outperforms existing computational algorithms in predicting both Cas9 binding as well as cleavage sites. With a user-friendly web-interface, CROP-IT outputs scored and ranked list of potential off-targets that enables improved guide RNA design and more accurate prediction of Cas9 binding or cleavage sites. PMID:26032770

  1. Evolution and classification of the CRISPR-Cas systems

    PubMed Central

    S. Makarova, Kira; H. Haft, Daniel; Barrangou, Rodolphe; J. J. Brouns, Stan; Charpentier, Emmanuelle; Horvath, Philippe; Moineau, Sylvain; J. M. Mojica, Francisco; I. Wolf, Yuri; Yakunin, Alexander F.; van der Oost, John; V. Koonin, Eugene

    2012-01-01

    The CRISPR–Cas (clustered regularly interspaced short palindromic repeats–CRISPR-associated proteins) modules are adaptive immunity systems that are present in many archaea and bacteria. These defence systems are encoded by operons that have an extraordinarily diverse architecture and a high rate of evolution for both the cas genes and the unique spacer content. Here, we provide an updated analysis of the evolutionary relationships between CRISPR–Cas systems and Cas proteins. Three major types of CRISPR–Cas system are delineated, with a further division into several subtypes and a few chimeric variants. Given the complexity of the genomic architectures and the extremely dynamic evolution of the CRISPR–Cas systems, a unified classification of these systems should be based on multiple criteria. Accordingly, we propose a `polythetic' classification that integrates the phylogenies of the most common cas genes, the sequence and organization of the CRISPR repeats and the architecture of the CRISPR–cas loci. PMID:21552286

  2. SnapShot: Class 1 CRISPR-Cas Systems.

    PubMed

    Makarova, Kira S; Zhang, Feng; Koonin, Eugene V

    2017-02-23

    Class 1 CRISPR-Cas systems are characterized by effector modules consisting of multiple subunits. Class 1 systems comprise about 90% of all CRISPR-Cas loci identified in bacteria and archaea and can target both DNA and RNA.

  3. CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells.

    PubMed

    Yuen, Kit-San; Chan, Chi-Ping; Wong, Nok-Hei Mickey; Ho, Chau-Ha; Ho, Ting-Hin; Lei, Ting; Deng, Wen; Tsao, Sai Wah; Chen, Honglin; Kok, Kin-Hang; Jin, Dong-Yan

    2015-03-01

    The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated 9) system is a highly efficient and powerful tool for RNA-guided editing of the cellular genome. Whether CRISPR/Cas9 can also cleave the genome of DNA viruses such as Epstein-Barr virus (EBV), which undergo episomal replication in human cells, remains to be established. Here, we reported on CRISPR/Cas9-mediated editing of the EBV genome in human cells. Two guide RNAs (gRNAs) were used to direct a targeted deletion of 558 bp in the promoter region of BART (BamHI A rightward transcript) which encodes viral microRNAs (miRNAs). Targeted editing was achieved in several human epithelial cell lines latently infected with EBV, including nasopharyngeal carcinoma C666-1 cells. CRISPR/Cas9-mediated editing of the EBV genome was efficient. A recombinant virus with the desired deletion was obtained after puromycin selection of cells expressing Cas9 and gRNAs. No off-target cleavage was found by deep sequencing. The loss of BART miRNA expression and activity was verified, supporting the BART promoter as the major promoter of BART RNA. Although CRISPR/Cas9-mediated editing of the multicopy episome of EBV in infected HEK293 cells was mostly incomplete, viruses could be recovered and introduced into other cells at low m.o.i. Recombinant viruses with an edited genome could be further isolated through single-cell sorting. Finally, a DsRed selectable marker was successfully introduced into the EBV genome during the course of CRISPR/Cas9-mediated editing. Taken together, our work provided not only the first genetic evidence that the BART promoter drives the expression of the BART transcript, but also a new and efficient method for targeted editing of EBV genome in human cells.

  4. Biased allosteric modulation at the CaS receptor engendered by structurally diverse calcimimetics

    PubMed Central

    Cook, A E; Mistry, S N; Gregory, K J; Furness, S G B; Sexton, P M; Scammells, P J; Conigrave, A D; Christopoulos, A; Leach, K

    2015-01-01

    BACKGROUND AND PURPOSE Clinical use of cinacalcet in hyperparathyroidism is complicated by its tendency to induce hypocalcaemia, arising partly from activation of calcium-sensing receptors (CaS receptors) in the thyroid and stimulation of calcitonin release. CaS receptor allosteric modulators that selectively bias signalling towards pathways that mediate desired effects [e.g. parathyroid hormone (PTH) suppression] rather than those mediating undesirable effects (e.g. elevated serum calcitonin), may offer better therapies. EXPERIMENTAL APPROACH We characterized the ligand-biased profile of novel calcimimetics in HEK293 cells stably expressing human CaS receptors, by monitoring intracellular calcium (Ca2+i) mobilization, inositol phosphate (IP)1 accumulation, ERK1/2 phosphorylation (pERK1/2) and receptor expression. KEY RESULTS Phenylalkylamine calcimimetics were biased towards allosteric modulation of Ca2+i mobilization and IP1 accumulation. S,R-calcimimetic B was biased only towards IP1 accumulation. R,R-calcimimetic B and AC-265347 were biased towards IP1 accumulation and pERK1/2. Nor-calcimimetic B was unbiased. In contrast to phenylalkylamines and calcimimetic B analogues, AC-265347 did not promote trafficking of a loss-of-expression, naturally occurring, CaS receptor mutation (G670E). CONCLUSIONS AND IMPLICATIONS The ability of R,R-calcimimetic B and AC-265347 to bias signalling towards pERK1/2 and IP1 accumulation may explain their suppression of PTH levels in vivo at concentrations that have no effect on serum calcitonin levels. The demonstration that AC-265347 promotes CaS receptor receptor signalling, but not trafficking reveals a novel profile of ligand-biased modulation at CaS receptors The identification of allosteric modulators that bias CaS receptor signalling towards distinct intracellular pathways provides an opportunity to develop desirable biased signalling profiles in vivo for mediating selective physiological responses. PMID:25220431

  5. Efficient Genome Editing of a Facultative Thermophile Using Mesophilic spCas9.

    PubMed

    Mougiakos, Ioannis; Bosma, Elleke F; Weenink, Koen; Vossen, Eric; Goijvaerts, Kirsten; van der Oost, John; van Kranenburg, Richard

    2017-02-16

    Well-developed genetic tools for thermophilic microorganisms are scarce, despite their industrial and scientific relevance. Whereas highly efficient CRISPR/Cas9-based genome editing is on the rise in prokaryotes, it has never been employed in a thermophile. Here, we apply Streptococcus pyogenes Cas9 (spCas9)-based genome editing to a moderate thermophile, i.e., Bacillus smithii, including a gene deletion, gene knockout via insertion of premature stop codons, and gene insertion. We show that spCas9 is inactive in vivo above 42 °C, and we employ the wide temperature growth range of B. smithii as an induction system for spCas9 expression. Homologous recombination with plasmid-borne editing templates is performed at 45-55 °C, when spCas9 is inactive. Subsequent transfer to 37 °C allows for counterselection through production of active spCas9, which introduces lethal double-stranded DNA breaks to the nonedited cells. The developed method takes 4 days with 90, 100, and 20% efficiencies for gene deletion, knockout, and insertion, respectively. The major advantage of our system is the limited requirement for genetic parts: only one plasmid, one selectable marker, and a promoter are needed, and the promoter does not need to be inducible or well-characterized. Hence, it can be easily applied for genome editing purposes in both mesophilic and thermophilic nonmodel organisms with a limited genetic toolbox and ability to grow at, or tolerate, temperatures of 37 and at or above 42 °C.

  6. The CRISPR-Cas system - from bacterial immunity to genome engineering.

    PubMed

    Czarnek, Maria; Bereta, Joanna

    2016-09-01

    Precise and efficient genome modifications present a great value in attempts to comprehend the roles of particular genes and other genetic elements in biological processes as well as in various pathologies. In recent years novel methods of genome modification known as genome editing, which utilize so called "programmable" nucleases, came into use. A true revolution in genome editing has been brought about by the introduction of the CRISP-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) system, in which one of such nucleases, i.e. Cas9, plays a major role. This system is based on the elements of the bacterial and archaeal mechanism responsible for acquired immunity against phage infections and transfer of foreign genetic material. Microorganisms incorporate fragments of foreign DNA into CRISPR loci present in their genomes, which enables fast recognition and elimination of future infections. There are several types of CRISPR-Cas systems among prokaryotes but only elements of CRISPR type II are employed in genome engineering. CRISPR-Cas type II utilizes small RNA molecules (crRNA and tracrRNA) to precisely direct the effector nuclease - Cas9 - to a specific site in the genome, i.e. to the sequence complementary to crRNA. Cas9 may be used to: (i) introduce stable changes into genomes e.g. in the process of generation of knock-out and knock-in animals and cell lines, (ii) activate or silence the expression of a gene of interest, and (iii) visualize specific sites in genomes of living cells. The CRISPR-Cas-based tools have been successfully employed for generation of animal and cell models of a number of diseases, e.g. specific types of cancer. In the future, the genome editing by programmable nucleases may find wide application in medicine e.g. in the therapies of certain diseases of genetic origin and in the therapy of HIV-infected patients.

  7. CRISPR-Cas immunity in prokaryotes.

    PubMed

    Marraffini, Luciano A

    2015-10-01

    Prokaryotic organisms are threatened by a large array of viruses and have developed numerous defence strategies. Among these, only clustered, regularly interspaced short palindromic repeat (CRISPR)-Cas systems provide adaptive immunity against foreign elements. Upon viral injection, a small sequence of the viral genome, known as a spacer, is integrated into the CRISPR locus to immunize the host cell. Spacers are transcribed into small RNA guides that direct the cleavage of the viral DNA by Cas nucleases. Immunization through spacer acquisition enables a unique form of evolution whereby a population not only rapidly acquires resistance to its predators but also passes this resistance mechanism vertically to its progeny.

  8. Engineering of temperature- and light-switchable Cas9 variants

    PubMed Central

    Richter, Florian; Fonfara, Ines; Bouazza, Boris; Schumacher, Charlotte Helene; Bratovič, Majda; Charpentier, Emmanuelle; Möglich, Andreas

    2016-01-01

    Sensory photoreceptors have enabled non-invasive and spatiotemporal control of numerous biological processes. Photoreceptor engineering has expanded the repertoire beyond natural receptors, but to date no generally applicable strategy exists towards constructing light-regulated protein actuators of arbitrary function. We hence explored whether the homodimeric Rhodobacter sphaeroides light-oxygen-voltage (LOV) domain (RsLOV) that dissociates upon blue-light exposure can confer light sensitivity onto effector proteins, via a mechanism of light-induced functional site release. We chose the RNA-guided programmable DNA endonuclease Cas9 as proof-of-principle effector, and constructed a comprehensive library of RsLOV inserted throughout the Cas9 protein. Screening with a high-throughput assay based on transcriptional repression in Escherichia coli yielded paRC9, a moderately light-activatable variant. As domain insertion can lead to protein destabilization, we also screened the library for temperature-sensitive variants and isolated tsRC9, a variant with robust activity at 29°C but negligible activity at 37°C. Biochemical assays confirmed temperature-dependent DNA cleavage and binding for tsRC9, but indicated that the light sensitivity of paRC9 is specific to the cellular setting. Using tsRC9, the first temperature-sensitive Cas9 variant, we demonstrate temperature-dependent transcriptional control over ectopic and endogenous genetic loci. Taken together, RsLOV can confer light sensitivity onto an unrelated effector; unexpectedly, the same LOV domain can also impart strong temperature sensitivity. PMID:27744350

  9. CRISPR-Cas9 nuclear dynamics and target recognition in living cells

    PubMed Central

    Ma, Hanhui; Tu, Li-Chun; Zhang, Shaojie; Grunwald, David

    2016-01-01

    The bacterial CRISPR-Cas9 system has been repurposed for genome engineering, transcription modulation, and chromosome imaging in eukaryotic cells. However, the nuclear dynamics of clustered regularly interspaced short palindromic repeats (CRISPR)–associated protein 9 (Cas9) guide RNAs and target interrogation are not well defined in living cells. Here, we deployed a dual-color CRISPR system to directly measure the stability of both Cas9 and guide RNA. We found that Cas9 is essential for guide RNA stability and that the nuclear Cas9–guide RNA complex levels limit the targeting efficiency. Fluorescence recovery after photobleaching measurements revealed that single mismatches in the guide RNA seed sequence reduce the target residence time from >3 h to as low as <2 min in a nucleotide identity- and position-dependent manner. We further show that the duration of target residence correlates with cleavage activity. These results reveal that CRISPR discriminates between genuine versus mismatched targets for genome editing via radical alterations in residence time. PMID:27551060

  10. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery

    PubMed Central

    Lin, Steven; Staahl, Brett T; Alla, Ravi K; Doudna, Jennifer A

    2014-01-01

    The CRISPR/Cas9 system is a robust genome editing technology that works in human cells, animals and plants based on the RNA-programmed DNA cleaving activity of the Cas9 enzyme. Building on previous work (Jinek et al., 2013), we show here that new genetic information can be introduced site-specifically and with high efficiency by homology-directed repair (HDR) of Cas9-induced site-specific double-strand DNA breaks using timed delivery of Cas9-guide RNA ribonucleoprotein (RNP) complexes. Cas9 RNP-mediated HDR in HEK293T, human primary neonatal fibroblast and human embryonic stem cells was increased dramatically relative to experiments in unsynchronized cells, with rates of HDR up to 38% observed in HEK293T cells. Sequencing of on- and potential off-target sites showed that editing occurred with high fidelity, while cell mortality was minimized. This approach provides a simple and highly effective strategy for enhancing site-specific genome engineering in both transformed and primary human cells. DOI: http://dx.doi.org/10.7554/eLife.04766.001 PMID:25497837

  11. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery.

    PubMed

    Lin, Steven; Staahl, Brett T; Alla, Ravi K; Doudna, Jennifer A

    2014-12-15

    The CRISPR/Cas9 system is a robust genome editing technology that works in human cells, animals and plants based on the RNA-programmed DNA cleaving activity of the Cas9 enzyme. Building on previous work (Jinek et al., 2013), we show here that new genetic information can be introduced site-specifically and with high efficiency by homology-directed repair (HDR) of Cas9-induced site-specific double-strand DNA breaks using timed delivery of Cas9-guide RNA ribonucleoprotein (RNP) complexes. Cas9 RNP-mediated HDR in HEK293T, human primary neonatal fibroblast and human embryonic stem cells was increased dramatically relative to experiments in unsynchronized cells, with rates of HDR up to 38% observed in HEK293T cells. Sequencing of on- and potential off-target sites showed that editing occurred with high fidelity, while cell mortality was minimized. This approach provides a simple and highly effective strategy for enhancing site-specific genome engineering in both transformed and primary human cells.

  12. A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation.

    PubMed

    Lowder, Levi G; Zhang, Dengwei; Baltes, Nicholas J; Paul, Joseph W; Tang, Xu; Zheng, Xuelian; Voytas, Daniel F; Hsieh, Tzung-Fu; Zhang, Yong; Qi, Yiping

    2015-10-01

    The relative ease, speed, and biological scope of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated Protein9 (Cas9)-based reagents for genomic manipulations are revolutionizing virtually all areas of molecular biosciences, including functional genomics, genetics, applied biomedical research, and agricultural biotechnology. In plant systems, however, a number of hurdles currently exist that limit this technology from reaching its full potential. For example, significant plant molecular biology expertise and effort is still required to generate functional expression constructs that allow simultaneous editing, and especially transcriptional regulation, of multiple different genomic loci or multiplexing, which is a significant advantage of CRISPR/Cas9 versus other genome-editing systems. To streamline and facilitate rapid and wide-scale use of CRISPR/Cas9-based technologies for plant research, we developed and implemented a comprehensive molecular toolbox for multifaceted CRISPR/Cas9 applications in plants. This toolbox provides researchers with a protocol and reagents to quickly and efficiently assemble functional CRISPR/Cas9 transfer DNA constructs for monocots and dicots using Golden Gate and Gateway cloning methods. It comes with a full suite of capabilities, including multiplexed gene editing and transcriptional activation or repression of plant endogenous genes. We report the functionality and effectiveness of this toolbox in model plants such as tobacco (Nicotiana benthamiana), Arabidopsis (Arabidopsis thaliana), and rice (Oryza sativa), demonstrating its utility for basic and applied plant research.

  13. Enhancement of single guide RNA transcription for efficient CRISPR/Cas-based genomic engineering.

    PubMed

    Ui-Tei, Kumiko; Maruyama, Shohei; Nakano, Yuko

    2017-01-26

    Genomic engineering using clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) protein is a promising approach for targeting the genomic DNA of virtually any organism in a sequence-specific manner. Recent remarkable advances in CRISPR/Cas technology have made it a feasible system for use in therapeutic applications and biotechnology. In the CRISPR/Cas system, a guide RNA (gRNA), interacting with the Cas protein, recognizes a genomic region with sequence complementarity, and the double-stranded DNA at the target site is cleaved by the Cas protein. A widely used gRNA is an RNA polymerase III (pol III)-driven single gRNA (sgRNA), which is produced by artificial fusion of CRISPR RNA (crRNA) and trans-activation crRNA (tracrRNA). However, we identified a TTTT stretch, known as a termination signal of RNA pol III, in the scaffold region of the sgRNA. Here, we revealed that sgRNA carrying a TTTT stretch reduces the efficiency of sgRNA transcription due to premature transcriptional termination, and decreases the efficiency of genome editing. Unexpectedly, it was also shown that the premature terminated sgRNA may have an adverse effect of inducing RNA interference. Such disadvantageous effects were avoided by substituting one base in the TTTT stretch.

  14. Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis.

    PubMed

    Guo, Xiaogang; Zhang, Tiejun; Hu, Zheng; Zhang, Yanqi; Shi, Zhaoying; Wang, Qinhu; Cui, Yan; Wang, Fengqin; Zhao, Hui; Chen, Yonglong

    2014-02-01

    For the emerging amphibian genetic model Xenopus tropicalis targeted gene disruption is dependent on zinc-finger nucleases (ZFNs) or transcription activator-like effector nucleases (TALENs), which require either complex design and selection or laborious construction. Thus, easy and efficient genome editing tools are still highly desirable for this species. Here, we report that RNA-guided Cas9 nuclease resulted in precise targeted gene disruption in all ten X. tropicalis genes that we analyzed, with efficiencies above 45% and readily up to 100%. Systematic point mutation analyses in two loci revealed that perfect matches between the spacer and the protospacer sequences proximal to the protospacer adjacent motif (PAM) were essential for Cas9 to cleave the target sites in the X. tropicalis genome. Further study showed that the Cas9 system could serve as an efficient tool for multiplexed genome engineering in Xenopus embryos. Analysis of the disruption of two genes, ptf1a/p48 and tyrosinase, indicated that Cas9-mediated gene targeting can facilitate direct phenotypic assessment in X. tropicalis embryos. Finally, five founder frogs from targeting of either elastase-T1, elastase-T2 or tyrosinase showed highly efficient transmission of targeted mutations into F1 embryos. Together, our data demonstrate that the Cas9 system is an easy, efficient and reliable tool for multiplex genome editing in X. tropicalis.

  15. Home Energy Score

    SciTech Connect

    2011-12-16

    The Home Energy Score allows a homeowner to compare her or his home's energy consumption to that of other homes, similar to a vehicle's mile-per-gallon rating. A home energy assessor will collect energy information during a brief home walk-through and then score that home on a scale of 1 to 10.

  16. Establishing Passing Scores.

    ERIC Educational Resources Information Center

    McLarty, Joyce R.

    The problem of establishing appropriate passing scores is one of evaluation rather than estimation and not amenable to exact solution. It must therefore be approached by (1) identifying criteria for judging the acceptability of the passing score, (2) collecting the data appropriate to assessing each relevant criterion, and (3) judging how well the…

  17. SCORE - A DESCRIPTION.

    ERIC Educational Resources Information Center

    SLACK, CHARLES W.

    REINFORCEMENT AND ROLE-REVERSAL TECHNIQUES ARE USED IN THE SCORE PROJECT, A LOW-COST PROGRAM OF DELINQUENCY PREVENTION FOR HARD-CORE TEENAGE STREET CORNER BOYS. COMMITTED TO THE BELIEF THAT THE BOYS HAVE THE POTENTIAL FOR ETHICAL BEHAVIOR, THE SCORE WORKER FOLLOWS B.F. SKINNER'S THEORY OF OPERANT CONDITIONING AND REINFORCES THE DELINQUENT'S GOOD…

  18. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity.

    PubMed

    Pattanayak, Vikram; Lin, Steven; Guilinger, John P; Ma, Enbo; Doudna, Jennifer A; Liu, David R

    2013-09-01

    The RNA-programmable Cas9 endonuclease cleaves double-stranded DNA at sites complementary to a 20-base-pair guide RNA. The Cas9 system has been used to modify genomes in multiple cells and organisms, demonstrating its potential as a facile genome-engineering tool. We used in vitro selection and high-throughput sequencing to determine the propensity of eight guide-RNA:Cas9 complexes to cleave each of 10(12) potential off-target DNA sequences. The selection results predicted five off-target sites in the human genome that were confirmed to undergo genome cleavage in HEK293T cells upon expression of one of two guide-RNA:Cas9 complexes. In contrast to previous models, our results show that guide-RNA:Cas9 specificity extends past a 7- to 12-base-pair seed sequence. Our results also suggest a tradeoff between activity and specificity both in vitro and in cells as a shorter, less-active guide RNA is more specific than a longer, more-active guide RNA. High concentrations of guide-RNA:Cas9 complexes can cleave off-target sites containing mutations near or within the PAM that are not cleaved when enzyme concentrations are limiting.

  19. Boosting plant immunity with CRISPR/Cas.

    PubMed

    Chaparro-Garcia, Angela; Kamoun, Sophien; Nekrasov, Vladimir

    2015-11-19

    CRISPR/Cas has recently been transferred to plants to make them resistant to geminiviruses, a damaging family of DNA viruses. We discuss the potential and the limitations of this method.See related Research: http://www.genomebiology.com/2015/16/1/238.

  20. Using the CAS Standards in Assessment Projects

    ERIC Educational Resources Information Center

    Dean, Laura A.

    2013-01-01

    This chapter provides an overview of the use of professional standards of practice in assessment and of the Council for the Advancement of Standards in Higher Education (CAS). It outlines a model for conducting program self-studies and discusses the importance of implementing change based on assessment results.

  1. Effects of Using a Computer Algebra System (CAS) on Junior College Students' Attitudes towards CAS and Achievement in Mathematics

    ERIC Educational Resources Information Center

    Leng, Ng Wee; Choo, Kwee Tiow; Soon, Lau Hock; Yi-Huak, Koh; Sun, Yap Yew

    2005-01-01

    This study examines the effects of using Texas Instruments' Voyage 200 calculator (V200), a graphing calculator with a built-in computer algebra system (CAS), on attitudes towards CAS and achievement in mathematics of junior college students (17 year olds). Students' attitudes towards CAS were examined using a 40-item Likert-type instrument…

  2. Mortality scoring in ITU.

    PubMed

    Niewiński, Grzegorz; Kański, Andrzej

    2012-01-01

    Chronic shortage of ITU beds makes decisions on admission difficult and responsible. The use of computer-based mortality scoring should help in decision-making and for this purpose, a number of different scoring systems have been created; in principle, they should be easy to use, adaptable to all populations of patients and suitable for predicting the risk of mortality during both ITU and hospital stay. Most of existing scales and scoring systems were included in this review. They are frequently used in ITUs and become a necessary tool to describe ITU populations and to explain differences in mortality. As there are several pitfalls related to the interpretation of the numbers supplied by the systems, they should be used with the knowledge on the severity scoring science. Moreover, the cost and significant workload limit the use of scoring systems; in many cases an extra person has to be employed for collection and analysis of data only.

  3. Promoting an active form of learning out-of-class via answering online “study questions” leads to higher than expected exam scores in General Biology

    PubMed Central

    2015-01-01

    A rising need for workers in science, technology, engineering and mathematics (STEM) fields has fueled interest in improving teaching within STEM disciplines. Numerous studies have demonstrated the benefits of active learning approaches on student learning outcomes. However, many of these studies have been conducted in experimental, rather than real-life class, settings. In addition, most of these studies have focused on in-class active learning exercises. This study tested the effects of answering questions outside of class on exam performance for General Biology students at the University of Minnesota. An online database of 1,020 multiple-choice questions covering material from the first half of the course was generated. Students in seven course sections (with an average of ∼265 students per section) were given unlimited access to the online study questions. These students made extensive use of the online questions, with students answering an average of 1,323 questions covering material from the half of the semester for which the questions were available. After students answered a set of questions, they were shown the correct answers for those questions. More specific feedback describing how to arrive at the correct answer was provided for the 73% of the questions for which the correct answers were not deemed to be self-explanatory. The extent to which access to the online study questions improved student learning outcomes was assessed by comparing the performance on exam questions of students in the seven course sections with access to the online study questions with the performance of students in course sections without access to the online study questions. Student performance was analyzed for a total of 89 different exams questions that were not included in the study questions, but that covered the same material covered by the study questions. Each of these 89 questions was used on one to five exams given to students in course sections that had access to the

  4. Promoting an active form of learning out-of-class via answering online "study questions" leads to higher than expected exam scores in General Biology.

    PubMed

    Gibson, Susan I

    2015-01-01

    A rising need for workers in science, technology, engineering and mathematics (STEM) fields has fueled interest in improving teaching within STEM disciplines. Numerous studies have demonstrated the benefits of active learning approaches on student learning outcomes. However, many of these studies have been conducted in experimental, rather than real-life class, settings. In addition, most of these studies have focused on in-class active learning exercises. This study tested the effects of answering questions outside of class on exam performance for General Biology students at the University of Minnesota. An online database of 1,020 multiple-choice questions covering material from the first half of the course was generated. Students in seven course sections (with an average of ∼265 students per section) were given unlimited access to the online study questions. These students made extensive use of the online questions, with students answering an average of 1,323 questions covering material from the half of the semester for which the questions were available. After students answered a set of questions, they were shown the correct answers for those questions. More specific feedback describing how to arrive at the correct answer was provided for the 73% of the questions for which the correct answers were not deemed to be self-explanatory. The extent to which access to the online study questions improved student learning outcomes was assessed by comparing the performance on exam questions of students in the seven course sections with access to the online study questions with the performance of students in course sections without access to the online study questions. Student performance was analyzed for a total of 89 different exams questions that were not included in the study questions, but that covered the same material covered by the study questions. Each of these 89 questions was used on one to five exams given to students in course sections that had access to the

  5. CasHRA (Cas9-facilitated Homologous Recombination Assembly) method of constructing megabase-sized DNA

    PubMed Central

    Zhou, Jianting; Wu, Ronghai; Xue, Xiaoli; Qin, Zhongjun

    2016-01-01

    Current DNA assembly methods for preparing highly purified linear subassemblies require complex and time-consuming in vitro manipulations that hinder their ability to construct megabase-sized DNAs (e.g. synthetic genomes). We have developed a new method designated ‘CasHRA (Cas9-facilitated Homologous Recombination Assembly)’ that directly uses large circular DNAs in a one-step in vivo assembly process. The large circular DNAs are co-introduced into Saccharomyces cerevisiae by protoplast fusion, and they are cleaved by RNA-guided Cas9 nuclease to release the linear DNA segments for subsequent assembly by the endogenous homologous recombination system. The CasHRA method allows efficient assembly of multiple large DNA segments in vivo; thus, this approach should be useful in the last stage of genome construction. As a proof of concept, we combined CasHRA with an upstream assembly method (Gibson procedure of genome assembly) and successfully constructed a 1.03 Mb MGE-syn1.0 (Minimal Genome of Escherichia coli) that contained 449 essential genes and 267 important growth genes. We expect that CasHRA will be widely used in megabase-sized genome constructions. PMID:27220470

  6. Exploiting the CRISPR/Cas9 PAM Constraint for Single-Nucleotide Resolution Interventions

    PubMed Central

    Li, Yi; Mendiratta, Saurabh; Ehrhardt, Kristina; Kashyap, Neha; White, Michael A.; Bleris, Leonidas

    2016-01-01

    CRISPR/Cas9 is an enabling RNA-guided technology for genome targeting and engineering. An acute DNA binding constraint of the Cas9 protein is the Protospacer Adjacent Motif (PAM). Here we demonstrate that the PAM requirement can be exploited to specifically target single-nucleotide heterozygous mutations while exerting no aberrant effects on the wild-type alleles. Specifically, we target the heterozygous G13A activating mutation of KRAS in colorectal cancer cells and we show reversal of drug resistance to a MEK small-molecule inhibitor. Our study introduces a new paradigm in genome editing and therapeutic targeting via the use of gRNA to guide Cas9 to a desired protospacer adjacent motif. PMID:26788852

  7. CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance.

    PubMed

    Dupuis, Marie-Ève; Villion, Manuela; Magadán, Alfonso H; Moineau, Sylvain

    2013-01-01

    Bacteria have developed a set of barriers to protect themselves against invaders such as phage and plasmid nucleic acids. Different prokaryotic defence systems exist and at least two of them directly target the incoming DNA: restriction-modification (R-M) and CRISPR-Cas systems. On their own, they are imperfect barriers to invasion by foreign DNA. Here, we show that R-M and CRISPR-Cas systems are compatible and act together to increase the overall phage resistance of a bacterial cell by cleaving their respective target sites. Furthermore, we show that the specific methylation of phage DNA does not impair CRISPR-Cas acquisition or interference activities. Taken altogether, both mechanisms can be leveraged to decrease phage contaminations in processes relying on bacterial growth and/or fermentation.

  8. New clues on the regulation of the CRISPR-Cas immune system.

    PubMed

    Lundgren, Magnus

    2015-01-01

    Research into the CRISPR-Cas immune system of prokaryotes is progressing at a tremendous pace given both its important biological function and its role as a source of new genetic tools. However, a few areas of the field have remained largely unaddressed. A recent report provides information on one such overlooked area: how the cell regulates the CRISPR-Cas immune system. The processes, despite their importance, have remained illusive. In Pectobacterium atrosepticum regulation is, perhaps surprisingly, based on metabolic factors responding to glucose levels in the cell. Regulators include both activators and repressors of cas gene expression. It remains an open question why and how this regulatory system have evolved, and if it is a typical example of how CRISPR-as systems are regulated or not.

  9. New clues on the regulation of the CRISPR-Cas immune system

    PubMed Central

    Lundgren, Magnus

    2015-01-01

    Research into the CRISPR-Cas immune system of prokaryotes is progressing at a tremendous pace given both its important biological function and its role as a source of new genetic tools. However, a few areas of the field have remained largely unaddressed. A recent report provides information on one such overlooked area: how the cell regulates the CRISPR-Cas immune system. The processes, despite their importance, have remained illusive. In Pectobacterium atrosepticum regulation is, perhaps surprisingly, based on metabolic factors responding to glucose levels in the cell. Regulators include both activators and repressors of cas gene expression. It remains an open question why and how this regulatory system have evolved, and if it is a typical example of how CRISPR-as systems are regulated or not. PMID:26942048

  10. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements.

    PubMed

    Karvelis, Tautvydas; Gasiunas, Giedrius; Young, Joshua; Bigelyte, Greta; Silanskas, Arunas; Cigan, Mark; Siksnys, Virginijus

    2015-11-19

    To expand the repertoire of Cas9s available for genome targeting, we present a new in vitro method for the simultaneous examination of guide RNA and protospacer adjacent motif (PAM) requirements. The method relies on the in vitro cleavage of plasmid libraries containing a randomized PAM as a function of Cas9-guide RNA complex concentration. Using this method, we accurately reproduce the canonical PAM preferences for Streptococcus pyogenes, Streptococcus thermophilus CRISPR3 (Sth3), and CRISPR1 (Sth1). Additionally, PAM and sgRNA solutions for a novel Cas9 protein from Brevibacillus laterosporus are provided by the assay and are demonstrated to support functional activity in vitro and in plants.

  11. Off-target Effects in CRISPR/Cas9-mediated Genome Engineering

    PubMed Central

    Zhang, Xiao-Hui; Tee, Louis Y; Wang, Xiao-Gang; Huang, Qun-Shan; Yang, Shi-Hua

    2015-01-01

    CRISPR/Cas9 is a versatile genome-editing technology that is widely used for studying the functionality of genetic elements, creating genetically modified organisms as well as preclinical research of genetic disorders. However, the high frequency of off-target activity (≥50%)—RGEN (RNA-guided endonuclease)-induced mutations at sites other than the intended on-target site—is one major concern, especially for therapeutic and clinical applications. Here, we review the basic mechanisms underlying off-target cutting in the CRISPR/Cas9 system, methods for detecting off-target mutations, and strategies for minimizing off-target cleavage. The improvement off-target specificity in the CRISPR/Cas9 system will provide solid genotype–phenotype correlations, and thus enable faithful interpretation of genome-editing data, which will certainly facilitate the basic and clinical application of this technology. PMID:26575098

  12. CRISPR/Cas9-Mediated Genome Editing of Epigenetic Factors for Cancer Therapy.

    PubMed

    Yao, Shaohua; He, Zhiyao; Chen, Chong

    2015-07-01

    Advances in engineered recombinant nuclease have provided facile and reliable methods for genome editing. Especially with the development of the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein-9 nuclease) system, the discovery of various versions of Cas9 proteins and delivery carriers, it is now practicable to introduce desired mutations into the genome, to correct disease-related mutations, and to activate or suppress genes of interest. Epigenetic regulators are often disturbed in cancer cells and are essential for the transformation of normal to cancerous cells. Tumor-related epigenetic alterations or epigenetic factor mutations play a major part during the various steps of carcinogenesis and affect a variety of cancer-related genes and a wide range of cancerous phenotypes. Therefore, epigenetic regulatory enzymes might be candidate targets for cancer therapy. In this review, we discuss prospects of CRISPR/Cas9-based genome editing in targeting epigenetics for cancer gene therapy.

  13. Controlling UCAVs by JTACs in CAS missions

    NASA Astrophysics Data System (ADS)

    Kumaş, A. E.

    2014-06-01

    By means of evolving technology, capabilities of UAVs (Unmanned Aerial Vehicle)s are increasing rapidly. This development provides UAVs to be used in many different areas. One of these areas is CAS (Close Air Support) mission. UAVs have several advantages compared to manned aircraft, however there are also some problematic areas. The remote controlling of these vehicles from thousands of nautical miles away via satellite may lead to various problems both ethical and tactical aspects. Therefore, CAS missions require a good level of ALI (Air-Land Integration), a high SA (situational awareness) and precision engagement. In fact, there is an aware friendly element in the target area in CAS missions, unlike the other UAV operations. This element is an Airman called JTAC (Joint Terminal Attack Controller). Unlike the JTAC, UAV operators are too far away from target area and use the limited FOV (Field of View) provided by camera and some other sensor data. In this study, target area situational awareness of a UAV operator and a JTAC, in a high-risk mission for friendly ground forces and civilians such as CAS, are compared. As a result of this comparison, answer to the question who should control the UCAV (Unmanned Combat Aerial Vehicle) in which circumstances is sought. A literature review is made in UAV and CAS fields and recent air operations are examined. The control of UCAV by the JTAC is assessed by SWOT analysis and as a result it is deduced that both control methods can be used in different situations within the framework of the ROE (Rules Of Engagement) is reached.

  14. Genomic Disruption of VEGF-A Expression in Human Retinal Pigment Epithelial Cells Using CRISPR-Cas9 Endonuclease

    PubMed Central

    Yiu, Glenn; Tieu, Eric; Nguyen, Anthony T.; Wong, Brittany; Smit-McBride, Zeljka

    2016-01-01

    Purpose To employ type II clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 endonuclease to suppress ocular angiogenesis by genomic disruption of VEGF-A in human RPE cells. Methods CRISPR sequences targeting exon 1 of human VEGF-A were computationally identified based on predicted Cas9 on- and off-target probabilities. Single guide RNA (gRNA) cassettes with these target sequences were cloned into lentiviral vectors encoding the Streptococcus pyogenes Cas9 endonuclease (SpCas9) gene. The lentiviral vectors were used to infect ARPE-19 cells, a human RPE cell line. Frequency of insertion or deletion (indel) mutations was assessed by T7 endonuclease 1 mismatch detection assay; mRNA levels were assessed with quantitative real-time PCR; and VEGF-A protein levels were determined by ELISA. In vitro angiogenesis was measured using an endothelial cell tube formation assay. Results Five gRNAs targeting VEGF-A were selected based on the highest predicted on-target probabilities, lowest off-target probabilities, or combined average of both scores. Lentiviral delivery of the top-scoring gRNAs with SpCas9 resulted in indel formation in the VEGF-A gene at frequencies up to 37.0% ± 4.0% with corresponding decreases in secreted VEGF-A protein up to 41.2% ± 7.4% (P < 0.001), and reduction of endothelial tube formation up to 39.4% ± 9.8% (P = 0.02). No significant indel formation in the top three putative off-target sites tested was detected. Conclusions The CRISPR-Cas9 endonuclease system may reduce VEGF-A secretion from human RPE cells and suppress angiogenesis, supporting the possibility of employing gene editing for antiangiogenesis therapy in ocular diseases. PMID:27768202

  15. In vivo genome editing using Staphylococcus aureus Cas9

    PubMed Central

    Ran, F. Ann; Cong, Le; Yan, Winston X.; Scott, David A.; Gootenberg, Jonathan S.; Kriz, Andrea J.; Zetsche, Bernd; Shalem, Ophir; Wu, Xuebing; Makarova, Kira S.; Koonin, Eugene; Sharp, Phillip A.; Zhang, Feng

    2015-01-01

    The RNA-guided endonuclease Cas9 has emerged as a versatile genome-editing platform. However, the size of the commonly used Cas9 from Streptococcus pyogenes (SpCas9) limits its utility for basic research and therapeutic applications that employ the highly versatile adeno-associated virus (AAV) delivery vehicle. Here, we characterize six smaller Cas9 orthologs and show that Cas9 from Staphylococcus aureus (SaCas9) can edit the genome with efficiencies similar to those of SpCas9, while being >1kb shorter. We packaged SaCas9 and its sgRNA expression cassette into a single AAV vector and targeted the cholesterol regulatory gene Pcsk9 in the mouse liver. Within one week of injection, we observed >40% gene modification, accompanied by significant reductions in serum Pcsk9 and total cholesterol levels. We further demonstrate the power of using BLESS to assess the genome-wide targeting specificity of SaCas9 and SpCas9, and show that SaCas9 can mediate genome editing in vivo with high specificity. PMID:25830891

  16. Structure and Engineering of Francisella novicida Cas9

    PubMed Central

    Hirano, Hisato; Gootenberg, Jonathan S.; Horii, Takuro; Abudayyeh, Omar O.; Kimura, Mika; Hsu, Patrick D.; Nakane, Takanori; Ishitani, Ryuichiro; Hatada, Izuho; Zhang, Feng; Nishimasu, Hiroshi; Nureki, Osamu

    2016-01-01

    Summary The RNA-guided endonuclease Cas9 cleaves double-stranded DNA targets complementary to the guide RNA, and has been applied to programmable genome editing. Cas9-mediated cleavage requires a protospacer adjacent motif (PAM) juxtaposed with the DNA target sequence, thus constricting the range of targetable sites. Here, we report the 1.7 Å resolution crystal structures of Cas9 from Francisella novicida (FnCas9), one of the largest Cas9 orthologs, in complex with a guide RNA and its PAM-containing DNA targets. A structural comparison of FnCas9 with other Cas9 orthologs revealed striking conserved and divergent features among distantly related CRISPR-Cas9 systems. We found that FnCas9 recognizes the 5′-NGG-3′ PAM, and used the structural information to create a variant that can recognize the more relaxed 5′-YG-3′ PAM. Furthermore, we demonstrated that pre-assembled FnCas9 ribonucleoprotein complexes can be microinjected into mouse zygotes to edit endogenous sites with the 5′-YG-3′ PAMs, thus expanding the target space of the CRISPR-Cas9 toolbox. PMID:26875867

  17. The CRISPR/Cas9 system for gene editing and its potential application in pain research

    PubMed Central

    Sun, Linlin; Lutz, Brianna Marie; Tao, Yuan-Xiang

    2016-01-01

    The CRISPR/Cas9 system is a research hotspot in genome editing and regulation. Currently, it is used in genomic silencing and knock-in experiments as well as transcriptional activation and repression. This versatile system consists of two components: a guide RNA (gRNA) and a Cas9 nuclease. Recognition of a genomic DNA target is mediated through base pairing with a 20-base gRNA. The latter further recruits the Cas9 endonuclease protein to the target site and creates double-stranded breaks in the target DNA. Compared with traditional genome editing directed by DNA-binding protein domains, this short RNA-directed Cas9 endonuclease system is simple and easily programmable. Although this system may have off-target effects and in vivo delivery and immune challenges, researchers have employed this system in vivo to establish disease models, study specific gene functions under certain disease conditions, and correct genomic information for disease treatment. In regards to pain research, the CRISPR/Cas9 system may act as a novel tool in gene correction therapy for pain-associated hereditary diseases and may be a new approach for RNA-guided transcriptional activation or repression of pain-related genes. In addition, this system is also applied to loss-of-function mutations in pain-related genes and knockin of reporter genes or loxP tags at pain-related genomic loci. The CRISPR/Cas9 system will likely be carried out widely in both bench work and clinical settings in the pain field. PMID:27500183

  18. Relationship between the climbing up and climbing down stairs domain scores on the FES-DMD, the score on the Vignos Scale, age and timed performance of functional activities in boys with Duchenne muscular dystrophy

    PubMed Central

    Fernandes, Lilian A. Y.; Caromano, Fátima A.; Assis, Silvana M. B.; Hukuda, Michele E.; Voos, Mariana C.; Carvalho, Eduardo V.

    2014-01-01

    BACKGROUND: Knowing the potential for and limitations of information generated using different evaluation instruments favors the development of more accurate functional diagnoses and therapeutic decision-making. OBJECTIVE: To investigate the relationship between the number of compensatory movements when climbing up and going down stairs, age, functional classification and time taken to perform a tested activity (TA) of going up and down stairs in boys with Duchenne muscular dystrophy (DMD). METHOD: A bank of movies featuring 30 boys with DMD performing functional activities was evaluated. Compensatory movements were assessed using the climbing up and going down stairs domain of the Functional Evaluation Scale for Duchenne Muscular Dystrophy (FES-DMD); age in years; functional classification using the Vignos Scale (VS), and TA using a timer. Statistical analyses were performed using the Spearman correlation test. RESULTS: There is a moderate relationship between the climbing up stairs domain of the FES-DMD and age (r=0.53, p=0.004) and strong relationships with VS (r=0.72, p=0.001) and TA for this task (r=0.83, p<0.001). There were weak relationships between the going down stairs domain of the FES-DMD-going down stairs with age (r=0.40, p=0.032), VS (r=0.65, p=0.002) and TA for this task (r=0.40, p=0.034). CONCLUSION: These findings indicate that the evaluation of compensatory movements used when climbing up stairs can provide more relevant information about the evolution of the disease, although the activity of going down stairs should be investigated, with the aim of enriching guidance and strengthening accident prevention. Data from the FES-DMD, age, VS and TA can be used in a complementary way to formulate functional diagnoses. Longitudinal studies and with broader age groups may supplement this information. PMID:25590443

  19. Prediction of Large Joint Destruction in Patients With Rheumatoid Arthritis Using 18F-FDG PET/CT and Disease Activity Score.

    PubMed

    Suto, Takahito; Okamura, Koichi; Yonemoto, Yukio; Okura, Chisa; Tsushima, Yoshito; Takagishi, Kenji

    2016-02-01

    The assessments of joint damage in patients with rheumatoid arthritis (RA) are mainly restricted to small joints in the hands and feet. However, the development of arthritis in RA patients often involves the large joints, such as the shoulder, elbow, hip, knee, and ankle. Few studies have been reported regarding the degree of large joint destruction in RA patients. F-fluorodeoxyglucose positron emission tomography combined with computed tomography (FDG-PET/CT) visualizes the disease activity in large joints affected by RA. In this study, the associations between destruction of the large joints and the findings of FDG-PET/CT as well as laboratory parameters were investigated, and factors associated with large joint destruction after the administration of biological therapy were identified in RA patients. A total of 264 large joints in 23 RA patients (6 men and 17 women; mean age of 66.9 ± 7.9 years) were assessed in this study. FDG-PET/CT was performed at baseline and 6 months after the initiation of biological therapy. The extent of FDG uptake in large joints (shoulder, elbow, wrist, hip, knee, and ankle) was analyzed using the maximum standardized uptake value (SUVmax). Radiographs of the 12 large joints per patient obtained at baseline and after 2 years were assessed according to Larsen's method. A logistic regression analysis was performed to determine the factors most significantly contributing to the progression of joint destruction within 2 years. Radiographic progression of joint destruction was detected in 33 joints. The SUVmax at baseline and 6 months, and the disease activity score (DAS) 28-erythrocyte sedimentation rate (ESR) at 6, 12, and 24 months were significantly higher in the group with progressive joint destruction. The SUVmax at baseline and DAS28-ESR at 6 months were found to be factors associated with joint destruction at 2 years (P < 0.05). The FDG uptake in the joints with destruction was higher than that observed in the joints

  20. 32 CFR Appendix C to Part 169a - Simplified Cost Comparison and Direct Conversion of CAs

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cost comparisons. 3. For activities large in total size (including those with a mix of civilian and... 32 National Defense 1 2014-07-01 2014-07-01 false Simplified Cost Comparison and Direct Conversion... 169a—Simplified Cost Comparison and Direct Conversion of CAs A. This appendix provides guidance...

  1. 32 CFR Appendix C to Part 169a - Simplified Cost Comparison and Direct Conversion of CAs

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cost comparisons. 3. For activities large in total size (including those with a mix of civilian and... 32 National Defense 1 2011-07-01 2011-07-01 false Simplified Cost Comparison and Direct Conversion... 169a—Simplified Cost Comparison and Direct Conversion of CAs A. This appendix provides guidance...

  2. 32 CFR Appendix C to Part 169a - Simplified Cost Comparison and Direct Conversion of CAs

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cost comparisons. 3. For activities large in total size (including those with a mix of civilian and... 32 National Defense 1 2013-07-01 2013-07-01 false Simplified Cost Comparison and Direct Conversion... 169a—Simplified Cost Comparison and Direct Conversion of CAs A. This appendix provides guidance...

  3. Fatty acid composition in serum correlates with that in the liver and non-alcoholic fatty liver disease activity scores in mice fed a high-fat diet.

    PubMed

    Wang, Xing-He; Li, Chun-Yan; Muhammad, Ishfaq; Zhang, Xiu-Ying

    2016-06-01

    In this study, we investigated the correlation between the serum fatty acid composition and hepatic steatosis, inflammation, hepatocellular ballooning scores, and liver fatty acids composition in mice fed a high-fat diet. Livers were collected for non-alcoholic fatty liver disease score analysis. Fatty acid compositions were analysed by gas chromatography. Correlations were determined by Pearson correlation coefficient. Exposed to a high-fat diet, mice developed fatty liver disease with varying severity without fibrosis. The serum fatty acid variation became more severe with prolonged exposure to a high-fat diet. This variation also correlated significantly with the variation in livers, with the types of fatty acids corresponding to liver steatosis, inflammation, and hepatocellular ballooning scores. Results of this study lead to the following hypothesis: the extent of serum fatty acid variation may be a preliminary biomarker of fatty liver disease caused by high-fat intake.

  4. Nutrient Density Scores.

    ERIC Educational Resources Information Center

    Dickinson, Annette; Thompson, William T.

    1979-01-01

    Announces a nutrient density food scoring system called the Index of Nutritional Quality (INQ). It expresses the ratio between the percent RDA of a nutrient and the percent daily allowance of calories in a food. (Author/SA)

  5. Volleyball Scoring Systems.

    ERIC Educational Resources Information Center

    Calhoun, William; Dargahi-Noubary, G. R.; Shi, Yixun

    2002-01-01

    The widespread interest in sports in our culture provides an excellent opportunity to catch students' attention in mathematics and statistics classes. One mathematically interesting aspect of volleyball, which can be used to motivate students, is the scoring system. (MM)

  6. Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer.

    PubMed

    Richter, Corinna; Dy, Ron L; McKenzie, Rebecca E; Watson, Bridget N J; Taylor, Corinda; Chang, James T; McNeil, Matthew B; Staals, Raymond H J; Fineran, Peter C

    2014-07-01

    Clustered regularly interspaced short palindromic repeats (CRISPR), in combination with CRISPR associated (cas) genes, constitute CRISPR-Cas bacterial adaptive immune systems. To generate immunity, these systems acquire short sequences of nucleic acids from foreign invaders and incorporate these into their CRISPR arrays as spacers. This adaptation process is the least characterized step in CRISPR-Cas immunity. Here, we used Pectobacterium atrosepticum to investigate adaptation in Type I-F CRISPR-Cas systems. Pre-existing spacers that matched plasmids stimulated hyperactive primed acquisition and resulted in the incorporation of up to nine new spacers across all three native CRISPR arrays. Endogenous expression of the cas genes was sufficient, yet required, for priming. The new spacers inhibited conjugation and transformation, and interference was enhanced with increasing numbers of new spacers. We analyzed ∼ 350 new spacers acquired in priming events and identified a 5'-protospacer-GG-3' protospacer adjacent motif. In contrast to priming in Type I-E systems, new spacers matched either plasmid strand and a biased distribution, including clustering near the primed protospacer, suggested a bi-directional translocation model for the Cas1:Cas2-3 adaptation machinery. Taken together these results indicate priming adaptation occurs in different CRISPR-Cas systems, that it can be highly active in wild-type strains and that the underlying mechanisms vary.

  7. Increasing Active Student Responding in a University Applied Behavior Analysis Course: The Effect of Daily Assessment and Response Cards on End of Week Quiz Scores

    ERIC Educational Resources Information Center

    Malanga, Paul R.; Sweeney, William J.

    2008-01-01

    The study compared the effects of daily assessment and response cards on average weekly quiz scores in an introduction to applied behavior analysis course. An alternating treatments design (Kazdin 1982, "Single-case research designs." New York: Oxford University Press; Cooper et al. 2007, "Applied behavior analysis." Upper Saddle River:…

  8. Photometric analysis of the overcontact binary CW Cas

    SciTech Connect

    Wang, J. J.; Qian, S. B.; He, J. J.; Li, L. J.; Zhao, E. G.

    2014-11-01

    New CCD photometric observations of overcontact binary CW Cas were carried out in 2004 and 2011. In particular, the light curve obtained in 2004 shows a remarkable O'Connell effect. Compared with light curves in different observing seasons, variations were found. These variations can be explained by dark spot activities on the surface of at least one component. Using the Wilson-Devinney code with a spot model, we find that the photometric solutions confirm CW Cas is a shallow W-subtype overcontact binary with a spotted massive component. Our new determined times of minimum light together with the others published in the literature were analyzed to find a change of orbital period. From the O – C curves, the period of the system shows a cyclic period change (P {sub 3} = 69.9 yr, A {sub 3} = 0.03196 days) superposed on the linear increase. The cyclic variation, if explained as the light-travel time effect, reveals the presence of a tertiary companion.

  9. An X-ray flare from 47 Cas

    SciTech Connect

    Pandey, Jeewan C.; Karmakar, Subhajeet

    2015-02-01

    Using XMM-Newton observations, we investigate properties of a flare from the very active but poorly known stellar system 47 Cas. The luminosity at the peak of the flare is found to be 3.54 × 10{sup 30} erg s{sup −1}, which is ∼2 times higher than that at a quiescent state. The quiescent state corona of 47 Cas can be represented by two temperature plasma: 3.7 and 11.0 MK. The time-resolved X-ray spectroscopy of the flare show the variable nature of the temperature, the emission measure, and the abundance. The maximum temperature during the flare is derived as 72.8 MK. We infer the length of a flaring loop to be 3.3 × 10{sup 10} cm using a hydrodynamic loop model. Using the RGS spectra, the density during the flare is estimated as 4.0 × 10{sup 10} cm{sup −3}. The loop scaling laws are also applied when deriving physical parameters of the flaring plasma.

  10. Precision Targeted Mutagenesis via Cas9 Paired Nickases in Rice

    PubMed Central

    Mikami, Masafumi; Toki, Seiichi; Endo, Masaki

    2016-01-01

    Recent reports of CRISPR- (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) mediated heritable mutagenesis in plants highlight the need for accuracy of the mutagenesis directed by this system. Off-target mutations are an important issue when considering functional gene analysis, as well as the molecular breeding of crop plants with large genome size, i.e. with many duplicated genes, and where the whole-genome sequence is still lacking. In mammals, off-target mutations can be suppressed by using Cas9 paired nickases together with paired guide RNAs (gRNAs). However, the performance of Cas9 paired nickases has not yet been fully assessed in plants. Here, we analyzed on- and off-target mutation frequency in rice calli and regenerated plants using Cas9 nuclease or Cas9 nickase with paired gRNAs. When Cas9 paired nickases were used, off-target mutations were fully suppressed in rice calli and regenerated plants. However, on-target mutation frequency also decreased compared with that induced by the Cas9 paired nucleases system. Since the gRNA sequence determines specific binding of Cas9 protein–gRNA ribonucleoproteins at the targeted sequence, the on-target mutation frequency of Cas9 paired nickases depends on the design of paired gRNAs. Our results suggest that a combination of gRNAs that can induce mutations at high efficiency with Cas9 nuclease should be used together with Cas9 nickase. Furthermore, we confirmed that a combination of gRNAs containing a one nucleotide (1 nt) mismatch toward the target sequence could not induce mutations when expressed with Cas9 nickase. Our results clearly show the effectiveness of Cas9 paired nickases in delivering on-target specific mutations. PMID:26936792

  11. Annotation and Classification of CRISPR-Cas Systems.

    PubMed

    Makarova, Kira S; Koonin, Eugene V

    2015-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) is a prokaryotic adaptive immune system that is represented in most archaea and many bacteria. Among the currently known prokaryotic defense systems, the CRISPR-Cas genomic loci show unprecedented complexity and diversity. Classification of CRISPR-Cas variants that would capture their evolutionary relationships to the maximum possible extent is essential for comparative genomic and functional characterization of this theoretically and practically important system of adaptive immunity. To this end, a multipronged approach has been developed that combines phylogenetic analysis of the conserved Cas proteins with comparison of gene repertoires and arrangements in CRISPR-Cas loci. This approach led to the current classification of CRISPR-Cas systems into three distinct types and ten subtypes for each of which signature genes have been identified. Comparative genomic analysis of the CRISPR-Cas systems in new archaeal and bacterial genomes performed over the 3 years elapsed since the development of this classification makes it clear that new types and subtypes of CRISPR-Cas need to be introduced. Moreover, this classification system captures only part of the complexity of CRISPR-Cas organization and evolution, due to the intrinsic modularity and evolutionary mobility of these immunity systems, resulting in numerous recombinant variants. Moreover, most of the cas genes evolve rapidly, complicating the family assignment for many Cas proteins and the use of family profiles for the recognition of CRISPR-Cas subtype signatures. Further progress in the comparative analysis of CRISPR-Cas systems requires integration of the most sensitive sequence comparison tools, protein structure comparison, and refined approaches for comparison of gene neighborhoods.

  12. A critical role for p130Cas in the progression of pulmonary hypertension in humans and rodents

    PubMed Central

    Tu, Ly; De Man, Frances; Girerd, Barbara; Huertas, Alice; Chaumais, Marie-Camille; Lecerf, Florence; François, Charlène; Perros, Frédéric; Dorfmüller, Peter; Fadel, Elie; Montani, David; Eddahibi, Saadia; Humbert, Marc; Guignabert, Christophe

    2012-01-01

    Rationale Pulmonary arterial hypertension (PAH) is a progressive and fatal disease characterized by pulmonary arterial muscularization due to excessive pulmonary vascular cell proliferation and migration, a phenotype dependent upon growth factors and activation of receptor tyrosine kinases (RTKs). p130Cas is an adaptor protein involved in several cellular signaling pathways that control cell migration, proliferation and survival. Objectives We hypothesized that in experimental and human PAH p130Cas signaling is over-activated, thereby facilitating the intracellular transmission of signal induced by fibroblast growth factor (FGF)-2, epidermal growth factor (EGF), and platelet-derived growth factor (PDGF). Measurements and Main Results In PAH patients, levels of p130Cas protein and/or activity are higher in the serum, in walls of distal pulmonary arteries, in cultured smooth muscle (PA-SMCs) and pulmonary endothelial cells (P-ECs) than controls. These abnormalities in the p130Cas signaling were also found to be in the chronically hypoxic mice and monocrotaline-injected rats as models of human PAH. We next obtained evidence for convergence and amplification of the growth-stimulating effect of EGF, FGF2 and PDGF signaling pathways via p130Cas signaling pathway. Finally, we found that daily treatment with each of the EGF-R inhibitor gefitinib, the FGF-R inhibitor dovitinib and the PDGF-R inhibitor imatinib started 2 weeks after a subcutaneous monocrotaline injection substantially attenuate the abnormal increase in p130cas and ERK1/2 activation and regress established PH. Conclusions Our findings demonstrate that p130Cas signaling plays a critical role in experimental and iPAH by modulating pulmonary vascular cell migration, proliferation and by acting as an amplifier of RTKs downstream signals. PMID:22798315

  13. Computer Health Score

    SciTech Connect

    2016-08-03

    The algorithm develops a single health score for office computers, today just Windows, but we plan to extend this to Apple computers. The score is derived from various parameters, including: CPU Utilization Memory Utilization Various Error logs Disk Problems Disk write queue length It then uses a weighting scheme to balance these parameters and provide an overall health score. By using these parameters, we are not just assessing the theoretical performance of the components of the computer, rather we are using actual performance metrics that are selected to be a more realistic representation of the experience of the person using the computer. This includes compensating for the nature of their use. If there are two identical computers and the user of one places heavy demands on their computer compared with the user of the second computer, the former will have a lower health score. This allows us to provide a 'fit for purpose' score tailored to the assigned user. This is very helpful data to inform the mangers when individual computers need to be replaced. Additionally it provides specific information that can facilitate the fixing of the computer, to extend it's useful lifetime. This presents direct financial savings, time savings for users transferring from one computer to the next, and better environmental stewardship.

  14. Disruption of the transcriptional regulator Cas5 results in enhanced killing of Candida albicans by Fluconazole.

    PubMed

    Vasicek, Erin M; Berkow, Elizabeth L; Bruno, Vincent M; Mitchell, Aaron P; Wiederhold, Nathan P; Barker, Katherine S; Rogers, P David

    2014-11-01

    Azole antifungal agents such as fluconazole exhibit fungistatic activity against Candida albicans. Strategies to enhance azole antifungal activity would be therapeutically appealing. In an effort to identify transcriptional pathways that influence the killing activity of fluconazole, we sought to identify transcription factors (TFs) involved in this process. From a collection of C. albicans strains disrupted for genes encoding TFs (O. R. Homann, J. Dea, S. M. Noble, and A. D. Johnson, PLoS Genet. 5:e1000783, 2009, http://dx.doi.org/10.1371/journal.pgen.1000783), four strains exhibited marked reductions in minimum fungicidal concentration (MFCs) in both RPMI and yeast extract-peptone-dextrose (YPD) media. One of these genes, UPC2, was previously characterized with regard to its role in azole susceptibility. Of mutants representing the three remaining TF genes of interest, one (CAS5) was unable to recover from fluconazole exposure at concentrations as low as 2 μg/ml after 72 h in YPD medium. This mutant also showed reduced susceptibility and a clear zone of inhibition by Etest, was unable to grow on solid medium containing 10 μg/ml fluconazole, and exhibited increased susceptibility by time-kill analysis. CAS5 disruption in highly azole-resistant clinical isolates exhibiting multiple resistance mechanisms did not alter susceptibility. However, CAS5 disruption in strains with specific resistance mutations resulted in moderate reductions in MICs and MFCs. Genome-wide transcriptional analysis was performed in the presence of fluconazole and was consistent with the suggested role of CAS5 in cell wall organization while also suggesting a role in iron transport and homeostasis. These findings suggest that Cas5 regulates a transcriptional network that influences the response of C. albicans to fluconazole. Further delineation of this transcriptional network may identify targets for potential cotherapeutic strategies to enhance the activity of the azole class of antifungals.

  15. Routine Assessment of Patient Index Data 3 score (RAPID3) correlates well with Bath Ankylosing Spondylitis Disease Activity index (BASDAI) in the assessment of disease activity and monitoring progression of axial spondyloarthritis.

    PubMed

    Danve, Abhijeet; Reddy, Anusha; Vakil-Gilani, Kiana; Garg, Neha; Dinno, Alexis; Deodhar, Atul

    2015-01-01

    Routine Assessment of Patient Index Data 3 (RAPID3) is a composite index, very useful for assessment of disease activity of various rheumatic diseases including RA. If RAPID3 can also reliably measure disease activity in axial spondyloarthritis (axSpA), it may prove to be a practical and effective quantitative assessment tool in busy practices. We studied the association of RAPID3 with Bath Ankylosing Spondylitis Disease Activity Index (BASDAI). Patients with Ankylosing Spondylitis (AS) seen from 2007 to 2012 were classified as having AS or non-radiographic axial spondyloarthritis (nr-axSpA) using modified New York criteria and Assessment of SpondyloArthritis International Society criteria, respectively. Patients with simultaneous BASDAI and RAPID3 scores were enrolled (N = 112; 105 with AS, seven with nr-axSpA). Multiple regression and nonparametric receiver operating characteristics were used. Baseline mean (SD) BASDAI and RAPID3 were 4.2 (2.5) and 3.8 (2.3), respectively. Multiple linear regressions modeled a quadratic relationship between BASDAI and RAPID3 for 321 observations in 112 patients with axSpA (1) cross-sectionally: BASDAI predicted by RAPID3 (β = 1.171; s.e. = 0.113, p < 0.001) and RAPID3(2) (β = -0.037; s.e. = 0.014, p = 0.011) with an adjusted R (2) of 0.676; and (2) longitudinally: BASDAI predicted by RAPID3 (β = 1.196; s.e. = 0.111, p < 0.001), RAPID3(2) (β = -0.042; s.e. = 0.014, p = 0.004), and visit number (β = -0.142; s.e. = 0.038, p < 0.001) with an adjusted R (2) of 0.689. RAPID3 (correctly classified) corresponded to BASDAI scores of 2, 4, and 6: 1.40 (85.8 %), 3.33 (81.9 %), and 5.43 (87.1 %), respectively. RAPID3 correlates well with BASDAI in monitoring axSpA patients (including AS) in cross-sectional and longitudinal follow-up. Since it also correlates with measures of disease activity of other rheumatic diseases including RA, RAPID3 could be an attractive measure

  16. Generation of site-specific mutant mice using the CRISPR/Cas9 system.

    PubMed

    Min, Bai; Qi, Li; Yanjiao, Shao; Yuanhua, Huang; Dali, Li; Yanlin, Ma

    2015-10-01

    The CRISPR/Cas9 system is a recently developed important technology for genome editing in cellular and animal models. Here we established a CRISPR/Cas9-based system of generating site-specific mutant mice using DNA double-strand breaks (DSBs) induced homologous recombination (HR)-dependent or independent repair mechanism. Through co-microinjection of Cas9 mRNA and single-guide RNA (sgRNA) targeting genomic DNA sequence corresponding to enzyme activity of lysine (K)-specific demethylase 2b (Kdm2b), both a frame-shifted Kdm2b null mutant and a Kdm2b enzyme activity disrupted mouse strain were obtained simultaneously. Moreover, sgRNA targeting flavin containing monooxygenases3 (Fmo3) gene and the corresponding single strand oligonucleotides (ssODN) donor template with point mutation were co-injected into the male pronucleus of one-cell mouse embryos stimulated HR-mediated repair mechanism. Genomic sequence analysis of F0 mice showed that frame-shifted Fmo3 knockout mouse and site-specific Fmo3 knock-in mouse with single base substitution were successfully generated, and these mutations could be stably transmitted to the next generation. Therefore, we successfully generated mouse strains containing site-specific mutations through HR-dependent and -independent DSB repair using the CRISPR/Cas9 system.

  17. Choreography of importin-α/CAS complex assembly and disassembly at nuclear pores.

    PubMed

    Sun, Changxia; Fu, Guo; Ciziene, Danguole; Stewart, Murray; Musser, Siegfried M

    2013-04-23

    Nuclear pore complexes (NPCs) mediate the exchange of macromolecules between the cytoplasm and the nucleoplasm. Soluble nuclear transport receptors bind signal-dependent cargos to form transport complexes that diffuse through the NPC and are then disassembled. Although transport receptors enable the NPC's permeability barrier to be overcome, directionality is established by complex assembly and disassembly. Here, we delineate the choreography of importin-α/CAS complex assembly and disassembly in permeabilized cells, using single-molecule fluorescence resonance energy transfer and particle tracking. Monitoring interaction sequences in intact NPCs ensures spatiotemporal preservation of structures and interactions critical for activity in vivo. We show that key interactions between components are reversible, multiple outcomes are often possible, and the assembly and disassembly of complexes are precisely controlled to occur at the appropriate place and time. Importin-α mutants that impair interactions during nuclear import were used together with cytoplasmic Ran GTPase-activating factors to demonstrate that importin-α/CAS complexes form in the nuclear basket region, at the termination of protein import, and disassembly of importin-α/CAS complexes after export occurs in the cytoplasmic filament region of the NPC. Mathematical models derived from our data emphasize the intimate connection between transport and the coordinated assembly and disassembly of importin-α/CAS complexes for generating productive transport cycles.

  18. Function of the CRISPR-Cas System of the Human Pathogen Clostridium difficile

    PubMed Central

    Boudry, Pierre; Semenova, Ekaterina; Monot, Marc; Datsenko, Kirill A.; Lopatina, Anna; Sekulovic, Ognjen; Ospina-Bedoya, Maicol; Fortier, Louis-Charles; Severinov, Konstantin; Dupuy, Bruno

    2015-01-01

    ABSTRACT Clostridium difficile is the cause of most frequently occurring nosocomial diarrhea worldwide. As an enteropathogen, C. difficile must be exposed to multiple exogenous genetic elements in bacteriophage-rich gut communities. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems allow bacteria to adapt to foreign genetic invaders. Our recent data revealed active expression and processing of CRISPR RNAs from multiple type I-B CRISPR arrays in C. difficile reference strain 630. Here, we demonstrate active expression of CRISPR arrays in strain R20291, an epidemic C. difficile strain. Through genome sequencing and host range analysis of several new C. difficile phages and plasmid conjugation experiments, we provide evidence of defensive function of the CRISPR-Cas system in both C. difficile strains. We further demonstrate that C. difficile Cas proteins are capable of interference in a heterologous host, Escherichia coli. These data set the stage for mechanistic and physiological analyses of CRISPR-Cas-mediated interactions of important global human pathogen with its genetic parasites. PMID:26330515

  19. A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair.

    PubMed

    Babu, Mohan; Beloglazova, Natalia; Flick, Robert; Graham, Chris; Skarina, Tatiana; Nocek, Boguslaw; Gagarinova, Alla; Pogoutse, Oxana; Brown, Greg; Binkowski, Andrew; Phanse, Sadhna; Joachimiak, Andrzej; Koonin, Eugene V; Savchenko, Alexei; Emili, Andrew; Greenblatt, Jack; Edwards, Aled M; Yakunin, Alexander F

    2011-01-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and the associated proteins (Cas) comprise a system of adaptive immunity against viruses and plasmids in prokaryotes. Cas1 is a CRISPR-associated protein that is common to all CRISPR-containing prokaryotes but its function remains obscure. Here we show that the purified Cas1 protein of Escherichia coli (YgbT) exhibits nuclease activity against single-stranded and branched DNAs including Holliday junctions, replication forks and 5'-flaps. The crystal structure of YgbT and site-directed mutagenesis have revealed the potential active site. Genome-wide screens show that YgbT physically and genetically interacts with key components of DNA repair systems, including recB, recC and ruvB. Consistent with these findings, the ygbT deletion strain showed increased sensitivity to DNA damage and impaired chromosomal segregation. Similar phenotypes were observed in strains with deletion of CRISPR clusters, suggesting that the function of YgbT in repair involves interaction with the CRISPRs. These results show that YgbT belongs to a novel, structurally distinct family of nucleases acting on branched DNAs and suggest that, in addition to antiviral immunity, at least some components of the CRISPR-Cas system have a function in DNA repair.

  20. Landscape of target:guide homology effects on Cas9-mediated cleavage.

    PubMed

    Fu, Becky Xu Hua; Hansen, Loren L; Artiles, Karen L; Nonet, Michael L; Fire, Andrew Z

    2014-12-16

    To study target sequence specificity, selectivity, and reaction kinetics of Streptococcus pyogenes Cas9 activity, we challenged libraries of random variant targets with purified Cas9::guide RNA complexes in vitro. Cleavage kinetics were nonlinear, with a burst of initial activity followed by slower sustained cleavage. Consistent with other recent analyses of Cas9 sequence specificity, we observe considerable (albeit incomplete) impairment of cleavage for targets mutated in the PAM sequence or in 'seed' sequences matching the proximal 8 bp of the guide. A second target region requiring close homology was located at the other end of the guide::target duplex (positions 13-18 relative to the PAM). Sequences flanking the guide+PAM region had measurable (albeit modest) effects on cleavage. In addition, the first-base Guanine constraint commonly imposed by gRNA expression systems has little effect on overall cleavage efficiency. Taken together, these studies provide an in vitro understanding of the complexities of Cas9-gRNA interaction and cleavage beyond the general paradigm of site determination based on the 'seed' sequence and PAM.

  1. Conformational control of DNA target cleavage by CRISPR-Cas9.

    PubMed

    Sternberg, Samuel H; LaFrance, Benjamin; Kaplan, Matias; Doudna, Jennifer A

    2015-11-05

    Cas9 is an RNA-guided DNA endonuclease that targets foreign DNA for destruction as part of a bacterial adaptive immune system mediated by clustered regularly interspaced short palindromic repeats (CRISPR). Together with single-guide RNAs, Cas9 also functions as a powerful genome engineering tool in plants and animals, and efforts are underway to increase the efficiency and specificity of DNA targeting for potential therapeutic applications. Studies of off-target effects have shown that DNA binding is far more promiscuous than DNA cleavage, yet the molecular cues that govern strand scission have not been elucidated. Here we show that the conformational state of the HNH nuclease domain directly controls DNA cleavage activity. Using intramolecular Förster resonance energy transfer experiments to detect relative orientations of the Cas9 catalytic domains when associated with on- and off-target DNA, we find that DNA cleavage efficiencies scale with the extent to which the HNH domain samples an activated conformation. We furthermore uncover a surprising mode of allosteric communication that ensures concerted firing of both Cas9 nuclease domains. Our results highlight a proofreading mechanism beyond initial protospacer adjacent motif (PAM) recognition and RNA-DNA base-pairing that serves as a final specificity checkpoint before DNA double-strand break formation.

  2. Conformational control of DNA target cleavage by CRISPR–Cas9

    PubMed Central

    Sternberg, Samuel H.; LaFrance, Benjamin; Kaplan, Matias; Doudna, Jennifer A.

    2015-01-01

    Cas9 is an RNA-guided DNA endonuclease that targets foreign DNA for destruction as part of a bacterial adaptive immune system mediated by CRISPR (clustered regularly interspaced short palindromic repeats)1,2. Together with single-guide RNAs (sgRNA)3, Cas9 also functions as a powerful genome engineering tool in plants and animals4–6, and efforts are underway to increase the efficiency and specificity of DNA targeting for potential therapeutic applications7,8. Studies of off-target effects have shown that DNA binding is far more promiscuous than DNA cleavage9–11, yet the molecular cues that govern strand scission have not been elucidated. Here we show that the conformational state of the HNH nuclease domain directly controls DNA cleavage activity. Using intramolecular Förster resonance energy transfer (FRET) experiments to detect relative orientations of the Cas9 catalytic domains when associated with on- and off-target DNA, we find that DNA cleavage efficiencies scale with the extent to which the HNH domain samples an activated conformation. We furthermore uncover a surprising mode of allosteric communication that ensures concerted firing of both Cas9 nuclease domains. Our results highlight a proofreading mechanism beyond initial PAM recognition12 and RNA–DNA base-pairing3 that serves as a final specificity checkpoint before DNA double-strand break formation. PMID:26524520

  3. CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein.

    PubMed

    Tang, Lichun; Zeng, Yanting; Du, Hongzi; Gong, Mengmeng; Peng, Jin; Zhang, Buxi; Lei, Ming; Zhao, Fang; Wang, Weihua; Li, Xiaowei; Liu, Jianqiao

    2017-03-01

    Previous works using human tripronuclear zygotes suggested that the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system could be a tool in correcting disease-causing mutations. However, whether this system was applicable in normal human (dual pronuclear, 2PN) zygotes was unclear. Here we demonstrate that CRISPR/Cas9 is also effective as a gene-editing tool in human 2PN zygotes. By injection of Cas9 protein complexed with the appropriate sgRNAs and homology donors into one-cell human embryos, we demonstrated efficient homologous recombination-mediated correction of point mutations in HBB and G6PD. However, our results also reveal limitations of this correction procedure and highlight the need for further research.

  4. Advances in therapeutic CRISPR/Cas9 genome editing.

    PubMed

    Savić, Nataša; Schwank, Gerald

    2016-02-01

    Targeted nucleases are widely used as tools for genome editing. Two years ago the clustered regularly interspaced short palindromic repeat (CRISPR)-associated Cas9 nuclease was used for the first time, and since then has largely revolutionized the field. The tremendous success of the CRISPR/Cas9 genome editing tool is powered by the ease design principle of the guide RNA that targets Cas9 to the desired DNA locus, and by the high specificity and efficiency of CRISPR/Cas9-generated DNA breaks. Several studies recently used CRISPR/Cas9 to successfully modulate disease-causing alleles in vivo in animal models and ex vivo in somatic and induced pluripotent stem cells, raising hope for therapeutic genome editing in the clinics. In this review, we will summarize and discuss such preclinical CRISPR/Cas9 gene therapy reports.

  5. Characterization and Evolution of Salmonella CRISPR-Cas Systems

    DTIC Science & Technology

    2014-01-01

    SECURITY CLASSIFICATION OF: Prokaryotic CRISPR -Cas (clustered regularly interspaced short palindromic repeats and CRISPR -associated genes) systems provide...adaptive immunity from invasive genetic elements and encompass three essential features: (i) cas genes, (ii) a CRISPR array composed of spacers and...direct repeats and (iii) an AT-rich leader sequence upstream of the array. We performed in- depth sequence analysis of the CRISPR -Cas systems in .600

  6. Developing Scoring Algorithms

    Cancer.gov

    We developed scoring procedures to convert screener responses to estimates of individual dietary intake for fruits and vegetables, dairy, added sugars, whole grains, fiber, and calcium using the What We Eat in America 24-hour dietary recall data from the 2003-2006 NHANES.

  7. Automated Essay Scoring

    ERIC Educational Resources Information Center

    Dikli, Semire

    2006-01-01

    The impacts of computers on writing have been widely studied for three decades. Even basic computers functions, i.e. word processing, have been of great assistance to writers in modifying their essays. The research on Automated Essay Scoring (AES) has revealed that computers have the capacity to function as a more effective cognitive tool (Attali,…

  8. Control of gene expression by CRISPR-Cas systems.

    PubMed

    Bikard, David; Marraffini, Luciano A

    2013-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) loci and their associated cas (CRISPR-associated) genes provide adaptive immunity against viruses (phages) and other mobile genetic elements in bacteria and archaea. While most of the early work has largely been dominated by examples of CRISPR-Cas systems directing the cleavage of phage or plasmid DNA, recent studies have revealed a more complex landscape where CRISPR-Cas loci might be involved in gene regulation. In this review, we summarize the role of these loci in the regulation of gene expression as well as the recent development of synthetic gene regulation using engineered CRISPR-Cas systems.

  9. Ectopia cordis thoracique sporadique: description clinique d'un cas

    PubMed Central

    Lubala, Toni Kasole; Mutombo, Augustin Mulangu; Katamea, Tina; Lubala, Nina; Munkana, Arthur Ndundula; Kabuya, Maguy Sangaji; Monga, Joséphine Kalenga; Luboya, Oscar Numbi

    2012-01-01

    Nous décrivons un cas d'ectopia cordis, une malformation cardiaque congénitale extrêmement rare dans laquelle le coeur est partiellement ou complètement situé en dehors des limites de la cage thoracique. Dans le cas que nous décrivons, elle est thoracique et isolée. Ce cas a été diagnostiqué en salle de naissance au Katanga, au sud de la République Démocratique du Congo. Il s'agit du premier cas documenté chez un nouveau-né Congolais. PMID:23346276

  10. CRISPR-Cas9-guided Genome Engineering in C. elegans

    PubMed Central

    Kim, Hyun-Min; Colaiácovo, Monica P.

    2016-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system is successfully being used for efficient and targeted genome editing in various organisms including the nematode C. elegans. Recent studies developed various CRISPR-Cas9 approaches to enhance genome engineering via two major DNA double-strand break repair pathways: non-homologous end joining and homologous recombination. Here we describe a protocol for Cas9-mediated C. elegans genome editing together with single guide RNA (sgRNA) and repair template cloning and injection methods required for delivering Cas9, sgRNAs and repair template DNA into the C. elegans germline. PMID:27366893

  11. Calibrated Ancillary System (CAS) user's guide, volume 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Calibrated Ancillary System (CAS) provides real-time calibrated parameters from the orbiter downlink (ancillary data) to the Goddard Space Flight Center (GSFC). This user's guide contains the introduction to the equipment, operation, general procedures, and specific procedures of the CAS. Volume 1 includes a general overview of the CAS relationships with other equipment, physical design, and hardware and software subsystems. In addition, a description of the user levels and tasks, an introduction to CAS operation, and an outline of general operating procedures are included.

  12. Syncopation and the Score

    PubMed Central

    Song, Chunyang; Simpson, Andrew J. R.; Harte, Christopher A.; Pearce, Marcus T.; Sandler, Mark B.

    2013-01-01

    The score is a symbolic encoding that describes a piece of music, written according to the conventions of music theory, which must be rendered as sound (e.g., by a performer) before it may be perceived as music by the listener. In this paper we provide a step towards unifying music theory with music perception in terms of the relationship between notated rhythm (i.e., the score) and perceived syncopation. In our experiments we evaluated this relationship by manipulating the score, rendering it as sound and eliciting subjective judgments of syncopation. We used a metronome to provide explicit cues to the prevailing rhythmic structure (as defined in the time signature). Three-bar scores with time signatures of 4/4 and 6/8 were constructed using repeated one-bar rhythm-patterns, with each pattern built from basic half-bar rhythm-components. Our manipulations gave rise to various rhythmic structures, including polyrhythms and rhythms with missing strong- and/or down-beats. Listeners (N = 10) were asked to rate the degree of syncopation they perceived in response to a rendering of each score. We observed higher degrees of syncopation in time signatures of 6/8, for polyrhythms, and for rhythms featuring a missing down-beat. We also found that the location of a rhythm-component within the bar has a significant effect on perceived syncopation. Our findings provide new insight into models of syncopation and point the way towards areas in which the models may be improved. PMID:24040323

  13. Benchmarking of TALE- and CRISPR/dCas9-Based Transcriptional Regulators in Mammalian Cells for the Construction of Synthetic Genetic Circuits.

    PubMed

    Lebar, Tina; Jerala, Roman

    2016-10-21

    Transcriptional activator-like effector (TALE)- and CRISPR/Cas9-based designable recognition domains represent a technological breakthrough not only for genome editing but also for building designed genetic circuits. Both platforms are able to target rarely occurring DNA segments, even within complex genomes. TALE and dCas9 domains, genetically fused to transcriptional regulatory domains, can be used for the construction of engineered logic circuits. Here we benchmarked the performance of the two platforms, targeting the same DNA sequences, to compare their advantages for the construction of designed circuits in mammalian cells. Optimal targeting strands for repression and activation of dCas9-based designed transcription factors were identified; both platforms exhibited good orthogonality and were used to construct functionally complete NOR gates. Although the CRISPR/dCas9 system is clearly easier to construct, TALE-based activators were significantly stronger, and the TALE-based platform performed better, especially for the construction of layered circuits.

  14. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system.

    PubMed

    Liang, Zhen; Zhang, Kang; Chen, Kunling; Gao, Caixia

    2014-02-20

    Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems have emerged as powerful tools for genome editing in a variety of species. Here, we report, for the first time, targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. We designed five TALENs targeting 4 genes, namely ZmPDS, ZmIPK1A, ZmIPK, ZmMRP4, and obtained targeting efficiencies of up to 23.1% in protoplasts, and about 13.3% to 39.1% of the transgenic plants were somatic mutations. Also, we constructed two gRNAs targeting the ZmIPK gene in maize protoplasts, at frequencies of 16.4% and 19.1%, respectively. In addition, the CRISPR/Cas system induced targeted mutations in Z. mays protoplasts with efficiencies (13.1%) similar to those obtained with TALENs (9.1%). Our results show that both TALENs and the CRISPR/Cas system can be used for genome modification in maize.

  15. Applications of CRISPR/Cas9 for Gene Editing in Hereditary Movement Disorders

    PubMed Central

    Im, Wooseok; Moon, Jangsup; Kim, Manho

    2016-01-01

    Gene therapy is a potential therapeutic strategy for treating hereditary movement disorders, including hereditary ataxia, dystonia, Huntington’s disease, and Parkinson’s disease. Genome editing is a type of genetic engineering in which DNA is inserted, deleted or replaced in the genome using modified nucleases. Recently, clustered regularly interspaced short palindromic repeat/CRISPR associated protein 9 (CRISPR/Cas9) has been used as an essential tool in biotechnology. Cas9 is an RNA-guided DNA endonuclease enzyme that was originally associated with the adaptive immune system of Streptococcus pyogenes and is now being utilized as a genome editing tool to induce double strand breaks in DNA. CRISPR/Cas9 has advantages in terms of clinical applicability over other genome editing technologies such as zinc-finger nucleases and transcription activator-like effector nucleases because of easy in vivo delivery. Here, we review and discuss the applicability of CRISPR/Cas9 to preclinical studies or gene therapy in hereditary movement disorders. PMID:27667185

  16. Genome editing: the road of CRISPR/Cas9 from bench to clinic

    PubMed Central

    Eid, Ayman; Mahfouz, Magdy M

    2016-01-01

    Molecular scissors engineered for site-specific modification of the genome hold great promise for effective functional analyses of genes, genomes and epigenomes and could improve our understanding of the molecular underpinnings of disease states and facilitate novel therapeutic applications. Several platforms for molecular scissors that enable targeted genome engineering have been developed, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and, most recently, clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated-9 (Cas9). The CRISPR/Cas9 system's simplicity, facile engineering and amenability to multiplexing make it the system of choice for many applications. CRISPR/Cas9 has been used to generate disease models to study genetic diseases. Improvements are urgently needed for various aspects of the CRISPR/Cas9 system, including the system's precision, delivery and control over the outcome of the repair process. Here, we discuss the current status of genome engineering and its implications for the future of biological research and gene therapy. PMID:27741224

  17. Repurposing the CRISPR-Cas9 system for targeted DNA methylation

    PubMed Central

    Vojta, Aleksandar; Dobrinić, Paula; Tadić, Vanja; Bočkor, Luka; Korać, Petra; Julg, Boris; Klasić, Marija; Zoldoš, Vlatka

    2016-01-01

    Epigenetic studies relied so far on correlations between epigenetic marks and gene expression pattern. Technologies developed for epigenome editing now enable direct study of functional relevance of precise epigenetic modifications and gene regulation. The reversible nature of epigenetic modifications, including DNA methylation, has been already exploited in cancer therapy for remodeling the aberrant epigenetic landscape. However, this was achieved non-selectively using epigenetic inhibitors. Epigenetic editing at specific loci represents a novel approach that might selectively and heritably alter gene expression. Here, we developed a CRISPR-Cas9-based tool for specific DNA methylation consisting of deactivated Cas9 (dCas9) nuclease and catalytic domain of the DNA methyltransferase DNMT3A targeted by co–expression of a guide RNA to any 20 bp DNA sequence followed by the NGG trinucleotide. We demonstrated targeted CpG methylation in a ∼35 bp wide region by the fusion protein. We also showed that multiple guide RNAs could target the dCas9-DNMT3A construct to multiple adjacent sites, which enabled methylation of a larger part of the promoter. DNA methylation activity was specific for the targeted region and heritable across mitotic divisions. Finally, we demonstrated that directed DNA methylation of a wider promoter region of the target loci IL6ST and BACH2 decreased their expression. PMID:26969735

  18. Repurposing the CRISPR-Cas9 system for targeted DNA methylation.

    PubMed

    Vojta, Aleksandar; Dobrinić, Paula; Tadić, Vanja; Bočkor, Luka; Korać, Petra; Julg, Boris; Klasić, Marija; Zoldoš, Vlatka

    2016-07-08

    Epigenetic studies relied so far on correlations between epigenetic marks and gene expression pattern. Technologies developed for epigenome editing now enable direct study of functional relevance of precise epigenetic modifications and gene regulation. The reversible nature of epigenetic modifications, including DNA methylation, has been already exploited in cancer therapy for remodeling the aberrant epigenetic landscape. However, this was achieved non-selectively using epigenetic inhibitors. Epigenetic editing at specific loci represents a novel approach that might selectively and heritably alter gene expression. Here, we developed a CRISPR-Cas9-based tool for specific DNA methylation consisting of deactivated Cas9 (dCas9) nuclease and catalytic domain of the DNA methyltransferase DNMT3A targeted by co-expression of a guide RNA to any 20 bp DNA sequence followed by the NGG trinucleotide. We demonstrated targeted CpG methylation in a ∼35 bp wide region by the fusion protein. We also showed that multiple guide RNAs could target the dCas9-DNMT3A construct to multiple adjacent sites, which enabled methylation of a larger part of the promoter. DNA methylation activity was specific for the targeted region and heritable across mitotic divisions. Finally, we demonstrated that directed DNA methylation of a wider promoter region of the target loci IL6ST and BACH2 decreased their expression.

  19. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus.

    PubMed

    Ebina, Hirotaka; Misawa, Naoko; Kanemura, Yuka; Koyanagi, Yoshio

    2013-01-01

    Even though highly active anti-retroviral therapy is able to keep HIV-1 replication under control, the virus can lie in a dormant state within the host genome, known as a latent reservoir, and poses a threat to re-emerge at any time. However, novel technologies aimed at disrupting HIV-1 provirus may be capable of eradicating viral genomes from infected individuals. In this study, we showed the potential of the CRISPR/Cas9 system to edit the HIV-1 genome and block its expression. When LTR-targeting CRISPR/Cas9 components were transfected into HIV-1 LTR expression-dormant and -inducible T cells, a significant loss of LTR-driven expression was observed after stimulation. Sequence analysis confirmed that this CRISPR/Cas9 system efficiently cleaved and mutated LTR target sites. More importantly, this system was also able to remove internal viral genes from the host cell chromosome. Our results suggest that the CRISPR/Cas9 system may be a useful tool for curing HIV-1 infection.

  20. A new age in functional genomics using CRISPR/Cas9 in arrayed library screening

    PubMed Central

    Agrotis, Alexander; Ketteler, Robin

    2015-01-01

    CRISPR technology has rapidly changed the face of biological research, such that precise genome editing has now become routine for many labs within several years of its initial development. What makes CRISPR/Cas9 so revolutionary is the ability to target a protein (Cas9) to an exact genomic locus, through designing a specific short complementary nucleotide sequence, that together with a common scaffold sequence, constitute the guide RNA bridging the protein and the DNA. Wild-type Cas9 cleaves both DNA strands at its target sequence, but this protein can also be modified to exert many other functions. For instance, by attaching an activation domain to catalytically inactive Cas9 and targeting a promoter region, it is possible to stimulate the expression of a specific endogenous gene. In principle, any genomic region can be targeted, and recent efforts have successfully generated pooled guide RNA libraries for coding and regulatory regions of human, mouse and Drosophila genomes with high coverage, thus facilitating functional phenotypic screening. In this review, we will highlight recent developments in the area of CRISPR-based functional genomics and discuss potential future directions, with a special focus on mammalian cell systems and arrayed library screening. PMID:26442115

  1. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.)

    PubMed Central

    Ren, Chong; Liu, Xianju; Zhang, Zhan; Wang, Yi; Duan, Wei; Li, Shaohua; Liang, Zhenchang

    2016-01-01

    The type II clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 system (CRISPR/Cas9) has been successfully applied to edit target genes in multiple plant species. However, it remains unknown whether this system can be used for genome editing in grape. In this study, we described genome editing and targeted gene mutation in ‘Chardonnay’ suspension cells and plants via the CRISPR/Cas9 system. Two single guide RNAs (sgRNAs) were designed to target distinct sites of the L-idonate dehydrogenase gene (IdnDH). CEL I endonuclease assay and sequencing results revealed the expected indel mutations at the target site, and a mutation frequency of 100% was observed in the transgenic cell mass (CM) as well as corresponding regenerated plants with expression of sgRNA1/Cas9. The majority of the detected mutations in transgenic CM were 1-bp insertions, followed by 1- to 3-nucleotide deletions. Off-target activities were also evaluated by sequencing the potential off-target sites, and no obvious off-target events were detected. Our results demonstrated that the CRISPR/Cas9 system is an efficient and specific tool for precise genome editing in grape. PMID:27576893

  2. Applications of CRISPR/Cas9 for Gene Editing in Hereditary Movement Disorders.

    PubMed

    Im, Wooseok; Moon, Jangsup; Kim, Manho

    2016-09-01

    Gene therapy is a potential therapeutic strategy for treating hereditary movement disorders, including hereditary ataxia, dystonia, Huntington's disease, and Parkinson's disease. Genome editing is a type of genetic engineering in which DNA is inserted, deleted or replaced in the genome using modified nucleases. Recently, clustered regularly interspaced short palindromic repeat/CRISPR associated protein 9 (CRISPR/Cas9) has been used as an essential tool in biotechnology. Cas9 is an RNA-guided DNA endonuclease enzyme that was originally associated with the adaptive immune system of Streptococcus pyogenes and is now being utilized as a genome editing tool to induce double strand breaks in DNA. CRISPR/Cas9 has advantages in terms of clinical applicability over other genome editing technologies such as zinc-finger nucleases and transcription activator-like effector nucleases because of easy in vivo delivery. Here, we review and discuss the applicability of CRISPR/Cas9 to preclinical studies or gene therapy in hereditary movement disorders.

  3. Genome editing in rice and wheat using the CRISPR/Cas system.

    PubMed

    Shan, Qiwei; Wang, Yanpeng; Li, Jun; Gao, Caixia

    2014-10-01

    Targeted genome editing nucleases, such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), are powerful tools for understanding gene function and for developing valuable new traits in plants. The clustered regularly interspersed short palindromic repeats (CRISPR)/Cas system has recently emerged as an alternative nuclease-based method for efficient and versatile genome engineering. In this system, only the 20-nt targeting sequence within the single-guide RNA (sgRNA) needs to be changed to target different genes. The simplicity of the cloning strategy and the few limitations on potential target sites make the CRISPR/Cas system very appealing. Here we describe a stepwise protocol for the selection of target sites, as well as the design, construction, verification and use of sgRNAs for sequence-specific CRISPR/Cas-mediated mutagenesis and gene targeting in rice and wheat. The CRISPR/Cas system provides a straightforward method for rapid gene targeting within 1-2 weeks in protoplasts, and mutated rice plants can be generated within 13-17 weeks.

  4. A new age in functional genomics using CRISPR/Cas9 in arrayed library screening.

    PubMed

    Agrotis, Alexander; Ketteler, Robin

    2015-01-01

    CRISPR technology has rapidly changed the face of biological research, such that precise genome editing has now become routine for many labs within several years of its initial development. What makes CRISPR/Cas9 so revolutionary is the ability to target a protein (Cas9) to an exact genomic locus, through designing a specific short complementary nucleotide sequence, that together with a common scaffold sequence, constitute the guide RNA bridging the protein and the DNA. Wild-type Cas9 cleaves both DNA strands at its target sequence, but this protein can also be modified to exert many other functions. For instance, by attaching an activation domain to catalytically inactive Cas9 and targeting a promoter region, it is possible to stimulate the expression of a specific endogenous gene. In principle, any genomic region can be targeted, and recent efforts have successfully generated pooled guide RNA libraries for coding and regulatory regions of human, mouse and Drosophila genomes with high coverage, thus facilitating functional phenotypic screening. In this review, we will highlight recent developments in the area of CRISPR-based functional genomics and discuss potential future directions, with a special focus on mammalian cell systems and arrayed library screening.

  5. Tenth anniversary of CAS ONLINE service : What CAS services should be in the new era of chemical information

    NASA Astrophysics Data System (ADS)

    Kostakos, Charles N.

    Chemical Abstracts Service celebrated 10th anniversary of CAS online information service in 1990. A speech given on the occasion reviewed history of the CAS ONLINE, in relation to its most important benefits for scientists and engineers. The development of STN international, the network through which CAS ONLINE is accessible around the world, was also discussed in the speech. The CAS ONLINE now contains a wide variety of files relating to chemical field including CA file, Registry file. CA previews,. CASREACT, CIN. MARPAT, etc for supplying chemical information worldwide.

  6. Cas9 Variants Expand the Target Repertoire in Caenorhabditis elegans.

    PubMed

    Bell, Ryan T; Fu, Becky X H; Fire, Andrew Z

    2016-02-01

    The proliferation of CRISPR/Cas9-based methods in Caenorhabditis elegans has enabled efficient genome editing and precise genomic tethering of Cas9 fusion proteins. Experimental designs using CRISPR/Cas9 are currently limited by the need for a protospacer adjacent motif (PAM) in the target with the sequence NGG. Here we report the characterization of two modified Cas9 proteins in C. elegans that recognize NGA and NGCG PAMs. We found that each variant could stimulate homologous recombination with a donor template at multiple loci and that PAM specificity was comparable to that of wild-type Cas9. To directly compare effectiveness, we used CRISPR/Cas9 genome editing to generate a set of assay strains with a common single-guide RNA (sgRNA) target sequence, but that differ in the juxtaposed PAM (NGG, NGA, or NGCG). In this controlled setting, we determined that the NGA PAM Cas9 variant can be as effective as wild-type Cas9. We similarly edited a genomic target to study the influence of the base following the NGA PAM. Using four strains with four NGAN PAMs differing only at the fourth position and adjacent to the same sgRNA target, we observed that efficient homologous replacement was attainable with any base in the fourth position, with an NGAG PAM being the most effective. In addition to demonstrating the utility of two Cas9 mutants in C. elegans and providing reagents that permit CRISPR/Cas9 experiments with fewer restrictions on potential targets, we established a means to benchmark the efficiency of different Cas9::PAM combinations that avoids variations owing to differences in the sgRNA sequence.

  7. Recent Advances in Genome Editing Using CRISPR/Cas9

    PubMed Central

    Ding, Yuduan; Li, Hong; Chen, Ling-Ling; Xie, Kabin

    2016-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) system is a versatile tool for genome engineering that uses a guide RNA (gRNA) to target Cas9 to a specific sequence. This simple RNA-guided genome-editing technology has become a revolutionary tool in biology and has many innovative applications in different fields. In this review, we briefly introduce the Cas9-mediated genome-editing method, summarize the recent advances in CRISPR/Cas9 technology, and discuss their implications for plant research. To date, targeted gene knockout using the Cas9/gRNA system has been established in many plant species, and the targeting efficiency and capacity of Cas9 has been improved by optimizing its expression and that of its gRNA. The CRISPR/Cas9 system can also be used for sequence-specific mutagenesis/integration and transcriptional control of target genes. We also discuss off-target effects and the constraint that the protospacer-adjacent motif (PAM) puts on CRISPR/Cas9 genome engineering. To address these problems, a number of bioinformatic tools are available to help design specific gRNAs, and new Cas9 variants and orthologs with high fidelity and alternative PAM specificities have been engineered. Owing to these recent efforts, the CRISPR/Cas9 system is becoming a revolutionary and flexible tool for genome engineering. Adoption of the CRISPR/Cas9 technology in plant research would enable the investigation of plant biology at an unprecedented depth and create innovative applications in precise crop breeding. PMID:27252719

  8. The Relation between Factor Score Estimates, Image Scores, and Principal Component Scores

    ERIC Educational Resources Information Center

    Velicer, Wayne F.

    1976-01-01

    Investigates the relation between factor score estimates, principal component scores, and image scores. The three methods compared are maximum likelihood factor analysis, principal component analysis, and a variant of rescaled image analysis. (RC)

  9. Inhibition of long non-coding RNA UCA1 by CRISPR/Cas9 attenuated malignant phenotypes of bladder cancer.

    PubMed

    Zhen, Shuai; Hua, Ling; Liu, Yun-Hui; Sun, Xiao-Min; Jiang, Meng-Meng; Chen, Wei; Zhao, Le; Li, Xu

    2017-02-07

    CRISPR/Cas9 is a novel and effective genome editing technique, but its application is not widely expanded to manipulate long non-coding RNA (lncRNA) expression. The lncRNA urothelial carcinoma-associated 1 (UCA1) is upregulated in bladder cancer and promotes the progression of bladder cancer. Here, we design gRNAs specific to UCA1 and construct CRISPR/Cas9 systems targeting UCA1. Single CRISPR/Cas9-UCA1 can effectively inhibit UCA1 expression when transfected into 5637 and T24 bladder cancer cells, while the combined transfection of the two most effective CRISPR/Cas9-UCA1s can generate more satisfied inhibitory effect. CRISPR/Cas9-UCA1s attenuate UCA1 expression via targeted genome-specific DNA cleavage, resulting in the significant inhibition of cell proliferation, migration and invasion in vitro and in vivo. The mechanisms associated with the inhibitory effect of CRISPR/Cas9-UCA1 on malignant phenotypes of bladder cancer are attributed to the induction of cell cycle arrest at G1 phase, a substantial increase of apoptosis, and an enhanced activity of MMPs. Additionally, urinary UCA1 can be used as a non-invasive diagnostic marker for bladder cancer as revealed by a meta-analysis. Collectively, our data suggest that CRISPR/Cas9 technique can be used to down-modulate lncRNA expression, and urinary UCA1 may be used as a non-invasive marker for diagnosis of bladder cancer.

  10. Using CAS to Solve a Mathematics Task: A Deconstruction

    ERIC Educational Resources Information Center

    Berger, Margot

    2010-01-01

    I investigate how and whether a heterogeneous group of first-year university mathematics students in South Africa harness the potential power of a computer algebra system (CAS) when doing a specific mathematics task. In order to do this, I develop a framework for deconstructing a mathematics task requiring the use of CAS, into its primary…

  11. Calibrated Ancillary System (CAS) user's guide, volume 2

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Calibrated Ancillary System (CAS) provides real-time calibrated parameters from the orbiter downlink (ancillary data) to the Goddard Space Flight Center (GSFC). This user's guide contains the introduction to the equipment, operation, general procedures, and specific procedures of CAS. Volume 2 describes the central status and control (CSAC) procedures, supervisor procedures, and logging procedures.

  12. Calibrated Ancillary System (CAS) user's guide, volume 3

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Calibrated Ancillary System (CAS) provides real-time calibrated parameters from the orbiter downlink (ancillary data) to the Goddard Space Flight Center (GSFC). This user's guide contains the introduction to the equipment, operation, general procedures, and specific procedures of the CAS. Volume 3 describes logging and delogging procedures, real-time procedures, and error messages.

  13. Calibrated Ancillary System (CAS) user's guide, volume 8

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Calibrated Ancillary System (CAS) provides real-time calibrated parameters from the orbiter downlink (ancillary data) to the Goddard Space Flight Center (GSFC). This user's guide contains the introduction to the equipment, operation, general procedures, and specific procedures of CAS. Volume 8 describes procedures for invoking checkout software, file maintenance procedures, system manager procedures.

  14. Transformation of OODT CAS to Perform Larger Tasks

    NASA Technical Reports Server (NTRS)

    Mattmann, Chris; Freeborn, Dana; Crichton, Daniel; Hughes, John; Ramirez, Paul; Hardman, Sean; Woollard, David; Kelly, Sean

    2008-01-01

    A computer program denoted OODT CAS has been transformed to enable performance of larger tasks that involve greatly increased data volumes and increasingly intensive processing of data on heterogeneous, geographically dispersed computers. Prior to the transformation, OODT CAS (also alternatively denoted, simply, 'CAS') [wherein 'OODT' signifies 'Object-Oriented Data Technology' and 'CAS' signifies 'Catalog and Archive Service'] was a proven software component used to manage scientific data from spaceflight missions. In the transformation, CAS was split into two separate components representing its canonical capabilities: file management and workflow management. In addition, CAS was augmented by addition of a resource-management component. This third component enables CAS to manage heterogeneous computing by use of diverse resources, including high-performance clusters of computers, commodity computing hardware, and grid computing infrastructures. CAS is now more easily maintainable, evolvable, and reusable. These components can be used separately or, taking advantage of synergies, can be used together. Other elements of the transformation included addition of a separate Web presentation layer that supports distribution of data products via Really Simple Syndication (RSS) feeds, and provision for full Resource Description Framework (RDF) exports of metadata.

  15. Reaction to Indispensable Manual Calculation Skills in a CAS Environment.

    ERIC Educational Resources Information Center

    Monaghan, John

    2001-01-01

    Reacts to an article published in a previous issue of this journal on the effects of graphing calculators and computer algebra systems (CAS) on students' manual calculation and algebraic manipulation skills. Considers the contribution made by Jean-Baptiste Lagrange to thinking about the role of CAS in teaching algebra. (ASK)

  16. 48 CFR 9903.201-2 - Types of CAS coverage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Receive a single CAS-covered contract award of $50 million or more; or (2) Received $50 million or more in... business unit receives a single CAS-covered contract award of $50 million or more, that contract must be... institution that operate as independent organizational entities under the auspices of the parent...

  17. From Calculus to Dynamical Systems through DGS and CAS

    ERIC Educational Resources Information Center

    García, Jeanett López; Zamudio, Jorge Javier Jiménez

    2015-01-01

    Several factors have motivated the use of CAS or DGS in the teaching-learning process, such as: the development of new technologies, the availability of computers, and the widespread use of the Internet, among others. Even more, the trend to include CAS and DGS in the curricula of some undergraduate studies has resulted in the instruction of the…

  18. Teaching Undergraduate Mathematics Using CAS Technology: Issues and Prospects

    ERIC Educational Resources Information Center

    Tobin, Patrick C.; Weiss, Vida

    2016-01-01

    The use of handheld CAS technology in undergraduate mathematics courses in Australia is paradoxically shrinking under sustained disapproval or disdain from the professional mathematics community. Mathematics education specialists argue with their mathematics colleagues over a range of issues in course development and this use of CAS or even…

  19. Not only the Sugar, Early infarct sign, hyperDense middle cerebral artery, Age, Neurologic deficit score but also atrial fibrillation is predictive for symptomatic intracranial hemorrhage after intravenous recombinant tissue plasminogen activator

    PubMed Central

    Muengtaweepongsa, Sombat; Prapa-Anantachai, Pornpoj; Dharmasaroja, Pornpat A.

    2017-01-01

    Background: Symptomatic intracranial hemorrhage (sICH) is the most unwanted adverse event in patients with acute ischemic stroke who received intravenous recombinant tissue plasminogen activator (i.v. rt-PA). Many tool scores are available to predict the probability of sICH. Among those scores, the Sugar, Early infarct sign, hyperDense middle cerebral artery, Age, Neurologic deficit (SEDAN) gives the highest area under the curve-receiver operating characteristic value. Objective: We aimed to examine any factors other than the SEDAN score to predict the probability of sICH. Methods: Patients with acute ischemic stroke treated with i.v. rt-PA within 4.5 h time window from January 2010 to July 2012 were evaluated. Compiling demographic data, risk factors, and comorbidity (hypertension, diabetes mellitus, dyslipidemia, atrial fibrillation (AF), ischemic heart disease, valvular heart disease, previous stroke, gout, smoking cigarette, drinking alcoholic beverage, family history of stroke, and family history of ischemic heart disease), computed tomography scan of patients prior to treatment with rt-PA, and assessing the National Institutes of Health Stroke Scale (NIHSS) score for the purpose of calculating SEDAN score were analyzed. Results: Of 314 patients treated with i.v. rt-PA, there were 46 ICH cases (14.6%) with 14 sICH (4.4%) and 32 asymptomatic intracranial hemorrhage cases (10.2%). The rate of sICH occurrence was increased in accordance with the increase in the SEDAN score and AF. Age over 75 years, early infarction, hyperdense cerebral artery, baseline blood sugar more than 12 mmol/l, NIHSS as 10 or more, and AF were the risk factors to develop sICH after treated with rt-PA at 1.535, 2.501, 1.093, 1.276, 1.253, and 2.492 times, respectively. Conclusions: Rather than the SEDAN score, AF should be a predictor of sICH in patients with acute ischemic stroke after i.v. rt-PA treatment in Thai population. PMID:28149081

  20. Interstellar extinction toward the Cas OB6 association: Where is the dust?

    NASA Technical Reports Server (NTRS)

    Hanson, Margaret Murray; Clayton, Geoffrey C.

    1993-01-01

    We have completed a multiband (ultraviolet, optical, and near-infrared) study of the interstellar extinction properties of nine massive stars in IC 1805 and IC 1848, which are both part of Cas OB6 in the Perseus spiral arm. Our analysis includes determination of absolute extinction over the wavelength range from 3 micrometers to 1250 A. We have attempted to distinguish between foreground dust and dust local to Cas OB6. This is done by quantitatively comparing extinction laws of the least reddened sightlines (sampling mostly foreground dust) versus the most reddened sightlines (sampling a larger fraction of the dust in the Cas OB6 region). We have combined previous investigations to better understand the evolution of the interstellar medium in this active star forming region. We found no variation of extinction curve behavior between moderately reddend and heavily reddened Cas OB6 stars. None of the curves show any significant deviation from the Cardelli-Clayton-Mathis (CCM) R(sub upsilon)-dependent extinction. They are all consistent with that seen from diffuse dust. Most or all of the dust along the line of sight may be foreground to Cas OB6. Massive star forming regions can show significant deviations from CCM behavior which have been attributed to processing of the dust grains. Any dust local to the association must exist far from the hot stars in IC 1805 and IC 1848. A previous episode of star formation may have already cleared out the region of most of the gas and dust. Evidence for this can be seen in H I and IRAS data of the region.

  1. Cas9-mediated targeting of viral RNA in eukaryotic cells.

    PubMed

    Price, Aryn A; Sampson, Timothy R; Ratner, Hannah K; Grakoui, Arash; Weiss, David S

    2015-05-12

    Clustered, regularly interspaced, short palindromic repeats-CRISPR associated (CRISPR-Cas) systems are prokaryotic RNA-directed endonuclease machineries that act as an adaptive immune system against foreign genetic elements. Using small CRISPR RNAs that provide specificity, Cas proteins recognize and degrade nucleic acids. Our previous work demonstrated that the Cas9 endonuclease from Francisella novicida (FnCas9) is capable of targeting endogenous bacterial RNA. Here, we show that FnCas9 can be directed by an engineered RNA-targeting guide RNA to target and inhibit a human +ssRNA virus, hepatitis C virus, within eukaryotic cells. This work reveals a versatile and portable RNA-targeting system that can effectively function in eukaryotic cells and be programmed as an antiviral defense.

  2. Cas9-mediated targeting of viral RNA in eukaryotic cells

    PubMed Central

    Price, Aryn A.; Sampson, Timothy R.; Ratner, Hannah K.; Grakoui, Arash; Weiss, David S.

    2015-01-01

    Clustered, regularly interspaced, short palindromic repeats–CRISPR associated (CRISPR-Cas) systems are prokaryotic RNA-directed endonuclease machineries that act as an adaptive immune system against foreign genetic elements. Using small CRISPR RNAs that provide specificity, Cas proteins recognize and degrade nucleic acids. Our previous work demonstrated that the Cas9 endonuclease from Francisella novicida (FnCas9) is capable of targeting endogenous bacterial RNA. Here, we show that FnCas9 can be directed by an engineered RNA-targeting guide RNA to target and inhibit a human +ssRNA virus, hepatitis C virus, within eukaryotic cells. This work reveals a versatile and portable RNA-targeting system that can effectively function in eukaryotic cells and be programmed as an antiviral defense. PMID:25918406

  3. Diversity and evolution of class 2 CRISPR-Cas systems.

    PubMed

    Shmakov, Sergey; Smargon, Aaron; Scott, David; Cox, David; Pyzocha, Neena; Yan, Winston; Abudayyeh, Omar O; Gootenberg, Jonathan S; Makarova, Kira S; Wolf, Yuri I; Severinov, Konstantin; Zhang, Feng; Koonin, Eugene V

    2017-03-01

    Class 2 CRISPR-Cas systems are characterized by effector modules that consist of a single multidomain protein, such as Cas9 or Cpf1. We designed a computational pipeline for the discovery of novel class 2 variants and used it to identify six new CRISPR-Cas subtypes. The diverse properties of these new systems provide potential for the development of versatile tools for genome editing and regulation. In this Analysis article, we present a comprehensive census of class 2 types and class 2 subtypes in complete and draft bacterial and archaeal genomes, outline evolutionary scenarios for the independent origin of different class 2 CRISPR-Cas systems from mobile genetic elements, and propose an amended classification and nomenclature of CRISPR-Cas.

  4. On the role of β-cyanoalanine synthase (CAS) in metabolism of free cyanide and ferri-cyanide by rice seedlings.

    PubMed

    Yu, Xiao-Zhang; Lu, Peng-Cheng; Yu, Zhen

    2012-03-01

    A study was conducted to investigate the contribution of β-cyanoalanine synthase (CAS) to the botanical metabolism of free cyanide and iron cyanides. Seedlings of rice (Oryza sativa L. cv. XZX 45) were grown hydroponically and then amended with free cyanide (KCN) or ferri-cyanide [K(3)Fe(CN)(6)] into the growth media. Total cyanide, free cyanide, and Fe(3+)/Fe(2+) in aqueous solution were analyzed to identify the speciation of K(3)Fe(CN)(6). Activity of CAS in different parts of the rice seedlings was also assayed in vivo and results indicated that dissociation of K(3)Fe(CN)(6) to free cyanide in solution was negligible. Almost all of the applied KCN was removed by rice seedlings and the metabolic rates were concentration dependent. Phyto-transport of K(3)Fe(CN)(6) was apparent, but appreciable amounts of cyanide were recovered in plant tissues. The metabolic rates of K(3)Fe(CN)(6) were also positively correlated to the concentrations supplied. Rice seedlings exposed to KCN showed a considerable increase in the CAS activity and roots had higher CAS activity than shoots, indicating that CAS plays an important role in the botanical assimilation of KCN. However, no measurable change of CAS activity in different parts of rice seedlings exposed to K(3)Fe(CN)(6) was detected, suggesting that K(3)Fe(CN)(6) is likely metabolized by rice directly through an unknown pathway rather than the β-cyanoalanine pathway.

  5. Scoring Dawg Core Breakoff and Retention Mechanism

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Backes, Paul G.

    2011-01-01

    This novel core break-off and retention mechanism consists of a scoring dawg controlled by a set of two tubes (a drill tube and an inner tube). The drill tube and the inner tube have longitudinal concentric holes. The solution can be implemented in an eccentric tube configuration as well where the tubes have eccentric longitudinal holes. The inner tube presents at the bottom two control surfaces for controlling the orientation of the scoring dawg. The drill tube presents a sunk-in profile on the inside of the wall for housing the scoring dawg. The inner tube rotation relative to the drill tube actively controls the orientation of the scoring dawg and hence its penetration and retrieval from the core. The scoring dawg presents a shaft, two axially spaced arms, and a tooth. The two arms slide on the control surfaces of the inner tube. The tooth, when rotated, can penetrate or be extracted from the core. During drilling, the two tubes move together maintaining the scoring dawg completely outside the core. After the desired drilling depth has been reached the inner tube is rotated relative to the drill tube such that the tooth of the scoring dawg moves toward the central axis. By rotating the drill tube, the scoring dawg can score the core and so reduce its cross sectional area. The scoring dawg can also act as a stress concentrator for breaking the core in torsion or tension. After breaking the core, the scoring dawg can act as a core retention mechanism. For scoring, it requires the core to be attached to the rock. If the core is broken, the dawg can be used as a retention mechanism. The scoring dawg requires a hard-tip insert like tungsten carbide for scoring hard rocks. The relative rotation of the two tubes can be controlled manually or by an additional actuator. In the implemented design solution the bit rotation for scoring was in the same direction as the drilling. The device was tested for limestone cores and basalt cores. The torque required for breaking the

  6. Implementing the CAS Standards: The Implementation of the CAS Standards in Student Affairs as a Comprehensive Assessment Approach

    ERIC Educational Resources Information Center

    Dorman, Jesse A.

    2012-01-01

    The increasing use of the CAS standards as a comprehensive assessment approach in divisions of student affairs necessitates a more in-depth understanding of how the CAS standards are being implemented in these settings. In response to increasing calls for improvement, accountability and professionalism in student affairs (Bresciani, 2006; Cooper…

  7. Synthetic CRISPR RNA-Cas9–guided genome editing in human cells

    PubMed Central

    Rahdar, Meghdad; McMahon, Moira A.; Prakash, Thazha P.; Swayze, Eric E.; Bennett, C. Frank; Cleveland, Don W.

    2015-01-01

    Genome editing with the clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 nuclease system is a powerful technology for manipulating genomes, including introduction of gene disruptions or corrections. Here we develop a chemically modified, 29-nucleotide synthetic CRISPR RNA (scrRNA), which in combination with unmodified transactivating crRNA (tracrRNA) is shown to functionally replace the natural guide RNA in the CRISPR-Cas9 nuclease system and to mediate efficient genome editing in human cells. Incorporation of rational chemical modifications known to protect against nuclease digestion and stabilize RNA–RNA interactions in the tracrRNA hybridization region of CRISPR RNA (crRNA) yields a scrRNA with enhanced activity compared with the unmodified crRNA and comparable gene disruption activity to the previously published single guide RNA. Taken together, these findings provide a platform for therapeutic applications, especially for nervous system disease, using successive application of cell-permeable, synthetic CRISPR RNAs to activate and then silence Cas9 nuclease activity. PMID:26589814

  8. Synthetic CRISPR RNA-Cas9-guided genome editing in human cells.

    PubMed

    Rahdar, Meghdad; McMahon, Moira A; Prakash, Thazha P; Swayze, Eric E; Bennett, C Frank; Cleveland, Don W

    2015-12-22

    Genome editing with the clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 nuclease system is a powerful technology for manipulating genomes, including introduction of gene disruptions or corrections. Here we develop a chemically modified, 29-nucleotide synthetic CRISPR RNA (scrRNA), which in combination with unmodified transactivating crRNA (tracrRNA) is shown to functionally replace the natural guide RNA in the CRISPR-Cas9 nuclease system and to mediate efficient genome editing in human cells. Incorporation of rational chemical modifications known to protect against nuclease digestion and stabilize RNA-RNA interactions in the tracrRNA hybridization region of CRISPR RNA (crRNA) yields a scrRNA with enhanced activity compared with the unmodified crRNA and comparable gene disruption activity to the previously published single guide RNA. Taken together, these findings provide a platform for therapeutic applications, especially for nervous system disease, using successive application of cell-permeable, synthetic CRISPR RNAs to activate and then silence Cas9 nuclease activity.

  9. Target motifs affecting natural immunity by a constitutive CRISPR-Cas system in Escherichia coli.

    PubMed

    Almendros, Cristóbal; Guzmán, Noemí M; Díez-Villaseñor, César; García-Martínez, Jesús; Mojica, Francisco J M

    2012-01-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated (cas) genes conform the CRISPR-Cas systems of various bacteria and archaea and produce degradation of invading nucleic acids containing sequences (protospacers) that are complementary to repeat intervening spacers. It has been demonstrated that the base sequence identity of a protospacer with the cognate spacer and the presence of a protospacer adjacent motif (PAM) influence CRISPR-mediated interference efficiency. By using an original transformation assay with plasmids targeted by a resident spacer here we show that natural CRISPR-mediated immunity against invading DNA occurs in wild type Escherichia coli. Unexpectedly, the strongest activity is observed with protospacer adjoining nucleotides (interference motifs) that differ from the PAM both in sequence and location. Hence, our results document for the first time native CRISPR activity in E. coli and demonstrate that positions next to the PAM in invading DNA influence their recognition and degradation by these prokaryotic immune systems.

  10. Booker T. Washington. Kindergarten-Third Grade Activity. Schools of California Online Resources for Education (SCORE): Connecting California's Classrooms to the World.

    ERIC Educational Resources Information Center

    Wahe, Amy

    This illustrated activity for primary students features the life and accomplishments of Booker T. Washington. This educator began his life as a plantation slave and later founded Tuskegee Institute, one of the first colleges that African Americans could attend. The activity tells how Booker T. Washington and his students built the Tuskegee…

  11. [CRISPR/Cas9-based genome editing systems and the analysis of targeted genome mutations in plants].

    PubMed

    Xingliang, Ma; Yaoguang, Liu

    2016-02-01

    Targeted genomic editing technologies use programmable DNA nucleases to cleave genomic target sites, thus inducing targeted mutations in the genomes. The newly prevailed clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system that consists of the Cas9 nuclease and single guide RNA (sgRNA) has the advantages of simplicity and high efficiency as compared to other programmable DNA nuclease systems such as zinc finger nucleases (ZFNs) and transcription activator like effector nucleases (TALENs). Currently, a number of cases have been reported on the application of the CRISPR/Cas9 genomic editing technology in plants. In this review, we summarize the strategies for preparing the Cas9 and sgRNA expression constructs, the transformation method for obtaining targeted mutations, the efficiency and features of the resulting mutations and the methods for detecting or genotyping of the mutation sites. We also discuss the existing problems and perspectives of CRISPR/Cas9-based genomic editing in plants.

  12. CRISPR-Cas9D10A nickase-based genotypic and phenotypic screening to enhance genome editing

    PubMed Central

    Chiang, Ting-Wei Will; le Sage, Carlos; Larrieu, Delphine; Demir, Mukerrem; Jackson, Stephen P.

    2016-01-01

    The RNA-guided Cas9 nuclease is being widely employed to engineer the genomes of various cells and organisms. Despite the efficient mutagenesis induced by Cas9, off-target effects have raised concerns over the system’s specificity. Recently a “double-nicking” strategy using catalytic mutant Cas9D10A nickase has been developed to minimise off-target effects. Here, we describe a Cas9D10A-based screening approach that combines an All-in-One Cas9D10A nickase vector with fluorescence-activated cell sorting enrichment followed by high-throughput genotypic and phenotypic clonal screening strategies to generate isogenic knockouts and knock-ins highly efficiently, with minimal off-target effects. We validated this approach by targeting genes for the DNA-damage response (DDR) proteins MDC1, 53BP1, RIF1 and P53, plus the nuclear architecture proteins Lamin A/C, in three different human cell lines. We also efficiently obtained biallelic knock-in clones, using single-stranded oligodeoxynucleotides as homologous templates, for insertion of an EcoRI recognition site at the RIF1 locus and introduction of a point mutation at the histone H2AFX locus to abolish assembly of DDR factors at sites of DNA double-strand breaks. This versatile screening approach should facilitate research aimed at defining gene functions, modelling of cancers and other diseases underpinned by genetic factors, and exploring new therapeutic opportunities. PMID:27079678

  13. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion.

    PubMed

    Shimatani, Zenpei; Kashojiya, Sachiko; Takayama, Mariko; Terada, Rie; Arazoe, Takayuki; Ishii, Hisaki; Teramura, Hiroshi; Yamamoto, Tsuyoshi; Komatsu, Hiroki; Miura, Kenji; Ezura, Hiroshi; Nishida, Keiji; Ariizumi, Tohru; Kondo, Akihiko

    2017-03-27

    We applied a fusion of CRISPR-Cas9 and activation-induced cytidine deaminase (Target-AID) for point mutagenesis at genomic regions specified by single guide RNAs (sgRNAs) in two crop plants. In rice, we induced multiple herbicide-resistance point mutations by multiplexed editing using herbicide selection, while in tomato we generated marker-free plants with homozygous heritable DNA substitutions, demonstrating the feasibility of base editing for crop improvement.

  14. [Scoring--criteria for operability].

    PubMed

    Oestern, H J

    1997-01-01

    For therapeutic recommendations three different kinds of scores are essential: 1. The severity scores for trauma; 2. Severity scores for mangled extremities; 3. Intensive care scores. The severity of polytrauma patients is measurable by the AIS, ISS, RTS, PTS and TRISS which is a combination of RTS, ISS, age, and mechanism of injury. For mangled extremities there are also different scores available: MESI (Mangled Extremity Syndrome Index) and MESS (Mangled Extremity Severity Score). The aim of these scores is to assist in the indication with regard to amputate or to save the extremity. These scoring indices can be used to evaluate the severity of a systemic inflammatory reaction syndrome with respect to multiple organ failure. All scores are dynamic values which are variable with improvement of therapy.

  15. Pilomatricome: étude de 22 cas

    PubMed Central

    Nasreddine, Fatima Zahra; Hali, Fouzia; Chiheb, Soumiya

    2016-01-01

    Le pilomatricome est une tumeur cutanée fréquente et bénigne du follicule pileux chez l'enfant. C'est une tumeur annexielle souvent méconnue et confondue avec d'autres lésions cutanées. Les localisations habituelles sont la tête et le cou. Le but de ce travail est de rapporter une série de 22 cas comportant des formes inhabituelles colligées au service de dermatologie sur une période allant de Janvier 2006 jusqu'au Mai 2015. L’étude a concerné 16 femmes et 6 hommes. La moyenne d’âge était de 23,3 ans (4-80 ans). La localisation cervico faciale a été observée dans 12 cas, 2 patients avaient des localisations multiples, un garçon de 4ans avait une localisation au niveau fronto-temporal et une fillette de 14 ans avait une localisation au niveau du visage et de l'avant-bras, et un patient de 48 ans avait une localisation sous unguéale. L'aspect clinique était typique dans tous les cas avec des nodules sous cutanés de consistance pierreuse. Tous les patients ont bénéficié d'une exérèse des nodules sous anesthésie locale. L’étude histologique était en faveur d'un épithélioma momifié de Malherbe d'exérèse complète sans signes de malignité. Aucun patient n'a présenté de rechute. L'originalité de notre étude réside dans la présence de localisations exceptionnelles au niveau latéro-vertébral, des membres et sous-unguéale, l’âge de survenue inhabituel à 80 ans et la présence de localisations multiples signalées chez 2 enfants. PMID:27516819

  16. Crystal Structure of Streptococcus pyogenes Cas1 and Its Interaction with Csn2 in the Type II CRISPR-Cas System.

    PubMed

    Ka, Donghyun; Lee, Hasup; Jung, Yi-Deun; Kim, Kyunggon; Seok, Chaok; Suh, Nayoung; Bae, Euiyoung

    2016-01-05

    CRISPRs and Cas proteins constitute an RNA-guided microbial immune system against invading nucleic acids. Cas1 is a universal Cas protein found in all three types of CRISPR-Cas systems, and its role is implicated in new spacer acquisition during CRISPR-mediated adaptive immunity. Here, we report the crystal structure of Streptococcus pyogenes Cas1 (SpCas1) in a type II CRISPR-Cas system and characterize its interaction with S. pyogenes Csn2 (SpCsn2). The SpCas1 structure reveals a unique conformational state distinct from type I Cas1 structures, resulting in a more extensive dimerization interface, a more globular overall structure, and a disruption of potential metal-binding sites for catalysis. We demonstrate that SpCas1 directly interacts with SpCsn2, and identify the binding interface and key residues for Cas complex formation. These results provide structural information for a type II Cas1 protein, and lay a foundation for studying multiprotein Cas complexes functioning in type II CRISPR-Cas systems.

  17. Chloroplast-mediated regulation of CO2-concentrating mechanism by Ca2+-binding protein CAS in the green alga Chlamydomonas reinhardtii

    PubMed Central

    Wang, Lianyong; Yamano, Takashi; Takane, Shunsuke; Niikawa, Yuki; Toyokawa, Chihana; Ozawa, Shin-ichiro; Tokutsu, Ryutaro; Takahashi, Yuichiro; Minagawa, Jun; Kanesaki, Yu; Yoshikawa, Hirofumi; Fukuzawa, Hideya

    2016-01-01

    Aquatic photosynthetic organisms, including the green alga Chlamydomonas reinhardtii, induce a CO2-concentrating mechanism (CCM) to maintain photosynthetic activity in CO2-limiting conditions by sensing environmental CO2 and light availability. Previously, a novel high-CO2–requiring mutant, H82, defective in the induction of the CCM, was isolated. A homolog of calcium (Ca2+)-binding protein CAS, originally found in Arabidopsis thaliana, was disrupted in H82 cells. Although Arabidopsis CAS is reported to be associated with stomatal closure or immune responses via a chloroplast-mediated retrograde signal, the relationship between a Ca2+ signal and the CCM associated with the function of CAS in an aquatic environment is still unclear. In this study, the introduction of an intact CAS gene into H82 cells restored photosynthetic affinity for inorganic carbon, and RNA-seq analyses revealed that CAS could function in maintaining the expression levels of nuclear-encoded CO2-limiting–inducible genes, including the HCO3– transporters high-light activated 3 (HLA3) and low-CO2–inducible gene A (LCIA). CAS changed its localization from dispersed across the thylakoid membrane in high-CO2 conditions or in the dark to being associated with tubule-like structures in the pyrenoid in CO2-limiting conditions, along with a significant increase of the fluorescent signals of the Ca2+ indicator in the pyrenoid. Chlamydomonas CAS had Ca2+-binding activity, and the perturbation of intracellular Ca2+ homeostasis by a Ca2+-chelator or calmodulin antagonist impaired the accumulation of HLA3 and LCIA. These results suggest that Chlamydomonas CAS is a Ca2+-mediated regulator of CCM-related genes via a retrograde signal from the pyrenoid in the chloroplast to the nucleus. PMID:27791081

  18. Check the score: Field validation of Street Smart Walk Score in Alberta, Canada.

    PubMed

    Nykiforuk, Candace I J; McGetrick, Jennifer Ann; Crick, Katelynn; Johnson, Jeffrey A

    2016-12-01

    Walk Score® is a proprietary walkability metric that ranks locations by proximity to destinations, with emerging health promotion applications for increasing walking as physical activity. Currently, field validations of Walk Score® have only occurred in metropolitan regions of the United States; moreover, many studies employ an earlier Walk Score® version utilizing straight line distance. To address this gap, we conducted a field validation of the newest, network-based metric for three municipal types along a rural-urban continuum in Alberta, Canada. In 2015, using street-level systematic observations collected in Bonnyville, Medicine Hat, and North Central Edmonton in 2008 (part of the Community Health and the Built Environment (CHBE) project), we reverse engineered 2181 scores with the network Walk Score® algorithm. We computed means, 95% confidence intervals, and t-tests (α = 0.05) for both sets of scores. Applying the Clifford-Richardson adjustment for spatial autocorrelation, we calculated Spearman's Rank Correlation Coefficients (rho, rs) and adjusted p-values to measure the strength of association between the derived scores and original network scores provided by Walk Score®. Spearman's rho for scores were very high for Bonnyville (rs = 0.950, adjusted p < 0.001), and high for Medicine Hat (rs = 0.790, adjusted p < 0.001) and North Central Edmonton (rs = 0.763, adjusted p < 0.001). High to very high correlations between derived scores and Walk Scores® field validated this metric across small, medium, and large population centres in Alberta, Canada. However, we suggest caution in interpreting Walk Score® for planning and evaluating health promotion interventions, since the strength of association between destinations and walking may vary across different municipal types.

  19. High Efficiency, Homology-Directed Genome Editing in Caenorhabditis elegans Using CRISPR-Cas9 Ribonucleoprotein Complexes

    PubMed Central

    Paix, Alexandre; Folkmann, Andrew; Rasoloson, Dominique; Seydoux, Geraldine

    2015-01-01

    Homology-directed repair (HDR) of breaks induced by the RNA-programmed nuclease Cas9 has become a popular method for genome editing in several organisms. Most HDR protocols rely on plasmid-based expression of Cas9 and the gene-specific guide RNAs. Here we report that direct injection of in vitro–assembled Cas9-CRISPR RNA (crRNA) trans-activating crRNA (tracrRNA) ribonucleoprotein complexes into the gonad of Caenorhabditis elegans yields HDR edits at a high frequency. Building on our earlier finding that PCR fragments with 35-base homology are efficient repair templates, we developed an entirely cloning-free protocol for the generation of seamless HDR edits without selection. Combined with the co-CRISPR method, this protocol is sufficiently robust for use with low-efficiency guide RNAs and to generate complex edits, including ORF replacement and simultaneous tagging of two genes with fluorescent proteins. PMID:26187122

  20. High Efficiency, Homology-Directed Genome Editing in Caenorhabditis elegans Using CRISPR-Cas9 Ribonucleoprotein Complexes.

    PubMed

    Paix, Alexandre; Folkmann, Andrew; Rasoloson, Dominique; Seydoux, Geraldine

    2015-09-01

    Homology-directed repair (HDR) of breaks induced by the RNA-programmed nuclease Cas9 has become a popular method for genome editing in several organisms. Most HDR protocols rely on plasmid-based expression of Cas9 and the gene-specific guide RNAs. Here we report that direct injection of in vitro-assembled Cas9-CRISPR RNA (crRNA) trans-activating crRNA (tracrRNA) ribonucleoprotein complexes into the gonad of Caenorhabditis elegans yields HDR edits at a high frequency. Building on our earlier finding that PCR fragments with 35-base homology are efficient repair templates, we developed an entirely cloning-free protocol for the generation of seamless HDR edits without selection. Combined with the co-CRISPR method, this protocol is sufficiently robust for use with low-efficiency guide RNAs and to generate complex edits, including ORF replacement and simultaneous tagging of two genes with fluorescent proteins.

  1. Conjugation and Evaluation of Triazole‐Linked Single Guide RNA for CRISPR‐Cas9 Gene Editing

    PubMed Central

    He, Kaizhang; Chou, Eldon T.; Begay, Shawn; Anderson, Emily M.

    2016-01-01

    Abstract The CRISPR‐Cas9 gene editing system requires Cas9 endonuclease and guide RNAs (either the natural dual RNA consisting of crRNA and tracrRNA or a chimeric single guide RNA) that direct site‐specific double‐stranded DNA cleavage. This communication describes a click ligation approach that uses alkyne–azide cycloaddition to generate a triazole‐linked single guide RNA (sgRNA). The conjugated sgRNA shows efficient and comparable genome editing activity to natural dual RNA and unmodified sgRNA constructs. PMID:27441384

  2. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9.

    PubMed

    Li, Chang; Guan, Xinmeng; Du, Tao; Jin, Wei; Wu, Biao; Liu, Yalan; Wang, Ping; Hu, Bodan; Griffin, George E; Shattock, Robin J; Hu, Qinxue

    2015-08-01

    CCR5 serves as an essential coreceptor for human immunodeficiency virus type 1 (HIV-1) entry, and individuals with a CCR5(Δ32) variant appear to be healthy, making CCR5 an attractive target for control of HIV-1 infection. The CRISPR/Cas9, which functions as a naturally existing adaptive immune system in prokaryotes, has been recently harnessed as a novel nuclease system for genome editing in mammalian cells. Although CRISPR/Cas9 can be readily delivered into cell lines, due to the large size of the Cas9 protein, efficient delivery of CCR5-targeting CRISPR/Cas9 components into primary cells, including CD4(+) T-cells, the primary target for HIV-1 infection in vivo, remains a challenge. In the current study, following design of a panel of top-ranked single-guided RNAs (sgRNAs) targeting the ORF of CCR5, we demonstrate that CRISPR/Cas9 can efficiently mediate the editing of the CCR5 locus in cell lines, resulting in the knockout of CCR5 expression on the cell surface. Next-generation sequencing revealed that various mutations were introduced around the predicted cleavage site of CCR5. For each of the three most effective sgRNAs that we analysed, no significant off-target effects were detected at the 15 top-scoring potential sites. More importantly, by constructing chimeric Ad5F35 adenoviruses carrying CRISPR/Cas9 components, we efficiently transduced primary CD4(+) T-lymphocytes and disrupted CCR5 expression, and the positively transduced cells were conferred with HIV-1 resistance. To our knowledge, this is the first study establishing HIV-1 resistance in primary CD4(+) T-cells utilizing adenovirus-delivered CRISPR/Cas9.

  3. CRISPR/Cas9 Based Genome Editing of Penicillium chrysogenum.

    PubMed

    Pohl, C; Kiel, J A K W; Driessen, A J M; Bovenberg, R A L; Nygård, Y

    2016-07-15

    CRISPR/Cas9 based systems have emerged as versatile platforms for precision genome editing in a wide range of organisms. Here we have developed powerful CRISPR/Cas9 tools for marker-based and marker-free genome modifications in Penicillium chrysogenum, a model filamentous fungus and industrially relevant cell factory. The developed CRISPR/Cas9 toolbox is highly flexible and allows editing of new targets with minimal cloning efforts. The Cas9 protein and the sgRNA can be either delivered during transformation, as preassembled CRISPR-Cas9 ribonucleoproteins (RNPs) or expressed from an AMA1 based plasmid within the cell. The direct delivery of the Cas9 protein with in vitro synthesized sgRNA to the cells allows for a transient method for genome engineering that may rapidly be applicable for other filamentous fungi. The expression of Cas9 from an AMA1 based vector was shown to be highly efficient for marker-free gene deletions.

  4. Automated Essay Scoring versus Human Scoring: A Comparative Study

    ERIC Educational Resources Information Center

    Wang, Jinhao; Brown, Michelle Stallone

    2007-01-01

    The current research was conducted to investigate the validity of automated essay scoring (AES) by comparing group mean scores assigned by an AES tool, IntelliMetric [TM] and human raters. Data collection included administering the Texas version of the WriterPlacer "Plus" test and obtaining scores assigned by IntelliMetric [TM] and by…

  5. Definition of True Score Appropriate for Estimated True Scores

    ERIC Educational Resources Information Center

    Stanley, Julian C.

    1970-01-01

    It is shown that all obtained scores must meet the requirements for classical test-score theory with respect to definitions of true scores and errors of measurement if that frame of reference is to yield valid variance errors of measurement. (DG)

  6. Relationship of Apgar Scores and Bayley Mental and Motor Scores

    ERIC Educational Resources Information Center

    Serunian, Sally A.; Broman, Sarah H.

    1975-01-01

    Examined the relationship of newborns' 1-minute Apgar scores to their 8-month Bayley mental and motor scores and to 8-month classifications of their development as normal, suspect, or abnormal. Also investigated relationships between Apgar scores and race, longevity, and birth weight. (JMB)

  7. HPCCP/CAS Workshop Proceedings 1998

    NASA Technical Reports Server (NTRS)

    Schulbach, Catherine; Mata, Ellen (Editor); Schulbach, Catherine (Editor)

    1999-01-01

    This publication is a collection of extended abstracts of presentations given at the HPCCP/CAS (High Performance Computing and Communications Program/Computational Aerosciences Project) Workshop held on August 24-26, 1998, at NASA Ames Research Center, Moffett Field, California. The objective of the Workshop was to bring together the aerospace high performance computing community, consisting of airframe and propulsion companies, independent software vendors, university researchers, and government scientists and engineers. The Workshop was sponsored by the HPCCP Office at NASA Ames Research Center. The Workshop consisted of over 40 presentations, including an overview of NASA's High Performance Computing and Communications Program and the Computational Aerosciences Project; ten sessions of papers representative of the high performance computing research conducted within the Program by the aerospace industry, academia, NASA, and other government laboratories; two panel sessions; and a special presentation by Mr. James Bailey.

  8. Adaptation in CRISPR-Cas Systems.

    PubMed

    Sternberg, Samuel H; Richter, Hagen; Charpentier, Emmanuelle; Qimron, Udi

    2016-03-17

    Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins constitute an adaptive immune system in prokaryotes. The system preserves memories of prior infections by integrating short segments of foreign DNA, termed spacers, into the CRISPR array in a process termed adaptation. During the past 3 years, significant progress has been made on the genetic requirements and molecular mechanisms of adaptation. Here we review these recent advances, with a focus on the experimental approaches that have been developed, the insights they generated, and a proposed mechanism for self- versus non-self-discrimination during the process of spacer selection. We further describe the regulation of adaptation and the protein players involved in this fascinating process that allows bacteria and archaea to harbor adaptive immunity.

  9. Tumeur de Frantz: deux nouveaux cas

    PubMed Central

    Bellarbi, Salma; Sina, Mohamed; Jahid, Ahmed; Zouaidia, Fouad; Bernoussi, Zakia; Mahassini, Najat

    2013-01-01

    A travers cet article, nous détaillons les caractéristiques clinico-pathologiques et discutons l'histogenèse de la tumeur de Frantz. Deux patients opérés pour tumeur de Frantz. Ils ont eu un traitement chirurgical seul. L'étude morphologique était couplée à un examen immuno-histochimique (IHC) utilisant les anticorps anti CD10, anti- vimentine, anti-énolase neuronale spécifique (NSE), anti-synaptophysine, anti-chromogranine A et anti-cytokératine. Un immuno-marquage à l'anti-oestrogène et l'anti-progestérone a été réalisé dans un cas. Il s'agissait d'une femme âgée de 45ans et d'un garçon de 12 ans. Les aspects échographiques et scannographiques étaient non spécifiques. Une exérèse chirurgicale complète a été réalisée dans les deux cas. L'analyse histologique évoquait une tumeur de Frantz. Le diagnostic a été retenu après étude immuno-histohimique. L'évolution était favorable sans récidive avec respectivement un recul de 18 et 16 mois. La tumeur de Frantz est une entité rare. Son diagnostic repose sur l'examen anatomopathologique complété par l'étude immuno-histochimique. Son pronostic est excellent après résection chirurgicale. PMID:23503717

  10. CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani

    PubMed Central

    Zhang, Wen-Wei

    2015-01-01

    ABSTRACT The prokaryotic CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9, an RNA-guided endonuclease, has been shown to mediate efficient genome editing in a wide variety of organisms. In the present study, the CRISPR-Cas9 system has been adapted to Leishmania donovani, a protozoan parasite that causes fatal human visceral leishmaniasis. We introduced the Cas9 nuclease into L. donovani and generated guide RNA (gRNA) expression vectors by using the L. donovani rRNA promoter and the hepatitis delta virus (HDV) ribozyme. It is demonstrated within that L. donovani mainly used homology-directed repair (HDR) and microhomology-mediated end joining (MMEJ) to repair the Cas9 nuclease-created double-strand DNA break (DSB). The nonhomologous end-joining (NHEJ) pathway appears to be absent in L. donovani. With this CRISPR-Cas9 system, it was possible to generate knockouts without selection by insertion of an oligonucleotide donor with stop codons and 25-nucleotide homology arms into the Cas9 cleavage site. Likewise, we disrupted and precisely tagged endogenous genes by inserting a bleomycin drug selection marker and GFP gene into the Cas9 cleavage site. With the use of Hammerhead and HDV ribozymes, a double-gRNA expression vector that further improved gene-targeting efficiency was developed, and it was used to make precise deletion of the 3-kb miltefosine transporter gene (LdMT). In addition, this study identified a novel single point mutation caused by CRISPR-Cas9 in LdMT (M381T) that led to miltefosine resistance, a concern for the only available oral antileishmanial drug. Together, these results demonstrate that the CRISPR-Cas9 system represents an effective genome engineering tool for L. donovani. PMID:26199327

  11. 205 PRODUCTION OF Cas9-EXPRESSING CATTLE USING DNA TRANSPOSON.

    PubMed

    Hahn, S-E; Yum, S-Y; Lee, S-J; Lee, C-I; Kim, H-S; Kim, H-J; Choi, W-J; Lee, J-H; Jang, G

    2016-01-01

    A genome-editing technology, CRISPR/Cas9 system is proved to be a powerful tool for knockout and knock-in in various species. When 2 components [Cas9 and single guide (sg) RNA] are delivered into cells or embryos, the events of gene editing occur. Because Cas9 is essential for every gene editing based on the CRISPR/Cas9 system, some studies reported that efficiency of gene editing would be increased as Cas9 was integrated into cells or animals. Accordingly, if the Cas9-expressing cattle is born, it would be broadly used for gene editing in cattle. For this study, the Cas9 and RFP genes were cloned into the PiggyBac transposon system. PiggyBac-Cas9-RFP and transposase were microinjected into 1436 IVF embryos and 241 blastocysts were formed. Blastocysts with RFP expression accounted for 14.1% of total formed blastocysts. Five blastocysts were selected and transferred into 5 recipient cow (1 embryo per recipient). After gestation periods, 4 transgenic cattle were delivered without any veterinary assistance. From transgenic cattle, ear skin tissue was collected for primary culture. On those primary cells, sgRNA in DNA form for various genes such as PRNP, RB1, and BLG were transfected with 2μg of sgRNA per 5×10(5) cells using electroporation. As expected, every group of each sgRNA delivered was confirmed to be mutated by T7E1 assay. The data demonstrated that, for the first time, transgenic cattle with Cas9 expression were born, grown up to date (age=5 months) and will be a valuable resource for genome editing in cattle.

  12. Programmable RNA recognition and cleavage by CRISPR/Cas9.

    PubMed

    O'Connell, Mitchell R; Oakes, Benjamin L; Sternberg, Samuel H; East-Seletsky, Alexandra; Kaplan, Matias; Doudna, Jennifer A

    2014-12-11

    The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA-DNA complementarity to identify target sites for sequence-specific double-stranded DNA (dsDNA) cleavage. In its native context, Cas9 acts on DNA substrates exclusively because both binding and catalysis require recognition of a short DNA sequence, known as the protospacer adjacent motif (PAM), next to and on the strand opposite the twenty-nucleotide target site in dsDNA. Cas9 has proven to be a versatile tool for genome engineering and gene regulation in a large range of prokaryotic and eukaryotic cell types, and in whole organisms, but it has been thought to be incapable of targeting RNA. Here we show that Cas9 binds with high affinity to single-stranded RNA (ssRNA) targets matching the Cas9-associated guide RNA sequence when the PAM is presented in trans as a separate DNA oligonucleotide. Furthermore, PAM-presenting oligonucleotides (PAMmers) stimulate site-specific endonucleolytic cleavage of ssRNA targets, similar to PAM-mediated stimulation of Cas9-catalysed DNA cleavage. Using specially designed PAMmers, Cas9 can be specifically directed to bind or cut RNA targets while avoiding corresponding DNA sequences, and we demonstrate that this strategy enables the isolation of a specific endogenous messenger RNA from cells. These results reveal a fundamental connection between PAM binding and substrate selection by Cas9, and highlight the utility of Cas9 for programmable transcript recognition without the need for tags.

  13. In vivo Editing of the Human Mutant Rhodopsin Gene by Electroporation of Plasmid-based CRISPR/Cas9 in the Mouse Retina

    PubMed Central

    Latella, Maria Carmela; Di Salvo, Maria Teresa; Cocchiarella, Fabienne; Benati, Daniela; Grisendi, Giulia; Comitato, Antonella; Marigo, Valeria; Recchia, Alessandra

    2016-01-01

    The bacterial CRISPR/Cas system has proven to be an efficient tool for genetic manipulation in various organisms. Here we show the application of CRISPR-Cas9 technology to edit the human Rhodopsin (RHO) gene in a mouse model for autosomal dominant Retinitis Pigmentosa. We designed single or double sgRNAs to knock-down mutant RHO expression by targeting exon 1 of the RHO gene carrying the P23H dominant mutation. By delivering Cas9 and sgRNAs in a single plasmid we induced an efficient gene editing in vitro, in HeLa cells engineered to constitutively express the P23H mutant RHO allele. Similarly, after subretinal electroporation of the CRISPR/Cas9 plasmid expressing two sgRNAs into P23H RHO transgenic mice, we scored specific gene editing as well as significant reduction of the mutant RHO protein. Successful in vivo application of the CRISPR/Cas9 system confirms its efficacy as a genetic engineering tool in photoreceptor cells. PMID:27874856

  14. Grossesse intra murale à propos d'un cas

    PubMed Central

    de Tové, Kofi-Mensa Savi; Salifou, Kabibou; Imorou, Rachidi Sidi; Biaou, Olivier; Boco, Vicentia

    2015-01-01

    La grossesse intra-murale est la variété la plus rare de grossesse extra-utérine. Il s'agit de la localisation de l’œuf dans l’épaisseur du myomètre. En cas de retard diagnostic, l’évolution peut être catastrophique avec rupture utérine et hémorragie cataclysmique. L’échographie permet dans certains cas un diagnostic pré opératoire. Les auteurs rapportent un cas survenu chez une patiente aux antécédents de curetage. PMID:26448812

  15. Orbital period determination in an eclipsing dwarf nova HT Cas

    NASA Astrophysics Data System (ADS)

    Bąkowska, Karolina; Olech, Arkadiusz

    2014-09-01

    HT Cassiopeiae was discovered over seventy years ago (Hoffmeister 1943). Unfortunately, for 35 years this object did not receive any attention, until the eclipses of HT Cas were observed by Bond. After a first analysis, Patterson (1981) called HT Cas "a Rosetta stone among dwarf novae". Since then, the literature on this star is still growing, reaching several dozens of publications. We present an orbital period determination of HT Cas during the November 2010 super-outburst, but also during a longer time span, to check its stability.

  16. Olympic Scoring of English Compositions

    ERIC Educational Resources Information Center

    Follman, John; Panther, Edward

    1974-01-01

    Examines empirically the efficacy of utilizing Olympic diving and gymnastic scoring systems for grading graduate students' English compositions. Results indicated that such scoring rules do not produce ratings different in reliability or in level from conventional letter grades. (ED)

  17. On The Factor Score Controversy

    ERIC Educational Resources Information Center

    Green, Bert F. Jr.

    1976-01-01

    A summary and interpretation of the recent literature on the indeterminancy of factor scores is given in simple terms. A good index of factor score determinancy is the squared multiple correlation of the factor with the observed variables. (Author)

  18. The Ancient World Explorer: Space Invaders, Copycats or Independent Inventors? Sixth Grade Activity. Schools of California Online Resources for Education (SCORE): Connecting California's Classrooms to the World.

    ERIC Educational Resources Information Center

    Benoit, Ty

    When archaeologists dig up the artifacts of ancient civilizations, they make discoveries and attempt to find out what life was like for ancient people. Students in the classroom explore the civilizations of the ancient world attempting to answer questions about how people lived thousands of years ago. In this activity for grade 6, students, in…

  19. Using Momentary Time Sampling to Estimate Minutes of Physical Activity in Physical Education: Validation of Scores for the System for Observing Fitness Instruction Time

    ERIC Educational Resources Information Center

    Heath, Edward M.; Coleman, Karen J.; Lensegrav, Tera L.; Fallon, Jennifer A.

    2006-01-01

    The System for Observing Fitness Instruction Time (SOFIT) is a direct observation system specifically developed for use during physical education (PE; McKenzie, 1991; McKenzie, Sallis, & Nader, 1991). The purpose of this study was to validate the estimates of time spent in various physical activity intensities obtained with the paper and pencil…

  20. An Adventure to the New World. Fifth Grade Activity. Schools of California Online Resources for Education (SCORE): Connecting California's Classrooms to the World.

    ERIC Educational Resources Information Center

    Boilon, Susan

    This activity plan for fifth graders posits that the student is an agent for the King and Queen and are authorized to make a journey to the New World on behalf of the kingdom. The mission is to claim all land for the monarchy, locate a new trading route across the ocean, look for the Northwest Passage, and bring back gold, silver, spices, new…

  1. Arctic Animals of Alaska. First Grade Activity. Schools of California Online Resources for Education (SCORE): Connecting California's Classrooms to the World.

    ERIC Educational Resources Information Center

    Boe, Sandra

    The Arctic is covered with ice and snow for most of the year. Animals that live in Alaska's arctic region must be able to survive long winters and very cold temperatures. Surprisingly, many animals live in the harsh, cold climate. This first-grade activity plan helps students learn about the animals of the far north. The plan gives six steps for…

  2. Study of Eclipsing Binary and Multiple Systems in OB Associations IV: Cas OB6 Member DN Cas

    NASA Astrophysics Data System (ADS)

    Bakış, V.; Bakış, H.; Bilir, S.; Eker, Z.

    2016-09-01

    An early-type, massive, short-period (Porb=2d.310951) eclipsing spectroscopic binary DN Cas has been re-visited with new spectral and photometric data. The masses and radii of the components have been obtained as M1=19.04± 0.07 M⊙, M2=13.73± 0.05 M⊙ and R1=7.22± 0.06 R⊙, R2=5.79± 0.06 R⊙, respectively. Both components present synchronous rotation (Vrot1=160 km s-1, Vrot2=130 km s-1) with their orbit. Orbital period analysis yielded a physically bound additional component in the system with a minimum mass of M3=0.88 M⊙ orbiting in an eccentric orbit (e = 0.37 ± 0.2) with an orbital period of P 12 = 42 ± 9 yr. High precision absolute parameters of the system allowed us to derive a distance to DN Cas as 1.7 ± 0.2 kpc which locates the system within the borders of the Cas OB6 association (d = 1.8 kpc). The space velocities and the age of DN Cas are in agreement with those of Cas OB6. The age of DN Cas (τ = 3-5 Myr) is found to be 1-2 Myr older than the embedded clusters (IC 1795, IC 1805, and IC 1848) in the Cas OB6 association, which implies a sequential star formation in the association.

  3. Genetic screens and functional genomics using CRISPR/Cas9 technology.

    PubMed

    Hartenian, Ella; Doench, John G

    2015-04-01

    Functional genomics attempts to understand the genome by perturbing the flow of information from DNA to RNA to protein, in order to learn how gene dysfunction leads to disease. CRISPR/Cas9 technology is the newest tool in the geneticist's toolbox, allowing researchers to edit DNA with unprecedented ease, speed and accuracy, and representing a novel means to perform genome-wide genetic screens to discover gene function. In this review, we first summarize the discovery and characterization of CRISPR/Cas9, and then compare it to other genome engineering technologies. We discuss its initial use in screening applications, with a focus on optimizing on-target activity and minimizing off-target effects. Finally, we comment on future challenges and opportunities afforded by this technology.

  4. The possible evidence of the non-linear particle acceleration in Cas A from Planck data

    NASA Astrophysics Data System (ADS)

    Urošević, Dejan

    2015-08-01

    Arnaud et al. (2014, arXiv:1409.5746) have recently published their microwave survey Of Galactic supernova remnants by using results of observations made by Planck telescope. The high frequency radio data obtained by Planck reveal obvious concave up form of spectrum of Galactic supernova remnant (SNR) Cas A. It is expected form of spectrum if non-linear diffuse shock acceleration (DSA) process is active. The radio spectral index (the flux density Sν ˜ ν -α ) of Cas A at low and middle frequencies (< 30 GHz) has value α = 0.77. At higher frequencies (between 30 GHz and 353 GHz) this spectral index becomes flatter, α ˜ 0.6. Under assumption of the test particle DSA, as the first approximation, the corresponding compression ratio should increase from 3 (α = 0.77) to 3.5 (α = 0.6). This represents a possible observational evidence for the existence of a modified shock wave.

  5. The CRISPR/Cas9 system for plant genome editing and beyond.

    PubMed

    Bortesi, Luisa; Fischer, Rainer

    2015-01-01

    Targeted genome editing using artificial nucleases has the potential to accelerate basic research as well as plant breeding by providing the means to modify genomes rapidly in a precise and predictable manner. Here we describe the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system, a recently developed tool for the introduction of site-specific double-stranded DNA breaks. We highlight the strengths and weaknesses of this technology compared with two well-established genome editing platforms: zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). We summarize recent results obtained in plants using CRISPR/Cas9 technology, discuss possible applications in plant breeding and consider potential future developments.

  6. Developmental Sentence Scoring for Japanese

    ERIC Educational Resources Information Center

    Miyata, Susanne; MacWhinney, Brian; Otomo, Kiyoshi; Sirai, Hidetosi; Oshima-Takane, Yuriko; Hirakawa, Makiko; Shirai, Yasuhiro; Sugiura, Masatoshi; Itoh, Keiko

    2013-01-01

    This article reports on the development and use of the Developmental Sentence Scoring for Japanese (DSSJ), a new morpho-syntactical measure for Japanese constructed after the model of Lee's English Developmental Sentence Scoring model. Using this measure, the authors calculated DSSJ scores for 84 children divided into six age groups between 2;8…

  7. Line Lengths and Starch Scores.

    ERIC Educational Resources Information Center

    Moriarty, Sandra E.

    1986-01-01

    Investigates readability of different line lengths in advertising body copy, hypothesizing a normal curve with lower scores for shorter and longer lines, and scores above the mean for lines in the middle of the distribution. Finds support for lower scores for short lines and some evidence of two optimum line lengths rather than one. (SKC)

  8. You Score With Nutrition

    ERIC Educational Resources Information Center

    Dow, Ruth McNabb

    1976-01-01

    The leader's guide and student activity booklet contain learning activities, ideas, information, games, and resources for nutrition instruction designed to appeal to the interests of teens and pre-teens and to improve their knowledge of nutrition and their eating habits. (MS)

  9. Genomic Access to Monarch Migration Using TALEN and CRISPR/Cas9-Mediated Targeted Mutagenesis.

    PubMed

    Markert, Matthew J; Zhang, Ying; Enuameh, Metewo S; Reppert, Steven M; Wolfe, Scot A; Merlin, Christine

    2016-04-07

    The eastern North American monarch butterfly, Danaus plexippus, is an emerging model system to study the neural, molecular, and genetic basis of animal long-distance migration and animal clockwork mechanisms. While genomic studies have provided new insight into migration-associated and circadian clock genes, the general lack of simple and versatile reverse-genetic methods has limited in vivo functional analysis of candidate genes in this species. Here, we report the establishment of highly efficient and heritable gene mutagenesis methods in the monarch butterfly using transcriptional activator-like effector nucleases (TALENs) and CRISPR-associated RNA-guided nuclease Cas9 (CRISPR/Cas9). Using two clock gene loci, cryptochrome 2 and clock (clk), as candidates, we show that both TALENs and CRISPR/Cas9 generate high-frequency nonhomologous end-joining (NHEJ)-mediated mutations at targeted sites (up to 100%), and that injecting fewer than 100 eggs is sufficient to recover mutant progeny and generate monarch knockout lines in about 3 months. Our study also genetically defines monarch CLK as an essential component of the transcriptional activation complex of the circadian clock. The methods presented should not only greatly accelerate functional analyses of many aspects of monarch biology, but are also anticipated to facilitate the development of these tools in other nontraditional insect species as well as the development of homology-directed knock-ins.

  10. Genomic Access to Monarch Migration Using TALEN and CRISPR/Cas9-Mediated Targeted Mutagenesis

    PubMed Central

    Markert, Matthew J.; Zhang, Ying; Enuameh, Metewo S.; Reppert, Steven M.; Wolfe, Scot A.; Merlin, Christine

    2016-01-01

    The eastern North American monarch butterfly, Danaus plexippus, is an emerging model system to study the neural, molecular, and genetic basis of animal long-distance migration and animal clockwork mechanisms. While genomic studies have provided new insight into migration-associated and circadian clock genes, the general lack of simple and versatile reverse-genetic methods has limited in vivo functional analysis of candidate genes in this species. Here, we report the establishment of highly efficient and heritable gene mutagenesis methods in the monarch butterfly using transcriptional activator-like effector nucleases (TALENs) and CRISPR-associated RNA-guided nuclease Cas9 (CRISPR/Cas9). Using two clock gene loci, cryptochrome 2 and clock (clk), as candidates, we show that both TALENs and CRISPR/Cas9 generate high-frequency nonhomologous end-joining (NHEJ)-mediated mutations at targeted sites (up to 100%), and that injecting fewer than 100 eggs is sufficient to recover mutant progeny and generate monarch knockout lines in about 3 months. Our study also genetically defines monarch CLK as an essential component of the transcriptional activation complex of the circadian clock. The methods presented should not only greatly accelerate functional analyses of many aspects of monarch biology, but are also anticipated to facilitate the development of these tools in other nontraditional insect species as well as the development of homology-directed knock-ins. PMID:26837953

  11. TALEN and CRISPR/Cas Genome Editing Systems: Tools of Discovery

    PubMed Central

    Nemudryi, A. A.; Valetdinova, K. R.; Medvedev, S. P.; Zakian, S. M.

    2014-01-01

    Precise studies of plant, animal and human genomes enable remarkable opportunities of obtained data application in biotechnology and medicine. However, knowing nucleotide sequences isn’t enough for understanding of particular genomic elements functional relationship and their role in phenotype formation and disease pathogenesis. In post-genomic era methods allowing genomic DNA sequences manipulation, visualization and regulation of gene expression are rapidly evolving. Though, there are few methods, that meet high standards of efficiency, safety and accessibility for a wide range of researchers. In 2011 and 2013 novel methods of genome editing appeared – this are TALEN (Transcription Activator-Like Effector Nucleases) and CRISPR (Clustered Regulatory Interspaced Short Palindromic Repeats)/Cas9 systems. Although TALEN and CRISPR/Cas9 appeared recently, these systems have proved to be effective and reliable tools for genome engineering. Here we generally review application of these systems for genome editing in conventional model objects of current biology, functional genome screening, cell-based human hereditary disease modeling, epigenome studies and visualization of cellular processes. Additionally, we review general strategies for designing TALEN and CRISPR/Cas9 and analyzing their activity. We also discuss some obstacles researcher can face using these genome editing tools. PMID:25349712

  12. Editing plant genomes with CRISPR/Cas9.

    PubMed

    Belhaj, Khaoula; Chaparro-Garcia, Angela; Kamoun, Sophien; Patron, Nicola J; Nekrasov, Vladimir

    2015-04-01

    CRISPR/Cas9 is a rapidly developing genome editing technology that has been successfully applied in many organisms, including model and crop plants. Cas9, an RNA-guided DNA endonuclease, can be targeted to specific genomic sequences by engineering a separately encoded guide RNA with which it forms a complex. As only a short RNA sequence must be synthesized to confer recognition of a new target, CRISPR/Cas9 is a relatively cheap and easy to implement technology that has proven to be extremely versatile. Remarkably, in some plant species, homozygous knockout mutants can be produced in a single generation. Together with other sequence-specific nucleases, CRISPR/Cas9 is a game-changing technology that is poised to revolutionise basic research and plant breeding.

  13. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity.

    PubMed

    Barrangou, Rodolphe; Marraffini, Luciano A

    2014-04-24

    Clustered regularly interspaced short palindromic repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing and can be repurposed for numerous DNA targeting applications including transcriptional control.

  14. 48 CFR 9903.201-1 - CAS applicability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... following categories of contracts and subcontracts are exempt from all CAS requirements: (1) Sealed bid... subcontracts awarded on the basis of adequate price competition without submission of cost or pricing data....

  15. Engineering the Caenorhabditis elegans genome with CRISPR/Cas9.

    PubMed

    Waaijers, Selma; Boxem, Mike

    2014-08-01

    The development in early 2013 of CRISPR/Cas9-based genome engineering promises to dramatically advance our ability to alter the genomes of model systems at will. A single, easily produced targeting RNA guides the Cas9 endonuclease to a specific DNA sequence where it creates a double strand break. Imprecise repair of the break can yield mutations, while homologous recombination with a repair template can be used to effect specific changes to the genome. The tremendous potential of this system led several groups to independently adapt it for use in Caenorhabditiselegans, where it was successfully used to generate mutations and to create tailored genome changes through homologous recombination. Here, we review the different approaches taken to adapt CRISPR/Cas9 for C. elegans, and provide practical guidelines for CRISPR/Cas9-based genome engineering.

  16. 48 CFR 970.3002-1 - CAS applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Cost Accounting Standards Administration 970.3002-1 CAS applicability. The provisions of 48 CFR part 30 and 48 CFR chapter 99 (FAR Appendix)...

  17. The structural biology of CRISPR-Cas systems.

    PubMed

    Jiang, Fuguo; Doudna, Jennifer A

    2015-02-01

    Prokaryotic CRISPR-Cas genomic loci encode RNA-mediated adaptive immune systems that bear some functional similarities with eukaryotic RNA interference. Acquired and heritable immunity against bacteriophage and plasmids begins with integration of ∼30 base pair foreign DNA sequences into the host genome. CRISPR-derived transcripts assemble with CRISPR-associated (Cas) proteins to target complementary nucleic acids for degradation. Here we review recent advances in the structural biology of these targeting complexes, with a focus on structural studies of the multisubunit Type I CRISPR RNA-guided surveillance and the Cas9 DNA endonuclease found in Type II CRISPR-Cas systems. These complexes have distinct structures that are each capable of site-specific double-stranded DNA binding and local helix unwinding.

  18. Striking Plasticity of CRISPR-Cas9 and Key Role of Non-target DNA, as Revealed by Molecular Simulations

    PubMed Central

    2016-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system recently emerged as a transformative genome-editing technology that is innovating basic bioscience and applied medicine and biotechnology. The endonuclease Cas9 associates with a guide RNA to match and cleave complementary sequences in double stranded DNA, forming an RNA:DNA hybrid and a displaced non-target DNA strand. Although extensive structural studies are ongoing, the conformational dynamics of Cas9 and its interplay with the nucleic acids during association and DNA cleavage are largely unclear. Here, by employing multi-microsecond time scale molecular dynamics, we reveal the conformational plasticity of Cas9 and identify key determinants that allow its large-scale conformational changes during nucleic acid binding and processing. We show how the “closure” of the protein, which accompanies nucleic acid binding, fundamentally relies on highly coupled and specific motions of the protein domains, collectively initiating the prominent conformational changes needed for nucleic acid association. We further reveal a key role of the non-target DNA during the process of activation of the nuclease HNH domain, showing how the nontarget DNA positioning triggers local conformational changes that favor the formation of a catalytically competent Cas9. Finally, a remarkable conformational plasticity is identified as an intrinsic property of the HNH domain, constituting a necessary element that allows for the HNH repositioning. These novel findings constitute a reference for future experimental studies aimed at a full characterization of the dynamic features of the CRISPR-Cas9 system, and—more importantly—call for novel structure engineering efforts that are of fundamental importance for the rational design of new genome-engineering applications. PMID:27800559

  19. Increasing Score Reliability with Item-Pattern Scoring: An Empirical Study in Several Score Metrics.

    ERIC Educational Resources Information Center

    Yen, Wendy M.; Candell, Gregory L.

    Reliabilities are compared for two types of test score data: number correct, and item response patterns. Item-pattern scoring using three-parameter item response theory takes into account how many and which items a student answers correctly. This procedure theoretically results in greater reliability than does number-correct scoring. Empirical…

  20. Calibrated Ancillary System (CAS) user's guide, volume 7

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Calibrated Ancillary System (CAS) provides real-time calibrated parameters from the orbiter downlink (ancillary data) to the Goddard Space Flight Center (GSFC). This user's guide contains the introduction to the equipment, operation, general procedures, and specific procedures of CAS. Volume 7 describes the data flow engineer (DFE) user mission planning procedures which include instructions for processing the SDT/TDT (shuttle data tape/telemetry descriptor tape).

  1. Calibrated Ancillary System (CAS) user's guide, volume 5

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Calibrated Ancillary System (CAS) provides real-time parameters from the orbiter downlink (ancillary data) to the Goddard Space Flight Center (GSFC). This user's guide contains the introduction to the equipment, operation, general procedures, and specific procedures of CAS. Volume 5 describes the testing user mission planning procedures including the bulletin board system and ancillary products procedures. Instructions for viewing the SDT/TDT (shuttle data tape/telemetry descriptor tape) data base and the file management menu are also given.

  2. Calibrated Ancillary System (CAS) user's guide, volume 6

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Calibrated Ancillary System (CAS) provides real-time calibrated parameters from the orbiter downlink (ancillary data) to the Goddard Space Flight Center (GSFC). This user's guide contains the introduction to the equipment, operation, general procedures, and specific procedures of CAS. Volume 6 describes ancillary products procedures, enhancement menu and processing task procedures for SDT/TDT (shuttle data tape/telemetry descriptor tape), database errors and network data driver (NDD) product menu procedures, and utility menu procedures.

  3. Calibrated Ancillary System (CAS) user's guide, volume 4

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Calibrated Ancillary System (CAS) provides real-time calibrated parameters from the orbiter downlink (ancillary data) to the Goddard Space Flight Center (GSFC). This user's guide contains the introduction to the equipment, operation, general procedures, and specific procedures of the CAS. Volume 4 presents the GSFC user mission planning procedures covering the mission planning main menu, bulletin board system, ancillary products menu, utility menu procedures, and ancillary support files procedures.

  4. Attacking HIV-1 RNA versus DNA by sequence-specific approaches: RNAi versus CRISPR-Cas.

    PubMed

    Herrera-Carrillo, Elena; Berkhout, Ben

    2016-10-15

    Human immunodeficiency virus type 1 (HIV-1) infection can be effectively controlled by potent antiviral drugs, but this never results in a cure. The patient should therefore take these drugs for the rest of his/her life, which can cause drug-resistance and adverse effects. Therefore, more durable therapeutic strategies should be considered, such as a stable gene therapy to protect the target T cells against HIV-1 infection. The development of potent therapeutic regimens based on the RNA interference (RNAi) and clustered regularly interspaced short palindromic repeats (CRISPR-Cas) mechanisms will be described, which can be delivered by lentiviral vectors. These mechanisms attack different forms of the viral genome, the RNA and DNA, respectively, but both mechanisms act in a strictly sequence-specific manner. Early RNAi experiments demonstrated profound virus inhibition, but also indicated that viral escape is possible. Such therapy failure can be prevented by the design of a combinatorial RNAi attack on the virus and this gene therapy is currently being tested in a preclinical humanized mouse model. Recent CRISPR-Cas studies also document robust virus inhibition, but suggest a novel viral escape route that is induced by the cellular nonhomologous end joining DNA repair pathway, which is activated by CRISPR-Cas-induced DNA breaks. We will compare these two approaches for durable HIV-1 suppression and discuss the respective advantages and disadvantages. The potential for future clinical applications will be described.

  5. Efficient Genome Editing in Apple Using a CRISPR/Cas9 system

    PubMed Central

    Nishitani, Chikako; Hirai, Narumi; Komori, Sadao; Wada, Masato; Okada, Kazuma; Osakabe, Keishi; Yamamoto, Toshiya; Osakabe, Yuriko

    2016-01-01

    Genome editing is a powerful technique for genome modification in molecular research and crop breeding, and has the great advantage of imparting novel desired traits to genetic resources. However, the genome editing of fruit tree plantlets remains to be established. In this study, we describe induction of a targeted gene mutation in the endogenous apple phytoene desaturase (PDS) gene using the CRISPR/Cas9 system. Four guide RNAs (gRNAs) were designed and stably transformed with Cas9 separately in apple. Clear and partial albino phenotypes were observed in 31.8% of regenerated plantlets for one gRNA, and bi-allelic mutations in apple PDS were confirmed by DNA sequencing. In addition, an 18-bp gRNA also induced a targeted mutation. These CRIPSR/Cas9 induced-mutations in the apple genome suggest activation of the NHEJ pathway, but with some involvement also of the HR pathway. Our results demonstrate that genome editing can be practically applied to modify the apple genome. PMID:27530958

  6. A CRISPR-Cas9 sex-ratio distortion system for genetic control

    PubMed Central

    Galizi, Roberto; Hammond, Andrew; Kyrou, Kyros; Taxiarchi, Chrysanthi; Bernardini, Federica; O’Loughlin, Samantha M.; Papathanos, Philippos-Aris; Nolan, Tony; Windbichler, Nikolai; Crisanti, Andrea

    2016-01-01

    Genetic control aims to reduce the ability of insect pest populations to cause harm via the release of modified insects. One strategy is to bias the reproductive sex ratio towards males so that a population decreases in size or is eliminated altogether due to a lack of females. We have shown previously that sex ratio distortion can be generated synthetically in the main human malaria vector Anopheles gambiae, by selectively destroying the X-chromosome during spermatogenesis, through the activity of a naturally-occurring endonuclease that targets a repetitive rDNA sequence highly-conserved in a wide range of organisms. Here we describe a CRISPR-Cas9 sex distortion system that targets ribosomal sequences restricted to the member species of the Anopheles gambiae complex. Expression of Cas9 during spermatogenesis resulted in RNA-guided shredding of the X-chromosome during male meiosis and produced extreme male bias among progeny in the absence of any significant reduction in fertility. The flexibility of CRISPR-Cas9 combined with the availability of genomic data for a range of insects renders this strategy broadly applicable for the species-specific control of any pest or vector species with an XY sex-determination system by targeting sequences exclusive to the female sex chromosome. PMID:27484623

  7. [Applications of ZFN, TALEN and CRISPR/Cas9 techniques in disease modeling and gene therapy].

    PubMed

    Zhao, Guohua; Pu, Jiali; Tang, Beisha

    2016-12-10

    Precise and effective modification of complex genomes at the predicted loci has long been an important goal for scientists. However, conventional techniques for manipulating genomes in diverse organisms and cells have lagged behind the rapid advance in genomic studies. Such genome engineering tools have featured low efficiency and off-targeting. The newly developed custom-designed nucleases, zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system have conferred genome modification with ease of customization, flexibility and high efficiency, which may impact biological research and studies on pathogenesis of human diseases. These novel techniques can edit the genomic DNA with high efficiency and specificity in a rich variety of organisms and cell types including the induced pluripotent stem cells (iPSCs), which has conferred them with the potential for revealing the pathogenesis and treatment of many human diseases. This review has briefly introduced the mechanisms of ZFN, TALENs and CRISPR/Cas9 system, and compared the efficiency and specificity of such approaches. In addition, the application of ZFN, TALENs and CRISPR/Cas9 mediated genome modification for human disease modeling and gene therapy was also discussed.

  8. Highly Efficient Genome Editing via CRISPR/Cas9 to Create Clock Gene Knockout Cells.

    PubMed

    Korge, Sandra; Grudziecki, Astrid; Kramer, Achim

    2015-10-01

    Targeted genome editing using CRISPR/Cas9 is a relatively new, revolutionary technology allowing for efficient and directed alterations of the genome. It has been widely used for loss-of-function studies in animals and cell lines but has not yet been used to study circadian rhythms. Here, we describe the application of CRISPR/Cas9 genome editing for the generation of an F-box and leucine-rich repeat protein 3 (Fbxl3) knockout in a human cell line. Genomic alterations at the Fbxl3 locus occurred with very high efficiency (70%-100%) and specificity at both alleles, resulting in insertions and deletions that led to premature stop codons and hence FBXL3 knockout. Fbxl3 knockout cells displayed low amplitude and long period oscillations of Bmal1-luciferase reporter activity as well as increased CRY1 protein stability in line with previously published phenotypes for Fbxl3 knockout in mice. Thus, CRISPR/Cas9 genome editing should be highly valuable for studying circadian rhythms not only in human cells but also in classic model systems as well as nonmodel organisms.

  9. The genome editing revolution: A CRISPR-Cas TALE off-target story.

    PubMed

    Stella, Stefano; Montoya, Guillermo

    2016-07-01

    In the last 10 years, we have witnessed a blooming of targeted genome editing systems and applications. The area was revolutionized by the discovery and characterization of the transcription activator-like effector proteins, which are easier to engineer to target new DNA sequences than the previously available DNA binding templates, zinc fingers and meganucleases. Recently, the area experimented a quantum leap because of the introduction of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) system (clustered regularly interspaced short palindromic sequence). This ribonucleoprotein complex protects bacteria from invading DNAs, and it was adapted to be used in genome editing. The CRISPR ribonucleic acid (RNA) molecule guides to the specific DNA site the Cas9 nuclease to cleave the DNA target. Two years and more than 1000 publications later, the CRISPR-Cas system has become the main tool for genome editing in many laboratories. Currently the targeted genome editing technology has been used in many fields and may be a possible approach for human gene therapy. Furthermore, it can also be used to modifying the genomes of model organisms for studying human pathways or to improve key organisms for biotechnological applications, such as plants, livestock genome as well as yeasts and bacterial strains.

  10. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells

    PubMed Central

    Kleinstiver, Benjamin P.; Tsai, Shengdar Q.; Prew, Michelle S.; Nguyen, Nhu T.; Welch, Moira M.; Lopez, Jose M.; McCaw, Zachary R.; Aryee, Martin J.; Joung, J. Keith

    2016-01-01

    The activities and genome-wide specificities of CRISPR-Cas Cpf1 nucleases1 are not well defined. We show that two Cpf1 nucleases from Acidaminococcus sp. BV3L6 and Lachnospiraceae bacterium ND2006 (AsCpf1 and LbCpf1, respectively) have on-target efficiencies in human cells comparable with those of the widely used Streptococcus pyogenes Cas9 (SpCas9)2–5. We also report that four to six bases at the 3’ end of the short CRISPR RNA (crRNA) used to program Cpf1 nucleases are insensitive to single base mismatches, but that many of the other bases in this region of the crRNA are highly sensitive to single or double substitutions. Using GUIDE-seq and targeted deep sequencing analyses performed with both Cpf1 nucleases, we were unable to detect off-target cleavage for more than half of 20 different crRNAs. Our results suggest that AsCpf1 and LbCpf1 are highly specific in human cells. PMID:27347757

  11. The Impact of CRISPR/Cas9-Based Genomic Engineering on Biomedical Research and Medicine.

    PubMed

    Go, D E; Stottmann, R W

    2016-01-01

    There has been prolonged and significant interest in manipulating the genome for a wide range of applications in biomedical research and medicine. An existing challenge in realizing this potential has been the inability to precisely edit specific DNA sequences. Past efforts to generate targeted double stranded DNA cleavage have fused DNA-targeting elements such as zinc fingers and DNA-binding proteins to endonucleases. However, these approaches are limited by both design complexity and inefficient, costineffective operation. The discovery of CRISPR/Cas9, a branch of the bacterial adaptive immune system, as a potential genomic editing tool holds the promise of facile targeted cleavage. Its novelty lies in its RNA-guided endonuclease activity, which enhances its efficiency, scalability, and ease of use. The only necessary components are a Cas9 endonuclease protein and an RNA molecule tailored to the gene of interest. This lowbarrier of adoption has facilitated a plethora of advances in just the past three years since its discovery. In this review, we will discuss the impact of CRISPR/Cas9 on biomedical research and its potential implications in medicine.

  12. CRISPR/Cas9-Mediated Correction of the Sickle Mutation in Human CD34+ cells.

    PubMed

    Hoban, Megan D; Lumaquin, Dianne; Kuo, Caroline Y; Romero, Zulema; Long, Joseph; Ho, Michelle; Young, Courtney S; Mojadidi, Michelle; Fitz-Gibbon, Sorel; Cooper, Aaron R; Lill, Georgia R; Urbinati, Fabrizia; Campo-Fernandez, Beatriz; Bjurstrom, Carmen F; Pellegrini, Matteo; Hollis, Roger P; Kohn, Donald B

    2016-09-01

    Targeted genome editing technology can correct the sickle cell disease mutation of the β-globin gene in hematopoietic stem cells. This correction supports production of red blood cells that synthesize normal hemoglobin proteins. Here, we demonstrate that Transcription Activator-Like Effector Nucleases (TALENs) and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 nuclease system can target DNA sequences around the sickle-cell mutation in the β-globin gene for site-specific cleavage and facilitate precise correction when a homologous donor template is codelivered. Several pairs of TALENs and multiple CRISPR guide RNAs were evaluated for both on-target and off-target cleavage rates. Delivery of the CRISPR/Cas9 components to CD34+ cells led to over 18% gene modification in vitro. Additionally, we demonstrate the correction of the sickle cell disease mutation in bone marrow derived CD34+ hematopoietic stem and progenitor cells from sickle cell disease patients, leading to the production of wild-type hemoglobin. These results demonstrate correction of the sickle mutation in patient-derived CD34+ cells using CRISPR/Cas9 technology.

  13. Development and potential applications of CRISPR-Cas9 genome editing technology in sarcoma.

    PubMed

    Liu, Tang; Shen, Jacson K; Li, Zhihong; Choy, Edwin; Hornicek, Francis J; Duan, Zhenfeng

    2016-04-01

    Sarcomas include some of the most aggressive tumors and typically respond poorly to chemotherapy. In recent years, specific gene fusion/mutations and gene over-expression/activation have been shown to drive sarcoma pathogenesis and development. These emerging genomic alterations may provide targets for novel therapeutic strategies and have the potential to transform sarcoma patient care. The RNA-guided nuclease CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein-9 nuclease) is a convenient and versatile platform for site-specific genome editing and epigenome targeted modulation. Given that sarcoma is believed to develop as a result of genetic alterations in mesenchymal progenitor/stem cells, CRISPR-Cas9 genome editing technologies hold extensive application potentials in sarcoma models and therapies. We review the development and mechanisms of the CRISPR-Cas9 system in genome editing and introduce its application in sarcoma research and potential therapy in clinic. Additionally, we propose future directions and discuss the challenges faced with these applications, providing concise and enlightening information for readers interested in this area.

  14. Functional Genomic Screening Approaches in Mechanistic Toxicology and Potential Future Applications of CRISPR-Cas9

    PubMed Central

    Shen, Hua; McHale, Cliona M.; Smith, Martyn T; Zhang, Luoping

    2015-01-01

    Characterizing variability in the extent and nature of responses to environmental exposures is a critical aspect of human health risk assessment. Chemical toxicants act by many different mechanisms, however, and the genes involved in adverse outcome pathways (AOPs) and AOP networks are not yet characterized. Functional genomic approaches can reveal both toxicity pathways and susceptibility genes, through knockdown or knockout of all non-essential genes in a cell of interest, and identification of genes associated with a toxicity phenotype following toxicant exposure. Screening approaches in yeast and human near-haploid leukemic KBM7 cells, have identified roles for genes and pathways involved in response to many toxicants but are limited by partial homology among yeast and human genes and limited relevance to normal diploid cells. RNA interference (RNAi) suppresses mRNA expression level but is limited by off-target effects (OTEs) and incomplete knockdown. The recently developed gene editing approach called clustered regularly interspaced short palindrome repeats-associated nuclease (CRISPR)-Cas9, can precisely knock-out most regions of the genome at the DNA level with fewer OTEs than RNAi, in multiple human cell types, thus overcoming the limitations of the other approaches. It has been used to identify genes involved in the response to chemical and microbial toxicants in several human cell types and could readily be extended to the systematic screening of large numbers of environmental chemicals. CRISPR-Cas9 can also repress and activate gene expression, including that of non-coding RNA, with near-saturation, thus offering the potential to more fully characterize AOPs and AOP networks. Finally, CRISPR-Cas9 can generate complex animal models in which to conduct preclinical toxicity testing at the level of individual genotypes or haplotypes. Therefore, CRISPR-Cas9 is a powerful and flexible functional genomic screening approach that can be harnessed to provide

  15. CRISPR-Cas9: Tool for Qualitative and Quantitative Plant Genome Editing

    PubMed Central

    Noman, Ali; Aqeel, Muhammad; He, Shuilin

    2016-01-01

    Recent developments in genome editing techniques have aroused substantial excitement among agricultural scientists. These techniques offer new opportunities for developing improved plant lines with addition of important traits or removal of undesirable traits. Increased adoption of genome editing has been geared by swiftly developing Clustered regularly interspaced short palindromic repeats (CRISPR). This is appearing as driving force for innovative utilization in diverse branches of plant biology. CRISPR-Cas9 mediated genome editing is being used for rapid, easy and efficient alteration of genes among diverse plant species. With approximate completion of conceptual work about CRISPR-Cas9, plant scientists are applying this genome editing tool for crop attributes enhancement. The capability of this system for performing targeted and efficient modifications in genome sequence as well as gene expression will certainly spur novel developments not only in model plants but in crop and ornamental plants as well. Additionally, due to non-involvement of foreign DNA, this technique may help alleviating regulatory issues associated with genetically modified plants. We expect that prevailing challenges in plant science like genomic region manipulation, crop specific vectors etc. will be addressed along with sustained growth of this genome editing tool. In this review, recent progress of CRISPR-Cas9 technology in plants has been summarized and discussed. We reviewed significance of CRISPR-Cas9 for specific and non-traditional aspects of plant life. It also covers strengths of this technique in comparison with other genome editing techniques, e.g., Zinc finger nucleases, Transcription activator-like effector nucleases and potential challenges in coming decades have been described. PMID:27917188

  16. CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.).

    PubMed

    Janga, Madhusudhana R; Campbell, LeAnne M; Rathore, Keerti S

    2017-03-03

    The clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR associated (Cas)9 protein system has emerged as a simple and efficient tool for genome editing in eukaryotic cells. It has been shown to be functional in several crop species, yet there are no reports on the application of this or any other genome editing technologies in the cotton plant. Cotton is an important crop that is grown mainly for its fiber, but its seed also serves as a useful source of edible oil and feed protein. Most of the commercially-grown cotton is tetraploid, thus making it much more difficult to target both sets of homeologous alleles. Therefore, in order to understand the efficacy of the CRISPR/Cas9 system to target a gene within the genome of cotton, we made use of a transgenic cotton line previously generated in our laboratory that had a single copy of the green fluorescent protein (GFP) gene integrated into its genome. We demonstrate, for the first time, the use of this powerful new tool in targeted knockout of a gene residing in the cotton genome. By following the loss of GFP fluorescence, we were able to observe the cells that had undergone targeted mutations as a result of CRISPR/Cas9 activity. In addition, we provide examples of the different types of indels obtained by Cas9-mediated cleavage of the GFP gene, guided by three independent sgRNAs. The results provide useful information that will help us target important native genes in the cotton plant in future.

  17. Cas9-mediated genome editing in the methanogenic archaeon Methanosarcina acetivorans.

    PubMed

    Nayak, Dipti D; Metcalf, William W

    2017-03-14

    Although Cas9-mediated genome editing has proven to be a powerful genetic tool in eukaryotes, its application in Bacteria has been limited because of inefficient targeting or repair; and its application to Archaea has yet to be reported. Here we describe the development of a Cas9-mediated genome-editing tool that allows facile genetic manipulation of the slow-growing methanogenic archaeon Methanosarcina acetivorans Introduction of both insertions and deletions by homology-directed repair was remarkably efficient and precise, occurring at a frequency of approximately 20% relative to the transformation efficiency, with the desired mutation being found in essentially all transformants examined. Off-target activity was not observed. We also observed that multiple single-guide RNAs could be expressed in the same transcript, reducing the size of mutagenic plasmids and simultaneously simplifying their design. Cas9-mediated genome editing reduces the time needed to construct mutants by more than half (3 vs. 8 wk) and allows simultaneous construction of double mutants with high efficiency, exponentially decreasing the time needed for complex strain constructions. Furthermore, coexpression the nonhomologous end-joining (NHEJ) machinery from the closely related archaeon, Methanocella paludicola, allowed efficient Cas9-mediated genome editing without the need for a repair template. The NHEJ-dependent mutations included deletions ranging from 75 to 2.7 kb in length, most of which appear to have occurred at regions of naturally occurring microhomology. The combination of homology-directed repair-dependent and NHEJ-dependent genome-editing tools comprises a powerful genetic system that enables facile insertion and deletion of genes, rational modification of gene expression, and testing of gene essentiality.

  18. CRISPR-Cas9: Tool for Qualitative and Quantitative Plant Genome Editing.

    PubMed

    Noman, Ali; Aqeel, Muhammad; He, Shuilin

    2016-01-01

    Recent developments in genome editing techniques have aroused substantial excitement among agricultural scientists. These techniques offer new opportunities for developing improved plant lines with addition of important traits or removal of undesirable traits. Increased adoption of genome editing has been geared by swiftly developing Clustered regularly interspaced short palindromic repeats (CRISPR). This is appearing as driving force for innovative utilization in diverse branches of plant biology. CRISPR-Cas9 mediated genome editing is being used for rapid, easy and efficient alteration of genes among diverse plant species. With approximate completion of conceptual work about CRISPR-Cas9, plant scientists are applying this genome editing tool for crop attributes enhancement. The capability of this system for performing targeted and efficient modifications in genome sequence as well as gene expression will certainly spur novel developments not only in model plants but in crop and ornamental plants as well. Additionally, due to non-involvement of foreign DNA, this technique may help alleviating regulatory issues associated with genetically modified plants. We expect that prevailing challenges in plant science like genomic region manipulation, crop specific vectors etc. will be addressed along with sustained growth of this genome editing tool. In this review, recent progress of CRISPR-Cas9 technology in plants has been summarized and discussed. We reviewed significance of CRISPR-Cas9 for specific and non-traditional aspects of plant life. It also covers strengths of this technique in comparison with other genome editing techniques, e.g., Zinc finger nucleases, Transcription activator-like effector nucleases and potential challenges in coming decades have been described.

  19. Efficient Genome Editing in Chicken DF-1 Cells Using the CRISPR/Cas9 System

    PubMed Central

    Bai, Yichun; He, Linjie; Li, Pengcheng; Xu, Kun; Shao, Simin; Ren, Chonghua; Liu, Zhongtian; Wei, Zehui; Zhang, Zhiying

    2016-01-01

    In recent years, genome engineering technology has provided unprecedented opportunities for site-specific modification of biological genomes. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 is one such means that can target a specific genome locus. It has been applied in human cells and many other organisms. Meanwhile, to efficiently enrich targeted cells, several surrogate systems have also been developed. However, very limited information exists on the application of CRISPR/Cas9 in chickens. In this study, we employed the CRISPR/Cas9 system to induce mutations in the peroxisome proliferator-activated receptor-γ (PPAR-γ), ATP synthase epsilon subunit (ATP5E), and ovalbumin (OVA) genes in chicken DF-1 cells. The results of T7E1 assays showed that the mutation rate at the three different loci was 0.75%, 0.5%, and 3.0%, respectively. In order to improve the mutation efficiency, we used the PuroR gene for efficient enrichment of genetically modified cells with the surrogate reporter system. The mutation rate, as assessed via the T7E1 assay, increased to 60.7%, 61.3%, and 47.3%, and subsequent sequence analysis showed that the mutation efficiency increased to 94.7%, 95%, and 95%, respectively. In addition, there were no detectable off-target mutations in three potential off-target sites using the T7E1 assay. As noted above, the CRISPR/Cas9 system is a robust tool for chicken genome editing. PMID:26869617

  20. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs.

    PubMed

    Gagnon, James A; Valen, Eivind; Thyme, Summer B; Huang, Peng; Akhmetova, Laila; Ahkmetova, Laila; Pauli, Andrea; Montague, Tessa G; Zimmerman, Steven; Richter, Constance; Schier, Alexander F

    2014-01-01

    The CRISPR/Cas9 system has been implemented in a variety of model organisms to mediate site-directed mutagenesis. A wide range of mutation rates has been reported, but at a limited number of genomic target sites. To uncover the rules that govern effective Cas9-mediated mutagenesis in zebrafish, we targeted over a hundred genomic loci for mutagenesis using a streamlined and cloning-free method. We generated mutations in 85% of target genes with mutation rates varying across several orders of magnitude, and identified sequence composition rules that influence mutagenesis. We increased rates of mutagenesis by implementing several novel approaches. The activities of poor or unsuccessful single-guide RNAs (sgRNAs) initiating with a 5' adenine were improved by rescuing 5' end homogeneity of the sgRNA. In some cases, direct injection of Cas9 protein/sgRNA complex further increased mutagenic activity. We also observed that low diversity of mutant alleles led to repeated failure to obtain frame-shift mutations. This limitation was overcome by knock-in of a stop codon cassette that ensured coding frame truncation. Our improved methods and detailed protocols make Cas9-mediated mutagenesis an attractive approach for labs of all sizes.

  1. Rationale and study protocol for the supporting children’s outcomes using rewards, exercise and skills (SCORES) group randomized controlled trial: A physical activity and fundamental movement skills intervention for primary schools in low-income communities

    PubMed Central

    2012-01-01

    Background Many Australian children are insufficiently active to accrue health benefits and physical activity (PA) levels are consistently lower among youth of low socio-economic position. PA levels decline dramatically during adolescence and evidence suggests that competency in a range of fundamental movement skills (FMS) may serve as a protective factor against this trend. Methods/design The Supporting Children’s Outcomes Using Rewards Exercise and Skills (SCORES) intervention is a multi-component PA and FMS intervention for primary schools in low-income communities, which will be evaluated using a group randomized controlled trial. The socio-ecological model provided a framework for the 12-month intervention, which includes the following components: teacher professional learning, student leadership workshops (including leadership accreditation and rewards, e.g., stickers, water bottles), PA policy review, PA equipment packs, parental engagement via newsletters, FMS homework and a parent evening, and community partnerships with local sporting organizations. Outcomes will be assessed at baseline, 6- and 12-months. The primary outcomes are PA (accelerometers), FMS (Test of Gross Motor Development II) and cardiorespiratory fitness (multi-stage fitness test). Secondary outcomes include body mass index [using weight (kg)/height (m2)], perceived competence, physical self-esteem, and resilience. Individual and environmental mediators of behavior change (e.g. social support and enjoyment) will also be assessed. The System for Observing Fitness Instruction Time will be used to assess the impact of the intervention on PA within physical education lessons. Statistical analyses will follow intention-to-treat principles and hypothesized mediators of PA behavior change will be explored. Discussion SCORES is an innovative primary school-based PA and FMS intervention designed to support students attending schools in low-income communities to be more skilled and active. The

  2. FEEDBACK SCORING SYSTEMS FOR REUSABLE KINDERGARTEN WORKBOOKS.

    ERIC Educational Resources Information Center

    GACH, PENELOPE J.; AND OTHERS

    THE DEVELOPMENT OF ECONOMICAL FEEDBACK SCORING SYSTEMS FOR REUSABLE KINDERGARTEN WORKBOOKS IS DESCRIBED. THREE PROTOTYPE SYSTEMS WERE DEVELOPED--(1) A METAL FOIL ACTIVATING AN ELECTRICAL PROBE, (2) A METAL FOIL REACTING WITH A MAGNETIC PROBE, AND (3) INVISIBLE FLUORESCENT INK REVEALED BY THE APPLICATION OF LONGWAVE ULTRAVIOLET LIGHT. (MS)

  3. Cas9 in Genetically Modified Food Is Unlikely to Cause Food Allergy.

    PubMed

    Nakajima, Osamu; Nishimaki-Mogami, Tomoko; Kondo, Kazunari

    2016-01-01

    Genome editing has undergone rapid development during the last three years. It is anticipated that genetically modified organisms (GMOs) for food purposes will be widely produced using the clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR)/Cas9 system in the near future. However, the Cas9 gene may then enter the genomes of GMOs for food if the breeding process is not strictly managed, which could lead to the Cas9 protein or associated peptides being produced within these organisms. A variety of peptides could theoretically be produced from the Cas9 gene by using open reading frames different from that of Cas9 in the GMOs. In this study, Cas9 and the peptides potentially encoded by Cas9 genes were studied regarding their immunogenicity, in terms of the digestibility of Cas9 and the homology of the peptides to food allergens. First, the digestibility and thermal stability of Cas9 were studied. Digestibility was tested with natural or heat-denatured Cas9 in simulated gastric fluid in vitro. The two types of Cas9 were digested rapidly. Cas9 was also gradually degraded during heat treatment. Second, the peptides potentially encoded by Cas9 genes were examined for their homology to food allergens. Specifically, an 8-mer exact match search and a sliding 80-mer window search were performed using allergen databases. One of the peptides was found to have homology with a food allergen.

  4. Tyrosine phosphorylation within the SH3 domain regulates CAS subcellular localization, cell migration, and invasiveness.

    PubMed

    Janoštiak, Radoslav; Tolde, Ondřej; Brůhová, Zuzana; Novotný, Marian; Hanks, Steven K; Rösel, Daniel; Brábek, Jan

    2011-11-01

    Crk-associated substrate (CAS) is a major tyrosine-phosphorylated protein in cells transformed by v-crk and v-src oncogenes and plays an important role in invasiveness of Src-transformed cells. A novel phosphorylation site on CAS, Tyr-12 (Y12) within the ligand-binding hydrophobic pocket of the CAS SH3 domain, was identified and found to be enriched in Src-transformed cells and invasive human carcinoma cells. To study the biological significance of CAS Y12 phosphorylation, phosphomimicking Y12E and nonphosphorylatable Y12F mutants of CAS were studied. The phosphomimicking mutation decreased interaction of the CAS SH3 domain with focal adhesion kinase (FAK) and PTP-PEST and reduced tyrosine phosphorylation of FAK. Live-cell imaging showed that green fluorescent protein-tagged CAS Y12E mutant is, in contrast to wild-type or Y12F CAS, excluded from focal adhesions but retains its localization to podosome-type adhesions. Expression of CAS-Y12F in cas-/- mouse embryonic fibroblasts resulted in hyperphosphorylation of the CAS substrate domain, and this was associated with slower turnover of focal adhesions and decreased cell migration. Moreover, expression of CAS Y12F in Src-transformed cells greatly decreased invasiveness when compared to wild-type CAS expression. These findings reveal an important role of CAS Y12 phosphorylation in the regulation of focal adhesion assembly, cell migration, and invasiveness of Src-transformed cells.

  5. A non-inheritable maternal Cas9-based multiple-gene editing system in mice.

    PubMed

    Sakurai, Takayuki; Kamiyoshi, Akiko; Kawate, Hisaka; Mori, Chie; Watanabe, Satoshi; Tanaka, Megumu; Uetake, Ryuichi; Sato, Masahiro; Shindo, Takayuki

    2016-01-28

    The CRISPR/Cas9 system is capable of editing multiple genes through one-step zygote injection. The preexisting method is largely based on the co-injection of Cas9 DNA (or mRNA) and guide RNAs (gRNAs); however, it is unclear how many genes can be simultaneously edited by this method, and a reliable means to generate transgenic (Tg) animals with multiple gene editing has yet to be developed. Here, we employed non-inheritable maternal Cas9 (maCas9) protein derived from Tg mice with systemic Cas9 overexpression (Cas9 mice). The maCas9 protein in zygotes derived from mating or in vitro fertilization of Tg/+ oocytes and +/+ sperm could successfully edit the target genome. The efficiency of such maCas9-based genome editing was comparable to that of zygote microinjection-based genome editing widely used at present. Furthermore, we demonstrated a novel approach to create "Cas9 transgene-free" gene-modified mice using non-Tg (+/+) zygotes carrying maCas9. The maCas9 protein in mouse zygotes edited nine target loci simultaneously after injection with nine different gRNAs alone. Cas9 mouse-derived zygotes have the potential to facilitate the creation of genetically modified animals carrying the Cas9 transgene, enabling repeatable genome engineering and the production of Cas9 transgene-free mice.

  6. Comparative analysis of CRISPR-Cas systems in Klebsiella genomes.

    PubMed

    Shen, Juntao; Lv, Li; Wang, Xudong; Xiu, Zhilong; Chen, Guoqiang

    2017-02-03

    Prokaryotic CRISPR-Cas system provides adaptive immunity against invasive genetic elements. Bacteria of the genus Klebsiella are important nosocomial opportunistic pathogens. However, information of CRISPR-Cas system in Klebsiella remains largely unknown. Here, we analyzed the CRISPR-Cas systems of 68 complete genomes of Klebsiella representing four species. All the elements for CRISPR-Cas system (cas genes, repeats, leader sequences, and PAMs) were characterized. Besides the typical Type I-E and I-F CRISPR-Cas systems, a new Subtype I system located in the ABC transport system-glyoxalase region was found. The conservation of the new subtype CRISPR system between different species showed new evidence for CRISPR horizontal transfer. CRISPR polymorphism was strongly correlated both with species and multilocus sequence types. Some results indicated the function of adaptive immunity: most spacers (112 of 124) matched to prophages and plasmids and no matching housekeeping genes; new spacer acquisition was observed within the same sequence type (ST) and same clonal complex; the identical spacers were observed only in the ancient position (far from the leader) between different STs and clonal complexes. Interestingly, a high ratio of self-targeting spacers (7.5%, 31 of 416) was found in CRISPR-bearing Klebsiella pneumoniae (61%, 11 of 18). In some strains, there even were multiple full matching self-targeting spacers. Some self-targeting spacers were conserved even between different STs. These results indicated that some unknown mechanisms existed to compromise the function of self-targets of CRISPR-Cas systems in K. pneumoniae.

  7. A Combinatorial CRISPR-Cas9 Attack on HIV-1 DNA Extinguishes All Infectious Provirus in Infected T Cell Cultures.

    PubMed

    Wang, Gang; Zhao, Na; Berkhout, Ben; Das, Atze T

    2016-12-13

    Current drug therapies effectively suppress HIV-1 replication but do not inactivate the provirus that persists in latent reservoirs. Recent studies have found that the guide RNA (gRNA)-directed CRISPR/Cas9 system can be used for sequence-specific attack on this proviral DNA. Although potent inhibition of virus replication was reported, HIV-1 can escape from a single antiviral gRNA by mutation of the target sequence. Here, we demonstrate that combinations of two antiviral gRNAs delay viral escape, and identify two gRNA combinations that durably block virus replication. When viral escape is prevented, repeated Cas9 cleavage leads to saturation of major mutations in the conserved target sequences that encode critical proteins. This hypermutation coincides with the loss of replication-competent virus as scored in sensitive co-cultures with unprotected cells, demonstrating complete virus inactivation. These results provide a proof-of-principle that HIV-1-infected cells can be functionally cured by dual-gRNA CRISPR/Cas9 treatment.

  8. Detection of CYP2D6 polymorphism using Luminex xTAG technology in autism spectrum disorder: CYP2D6 activity score and its association with risperidone levels.

    PubMed

    Vanwong, Natchaya; Ngamsamut, Nattawat; Hongkaew, Yaowaluck; Nuntamool, Nopphadol; Puangpetch, Apichaya; Chamnanphon, Montri; Sinrachatanant, Ananya; Limsila, Penkhae; Sukasem, Chonlaphat

    2016-04-01

    CYP2D6 is involved in the biotransformation of a large number of drugs, including risperidone. This study was designed to detect CYP2D6 polymorphisms with a Luminex assay, including assessment the relationship of CYP2D6 polymorphisms and risperidone plasma concentration in autism spectrum disorder children (ASD) treated with risperidone. All 84 ASD patients included in this study had been receiving risperidone at least for 1 month. The CYP2D6 genotypes were determined by Luminex assay. Plasma concentrations of risperidone and 9-hydroxyrisperidone were measured using LC/MS/MS. Among the 84 patients, there were 46 (55.42%) classified as EM, 33 (39.76%) as IM, and 4(4.82%) as UM. The plasma concentration of risperidone and risperidone/9-hydroxyrisperidone ratio in the patients were significant differences among the CYP2D6 predicted phenotype group (P = 0.001 and P < 0.0001 respectively). Moreover, the plasma concentration of risperidone and risperidone/9-hydroxyrisperidone ratio in the patients with CYP2D6 activity score 0.5 were significantly higher than those with the CYP2D6 activity score 2.0 (P = 0.004 and P = 0.002 respectively). These findings suggested that the determination of the accurate CYP2D6 genotype-predicted phenotype is essential in the clinical setting and individualization of drug therapy. The use of the Luminex assay for detection of CYP2D6 polymorphisms could help us more accurately identify an individual's CYP2D6 phenotype.

  9. Spectroscopic studies of three Cepheids with high positive pulsation period increments: SZ Cas, BY Cas, and RU Sct

    NASA Astrophysics Data System (ADS)

    Usenko, I. A.; Klochkova, V. G.

    2015-07-01

    Three high-resolution spectra have been taken at different times with the 6-m SAO RAS telescope (LYNX and PFES spectrographs) for three Cepheids exhibiting high positive period increments: the small-amplitude (DCEPS) SZ Cas and BY Cas and the classical (DCEP) RU Sct. SZ Cas and RU Sct are members of the Galactic open clusters χ and h Per and Trump 35, respectively. Analysis of the spectra has shown that the interstellar Na I D1 and D2 lines in all objects are considerably stronger than the atmospheric ones and are redshifted in SZ Cas and BY Cas and blushifted in RU Sct. The core of the H α absorption line in BY Cas has an asymmetric knifelike shape, while RU Sct exhibits an intense emission in the blue wing of this line. Such phenomena are observed in long-period Cepheids and bright hypergiants with an extended envelope. In this case, the strong Mg Ib 5183.62 Å and Ba II 5853.67, 6141.713, and 6496.90 Å lines with low χlow in SZ Cas and RU Sct also show characteristic knifelike profiles with an asymmetry in the red region, while the Ba II 4934.095 Å line shows similar profiles in the blue one. The absorption lines of neutral atoms and singly ionized metals with different lowerlevel excitation potentials exhibit different degrees of asymmetry: from a pronounced one with secondary components in BY Cas (similar to those in the small-amplitude Cepheid BG Cru pulsating in the first overtone and having an envelope) to its insignificance or virtual absence in SZ Cas and RU Sct. Analysis of the secular changes in mean T eff determined from photometric color indices and spectra over the last 55 years for these stars has revealed periodic fluctuations of 200 K for SZ Cas and BY Cas and 500 K for RU Sct. For SZ Cas and RU Sct, T eff determined in some years from some color indices show much lower values, which together with the temperature fluctuations can be associated with mass loss and dust formation. Based on these facts, we hypothesize the existence of

  10. Trends in Classroom Observation Scores

    ERIC Educational Resources Information Center

    Casabianca, Jodi M.; Lockwood, J. R.; McCaffrey, Daniel F.

    2015-01-01

    Observations and ratings of classroom teaching and interactions collected over time are susceptible to trends in both the quality of instruction and rater behavior. These trends have potential implications for inferences about teaching and for study design. We use scores on the Classroom Assessment Scoring System-Secondary (CLASS-S) protocol from…

  11. Skyrocketing Scores: An Urban Legend

    ERIC Educational Resources Information Center

    Krashen, Stephen

    2005-01-01

    A new urban legend claims, "As a result of the state dropping bilingual education, test scores in California skyrocketed." Krashen disputes this theory, pointing out that other factors offer more logical explanations of California's recent improvements in SAT-9 scores. He discusses research on the effects of California's Proposition 227,…

  12. More than Just Test Scores

    ERIC Educational Resources Information Center

    Levin, Henry M.

    2012-01-01

    Around the world we hear considerable talk about creating world-class schools. Usually the term refers to schools whose students get very high scores on the international comparisons of student achievement such as PISA or TIMSS. The practice of restricting the meaning of exemplary schools to the narrow criterion of achievement scores is usually…

  13. What is propensity score modelling?

    PubMed

    Campbell, Michael J

    2017-03-01

    Propensity score methodology is being increasingly used to try and make inferences about treatments when randomised trials are either impossible or not conducted and the only data are from observational studies. This paper reviews the basis of propensity scores and the current state of knowledge about them. It uses and critiques a current paper in the Emergency Medicine Journal to illustrate the methodology.

  14. Interpreting Linked Psychomotor Performance Scores

    ERIC Educational Resources Information Center

    Looney, Marilyn A.

    2013-01-01

    Given that equating/linking applications are now appearing in kinesiology literature, this article provides an overview of the different types of linked test scores: equated, concordant, and predicted. It also addresses the different types of evidence required to determine whether the scores from two different field tests (measuring the same…

  15. Hedonism or Higher Test Scores?

    ERIC Educational Resources Information Center

    Wold, Donald C.

    2004-01-01

    In the 20 years since the federal report on education "A Nation at Risk" appeared, much has been written on test scores of students in the United States versus their counterparts elsewhere. One of the issues is whether their scores are in fact inferior, or merely a statistical difference due to their universal schooling philosophy. Since…

  16. The Machine Scoring of Writing

    ERIC Educational Resources Information Center

    McCurry, Doug

    2010-01-01

    This article provides an introduction to the kind of computer software that is used to score student writing in some high stakes testing programs, and that is being promoted as a teaching and learning tool to schools. It sketches the state of play with machines for the scoring of writing, and describes how these machines work and what they do.…

  17. Guidelines for Improving SAT Scores.

    ERIC Educational Resources Information Center

    Thomson, Scott; DeLeonibus, Nancy

    The National Association of Secondary School Principals (NASSP) identified 34 high schools whose students maintained or improved their SAT scores from 1973 to 1976 or whose mean scores in 1973 were approximately the same as in 1965. In an open-ended questionnaire, the principals of these schools were asked to identify success factors. Their…

  18. Classification of current scoring functions.

    PubMed

    Liu, Jie; Wang, Renxiao

    2015-03-23

    Scoring functions are a class of computational methods widely applied in structure-based drug design for evaluating protein-ligand interactions. Dozens of scoring functions have been published since the early 1990s. In literature, scoring functions are typically classified as force-field-based, empirical, and knowledge-based. This classification scheme has been quoted for more than a decade and is still repeatedly quoted by some recent publications. Unfortunately, it does not reflect the recent progress in this field. Besides, the naming convention used for describing different types of scoring functions has been somewhat jumbled in literature, which could be confusing for newcomers to this field. Here, we express our viewpoint on an up-to-date classification scheme and appropriate naming convention for current scoring functions. We propose that they can be classified into physics-based methods, empirical scoring functions, knowledge-based potentials, and descriptor-based scoring functions. We also outline the major difference and connections between different categories of scoring functions.

  19. ATP system target for performance scoring

    NASA Astrophysics Data System (ADS)

    Tamerler, Timothy; Dowling, James A.; Dillow, Michael A.; Sebesta, Henry R.

    1997-06-01

    The US Air Force Phillips Laboratory is developing the High Altitude Balloon Experiment (HABE) to investigate acquisition, tracking, and pointing concepts to be employed in engagements against boosting missiles in near-space environments. In its most stressing test, HABE employs the Inertial Pseudo Star Reference Unit to provide inertially stabilized line-of-sights (LOSs) for an illuminator laser, active fine track camera, and the marker scoring. The latter serves to measure and score the payload's laser pointing performance. HABE's LOS stabilization subsystem and marker laser pointing are required to demonstrate jitter and drift which is below 1 (mu) rad RMS, a requirement which stresses testing capabilities. At present, a system does not exist to characterize and score the lasers used on this and other experiments at the target plane. This paper will address a concept to provide accurate characterization of laser systems in the far-field target plane.

  20. D-score: a search engine independent MD-score.

    PubMed

    Vaudel, Marc; Breiter, Daniela; Beck, Florian; Rahnenführer, Jörg; Martens, Lennart; Zahedi, René P

    2013-03-01

    While peptides carrying PTMs are routinely identified in gel-free MS, the localization of the PTMs onto the peptide sequences remains challenging. Search engine scores of secondary peptide matches have been used in different approaches in order to infer the quality of site inference, by penalizing the localization whenever the search engine similarly scored two candidate peptides with different site assignments. In the present work, we show how the estimation of posterior error probabilities for peptide candidates allows the estimation of a PTM score called the D-score, for multiple search engine studies. We demonstrate the applicability of this score to three popular search engines: Mascot, OMSSA, and X!Tandem, and evaluate its performance using an already published high resolution data set of synthetic phosphopeptides. For those peptides with phosphorylation site inference uncertainty, the number of spectrum matches with correctly localized phosphorylation increased by up to 25.7% when compared to using Mascot alone, although the actual increase depended on the fragmentation method used. Since this method relies only on search engine scores, it can be readily applied to the scoring of the localization of virtually any modification at no additional experimental or in silico cost.

  1. The interaction of beryllium with benzene and graphene: a comparative investigation based on DFT, MP2, CCSD(T), CAS-SCF and CAS-PT2.

    PubMed

    Fernandez, Nicolas; Ferro, Yves; Carissan, Yannick; Marchois, Julien; Allouche, Alain

    2014-02-07

    The interaction of beryllium with benzene, graphene and graphitic compounds involves multi-reference electronic states, Jahn-Teller distortion, charge transfer and van der Waals interactions. This is investigated herein using periodic and molecular models at different levels of theory: (i) the second-order Møller-Plesset (MP2) perturbation theory, (ii) the coupled cluster method with inclusion of single double and perturbative triple excitations (CCSD(T)), (iii) the complete active space self-consistent field (CAS-SCF) and (iv) the complete active space with perturbation theory truncated at the 2nd order (CAS-PT2). Molecular and periodic Density Functional Theory (DFT) methods are also used. The two major failures of DFT are addressed with regard to the beryllium benzene and graphene interaction: the degeneracy problem is the source of no specific problem while the delocalization error causes DFT with the Perdew Burke, Ernzerhof functional plus the Grimme correction (DFT/PBE-D2) to be over-binding by about 0.4 eV at a short-range. The agreement between DFT/PBE-D2 and wave-function based methods is nevertheless good; DFT/PBE-D2 provides an accurate description of the electronic structure of the system. By the end of this work, we shall get a better insight into the mechanisms leading beryllium to physisorb on graphene and to chemisorb into the bilayer of graphite.

  2. Human Induced Pluripotent Stem Cell NEUROG2 Dual Knockin Reporter Lines Generated by the CRISPR/Cas9 System

    PubMed Central

    Li, Shenglan; Xue, Haipeng; Wu, Jianbo; Rao, Mahendra S.; Kim, Dong H.; Deng, Wenbin

    2015-01-01

    Human induced pluripotent stem cell (hiPSC) technologies are powerful tools for modeling development and disease, drug screening, and regenerative medicine. Faithful gene targeting in hiPSCs greatly facilitates these applications. We have developed a fast and precise clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) technology-based method and obtained fluorescent protein and antibiotic resistance dual knockin reporters in hiPSC lines for neurogenin2 (NEUROG2), an important proneural transcription factor. Gene targeting efficiency was greatly improved in CRISPR/Cas9-mediated homology directed recombination (∼33% correctly targeted clones) compared to conventional targeting protocol (∼3%) at the same locus. No off-target events were detected. In addition, taking the advantage of the versatile applications of the CRISPR/Cas9 system, we designed transactivation components to transiently induce NEUROG2 expression, which helps identify transcription factor binding sites and trans-regulation regions of human NEUROG2. The strategy of using CRISPR/Cas9 genome editing coupled with fluorescence-activated cell sorting of neural progenitor cells in a knockin lineage hiPSC reporter platform might be broadly applicable in other stem cell derivatives and subpopulations. PMID:26414932

  3. Recent Mobility of Casposons, Self-Synthesizing Transposons at the Origin of the CRISPR-Cas Immunity

    PubMed Central

    Krupovic, Mart; Shmakov, Sergey; Makarova, Kira S.; Forterre, Patrick; Koonin, Eugene V.

    2016-01-01

    Casposons are a superfamily of putative self-synthesizing transposable elements that are predicted to employ a homolog of Cas1 protein as a recombinase and could have contributed to the origin of the CRISPR-Cas adaptive immunity systems in archaea and bacteria. Casposons remain uncharacterized experimentally, except for the recent demonstration of the integrase activity of the Cas1 homolog, and given their relative rarity in archaea and bacteria, original comparative genomic analysis has not provided direct indications of their mobility. Here, we report evidence of casposon mobility obtained by comparison of the genomes of 62 strains of the archaeon Methanosarcina mazei. In these genomes, casposons are variably inserted in three distinct sites indicative of multiple, recent gains, and losses. Some casposons are inserted into other mobile genetic elements that might provide vehicles for horizontal transfer of the casposons. Additionally, many M. mazei genomes contain previously undetected solo terminal inverted repeats that apparently are derived from casposons and could resemble intermediates in CRISPR evolution. We further demonstrate the sequence specificity of casposon insertion and note clear parallels with the adaptation mechanism of CRISPR-Cas. Finally, besides identifying additional representatives in each of the three originally defined families, we describe a new, fourth, family of casposons. PMID:26764427

  4. Anti-HIV-1 potency of the CRISPR/Cas9 system insufficient to fully inhibit viral replication.

    PubMed

    Ueda, Shuhei; Ebina, Hirotaka; Kanemura, Yuka; Misawa, Naoko; Koyanagi, Yoshio

    2016-07-01

    The range of genome-editing tools has recently been expanded. In particular, an RNA-guided genome-editing tool, the clustered regularly interspaced short palindromic repeat (CRISPR)-associated 9 (Cas9) system, has many applications for human diseases. In this study, guide RNA (gRNA) to target gag, pol and a long terminal repeat of HIV-1 was designed and used to generate gRNA-expressing lentiviral vectors. An HIV-1-specific gRNA and Cas9 were stably dually transduced into a highly HIV-1-susceptible human T-cell line and the inhibitory ability of the anti-HIV-1 CRISPR/Cas9 lentiviral vector assessed. Although clear inhibition of the early phase of HIV-1 infection was observed, as evaluated by a VSV-G-pseudotyped HIV-1 reporter system, the anti-HIV-1 potency in multiple rounds of wild type (WT) viral replication was insufficient, either because of generation of resistant viruses or overcoming of the activity of the WT virus. Thus, there are potential difficulties that must be addressed when considering anti-HIV-1 treatment with the CRISPR/Cas9 system alone.

  5. Highly efficient targeted mutagenesis in one-cell mouse embryos mediated by the TALEN and CRISPR/Cas systems

    PubMed Central

    Yasue, Akihiro; Mitsui, Silvia Naomi; Watanabe, Takahito; Sakuma, Tetsushi; Oyadomari, Seiichi; Yamamoto, Takashi; Noji, Sumihare; Mito, Taro; Tanaka, Eiji

    2014-01-01

    Since the establishment of embryonic stem (ES) cell lines, the combined use of gene targeting with homologous recombination has aided in elucidating the functions of various genes. However, the ES cell technique is inefficient and time-consuming. Recently, two new gene-targeting technologies have been developed: the transcription activator-like effector nuclease (TALEN) system, and the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system. In addition to aiding researchers in solving conventional problems, these technologies can be used to induce site-specific mutations in various species for which ES cells have not been established. Here, by targeting the Fgf10 gene through RNA microinjection in one-cell mouse embryos with the TALEN and CRISPR/Cas systems, we produced the known limb-defect phenotypes of Fgf10-deficient embryos at the F0 generation. Compared to the TALEN system, the CRISPR/Cas system induced the limb-defect phenotypes with a strikingly higher efficiency. Our results demonstrate that although both gene-targeting technologies are useful, the CRISPR/Cas system more effectively elicits single-step biallelic mutations in mice. PMID:25027812

  6. Highly efficient targeted mutagenesis in one-cell mouse embryos mediated by the TALEN and CRISPR/Cas systems.

    PubMed

    Yasue, Akihiro; Mitsui, Silvia Naomi; Watanabe, Takahito; Sakuma, Tetsushi; Oyadomari, Seiichi; Yamamoto, Takashi; Noji, Sumihare; Mito, Taro; Tanaka, Eiji

    2014-07-16

    Since the establishment of embryonic stem (ES) cell lines, the combined use of gene targeting with homologous recombination has aided in elucidating the functions of various genes. However, the ES cell technique is inefficient and time-consuming. Recently, two new gene-targeting technologies have been developed: the transcription activator-like effector nuclease (TALEN) system, and the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system. In addition to aiding researchers in solving conventional problems, these technologies can be used to induce site-specific mutations in various species for which ES cells have not been established. Here, by targeting the Fgf10 gene through RNA microinjection in one-cell mouse embryos with the TALEN and CRISPR/Cas systems, we produced the known limb-defect phenotypes of Fgf10-deficient embryos at the F0 generation. Compared to the TALEN system, the CRISPR/Cas system induced the limb-defect phenotypes with a strikingly higher efficiency. Our results demonstrate that although both gene-targeting technologies are useful, the CRISPR/Cas system more effectively elicits single-step biallelic mutations in mice.

  7. Analyses of point mutation repair and allelic heterogeneity generated by CRISPR/Cas9 and single-stranded DNA oligonucleotides

    PubMed Central

    Bialk, Pawel; Sansbury, Brett; Rivera-Torres, Natalia; Bloh, Kevin; Man, Dula; Kmiec, Eric B.

    2016-01-01

    The repair of a point mutation can be facilitated by combined activity of a single-stranded oligonucleotide and a CRISPR/Cas9 system. While the mechanism of action of combinatorial gene editing remains to be elucidated, the regulatory circuitry of nucleotide exchange executed by oligonucleotides alone has been largely defined. The presence of the appropriate CRISPR/Cas9 system leads to an enhancement in the frequency of gene editing directed by single-stranded DNA oligonucleotides. While CRISPR/Cas9 executes double-stranded DNA cleavage efficiently, closure of the broken chromosomes is dynamic, as varying degrees of heterogeneity of the cleavage products appear to accompany the emergence of the corrected base pair. We provide a detailed analysis of allelic variance at and surrounding the target site. In one particular case, we report sequence alteration directed by a distinct member of the same gene family. Our data suggests that single-stranded DNA molecules may influence DNA junction heterogeneity created by CRISPR/Cas9. PMID:27609304

  8. Analyses of point mutation repair and allelic heterogeneity generated by CRISPR/Cas9 and single-stranded DNA oligonucleotides.

    PubMed

    Bialk, Pawel; Sansbury, Brett; Rivera-Torres, Natalia; Bloh, Kevin; Man, Dula; Kmiec, Eric B

    2016-09-09

    The repair of a point mutation can be facilitated by combined activity of a single-stranded oligonucleotide and a CRISPR/Cas9 system. While the mechanism of action of combinatorial gene editing remains to be elucidated, the regulatory circuitry of nucleotide exchange executed by oligonucleotides alone has been largely defined. The presence of the appropriate CRISPR/Cas9 system leads to an enhancement in the frequency of gene editing directed by single-stranded DNA oligonucleotides. While CRISPR/Cas9 executes double-stranded DNA cleavage efficiently, closure of the broken chromosomes is dynamic, as varying degrees of heterogeneity of the cleavage products appear to accompany the emergence of the corrected base pair. We provide a detailed analysis of allelic variance at and surrounding the target site. In one particular case, we report sequence alteration directed by a distinct member of the same gene family. Our data suggests that single-stranded DNA molecules may influence DNA junction heterogeneity created by CRISPR/Cas9.

  9. Human Induced Pluripotent Stem Cell NEUROG2 Dual Knockin Reporter Lines Generated by the CRISPR/Cas9 System.

    PubMed

    Li, Shenglan; Xue, Haipeng; Wu, Jianbo; Rao, Mahendra S; Kim, Dong H; Deng, Wenbin; Liu, Ying

    2015-12-15

    Human induced pluripotent stem cell (hiPSC) technologies are powerful tools for modeling development and disease, drug screening, and regenerative medicine. Faithful gene targeting in hiPSCs greatly facilitates these applications. We have developed a fast and precise clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) technology-based method and obtained fluorescent protein and antibiotic resistance dual knockin reporters in hiPSC lines for neurogenin2 (NEUROG2), an important proneural transcription factor. Gene targeting efficiency was greatly improved in CRISPR/Cas9-mediated homology directed recombination (∼ 33% correctly targeted clones) compared to conventional targeting protocol (∼ 3%) at the same locus. No off-target events were detected. In addition, taking the advantage of the versatile applications of the CRISPR/Cas9 system, we designed transactivation components to transiently induce NEUROG2 expression, which helps identify transcription factor binding sites and trans-regulation regions of human NEUROG2. The strategy of using CRISPR/Cas9 genome editing coupled with fluorescence-activated cell sorting of neural progenitor cells in a knockin lineage hiPSC reporter platform might be broadly applicable in other stem cell derivatives and subpopulations.

  10. Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system

    PubMed Central

    Garcia-Bloj, Benjamin; Moses, Colette; Sgro, Agustin; Plani-Lam, Janice; Arooj, Mahira; Duffy, Ciara; Thiruvengadam, Shreyas; Sorolla, Anabel; Rashwan, Rabab; Mancera, Ricardo L.; Leisewitz, Andrea; Swift-Scanlan, Theresa; Corvalan, Alejandro H.; Blancafort, Pilar

    2016-01-01

    The aberrant epigenetic silencing of tumor suppressor genes (TSGs) plays a major role during carcinogenesis and regaining these dormant functions by engineering of sequence-specific epigenome editing tools offers a unique opportunity for targeted therapies. However, effectively normalizing the expression and regaining tumor suppressive functions of silenced TSGs by artificial transcription factors (ATFs) still remains a major challenge. Herein we describe novel combinatorial strategies for the potent reactivation of two class II TSGs, MASPIN and REPRIMO, in cell lines with varying epigenetic states, using the CRISPR/dCas9 associated system linked to a panel of effector domains (VP64, p300, VPR and SAM complex), as well as with protein-based ATFs, Zinc Fingers and TALEs. We found that co-delivery of multiple effector domains using a combination of CRISPR/dCas9 and TALEs or SAM complex maximized activation in highly methylated promoters. In particular, CRISPR/dCas9 VPR with SAM upregulated MASPIN mRNA (22,145-fold change) in H157 lung cancer cells, with accompanying re-expression of MASPIN protein, which led to a concomitant inhibition of cell proliferation and induction of apoptotic cell death. Consistently, CRISPR/dCas9 VP64 with SAM upregulated REPRIMO (680-fold change), which led to phenotypic reprogramming in AGS gastric cancer cells. Altogether, our results outlined novel sequence-specific, combinatorial epigenome editing approaches to reactivate highly methylated TSGs as a promising therapy for cancer and other diseases. PMID:27528034

  11. Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at an endogenous locus

    PubMed Central

    Bothmer, Anne; Phadke, Tanushree; Barrera, Luis A.; Margulies, Carrie M; Lee, Christina S.; Buquicchio, Frank; Moss, Sean; Abdulkerim, Hayat S.; Selleck, William; Jayaram, Hariharan; Myer, Vic E.; Cotta-Ramusino, Cecilia

    2017-01-01

    The CRISPR–Cas9 system provides a versatile toolkit for genome engineering that can introduce various DNA lesions at specific genomic locations. However, a better understanding of the nature of these lesions and the repair pathways engaged is critical to realizing the full potential of this technology. Here we characterize the different lesions arising from each Cas9 variant and the resulting repair pathway engagement. We demonstrate that the presence and polarity of the overhang structure is a critical determinant of double-strand break repair pathway choice. Similarly, single nicks deriving from different Cas9 variants differentially activate repair: D10A but not N863A-induced nicks are repaired by homologous recombination. Finally, we demonstrate that homologous recombination is required for repairing lesions using double-stranded, but not single-stranded DNA as a template. This detailed characterization of repair pathway choice in response to CRISPR–Cas9 enables a more deterministic approach for designing research and therapeutic genome engineering strategies. PMID:28067217

  12. Recent Mobility of Casposons, Self-Synthesizing Transposons at the Origin of the CRISPR-Cas Immunity.

    PubMed

    Krupovic, Mart; Shmakov, Sergey; Makarova, Kira S; Forterre, Patrick; Koonin, Eugene V

    2016-01-13

    Casposons are a superfamily of putative self-synthesizing transposable elements that are predicted to employ a homolog of Cas1 protein as a recombinase and could have contributed to the origin of the CRISPR-Cas adaptive immunity systems in archaea and bacteria. Casposons remain uncharacterized experimentally, except for the recent demonstration of the integrase activity of the Cas1 homolog, and given their relative rarity in archaea and bacteria, original comparative genomic analysis has not provided direct indications of their mobility. Here, we report evidence of casposon mobility obtained by comparison of the genomes of 62 strains of the archaeon Methanosarcina mazei. In these genomes, casposons are variably inserted in three distinct sites indicative of multiple, recent gains, and losses. Some casposons are inserted into other mobile genetic elements that might provide vehicles for horizontal transfer of the casposons. Additionally, many M. mazei genomes contain previously undetected solo terminal inverted repeats that apparently are derived from casposons and could resemble intermediates in CRISPR evolution. We further demonstrate the sequence specificity of casposon insertion and note clear parallels with the adaptation mechanism of CRISPR-Cas. Finally, besides identifying additional representatives in each of the three originally defined families, we describe a new, fourth, family of casposons.

  13. CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations

    PubMed Central

    Pan, Changtian; Ye, Lei; Qin, Li; Liu, Xue; He, Yanjun; Wang, Jie; Chen, Lifei; Lu, Gang

    2016-01-01

    The CRISPR/Cas9 system has successfully been used in various organisms for precise targeted gene editing. Although it has been demonstrated that CRISPR/Cas9 system can induce mutation in tomato plants, the stability of heredity in later generations and mutant specificity induced by the CRISPR/Cas9 system in tomato plants have not yet been elucidated in detail. In this study, two genes, SlPDS and SlPIF4, were used for testing targeted mutagenesis in tomato plants through an Agrobacterium tumefaciens-mediated transformation method. A high mutation frequency was observed in all tested targets in the T0 transgenic tomato plants, with an average frequency of 83.56%. Clear albino phenotypes were observed for the psd mutants. High frequencies of homozygous and biallelic mutants were detected even in T0 plants. The majority of the detected mutations were 1- to 3-nucleotide deletions, followed by 1-bp insertions. The target mutations in the T0 lines were stably transmitted to the T1 and T2 generations, without new modifications or revision. Off-target activities associated with SlPDS and SlPIF4 were also evaluated by sequencing the putative off-target sites, and no clear off-target events were detected. Our results demonstrate that the CRISPR/Cas9 system is an efficient tool for generating stable and heritable modifications in tomato plants. PMID:27097775

  14. Capsicum annuum S (CaS) promotes reproductive transition and is required for flower formation in pepper (Capsicum annuum).

    PubMed

    Cohen, Oded; Borovsky, Yelena; David-Schwartz, Rakefet; Paran, Ilan

    2014-05-01

    The genetic control of the transition to flowering has mainly been studied in model species, while few data are available in crop species such as pepper (Capsicum spp.). To elucidate the genetic control of the transition to flowering in pepper, mutants that lack flowers were isolated and characterized. Genetic mapping and sequencing allowed the identification of the gene disrupted in the mutants. Double mutants and expression analyses were used to characterize the relationships between the mutated gene and other genes controlling the transition to flowering and flower differentiation. The mutants were characterized by a delay in the initiation of sympodial growth, a delay in the termination of sympodial meristems and complete inhibition of flower formation. Capsicum annuum S (CaS), the pepper (Capsicum annuum) ortholog of tomato (Solanum lycopersicum) COMPOUND INFLORESCENCE and petunia (Petunia hybrida) EVERGREEN, was found to govern the mutant phenotype. CaS is required for the activity of the flower meristem identity gene Ca-ANANTHA and does not affect the expression of CaLEAFY. CaS is epistatic over other genes controlling the transition to flowering with respect to flower formation. Comparative homologous mutants in the Solanaceae indicate that CaS has uniquely evolved to have a critical role in flower formation, while its role in meristem maturation is conserved in pepper, tomato and petunia.

  15. A Stable but Reversible Integrated Surrogate Reporter for Assaying CRISPR/Cas9-Stimulated Homology-directed Repair.

    PubMed

    Wen, Yahong; Liao, Grace; Pritchard, Thomas; Zhao, Ting-Ting; Connelly, Jon P; Pruett-Miller, Shondra M; Blanc, Valerie; Davidson, Nicholas O; Madison, Blair B

    2017-02-22

    The discovery and application of CRISPR/Cas9 technology for genome editing has greatly accelerated targeted mutagenesis in a variety of organisms. CRISPR/Cas9-mediated site-specific cleavage is typically exploited for the generation of insertions or deletions (indels) following aberrant dsDNA repair via the endogenous non-homology end-joining (NHEJ) pathway, or alternatively, for enhancing homology directed repair (HDR) to facilitate the generation of a specific mutation (or knock-in). However, there is a need for efficient cellular assays that can measure Cas9/guide RNA (gRNA) activity. Reliable methods for enriching and identifying desired mutants are also lacking. Here we describe a method using the Piggybac transposon for stable genomic integration of an H2B-GFP reporter or a hygromycin resistance gene for assaying Cas9 target cleavage and homology-directed repair (HDR). The H2B-GFP fusion protein provides increased stability and an obvious pattern of nuclear localization. This method, called SRIRACCHA (i.e., a stable, but reversible, integrated reporter for assaying CRISPR/Cas-stimulated HDR activity), enables the enrichment of mutants via selection of GFP-positive or hygromycin-resistant mammalian cells (immortalized or non-immortalized) as a surrogate for the modification of the endogenous target site. Currently available hyperactive Piggybac transposase mutants allow both delivery and removal of the surrogate reporters, with minimal risk of generating undesirable mutations. This assay permits rapid screening for efficient gRNAs, and the accelerated identification of mutant clones, and is applicable to many cell types. We foresee the utility of this approach in contexts in which the maintenance of genomic integrity is essential, for example, when engineering cells for therapeutic purposes.

  16. Cornerstones of CRISPR-Cas in drug discovery and therapy.

    PubMed

    Fellmann, Christof; Gowen, Benjamin G; Lin, Pei-Chun; Doudna, Jennifer A; Corn, Jacob E

    2017-02-01

    The recent development of CRISPR-Cas systems as easily accessible and programmable tools for genome editing and regulation is spurring a revolution in biology. Paired with the rapid expansion of reference and personalized genomic sequence information, technologies based on CRISPR-Cas are enabling nearly unlimited genetic manipulation, even in previously difficult contexts, including human cells. Although much attention has focused on the potential of CRISPR-Cas to cure Mendelian diseases, the technology also holds promise to transform the development of therapies to treat complex heritable and somatic disorders. In this Review, we discuss how CRISPR-Cas can affect the next generation of drugs by accelerating the identification and validation of high-value targets, uncovering high-confidence biomarkers and developing differentiated breakthrough therapies. We focus on the promises, pitfalls and hurdles of this revolutionary gene-editing technology, discuss key aspects of different CRISPR-Cas screening platforms and offer our perspectives on the best practices in genome engineering.

  17. SD-CAS: Spin Dynamics by Computer Algebra System.

    PubMed

    Filip, Xenia; Filip, Claudiu

    2010-11-01

    A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples.

  18. Applications of Engineered DNA-Binding Molecules Such as TAL Proteins and the CRISPR/Cas System in Biology Research

    PubMed Central

    Fujita, Toshitsugu; Fujii, Hodaka

    2015-01-01

    Engineered DNA-binding molecules such as transcription activator-like effector (TAL or TALE) proteins and the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) (CRISPR/Cas) system have been used extensively for genome editing in cells of various types and species. The sequence-specific DNA-binding activities of these engineered DNA-binding molecules can also be utilized for other purposes, such as transcriptional activation, transcriptional repression, chromatin modification, visualization of genomic regions, and isolation of chromatin in a locus-specific manner. In this review, we describe applications of these engineered DNA-binding molecules for biological purposes other than genome editing. PMID:26404236

  19. A crucial role for DOK1 in PDGF-BB-stimulated glioma cell invasion through p130Cas and Rap1 signalling.

    PubMed

    Barrett, Angela; Evans, Ian M; Frolov, Antonina; Britton, Gary; Pellet-Many, Caroline; Yamaji, Maiko; Mehta, Vedanta; Bandopadhyay, Rina; Li, Ningning; Brandner, Sebastian; Zachary, Ian C; Frankel, Paul

    2014-06-15

    DOK1 regulates platelet-derived growth factor (PDGF)-BB-stimulated glioma cell motility. Mechanisms regulating tumour cell motility are essential for invasion and metastasis. We report here that PDGF-BB-mediated glioma cell invasion and migration are dependent on the adaptor protein downstream of kinase 1 (DOK1). DOK1 is expressed in several glioma cell lines and in tumour biopsies from high-grade gliomas. DOK1 becomes tyrosine phosphorylated upon PDGF-BB stimulation of human glioma cells. Knockdown of DOK1 or expression of a DOK1 mutant (DOK1FF) containing Phe in place of Tyr at residues 362 and 398, resulted in inhibition of both the PDGF-BB-induced tyrosine phosphorylation of p130Cas (also known as BCAR1) and the activation of Rap1. DOK1 colocalises with tyrosine phosphorylated p130Cas at the cell membrane of PDGF-BB-treated cells. Expression of a non-tyrosine-phosphorylatable substrate domain mutant of p130Cas (p130Cas15F) inhibited PDGF-BB-mediated Rap1 activation. Knockdown of DOK1 and Rap1 inhibited PDGF-BB-induced chemotactic cell migration, and knockdown of DOK1 and Rap1 and expression of DOK1FF inhibited PDGF-mediated three-dimensional (3D) spheroid invasion. These data show a crucial role for DOK1 in the regulation of PDGF-BB-mediated tumour cell motility through a p130Cas-Rap1 signalling pathway. [Corrected

  20. Practical method for targeted disruption of cilia-related genes by using CRISPR/Cas9-mediated homology-independent knock-in system.

    PubMed

    Katoh, Yohei; Michisaka, Saki; Nozaki, Shohei; Funabashi, Teruki; Hirano, Tomoaki; Takei, Ryota; Nakayama, Kazuhisa

    2017-02-08

    The CRISPR/Cas9 system has revolutionized genome editing in virtually all organisms. Although the CRISPR/Cas9 system enables the targeted cleavage of genomic DNA, its use for gene knock-in remains challenging because levels of homologous recombination activity vary among various cells. In contrast, the efficiency of homology-independent DNA repair is relatively high in most cell types. Therefore, the utilization of a homology-independent repair mechanism is a possible alternative for efficient genome editing. Here, we constructed a donor knock-in vector optimized for the CRISPR/Cas9 system, and developed a practical system that enables efficient disruption of target genes by exploiting homology-independent repair. Using this practical knock-in system, we successfully disrupted genes encoding proteins involved ciliary protein trafficking, including IFT88 and IFT20, in hTERT-RPE1 cells, which have low homologous recombination activity. The most critical concern using the CRISPR/Cas9 system is off-target cleavage. To reduce the off-target cleavage frequency and to increase the versatility of our knock-in system, we further constructed a universal donor vector and an expression vector containing Cas9 with enhanced specificity and tandem sgRNA expression cassettes. We demonstrated that the second version of our system has improved usability.