Science.gov

Sample records for activity sheets designed

  1. Environmental Education Activity Sheets 1-11.

    ERIC Educational Resources Information Center

    Halsey, Clifton F.; And Others

    These activity sheets, developed by personnel of the Agricultural Extension Service of the University of Minnesota, were designed for youth group campers but may be used by other populations and individuals. Each activity sheet focuses on a separate topic: (1) Selecting Suitable Uses for Land, (2) Measuring the Steepness of Land, (3) Determining…

  2. Activity Sheets. Draft Copy.

    ERIC Educational Resources Information Center

    Duke Power Company, Educational Services Dept., Charlotte, NC.

    This document consists of energy vocabulary activities, three games, worksheets, laboratory activities/exercises, and an introductory classroom exercise designed to introduce energy concepts to students. Vocabulary activities focus on coal and energy consumption. The three games (with instructions) focus on various aspects of energy and energy…

  3. Design and biological activity of {beta}-sheet breaker peptide conjugates

    SciTech Connect

    Rocha, Sandra Cardoso, Isabel; Boerner, Hans; Pereira, Maria Carmo; Saraiva, Maria Joao; Coelho, Manuel

    2009-03-06

    The sequence LPFFD (iA{beta}{sub 5}) prevents amyloid-{beta} peptide (A{beta}) fibrillogenesis and neurotoxicity, hallmarks of Alzheimer's disease (AD), as previously demonstrated. In this study iA{beta}{sub 5} was covalently linked to poly(ethylene glycol) (PEG) and the activity of conjugates was assessed and compared to the activity of the peptide alone by in vitro studies. The conjugates were characterized by MALDI-TOF. Competition binding assays established that conjugates retained the ability to bind A{beta} with similar strength as iA{beta}{sub 5}. Transmission electron microscopy analysis showed that iA{beta}{sub 5} conjugates inhibited amyloid fibril formation, which is in agreement with binding properties observed for the conjugates towards A{beta}. The conjugates were also able to prevent amyloid-induced cell death, as evaluated by activation of caspase 3. These results demonstrated that the biological activity of iA{beta}{sub 5} is not affected by the pegylation process.

  4. W-Band Sheet Beam Klystron Design

    SciTech Connect

    Scheitrum, G.; Caryotakis, G.; Burke, A.; Jensen, A.; Jongewaard, E.a Krasnykh, A.; Neubauer, M.; Phillips, R.; Rauenbuehler, K.; /SLAC

    2011-11-11

    Sheet beam devices provide important advantages for very high power, narrow bandwidth RF sources like accelerator klystrons [1]. Reduced current density and increased surface area result in increased power capabi1ity, reduced magnetic fields for focusing and reduced cathode loading. These advantages are offset by increased complexity, beam formation and transport issues and potential for mode competition in the ovennoded cavities and drift tube. This paper will describe the design issues encountered in developing a 100 kW peak and 2 kW average power sheet beam k1ystron at W-band including beam formation, beam transport, circuit design, circuit fabrication and mode competition.

  5. Face split interpretations in sheet metal design

    NASA Astrophysics Data System (ADS)

    Vitalii, Vorkov; Dewil, Reginald; Mannaerts, Jef; Vandepitte, Dirk; Duflou, Joost R.

    2016-10-01

    Most of the modern CAD systems have capabilities to work with sheet metal parts. However, the functionality of these modules is limited to modelling, unfolding and delivering project documentation. In some cases the proposed design cannot be manufactured without splitting one or more faces of the part. In the current work, the graph representation of sheet metal parts and corresponding flat patterns are discussed. A splitting procedure is introduced which keeps all existing connections between faces intact. In addition, three interpretations for splitting are presented and recommendations for possible usage are given. The splitting procedure is found to be a convenient option to create feasible flat patterns. In addition, the different splitting interpretations present more flexibility to the designer.

  6. Sketching Designs Using the Five Design-Sheet Methodology.

    PubMed

    Roberts, Jonathan C; Headleand, Chris; Ritsos, Panagiotis D

    2016-01-01

    Sketching designs has been shown to be a useful way of planning and considering alternative solutions. The use of lo-fidelity prototyping, especially paper-based sketching, can save time, money and converge to better solutions more quickly. However, this design process is often viewed to be too informal. Consequently users do not know how to manage their thoughts and ideas (to first think divergently, to then finally converge on a suitable solution). We present the Five Design Sheet (FdS) methodology. The methodology enables users to create information visualization interfaces through lo-fidelity methods. Users sketch and plan their ideas, helping them express different possibilities, think through these ideas to consider their potential effectiveness as solutions to the task (sheet 1); they create three principle designs (sheets 2,3 and 4); before converging on a final realization design that can then be implemented (sheet 5). In this article, we present (i) a review of the use of sketching as a planning method for visualization and the benefits of sketching, (ii) a detailed description of the Five Design Sheet (FdS) methodology, and (iii) an evaluation of the FdS using the System Usability Scale, along with a case-study of its use in industry and experience of its use in teaching.

  7. Working with Design: A Package for Sheet Metal

    ERIC Educational Resources Information Center

    Fiebich, Paul D.

    1974-01-01

    The author describes a design approach used to study sheet metal layout in junior high and high school mechanical drafting courses. Students observe packaging in stores, study package construction, and design and produce their own packages. (EA)

  8. Optimal Design of Sheet Pile Wall Embedded in Clay

    NASA Astrophysics Data System (ADS)

    Das, Manas Ranjan; Das, Sarat Kumar

    2015-09-01

    Sheet pile wall is a type of flexible earth retaining structure used in waterfront offshore structures, river protection work and temporary supports in foundations and excavations. Economy is an essential part of a good engineering design and needs to be considered explicitly in obtaining an optimum section. By considering appropriate embedment depth and sheet pile section it may be possible to achieve better economy. This paper describes optimum design of both cantilever and anchored sheet pile wall penetrating clay using a simple optimization tool Microsoft Excel ® Solver. The detail methodology and its application with examples are presented for cantilever and anchored sheet piles. The effects of soil properties, depth of penetration and variation of ground water table on the optimum design are also discussed. Such a study will help professional while designing the sheet pile wall penetrating clay.

  9. Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation.

    PubMed

    Stokes, C R; Margold, M; Clark, C D; Tarasov, L

    2016-02-18

    The contribution of the Greenland and West Antarctic ice sheets to sea level has increased in recent decades, largely owing to the thinning and retreat of outlet glaciers and ice streams. This dynamic loss is a serious concern, with some modelling studies suggesting that the collapse of a major ice sheet could be imminent or potentially underway in West Antarctica, but others predicting a more limited response. A major problem is that observations used to initialize and calibrate models typically span only a few decades, and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves over longer timescales. This represents one of the largest sources of uncertainty when predicting the contributions of ice sheets to sea-level rise. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. Here we reconstruct the activity of 117 ice streams that operated at various times during deglaciation of the Laurentide Ice Sheet (from about 22,000 to 7,000 years ago) and show that as they activated and deactivated in different locations, their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter and their total discharge decreased. The underlying geology and topography clearly influenced ice stream activity, but--at the ice-sheet scale--their drainage network adjusted and was linked to changes in ice sheet volume. It is unclear whether these findings can be directly translated to modern ice sheets. However, contrary to the view that sees ice streams as unstable entities that can accelerate ice-sheet deglaciation, we conclude that ice streams exerted progressively less influence on ice sheet mass balance during the retreat of the Laurentide Ice Sheet.

  10. Validation and Design of Sheet Retrofits

    DTIC Science & Technology

    2010-10-31

    these properties, large ductility and high strength-to-weight ratio, for validation of the proposed modeling technique . To promote the widespread...time period when their designers did not consider blast resistance. For this reason it is imperative that designers develop retrofitting techniques ...psi and maximum deflection of 12.44 inches before failure. The sample was prestressed in the loading tree prior to the start of the test and had an

  11. Computer aided process planning and die design in simulation environment in sheet metal forming

    NASA Astrophysics Data System (ADS)

    Tisza, Miklós; Lukács, Zsolt

    2013-12-01

    During the recent 10-15 years, Computer Aided Process Planning and Die Design evolved as one of the most important engineering tools in sheet metal forming, particularly in the automotive industry. This emerging role is strongly emphasized by the rapid development of Finite Element Modeling, as well. The purpose of this paper is to give a general overview about the recent achievements in this very important field of sheet metal forming and to introduce some special results in this development activity. Therefore, in this paper, an integrated process simulation and die design system developed at the University of Miskolc, Department of Mechanical Engineering will be analyzed. The proposed integrated solutions have great practical importance to improve the global competitiveness of sheet metal forming in the very important segment of industry. The concept described in this paper may have specific value both for process planning and die design engineers.

  12. Active deformable sheets: prototype implementation, modeling, and control

    NASA Astrophysics Data System (ADS)

    Lind, Robert J.; Johnson, Norbert; Doumanidis, Charalabos C.

    2000-06-01

    Active deformable sheets are integrated smart planar sheet structures performing off-plane deformations under computer actuation and control, to take up a desired dynamic morphology specified in CAD software or obtained by 3-D scanning of a solid surface. The sheet prototypes are implemented in the laboratory by elastic neoprene foil layers with embedded asymmetric grids of SMA wires (Nitinol), which upon electrical contraction bend the sheet to the necessary local curvature distribution. An analytical model of such prototypes, consisting of an electrical, a thermal, a material and a mechanical module, as well as a more complex finite element thermomechanical simulation of the sheet structure have been developed and validated experimentally. Besides open-loop control of the sheet curvatures by modulation of the SMA wire actuation current, a closed-loop control system has been implemented, using feedback of the wire electrical resistance measurements in real time, correlating to the material transformation state. The active deformable sheets are intended for applications such as reconfigurable airfoils and aerospace structures, variable focal length optics and electromagnetic reflectors, flexible and rapid tooling and microrobotics.

  13. Numerical Design of Drawbeads for Advanced High Strength Steel Sheets

    NASA Astrophysics Data System (ADS)

    Keum, Y. T.; Kim, D. J.; Kim, G. S.

    2010-06-01

    The map for designing the drawbeads used in the stamping dies for advanced high strength steel (AHSS) sheets is numerically investigated and its application is introduced. The bending limit of AHSS sheet is determined from the extreme R/t's obtained simulating numerically the plane-strain process formed by the cylindrical punches and dies with various radii. In addition, the forming allowance defined by the difference between FLC0 and the strain after passing the drawbead, which is observed by the numerical simulation of drawbead pulling test, is computed. Based on the bending limit and forming allowance, the design map for determining the height, width, and shoulder radius of the drawbead which are key parameters in the drawbead design and depend on the restraining force is constructed by aid of the equivalent drawbead model. A drawbead of the stamping die for forming a channel-typed panel is designed by using the design map, and the formability and springback of the panel to be formed are numerically evaluated, from which the availability of the design map is demonstrated.

  14. Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability

    USGS Publications Warehouse

    Blankenship, D.D.; Bell, R.E.; Hodge, S.M.; Brozena, J.M.; Behrendt, John C.; Finn, C.A.

    1993-01-01

    IT is widely understood that the collapse of the West Antarctic ice sheet (WAIS) would cause a global sea level rise of 6 m, yet there continues to be considerable debate about the detailed response of this ice sheet to climate change1-3. Because its bed is grounded well below sea level, the stability of the WAIS may depend on geologically controlled conditions at the base which are independent of climate. In particular, heat supplied to the base of the ice sheet could increase basal melting and thereby trigger ice streaming, by providing the water for a lubricating basal layer of till on which ice streams are thought to slide4,5. Ice streams act to protect the reservoir of slowly moving inland ice from exposure to oceanic degradation, thus enhancing ice-sheet stability. Here we present aerogeophysical evidence for active volcanism and associated elevated heat flow beneath the WAIS near the critical region where ice streaming begins. If this heat flow is indeed controlling ice-stream formation, then penetration of ocean waters inland of the thin hot crust of the active portion of the West Antarctic rift system could lead to the disappearance of ice streams, and possibly trigger a collapse of the inland ice reservoir.

  15. Features of the Active Evening Plasma Sheet from MMS

    NASA Astrophysics Data System (ADS)

    Moore, T. E.; Chandler, M. O.; Avanov, L. A.; Burch, J. L.; Coffey, V. N.; Ergun, R. E.; Fuselier, S. A.; Gershman, D. J.; Giles, B. L.; Lavraud, B.; MacDonald, E.; Mauk, B.; Mukai, T.; Nakamura, R.; Pollock, C. J.; Russell, C. T.; Saito, Y.; Sauvaud, J. A.; Torbert, R. B.; Yokota, S.

    2015-12-01

    The Magnetospheric Multiscale (MMS) mission, consisting of four identical plasmas and fields observatories, was launched into a 12 RE elliptical equatorial orbit in March 2015 and was in the process of being commissioned through August 2015. During commissioning, the orbit apogee rotated from near midnight through the evening toward the dusk sector and occasionally captured new observations of the plasma sheet, its boundary layers, and the magnetospheric tail lobes. On 22-23 June, an especially active plasma sheet was involved in a major geospace storm that developed a ring current with 200 nT DST. We report on the ion kinetic and flow features of this active plasma sheet, comparing them with familiar observations from earlier missions, as an exercise in validating the MMS observations and assessing their capabilities to provide higher time resolution in multi-point views of thin, fast-moving structures. The observed features include but are not limited to cold lobal wind streams in the lobes, tailward flowing auroral beams and conics, hot earthward field-aligned flows and counter-flows, fast cross-field convection of some flows toward the neutral sheet, and the hot isotropic plasma sheet proper. Relationships between these features, the ionosphere, and the reconnecting magnetotail will be explored and discussed, seeking preliminary conclusions.

  16. Structures of Thin Sheet Metal, Their Design and Construction

    NASA Technical Reports Server (NTRS)

    Wagner, Herbert

    1928-01-01

    This report presents a brief survey of the uses of sheet-metal coverings in conjunction with the inner structure. A method of construction is presented as well as a discussion on the strength of sheet metal.

  17. EERE-Supported International Activities in Latin America (Fact Sheet)

    SciTech Connect

    Not Available

    2010-05-01

    The Office of Energy Efficiency and Renewable Energy (EERE) is involved in a variety of international initiatives, partnerships, and events that promote greater understanding and use of renewable energy (RE) and energy efficiency (EE) worldwide. In support of the Energy and Climate Partnership of the Americas (ECPA), EERE is working with several Latin American countries to advance EE and RE deployment for economic growth, energy security, poverty relief, and disaster recovery goals. This fact sheet highlights those activities.

  18. Preliminary Solar Sail Design and Fabrication Assessment: Spinning Sail Blade, Square Sail Sheet

    NASA Technical Reports Server (NTRS)

    Daniels, J. B.; Dowdle, D. M.; Hahn, D. W.; Hildreth, E. N.; Lagerquist, D. R.; Mahagnoul, E. J.; Munson, J. B.; Origer, T. F.

    1977-01-01

    The designs and fabrication methods, equipment, facilities, economics, and schedules, for the square sail sheet alternate are evaluated. The baseline for the spinning sail blade design and related fabrication issues are assessed.

  19. A recipe for designing water-soluble, beta-sheet-forming peptides.

    PubMed Central

    Mayo, K. H.; Ilyina, E.; Park, H.

    1996-01-01

    Based on observations of solubility and folding properties of peptide 33-mers derived from the beta-sheet domains of platelet factor-4 (PF4), interleukin-8 (IL-8), and growth related protein (Gro-alpha), as well as other beta-sheet-forming peptides, general guidelines have been developed to aid in the design of water soluble, self-association-induced beta-sheet-forming peptides. CD, 1H-NMR, and pulsed field gradient NMR self-diffusion measurements have been used to assess the degree of folding and state of aggregation. PF4 peptide forms native-like beta-sheet tetramers and is sparingly soluble above pH 6. IL-8 peptide is insoluble between pH 4.5 and pH 7.5, yet forms stable, native-like beta-sheet dimers at higher pH. Gro-alpha peptide is soluble at all pH values, yet displays no discernable beta-sheet structure even when diffusion data indicate dimer-tetramer aggregation. A recipe used in the de novo design of water-soluble beta-sheet-forming peptides calls for the peptide to contain 40-50% hydrophobic residues, usually aliphatic ones (I, L, V, A, M) (appropriately paired and mostly but not always alternating with polar residues in the sheet sequence), a positively charged (K, R) to negatively charged (E, D) residue ratio between 4/2 and 6/2, and a noncharged polar residue (N, Q, T, S) composition of about 20% or less. Results on four de novo designed, 33-residue peptides are presented supporting this approach. Under near physiologic conditions, all four peptides are soluble, form beta-sheet structures to varying degrees, and self-associate. One peptide folds as a stable, compact beta-sheet tetramer, whereas the others are transient beta-sheet-containing aggregates. PMID:8819163

  20. A Collaborative Design Curriculum for Reviving Sheet Metal Handicraft

    ERIC Educational Resources Information Center

    Chan, Patrick K. C.

    2015-01-01

    Galvanised sheet metal was a popular and important material for producing handmade home utensils in Hong Kong from the 1930s onwards. It was gradually replaced by new materials like stainless steel and plastic because similar goods made with these are cheaper, more standardised, more durable and of much better quality. The handicrafts behind sheet…

  1. 121. JOB NO. 1347E, SHEET 7S, 1929, DOCK DESIGN FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    121. JOB NO. 1347-E, SHEET 7S, 1929, DOCK DESIGN FOR FORD MOTOR COMPANY; SECTIONS AND DETAILS - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  2. Experimental design for three interrelated Marine Ice-Sheet and Ocean Model Intercomparison Projects

    NASA Astrophysics Data System (ADS)

    Asay-Davis, X. S.; Cornford, S. L.; Durand, G.; Galton-Fenzi, B. K.; Gladstone, R. M.; Gudmundsson, G. H.; Hattermann, T.; Holland, D. M.; Holland, D.; Holland, P. R.; Martin, D. F.; Mathiot, P.; Pattyn, F.; Seroussi, H.

    2015-11-01

    Coupled ice sheet-ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of marine ice sheets and tidewater glaciers, from process studies to future projections of ice mass loss and sea level rise. The Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP) is a community effort aimed at designing and coordinating a series of model intercomparison projects (MIPs) for model evaluation in idealized setups, model verification based on observations, and future projections for key regions in the West Antarctic Ice Sheet (WAIS). Here we describe computational experiments constituting three interrelated MIPs for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities. These consist of ice sheet experiments under the Marine Ice Sheet MIP third phase (MISMIP+), ocean experiments under the ice shelf-ocean MIP second phase (ISOMIP+) and coupled ice sheet-ocean experiments under the MISOMIP first phase (MISOMIP1). All three MIPs use a shared domain with idealized bedrock topography and forcing, allowing the coupled simulations (MISOMIP1) to be compared directly to the individual component simulations (MISMIP+ and ISOMIP+). The experiments, which have qualitative similarities to Pine Island Glacier Ice Shelf and the adjacent region of the Amundsen Sea, are designed to explore the effects of changes in ocean conditions, specifically the temperature at depth, on basal melting and ice dynamics. In future work, differences between model results will form the basis for evaluation of the participating models.

  3. A Sheet-Beam Klystron Paper Design Development of a Sheet-Beam Klystron for the NLC

    SciTech Connect

    Caryotakis, G

    2004-03-25

    What may be the first detailed cold test and computer simulation analysis of a Double Sheet Beam Klystron (DSBK) was performed at SLAC. The device was conceptually designed mechanically, and evaluated electrically for beam formation, gain, stability and efficiency. It is believed that the DSBK can be built at a relatively low cost for a future NLC collider and can produce at least 150 MW at 11.4 GHz with PPM focusing. Voltage and current are 450 kV and 640 A, respectively.

  4. Virus activity on the surface of glaciers and ice sheets

    NASA Astrophysics Data System (ADS)

    Bellas, C. M.; Anesio, A. M.; Telling, J.; Stibal, M.; Barker, G.; Tranter, M.; Yallop, M.; Cook, J.

    2012-12-01

    Viruses are found wherever there is life. They are major components of aquatic ecosystems and through interactions with their hosts they significantly alter global biogeochemical cycles and drive evolutionary processes. Here we focus on the interactions between bacteriophages and their hosts inhabiting the microbially dominated supraglacial ecosystems known as cryoconite holes. The diversity of phages present in the sediments of cryoconites was examined for the first time by using a molecular based approach to target the T4-type bacteriophage. Through phylogenetic analysis it was determined that the phage community was diverse, consisting of strains that grouped with those from other global habitats and those that formed several completely new T4-type phage clusters. The activity of the viral community present on glaciers from Svalbard and the Greenland Ice Sheet was also addressed through a series of incubation experiments. Here new virus production was found to be capable of turning over the viral population approximately twice a day, a rate comparable to marine and freshwater sediments around the globe. This large scale viral production was found to be theoretically capable of accounting for all heterotrophic bacterial mortality in cryoconite holes. The mode of infection that viruses employ in cryoconite holes was also addressed to show that a variety of viral life strategies are likely responsible for the continued dominance of viruses in these unique habitats. The implications of viral activity are discussed in terms of carbon cycling in supraglacial ecosystems.

  5. Using Cascading Style Sheets to Design a Fly-Out Menu with Microsoft Visual Studio

    ERIC Educational Resources Information Center

    Liu, Chang; Downing, Charles

    2010-01-01

    The menu has become an integrated component within nearly all professionally designed websites. This teaching tip presents a no-code way to design either a vertical or a horizontal fly-out menu by using Cascading Style Sheets (CSS) within Microsoft Visual Studio 2008. The approach described in this tip helps students fully understand how to…

  6. Employment of Second Order Ruled Surfaces in Design of Sheet Beam Guns

    SciTech Connect

    Krasnykh, Anatoly; /SLAC

    2007-03-05

    A novel 3D method of sheet beam gun design has recently been developed. Second order ruled surfaces (SORS) can be used to define the geometry of the gun electrodes. The gun design process is made simpler if SORS are derived from analytical formulas. A proposed method is discussed and illustrated.

  7. Boosting protein stability with the computational design of β-sheet surfaces.

    PubMed

    Kim, Doo Nam; Jacobs, Timothy M; Kuhlman, Brian

    2016-03-01

    β-sheets often have one face packed against the core of the protein and the other facing solvent. Mutational studies have indicated that the solvent-facing residues can contribute significantly to protein stability, and that the preferred amino acid at each sequence position is dependent on the precise structure of the protein backbone and the identity of the neighboring amino acids. This suggests that the most advantageous methods for designing β-sheet surfaces will be approaches that take into account the multiple energetic factors at play including side chain rotamer preferences, van der Waals forces, electrostatics, and desolvation effects. Here, we show that the protein design software Rosetta, which models these energetic factors, can be used to dramatically increase protein stability by optimizing interactions on the surfaces of small β-sheet proteins. Two design variants of the β-sandwich protein from tenascin were made with 7 and 14 mutations respectively on its β-sheet surfaces. These changes raised the thermal midpoint for unfolding from 45°C to 64°C and 74°C. Additionally, we tested an empirical approach based on increasing the number of potential salt bridges on the surfaces of the β-sheets. This was not a robust strategy for increasing stability, as three of the four variants tested were unfolded.

  8. Robust Design of Sheet Metal Forming Process Based on Kriging Metamodel

    NASA Astrophysics Data System (ADS)

    Xie, Yanmin

    2011-08-01

    Nowadays, sheet metal forming processes design is not a trivial task due to the complex issues to be taken into account (conflicting design goals, complex shapes forming and so on). Optimization methods have also been widely applied in sheet metal forming. Therefore, proper design methods to reduce time and costs have to be developed mostly based on computer aided procedures. At the same time, the existence of variations during manufacturing processes significantly may influence final product quality, rendering non-robust optimal solutions. In this paper, a small size of design of experiments is conducted to investigate how a stochastic behavior of noise factors affects drawing quality. The finite element software (LS_DYNA) is used to simulate the complex sheet metal stamping processes. The Kriging metamodel is adopted to map the relation between input process parameters and part quality. Robust design models for sheet metal forming process integrate adaptive importance sampling with Kriging model, in order to minimize impact of the variations and achieve reliable process parameters. In the adaptive sample, an improved criterion is used to provide direction in which additional training samples can be added to better the Kriging model. Nonlinear functions as test functions and a square stamping example (NUMISHEET'93) are employed to verify the proposed method. Final results indicate application feasibility of the aforesaid method proposed for multi-response robust design.

  9. NREL Designs Promising New Oxides for Solar Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2012-04-01

    High-efficiency, thin-film solar cells require electrical contacts with high electrical conductivity, and the top contact must also have high optical transparency. This need is currently met by transparent conducting oxides (TCOs), which conduct electricity but are 90% transparent to visible light. Scientists at the National Renewable Energy Laboratory (NREL) have derived three key design principles for selecting promising materials for TCO contacts. NREL's application of these design principles has resulted in a 10,000-fold improvement in conductivity for one TCO material.

  10. Interactive Design Activism

    NASA Astrophysics Data System (ADS)

    Goulev, Petar; Farrer, Joan

    The following sections are included: * Introduction * Computers and Human Well-being * To Fuzzy or Yes (No)! * Interactive Design Activism * Sensing the Sun * Personalised Public Health Advice * Modifying Human Behaviour * Transdisciplinarity, Knowledge Transfer and Multi-domain

  11. TSCA Chemical Data Reporting Fact Sheet: Reporting Manufactured Chemical Substances from Metal Mining and Related Activities

    EPA Pesticide Factsheets

    This fact sheet provides guidance on the Chemical Data Reporting (CDR) rule requirements related to the reporting of mined metals, intermediates, and byproducts manufactured during metal mining and related activities.

  12. Rubber sheet strewn with TiO2 particles: photocatalytic activity and recyclability.

    PubMed

    Sriwong, Chaval; Wongnawa, Sumpun; Patarapaiboolchai, Orasa

    2012-01-01

    A new method for the preparation of rubber sheet strewn with titanium dioxide particles (TiO2-strewn sheet) is presented. This simple and low cost method is based on the use of TiO2 powder (Degussa P25) being strewn onto the sheet made from rubber latex (60% HA) through a steel sieve. The characteristic of the TiO2-strewn sheet was studied by using scanning electron microscopy/energy dispersive X-ray spectrometer (SEM/EDS) and X-ray diffractometer (XRD) techniques. The photocatalytic activity of TiO2-strewn rubber sheet was evaluated using Indigo Carmine (IC) dye as a model for organic dye pollutant in water. The results showed that the TiO2-strewn sheet could degrade IC dye solution under UV light irradiation. The effects of pH, initial concentration, and the intensity of UV light on the photodegradation were also investigated. Kinetics of the photocatalytic degradation was of the first-order reaction. The used TiO2-strewn sheet can be recovered and reused. The recycling uses did not require any cleaning between successive uses and no decline in the photodegradation efficiency was observed compared with freshly prepared TiO2-strewn sheet.

  13. Design of Solar Heat Sheet for Air Heaters

    NASA Astrophysics Data System (ADS)

    Priya, S. Shanmuga; Premalatha, M.; Thirunavukkarasu, I.

    2011-12-01

    The technique of harnessing solar energy for drying offers significant potential to dry agricultural products such as food grains, fruits, vegetables and medicinal plants, thereby eliminating many of the problems experienced with open-sun drying and industrial drying, besides saving huge quantities of fossil fuels. A great deal of experimental work over the last few decades has already demonstrated that agricultural products can be satisfactorily dehydrated using solar energy. Various designs of small scale solar dryers have been developed in the recent past, mainly for drying agricultural products. Major problems experienced with solar dryers are their non-reliability as their operation largely depends on local weather conditions. While back-up heaters and hybrid dryers partly solved this issue, difficulties in controlling the drying air temperature and flow rate remains a problem, and affects the quality of the dried product. This study is aimed at eliminating the fluctuations in the quality of hot air supplied by simple solar air heaters used for drying fruits, vegetables and other applications. It is an attempt to analyse the applicability of the combination of an glazed transpired solar collector (tank), thermal storage and a intake fan(suction fan) to achieve a steady supply of air at a different atmospheric temperature and flow rate for drying fruits and vegetables. Development of an efficient, low-cost and reliable air heating system for drying applications is done.

  14. Designing Metacognitive Activities.

    ERIC Educational Resources Information Center

    Lin, Xiaodong

    2001-01-01

    Proposes a framework for thinking about how metacognition research might apply to design activities. Examines two basic approaches to supporting metacognition: strategy training, and creation of a supportive social environment for metacognition. Identifies two kinds of content that are taught using these two approaches: knowledge about a specific…

  15. Process modelling and die design concepts for forming aircraft sheet parts

    NASA Astrophysics Data System (ADS)

    Hatipoğlu, H. A.; Alkaş, C. O.

    2016-08-01

    This study is about typical sheet metal forming processes applied in aerospace industry including flexform, stretch form and stretch draw. Each process is modelled by using finite element method for optimization. Tensile, bulge, forming limit and friction tests of commonly used materials are conducted for defining the hardening curves, yield loci, anisotropic constants, forming limit curves and friction coefficients between die and sheet. Process specific loadings and boundary conditions are applied to each model. The models are then validated by smartly designed experiments that characterize the related forming processes. Lastly, several examples are given in which those models are used to predict the forming defects before physical forming and necessary die design and process parameter changes are applied accordingly for successful forming operations.

  16. Design And Construction of a W-Band Sheet Beam Klystron

    SciTech Connect

    Scheitrum, G.; /SLAC

    2006-02-14

    The design and construction of a 100 kW peak power, 2% duty, PCM focused, Wband sheet beam klystron is discussed. The elliptical cross section beam is produced by a new electron gun design using a cylindrical cathode and a racetrack shaped focus electrode. The multi-gap cavities produce acceptable values of R/Q and are designed to produce a uniform electric field over the width of the 12:1 aspect ratio beam. The prototype cavities are produced using normal machining however, LIGA will be used to fabricate the cavities in production versions.

  17. The Promiscuity of [beta]-Strand Pairing Allows for Rational Design of [beta]-Sheet Face Inversion

    SciTech Connect

    Makabe, Koki; Koide, Shohei

    2009-06-17

    Recent studies suggest the dominant role of main-chain H-bond formation in specifying {beta}-sheet topology. Its essentially sequence-independent nature implies a large degree of freedom in designing {beta}-sheet-based nanomaterials. Here we show rational design of {beta}-sheet face inversions by incremental deletions of {beta}-strands from the single-layer {beta}-sheet of Borrelia outer surface protein A. We show that a {beta}-sheet structure can be maintained when a large number of native contacts are removed and that one can design large-scale conformational transitions of a {beta}-sheet such as face inversion by exploiting the promiscuity of strand-strand interactions. High-resolution X-ray crystal structures confirmed the success of the design and supported the importance of main-chain H-bonds in determining {beta}-sheet topology. This work suggests a simple but effective strategy for designing and controlling nanomaterials based on {beta}-rich peptide self-assemblies.

  18. Antibacterial activity of two-dimensional MoS2 sheets.

    PubMed

    Yang, Xi; Li, Jie; Liang, Tao; Ma, Chunyan; Zhang, Yingying; Chen, Hongzheng; Hanagata, Nobutaka; Su, Huanxing; Xu, Mingsheng

    2014-09-07

    Graphene-like two-dimensional materials (2DMats) show application potential in optoelectronics and biomedicine due to their unique properties. However, environmental and biological influences of these 2DMats remain to be unveiled. Here we reported the antibacterial activity of two-dimensional (2D) chemically exfoliated MoS2 (ce-MoS2) sheets. We found that the antibacterial activity of ce-MoS2 sheets was much more potent than that of the raw MoS2 powders used for the synthesis of ce-MoS2 sheets possibly due to the 2D planar structure (high specific surface area) and higher conductivity of the ce-MoS2. We investigated the antibacterial mechanisms of the ce-MoS2 sheets and proposed their antibacterial pathways. We found that the ce-MoS2 sheets could produce reactive oxygen species (ROS), different from a previous report on graphene-based materials. Particularly, the oxidation capacity of the ce-MoS2 sheets toward glutathione oxidation showed a time and concentration dependent trend, which is fully consistent with the antibacterial behaviour of the ce-MoS2 sheets. The results suggest that antimicrobial behaviors were attributable to both membrane and oxidation stress. The antibacterial pathways include MoS2-bacteria contact induced membrane stress, superoxide anion (O2(˙-) induced ROS production by the ce-MoS2, and the ensuing superoxide anion-independent oxidation. Our study thus indicates that the tailoring of the dimension of nanomaterials and their electronic properties would manipulate antibacterial activity.

  19. Rationally designed mutations convert de novo amyloid-like fibrils into monomeric beta-sheet proteins.

    PubMed

    Wang, Weixun; Hecht, Michael H

    2002-03-05

    Amyloid fibrils are associated with a variety of neurodegenerative maladies including Alzheimer's disease and the prion diseases. The structures of amyloid fibrils are composed of beta-strands oriented orthogonal to the fibril axis ("cross beta" structure). We previously reported the design and characterization of a combinatorial library of de novo beta-sheet proteins that self-assemble into fibrillar structures resembling amyloid. The libraries were designed by using a "binary code" strategy, in which the locations of polar and nonpolar residues are specified explicitly, but the identities of these residues are not specified and are varied combinatorially. The initial libraries were designed to encode proteins containing amphiphilic beta-strands separated by reverse turns. Each beta-strand was designed to be seven residues long, with polar (open circle) and nonpolar (shaded circle) amino acids arranged with an alternating periodicity ([see text]). The initial design specified the identical polar/nonpolar pattern for all of the beta-strands; no strand was explicitly designated to form the edges of the resulting beta-sheets. With all beta-strands preferring to occupy interior (as opposed to edge) locations, intermolecular oligomerization was favored, and the proteins assembled into amyloid-like fibrils. To assess whether explicit design of edge-favoring strands might tip the balance in favor of monomeric beta-sheet proteins, we have now redesigned the first and/or last beta-strands of several sequences from the original library. In the redesigned beta-strands, the binary pattern is changed from [see text] (K denotes lysine). The presence of a lysine on the nonpolar face of a beta-strand should disfavor fibrillar structures because such structures would bury an uncompensated charge. The nonpolar right arrow lysine mutations, therefore, would be expected to favor monomeric structures in which the [see text] sequences form edge strands with the charged lysine side

  20. Design and NMR conformational study of a beta-sheet peptide based on Betanova and WW domains.

    PubMed

    Fernández-Escamilla, Ana M; Ventura, Salvador; Serrano, Luis; Jiménez, M Angeles

    2006-10-01

    A good approach to test our current knowledge on formation of protein beta-sheets is de novo protein design. To obtain a three-stranded beta-sheet mini-protein, we have built a series of chimeric peptides by taking as a template a previously designed beta-sheet peptide, Betanova-LLM, and incorporating N- and/or C-terminal extensions taken from WW domains, the smallest natural beta-sheet domain that is stable in absence of disulfide bridges. Some Betanova-LLM strand residues were also substituted by those of a prototype WW domain. The designed peptides were cloned and expressed in Escherichia coli. The ability of the purified peptides to adopt beta-sheet structures was examined by circular dichroism (CD). Then, the peptide showing the highest beta-sheet population according to the CD spectra, named 3SBWW-2, was further investigated by 1H and 13C NMR. Based on NOE and chemical shift data, peptide 3SBWW-2 adopts a well defined three-stranded antiparallel beta-sheet structure with a disordered C-terminal tail. To discern between the contributions to beta-sheet stability of strand residues and the C-terminal extension, the structural behavior of a control peptide with the same strand residues as 3SBWW-2 but lacking the C-terminal extension, named Betanova-LYYL, was also investigated. beta-Sheet stability in these two peptides, in the parent Betanova-LLM and in WW-P, a prototype WW domain, decreased in the order WW-P > 3SBWW-2 > Betanova-LYYL > Betanova-LLM. Conclusions about the contributions to beta-sheet stability were drawn by comparing structural properties of these four peptides.

  1. Litter Control Achievement - Ohio 4-H Club Score Sheet [and] Activity Guides 1 through 7. 4-H Pilot Program 918.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Cooperative Extension Service.

    Seven activity guides, evaluation sheet, and club scoresheet have been prepared for Ohio 4-H clubs' litter education program. Topics of the seven activity guides include: (1) general guidelines and types of activities; (2) little known facts about waste/litter; (3) guidelines for a walking tour; (4) fact sheet (questionnaire) related to garbage;…

  2. Modeling the transition between upper plane bed regime and sheet flow without an active layer formulation. Preliminary results.

    NASA Astrophysics Data System (ADS)

    Viparelli, E.; Hernandez Moreira, R. R.; Blom, A.

    2015-12-01

    A perusal of the literature on bedload transport revealed that, notwithstanding the large number of studies on bedform morphology performed in the past decades, the upper plane bed regime has not been thoroughly investigated and the distinction between the upper plane bed and sheet flow transport regimes is still poorly defined. Previous experimental work demonstrated that the upper plane bed regime is characterized by long wavelength and small amplitude bedforms that migrate downstream. These bedforms, however, were not observed in experiments on sheet flow transport suggesting that the upper plane bed and the sheet flow are two different regimes. We thus designed and performed experiments in a sediment feed flume in the hydraulic laboratory of the Department of Civil and Environmental Engineering at the University of South Carolina at Columbia to study the transition from upper plane bed to sheet flow regime. Periodic measurements of water surface and bed elevation, bedform geometry and thicknesses of the bedload layer were performed by eyes, and with cameras, movies and a system of six ultrasonic probes that record the variations of bed elevation at a point over time. We used the time series of bed elevations to determine the probability functions of bed elevation. These probability functions are implemented in a continuous model of river morphodynamics, i.e. a model that does not use the active layer approximation to describe the sediment fluxes between the bedload and the deposit and that should thus be able to capture the details of the vertical and streamwise variation of the deposit grain size distribution. This model is validated against the experimental results for the case of uniform material. We then use the validated model in the attempt to study if and how the spatial distribution of grain sizes in the deposit changes from upper plane bed regime to sheet flow and if these results are influenced by the imposed rates of base level rise.

  3. Design and characterization of a peptide mimotope of the HIV-1 gp120 bridging sheet.

    PubMed

    Schiavone, Marco; Fiume, Giuseppe; Caivano, Antonella; de Laurentiis, Annamaria; Falcone, Cristina; Masci, Francesca Fasanella; Iaccino, Enrico; Mimmi, Selena; Palmieri, Camillo; Pisano, Antonio; Pontoriero, Marilena; Rossi, Annalisa; Scialdone, Annarita; Vecchio, Eleonora; Andreozzi, Concetta; Trovato, Maria; Rafay, Jan; Ferko, Boris; Montefiori, David; Lombardi, Angela; Morsica, Giulia; Poli, Guido; Quinto, Ileana; Pavone, Vincenzo; de Berardinis, Piergiuseppe; Scala, Giuseppe

    2012-01-01

    The Bridging Sheet domain of HIV-1 gp120 is highly conserved among the HIV-1 strains and allows HIV-1 binding to host cells via the HIV-1 coreceptors. Further, the bridging sheet domain is a major target to neutralize HIV-1 infection. We rationally designed four linear peptide epitopes that mimic the three-dimensional structure of bridging sheet by using molecular modeling. Chemically synthesized peptides BS3 and BS4 showed a fair degree of antigenicity when tested in ELISA with IgG purified from HIV(+) broadly neutralizing sera while the production of synthetic peptides BS1 and BS2 failed due to their high degree of hydrophobicity. To overcome this limitation, we linked all four BS peptides to the COOH-terminus of GST protein to test both their antigenicity and immunogenicity. Only the BS1 peptide showed good antigenicity; however, no envelope specific antibodies were elicited upon mice immunization. Therefore we performed further analyses by linking BS1 peptide to the NH2-terminus of the E2 scaffold from the Geobacillus Stearothermophylus PDH complex. The E2-BS1 fusion peptide showed good antigenic results, however only one immunized rabbit elicited good antibody titers towards both the monomeric and oligomeric viral envelope glycoprotein (Env). In addition, moderate neutralizing antibodies response was elicited against two HIV-1 clade B and one clade C primary isolates. These preliminary data validate the peptide mimotope approach as a promising tool to obtain an effective HIV-1 vaccine.

  4. Designing biomaterials exploiting beta-sheet forming peptides self-assembly

    NASA Astrophysics Data System (ADS)

    Saiani, Alberto

    2013-03-01

    The use of non-covalent self-assembly to construct materials has become a prominent strategy in material science offering practical routes for the construction of increasingly functional materials for a variety of applications ranging from electronic to biotechnology. A variety of molecular building blocks can be used for this purpose, one such block that has attracted considerable attention are de-novo designed peptides. The library of 20 natural amino acids offers the ability to play with the intrinsic properties of the peptide such as structure, hydrophobicity, charge and functionality allowing the design of materials with a wide range of properties. The beta-sheet motif is of particular interest as short peptides can be designed to form beta-sheet rich fibres that entangle and consequently form hydrogels. These hydrogels can be further functionalised using specific biological signals or drugs by synthesising functionalised peptides that are incorporated into the hydrogel network during the self-assembling process. This functionalisation approach is very attractive has it does not require any chemistry avoiding therefore the use of additional potentially toxic chemicals. It also offers the possibility to introduce multiple functionalities in a straightforward fashion. The hydrogels can also be made responsive through the use of enzymatic catalysis and/or conjugation with responsive polymers. In this presentation we will discuss the design opportunities offered by these peptides to create new functional biomaterials.

  5. Surface Structure Dependent Electrocatalytic Activity of Co3O4 Anchored on Graphene Sheets toward Oxygen Reduction Reaction

    PubMed Central

    Xiao, Junwu; Kuang, Qin; Yang, Shihe; Xiao, Fei; Wang, Shuai; Guo, Lin

    2013-01-01

    Catalytic activity is primarily a surface phenomenon, however, little is known about Co3O4 nanocrystals in terms of the relationship between the oxygen reduction reaction (ORR) catalytic activity and surface structure, especially when dispersed on a highly conducting support to improve the electrical conductivity and so to enhance the catalytic activity. Herein, we report a controllable synthesis of Co3O4 nanorods (NR), nanocubes (NC) and nano-octahedrons (OC) with the different exposed nanocrystalline surfaces ({110}, {100}, and {111}), uniformly anchored on graphene sheets, which has allowed us to investigate the effects of the surface structure on the ORR activity. Results show that the catalytically active sites for ORR should be the surface Co2+ ions, whereas the surface Co3+ ions catalyze CO oxidation, and the catalytic ability is closely related to the density of the catalytically active sites. These results underscore the importance of morphological control in the design of highly efficient ORR catalysts. PMID:23892418

  6. Are Adolescents Talking with Their Parents about Sex before Becoming Sexually Active? Fact Sheet

    ERIC Educational Resources Information Center

    Leuschner, Kristin

    2010-01-01

    This paper examines parent-child discussions of sexual behavior. It finds consistency in the timing and content of such discussions; however, many parents and children do not discuss key topics, such as birth control, before adolescents become sexually active. [This fact sheet is based on Megan K. Beckett, Marc N. Elliott, Steven Martino, David E.…

  7. Teen Sexual Activity, Pregnancy and Childbearing among Latinos in the United States. Fact Sheet.

    ERIC Educational Resources Information Center

    National Campaign To Prevent Teen Pregnancy, Washington, DC.

    The Latino population is the fastest-growing major racial/ethnic group in the United States. By 2020, approximately 16 percent of the population will be Latino. This increase will be even more pronounced among teens. This fact sheet summarizes data from the National Vital Statistics Reports on reported sexual activity, pregnancy rates, and…

  8. NREL Develops Accelerated Sample Activation Process for Hydrogen Storage Materials (Fact Sheet)

    SciTech Connect

    Not Available

    2010-12-01

    This fact sheet describes NREL's accomplishments in developing a new sample activation process that reduces the time to prepare samples for measurement of hydrogen storage from several days to five minutes and provides more uniform samples. Work was performed by NREL's Chemical and Materials Science Center.

  9. Enhanced Activity and Stability of Pt catalysts on Functionalized Graphene Sheets for Electrocatalytic Oxygen Reduction

    SciTech Connect

    Kou, Rong; Shao, Yuyan; Wang, Donghai; Engelhard, Mark H.; Kwak, Ja Hun; Wang, Jun; Viswanathan, Vilayanur V.; Wang, Chong M.; Lin, Yuehe; Wang, Yong; Aksay, Ilhan A.; Liu, Jun

    2009-04-30

    Electrocatalysis of oxygen reduction using Pt nanoparticles supported on functionalized graphene sheets (FGSs) was studied. FGSs were prepared by thermal expansion of graphite oxide. Pt nanoparticles with average diameter of 2 nm were uniformly loaded on FGSs by impregnation methods. Pt-FGS showed a higher electrochemical surface area and oxygen reduction activity with improved stability as compared with commercial catalyst. Transmission electron microscopy, X-ray photoelectron spectroscopy, and electrochemical characterization suggest that the improved performance of Pt-FGS can be attributed to smaller particle size and less aggregation of Pt nanoparticles on the functionalized graphene sheets.

  10. Cruciform specimen design and validation for constitutive identification of sheet metal

    NASA Astrophysics Data System (ADS)

    Deng, Nengxiu; Korkolis, Yannis P.

    2013-12-01

    Accurate material models are imperative for successful simulations of sheet metal forming. Calibrating these models can benefit significantly from biaxial experimental data, for example by testing cruciform specimens under biaxial tension. While this technique allows for significant flexibility in the strain paths that can be investigated, a major limitation is the difficulty of accurately determining the stresses in the test section. We propose a cruciform specimen design that allows for direct and accurate determination of stresses from remote load and local strain measurements. The specimen has a test section of reduced thickness; sharp radii and step transitions between the arms and the test section; and laser-cut slots in the four arms. Using finite element analysis, we show that these features result in a uniform stress field inside the test section, with the exception of a thin boundary layer between the arms and the test section. Furthermore, we show numerically that this specimen design can very accurately recover the hardening behavior and the yield surface of the material for strains exceeding 15% for a dual-phase steel (DP590), depending on the loading path. While very accurate for constitutive identification, this design cannot be used to assess the forming limits of sheet metal as failure initiates at the thin boundary layer at the periphery of the test section.

  11. Hierarchical-structured anatase-titania/cellulose composite sheet with high photocatalytic performance and antibacterial activity.

    PubMed

    Luo, Yan; Huang, Jianguo

    2015-02-02

    Bulk hierarchical anatase-titania/cellulose composite sheets were fabricated by subjecting an ultrathin titania gel film pre-deposited filter paper to a solvo-co-hydrothermal treatment by using titanium butoxide as the precursor to grow anatase-titania nanocrystallites on the cellulose nanofiber surfaces. The titanium butoxide specie is firstly absorbed onto the nanofibers of the cellulose substance through a solvothermal process, which was thereafter hydrolyzed and crystallized upon the subsequent hydrothermal treatment, leading to the formation of fine anatase-titania nanoparticles with sizes of 2-5 nm uniformly anchored on the cellulose nanofibers. The resulting anatase-titania/cellulose composite sheet shows a significant photocatalytic performance towards degradation of a methylene blue dye, and introduction of silver nanoparticles into the composite sheet yields an Ag-NP/anatase-titania/cellulose composite material possessing excellent antibacterial activity against both Gram-positive and Gram-negative bacteria.

  12. Development of a Prediction Model Based on RBF Neural Network for Sheet Metal Fixture Locating Layout Design and Optimization.

    PubMed

    Wang, Zhongqi; Yang, Bo; Kang, Yonggang; Yang, Yuan

    2016-01-01

    Fixture plays an important part in constraining excessive sheet metal part deformation at machining, assembly, and measuring stages during the whole manufacturing process. However, it is still a difficult and nontrivial task to design and optimize sheet metal fixture locating layout at present because there is always no direct and explicit expression describing sheet metal fixture locating layout and responding deformation. To that end, an RBF neural network prediction model is proposed in this paper to assist design and optimization of sheet metal fixture locating layout. The RBF neural network model is constructed by training data set selected by uniform sampling and finite element simulation analysis. Finally, a case study is conducted to verify the proposed method.

  13. Fe, O, and C Charge States Associated with Quiescent Versus Active Current Sheets in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Ko, Y.-K.; vonSteiger, R.

    2008-01-01

    Ulysses MAG data were used to locate the heliospheric current sheet in data from 1991 through 2006. The purpose was to characterize typical charge states for Fe, O, and C in the vicinity of the current sheet and provide insight into the physical sources for these charge states in the corona. A study of He/H around the current sheets has led to a clear distinction between quiescent current sheets at times of low solar activity and active current sheets associated with magnetic clouds (and, presumably, ICMES). It has been shown that high ionization state Fe is produced in the corona in current sheets associated with CMEs through spectroscopic observations of the corona and through in situ detection at Ulysses. Here we show that the ionization state of Fe is typically only enhanced around active current sheets while the ionization states of O and C are commonly enhanced around both quiescent and active current sheets. This is consistent with UV coronal spectroscopy, which has shown that reconnection in current sheets behind CMEs leads to high temperatures not typically seen above quiet streamers.

  14. Development and final design of FAME active array

    NASA Astrophysics Data System (ADS)

    Farkas, Szigfrid; Agócs, Tibor; Aitink-Kroes, Gabby; Bettonvil, Felix; Black, Martin; Hugot, Emmanuel; Jaskó, Attila; Miller, Chris; Schnetler, Hermine; van Duffelen, Farian; Venema, Lars

    2016-07-01

    FAME (Freeform Active Mirror Experiment - part of the FP7 OPTICON/FP7 development programme) intends to demonstrate the huge potential of active mirrors and freeform optical surfaces. Freeform active surfaces can help to address the new challenges of next generation astronomical instruments, which are bigger, more complex and have tighter specifications than their predecessors. The FAME design consists of a pre-formed, deformable thin mirror sheet with an active support system. The thin face sheet provides a close to final surface shape with very high surface quality. The active array provides the support, and through actuation, the control to achieve final surface shape accuracy. In this paper the development path, trade-offs and demonstrator design of the FAME active array is presented. The key step in the development process of the active array is the design of the mechanical structure and especially the optimization of the actuation node positions, where the actuator force is transmitted to the thin mirror sheet. This is crucial for the final performance of the mirror where the aim is to achieve an accurate surface shape, with low residual (high order) errors using the minimum number of actuators. These activities are based on the coupling of optical and mechanical engineering, using analytical and numerical methods, which results in an active array with optimized node positions and surface shape.

  15. 3D Method for the Design of Multi Sheet Beam RF Sources

    SciTech Connect

    Krasnykh, Anatoly

    2002-08-14

    Lowering the voltage of the RF sources can reduce the cost of future accelerator systems. This can be accomplished using multiple beam guns or guns with sheet beam in tubes creating high RF power. However, the optical design is almost impossible without 3D analysis, since the devices are no longer axis-symmetric. A new approach for 3D analysis of the electron gun and beam optics utilizes a combination of 3D MAFIA and TOPAZ computer programs. An algorithm based on perturbation theory provides a 3D correction to the 2D, self-consistent field solutions. This information is used to study propagated charged particles through the problem domain. Applications of this technique to the design of a high power multiple beam guns is discussed.

  16. Antibacterial activity of two-dimensional MoS2 sheets

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Li, Jie; Liang, Tao; Ma, Chunyan; Zhang, Yingying; Chen, Hongzheng; Hanagata, Nobutaka; Su, Huanxing; Xu, Mingsheng

    2014-08-01

    Graphene-like two-dimensional materials (2DMats) show application potential in optoelectronics and biomedicine due to their unique properties. However, environmental and biological influences of these 2DMats remain to be unveiled. Here we reported the antibacterial activity of two-dimensional (2D) chemically exfoliated MoS2 (ce-MoS2) sheets. We found that the antibacterial activity of ce-MoS2 sheets was much more potent than that of the raw MoS2 powders used for the synthesis of ce-MoS2 sheets possibly due to the 2D planar structure (high specific surface area) and higher conductivity of the ce-MoS2. We investigated the antibacterial mechanisms of the ce-MoS2 sheets and proposed their antibacterial pathways. We found that the ce-MoS2 sheets could produce reactive oxygen species (ROS), different from a previous report on graphene-based materials. Particularly, the oxidation capacity of the ce-MoS2 sheets toward glutathione oxidation showed a time and concentration dependent trend, which is fully consistent with the antibacterial behaviour of the ce-MoS2 sheets. The results suggest that antimicrobial behaviors were attributable to both membrane and oxidation stress. The antibacterial pathways include MoS2-bacteria contact induced membrane stress, superoxide anion (O2&z.rad;-) induced ROS production by the ce-MoS2, and the ensuing superoxide anion-independent oxidation. Our study thus indicates that the tailoring of the dimension of nanomaterials and their electronic properties would manipulate antibacterial activity.Graphene-like two-dimensional materials (2DMats) show application potential in optoelectronics and biomedicine due to their unique properties. However, environmental and biological influences of these 2DMats remain to be unveiled. Here we reported the antibacterial activity of two-dimensional (2D) chemically exfoliated MoS2 (ce-MoS2) sheets. We found that the antibacterial activity of ce-MoS2 sheets was much more potent than that of the raw MoS2 powders

  17. Design of a wiggler-focused, sheet beam X band klystron

    SciTech Connect

    Eppley, K.R.; Herrmannsfeldt, W.B.; Miller, R.H.

    1987-02-01

    An X band klystron using a sheet beam and wiggler focusing was simulated using the 2 + 1/2 dimensional particle in cell code MASK. Simulation of the rf cavities was by means of the port approximation used in modelling of standard klystrons. The wigglers, which would need permanent magnets to achieve the required field strengths, were modelled using an idealized analytic expression with an exponential rise and a linear taper superimposed on a sinusoidal variation. Cavity locations and tunings were varied for maximum output power. Beam voltage and current were also varied to explore the effect on efficiency. Both an idealized laminar beam and a more realistic beam from a gun design code were studied. For a voltage of 200 kV and current of 20 amp per linear cm efficiencies of approximately 50% were calculated.

  18. Dylan Pritchett, Storyteller. Cue Sheet for Students.

    ERIC Educational Resources Information Center

    Evans, Karen L. B.

    Designed to be used before and after attending a storytelling performance by Dylan Pritchett, this cue sheet presents information about the performance and suggests activities that can be done with classmates, friends, or family members. The cue sheet discusses where and why people tell stories, what makes a story good for telling, what makes a…

  19. Spatial variation in the plasma sheet composition: Dependence on geomagnetic and solar activity

    NASA Astrophysics Data System (ADS)

    Maggiolo, R.; Kistler, L. M.

    2014-04-01

    We study the spatial distribution of plasma sheet O+ and H+ ions using data from the COmposition and DIstribution Function (CODIF) instrument on board the Cluster spacecraft from 2001 to 2005. The densities are mapped along magnetic field lines to produce bidimensional density maps at the magnetospheric equatorial plane for various geomagnetic and solar activity levels (represented by the Kp and F10.7 indexes). We analyze the correlation of the O+ and H+ density with Kp and F10.7 in the midtail region at geocentric distances between 15 and 20 RE and in the near-Earth regions at radial distances between 7 and 8 RE. Near Earth the H+ density slightly increases with Kp and F10.7 while in the midtail region it is not correlated with Kp and F10.7. On the contrary, the amount of O+ ions significantly increases with Kp and F10.7 independently of the region. In the near-Earth region, the effects of solar EUV and geomagnetic activity on the O+ density are comparable. In the midtail region, the O+ density increases at a lower rate with solar EUV flux but strongly increases with geomagnetic activity although the effect is modulated by the solar EUV flux level. We also evidence a strong increase of the proportion of O+ ions with decreasing geocentric distance below ~10 RE. These results confirm the direct entry of O+ ions into the near-Earth plasma sheet and suggest that both energetic outflows from the auroral zone and cold outflow from the high-latitude ionosphere may contribute to feed the near-Earth plasma sheet with ionospheric ions.

  20. Topometry optimization of sheet metal structures for crashworthiness design using hybrid cellular automata

    NASA Astrophysics Data System (ADS)

    Mozumder, Chandan K.

    The objective in crashworthiness design is to generate plastically deformable energy absorbing structures which can satisfy the prescribed force-displacement (FD) response. The FD behavior determines the reaction force, displacement and the internal energy that the structure should withstand. However, attempts to include this requirement in structural optimization problems remain scarce. The existing commercial optimization tools utilize models under static loading conditions because of the complexities associated with dynamic/impact loading. Due to the complexity of a crash event and the consequent time required to numerically analyze the dynamic response of the structure, classical methods (i.e., gradient-based and direct) are not well developed to solve this undertaking. This work presents an approach under the framework of the hybrid cellular automaton (HCA) method to solve the above challenge. The HCA method has been successfully applied to nonlinear transient topology optimization for crashworthiness design. In this work, the HCA algorithm has been utilized to develop an efficient methodology for synthesizing shell-based sheet metal structures with optimal material thickness distribution under a dynamic loading event using topometry optimization. This method utilizes the cellular automata (CA) computing paradigm and nonlinear transient finite element analysis (FEA) via ls-dyna. In this method, a set field variables is driven to their target states by changing a convenient set of design variables (e.g., thickness). These rules operate locally in cells within a lattice that only know local conditions. The field variables associated with the cells are driven to a setpoint to obtain the desired structure. This methodology is used to design for structures with controlled energy absorption with specified buckling zones. The peak reaction force and the maximum displacement are also constrained to meet the desired safety level according to passenger safety

  1. Web-based Tools for Educators: Outreach Activities of the Polar Radar for Ice Sheet Measurements (PRISM) Project

    NASA Astrophysics Data System (ADS)

    Braaten, D. A.; Holvoet, J. F.; Gogineni, S.

    2003-12-01

    The Radar Systems and Remote Sensing Laboratory at the University of Kansas (KU) has implemented extensive outreach activities focusing on Polar Regions as part of the Polar Radar for Ice Sheet Measurements (PRISM) project. The PRISM project is developing advanced intelligent remote sensing technology that involves radar systems, an autonomous rover, and communications systems to measure detailed ice sheet characteristics, and to determine bed conditions (frozen or wet) below active ice sheets in both Greenland and Antarctica. These measurements will provide a better understanding of the response of polar ice sheets to global climate change and the resulting impact the ice sheets will have on sea level rise. Many of the research and technological development aspects of the PRISM project, such as robotics, radar systems, climate change and exploration of harsh environments, can kindle an excitement and interest in students about science and technology. These topics form the core of our K-12 education and training outreach initiatives, which are designed to capture the imagination of young students, and prompt them to consider an educational path that will lead them to scientific or engineering careers. The K-12 PRISM outreach initiatives are being developed and implemented in a collaboration with the Advanced Learning Technology Program (ALTec) of the High Plains Regional Technology in Education Consortium (HPR*TEC). ALTec is associated with the KU School of Education, and is a well-established educational research center that develops and hosts web tools to enable teachers nationwide to network, collaborate, and share resources with other teachers. An example of an innovative and successful web interface developed by ALTec is called TrackStar. Teachers can use TrackStar over the Web to develop interactive, resource-based lessons (called tracks) on-line for their students. Once developed, tracks are added to the TrackStar database and can be accessed and modified

  2. Design considerations for space radiators based on the liquid sheet (LSR) concept

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Chubb, Donald L.

    1991-01-01

    Concept development work on space heat rejection subsystems tailored to the requirements of various space power conversion systems is proceeding over a broad front of technologies at NASA LeRC. Included are orbital and planetary surface based radiator concepts utilizing pumped loops, a variety of heat pipe radiator concepts, and the innovative liquid sheet radiator (LSR). The basic feasibility of the LSR concept was investigated in prior work which generated preliminary information indicating the suitability of the LSR concept for space power systems requiring cycle reject heat to be radiated to the space sink at low-to-mid temperatures (300 to 400 K), with silicon oils used for the radiator working fluid. This study is directed at performing a comparative examination of LSR characteristics as they affect the basic design of low earth orbit solar dynamic power conversion systems. The power systems considered were based on the closed Brayton (CBC) and the Free Piston Stirling (FPS) cycles, each with a power output of 2 kWe and using previously tested silicone oil (Dow-Corning Me2) as the radiator working fluid. Conclusions indicate that, due to its ability for direct cold end cooling, an LSR based heat rejection subsystem is far more compatible with a Stirling space power system than with a CBC, which requires LSR coupling by means of an intermediate gas/liquid heat exchanger and adjustment of cycle operating conditions.

  3. Numerical assessment of residual formability in sheet metal products: towards design for sustainability

    NASA Astrophysics Data System (ADS)

    Falsafi, Javad; Demirci, Emrah; Silberschmidt, Vadim. V.

    2016-08-01

    A new computational scheme is presented to addresses cold recyclability of sheet- metal products. Cold recycling or re-manufacturing is an emerging area studied mostly empirically; in its current form, it lacks theoretical foundation especially in the area of sheet metals. In this study, a re-formability index was introduced based on post-manufacture residual formability in sheet metal products. This index accounts for possible levels of deformation along different strain paths based on Polar Effective Plastic Strain (PEPS) technique. PEPS is strain-path independent, hence provides a foundation for residual formability analysis. A user- friendly code was developed to implement this assessment in conjunction with advanced finite- element (FE) analysis. The significance of this approach is the advancement towards recycling of sheet metal products without melting them.

  4. An actuated elastic sheet interacting with passive and active structures in a viscoelastic fluid

    NASA Astrophysics Data System (ADS)

    Chrispell, J. C.; Fauci, L. J.; Shelley, M.

    2013-01-01

    We adapt the classic Taylor swimming sheet set-up to investigate both the transient and long-time dynamics of an actuated elastic sheet immersed in a viscoelastic fluid as it interacts with neighboring structures. While the preferred kinematics of the sheet are specified, the flexible sheet interacts with the surrounding fluid and other structures, and its realized kinematics emerges from this coupling. We use an immersed boundary framework to evolve the Oldroyd-B/Navier-Stokes equations and capture the spatial and temporal development of viscoelastic stresses and sheet shape. We compare the dynamics when the actuated sheet swims next to a free elastic membrane, with and without bending rigidity, and next to a fixed wall. We demonstrate that the sheets can exploit the neighboring structures to enhance their swimming speed and efficiency, and also examine how this depends upon fluid viscoelasticity. When the neighboring structure is likewise an actuated elastic sheet, we investigate the viscoelastic dynamics of phase-locking.

  5. Neighborhood design and active aging.

    PubMed

    Michael, Yvonne L; Green, Mandy K; Farquhar, Stephanie A

    2006-12-01

    This qualitative analysis of focus groups describes how neighborhood design encourages active aging. Nine focus groups were conducted in 2002 and 2003 with residents (N=60) aged 55 and over living in Portland, OR, USA. Content analysis revealed that local shopping and services, traffic and pedestrian infrastructure, neighborhood attractiveness, and public transportation influence activity among older adults. This information will be useful for making policy recommendations relating to land use planning and transportation, to assist in senior-friendly developments and neighborhood improvements, and to design effective senior health interventions with an emphasis on neighborhood design influences.

  6. Aerogeophysical evidence for active volcanism beneath the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    Blankenship, Donald D.; Bell, Robin E.; Hodge, Steven M.; Brozena, John M.; Behrendt, John C.

    1993-01-01

    Although it is widely understood that the collapse of the West Antarctic Ice Sheet (WAIS) would cause a global sea-level rise of 6 m, there continues to be considerable debate about the response of this ice sheet to climate change. The stability of the WAIS, which is characterized by a bed grounded well below sea level, may depend on geologically controlled conditions at the base, which are independent of climate. Ice streams moving up to 750 m/yr disperse material from the interior through to the oceans. As these ice streams tend to buffer the reservoir of slow-moving inland ice from exposure to oceanic degradation, understanding the ice-streaming process is important for evaluating WAIS stability. There is strong evidence that ice streams slide on a lubricating layer of water-saturated till. Development of this basal layer requires both water and easily eroded sediments. Active lithospheric extension may elevate regional heat flux, increase basal melting, and trigger ice streaming. If a geologically defined boundary with a sharp contrast in geothermal flux exists beneath the WAIS, ice streams may only be capable of operating as a buffer over a restricted region. Should ocean waters penetrate beyond this boundary, the ice-stream buffer would disappear, possibly triggering a collapse of the inland ice reservoir. Aerogeophysical evidence for active volcanism and elevated heat flux beneath the WAIS near the critical region where ice streaming begins is presented.

  7. Design of a mechanical test to characterize sheet metals - Optimization using B-splines or cubic splines

    NASA Astrophysics Data System (ADS)

    Souto, Nelson; Thuillier, Sandrine; Andrade-Campos, A.

    2016-10-01

    Nowadays, full-field measurement methods are largely used to acquire the strain field developed by heterogeneous mechanical tests. Recent material parameters identification strategies based on a single heterogeneous test have been proposed considering that an inhomogeneous strain field can lead to a more complete mechanical characterization of the sheet metals. The purpose of this work is the design of a heterogeneous test promoting an enhanced mechanical behavior characterization of thin metallic sheets, under several strain paths and strain amplitudes. To achieve this goal, a design optimization strategy finding the appropriate specimen shape of the heterogeneous test by using either B-Splines or cubic splines was developed. The influence of using approximation or interpolation curves, respectively, was investigated in order to determine the most effective approach for achieving a better shape design. The optimization process is guided by an indicator criterion which evaluates, quantitatively, the strain field information provided by the mechanical test. Moreover, the design of the heterogeneous test is based on the resemblance with the experimental reality, since a rigid tool leading to uniaxial loading path is used for applying the displacement in a similar way as universal standard testing machines. The results obtained reveal that the optimization strategy using B-Splines curve approximation led to a heterogeneous test providing larger strain field information for characterizing the mechanical behavior of sheet metals.

  8. A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex.

    PubMed

    Vaquette, Cédryck; Fan, Wei; Xiao, Yin; Hamlet, Stephen; Hutmacher, Dietmar W; Ivanovski, Saso

    2012-08-01

    This study describes the design of a biphasic scaffold composed of a Fused Deposition Modeling scaffold (bone compartment) and an electrospun membrane (periodontal compartment) for periodontal regeneration. In order to achieve simultaneous alveolar bone and periodontal ligament regeneration a cell-based strategy was carried out by combining osteoblast culture in the bone compartment and placement of multiple periodontal ligament (PDL) cell sheets on the electrospun membrane. In vitro data showed that the osteoblasts formed mineralized matrix in the bone compartment after 21 days in culture and that the PDL cell sheet harvesting did not induce significant cell death. The cell-seeded biphasic scaffolds were placed onto a dentin block and implanted for 8 weeks in an athymic rat subcutaneous model. The scaffolds were analyzed by μCT, immunohistochemistry and histology. In the bone compartment, a more intense ALP staining was obtained following seeding with osteoblasts, confirming the μCT results which showed higher mineralization density for these scaffolds. A thin mineralized cementum-like tissue was deposited on the dentin surface for the scaffolds incorporating the multiple PDL cell sheets, as observed by H&E and Azan staining. These scaffolds also demonstrated better attachment onto the dentin surface compared to no attachment when no cell sheets were used. In addition, immunohistochemistry revealed the presence of CEMP1 protein at the interface with the dentine. These results demonstrated that the combination of multiple PDL cell sheets and a biphasic scaffold allows the simultaneous delivery of the cells necessary for in vivo regeneration of alveolar bone, periodontal ligament and cementum.

  9. Effect of aviation snip design and task height on upper extremity muscular activity and wrist posture.

    PubMed

    Anton, Dan; Gerr, Fredric; Meyers, Alysha; Cook, Thomas M; Rosecrance, John C; Reynolds, Jonathan

    2007-02-01

    Hand tools described as ergonomic in design are intended to reduce exposure to physical risk factors associated with work-related musculoskeletal disorders. Additionally, using the right tool for the job is believed to reduce exposure and, consequently, risk of disease. Sheet metal workers frequently use a cutting tool called aviation snips when fabricating and installing ductwork. The purpose of this laboratory simulation study was to determine the effect of (1) aviation snip design; and (2) work height on muscle activity, wrist posture, and user satisfaction among sheet metal workers. We hypothesized that specific aviation snips designs would be most appropriate for use at specific heights. Twenty-three sheet metal workers used three different designs of aviation snips to make curved cuts in sheet metal placed both at waist height and shoulder height. Conventional circular snips, straight snips, and an alternate design of offset snips were used. Upper extremity muscle activity was measured with surface electromyography, wrist posture was measured with electrogoniometry, and user satisfaction was rated by the participants on a survey. Statistically significant effects of snip design and task height on muscle activity, wrist posture, and user satisfaction were observed. However, no snip was preferable for all dependent variables. Work height had a greater effect on muscle activity and wrist posture than snip design. Field studies are indicated to determine the long-term effect of snip design on physical risk factors and risk of musculoskeletal disorders.

  10. Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells

    SciTech Connect

    Park, Seh K.; Shao, Yuyan; Wan, Haiying; Rieke, Peter C.; Viswanathan, Vilayanur V.; Towne, Silas A.; Saraf, Laxmikant V.; Liu, Jun; Lin, Yuehe; Wang, Yong

    2011-03-01

    A series of cathodes using Pt supported onto graphene sheets with different contents of carbon black in the catalyst layer were prepared and characterized. Carbon black was added as a spacer between two-dimensional graphene sheets in the catalyst layer to study its effect on the performances of proton exchange membrane fuel cell. Electrochemical properties and surface morphology of the cathodes with and without carbon black were characterized using cyclic voltammetry, ac-impedance spectroscopy, electrochemical polarization technique, and scanning electron microscopy. The results indicated that carbon black effectively modifies the array of graphene supports, resulting in more Pt nanoparticles available for electrochemical reaction and better mass transport in the catalyst layer.

  11. Hypoxic preconditioning of human cardiosphere-derived cell sheets enhances cellular functions via activation of the PI3K/Akt/mTOR/HIF-1α pathway

    PubMed Central

    Tanaka, Yuya; Hosoyama, Tohru; Mikamo, Akihito; Kurazumi, Hiroshi; Nishimoto, Arata; Ueno, Koji; Shirasawa, Bungo; Hamano, Kimikazu

    2017-01-01

    Cell sheet technology is a promising therapeutic strategy for the treatment of ischemic diseases such as myocardial infarction. We recently developed a novel protocol, termed “hypoxic preconditioning,” capable of augmenting the therapeutic efficacy of cell sheets. Following this protocol, the pro-angiogenic and anti-fibrotic activity of cell sheets were enhanced by brief incubation of cell sheets under hypoxic culture conditions. However, the precise molecular mechanism underlying the hypoxic preconditioning of cell sheets is unclear. In the present study, we examined signal transducers in cell sheets to identify those responsive to hypoxic preconditioning, using cardiosphere-derived cell (CDC) sheets. We initially tested whether sheet-like structures were suitable for hypoxic preconditioning by comparing them with individual cells. Hypoxic preconditioning was more effective in sheeted cells than in individual cells. Expression of hypoxia inducible factor-1α (HIF-1α) and mammalian target of rapamycin (mTOR) were induced upon hypoxic preconditioning of cell sheets, as was the phosphoinositide 3-kinase (PI3K)/Akt pathway. In addition, hypoxic preconditioning increased phosphorylation of epidermal growth factor receptor (EGFR) and heat shock protein 60 (HSP60) in CDC sheets. Our findings provide novel insights into the utility of hypoxic preconditioning in cell sheet-based technologies for the treatment of ischemic diseases. PMID:28337294

  12. Designing 3D Mesenchymal Stem Cell Sheets Merging Magnetic and Fluorescent Features: When Cell Sheet Technology Meets Image-Guided Cell Therapy.

    PubMed

    Rahmi, Gabriel; Pidial, Laetitia; Silva, Amanda K A; Blondiaux, Eléonore; Meresse, Bertrand; Gazeau, Florence; Autret, Gwennhael; Balvay, Daniel; Cuenod, Charles André; Perretta, Silvana; Tavitian, Bertrand; Wilhelm, Claire; Cellier, Christophe; Clément, Olivier

    2016-01-01

    Cell sheet technology opens new perspectives in tissue regeneration therapy by providing readily implantable, scaffold-free 3D tissue constructs. Many studies have focused on the therapeutic effects of cell sheet implantation while relatively little attention has concerned the fate of the implanted cells in vivo. The aim of the present study was to track longitudinally the cells implanted in the cell sheets in vivo in target tissues. To this end we (i) endowed bone marrow-derived mesenchymal stem cells (BMMSCs) with imaging properties by double labeling with fluorescent and magnetic tracers, (ii) applied BMMSC cell sheets to a digestive fistula model in mice, (iii) tracked the BMMSC fate in vivo by MRI and probe-based confocal laser endomicroscopy (pCLE), and (iv) quantified healing of the fistula. We show that image-guided longitudinal follow-up can document both the fate of the cell sheet-derived BMMSCs and their healing capacity. Moreover, our theranostic approach informs on the mechanism of action, either directly by integration of cell sheet-derived BMMSCs into the host tissue or indirectly through the release of signaling molecules in the host tissue. Multimodal imaging and clinical evaluation converged to attest that cell sheet grafting resulted in minimal clinical inflammation, improved fistula healing, reduced tissue fibrosis and enhanced microvasculature density. At the molecular level, cell sheet transplantation induced an increase in the expression of anti-inflammatory cytokines (TGF-ß2 and IL-10) and host intestinal growth factors involved in tissue repair (EGF and VEGF). Multimodal imaging is useful for tracking cell sheets and for noninvasive follow-up of their regenerative properties.

  13. Designing 3D Mesenchymal Stem Cell Sheets Merging Magnetic and Fluorescent Features: When Cell Sheet Technology Meets Image-Guided Cell Therapy

    PubMed Central

    Rahmi, Gabriel; Pidial, Laetitia; Silva, Amanda K. A.; Blondiaux, Eléonore; Meresse, Bertrand; Gazeau, Florence; Autret, Gwennhael; Balvay, Daniel; Cuenod, Charles André; Perretta, Silvana; Tavitian, Bertrand; Wilhelm, Claire; Cellier, Christophe; Clément, Olivier

    2016-01-01

    Cell sheet technology opens new perspectives in tissue regeneration therapy by providing readily implantable, scaffold-free 3D tissue constructs. Many studies have focused on the therapeutic effects of cell sheet implantation while relatively little attention has concerned the fate of the implanted cells in vivo. The aim of the present study was to track longitudinally the cells implanted in the cell sheets in vivo in target tissues. To this end we (i) endowed bone marrow-derived mesenchymal stem cells (BMMSCs) with imaging properties by double labeling with fluorescent and magnetic tracers, (ii) applied BMMSC cell sheets to a digestive fistula model in mice, (iii) tracked the BMMSC fate in vivo by MRI and probe-based confocal laser endomicroscopy (pCLE), and (iv) quantified healing of the fistula. We show that image-guided longitudinal follow-up can document both the fate of the cell sheet-derived BMMSCs and their healing capacity. Moreover, our theranostic approach informs on the mechanism of action, either directly by integration of cell sheet-derived BMMSCs into the host tissue or indirectly through the release of signaling molecules in the host tissue. Multimodal imaging and clinical evaluation converged to attest that cell sheet grafting resulted in minimal clinical inflammation, improved fistula healing, reduced tissue fibrosis and enhanced microvasculature density. At the molecular level, cell sheet transplantation induced an increase in the expression of anti-inflammatory cytokines (TGF-ß2 and IL-10) and host intestinal growth factors involved in tissue repair (EGF and VEGF). Multimodal imaging is useful for tracking cell sheets and for noninvasive follow-up of their regenerative properties. PMID:27022420

  14. Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1)

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar S.; Cornford, Stephen L.; Durand, Gaël; Galton-Fenzi, Benjamin K.; Gladstone, Rupert M.; Hilmar Gudmundsson, G.; Hattermann, Tore; Holland, David M.; Holland, Denise; Holland, Paul R.; Martin, Daniel F.; Mathiot, Pierre; Pattyn, Frank; Seroussi, Hélène

    2016-07-01

    Coupled ice sheet-ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of marine ice sheets and tidewater glaciers, from process studies to future projections of ice mass loss and sea level rise. The Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP) is a community effort aimed at designing and coordinating a series of model intercomparison projects (MIPs) for model evaluation in idealized setups, model verification based on observations, and future projections for key regions of the West Antarctic Ice Sheet (WAIS). Here we describe computational experiments constituting three interrelated MIPs for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities. These consist of ice sheet experiments under the Marine Ice Sheet MIP third phase (MISMIP+), ocean experiments under the Ice Shelf-Ocean MIP second phase (ISOMIP+) and coupled ice sheet-ocean experiments under the MISOMIP first phase (MISOMIP1). All three MIPs use a shared domain with idealized bedrock topography and forcing, allowing the coupled simulations (MISOMIP1) to be compared directly to the individual component simulations (MISMIP+ and ISOMIP+). The experiments, which have qualitative similarities to Pine Island Glacier Ice Shelf and the adjacent region of the Amundsen Sea, are designed to explore the effects of changes in ocean conditions, specifically the temperature at depth, on basal melting and ice dynamics. In future work, differences between model results will form the basis for the evaluation of the participating models.

  15. ASYMMETRIC SUNSPOT ACTIVITY AND THE SOUTHWARD DISPLACEMENT OF THE HELIOSPHERIC CURRENT SHEET

    SciTech Connect

    Wang, Y.-M.; Robbrecht, E. E-mail: eva.robbrecht@oma.be

    2011-08-01

    Observations of the interplanetary magnetic field (IMF) have suggested a statistical tendency for the heliospheric current sheet (HCS) to be shifted a few degrees southward of the heliographic equator during the period 1965-2010, particularly in the years near sunspot minimum. Using potential-field source-surface extrapolations and photospheric flux-transport simulations, we demonstrate that this southward displacement follows from Joy's law and the observed hemispheric asymmetry in the sunspot numbers, with activity being stronger in the southern (northern) hemisphere during the declining (rising) phase of cycles 20-23. The hemispheric asymmetry gives rise to an axisymmetric quadrupole field, whose equatorial zone has the sign of the leading-polarity flux in the dominant hemisphere; during the last four cycles, the polarity of the IMF around the equator thus tended to match that of the north polar field both before and after polar field reversal. However, large fluctuations are introduced by the nonaxisymmetric field components, which depend on the longitudinal distribution of sunspot activity in either hemisphere. Consistent with this model, the HCS showed an average northward displacement during cycle 19, when the 'usual' alternation was reversed and the northern hemisphere became far more active than the southern hemisphere during the declining phase of the cycle. We propose a new method for determining the north-south displacement of the HCS from coronal streamer observations.

  16. Distributive Education--Product Information Fact Sheet. Kit No. 69. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    McLean, Robert

    An instructor's manual and student activity guide on the product information fact sheet are provided in this set of prevocational education materials which focuses on the vocational area of distributive education. (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational offerings:…

  17. The heliospheric sheet configuration according to the coronal ray synoptic maps in solar activity cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Guseva, S. A.; Fat'yanov, M. P.; Shramko, A. D.

    2015-05-01

    Two catalogs of coronal ray synoptic maps for different altitudes (1.5-5 R ⊙) for solar activity cycles 23 and 24 (1996-2013) were compiled based on a proposed technique with the data from the SOHO space observatory LASCO C2 coronograph and the Mauna-Loa observatory Mark-IV K coronometer. The constructed synoptic maps of coronal rays represent an image of three-dimensional spherical sections of the heliospheric neutral sheet expanded along the heliographic longitude. The evolution of different heliospheric sheet spatial parameters during the analyzed period was studied based on the obtained maps.

  18. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets.

    PubMed

    de Faria, Andreia Fonseca; Martinez, Diego Stéfani Teodoro; Meira, Stela Maris Meister; de Moraes, Ana Carolina Mazarin; Brandelli, Adriano; Filho, Antonio Gomes Souza; Alves, Oswaldo Luiz

    2014-01-01

    This work reports on the preparation, characterization and antibacterial activity of a nanocomposite formed from graphene oxide (GO) sheets decorated with silver nanoparticles (GO-Ag). The GO-Ag nanocomposite was prepared in the presence of AgNO3 and sodium citrate. The physicochemical characterization was performed by UV-vis spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), Raman spectroscopy and transmission electron microscopy (TEM). The average size of the silver nanoparticles anchored on the GO surface was 7.5 nm. Oxidation debris fragments (a byproduct adsorbed on the GO surface) were found to be crucial for the nucleation and growth of the silver nanoparticles. The antibacterial activity of the GO and GO-Ag nanocomposite against the microorganism Pseudomonas aeruginosa was investigated using the standard counting plate methodology. The GO dispersion showed no antibacterial activity against P. aeruginosa over the concentration range investigated. On the other hand, the GO-Ag nanocomposite displayed high biocidal activity with a minimum inhibitory concentration ranging from 2.5 to 5.0 μg/mL. The anti-biofilm activity toward P. aeruginosa adhered on stainless steel surfaces was also investigated. The results showed a 100% inhibition rate of the adhered cells after exposure to the GO-Ag nanocomposite for one hour. To the best of our knowledge, this work provides the first direct evidence that GO-Ag nanocomposites can inhibit the growth of microbial adhered cells, thus preventing the process of biofilm formation. These promising results support the idea that GO-Ag nanocomposites may be applied as antibacterial coatings material to prevent the development of biofilms in food packaging and medical devices.

  19. Seismicity on the western Greenland Ice Sheet: Surface fracture in the vicinity of active moulins

    SciTech Connect

    Carmichael, Joshua D.; Joughin, Ian; Behn, Mark D.; Das, Sarah; King, Matt A.; Stevens, Laura; Lizarralde, Dan

    2015-06-25

    We analyzed geophone and GPS measurements collected within the ablation zone of the western Greenland Ice Sheet during a ~35 day period of the 2011 melt season to study changes in ice deformation before, during, and after a supraglacial lake drainage event. During rapid lake drainage, ice flow speeds increased to ~400% of winter values, and icequake activity peaked. At times >7 days after drainage, this seismicity developed variability over both diurnal and longer periods (~10 days), while coincident ice speeds fell to ~150% of winter values and showed nightly peaks in spatial variability. Approximately 95% of all detected seismicity in the lake basin and its immediate vicinity was triggered by fracture propagation within near-surface ice (<330 m deep) that generated Rayleigh waves. Icequakes occurring before and during drainage frequently were collocated with the down flow (west) end of the primary hydrofracture through which the lake drained but shifted farther west and outside the lake basin after the drainage. We interpret these results to reveal vertical hydrofracture opening and local uplift during the drainage, followed by enhanced seismicity and ice flow on the downstream side of the lake basin. This region collocates with interferometric synthetic aperture radar-measured speedup in previous years and could reflect the migration path of the meltwater supplied to the bed by the lake. The diurnal seismic signal can be associated with nightly reductions in surface melt input that increase effective basal pressure and traction, thereby promoting elevated strain in the surficial ice.

  20. Seismicity on the western Greenland Ice Sheet: Surface fracture in the vicinity of active moulins

    NASA Astrophysics Data System (ADS)

    Carmichael, Joshua D.; Joughin, Ian; Behn, Mark D.; Das, Sarah; King, Matt A.; Stevens, Laura; Lizarralde, Dan

    2015-06-01

    We analyzed geophone and GPS measurements collected within the ablation zone of the western Greenland Ice Sheet during a ~35 day period of the 2011 melt season to study changes in ice deformation before, during, and after a supraglacial lake drainage event. During rapid lake drainage, ice flow speeds increased to ~400% of winter values, and icequake activity peaked. At times >7 days after drainage, this seismicity developed variability over both diurnal and longer periods (~10 days), while coincident ice speeds fell to ~150% of winter values and showed nightly peaks in spatial variability. Approximately 95% of all detected seismicity in the lake basin and its immediate vicinity was triggered by fracture propagation within near-surface ice (<330 m deep) that generated Rayleigh waves. Icequakes occurring before and during drainage frequently were collocated with the down flow (west) end of the primary hydrofracture through which the lake drained but shifted farther west and outside the lake basin after the drainage. We interpret these results to reveal vertical hydrofracture opening and local uplift during the drainage, followed by enhanced seismicity and ice flow on the downstream side of the lake basin. This region collocates with interferometric synthetic aperture radar-measured speedup in previous years and could reflect the migration path of the meltwater supplied to the bed by the lake. The diurnal seismic signal can be associated with nightly reductions in surface melt input that increase effective basal pressure and traction, thereby promoting elevated strain in the surficial ice.

  1. Leaf-like hybrid of bismuth subcarbonate nanotubes/graphene sheet with highly efficient photocatalytic activities.

    PubMed

    Tang, Yanping; Yang, Chongqing; Li, Kan; Jing, Fan; Liu, Ruili; Wu, Dongqing; Jia, Jinping

    2017-04-01

    In this work, leaf-like hybrid with Bi2O2CO3 nanotubes as the "veins" and graphene sheet as the "laminae" is fabricated via a facile one-pot reaction of bismuth nitrate and graphene oxide in alkaline aqueous solution. With the uniform distribution of Bi2O2CO3 nanotubes on the graphene substrate, the obtained Bi2O2CO3-NT/G manifests high specific surface area (90.4m(2)g(-1)) and large pore volume (0.197cm(3)g(-1)), which are favorable for the efficient light capturing together with the rapid transfer of mass and charge carriers. In comparison with the pure Bi2O2CO3 nanotubes and commercial Bi2O2CO3, Bi2O2CO3-NT/G exhibits much enhanced activity and long-term stability towards the photocatalytic degradation of organic dye pollutant, which is owing to its unique leaf-like structural features.

  2. Coronal Hole-Active Region-Current Sheet (CHARCS) Association with Intense Interplanetary and Geomagnetic Activity

    NASA Technical Reports Server (NTRS)

    Gonzalez, W. D.; Tsurutani, B. T.; McIntosh, P. S.; Gonzalez, A. L.

    1996-01-01

    Intense geomagnetic storms (Dstactive regions(flares and/or filament eruptions) ocurring close to the streamer belt and to growing low altitude coronal holes. It is also shown that such type of coronal holes had a dual-peak solar cycle distribution during solar cycle 21, similar to that previously reported for the above mentioned interplanetary and geomagnetic phenomena.

  3. Capping Amyloid β-Sheets of the Tau-Amyloid Structure VQIVYK with Hexapeptides Designed To Arrest Growth. An ONIOM and Density Functional Theory Study

    PubMed Central

    2015-01-01

    We present ONIOM calculations using density functional theory (DFT) as the high and AM1 as the medium level that explore the abilities of different hexapeptide sequences to terminate the growth of a model for the tau-amyloid implicated in Alzheimer’s disease. We delineate and explore several design principles (H-bonding in the side chains, using antiparallel interactions on the growing edge of a parallel sheet, using all-d residues to form rippled interactions at the edge of the sheet, and replacing the H-bond donor N–H’s that inhibit further growth) that can be used individually and in combination to design such peptides that will have a greater affinity for binding to the parallel β-sheet of acetyl-VQIVYK-NHCH3 than the natural sequence and will prevent another strand from binding to the sheet, thus providing a cap to the growing sheet that arrests further growth. We found peptides in which the Q is replaced by an acetyllysine (aK) residue to be particularly promising candidates, particularly if the reverse sequence (KYVIaKV) is used to form an antiparallel interaction with the sheet. PMID:24601594

  4. Electric fields measured by ISEE-1 within and near the neutral sheet during quiet and active times

    NASA Technical Reports Server (NTRS)

    Cattell, C. A.; Mozer, F. S.

    1982-01-01

    An understanding of the physical processes occurring in the magnetotail and plasmasheet during different interplanetary magnetic field orientations and differing levels of ground magnetic activity is crucial for the development of a theory of energy transfer from the solar wind to the particles which produce auroral arcs. In the present investigation, the first observations of electric fields during neutral sheet crossings are presented, taking into account the statistical correlations of the interplanetary magnetic field direction and ground activity with the character of the electric field. The electric field data used in the study were obtained from a double probe experiment on the ISEE-1 satellite. The observations suggest that turbulent electric and magnetic fields are intimately related to plasma acceleration in the neutral sheet and to the processes which create auroral particles.

  5. Dental Charting. Learning Activities, Unit Tests, Progress Chart, and Work Sheet.

    ERIC Educational Resources Information Center

    Texas Univ., Austin. Center for Occupational Curriculum Development.

    These materials are part of a series dealing with skills and information needed by students in dental assisting. The individualized student materials are suitable for classroom, laboratory, or cooperative training programs. These student materials, designed to be used with the Dental Charting Student Manual, consist of learning activities, unit…

  6. Seismicity on the western Greenland Ice Sheet: Surface fracture in the vicinity of active moulins

    DOE PAGES

    Carmichael, Joshua D.; Joughin, Ian; Behn, Mark D.; ...

    2015-06-25

    We analyzed geophone and GPS measurements collected within the ablation zone of the western Greenland Ice Sheet during a ~35 day period of the 2011 melt season to study changes in ice deformation before, during, and after a supraglacial lake drainage event. During rapid lake drainage, ice flow speeds increased to ~400% of winter values, and icequake activity peaked. At times >7 days after drainage, this seismicity developed variability over both diurnal and longer periods (~10 days), while coincident ice speeds fell to ~150% of winter values and showed nightly peaks in spatial variability. Approximately 95% of all detected seismicitymore » in the lake basin and its immediate vicinity was triggered by fracture propagation within near-surface ice (<330 m deep) that generated Rayleigh waves. Icequakes occurring before and during drainage frequently were collocated with the down flow (west) end of the primary hydrofracture through which the lake drained but shifted farther west and outside the lake basin after the drainage. We interpret these results to reveal vertical hydrofracture opening and local uplift during the drainage, followed by enhanced seismicity and ice flow on the downstream side of the lake basin. This region collocates with interferometric synthetic aperture radar-measured speedup in previous years and could reflect the migration path of the meltwater supplied to the bed by the lake. The diurnal seismic signal can be associated with nightly reductions in surface melt input that increase effective basal pressure and traction, thereby promoting elevated strain in the surficial ice.« less

  7. Polarization features of solar radio emission and possible existence of current sheets in active regions

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Zheleznyakov, V. V.; White, S. M.; Kundu, M. R.

    1994-01-01

    We show that it is possible to account for the polarization features of solar radio emission provided the linear mode coupling theory is properly applied and the presence of current sheets in the corona is taken into account. We present a schematic model, including a current sheet that can explain the polarization features of both the low frequency slowly varying component and the bipolar noise storm radiation; the two radiations face similar propagation conditions through a current sheet and hence display similar polarization behavior. We discuss the applications of the linear mode coupling theory to the following types of solar emission: the slowly varying component, the microwave radio bursts, metric type U bursts, and bipolar noise storms.

  8. Assessing Design Activity in Complex CMOS Circuit Design.

    ERIC Educational Resources Information Center

    Biswas, Gautam; And Others

    This report characterizes human problem solving in digital circuit design. Protocols of 11 different designers with varying degrees of training were analyzed by identifying the designers' problem solving strategies and discussing activity patterns that differentiate the designers. These methods are proposed as a tentative basis for assessing…

  9. Designing of Multiphase Fly Ash/MWCNT/PU Composite Sheet Against Electromagnetic Environmental Pollution

    NASA Astrophysics Data System (ADS)

    Gujral, Parth; Varshney, Swati; Dhawan, S. K.

    2016-06-01

    Fly ash and multiwalled carbon nanotubes (MWCNT) reinforced multiphase polyurethane (PU) composite sheets have been fabricated by using a solution casting technique. Utilization of fly ash was the prime objective in order to reduce environmental pollution and to enhance the shielding properties of PU polymer. Our study proves that fly ash particles with MWCNTs in a PU matrix leads to novel hybrid high performance electromagnetic shielding interference material. Scanning electron microscopy confirms the existence of fly ash particles along with MWCNTs in a PU matrix. This multiphase composite shows total shielding effectiveness of 35.8 dB (>99.99% attenuation) in the Ku-band (12.4-18 GHz) frequency range. This is attributed to high dielectric losses of reinforcement present in the polymers matrix. The Nicolson-Ross-Weir algorithm has been applied to calculate the electromagnetic attributes and dielectric parameters of the PU samples by using scattering parameters ( S 11, S 22, S 12, S 21). The synthesized multiphase composites were further characterized by using x-ray diffraction, Fourier transform infrared spectroscopy, and thermo gravimetric analysis.

  10. A melamine-assisted chemical blowing synthesis of N-doped activated carbon sheets for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Wang, Yiliang; Xuan, Huaqing; Lin, Gaoxin; Wang, Fan; Chen, Zhi; Dong, Xiaoping

    2016-07-01

    N-doped activated carbon sheets (NACS) have been successfully synthesized using glucose as carbon source via melamine-assisted chemical blowing and sequent KOH-activation method. The obtained carbon material possesses a sheet-like morphology with ultrathin thickness, hierarchical micro/mesoporous structure, high specific surface area (up to 1997.5 m2 g-1) and high pore volume (0.94 cm3 g-1). Besides, NACS material with a nitrogen content of 3.06 wt% presents a maximum specific capacitance of 312 F g-1 at a current density of 0.5 A g-1 in 6 M KOH aqueous electrolyte due to the cocontribution of double layer capacitance and pseudocapacitance. It also displays good rate performance (246 F g-1 at 30 A g-1) and cycle stability (∼91.3% retention after 4000 galvanostatic charge-discharge cycles). The assembled NACS-based symmetric capacitor exhibits a maximum energy density of 20.2 Wh kg-1 at a power density of 448 W kg-1 within a voltage range of 0-1.8 V in 0.5 M Na2SO4 aqueous electrolyte. Thus, the unique porous sheet structure and nitrogen-doping characteristic endue the electrode material a potential application for high-performance supercapacitors.

  11. Beginning Child Care Fact Sheets.

    ERIC Educational Resources Information Center

    Tweedie, Pat

    These six fact sheets from Child Care Aware are designed to help parents ease their children's transition to child care. The first fact sheet, "Before Your Child's First Day," discusses tips such as: (1) "prepare your child"; (2) read and look at picture books about child care; and (3) "prepare yourself." The second fact sheet, "First Day Tips,"…

  12. Improve Motor Operation at Off-Design Voltages - Motor Tip Sheet #9

    SciTech Connect

    2008-07-01

    Motors are designed to operate within +/- 10% of their nameplate rated voltages. When motors operate at conditions of over- or under-voltage, motor efficiency and other performance parameters are degraded.

  13. Cereal Box Design: An Interdisciplinary Graphics Activity

    ERIC Educational Resources Information Center

    Fitzgerald, Mike; Tsosie, Teri

    2004-01-01

    This article describes cereal box design, an interdisciplinary graphics activity. The cereal box design activity is intriguing both for its simplicity and the resourcefulness that it can generate in young people. It lends itself to a variety of curriculums. It covers both consumerism and Design for the Environment (DfE) concepts broadly and in…

  14. Designing for the Active Classroom

    SciTech Connect

    Wilkerson, Andrea M.; Donohue, Amy; Davis, Robert G.

    2015-02-01

    The article discusses trends in classroom design and then transitions to a discussion of the future of the classroom and how the lighting industry needs to be preparing to meet the needs of the future classroom. The OSU Classroom building as an example throughout, first discussing how trends in classroom design were incorporated into the Classroom Building and then discussing how future lighting systems could enhance the Classroom Building, which is a clear departure from the actual lighting design and current technology.

  15. NREL's OpenStudio Helps Design More Efficient Buildings (Fact Sheet)

    SciTech Connect

    Not Available

    2014-07-01

    The National Renewable Energy Laboratory (NREL) has created the OpenStudio software platform that makes it easier for architects and engineers to evaluate building energy efficiency measures throughout the design process. OpenStudio makes energy modeling more accessible and affordable, helping professionals to design structures with lower utility bills and less carbon emissions, resulting in a healthier environment. OpenStudio includes a user-friendly application suite that makes the U.S. Department of Energy's EnergyPlus and Radiance simulation engines easier to use for whole building energy and daylighting performance analysis. OpenStudio is freely available and runs on Windows, Mac, and Linux operating systems.

  16. NASA Clean-Sheet Fans: Design, Build Analyze, Test, and Report

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2008-01-01

    A suggested topic in small fan research is presented. Presentation briefly describes the scope of an effort to design, build and test a ventilation class cooling fan. Comments are included for the following categories: information (available and needed), benefits and values, concerns, variations and alternatives, and interest.

  17. Hydronic Systems: Designing for Setback Operation, Ithaca, New York (Fact Sheet)

    SciTech Connect

    Not Available

    2014-05-01

    Conventional wisdom surrounding space heating has told us a couple of things consistently for several years now: size the mechanical systems to the heating loads and setting the thermostat back at night will result in energy savings. The problem is these two recommendations oppose each other. A system that is properly sized to the heating load will not have the extra capacity necessary to recover from a thermostat setback, especially at design conditions. The implication of this is that, for setback to be successfully implemented, the heating system must be oversized. This issue is exacerbated further when an outdoor reset control is used with a condensing boiler, because not only is the system matched to the load at design, the outdoor reset control matches the output to the load under varying outdoor temperatures. Under these circumstances, the home may never recover from setback. Special controls to bypass the outdoor reset sensor are then needed. Properly designing a hydronic system for setback operation can be accomplished but depends on several factors. Determining the appropriateness of setback for a particular project is the first step. This is followed by proper sizing of the boiler and baseboard to ensure the needed capacity can be met. Finally, control settings must be chosen that result in the most efficient and responsive performance. This guide provides step by step instructions for heating contractors and hydronic designers for selecting the proper control settings to maximize system performance and improve response time when using a thermostat setback.

  18. Increasing Community Access to Solar: Designing and Developing a Shared Solar Photovoltaic System (Fact Sheet)

    SciTech Connect

    Not Available

    2012-06-01

    This document introduces the Energy Department's new Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development. The guide is designed to help those who want to develop community shared solar projects - from community organizers and advocates to utility managers and government officials - navigate the process of developing shared systems, from early planning to implementation.

  19. Automated Assistance for Designing Active Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Imlach, Joseph

    2008-01-01

    MagBear12 is a computer code that assists in the design of radial, heteropolar active magnetic bearings (AMBs). MagBear12 was developed to help in designing the system described in "Advanced Active-Magnetic-Bearing Thrust-Measurement System". Beyond this initial application, MagBear12 is expected to be useful for designing AMBs for a variety of rotating machinery. This program incorporates design rules and governing equations that are also implemented in other, proprietary design software used by AMB manufacturers. In addition, this program incorporates an advanced unpublished fringing-magnetic-field model that increases accuracy beyond that offered by the other AMB-design software.

  20. Multi-Scale Modeling, Design Strategies and Physical Properties of 2D Composite Sheets

    DTIC Science & Technology

    2015-01-15

    of Pennsylvania. The breakthrough results obtained are 1) prediction and subsequent experimental observation of strain induced changes in electronic...structure of TMD materials 2) Prediction and experimental observation of using defects in 2D materials to enhance charge storage capacity and 3...221 Philadelphia , PA 19104 -6205 4-Mar-2014 ABSTRACT Final Report: 9.4: Multi-scale modeling, design strategies and physical properties of 2D

  1. Sheet Metal Stamping Analysis and Process Design based on the Inverse Approach

    SciTech Connect

    Batoz, Jean-Louis; Naceur, Hakim; Guo Yingqiao

    2007-04-07

    The simplified (one step) method also called 'inverse approach' (IA) for the numerical analysis of the stamping process has been continuously developed by the authors since the end of the eighties (1, 2, 3, 4). In the present paper we recall the main finite element formulation aspects of a robust IA analysis code, called FAST{sub S}TAMP, for an efficient estimation of the large elastoplastic strains (in particular the thickness strains) encountered in deep drawing operations. Our results will be presented and compared with others, obtained either from experiments or from incremental codes such as ABAQUS or STAMPACK. The presentation includes 'math based' optimization algorithms and strategies for process parameter design. The cost functions and constraints are mainly express to reduce or control the thickness changes, the localized necking, the wrinkling tendency, the springback effects after forming. The design variables are describing the shape of the blank and the tools, the restraining forces due to drawbeads, material properties such as anisotropy coefficient and hardening exponent. Results will be presented to show the actual capabilities of the coupled analysis and optimization strategy with application to the design of stamping parameters.

  2. Low sheet resistance titanium nitride films by low-temperature plasma-enhanced atomic layer deposition using design of experiments methodology

    SciTech Connect

    Burke, Micheal Blake, Alan; Povey, Ian M.; Schmidt, Michael; Petkov, Nikolay; Carolan, Patrick; Quinn, Aidan J.

    2014-05-15

    A design of experiments methodology was used to optimize the sheet resistance of titanium nitride (TiN) films produced by plasma-enhanced atomic layer deposition (PE-ALD) using a tetrakis(dimethylamino)titanium precursor in a N{sub 2}/H{sub 2} plasma at low temperature (250 °C). At fixed chamber pressure (300 mTorr) and plasma power (300 W), the plasma duration and N{sub 2} flow rate were the most significant factors. The lowest sheet resistance values (163 Ω/sq. for a 20 nm TiN film) were obtained using plasma durations ∼40 s, N{sub 2} flow rates >60 standard cubic centimeters per minute, and purge times ∼60 s. Time of flight secondary ion mass spectroscopy data revealed reduced levels of carbon contaminants in the TiN films with lowest sheet resistance (163 Ω/sq.), compared to films with higher sheet resistance (400–600 Ω/sq.) while transmission electron microscopy data showed a higher density of nanocrystallites in the low-resistance films. Further significant reductions in sheet resistance, from 163 Ω/sq. to 70 Ω/sq. for a 20 nm TiN film (corresponding resistivity ∼145 μΩ·cm), were achieved by addition of a postcycle Ar/N{sub 2} plasma step in the PE-ALD process.

  3. Sogolon Marionettes. Cue Sheet for Teachers.

    ERIC Educational Resources Information Center

    Flynn, Rosalind M.

    This performance guide is designed to help teachers prepare students to see the Sogolon Marionettes performing one of two stories from the West African country of Mali. The guide, called a "Cuesheet," contains four activity sheets for use in class, addressing: (1) About the Performance (offering a performance overview of the stories, and…

  4. "Turtle Island Tales." Cue Sheet for Students.

    ERIC Educational Resources Information Center

    Carr, Gail

    This performance guide is designed for teachers to use with students before and after a shadow play performance of "Turtle Island Tales" by Hobey Ford and His Golden Rod Puppets. The guide, called a "Cuesheet," contains seven activity sheets for use in class, addressing: (1) The Tales (offering brief outlines of the three tales…

  5. NREL-Led Team Improves and Accelerates Battery Design (Fact Sheet)

    SciTech Connect

    Not Available

    2013-11-01

    The National Renewable Energy Laboratory (NREL) is leading some of the best minds from U.S. auto manufacturers, battery developers, and automotive simulation tool developers in a $20 million project to accelerate the development of battery packs and thus the wider adoption of electric-drive vehicles. The Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) collaboration is developing sophisticated software tools to help improve and accelerate battery design and boost the performance and consumer appeal of electric-drive vehicles with the ultimate goal of diminishing petroleum consumption and polluting emissions.

  6. Module Design, Materials, and Packaging Research Team: Activities and Capabilities

    SciTech Connect

    McMahon, T. J.; del Cueto, J.; Glick, S.; Jorgensen, G.; Kempe, M.; Kennedy, C.; Pern, J.; Terwilliger, K

    2005-01-01

    Our team activities are directed at improving PV module reliability by incorporating new, more effective, and less expensive packaging materials and techniques. New and existing materials or designs are evaluated before and during accelerated environmental exposure for the following properties: (1) Adhesion and cohesion: peel strength and lap shear. (2) Electrical conductivity: surface, bulk, interface and transients. (3) Water vapor transmission: solubility and diffusivity. (4) Accelerated weathering: ultraviolet, temperature, and damp heat tests. (5) Module and cell failure diagnostics: infrared imaging, individual cell shunt characterization, coring. (6) Fabrication improvements: SiOxNy barrier coatings and enhanced wet adhesion. (7) Numerical modeling: Moisture ingress/egress, module and cell performance, and cell-to-frame leakage current. (8) Rheological properties of polymer encapsulant and sheeting materials. Specific examples will be described.

  7. Plasma sheet ion composition at various levels of geomagnetic and solar activity

    NASA Technical Reports Server (NTRS)

    Lennartsson, W.

    1987-01-01

    The data obtained in the earth's plasma sheet by the Plasma Composition Experiment on the ISEE-1 spacecraft are briefly reexamined. The data are shown in the form of statistically averaged bulk parameters for the four major ions H(+), He(2+), He(+), and O(+) to illustrate the apparent mixture of solar and terrestrial ions, a mixture that varies with geomagnetic and other conditions. Some major differences in the statistical properties of different ions, which may have a bearing on the physics of the solar wind-magnetosphere interaction, are highlighted.

  8. Plasma sheet ion composition at various levels of geomagnetic and solar activity

    NASA Astrophysics Data System (ADS)

    Lennartsson, W.

    1987-08-01

    The data obtained in the earth's plasma sheet by the Plasma Composition Experiment on the ISEE-1 spacecraft are briefly reexamined. The data are shown in the form of statistically averaged bulk parameters for the four major ions H(+), He(2+), He(+), and O(+) to illustrate the apparent mixture of solar and terrestrial ions, a mixture that varies with geomagnetic and other conditions. Some major differences in the statistical properties of different ions, which may have a bearing on the physics of the solar wind-magnetosphere interaction, are highlighted.

  9. HVAC Design Strategy for a Hot-Humid Production Builder, Houston, Texas (Fact Sheet)

    SciTech Connect

    Not Available

    2014-03-01

    BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The following research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.

  10. Tools for active control system design

    NASA Technical Reports Server (NTRS)

    Adams, W. M., Jr.; Tiffany, S. H.; Newsom, J. R.

    1984-01-01

    Efficient control law analysis and design tools which properly account for the interaction of flexible structures, unsteady aerodynamics and active controls are developed. Development, application, validation and documentation of efficient multidisciplinary computer programs for analysis and design of active control laws are also discussed.

  11. Cereal Box Design: An Interdisciplinary Graphics Activity

    ERIC Educational Resources Information Center

    Fitzgerald, Mike; Tsosie, Teri

    2012-01-01

    The cereal box design activity is intriguing both for its simplicity and the resourcefulness that it can generate in young people. Also, it lends itself to a variety of curriculums. It covers both consumerism and Design for the Environment (DfE) concepts broadly and in depth. The activity introduces a wide range of topics. They include graphic…

  12. Bubble-Sheet-Like Interface Design with an Ultrastable Solid Electrolyte Layer for High-Performance Dual-Ion Batteries.

    PubMed

    Qin, Panpan; Wang, Meng; Li, Na; Zhu, Haili; Ding, Xuan; Tang, Yongbing

    2017-02-22

    In this work, a bubble-sheet-like hollow interface design on Al foil anode to improve the cycling stability and rate performance of aluminum anode based dual-ion battery is reported, in which, a carbon-coated hollow aluminum anode is used as both anode materials and current collector. This anode structure can guide the alloying position inside the hollow nanospheres, and also confine the alloy sizes within the hollow nanospheres, resulting in significantly restricted volumetric expansion and ultrastable solid electrolyte interface (SEI). As a result, the battery demonstrates an excellent long-term cycling stability within 1500 cycles with ≈99% capacity retention at 2 C. Moreover, this cell displays an energy density of 169 Wh kg(-1) even at high power density of 2113 W kg(-1) (10 C, charge and discharge within 6 min), which is much higher than most of conventional lithium ion batteries. The interfacial engineering strategy shown in this work to stabilize SEI layer and control the alloy forming position could be generalized to promote the research development of metal anodes based battery systems.

  13. Controlling the number of graphene sheets exfoliated from graphite by designed normal loading and frictional motion

    SciTech Connect

    Lee, Seungjun; Lu, Wei

    2014-07-14

    We use molecular dynamics to study the exfoliation of patterned nanometer-sized graphite under various normal loading conditions for friction-induced exfoliation. Using highly ordered pyrolytic graphite (HOPG) as well as both amorphous and crystalline SiO{sub 2} substrate as example systems, we show that the exfoliation process is attributed to the corrugation of the HOPG surface and the atomistic roughness of the substrate when they contact under normal loading. The critical normal strain, at which the exfoliation occurs, is higher on a crystalline substrate than on an amorphous substrate. This effect is related to the atomistic flatness and stiffness of the crystalline surface. We observe that an increase of the van der Waals interaction between the graphite and the substrate results in a decrease of the critical normal strain for exfoliation. We find that the magnitude of the normal strain can effectively control the number of exfoliated graphene layers. This mechanism suggests a promising approach of applying designed normal loading while sliding to pattern controlled number of graphene layers or other two-dimensional materials on a substrate surface.

  14. New Insights for Improving the Designs of Flexible Duct Junction Boxes (Fact Sheet)

    SciTech Connect

    Not Available

    2014-01-01

    IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics (CFD) simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance. Current Air Conditioning Contractors of America (ACCA) guidance (Group 11, Appendix 3, ACCA Manual D, Rutkowski 2009) allows for unconstrained variation in the number of takeoffs, box sizes, and takeoff locations. The only variables currently used in selecting an equivalent length (EL) are velocity of air in the duct and friction rate, given the first takeoff is located at least twice its diameter away from the inlet. This condition does not account for other factors impacting pressure loss across these types of fittings. For each simulation, the IBACOS team converted pressure loss within a box to an EL to compare variation in ACCA Manual D guidance to the simulated variation. IBACOS chose cases to represent flows reasonably correlating to flows typically encountered in the field and analyzed differences in total pressure due to increases in number and location of takeoffs, box dimensions, and velocity of air, and whether an entrance fitting is included. The team also calculated additional balancing losses for all cases due to discrepancies between intended outlet flows and natural flow splits created by the fitting. In certain asymmetrical cases, the balancing losses were significantly higher than symmetrical cases where the natural splits were close to the targets. Thus, IBACOS has shown additional design constraints that can ensure better system performance.

  15. Active magnetic bearings for optimum turbomachinery design

    NASA Technical Reports Server (NTRS)

    Hustak, J.; Kirk, R. G.; Schoeneck, K. A.

    1985-01-01

    The design and shop test results are given for a high speed eight stage centrifugal compressor supported by active magnetic bearings. A brief summary of the rotor dynamics analysis is presented with specific attention given to design considerations for optimum rotor stability. The concerns for retrofit of magnetic bearings in existing machinery are discussed with supporting analysis of a four stage centrifugal compressor. Recommendations are given on design and analysis requirements for successful machinery operation of either retrofit or new design turbomachinery.

  16. Designing Real-Life Cases To Support Authentic Design Activities.

    ERIC Educational Resources Information Center

    Bennett, Sue; Harper, Barry; Hedberg, John

    Teachers in a range of disciplines are interested in engaging their students in authentic activities that reflect the experiences of real-world practitioners. Adopting this approach requires the design and implementation of learning environments that incorporate and support such activities. This paper describes two real-life cases at the…

  17. Preparation of magnetic Co/graphene sheets composites and investigation on its catalytic activity for H2 generation

    NASA Astrophysics Data System (ADS)

    Zhao, Dongcui; Nan, Zhaodong

    2016-12-01

    A cobalt (Co)/graphene sheets (GRs) composite was synthesized via a one-pot chemical method. The composite shows high saturation magnetizations (Ms), which leads it to be conveniently separated from aqueous solution by an external magnetic field. Compared to the pure Co and some references, the catalytic activity of the as-obtained composite was significantly enhanced for the generation of H2 gas by hydrolysis of NaBH4 solution. Effects of NaBH4 initial concentration, the composite and reaction temperature on the H2 generation rate were investigated. The H2 generation rate is independent with the initial NaBH4 concentration, increased with the reaction temperature increasing. The composite can be continuously used several times with about the same catalytic activity.

  18. The β-sheet core is the favored candidate of engineering SDR for enhancing thermostability but not for activity.

    PubMed

    Lou, Deshuai; Tan, Jun; Zhu, Liancai; Ji, Shunlin; Wang, Bochu

    2017-01-26

    7α-Hydroxysteroid dehydrogenases (7α-HSDHs) can stereoselectively catalyze steroids, aromatic α-ketoesters, and benzaldehyde analogues playing a critical role in the biotransformation and poor thermostability that hinders their biomedical and industrial applications. Based on the three-dimensional structure of 7α-HSDH from Clostridium absonum (CA 7α-HSDH), recently reported program MAESTRO was used to compute the ΔΔG and predict the single-point mutants that could enhance its thermostability. Four mutants were selected and verified experimentally. The results from the circular dichroism spectrum indicated that three of the mutants, N89L, N184I, and A185I, fitted a three-state model and the values for TmN→I and TmI→D increased with different ranges. In particular, the TmN→I for the N184I mutant increased maximally by 9.93°C. Meanwhile, the denaturation process of the G189I mutant fitted the two-state model and it was more stable than the wild type, judging from the denaturation curves. Nevertheless, the enzyme catalytic activity analysis suggested that only the N89L mutant held a 2.28% catalytic efficiency, compared to the wild type, CA 7α-HSDH, and the activities of the other three mutants could not be detected. Molecular dynamics (MD) simulations were performed to determine the structural changes that occurred in the mutations and the results indicated that β-sheet structures in the mutants without detectable activity had changed significantly. Judging from the locations of the mutated sites, residues in the β-sheet core were considered as the favored candidates for SDR engineering to enhance the thermostability but not for activity holding.

  19. Physical Activity Design Guidelines for School Architecture

    PubMed Central

    Brittin, Jeri; Sorensen, Dina; Trowbridge, Matthew; Lee, Karen K.; Breithecker, Dieter; Frerichs, Leah; Huang, Terry

    2015-01-01

    Increasing children’s physical activity at school is a national focus in the U.S. to address childhood obesity. While research has demonstrated associations between aspects of school environments and students’ physical activity, the literature currently lacks a synthesis of evidence to serve as a practical, spatially-organized resource for school designers and decision-makers, as well as to point to pertinent research opportunities. This paper describes the development of a new practical tool: Physical Activity Design Guidelines for School Architecture. Its aims are to provide architects and designers, as well as school planners, educators, and public health professionals, with strategies for making K-12 school environments conducive to healthy physical activity, and to engage scientists in transdisciplinary perspectives toward improved knowledge of the school environment’s impact. We used a qualitative review process to develop evidence-based and theory-driven school design guidelines that promote increased physical activity among students. The design guidelines include specific strategies in 10 school design domains. Implementation of the guidelines is expected to enable students to adopt healthier physical activity behaviors. The tool bridges a translational gap between research and environmental design practice, and may contribute to setting new industry and education standards. PMID:26230850

  20. Physical Activity Design Guidelines for School Architecture.

    PubMed

    Brittin, Jeri; Sorensen, Dina; Trowbridge, Matthew; Lee, Karen K; Breithecker, Dieter; Frerichs, Leah; Huang, Terry

    2015-01-01

    Increasing children's physical activity at school is a national focus in the U.S. to address childhood obesity. While research has demonstrated associations between aspects of school environments and students' physical activity, the literature currently lacks a synthesis of evidence to serve as a practical, spatially-organized resource for school designers and decision-makers, as well as to point to pertinent research opportunities. This paper describes the development of a new practical tool: Physical Activity Design Guidelines for School Architecture. Its aims are to provide architects and designers, as well as school planners, educators, and public health professionals, with strategies for making K-12 school environments conducive to healthy physical activity, and to engage scientists in transdisciplinary perspectives toward improved knowledge of the school environment's impact. We used a qualitative review process to develop evidence-based and theory-driven school design guidelines that promote increased physical activity among students. The design guidelines include specific strategies in 10 school design domains. Implementation of the guidelines is expected to enable students to adopt healthier physical activity behaviors. The tool bridges a translational gap between research and environmental design practice, and may contribute to setting new industry and education standards.

  1. DESIGN CONSIDERATION INVOLVING ACTIVE SEDIMENT CAPS (PRESENTATION)

    EPA Science Inventory

    When contaminated sediments pose unacceptable risks to human health and the environment, management activities such as removal, treatment, or isolation of contaminated sediments may be required. Various capping designs are being considered for isolating contaminated sediment are...

  2. DESIGN CONSIDERATION INVOLVING ACTIVE SEDIMENT CAPS

    EPA Science Inventory

    When contaminated sediments pose unacceptable risks to human health and the environment, management activities such as removal, treatment, or isolation of contaminated sediments may be required. Various capping designs are being considered for isolating contaminated sediment are...

  3. Active Learning through Toy Design and Development

    ERIC Educational Resources Information Center

    Sirinterlikci, Arif; Zane, Linda; Sirinterlikci, Aleea L.

    2009-01-01

    This article presents an initiative that is based on active learning pedagogy by engaging elementary and middle school students in the toy design and development field. The case study presented in this article is about student learning experiences during their participation in the TOYchallenge National Toy Design Competition. Students followed the…

  4. Karyotype Analysis Activity: A Constructivist Learning Design

    ERIC Educational Resources Information Center

    Ahmed, Noveera T.

    2015-01-01

    This classroom activity is based on a constructivist learning design and engages students in physically constructing a karyotype of three mock patients. Students then diagnose the chromosomal aneuploidy based on the karyotype, list the symptoms associated with the disorder, and discuss the implications of the diagnosis. This activity is targeted…

  5. Effect of material flow on joint strength in activation spot joining of Al alloy and steel sheets

    NASA Astrophysics Data System (ADS)

    Watanabe, Goro; Yogo, Yasuhiro; Takao, Hisaaki

    2014-08-01

    A new joining method for dissimilar metal sheets was developed where a rotated consumable rod of Al alloy is pressed onto an Al alloy sheet at the part overlapped with a mild steel sheet. The metal flow in the joining region is increased by the through-hole in the Al sheet and consumable Al rod. The rod creates the joint interface and pads out of the thinly joined parts through pressing. This produces a higher joint strength than that of conventional friction stir spot welding. Measurements of the joint interface showed the presence of a 5-10 nm thick amorphous layer consisting of Al and Mg oxides.

  6. Ice-sheet response to oceanic forcing.

    PubMed

    Joughin, Ian; Alley, Richard B; Holland, David M

    2012-11-30

    The ice sheets of Greenland and Antarctica are losing ice at accelerating rates, much of which is a response to oceanic forcing, especially of the floating ice shelves. Recent observations establish a clear correspondence between the increased delivery of oceanic heat to the ice-sheet margin and increased ice loss. In Antarctica, most of these processes are reasonably well understood but have not been rigorously quantified. In Greenland, an understanding of the processes by which warmer ocean temperatures drive the observed retreat remains elusive. Experiments designed to identify the relevant processes are confounded by the logistical difficulties of instrumenting ice-choked fjords with actively calving glaciers. For both ice sheets, multiple challenges remain before the fully coupled ice-ocean-atmosphere models needed for rigorous sea-level projection are available.

  7. Fostering Teachers' Design Expertise in Teacher Design Teams: Conducive Design and Support Activities

    ERIC Educational Resources Information Center

    Huizinga, Tjark; Handelzalts, Adam; Nieveen, Nienke; Voogt, Joke

    2015-01-01

    Supporting Teacher Design Teams (TDTs) during local curriculum development efforts is essential. To be able to provide high-quality support, insights are needed about how TDTs carry out design activities and how support is valued by the members of TDTs and how it affects their design expertise. In this study, the design and support processes of…

  8. Evidence for Subglacial Volcanic Activity Beneath the area of the Divide of the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.

    2013-12-01

    There is an increasing body of aeromagnetic, radar ice-sounding, heat flow, subglacial volcanic earthquakes, several exposed active and subglacial volcanoes and other lines of evidence for volcanic activity associated with the West Antarctic Rift System (WR) since the origin (~25 Ma) of the West Antarctic Ice Sheet (WAIS), which flows through it. Exposed late Cenozoic, alkaline volcanic rocks, 34 Ma to present concentrated in Marie Byrd Land (LeMasurier and Thomson, 1990), but also exposed along the rift shoulder on the Transantarctic Mountains flank of the WR, and >1 million cubic kilometers, of mostly subglacially erupted 'volcanic centers' beneath the WAIS inferred from aeromagnetic data, have been interpreted as evidence of a magmatic plume. About 18 high relief, (~600-2000 m) 'volcanic centers' presently beneath the WAIS surface, probably were erupted subaerially when the WAIS was absent, based on the 5-km orthogonally line spaced Central West Antarctica aerogeophysical survey. All would be above sea level after ice removal and isostatic adjustment. Nine of these high relief peaks are in the general area beneath the divide of the WAIS. This high bed relief topography was first interpreted in the 1980s as the volcanic 'Sinuous Ridge ' based on a widely spaced aeromagnetic -radar ice sounding survey (Jankowski et al,. 1983). A 70-km wide, circular ring of interpreted subglacial volcanic rocks was cited as evidence of a volcanic caldera underlying the ice sheet divide based on the CWA survey (Behrendt et al., 1998). A broad magnetic 'low' surrounding the caldera area possibly is evidence of a shallow Curie isotherm. High heat flow reported from temperature logging (Clow et al., 2012) in the WAISCORE and a thick volcanic ash layer in the core (Dunbar et al., 2012) are consistent with this interpretation. A 2 km-high subaerially erupted volcano (subglacial Mt Thiel, ~78.5 degrees S, 111 degrees W) ~ 100 km north from the WAISCORE could be the source of the ash

  9. Activated FcgammaRII and signalling molecules revealed in rafts by ultra-structural observations of plasma-membrane sheets.

    PubMed

    Strzelecka-Kiliszek, Agnieszka; Korzeniowski, Marek; Kwiatkowska, Katarzyna; Mrozińska, Kazimiera; Sobota, Andrzej

    2004-01-01

    To reveal topography of FcgammaRII components of the receptor-signalling complex, large plasma-membrane sheets were obtained by cell cleavage and analysed by immuno-electron microscopy. Non-activated FcgammaRII was dispersed in the plane of the plasma membrane and only rarely was localized in the proximity of Lyn, an Src family tyrosine kinase, and CD55, a glycosylphosphatidylinositol-anchored protein. After FcgammaRII activation by cross-linking with antibodies, clusters of an electron-dense material acquiring about 86% of FcgammaRII and reaching up to 300 nm in diameter were formed within 5 min. These structures also accommodated about 85% of Lyn and 63% of CD55 labels that were located in close vicinity of gold particles attributed to the cross-linked FcgammaRII . The electron-dense structures were also abundant in tyrosine phosphorylated proteins. At their margins PIP2 was preferentially located. Based on a concentration of Lyn, CD55 and activated FcgammaRII , the electron-dense structures seem to reflect coalescent membrane rafts.

  10. The plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Eastman, T. E.; Frank, L. A.; Peterson, W. K.; Lennartsson, W.

    1984-01-01

    A spatially distinct, temporally variable, transition region between the magnetotail lobes and the central plasma sheet designated the plasma sheet boundary layer has been identified from a survey of particle spectra and three-dimensional distributions as sampled by the ISEE 1 LEPEDEA. The instrumentation and data presentation are described, and the signatures of the magnetotail plasma regimes are presented and discussed for the central plasma sheet and lobe and the plasma sheet boundary layer. Comparisons of plasma parameters and distribution fucntions are made and the evolution of ion velocity distributions within the plasma sheet boundary layer is discussed. The spatial distribution of the plasma sheet boundary layer is considered and ion composition measurements are presented.

  11. NREL Team Creates High-Activity, Durable Platinum Extended Surface Catalyst for Fuel Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2011-02-01

    Researchers with NREL's Fuel Cell team showed that platinum can replace copper nanowires in such a way that high-surface-area and high-specific-activity catalysts are produced, potentially allowing for lower-cost catalysts.

  12. The adaptor protein Cindr regulates JNK activity to maintain epithelial sheet integrity.

    PubMed

    Yasin, Hannah W R; van Rensburg, Samuel H; Feiler, Christina E; Johnson, Ruth I

    2016-02-15

    Epithelia are essential barrier tissues that must be appropriately maintained for their correct function. To achieve this a plethora of protein interactions regulate epithelial cell number, structure and adhesion, and differentiation. Here we show that Cindr (the Drosophila Cin85 and Cd2ap ortholog) is required to maintain epithelial integrity. Reducing Cindr triggered cell delamination and movement. Most delaminating cells died. These behaviors were consistent with JNK activation previously associated with loss of epithelial integrity in response to ectopic oncogene activity. We confirmed a novel interaction between Cindr and Drosophila JNK (dJNK), which when perturbed caused inappropriate JNK signaling. Genetically reducing JNK signaling activity suppressed the effects of reducing Cindr. Furthermore, ectopic JNK signaling phenocopied loss of Cindr and was partially rescued by concomitant cindr over-expression. Thus, correct Cindr-dJNK stoichiometry is essential to maintain epithelial integrity and disturbing this balance may contribute to the pathogenesis of disease states, including cancer.

  13. 46 CFR 232.4 - Balance sheet accounts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Balance sheet accounts. 232.4 Section 232.4 Shipping... ACTIVITIES UNIFORM FINANCIAL REPORTING REQUIREMENTS Balance Sheet § 232.4 Balance sheet accounts. (a.... (b) Purpose of balance sheet accounts. The balance sheet accounts are intended to disclose...

  14. 46 CFR 232.4 - Balance sheet accounts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Balance sheet accounts. 232.4 Section 232.4 Shipping... ACTIVITIES UNIFORM FINANCIAL REPORTING REQUIREMENTS Balance Sheet § 232.4 Balance sheet accounts. (a.... (b) Purpose of balance sheet accounts. The balance sheet accounts are intended to disclose...

  15. 46 CFR 232.4 - Balance sheet accounts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Balance sheet accounts. 232.4 Section 232.4 Shipping... ACTIVITIES UNIFORM FINANCIAL REPORTING REQUIREMENTS Balance Sheet § 232.4 Balance sheet accounts. (a.... (b) Purpose of balance sheet accounts. The balance sheet accounts are intended to disclose...

  16. Light sheet microscopy.

    PubMed

    Weber, Michael; Mickoleit, Michaela; Huisken, Jan

    2014-01-01

    This chapter introduces the concept of light sheet microscopy along with practical advice on how to design and build such an instrument. Selective plane illumination microscopy is presented as an alternative to confocal microscopy due to several superior features such as high-speed full-frame acquisition, minimal phototoxicity, and multiview sample rotation. Based on our experience over the last 10 years, we summarize the key concepts in light sheet microscopy, typical implementations, and successful applications. In particular, sample mounting for long time-lapse imaging and the resulting challenges in data processing are discussed in detail.

  17. Active Member Design, Modeling, and Verification

    NASA Technical Reports Server (NTRS)

    Umland, Jeffrey W.; Webster, Mark; John, Bruce

    1993-01-01

    The design and development of active members intended for use in structural control applications is presented. The use of three different solid state actuation materials, namely, piezoelectric, electrostictive, and magnetostrictive, is discussed. Test data is given in order to illustrate the actuator and device characteristics and performance.

  18. Design of a programmable active acoustics metamaterial

    NASA Astrophysics Data System (ADS)

    Smoker, Jason J.

    Metamaterials are artificial materials engineered to provide properties which may not be readily available in nature. The development of such class of materials constitutes a new area of research that has grown significantly over the past decade. Acoustic metamaterials, specifically, are even more novel than their electromagnetic counterparts arising only in the latter half of the decade. Acoustic metamaterials provide a new tool in controlling the propagation of pressure waves. However, physical design and frequency tuning, is still a large obstacle when creating a new acoustic metamaterial. This dissertation describes active and programmable design for acoustic metamaterials which allows the same basic physical design principles to be used for a variety of application. With cloaking technology being of a great interest to the US Navy, the proposed design approach would enable the development of a metamaterial with spatially changing effective parameters while retaining a uniform physical design features. The effective parameters would be controlled by tuning smart actuators embedded inside the metamaterial structure. Since this design is based on dynamic effective parameters that can be electrically controlled, material property ranges of several orders of magnitude could potentially be achieved without changing any physical parameters. With such unique capabilities, physically realizable acoustic cloaks can be achieved and objects treated with these active metamaterials can become acoustically invisible.

  19. The Marfan Syndrome. Fact Sheet [and] Physical Education and Activity Guidelines.

    ERIC Educational Resources Information Center

    National Marfan Foundation, Port Washington, NY.

    This document consists of two brochures, the first explaining the Marfan Syndrome and a second providing guidelines for physical education and activity for people who have this syndrome are provided. The brochure on factual information about Marfan syndrome outlines the associated medical problems involving the cardiovascular system, the skeleton,…

  20. Reducing slide sheet injury.

    PubMed

    Varcin-Coad, Lynn

    2008-12-01

    Slide sheets are often stated to be the cause of hand and forearm injuries. While there are many other possible reasons injuries to nursing staff, carer and client occur, the most important linking factors relating to musculoskeletal disorders and manual handling of people is the ongoing inappropriateness or lack of suitably designed and equipped work areas. As physiotherapist Lynn Varcin-Coad writes, staff are bearing the brunt of inefficiencies of design and lack of high order risk control.

  1. Coupling Molecularly Ultrathin Sheets of NiFe-Layered Double Hydroxide on NiCo2O4 Nanowire Arrays for Highly Efficient Overall Water-Splitting Activity.

    PubMed

    Wang, Zhiqiang; Zeng, Sha; Liu, Weihong; Wang, Xingwang; Li, Qingwen; Zhao, Zhigang; Geng, Fengxia

    2017-01-18

    Developing efficient but nonprecious bifunctional electrocatalysts for overall water splitting in basic media has been the subject of intensive research focus with the increasing demand for clean and regenerated energy. Herein, we report on the synthesis of a novel hierarchical hybrid electrode, NiFe-layered double hydroxide molecularly ultrathin sheets grown on NiCo2O4 nanowire arrays assembled from thin platelets with nickel foam as the scaffold support, in which the catalytic metal sites are more accessible and active and most importantly strong chemical coupling exists at the interface, enabling superior catalytic power toward both oxygen evolution reaction (OER) and additionally hydrogen evolution reaction (HER) in the same alkaline KOH electrolyte. The behavior ranks top-class compared with documented non-noble HER and OER electrocatalysts and even comparable to state-of-the-art noble-metal electrocatalysts, Pt and RuO2. When fabricated as an integrated alkaline water electrolyzer, the designed electrode can deliver a current density of 10 mA cm(-2) at a fairly low cell voltage of 1.60 V, promising the material as efficient bifunctional catalysts toward whole cell water splitting.

  2. Cell sheet engineering for regenerative medicine: current challenges and strategies.

    PubMed

    Owaki, Toshiyuki; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2014-07-01

    Substantial progress made in the areas of stem cell research and regenerative medicine has provided a number of innovative methods to repair or regenerate defective tissues and organs. Although previous studies regarding regenerative medicine, especially those involving induced pluripotent stem cells, have been actively promoted in the past decade, there remain some challenges that need to be addressed in order to enable clinical applications. Designed for use in clinical applications, cell sheet engineering has been developed as a unique, scaffold-free method of cell processing utilizing temperature-responsive cell culture vessels. Clinical studies using cell sheets have shown positive outcomes and will be translated into clinical practice in the near future. However, several challenges stand in the way of the industrialization of cell sheet products and the widespread acceptance of regenerative medicine based on cell sheet engineering. This review describes current strategies geared towards the realization of the regenerative medicine approach.

  3. Graphene quantum dots decorated CdS doped graphene oxide sheets in dual action mode: As initiator and platform for designing of nimesulide imprinted polymer.

    PubMed

    Patra, Santanu; Roy, Ekta; Choudhary, Raksha; Tiwari, Ashutosh; Madhuri, Rashmi; Sharma, Prashant K

    2017-03-15

    The present work describes the preparation of a nanohybrid by a combination of the 2D graphene sheet and 0D graphene quantum dots (GQDs). The GQDs were prepared from natural green precursors i.e. carrot juice by the one-step hydrothermal process. To get the maximum fluorescence property from nanohybrid, the graphene sheets were chemically doped with cadmium sulphide (CdS). The as prepared nanohybrid was characterized by means of X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), fluorescence and UV-vis spectroscopic techniques. The nanohybrid was further modified to design a nano-iniferter, which shows dual property i.e. works as polymerization initiator as well as provides platform for synthesis of the nimesulide-imprinted polymer. For designing of imprinted polymer two biocompatible monomers (cystine monomer and N-vinyl caprolactam) were used, which provides biodegradability to the polymer matrix. The imprinted polymer shows a very good selectivity towards the detection of nimesulide with a limit of detection as low as 6.65ngL(-1) (S/N=3). The sensor was also applied for the detection of nimesulide in real samples like human blood serum, plasma and urine samples as well as some pharmaceutical tablets.

  4. Self-enhanced catalytic activities of functionalized graphene sheets in the combustion of nitromethane: molecular dynamic simulations by molecular reactive force field.

    PubMed

    Zhang, Chaoyang; Wen, Yushi; Xue, Xianggui

    2014-08-13

    Functionalized graphene sheet (FGS) is a promising additive that enhances fuel/propellant combustion, and the determination of its mechanism has attracted much interest. In the present study, a series of molecular dynamic simulations based on a reactive force field (ReaxFF) are performed to explore the catalytic activity (CA) of FGS in the thermal decay of nitromethane (NM, CH3NO2). FGSs and pristine graphene sheets (GSs) are oxidized in hot NM liquid to increase their functionalities and subsequently show self-enhanced CAs during the decay. The CAs result from the interatomic exchanges between the functional groups on the sheets and the NM liquid, i.e., mainly between H and O atoms. CA is dependent on the density of NM, functionalities of sheets, and temperature. The GSs and FGSs that originally exhibit different functionalities tend to possess similar functionalities and consequently similar CAs as temperature increases. Other carbon materials and their oxides can accelerate combustion of other fuels/propellants similar to NM, provided that they can be dispersed and their key reaction steps in combustion are similar to NM.

  5. Manifold Regularized Experimental Design for Active Learning.

    PubMed

    Zhang, Lining; Shum, Hubert P H; Shao, Ling

    2016-12-02

    Various machine learning and data mining tasks in classification require abundant data samples to be labeled for training. Conventional active learning methods aim at labeling the most informative samples for alleviating the labor of the user. Many previous studies in active learning select one sample after another in a greedy manner. However, this is not very effective because the classification models has to be retrained for each newly labeled sample. Moreover, many popular active learning approaches utilize the most uncertain samples by leveraging the classification hyperplane of the classifier, which is not appropriate since the classification hyperplane is inaccurate when the training data are small-sized. The problem of insufficient training data in real-world systems limits the potential applications of these approaches. This paper presents a novel method of active learning called manifold regularized experimental design (MRED), which can label multiple informative samples at one time for training. In addition, MRED gives an explicit geometric explanation for the selected samples to be labeled by the user. Different from existing active learning methods, our method avoids the intrinsic problems caused by insufficiently labeled samples in real-world applications. Various experiments on synthetic datasets, the Yale face database and the Corel image database have been carried out to show how MRED outperforms existing methods.

  6. Synthesis of TiO2 nanorod-decorated graphene sheets and their highly efficient photocatalytic activities under visible-light irradiation.

    PubMed

    Lee, Eunwoo; Hong, Jin-Yong; Kang, Haeyoung; Jang, Jyongsik

    2012-06-15

    The titanium dioxide (TiO(2)) nanorod-decorated graphene sheets photocatalysts with different TiO(2) nanorods population have been synthesized by a simple non-hydrolytic sol-gel approach. Electron microscopy and X-ray diffraction analysis indicated that the TiO(2) nanorods are well-dispersed and successfully anchored on the graphene sheet surface through the formation of covalent bonds between Ti and C atoms. The photocatalytic activities are evaluated in terms of the efficiencies of photodecomposition and adsorption of methylene blue (MB) in aqueous solution under visible-light irradiation. The as-synthesized TiO(2) nanorod-decorated graphene sheets showed unprecedented photodecomposition efficiency compared to the pristine TiO(2) nanorods and the commercial TiO(2) (P-25, Degussa) under visible-light. It is believed that this predominant photocatalytic activity is due to the synergistic contribution of both a retarded charge recombination rate caused by a high electronic mobility of graphene and an increased surface area originated from nanometer-sized TiO(2) nanorods. Furthermore, photoelectrochemical study is performed to give deep insights into the primary roles of graphene that determines the photocatalytic activity.

  7. Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6

    NASA Astrophysics Data System (ADS)

    Nowicki, Sophie M. J.; Payne, Anthony; Larour, Eric; Seroussi, Helene; Goelzer, Heiko; Lipscomb, William; Gregory, Jonathan; Abe-Ouchi, Ayako; Shepherd, Andrew

    2016-12-01

    Reducing the uncertainty in the past, present, and future contribution of ice sheets to sea-level change requires a coordinated effort between the climate and glaciology communities. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) is the primary activity within the Coupled Model Intercomparison Project - phase 6 (CMIP6) focusing on the Greenland and Antarctic ice sheets. In this paper, we describe the framework for ISMIP6 and its relationship with other activities within CMIP6. The ISMIP6 experimental design relies on CMIP6 climate models and includes, for the first time within CMIP, coupled ice-sheet-climate models as well as standalone ice-sheet models. To facilitate analysis of the multi-model ensemble and to generate a set of standard climate inputs for standalone ice-sheet models, ISMIP6 defines a protocol for all variables related to ice sheets. ISMIP6 will provide a basis for investigating the feedbacks, impacts, and sea-level changes associated with dynamic ice sheets and for quantifying the uncertainty in ice-sheet-sourced global sea-level change.

  8. Synthesis of N-doped microporous carbon via chemical activation of polyindole-modified graphene oxide sheets for selective carbon dioxide adsorption.

    PubMed

    Saleh, Muhammad; Chandra, Vimlesh; Kemp, K Christian; Kim, Kwang S

    2013-06-28

    A polyindole-reduced graphene oxide (PIG) hybrid was synthesized by reducing graphene oxide sheets in the presence of polyindole. We have shown PIG as a material for capturing carbon dioxide (CO2). The PIG hybrid was chemically activated at temperatures of 400-800 °C, which resulted in nitrogen (N)-doped graphene sheets. The N-doped graphene sheets are microporous with an adsorption pore size of 0.6 nm for CO2 and show a maximum (Brunauer, Emmet and Teller) surface area of 936 m(2) g(-1). The hybrid activated at 600 °C (PIG6) possesses a surface area of 534 m(2) g(-1) and a micropore volume of 0.29 cm(3) g(-1). PIG6 shows a maximum CO2 adsorption capacity of 3.0 mmol g(-1) at 25 °C and 1 atm. This high CO2 uptake is due to the highly microporous character of the material and its N content. The material retains its original adsorption capacity on recycling even after 10 cycles (within experimental error). PIG6 also shows high adsorption selectivity ratios for CO2 over N2, CH4 and H2 of 23, 4 and 85 at 25 °C, respectively.

  9. A statistical study of the inner edge of the electron plasma sheet and the net convection potential as a function of geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Jiang, F.; Kivelson, M. G.; Walker, R. J.; Khurana, K. K.; Angelopoulos, V.; Hsu, T.

    2011-06-01

    A widely accepted explanation of the location of the inner edge of the electron plasma sheet and its dependence on electron energy is based on drift motions of individual particles. The boundary is identified as the separatrix between drift trajectories linking the tail to the dayside magnetopause (open paths) and trajectories closed around the Earth. A statistical study of the inner edge of the electron plasma sheet using THEMIS Electrostatic Analyzer plasma data from November 2007 to April 2009 enabled us to examine this model. Using a dipole magnetic field and a Volland-Stern electric field with shielding, we find that a steady state drift boundary model represents the average location of the electron plasma sheet boundary and reflects its variation with the solar wind electric field in the local time region between 21:00 and 06:00, except at high activity levels. However, the model does not reproduce the observed energy dispersion of the boundaries. We have also used the location of the inner edge of the electron plasma sheet to parameterize the potential drop of the tail convection electric field as a function of solar wind electric field (Esw) and geomagnetic activity. The range of Esw examined is small because the data were acquired near solar minimum. For the range of values tested (meaningful statistics only for Esw < 2 mV/m), reasonably good agreement is found between the potential drop of the tail convection electric field inferred from the location of the inner edge and the polar cap potential drop calculated from the model of Boyle et al. (1997).

  10. Design and microwave test of an ultrawideband input/output structure for sheet beam travelling wave tubes

    NASA Astrophysics Data System (ADS)

    Shu, Guoxiang; Wang, Jianxun; Liu, Guo; Yang, Liya; Luo, Yong; Wang, Shafei

    2015-06-01

    Broadband operation is of great importance for the applications of travelling wave tubes such as high-data communication and wideband radar. An input/output (I/O) structure operating with broadband property plays a significant role to achieve these applications. In this paper, a Y-type branch waveguide (YTBW) coupler and its improvements are proposed and utilized to construct an extremely wideband I/O structure to ensure the broadband operation for sheet beam travelling wave tubes (SB-TWTs). Cascaded reflection resonators are utilized to improve the isolation characteristic and transmission efficiency. Furthermore, to minimize the reflectivity of the port connected with the RF circuit, wave-absorbing material (WAM) is loaded in the resonator. Simulation results for the YTBW loaded with WAM predict an excellent performance with a 50.2% relative bandwidth for port reflectivity under -15 dB, transmission up to -1.5 dB, and meanwhile isolation under -20 dB. In addition, the coupler has a relatively compact configuration and the beam tunnel can be widened, which is beneficial for the propagation of the electrons. A Q-band YTBW loaded with two reflection resonators is fabricated and microwave tested. Vector network analyzer (VNA) measured results have an excellent agreement with our simulation, which verify our theoretical analysis and simulation calculation.

  11. Mild process to design silk scaffolds with reduced β-sheet structure and various topographies at nanometer scale

    PubMed Central

    Pei, Yazhen; Liu, Xi; Liu, Shanshan; Lu, Qiang; Liu, Jing; Kaplan, David L; Zhu, Hesun

    2014-01-01

    Three-dimensional (3D) porous silk scaffolds with good biocompatibility and minimal immunogenicity, have promising applications in different tissue regenerations. However, a challenge remains to effectively fabricate their microstructures and mechanical properties to satisfy specific requirements of different tissues. In this study, silk scaffolds were fabricated to form extracellular matrix (ECM) mimetic nanofibrous architecture in a mild process. A slowly increasing concentration process was applied to regulate silk self-assembly into nanofibers in aqueous solution. Then glycerol was blended with the nanofiber solution and induced silk crystallization in lyophilization process, endowing freeze-dried scaffolds water-stability. The glycerol was leached from the scaffolds, leaving similar porous structure at a micrometer scale but different topographies at nanoscale. Compared to previous salt-leached and methanol annealed scaffolds, the present scaffolds showed lower β-sheet content, softer mechanical property, and improved cell growth and differentiation behaviors, implying their promising future as platforms for controlling stem cell fate and soft tissue regeneration. PMID:25463497

  12. Design and microwave test of an ultrawideband input/output structure for sheet beam travelling wave tubes

    SciTech Connect

    Shu, Guoxiang; Wang, Jianxun; Liu, Guo; Yang, Liya; Luo, Yong; Wang, Shafei

    2015-06-15

    Broadband operation is of great importance for the applications of travelling wave tubes such as high-data communication and wideband radar. An input/output (I/O) structure operating with broadband property plays a significant role to achieve these applications. In this paper, a Y-type branch waveguide (YTBW) coupler and its improvements are proposed and utilized to construct an extremely wideband I/O structure to ensure the broadband operation for sheet beam travelling wave tubes (SB-TWTs). Cascaded reflection resonators are utilized to improve the isolation characteristic and transmission efficiency. Furthermore, to minimize the reflectivity of the port connected with the RF circuit, wave-absorbing material (WAM) is loaded in the resonator. Simulation results for the YTBW loaded with WAM predict an excellent performance with a 50.2% relative bandwidth for port reflectivity under −15 dB, transmission up to −1.5 dB, and meanwhile isolation under −20 dB. In addition, the coupler has a relatively compact configuration and the beam tunnel can be widened, which is beneficial for the propagation of the electrons. A Q-band YTBW loaded with two reflection resonators is fabricated and microwave tested. Vector network analyzer (VNA) measured results have an excellent agreement with our simulation, which verify our theoretical analysis and simulation calculation.

  13. Design and microwave test of an ultrawideband input/output structure for sheet beam travelling wave tubes.

    PubMed

    Shu, Guoxiang; Wang, Jianxun; Liu, Guo; Yang, Liya; Luo, Yong; Wang, Shafei

    2015-06-01

    Broadband operation is of great importance for the applications of travelling wave tubes such as high-data communication and wideband radar. An input/output (I/O) structure operating with broadband property plays a significant role to achieve these applications. In this paper, a Y-type branch waveguide (YTBW) coupler and its improvements are proposed and utilized to construct an extremely wideband I/O structure to ensure the broadband operation for sheet beam travelling wave tubes (SB-TWTs). Cascaded reflection resonators are utilized to improve the isolation characteristic and transmission efficiency. Furthermore, to minimize the reflectivity of the port connected with the RF circuit, wave-absorbing material (WAM) is loaded in the resonator. Simulation results for the YTBW loaded with WAM predict an excellent performance with a 50.2% relative bandwidth for port reflectivity under -15 dB, transmission up to -1.5 dB, and meanwhile isolation under -20 dB. In addition, the coupler has a relatively compact configuration and the beam tunnel can be widened, which is beneficial for the propagation of the electrons. A Q-band YTBW loaded with two reflection resonators is fabricated and microwave tested. Vector network analyzer (VNA) measured results have an excellent agreement with our simulation, which verify our theoretical analysis and simulation calculation.

  14. A mild process to design silk scaffolds with reduced β-sheet structure and various topographies at the nanometer scale.

    PubMed

    Pei, Yazhen; Liu, Xi; Liu, Shanshan; Lu, Qiang; Liu, Jing; Kaplan, David L; Zhu, Hesun

    2015-02-01

    Three-dimensional (3-D) porous silk scaffolds with good biocompatibility and minimal immunogenicity show promise in a range of tissue regeneration applications. However, the challenge remains to effectively fabricate their microstructures and mechanical properties to satisfy the specific requirements of different tissues. In this study, silk scaffolds were fabricated to form an extracellular matrix (ECM) mimetic nanofibrous architecture using a mild process. A slowly increasing concentration process was applied to regulate silk self-assembly into nanofibers in aqueous solution. Then glycerol was blended with the nanofiber solution and induced silk crystallization in the lyophilization process, endowing freeze-dried scaffolds with water stability. The glycerol was leached from the scaffolds, leaving a similar porous structure at the micrometer scale but different topographies at the nanoscale. Compared to previous salt-leached and methanol-annealed scaffolds, the present scaffolds showed lower β-sheet content, softer mechanical property and improved cell growth and differentiation behaviors, suggesting their promising future as platforms for controlling stem cell fate and soft tissue regeneration.

  15. Multiple-satellite studies of magnetospheric substorms: Plasma sheet recovery and the poleward leap of auroral-zone activity

    NASA Technical Reports Server (NTRS)

    Pytte, T.; Mcpherron, R. L.; Kivelson, M. G.; West, H. I., Jr.; Hones, E. W., Jr.

    1977-01-01

    Particle observations from pairs of satellites (Ogo 5, Vela 4A and 5B, Imp 3) during the recovery of plasma sheet thickness late in substorms were examined. Six of the nine events occurred within about 5 min in locations near the estimated position of the neutral sheet, but over wide ranges of east-west and radial separations. The time of occurrence and spatial extent of the recovery were related to the onset (defined by ground Pi 2 pulsations) and approximate location (estimated from ground mid-latitude magnetic signatures) of substorm expansions. It was found that the plasma sheet recovery occurred 10 - 30 min after the last in a series of Pi bursts, which were interpreted to indicate that the recovery was not due directly to a late, high latitude substorm expansion. The recovery was also observed to occur after the substorm current wedge had moved into the evening sector and to extend far to the east of the center of the last preceding substorm expansion.

  16. Large-scale thrusting along the northern margin of the Tibetan Plateau and the southwest Tarim basin: 230 km long active Hotian thrust sheet

    NASA Astrophysics Data System (ADS)

    Suppe, J.; Wang, X.; He, D.; Liang, H.

    2015-12-01

    We present the geometry, kinematics and mechanics of large-scale active thrusting in the western Kunlunshan and southwest Tarim basin, which accounts for ~130-165km total shortening of Tarim crust at the northern margin of Tibet. The great frontal structure is the ~230km long bedding-parallel Hotian thrust sheet, which is perhaps the longest active intact thrust sheet in the world, composed of flat-lying strata of the Tarim basin sliding northward on a regional gypsum detachment at the base of the Cenozoic sequence. The toe of the Hotian thrust ramps to the surface two thirds of the way across the Tarim basin, forming the Selibuya-Mazartag hills in the Taklamakan sand desert. At the southern edge of the Tarim basin in the Kunlunshan foothills, a set of high-amplitude anticlines are growing by complex break-forward ramping and wedging in the Hotian thrust sheet as it steps up to the Cenozoic gypsum detachment from a regional Cambrian evaporate detachment that extends under Tibet. More interior structures such as the Tiklik thrust bring older strata and Proterozoic basement to the surface, together with their Cenozoic Tarim cover in the Buya basin. The Cambrian detachment also extends northward under the Tarim basin with minor hanging-wall deformation that locally warps the overlying Hotian thrust sheet, producing a complete syntectonic record in seismically imaged growth strata of its northward motion over these warps. Seismic profiles in the southwest Tarim foothill belt also reveal widespread growth strata that record much of the structural history beginning in the early Pliocene Atushi Formation. Ages of seismic reflectors are calibrated to a surface magnetostratigraphic sequence (Zheng et al., 2000). The beginning of thrusting and folding in the southwest Tarim basin north of the Tiklik thrust is dated at 3.6Ma with shortening >25km and a progressive northward propagation toward the Selibuya-Mazartag hills. The overall shortening rate is ~10 mm/yr. The gypsum

  17. Materials for Advanced Turbine Engines (MATE): Project 3: Design, fabrication and evaluation of an oxide dispersion strengthened sheet alloy combustor liner, volume 1

    NASA Technical Reports Server (NTRS)

    Henricks, R. J.; Sheffler, K. D.

    1984-01-01

    The suitability of wrought oxide dispersion strengthened (ODS) superalloy sheet for gas turbine engine combustor applications was evaluated. Incoloy MA 956 (FeCrAl base) and Haynes Developmental Alloy (HDA) 8077 (NiCrAl base) were evaluated. Preliminary tests showed both alloys to be potentially viable combustor materials, with neither alloy exhibiting a significant advantage over the other. Both alloys demonstrated a +167C (300 F) advantage of creep and oxidation resistance with no improvement in thermal fatigue capability compared to a current generation combustor alloy (Hastelloy X). MA956 alloy was selected for further demonstration because it exhibited better manufacturing reproducibility than HDA8077. Additional property tests were conducted on MA956. To accommodate the limited thermal fatigue capability of ODS alloys, two segmented, mechanically attached, low strain ODS combustor design concepts having predicted fatigue lives or = 10,000 engine cycles were identified. One of these was a relatively conventional louvered geometry, while the other involved a transpiration cooled configuration. A series of 10,000 cycle combustor rig tests on subscale MA956 and Hastelloy X combustor components showed no cracking, thereby confirming the beneficial effect of the segmented design on thermal fatigue capability. These tests also confirmed the superior oxidation and thermal distortion resistance of the ODS alloy. A hybrid PW2037 inner burner liner containing MA956 and Hastelloy X components was designed and constructed.

  18. Review of Well Operator Files for Hydraulically Fractured Oil and Gas Production Wells: Well Design and Construction Fact Sheet

    EPA Pesticide Factsheets

    EPA reviewed a statistically representative sample of oil and gas production wells reported by nine service companies to help understand the role of well design and construction practices preventing pathways for subsurface fluid movement.

  19. A Guide to Microsoft Active Directory (AD) Design

    SciTech Connect

    Dias, J

    2002-04-29

    The goal of this paper is to facilitate the design process for those DOE sites that are currently engaged in designing their Active Directory (AD) network. It is a roadmap to enable analysis of the complicated design tradeoffs associated with Active Directory Design. By providing discussion of Active Directory design elements which are permanent and costly to change once deployed, the hope is to minimize the risks of sponsoring failed designs, or joining existing infrastructures not suitable to programmatic needs. Specifically, most Active Directory structures will fall under one of three common designs: Single Domain, Single Forest with Multiple Domains, or Multiple Forests. Each has benefits and concerns, depending on programmatic and organizational structures. The comparison of these three approaches will facilitate almost any Active Directory design effort. Finally, this paper describes some best practices to consider when designing Active Directory based on three years of research and experience.

  20. Construction of Self-Supported Three–Dimensional TiO2 Sheeted Networks with Enhanced Photocatalytic Activity

    PubMed Central

    Zhang, Xuan; Hu, Chao; Bai, Hua; Yan, Yan; Li, Junfang; Yang, Haifeng; Lu, Xiaojing; Xi, Guangcheng

    2013-01-01

    The degradation of toxic gases and liquids using a catalyst and solar energy is an ideal method, compared with landfill and combustion methods. The search for active semiconductor photocatalysts that efficiently decompose contaminations under light irradiation remains one of the most challenging tasks for solar-energy utilization. In this work, free–supporting three-dimensional (3D) nanosheeted hierarchical porous tungsten, titanium, and tin oxide networks were obtained by a facile Lewis acid catalytic binary template route. These networks possess large macroscopic scale (millimeter–sized) and hierarchical macro/mesoporous nanostructure with high surface area and large pore volume. Photocatalytic degradation of Azo dyes demonstrated that the nanosheets-constructed hierarchical porous networks have high photocatalytic activity and stability. The present synthetic route can serve as the new design concept for functional 3D layered porous nanostructures. PMID:24356418

  1. Construction of Self-Supported Three-Dimensional TiO2 Sheeted Networks with Enhanced Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Hu, Chao; Bai, Hua; Yan, Yan; Li, Junfang; Yang, Haifeng; Lu, Xiaojing; Xi, Guangcheng

    2013-12-01

    The degradation of toxic gases and liquids using a catalyst and solar energy is an ideal method, compared with landfill and combustion methods. The search for active semiconductor photocatalysts that efficiently decompose contaminations under light irradiation remains one of the most challenging tasks for solar-energy utilization. In this work, free-supporting three-dimensional (3D) nanosheeted hierarchical porous tungsten, titanium, and tin oxide networks were obtained by a facile Lewis acid catalytic binary template route. These networks possess large macroscopic scale (millimeter-sized) and hierarchical macro/mesoporous nanostructure with high surface area and large pore volume. Photocatalytic degradation of Azo dyes demonstrated that the nanosheets-constructed hierarchical porous networks have high photocatalytic activity and stability. The present synthetic route can serve as the new design concept for functional 3D layered porous nanostructures.

  2. Is the sheet-flow design a 'frozen core' (a Bauplan) of the gas exchangers? Comparative functional morphology of the respiratory microvascular systems: illustration of the geometry and rationalization of the fractal properties.

    PubMed

    Maina, J N

    2000-08-01

    The sheet-flow design is ubiquitous in the respiratory microvascular systems of the modern gas exchangers. The blood percolates through a maze of narrow microvascular channels spreading out into a thin film, a "sheet". The design has been convergently conceived through remarkably different evolutionary strategies. Endothelial cells, e.g. connect parallel epithelial cells in the fish gills and reptilian lungs; epithelial cells divide the gill filaments in the crustacean gills, the amphibian lungs, and vascular channels on the lung of pneumonate gastropods; connective tissue elements weave between the blood capillaries of the mammalian lungs; and in birds, the blood capillaries attach directly and in some areas connect by short extensions of the epithelial cells. In the gills, skin, and most lungs, the blood in the capillary meshwork geometrically lies parallel to the respiratory surface. In the avian lung, where the blood capillaries anastomose intensely and interdigitate closely with the air capillaries, the blood occasions a 'volume' rather than a 'sheet.' The sheet-flow design and the intrinsic fractal properties of the respiratory microvascular systems have produced a highly tractable low-pressure low-resistance region that facilitates optimal perfusion. In complex animals, the sheet-flow design is a prescriptive evolutionary construction for efficient gas exchange by diffusion. The design facilitates the internal and external respiratory media to be exposed to each other over an extensive surface area across a thin tissue barrier. This comprehensive design is a classic paradigm of evolutionary convergence motivated by common enterprise to develop corresponding functionally efficient structures. With appropriate corrections for any relevant intertaxa differences, use of similar morphofunctional models in determining the diffusing capacities of various gas exchangers is warranted.

  3. Modeling Harris Current Sheets with Themis Observations

    NASA Technical Reports Server (NTRS)

    Kepko, L.; Angelopoulos, V.; McPherron, R. L.; Apatenkov, S.; Glassmeier, K.-H.

    2010-01-01

    Current sheets are ubiquitous in nature. occurring in such varied locations as the solar atmosphere. the heliosphere, and the Earth's magnetosphere. The simplest current sheet is the one-dimensional Harris neutral sheet, with the lobe field strength and scale-height the only free parameters. Despite its simplicity, confirmation of the Harris sheet as a reasonable description of the Earth's current sheet has remained elusive. In early 2009 the orbits of the 5 THEMIS probes fortuitously aligned such that profiles of the Earth's current sheet could be modeled in a time dependent manner. For the few hours of alignment we have calculated the time history of the current sheet parameters (scale height and current) in the near-Earth region. during both quiet and active times. For one particular substorm. we further demonstrate good quantitative agreement with the diversion of cross tail current inferred from the Harris modeling with the ionospheric current inferred from ground magnetometer data.

  4. MATE (Materials for Advanced Turbine Engines) Program, Project 3. Volume 2: Design, fabrication and evaluation of an oxide dispersion strengthened sheet alloy combustor liner

    NASA Technical Reports Server (NTRS)

    Bose, S.; Sheffler, K. D.

    1988-01-01

    The suitability of wrought oxide dispersion strengthened (ODS) superalloy sheet for gas turbine engine combustor applications was evaluated. Two yttria (Y2O3) dispersion strengthened alloys were evaluated; Incoloy MA956 and Haynes Development Alloy (HDA) 8077 (NiCrAl base). Preliminary tests showed both alloys to be potentially viable combustor materials, with neither alloy exhibiting a significant advantage over the other. MA956 was selected as the final alloy based on manufacturing reproducibility for evaluation as a burner liner. A hybrid PW2037 inner burner liner containing MA956 and Hastelloy X components and using a louvered configuration was designed and constructed. The louvered configuration was chosen because of field experience and compatibility with the bill of material PW2037 design. The simulated flight cycle for the ground based engine tests consisted of 4.5 min idle, 1.5 min takeoff and intermediate conditions in a PW2037 engine with average uncorrected combustor exit temperature of 1527 C. Post test evaluation consisting of visual observations and fluorescent penetrant inspections was conducted after 500 cycles of testing. No loss of integrity in the burner liner was shown.

  5. Introduction to Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Fact Sheet)

    SciTech Connect

    Not Available

    2014-09-01

    Momentum behind zero energy building design and construction is increasing, presenting a tremendous opportunity for advancing energy performance in the commercial building industry. At the same time, there is a lingering perception that zero energy buildings must be cost prohibitive or limited to showcase projects. Fortunately, an increasing number of projects are demonstrating that high performance can be achieved within typical budgets. This factsheet highlights replicable, recommended strategies for achieving high performance on a budget, based on experiences from past projects.

  6. Large-strain, multiform movements from designable electrothermal actuators based on large highly anisotropic carbon nanotube sheets.

    PubMed

    Li, Qingwei; Liu, Changhong; Lin, Yuan-Hua; Liu, Liang; Jiang, Kaili; Fan, Shoushan

    2015-01-27

    Many electroactive polymer (EAP) actuators use diverse configurations of carbon nanotubes (CNTs) as pliable electrodes to realize discontinuous, agile movements, for CNTs are conductive and flexible. However, the reported CNT-based EAP actuators could only accomplish simple, monotonous actions. Few actuators were extended to complex devices because efficiently preparing a large-area CNT electrode was difficult, and complex electrode design has not been carried out. In this work, we successfully prepared large-area CNT paper (buckypaper, BP) through an efficient approach. The BP is highly anisotropic, strong, and suitable as flexible electrodes. By means of artful graphic design and processing on BP, we fabricated various functional BP electrodes and developed a series of BP-polymer electrothermal actuators (ETAs). The prepared ETAs can realize various controllable movements, such as large-stain bending (>180°), helical curling (∼ 630°), or even bionic actuations (imitating human-hand actions). These functional and interesting movements benefit from flexible electrode design and the anisotropy of BP material. Owing to the advantages of low driving voltage (20-200 V), electrolyte-free and long service life (over 10000 times), we think the ETAs will have great potential applications in the actuator field.

  7. Twin-Mirrored-Galvanometer Laser-Light-Sheet Generator

    NASA Technical Reports Server (NTRS)

    Rhodes, David B.; Franke, John M.; Jones, Stephen B.; Leighty, Bradley D.

    1991-01-01

    Multiple, rotating laser-light sheets generated to illuminate flows in wind tunnels. Designed and developed to provide flexibility and adaptability to wide range of applications. Design includes capability to control size and location of laser-light sheet in real time, to generate horizontal or vertical sheets, to sweep sheet repeatedly through volume, to generate multiple sheets with controllable separation, and to rotate single or multiple laser-light sheets. Includes electronic equipment and laser mounted on adjustable-height platform. Twin-mirrored galvanometer unit supported by tripod to reduce vibration. Other possible applications include use in construction industry to align beams of building. Artistic or display applications also possible.

  8. Learning Design--Creative Design to Visualise Learning Activities

    ERIC Educational Resources Information Center

    Toetenel, Lisette; Rienties, Bart

    2016-01-01

    The focus on quality improvements by institutions for better online and blended teaching can be delivered in different ways. This article reports on the implementation of this process and the approaches taken first, in terms of the design of new learning materials, and second, when reviewing the existing curriculum. The study aims to ascertain…

  9. Design and Implementation of a Wireless Sensor Network of GPS-enabled Seismic Sensors for the Study of Glaciers and Ice Sheets

    NASA Astrophysics Data System (ADS)

    Bilen, S. G.; Anandakrishnan, S.; Urbina, J. V.

    2012-12-01

    In an effort to provide new and improved geophysical sensing capabilities for the study of ice sheets in Antarctica and Greenland, or to study mountain glaciers, we are developing a network of wirelessly interconnected seismic and GPS sensor nodes (called "geoPebbles"), with the primary objective of making such instruments more capable and cost effective. We describe our design methodology, which has enabled us to develop these state-of-the art sensors using commercial-off-the-shelf hardware combined with custom-designed hardware and software. Each geoPebble is a self-contained, wirelessly connected sensor for collecting seismic measurements and position information. Each node is built around a three-component seismic recorder, which includes an amplifier, filter, and 24-bit analog-to-digital card that can sample up to 10 kHz. Each unit also includes a microphone channel to record the ground-coupled airwave. The timing for each node is available through a carrier-phase measurement of the L1 GPS signal at an absolute accuracy of better than a microsecond. Each geoPebble includes 16 GB of solid-state storage, wireless communications capability to a central supervisory unit, and auxiliary measurements capability (up to eight 10-bit channels at low sample rates). We will report on current efforts to test this new instrument and how we are addressing the challenges imposed by the extreme weather conditions on the Antarctic continent. After fully validating its operational conditions, the geoPebble system will be available for NSF-sponsored glaciology research projects. Geophysical experiments in the polar region are logistically difficult. With the geoPebble system, the cost of doing today's experiments (low-resolution, 2D) will be significantly reduced, and the cost and feasibility of doing tomorrow's experiments (integrated seismic, positioning, 3D, etc.) will be reasonable. Sketch of an experiment with geoPebbles scattered on the surface of the ice sheet. The seismic

  10. Fact Sheet on Evapotranspiration Cover Systems for Waste Containment

    EPA Pesticide Factsheets

    This Fact Sheet updates the 2003 Fact Sheet on Evapotranspiration Covers and provides information on the regulatory setting for ET covers, general considerations in their design, performance, and monitoring, and status at the time of writing (2011).

  11. Two-mirrored galvanometer laser light sheet generator

    NASA Technical Reports Server (NTRS)

    Leighty, B. D.; Franke, J. M.; Jones, S. B.; Rhodes, D. B.

    1988-01-01

    Light sheets generated with either laser or noncoherent sources have found widespread application to flow visualization. Previous light sheet generating systems were usually dedicated to a specific viewing geometry. The technique with the most flexibility is the galvanometer mirror based laser light sheet system. A two-mirrored system was designed and developed to provide flexibility and adaptability to a wide range of applications. The design includes the capability to control the size and location of the laser light sheet in real time, to generate horizontal or vertical sheets, to sweep the sheet repeatedly through a volume, to generate multiple sheets with controllable separation and to rotate single or multiple laser light sheets. The system is capable of producing up to 12 sheets of laser light at an angular divergence of + or - 20 degrees. Maximum scan rate of any one line is 500 Hertz. This system has proven to be uniquely versatile and a patent has been applied for.

  12. Aircraft Sheet Metal Practices, Blueprint Reading, Sheet Metal Forming and Heat Treating; Sheet Metal Work 2: 9855.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This course is designed to familiarize vocational students with construction in sheet metal layout. The document outlines goals, specific block objectives, layout practices, blueprint reading, sheet metal forming (by hand and by machine), and heat treatment of metals, and includes posttest samples. Layout techniques and air foil developing are…

  13. Strong correlation in acene sheets from the active-space variational two-electron reduced density matrix method: effects of symmetry and size.

    PubMed

    Pelzer, Kenley; Greenman, Loren; Gidofalvi, Gergely; Mazziotti, David A

    2011-06-09

    Polyaromatic hydrocarbons (PAHs) are a class of organic molecules with importance in several branches of science, including medicine, combustion chemistry, and materials science. The delocalized π-orbital systems in PAHs require highly accurate electronic structure methods to capture strong electron correlation. Treating correlation in PAHs has been challenging because (i) traditional wave function methods for strong correlation have not been applicable since they scale exponentially in the number of strongly correlated orbitals, and (ii) alternative methods such as the density-matrix renormalization group and variational two-electron reduced density matrix (2-RDM) methods have not been applied beyond linear acene chains. In this paper we extend the earlier results from active-space variational 2-RDM theory [Gidofalvi, G.; Mazziotti, D. A. J. Chem. Phys. 2008, 129, 134108] to the more general two-dimensional arrangement of rings--acene sheets--to study the relationship between geometry and electron correlation in PAHs. The acene-sheet calculations, if performed with conventional wave function methods, would require wave function expansions with as many as 1.5 × 10(17) configuration state functions. To measure electron correlation, we employ several RDM-based metrics: (i) natural-orbital occupation numbers, (ii) the 1-RDM von Neumann entropy, (iii) the correlation energy per carbon atom, and (iv) the squared Frobenius norm of the cumulant 2-RDM. The results confirm a trend of increasing polyradical character with increasing molecular size previously observed in linear PAHs and reveal a corresponding trend in two-dimensional (arch-shaped) PAHs. Furthermore, in PAHs of similar size they show significant variations in correlation with geometry. PAHs with the strictly linear geometry (chains) exhibit more electron correlation than PAHs with nonlinear geometries (sheets).

  14. Shock wave interactions with liquid sheets

    NASA Astrophysics Data System (ADS)

    Jeon, H.; Eliasson, V.

    2017-04-01

    Shock wave interactions with a liquid sheet are investigated by impacting planar liquid sheets of varying thicknesses with a planar shock wave. A square frame was designed to hold a rectangular liquid sheet, with a thickness of 5 or 10 mm, using plastic membranes and cotton wires to maintain the planar shape and minimize bulge. The flat liquid sheet, consisting of either water or a cornstarch and water mixture, was suspended in the test section of a shock tube. Incident shock waves with Mach numbers of M_s = 1.34 and 1.46 were considered. A schlieren technique with a high-speed camera was used to visualize the shock wave interaction with the liquid sheets. High-frequency pressure sensors were used to measure wave speed, overpressure, and impulse both upstream and downstream of the liquid sheet. Results showed that no transmitted shock wave could be observed through the liquid sheets, but compression waves induced by the shock-accelerated liquid coalesced into a shock wave farther downstream. A thicker liquid sheet resulted in a lower peak overpressure and impulse, and a cornstarch suspension sheet showed a higher attenuation factor compared to a water sheet.

  15. Preliminary design activities for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information on the development of solar heating and cooling systems is presented. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities.

  16. Mapping whole-brain activity with cellular resolution by light-sheet microscopy and high-throughput image analysis (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Silvestri, Ludovico; Rudinskiy, Nikita; Paciscopi, Marco; Müllenbroich, Marie Caroline; Costantini, Irene; Sacconi, Leonardo; Frasconi, Paolo; Hyman, Bradley T.; Pavone, Francesco S.

    2016-03-01

    Mapping neuronal activity patterns across the whole brain with cellular resolution is a challenging task for state-of-the-art imaging methods. Indeed, despite a number of technological efforts, quantitative cellular-resolution activation maps of the whole brain have not yet been obtained. Many techniques are limited by coarse resolution or by a narrow field of view. High-throughput imaging methods, such as light sheet microscopy, can be used to image large specimens with high resolution and in reasonable times. However, the bottleneck is then moved from image acquisition to image analysis, since many TeraBytes of data have to be processed to extract meaningful information. Here, we present a full experimental pipeline to quantify neuronal activity in the entire mouse brain with cellular resolution, based on a combination of genetics, optics and computer science. We used a transgenic mouse strain (Arc-dVenus mouse) in which neurons which have been active in the last hours before brain fixation are fluorescently labelled. Samples were cleared with CLARITY and imaged with a custom-made confocal light sheet microscope. To perform an automatic localization of fluorescent cells on the large images produced, we used a novel computational approach called semantic deconvolution. The combined approach presented here allows quantifying the amount of Arc-expressing neurons throughout the whole mouse brain. When applied to cohorts of mice subject to different stimuli and/or environmental conditions, this method helps finding correlations in activity between different neuronal populations, opening the possibility to infer a sort of brain-wide 'functional connectivity' with cellular resolution.

  17. Extravehicular Activity training and hardware design considerations

    NASA Technical Reports Server (NTRS)

    Thuot, Pierre J.; Harbaugh, Gregory J.

    1993-01-01

    Designing hardware that can be successfully operated by EVA astronauts for EVA tasks required to assemble and maintain Space Station Freedom requires a thorough understanding of human factors and of the capabilities and limitations of the space-suited astronaut, as well as of the effect of microgravity environment on the crew member's capabilities and on the overhead associated with EVA. This paper describes various training methods and facilities that are being designed for training EVA astronauts for Space Station assembly and maintenance, taking into account the above discussed factors. Particular attention is given to the user-friendly hardware design for EVA and to recent EVA flight experience.

  18. An RC active filter design handbook

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.

    1977-01-01

    The design of filters is described. Emphasis is placed on simplified procedures that can be used by the reader who has minimum knowledge about circuit design and little acquaintance with filter theory. The handbook has three main parts. The first part is a review of some information that is essential for work with filters. The second part includes design information for specific types of filter circuitry and describes simple procedures for obtaining the component values for a filter that will have a desired set of characteristics. Pertinent information relating to actual performance is given. The third part (appendix) is a review of certain topics in filter theory and is intended to provide some basic understanding of how filters are designed.

  19. Large-scale thrusting along the northern margin of the Tibetan Plateau and the southwest Tarim basin: 230 km long active Hotian thrust sheet

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Suppe, John; Liang, Hang; He, Dengfa

    2014-05-01

    We present the geometry, kinematics and mechanics of large-scale thrusting in the West Kunlun Shan and the southwest Tarim Basin, which is associated with the northward motion of Tibet. The great frontal structure is the ~230km long intact bedding parallel Hotian thrust sheet composed of strata of the Tarim Basin lying above a regional gypsum horizon at the base of the Cenozoic sequence. The toe of the Hotian thrust sheet steps steeply to the surface two thirds of the way across the basin forming the Selibuya-Mazartag hills in the sand desert. The Hotan thrust constitutes one of the longest active intact thrust sheets in the world, showing little internal deformation, however at its back it steps down to a Cambrian detachment at the base of the Paleozoic below a belt of complex high-amplitude anticlines near the front of the West Kunlun Shan, which display break-forward imbricate and wedge structure. More interior, steep reverse faults such as the Tieklik thrust bring older strata to the surface, including Paleozoic basement. The Cambrian detachment also extends northward under the Tarim basin with minor hanging-wall deformation that warps the Hotian Thrust sheet locally, causing the development of growth strata in the Hotian thrust sheet that providesa quantitative record of its motion over these warps. Seismic profiles in the southwest Tarim basin reveal widespread growth strata that record much of the structural history beginning in the early Pliocene Atushi Formation. Ages of seismic reflectors are calibrated to a surface magnetostratigraphic sequence(from Zheng et al., 2000)and traced throughout the seismic grid. The bottom of the growth strata is dated at 3.6 Ma indicating a Pliocene and younger age of thrusting and folding in the southwest Tarim Basin. Structural restoration suggests minimum shortening greater than 35km. The Tieklik thrust consumed at least 10 km in early Pliocene. The fold-and-thrust belts of the southwest Tarim basin shortened >25km in

  20. Benchmark 3 - Incremental sheet forming

    NASA Astrophysics Data System (ADS)

    Elford, Michael; Saha, Pradip; Seong, Daeyong; Haque, MD Ziaul; Yoon, Jeong Whan

    2013-12-01

    Benchmark-3 is designed to predict strains, punch load and deformed profile after spring-back during single tool incremental sheet forming. AA 7075-O material has been selected. A corn shape is formed to 45 mm depth with an angle of 45°. Problem description, material properties, and simulation reports with experimental data are summarized.

  1. The Potato People in "School Daze": Presented by Theatre Beyond Words. Cue Sheet for Students.

    ERIC Educational Resources Information Center

    Briley, Rachel

    This performance guide is designed for teachers to use with students before and after a performance of the Potato People in "School Daze." The guide, called a "Cuesheet," contains seven pages of reproducible activity sheets for use in class with activities and discussion questions on the following topics: (1) Meet the…

  2. Cognitive Activity-based Design Methodology for Novice Visual Communication Designers

    ERIC Educational Resources Information Center

    Kim, Hyunjung; Lee, Hyunju

    2016-01-01

    The notion of design thinking is becoming more concrete nowadays, as design researchers and practitioners study the thinking processes involved in design and employ the concept of design thinking to foster better solutions to complex and ill-defined problems. The goal of the present research is to develop a cognitive activity-based design…

  3. Designing Technology Activities that Teach Mathematics

    ERIC Educational Resources Information Center

    Silk, Eli M.; Higashi, Ross; Shoop, Robin; Schunn, Christian D.

    2010-01-01

    Over the past three years, the authors have conducted research in middle and high school classrooms in an effort to improve the effectiveness of robotics to teach science, technology, engineering, and mathematics (STEM) education--their focus has been on math. The authors have found that subtle changes in the design and setup of the lesson make a…

  4. Scientists Design Heat-Activated Penis Implant

    MedlinePlus

    ... implant, Le used a heat-activated exoskeleton of nitinol, a metal known for its elasticity. A urologist could do a simplified operation to insert the nitinol implant, which would remain flaccid at body temperature ...

  5. Structural Biology Fact Sheet

    MedlinePlus

    ... Home > Science Education > Structural Biology Fact Sheet Structural Biology Fact Sheet Tagline (Optional) Middle/Main Content Area What is structural biology? Structural biology is a field of science focused ...

  6. Zika Virus Fact Sheet

    MedlinePlus

    ... sheets Fact files Questions & answers Features Multimedia Contacts Zika virus Fact sheet Updated 6 September 2016 Key ... and last for 2-7 days. Complications of Zika virus disease Based on a systematic review of ...

  7. Uterine Fibroids Fact Sheet

    MedlinePlus

    ... Topics Uterine fibroids fact sheet (PDF, 950 KB) FDA warning on power morcellators in treatment for uterine ... Topics Uterine fibroids fact sheet (PDF, 950 KB) FDA warning on power morcellators in treatment for uterine ...

  8. Teacher Educators' Design and Implementation of Group Learning Activities

    ERIC Educational Resources Information Center

    De Hei, Miranda S. A.; Sjoer, Ellen; Admiraal, Wilfried; Strijbos, Jan-Willem

    2016-01-01

    The aim of this study was to describe how teacher educators design and implement group learning activities (GLAs). We used the Group Learning Activities Instructional Design (GLAID) framework to analyse their descriptions. The GLAID framework includes eight components: (1) interaction, (2) learning objectives and outcomes, (3) assessment, (4) task…

  9. Rational Design of Protein C Activators

    PubMed Central

    Barranco-Medina, Sergio; Murphy, Mary; Pelc, Leslie; Chen, Zhiwei; Di Cera, Enrico; Pozzi, Nicola

    2017-01-01

    In addition to its procoagulant and proinflammatory functions mediated by cleavage of fibrinogen and PAR1, the trypsin-like protease thrombin activates the anticoagulant protein C in a reaction that requires the cofactor thrombomodulin and the endothelial protein C receptor. Once in the circulation, activated protein C functions as an anticoagulant, anti-inflammatory and regenerative factor. Hence, availability of a protein C activator would afford a therapeutic for patients suffering from thrombotic disorders and a diagnostic tool for monitoring the level of protein C in plasma. Here, we present a fusion protein where thrombin and the EGF456 domain of thrombomodulin are connected through a peptide linker. The fusion protein recapitulates the functional and structural properties of the thrombin-thrombomodulin complex, prolongs the clotting time by generating pharmacological quantities of activated protein C and effectively diagnoses protein C deficiency in human plasma. Notably, these functions do not require exogenous thrombomodulin, unlike other anticoagulant thrombin derivatives engineered to date. These features make the fusion protein an innovative step toward the development of protein C activators of clinical and diagnostic relevance. PMID:28294177

  10. Preliminary Tritium Management Design Activities at ORNL

    SciTech Connect

    Harrison, Thomas J.; Felde, David K.; Logsdon, Randall J.; McFarlane, Joanna; Qualls, A. L.

    2016-09-01

    Interest in salt-cooled and salt-fueled reactors has increased over the last decade (Forsberg et al. 2016). Several private companies and universities in the United States, as well as governments in other countries, are developing salt reactor designs and/or technology. Two primary issues for the development and deployment of many salt reactor concepts are (1) the prevention of tritium generation and (2) the management of tritium to prevent release to the environment (Holcomb 2013). In 2016, the US Department of Energy (DOE) initiated a research project under the Advanced Reactor Technology Program to (1) experimentally assess the feasibility of proposed methods for tritium mitigation and (2) to perform an engineering demonstration of the most promising methods. This document describes results from the first year’s efforts to define, design, and build an experimental apparatus to test potential methods for tritium management. These efforts are focused on producing a final design document as the basis for the apparatus and its scheduled completion consistent with available budget and approvals for facility use.

  11. Optimal wrapping of liquid droplets with ultrathin sheets.

    PubMed

    Paulsen, Joseph D; Démery, Vincent; Santangelo, Christian D; Russell, Thomas P; Davidovitch, Benny; Menon, Narayanan

    2015-12-01

    Elastic sheets offer a path to encapsulating a droplet of one fluid in another that is different from that of traditional molecular or particulate surfactants. In wrappings of fluids by sheets of moderate thickness with petals designed to curl into closed shapes, capillarity balances bending forces. Here, we show that, by using much thinner sheets, the constraints of this balance can be lifted to access a regime of high sheet bendability that brings three major advantages: ultrathin sheets automatically achieve optimally efficient shapes that maximize the enclosed volume of liquid for a fixed area of sheet; interfacial energies and mechanical properties of the sheet are irrelevant within this regime, thus allowing for further functionality; and complete coverage of the fluid can be achieved without special sheet designs. We propose and validate a general geometric model that captures the entire range of this new class of wrapped and partially wrapped shapes.

  12. Solar photocatalytic oxidation of pretreated wastewaters: laboratory scale generation of design data for technical-scale double-skin sheet reactors.

    PubMed

    Gulyas, H; Jain, H B; Susanto, A L; Malekpur, M; Harasiuk, K; Krawczyk, I; Choromanski, P; Furmanska, M

    2005-05-01

    Batchwise heterogeneous photocatalytic oxidation of model wastewater (solutions of the azo dye "Acid Orange 7" in tap water) has been performed in a laboratory-scale stirred vessel reactor with non-submerged UV-A lamps using titanium dioxide "P25" as photocatalyst. Comparison to results of solar pilot-scale Plexiglass double-skin sheet reactor (DSSR) experiments indicates that the lab-scale method may predict area demand for technical-scale DSSR design. Characteristic UV-A fluences leading to TOC or COD reduction to e(-1) of the initial concentrations were determined in lab-scale stirred vessel experiments for treated effluents of seven different industrial branches, secondary municipal effluent and biologically treated greywater. Predicted areas for solar photocatalytic oxidation of these effluents in DSSRs yielding mineralization of 95% of organics in 100 m3 of the respective effluents for a TiO2 concentration of 2 g l(-1) and a sky and solar radiation of 3.9kWh m(-2) d(-1) within one day greatly varied from below 6,000 m2 (biologically treated lubricating oil refinery effluent) to more than 100,000 m2 (highly saline biologically treated effluent of chemical industry). Especially municipal and refinery effluents (except oil reclaiming) have been identified as promising candidates for reuse after solar photocatalytic oxidation. Mineralization efficiency was decreasing with increasing alkalinity of effluents. This was interpreted by competition of hydrogen carbonate anions with organics for binding sites on photocatalyst surface and by OH radical scavenging by hydrogen carbonate. Dependence on alkalinity was superimposed by salinity influence as some effluents with high alkalinity also exhibited high salt concentrations (especially chloride).

  13. Zirconium/polyvinyl alcohol modified flat-sheet polyvinyldene fluoride membrane for decontamination of arsenic: Material design and optimization, study of mechanisms, and application prospects.

    PubMed

    Zhao, Dandan; Yu, Yang; Chen, J Paul

    2016-07-01

    Arsenic contamination in industrial wastewater and groundwater has become an important environmental issue. In this study, a novel zirconium/polyvinyl alcohol (PVA) modified polyvinyldene fluoride (PVDF) membrane was developed for arsenate removal from simulated contaminated water. A PVDF flat-sheet membrane was first fabricated; it was then soaked in a zirconium-PVA solution and dried, and finally reacted with a glutaraldehyde solution, by which the zirconium ions were impregnated onto the PVDF surface through the ether and hydroxyl groups according to the cross-linkage mechanism. The fabrication procedure was optimized by the Box-Behnken experimental design approach. The adsorption kinetics study showed that most of uptake occurred in 5 h and the equilibrium was established in 24 h. The acidic condition was beneficial for the arsenate removal and the optimal removal efficiency can be obtained at pH 2.0. The experimental data of the adsorption isotherm was better described by Langmuir equation than Freundlich equation. The maximum adsorption capacity of 128 mg-As/g was achieved at pH 2.0. In the filtration study, the modified membrane with an area of 12.56 cm(2) could treat 15.6 L arsenate solution (equivalent to 75,150 bed volumes) with an influent concentration of 98.6 μg/L to meet the maximum contaminate level of 10 μg/L. Several instrumental studies revealed that the removal was mainly associated with ion exchange between chloride and arsenate ions.

  14. Comprehensive Design Reliability Activities for Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Christenson, R. L.; Whitley, M. R.; Knight, K. C.

    2000-01-01

    This technical publication describes the methodology, model, software tool, input data, and analysis result that support aerospace design reliability studies. The focus of these activities is on propulsion systems mechanical design reliability. The goal of these activities is to support design from a reliability perspective. Paralleling performance analyses in schedule and method, this requires the proper use of metrics in a validated reliability model useful for design, sensitivity, and trade studies. Design reliability analysis in this view is one of several critical design functions. A design reliability method is detailed and two example analyses are provided-one qualitative and the other quantitative. The use of aerospace and commercial data sources for quantification is discussed and sources listed. A tool that was developed to support both types of analyses is presented. Finally, special topics discussed include the development of design criteria, issues of reliability quantification, quality control, and reliability verification.

  15. Extravehicular activities guidelines and design criteria

    NASA Technical Reports Server (NTRS)

    Brown, N. E.; Dashner, T. R.; Hayes, B. C.

    1973-01-01

    A listing of astronaut EVA support systems and equipment, and the physical, operational, and performance characteristics of each major system are presented. An overview of the major ground based support operations necessary in the development and verification of orbital EVA systems is included. The performance and biomedical characteristics of man in the orbital EV environment are discussed. Major factors affecting astronaut EV work performance are identified and delineated as they relate to EV support systems design. Data concerning the medical and physiological aspects of spaceflight on man are included. The document concludes with an extensive bibliography, and a series of appendices which expand on some of the information presented in the main body.

  16. LED Outdoor Area Lighting Fact Sheet

    SciTech Connect

    2008-06-01

    This fact sheet reviews the major design and specification concerns for outdoor area lighting, and discusses the potential for LED luminaires to save energy while providing high quality lighting for outdoor areas.

  17. Proctor Creek Boone Boulevard Fact Sheet

    EPA Pesticide Factsheets

    This fact sheet provides an overview of the Proctor Creek watershed and community, green infrastructure, the Boone Boulevard Green Street Project Conceptual Design, and the added value and application of Health Impact Assessment (HIA) to the project.

  18. Designing and testing the activities of TAL effector nucleases.

    PubMed

    Lin, Yanni; Cradick, Thomas J; Bao, Gang

    2014-01-01

    Transcription activator-like effector nucleases (TALENs) have rapidly developed into a powerful tool for genome editing. To avoid labor-intensive and time-consuming experimental screening for active TALENs, a scoring system can help select optimal target sites. Here we describe a procedure to design active TALENs using a scoring system named Scoring Algorithm for Predicted TALEN Activity (SAPTA) and a method to test the activity of individual and pairs of TALENs.

  19. Design and implementation of active members for precision space structures

    NASA Technical Reports Server (NTRS)

    Webster, M. S.; Fanson, J. L.; Lurie, B. J.; O'Brien, J. F.

    1992-01-01

    This paper describes the development and implementation of an active member in a precision truss structure. The active member utilizes a piezoelectric actuator motor imbedded in a steel case with built-in displacement sensor. This active member is used in structural quieting. Collocated active damping control loops are designed in order to impedance match piezoelectric active members to the structure. Results from application of these controllers and actuators to the JPL Phase B testbed are given.

  20. Custom design in lower limb prosthetics for athletic activity.

    PubMed

    Fergason, J R; Boone, D A

    2000-08-01

    In summary, the prosthetist is the best source of information with regard to the fast-changing lower extremity prosthetics technology for sports. The needs and desires of the amputee should be outlined and balanced with the cost of the desired components and design. In many cases, one carefully designed prosthesis can serve in dual roles for everyday ambulation and certain athletic activities. In other cases, the amputee is limited severely by a prosthesis that is not designed for a specific activity. Using a prosthesis for activities that it was not designed to accommodate can cause physical injury to the amputee as well as structural failure of the device. A properly designed and fitted prosthesis can open a whole new world of activity to the amputee and helps him or her to reach the desired a vocational goals.

  1. Optimal active vibration absorber: Design and experimental results

    NASA Technical Reports Server (NTRS)

    Lee-Glauser, Gina; Juang, Jer-Nan; Sulla, Jeffrey L.

    1992-01-01

    An optimal active vibration absorber can provide guaranteed closed-loop stability and control for large flexible space structures with collocated sensors/actuators. The active vibration absorber is a second-order dynamic system which is designed to suppress any unwanted structural vibration. This can be designed with minimum knowledge of the controlled system. Two methods for optimizing the active vibration absorber parameters are illustrated: minimum resonant amplitude and frequency matched active controllers. The Controls-Structures Interaction Phase-1 Evolutionary Model at NASA LaRC is used to demonstrate the effectiveness of the active vibration absorber for vibration suppression. Performance is compared numerically and experimentally using acceleration feedback.

  2. Sheet Bending using Soft Tools

    NASA Astrophysics Data System (ADS)

    Sinke, J.

    2011-05-01

    Sheet bending is usually performed by air bending and V-die bending processes. Both processes apply rigid tools. These solid tools facilitate the generation of software for the numerical control of those processes. When the lower rigid die is replaced with a soft or rubber tool, the numerical control becomes much more difficult, since the soft tool deforms too. Compared to other bending processes the rubber backed bending process has some distinct advantages, like large radius-to-thickness ratios, applicability to materials with topcoats, well defined radii, and the feasibility of forming details (ridges, beads). These advantages may give the process exclusive benefits over conventional bending processes, not only for industries related to mechanical engineering and sheet metal forming, but also for other disciplines like Architecture and Industrial Design The largest disadvantage is that also the soft (rubber) tool deforms. Although the tool deformation is elastic and recovers after each process cycle, the applied force during bending is related to the deformation of the metal sheet and the deformation of the rubber. The deformation of the rubber interacts with the process but also with sheet parameters. This makes the numerical control of the process much more complicated. This paper presents a model for the bending of sheet materials using a rubber lower die. This model can be implemented in software in order to control the bending process numerically. The model itself is based on numerical and experimental research. In this research a number of variables related to the tooling and the material have been evaluated. The numerical part of the research was used to investigate the influence of the features of the soft lower tool, like the hardness and dimensions, and the influence of the sheet thickness, which also interacts with the soft tool deformation. The experimental research was focused on the relation between the machine control parameters and the most

  3. Dynamic Current Sheet Formation and Evolution with Application to Inter-(Super)granular Flow Lanes and Quasi-Homologous Jet Activity

    NASA Astrophysics Data System (ADS)

    Edmondson, Justin K.; Velli, M.

    2011-05-01

    The coronal magnetic field structure is an immensely complex system constantly driven away from equilibrium by global drivers such as photospheric flow, flux emergence/cancellation at the lower boundary, helicity injection and transport, etc. In low-beta plasma systems, such as solar corona, the Maxwell stresses dominate forces and therefore the system dynamics. General Poynting stress injection (i.e., flux injection, helicity injection, translational motions, or any combination thereof) results in (possibly large) geometric deformations of the magnetic field, such that the Maxwell stresses distribute as uniformly as possible, constrained by the distorted geometry and topology of the bounding separatricies. Since the topological connectivity is discontinuous across these separatrix surfaces, the magnetic stresses will be discontinuous there as well, manifesting as current sheets within the field. The solar magnetic field undergoes major geometric expansion passing from the photosphere, through the chromosphere, into the corona. No matter the specific details, a mixed polarity distribution at the lower boundary and the divergence-free condition require invariant topological features such as an X-line and separatricies to exist between fields emanating from separate regions of the photosphere. We present the results of fully-3D numerical simulations of a simplified low-beta model of this field expansion. A symmetric injection of Maxwell stresses into this geometry inflates strongly line-tied fields, generating a region of large current densities and magnetic energy dissipation. Elsewhere the injected stresses accumulate along the existing separatricies. There is no evidence of reconnection dynamics until after the initial left-right parity is broken. Once the symmetry breaks, the X-line deforms explosively into a Syrovatskii-type current sheet, leading to a succession of quasi-homologous jet dynamics. The bursty-oscillations of these jets occur as the stresses within

  4. eduSPIM: Light Sheet Microscopy in the Museum

    PubMed Central

    Schmid, Benjamin; Weber, Michael; Huisken, Jan

    2016-01-01

    Light Sheet Microscopy in the Museum Light sheet microscopy (or selective plane illumination microscopy) is an important imaging technique in the life sciences. At the same time, this technique is also ideally suited for community outreach projects, because it produces visually appealing, highly dynamic images of living organisms and its working principle can be understood with basic optics knowledge. Still, the underlying concepts are widely unknown to the non-scientific public. On the occasion of the UNESCO International Year of Light, a technical museum in Dresden, Germany, launched a special, interactive exhibition. We built a fully functional, educational selective plane illumination microscope (eduSPIM) to demonstrate how developments in microscopy promote discoveries in biology. Design Principles of an Educational Light Sheet Microscope To maximize educational impact, we radically reduced a standard light sheet microscope to its essential components without compromising functionality and incorporated stringent safety concepts beyond those needed in the lab. Our eduSPIM system features one illumination and one detection path and a sealed sample chamber. We image fixed zebrafish embryos with fluorescent vasculature, because the structure is meaningful to laymen and visualises the optical principles of light sheet microscopy. Via a simplified interface, visitors acquire fluorescence and transmission data simultaneously. The eduSPIM Design Is Tailored Easily to Fit Numerous Applications The universal concepts presented here may also apply to other scientific approaches that are communicated to laymen in interactive settings. The specific eduSPIM design is adapted easily for various outreach and teaching activities. eduSPIM may even prove useful for labs needing a simple SPIM. A detailed parts list and schematics to rebuild eduSPIM are provided. PMID:27560188

  5. A structural model of the anaphase promoting complex co-activator (Cdh1) and in silico design of inhibitory compounds

    PubMed Central

    Rahimi, H.; Negahdari, B.; Shokrgozar, M.A.; Madadkar-Sobhani, A.; Mahdian, R.; Foroumadi, A.; Amin, M. Kafshdouzi; Karimipoor, M.

    2015-01-01

    Anaphase promoting complex (APC) controls cell cycle and chromosome segregation. The APC activation occurs after binding of co-activators, cdh1 and cdc20. Cdh1 plays a role in cancer pathogenesis and is known as a potential drug target. The main aim of this study was prediction of 3D structure of cdh1 and designing the inhibitory compounds based on the structural model. First, 3D structure of cdh1 was predicted by means of homology modelling and molecular dynamics tools, MODELLER and Gromacs package, respectively. Then, inhibitory compounds were designed using virtual screening and molecular docking by means AutoDock package. The overall structure of cdh1 is propeller like and each DW40 repeat contains four anti-parallel beta-sheets. Moreover, binding pocket of the inhibitory compounds was determined. The results might be helpful in finding a suitable cdh1 inhibitor for the treatment of cancer. PMID:26430458

  6. A structural model of the anaphase promoting complex co-activator (Cdh1) and in silico design of inhibitory compounds.

    PubMed

    Rahimi, H; Negahdari, B; Shokrgozar, M A; Madadkar-Sobhani, A; Mahdian, R; Foroumadi, A; Amin, M Kafshdouzi; Karimipoor, M

    2015-01-01

    Anaphase promoting complex (APC) controls cell cycle and chromosome segregation. The APC activation occurs after binding of co-activators, cdh1 and cdc20. Cdh1 plays a role in cancer pathogenesis and is known as a potential drug target. The main aim of this study was prediction of 3D structure of cdh1 and designing the inhibitory compounds based on the structural model. First, 3D structure of cdh1 was predicted by means of homology modelling and molecular dynamics tools, MODELLER and Gromacs package, respectively. Then, inhibitory compounds were designed using virtual screening and molecular docking by means AutoDock package. The overall structure of cdh1 is propeller like and each DW40 repeat contains four anti-parallel beta-sheets. Moreover, binding pocket of the inhibitory compounds was determined. The results might be helpful in finding a suitable cdh1 inhibitor for the treatment of cancer.

  7. Design of a three-dimensional multitarget activity landscape.

    PubMed

    de la Vega de León, Antonio; Bajorath, Jürgen

    2012-11-26

    The design of activity landscape representations is challenging when compounds are active against multiple targets. Going beyond three or four targets, the complexity of underlying activity spaces is difficult to capture in conventional activity landscape views. Previous attempts to generate multitarget activity landscapes have predominantly utilized extensions of molecular network representations or plots of activity versus chemical similarity for pairs of active compounds. Herein, we introduce a three-dimensional multitarget activity landscape design that is based upon principles of radial coordinate visualization. Circular representations of multitarget activity and chemical reference space are combined to generate a spherical view into which compound sets are projected for interactive analysis. Interpretation of landscape content is facilitated by following three canonical views of activity, chemical, and combined activity/chemical space, respectively. These views focus on different planes of the underlying coordinate system. From the activity and combined views, compounds with well-defined target selectivity and structure-activity profile relationships can be extracted. In the activity landscape, such compounds display characteristic spatial arrangements and target activity patterns.

  8. Integration of Humanitarian Knowledge in Art and Design Activity

    ERIC Educational Resources Information Center

    Kamzina, Nadezhda Enovna; Mazina, Julia Ilyinichna; Turganbayeva, Shakhizada Sainbekovna

    2016-01-01

    The process of integration of humanitarian knowledge is being examined in the article and the development of the project activities and a special outlook on the examples of famous artists, designers and architects are investigated. The forms of creative thinking are systematized and the factors modifying the borders of design knowledge are formed…

  9. Practical Design Activities for Your Technology Education Classes

    ERIC Educational Resources Information Center

    Berkeihiser, Mike

    2006-01-01

    In this article, the author relates how he and his class get involved in doing project designs within their school district every year. The author relates how they have done design projects for local townships and boroughs, non-profit organizations, Eagle Scout projects, and much more. The author relates how these activities have been such…

  10. SAPTA: a new design tool for improving TALE nuclease activity.

    PubMed

    Lin, Yanni; Fine, Eli J; Zheng, Zhilan; Antico, Christopher J; Voit, Richard A; Porteus, Matthew H; Cradick, Thomas J; Bao, Gang

    2014-04-01

    Transcription activator-like effector nucleases (TALENs) have become a powerful tool for genome editing due to the simple code linking the amino acid sequences of their DNA-binding domains to TALEN nucleotide targets. While the initial TALEN-design guidelines are very useful, user-friendly tools defining optimal TALEN designs for robust genome editing need to be developed. Here we evaluated existing guidelines and developed new design guidelines for TALENs based on 205 TALENs tested, and established the scoring algorithm for predicting TALEN activity (SAPTA) as a new online design tool. For any input gene of interest, SAPTA gives a ranked list of potential TALEN target sites, facilitating the selection of optimal TALEN pairs based on predicted activity. SAPTA-based TALEN designs increased the average intracellular TALEN monomer activity by >3-fold, and resulted in an average endogenous gene-modification frequency of 39% for TALENs containing the repeat variable di-residue NK that favors specificity rather than activity. It is expected that SAPTA will become a useful and flexible tool for designing highly active TALENs for genome-editing applications. SAPTA can be accessed via the website at http://baolab.bme.gatech.edu/Research/BioinformaticTools/TAL_targeter.html.

  11. Bedroom design and decoration: gender differences in preference and activity.

    PubMed

    Jones, Randall M; Taylor, Denise E; Dick, Andrew J; Singh, Archana; Cook, Jerry L

    2007-01-01

    This investigation examined gender differences in niche-building preference and activity among 238 8th and 9th grade boys and girls. A questionnaire was developed to measure both the actual and preferred bedroom content, bedroom design activity, and the level of perceived influence by the immediate and extended family, friends, and social institutions. Gender differences were identified for preference, activity, and influence in bedroom design and decoration. Girls and boys differed in the type of items contained in their bedrooms. Girls' rooms contained stuffed animals and pictures of people, including themselves, more frequently than the boys' rooms. In contrast, boys' rooms contained sports-related items, and things for building or that they had built themselves. Although bedroom design activity for both boys and girls was influenced by older teens, friends, media, and popular culture, boys (but not girls) were also influenced by their mothers, fathers, girlfriends, and activities such as sports, Boy or Girl Scouts, and music lessons.

  12. "The Book of Miracles" by David S. Craig and Robert Morgan. Cue Sheet.

    ERIC Educational Resources Information Center

    Pratt, Suzanne

    This performance guide is designed for teachers to use with students before and after a performance of "The Book of Miracles," by David S. Craig and Robert Morgan. The guide, called a "Cuesheet," contains seven activity sheets for use in class, addressing: (1) What Happens in "The Book of Miracles?" (introducing the…

  13. "Gulliver's Travels" by Alfred Silver with Music by Stephen Naylor. Cue Sheet for Students.

    ERIC Educational Resources Information Center

    Waterfall, Milde; Flynn, Rosalind, Ed.

    Designed to be used before and after attending a musical adaptation of Jonathan's Swift's "Gulliver's Travels" (performed by the Mermaid Theatre of Nova Scotia), this cue sheet presents information about the performance and suggests activities that can be done with classmates, friends, or family members. Beginning with an illustration of…

  14. Design and analysis of thrust active magnetic bearing

    NASA Astrophysics Data System (ADS)

    Jang, Seok-Myeong; Lee, Un-Ho; Choi, Jang-Young; Hong, Jung-Pyo

    2008-04-01

    This paper deals with the design and analysis of thrust active magnetic bearing (AMB). Using the analytical solutions for thrust, resistance, and inductance obtained from equivalent magnetic circuits method, we determine initial design parameters such as the size of magnetic circuit, coil diameter, and the number of turns by investigating the variation of thrust according to design parameters. Then, using nonlinear finite element analysis, a detailed design considering saturation is performed in order to meet required thrust under restricted conditions. Finally, by confirming that the design result is shown in good agreement with experimental results, the validity of design procedures for thrust AMB used in this paper is proved. In particular, the dynamic test results of the thrust AMB are also given to confirm the validity of the design.

  15. Flexible Structural-Health-Monitoring Sheets

    NASA Technical Reports Server (NTRS)

    Qing, Xinlin; Kuo, Fuo

    2008-01-01

    A generic design for a type of flexible structural-health-monitoring sheet with multiple sensor/actuator types and a method of manufacturing such sheets has been developed. A sheet of this type contains an array of sensing and/or actuation elements, associated wires, and any other associated circuit elements incorporated into various flexible layers on a thin, flexible substrate. The sheet can be affixed to a structure so that the array of sensing and/or actuation elements can be used to analyze the structure in accordance with structural-health-monitoring techniques. Alternatively, the sheet can be designed to be incorporated into the body of the structure, especially if the structure is made of a composite material. Customarily, structural-health monitoring is accomplished by use of sensors and actuators arrayed at various locations on a structure. In contrast, a sheet of the present type can contain an entire sensor/actuator array, making it unnecessary to install each sensor and actuator individually on or in a structure. Sensors of different types such as piezoelectric and fiber-optic can be embedded in the sheet to form a hybrid sensor network. Similarly, the traces for electric communication can be deposited on one or two layers as required, and an entirely separate layer can be employed to shield the sensor elements and traces.

  16. Perforating Thin Metal Sheets

    NASA Technical Reports Server (NTRS)

    Davidson, M. E.

    1985-01-01

    Sheets only few mils thick bonded together, punched, then debonded. Three-step process yields perforated sheets of metal. (1): Individual sheets bonded together to form laminate. (2): laminate perforated in desired geometric pattern. (3): After baking, laminate separates into individual sheets. Developed for fabricating conductive layer on blankets that collect and remove ions; however, perforated foils have other applications - as conductive surfaces on insulating materials; stiffeners and conductors in plastic laminates; reflectors in antenna dishes; supports for thermal blankets; lightweight grille cover materials; and material for mockup of components.

  17. Supporting "Learning by Design" Activities Using Group Blogs

    ERIC Educational Resources Information Center

    Fessakis, Georgios; Tatsis, Konstantinos; Dimitracopoulou, Angelique

    2008-01-01

    The paper presents a case study of the educational exploitation of group blogging for the implementation of a "learning by design" activity. More specifically, a group of students used a blog as a communication and information management tool in the University course of ICT-enhanced Geometry learning activities. The analysis of the designed…

  18. PEGASUS: Designing a System for Supporting Group Activity

    ERIC Educational Resources Information Center

    Kyprianidou, Maria; Demetriadis, Stavros; Pombortsis, Andreas; Karatasios, George

    2009-01-01

    Purpose: The purpose of this paper is to present the design and first results of the integration of a web-based system person-centred group-activity support system (PEGASUS) in university instruction, as a means for advancing person-centred learning by supporting group activity. The PEGASUS is expected to help students and teachers in two distinct…

  19. Bedroom Design and Decoration: Gender Differences in Preference and Activity

    ERIC Educational Resources Information Center

    Jones, Randall M.; Taylor, Denise E.; Dick, Andrew J.; Singh, Archana; Cook, Jerry L.

    2007-01-01

    This investigation examined gender differences in niche-building preference and activity among 238 8th and 9th grade boys and girls. A questionnaire was developed to measure both the actual and preferred bedroom content, bedroom design activity, and the level of perceived influence by the immediate and extended family, friends, and social…

  20. Engineering Design Activities and Conceptual Change in Middle School Science

    ERIC Educational Resources Information Center

    Schnittka, Christine G.

    2009-01-01

    The purpose of this research was to investigate the impact of engineering design classroom activities on conceptual change in science, and on attitudes toward and knowledge about engineering. Students were given a situated learning context and a rationale for learning science in an active, inquiry-based method, and worked in small collaborative…

  1. The discourse of design-based science classroom activities

    NASA Astrophysics Data System (ADS)

    Azevedo, Flávio S.; Martalock, Peggy L.; Keser, Tugba

    2015-06-01

    This paper is an initial contribution to a general theory in which science classroom activity types and epistemological discourse practices are systematically linked. The idea is that activities and discourse are reflexively related, so that different types of science classroom activities (e.g., scientific argumentation, modeling, and design) recruit characteristically distinct forms of participants' (students and teacher) discourse. Such a general theory would eventually map out the full spectrum of discourse practices (and their patterns of manifestation) across various kinds of science classroom activities, and reveal new relationships between forms of both discourse and activities. Because this defines a complex and long-term project, here our aim is simply to delineate this larger theoretical program and to illustrate it with a detailed case study—namely, that of mapping out and characterizing the discourse practices of design- based science classroom activities. To do so, we draw on data from an activity that is prototypically design-based—i.e., one in which students iteratively design and refine an artifact (in this case, pictorial representations of moving objects)—and examine the structure and dynamics of the whole-class discourse practices that emerge around these representational forms. We then compare and contrast these discourse practices to those of an activity that is prototypical of scientific argumentation (taken from the literature)—i.e., one in which students argue between competing theories and explanations of a phenomenon—and begin to illustrate the kinds of insights our theoretical program might afford.

  2. Design and Implementation of an Object Oriented Learning Activity System

    ERIC Educational Resources Information Center

    Lin, Huan-Yu; Tseng, Shian-Shyong; Weng, Jui-Feng; Su, Jun-Ming

    2009-01-01

    With the development of e-learning technology, many specifications of instructional design have been proposed to make learning activity sharable and reusable. With the specifications and sufficient learning resources, the researches further focus on how to provide learners more appropriate learning activities to improve their learning performance.…

  3. Observed use of voluntary controls to reduce physical exposures among sheet metal workers of the mechanical trade

    PubMed Central

    Dale, Ann Marie; Miller, Kim; Gardner, Bethany T.; Hwang, Ching-Ting; Evanoff, Bradley; Welch, Laura

    2015-01-01

    Introduction Little is known about the transfer into the workplace of interventions designed to reduce the physical demands of sheet metal workers. Methods We reviewed videos from a case series of 15 sheet metal worksite assessments performed in 2007–2009 to score postures and physical loads, and to observe the use of recommended interventions to reduce physical exposures in sheet metal activities made by a NIOSH stakeholder meeting in 2002. Results Workers showed consistent use of material handling devices, but we observed few uses of recommended interventions to reduce exposures during overhead work. Workers spent large proportions of time in awkward shoulder elevation and low back rotation postures. Conclusions In addition to the development of new technologies and system designs, increased adoption of existing tools and practices could reduce time spent in awkward postures and other risks for musculoskeletal disorders in sheet metal work. PMID:26360196

  4. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction

    NASA Astrophysics Data System (ADS)

    Lei, Fengcai; Liu, Wei; Sun, Yongfu; Xu, Jiaqi; Liu, Katong; Liang, Liang; Yao, Tao; Pan, Bicai; Wei, Shiqiang; Xie, Yi

    2016-09-01

    Ultrathin metal layers can be highly active carbon dioxide electroreduction catalysts, but may also be prone to oxidation. Here we construct a model of graphene confined ultrathin layers of highly reactive metals, taking the synthetic highly reactive tin quantum sheets confined in graphene as an example. The higher electrochemical active area ensures 9 times larger carbon dioxide adsorption capacity relative to bulk tin, while the highly-conductive graphene favours rate-determining electron transfer from carbon dioxide to its radical anion. The lowered tin-tin coordination numbers, revealed by X-ray absorption fine structure spectroscopy, enable tin quantum sheets confined in graphene to efficiently stabilize the carbon dioxide radical anion, verified by 0.13 volts lowered potential of hydroxyl ion adsorption compared with bulk tin. Hence, the tin quantum sheets confined in graphene show enhanced electrocatalytic activity and stability. This work may provide a promising lead for designing efficient and robust catalysts for electrolytic fuel synthesis.

  5. Characterization of Chitosan Nanofiber Sheets for Antifungal Application

    PubMed Central

    Egusa, Mayumi; Iwamoto, Ryo; Izawa, Hironori; Morimoto, Minoru; Saimoto, Hiroyuki; Kaminaka, Hironori; Ifuku, Shinsuke

    2015-01-01

    Chitosan produced by the deacetylation of chitin is a cationic polymer with antimicrobial properties. In this study, we demonstrate the improvement of chitosan properties by nanofibrillation. Nanofiber sheets were prepared from nanofibrillated chitosan under neutral conditions. The Young’s modulus and tensile strength of the chitosan NF sheets were higher than those of the chitosan sheets prepared from dissolving chitosan in acetic acid. The chitosan NF sheets showed strong mycelial growth inhibition against dermatophytes Microsporum and Trichophyton. Moreover, the chitosan NF sheets exhibited resistance to degradation by the fungi, suggesting potentials long-lasting usage. In addition, surface-deacetylated chitin nanofiber (SDCNF) sheets were prepared. The SDCNF sheet had a high Young’s modulus and tensile strength and showed antifungal activity to dermatophytes. These data indicate that nanofibrillation improved the properties of chitosan. Thus, chitosan NF and SDCNF sheets are useful candidates for antimicrobial materials. PMID:26540046

  6. The Dawn of Development: An Early Childhood Education Curriculum. Volume III: Assessment Work and Score Sheets.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Div. for Exceptional Children.

    The document contains work sheets and score sheets for a curriculum designed for visually impaired students at the prereadiness (prekindergarten), readiness (kindergarten), and academic (primary grades) levels. Work sheets include pictures, word lists, sentence exercises, mathematics problems, and diagrams. Score sheets, which correspond to the…

  7. Sheet metal forming optimization by using surrogate modeling techniques

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Ye, Fan; Chen, Lei; Li, Enying

    2017-01-01

    Surrogate assisted optimization has been widely applied in sheet metal forming design due to its efficiency. Therefore, to improve the efficiency of design and reduce the product development cycle, it is important for scholars and engineers to have some insight into the performance of each surrogate assisted optimization method and make them more flexible practically. For this purpose, the state-of-the-art surrogate assisted optimizations are investigated. Furthermore, in view of the bottleneck and development of the surrogate assisted optimization and sheet metal forming design, some important issues on the surrogate assisted optimization in support of the sheet metal forming design are analyzed and discussed, involving the description of the sheet metal forming design, off-line and online sampling strategies, space mapping algorithm, high dimensional problems, robust design, some challenges and potential feasible methods. Generally, this paper provides insightful observations into the performance and potential development of these methods in sheet metal forming design.

  8. Microwave assisted synthesis of sheet-like Cu/BiVO{sub 4} and its activities of various photocatalytic conditions

    SciTech Connect

    Chen, Xi; Li, Li; Yi, Tingting; Zhang, WenZhi; Zhang, Xiuli; Wang, Lili

    2015-09-15

    The Cu/BiVO{sub 4} photocatalyst with visible-light responsivity was prepared by the microwave-assisted hydrothermal method. The phase structures, chemical composition and surface physicochemical properties were well-characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance absorption (UV–vis/DRS), scanning electron microscopy (SEM), and N{sub 2} adsorption–desorption tests. Results indicate that the crystal structure of synthetic composite materials is mainly monoclinic scheelite BiVO{sub 4}, which is not changed with the increasing doping amount of Cu. In addition, the presence of Cu not only enlarges the range of the composite materials under the visible-light response, but also increases the BET value significantly. Compared to pure BiVO{sub 4}, 1% Cu/BiVO{sub 4}-160 performs the highest photocatalytic activity to degrade methylene blue under the irradiation of ultraviolet, visible and simulated sunlight. In addition, the capture experiments prove that the main active species was superoxide radicals during photocatalytic reaction. Moreover, the 1% Cu/BiVO{sub 4}-160 composite shows good photocatalytic stability after three times of recycling. - Graphical abstract: A series of BiVO{sub 4} with different amounts of Cu doping were prepared by the microwave-assisted method, moreover, which performed the high photocatalytic activities to degrade methylene blue under multi-mode. - Highlights: • A series of Cu/BiVO{sub 4} with different amounts of Cu doping were prepared by microwave-assisted synthesis. • The morphologies of as-samples were different with the amount of Cu doping increased. • Compared with pure BiVO{sub 4}, as-Cu/BiVO{sub 4} showed stronger absorption in the visible light region obviously. • 1% Cu/BiVO{sub 4}-160 performed the high photocatalytic activities to degrade methylene blue under multi-mode. • OH{sup •} and h{sup +} both play important roles in the photocatalytic reaction.

  9. Human Activity Modeling: Toward A Pragmatic Integration of Activity Theory and Usage-Centered Design

    NASA Astrophysics Data System (ADS)

    Constantine, Larry L.

    Human activity modeling is a systematic approach to organizing and representing the contextual aspects of tool use that is both well-grounded in an accepted theoretical framework and embedded within a proven design method. Activity theory provides the vocabulary and conceptual framework for understanding the human use of tools and other artifacts. Usage-centered design provides the methodological scaffolding for applying activity theory in practice. In this chapter, activity theory and usage-centered design are outlined and the connections between the two are highlighted. Simple extensions to the models of usage-centered design are introduced that together succinctly model the salient and most essential features of the activities within which tool use is embedded. Although not intended as a tutorial, examples of Activity Maps, Activity Profiles, and Participation Maps are provided.

  10. Design and Implementation of a Project-Based Active/Cooperative Engineering Design Course for Freshmen

    ERIC Educational Resources Information Center

    Abdulaal, R. M.; Al-Bahi, A. M.; Soliman, A. Y.; Iskanderani, F. I.

    2011-01-01

    A project-based active/cooperative design course is planned, implemented, assessed and evaluated to achieve several desired engineering outcomes. The course allows freshman-level students to gain professional hands-on engineering design experience through an opportunity to practise teamwork, quality principles, communication skills, life-long…

  11. Aerodynamic Design Study of an Advanced Active Twist Rotor

    NASA Technical Reports Server (NTRS)

    Sekula, Martin K.; Wilbur, Matthew L.; Yeager, William T., Jr.

    2003-01-01

    An Advanced Active Twist Rotor (AATR) is currently being developed by the U.S. Army Vehicle Technology Directorate at NASA Langley Research Center. As a part of this effort, an analytical study was conducted to determine the impact of blade geometry on active-twist performance and, based on those findings, propose a candidate aerodynamic design for the AATR. The process began by creating a baseline design which combined the dynamic design of the original Active Twist Rotor and the aerodynamic design of a high lift rotor concept. The baseline model was used to conduct a series of parametric studies to examine the effect of linear blade twist and blade tip sweep, droop, and taper on active-twist performance. Rotor power requirements and hub vibration were also examined at flight conditions ranging from hover to advance ratio = 0.40. A total of 108 candidate designs were analyzed using the second-generation version of the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II) code. The study concluded that the vibration reduction capabilities of a rotor utilizing controlled, strain-induced twisting are enhanced through the incorporation of blade tip sweep, droop, and taper into the blade design, while they are degraded by increasing the nose-down linear blade twist. Based on the analysis of rotor power, hub vibration, and active-twist response, a candidate aerodynamic design for the AATR consisting of a blade with approximately 10 degrees of linear blade twist and a blade tip design with 30 degree sweep, 10 degree droop, and 2.5:1 taper ratio over the outer five percent of the blade is proposed.

  12. "The Very First Family": A Musical Play by Philip Hall, Based on Stories by Rudyard Kipling. Cue Sheet for Teachers.

    ERIC Educational Resources Information Center

    Flynn, Rosalind

    Designed to be used before and after attending a performance of the musical play "The Very First Family" (in which a Stone Age family and their neighbors bring three of Rudyard Kipling's stories to life), this cue sheet for teachers presents information about the performance and suggests classroom activities. The activities in the cue…

  13. Highly efficient heterojunction photocatalyst based on nanoporous g-C3N4 sheets modified by Ag3PO4 nanoparticles: synthesis and enhanced photocatalytic activity.

    PubMed

    Jiang, Deli; Zhu, Jianjun; Chen, Min; Xie, Jimin

    2014-03-01

    Novel visible-light-driven heterojunction photocatalyst composed by Ag3PO4 nanoparticles and nanoporous graphitic carbon nitride sheets (Ag3PO4/p-g-C3N4) was synthesized by a facile and green method. The results showed that photocatalytic activity of Ag3PO4/p-g-C3N4 was much higher than that of pure p-g-C3N4 in the photodegradation of Rhodamine B under visible light irradiation. The kinetic constant of Rhodamine B degradation over Ag3PO4 (33.3 mol%)/p-g-C3N4 was about 5 and 2 times higher than that over pure p-g-C3N4 and Ag3PO4, respectively. The enhanced photocatalytic performance is attributed to the stronger visible light absorption and the heterojunction between Ag3PO4 nanoparticles and p-g-C3N4, which could induce the low recombination rate of photoinduced electron-hole pairs.

  14. Photocatalytic decomposition of selected estrogens and their estrogenic activity by UV-LED irradiated TiO2 immobilized on porous titanium sheets via thermal-chemical oxidation.

    PubMed

    Arlos, Maricor J; Liang, Robert; Hatat-Fraile, Melisa M; Bragg, Leslie M; Zhou, Norman Y; Servos, Mark R; Andrews, Susan A

    2016-11-15

    The removal of endocrine disrupting compounds (EDCs) remains a big challenge in water treatment. Risks associated with these compounds are not clearly defined and it is important that the water industry has additional options to increase the resiliency of water treatment systems. Titanium dioxide (TiO2) has potential applications for the removal of EDCs from water. TiO2 has been immobilized on supports using a variety of synthesis methods to increase its feasibility for water treatment. In this study, we immobilized TiO2 through the thermal-chemical oxidation of porous titania sheets. The efficiency of the material to degrade target EDCs under UV-LED irradiation was examined under a wide range of pH conditions. A yeast-estrogen screen assay was used to complement chemical analysis in assessing removal efficiency. All compounds but 17β-estradiol were degraded and followed a pseudo first-order kinetics at all pH conditions tested, with pH 4 and pH 11 showing the most and the least efficient treatments respectively. In addition, the total estrogenic activity was substantially reduced even with the inefficient degradation of 17β-estradiol. Additional studies will be required to optimize different treatment conditions, UV-LED configurations, and membrane fouling mitigation measures to make this technology a more viable option for water treatment.

  15. On the thermodynamics of the plasma sheet

    NASA Technical Reports Server (NTRS)

    Baumjohann, W.; Goertz, C. K.

    1991-01-01

    The present study reinvestigates the evidence for nonadiabatic transport in the quiet central plasma sheet, using AMPTE IRM data from the plasma sheet boundary layer and active times selected on the basis of large AE values. It is found that as the plasma is transported from the plasma sheet boundary layer into the central plasma sheet, both its temperature and its density (n) increase. The plasma obeys the relation p varies as n exp 4/3 for quiet times (AE is less than 100 nT) and p varies as n exp 5/3 for AE greater than 300 nT. The temperature in the quiet plasma sheet is usually less than 6 keV, and high-temperature values are more likely to be observed in what is defined as the active plasma sheet. It is suggested that the plasma sheet contains a mixture of high-entropy 'bubbles' and low-entropy 'blobs.' It is argued that these either merge or are lost from the tail before they are convected into the near-earth tail.

  16. Experimental and DFT studies of gold nanoparticles supported on MgO(111) nano-sheets and their catalytic activity.

    PubMed

    Li, Zhi; Ciobanu, Cristian V; Hu, Juncheng; Palomares-Báez, Juan-Pedro; Rodríguez-López, José-Luis; Richards, Ryan

    2011-02-21

    A wet chemical preparation of MgO with the (111) facet as the primary surface has recently been reported and with alternating layers of oxygen anions and magnesium cations, this material shows unique chemical and physical properties. The potential to utilize the MgO(111) surface for the immobilization of metal particles is intriguing because the surface itself offers a very different environment for the metal particle with an all oxygen interface, as opposed to the typical (100) facet that possesses alternating oxygen anion and magnesium cation sites on the surface. Gold nanoparticles have demonstrated a broad range of interesting catalytic properties, but are often susceptible to aggregation at high temperatures and are very sensitive to substrate effects. Here, we investigate gold-supported on MgO(111) nanosheets as a catalyst system for the aerobic oxidation of benzyl alcohol. Gold nanoparticles deposited on MgO(111) show an increased level of activity in the solvent-free benzyl alcohol aerobic oxidation as compared to gold nanoparticles deposited on a typical MgO aerogel. TEM studies reveal that the gold nanoparticles have a hemispherical shape while sitting on the main surface of MgO(111) nanosheets, with a large Au-MgO interface. Given that the gold nanoparticles deposited on the two types of MgO have similar size, and that the two types of unmodified MgO show almost the same activities in the blank reaction, we infer that the high activity of Au/MgO(111) is due to the properties of the (111) support and/or those of the gold-support interface. To understand the binding of Au on low-index MgO surfaces and the charge distribution at the surface of the support, we have performed density functional theory (DFT) calculations on all low-index MgO substrates (with and without gold), using a model Au(10) cluster. Due to similar lattice constants of Au(111) and MgO(111) planes, the Au cluster retains its structural integrity and binds strongly on MgO(111) with either

  17. Mechanics of Sheeting Joints

    NASA Astrophysics Data System (ADS)

    Martel, S. J.

    2015-12-01

    Physical breakdown of rock across a broad scale spectrum involves fracturing. In many areas large fractures develop near the topographic surface, with sheeting joints being among the most impressive. Sheeting joints share many geometric, textural, and kinematic features with other joints (opening-mode fractures) but differ in that they are (a) discernibly curved, (b) open near the topographic surface, and (c) form subparallel to the topographic surface. Where sheeting joints are geologically young, the surface-parallel compressive stresses are typically several MPa or greater. Sheeting joints are best developed beneath domes, ridges, and saddles; they also are reported, albeit rarely, beneath valleys or bowls. A mechanism that accounts for all these associations has been sought for more than a century: neither erosion of overburden nor high lateral compressive stresses alone suffices. Sheeting joints are not accounted for by Mohr-Coulomb shear failure criteria. Principles of linear elastic fracture mechanics, together with the mechanical effect of a curved topographic surface, do provide a basis for understanding sheeting joint growth and the pattern sheeting joints form. Compressive stresses parallel to a singly or doubly convex topographic surface induce a tensile stress perpendicular to the surface at shallow depths; in some cases this alone could overcome the weight of overburden to open sheeting joints. If regional horizontal compressive stresses, augmented by thermal stresses, are an order of magnitude or so greater than a characteristic vertical stress that scales with topographic amplitude, then topographic stress perturbations can cause sheeting joints to open near the top of a ridge. This topographic effect can be augmented by pressure within sheeting joints arising from water, ice, or salt. Water pressure could be particularly important in helping drive sheeting joints downslope beneath valleys. Once sheeting joints have formed, the rock sheets between

  18. Multidisciplinary design optimization of mechatronic vehicles with active suspensions

    NASA Astrophysics Data System (ADS)

    He, Yuping; McPhee, John

    2005-05-01

    A multidisciplinary optimization method is applied to the design of mechatronic vehicles with active suspensions. The method is implemented in a GA-A'GEM-MATLAB simulation environment in such a way that the linear mechanical vehicle model is designed in a multibody dynamics software package, i.e. A'GEM, the controllers and estimators are constructed using linear quadratic Gaussian (LQG) method, and Kalman filter algorithm in Matlab, then the combined mechanical and control model is optimized simultaneously using a genetic algorithm (GA). The design variables include passive parameters and control parameters. In the numerical optimizations, both random and deterministic road inputs and both perfect measurement of full state variables and estimated limited state variables are considered. Optimization results show that the active suspension systems based on the multidisciplinary optimization method have better overall performance than those derived using conventional design methods with the LQG algorithm.

  19. Layered shielding design for an active neutron interrogation system

    NASA Astrophysics Data System (ADS)

    Whetstone, Zachary D.; Kearfott, Kimberlee J.

    2016-08-01

    The use of source and detector shields in active neutron interrogation can improve detector signal. In simulations, a shielded detector with a source rotated π/3 rad relative to the opening decreased neutron flux roughly three orders of magnitude. Several realistic source and detector shield configurations were simulated. A layered design reduced neutron and secondary photon flux in the detector by approximately one order of magnitude for a deuterium-tritium source. The shield arrangement can be adapted for a portable, modular design.

  20. Active cooling for downhole instrumentation: design criteria and conceptual design summary

    SciTech Connect

    Bennett, G.A.

    1986-05-01

    This report summarizes the results of a literature survey that describes successful tests of geophysical instruments and their thermal protection systems. The conditions to which an instrument is subjected are formulated into relevant thermal and mechanical design criteria that have proved useful for improving passive thermal protection systems and selecting the preliminary feasibility of active refrigeration systems. A brief summary of the results of a series of conceptual designs on seven different active refrigeration systems is given. The systems are ranked according to feasibility for use in downhole active cooling applications.

  1. Gearbox design for uncertain load requirements using active robust optimization

    NASA Astrophysics Data System (ADS)

    Salomon, Shaul; Avigad, Gideon; Purshouse, Robin C.; Fleming, Peter J.

    2016-04-01

    Design and optimization of gear transmissions have been intensively studied, but surprisingly the robustness of the resulting optimal design to uncertain loads has never been considered. Active Robust (AR) optimization is a methodology to design products that attain robustness to uncertain or changing environmental conditions through adaptation. In this study the AR methodology is utilized to optimize the number of transmissions, as well as their gearing ratios, for an uncertain load demand. The problem is formulated as a bi-objective optimization problem where the objectives are to satisfy the load demand in the most energy efficient manner and to minimize production cost. The results show that this approach can find a set of robust designs, revealing a trade-off between energy efficiency and production cost. This can serve as a useful decision-making tool for the gearbox design process, as well as for other applications.

  2. Coseismic Faulting and Folding in an Active Thrust Sheet over Multiple Rupture Cycles Resolved by Integrating Surface and Subsurface Records of Earthquake Deformation

    NASA Astrophysics Data System (ADS)

    Stockmeyer, J. M.; Shaw, J. H.; Brown, N.; Rhodes, E. J.; Wang, M.; Lavin, L. C.; Guan, S.

    2015-12-01

    Many recent thrust fault earthquakes have involved coseismic surface faulting and folding, revealing the complex nature of surface deformation in active thrust sheets. In this study, we characterize deformation along the active Southern Junggar Thrust (SJT) in the Junggar basin, NW China - which sourced the 1906 M8 Manas earthquake - to gain insight into how fault slip at depth is partitioned between faulting and folding strains at Earth's surface by integrating deformed terrace records, subsurface geophysical data, and luminescence geochronology. Using a 1-m digital elevation model and field surveys, we have mapped the precise geometries of fluvial terraces across the entire Tugulu anticline, which lies in the hanging wall of the SJT. These profiles reveal progressive uplift of several terraces along prominent fault scarps where the SJT is surface-emergent. Similarly aged terraces are folded in the backlimb of the Tugulu fold, providing a sequential record of surface folding. These folded terraces are progressively rotated such that the oldest terraces are dipping much steeper than younger terraces within the same fold limb. Using 2- and 3-D seismic reflection data, we integrate subsurface deformation constraints with records of surface strain. Structural interpretations of these seismic data define the geometry of the SJT and reveal that folding is localized across synclinal bends along the SJT. We evaluate a range of distinct fault-related fold models (e.g. fault-bend folding, shear fault-bend folding) to assess which structural style best describes the geometries of the subsurface and surface fold patterns. By doing so, we have the opportunity to directly relate surface fault slip measures from terrace folding and uplift to total fault slip at depth. This integration of surface and subsurface deformation - combined with constraints on terrace ages from post-IR IRSL geochronology - allows us to characterize how fault slip and seismic moment are partitioned

  3. Neighborhood Design, Physical Activity, and Wellbeing: Applying the Walkability Model.

    PubMed

    Zuniga-Teran, Adriana A; Orr, Barron J; Gimblett, Randy H; Chalfoun, Nader V; Guertin, David P; Marsh, Stuart E

    2017-01-13

    Neighborhood design affects lifestyle physical activity, and ultimately human wellbeing. There are, however, a limited number of studies that examine neighborhood design types. In this research, we examine four types of neighborhood designs: traditional development, suburban development, enclosed community, and cluster housing development, and assess their level of walkability and their effects on physical activity and wellbeing. We examine significant associations through a questionnaire (n = 486) distributed in Tucson, Arizona using the Walkability Model. Among the tested neighborhood design types, traditional development showed significant associations and the highest value for walkability, as well as for each of the two types of walking (recreation and transportation) representing physical activity. Suburban development showed significant associations and the highest mean values for mental health and wellbeing. Cluster housing showed significant associations and the highest mean value for social interactions with neighbors and for perceived safety from crime. Enclosed community did not obtain the highest means for any wellbeing benefit. The Walkability Model proved useful in identifying the walkability categories associated with physical activity and perceived crime. For example, the experience category was strongly and inversely associated with perceived crime. This study provides empirical evidence of the importance of including vegetation, particularly trees, throughout neighborhoods in order to increase physical activity and wellbeing. Likewise, the results suggest that regular maintenance is an important strategy to improve mental health and overall wellbeing in cities.

  4. Neighborhood Design, Physical Activity, and Wellbeing: Applying the Walkability Model

    PubMed Central

    Zuniga-Teran, Adriana A.; Orr, Barron J.; Gimblett, Randy H.; Chalfoun, Nader V.; Guertin, David P.; Marsh, Stuart E.

    2017-01-01

    Neighborhood design affects lifestyle physical activity, and ultimately human wellbeing. There are, however, a limited number of studies that examine neighborhood design types. In this research, we examine four types of neighborhood designs: traditional development, suburban development, enclosed community, and cluster housing development, and assess their level of walkability and their effects on physical activity and wellbeing. We examine significant associations through a questionnaire (n = 486) distributed in Tucson, Arizona using the Walkability Model. Among the tested neighborhood design types, traditional development showed significant associations and the highest value for walkability, as well as for each of the two types of walking (recreation and transportation) representing physical activity. Suburban development showed significant associations and the highest mean values for mental health and wellbeing. Cluster housing showed significant associations and the highest mean value for social interactions with neighbors and for perceived safety from crime. Enclosed community did not obtain the highest means for any wellbeing benefit. The Walkability Model proved useful in identifying the walkability categories associated with physical activity and perceived crime. For example, the experience category was strongly and inversely associated with perceived crime. This study provides empirical evidence of the importance of including vegetation, particularly trees, throughout neighborhoods in order to increase physical activity and wellbeing. Likewise, the results suggest that regular maintenance is an important strategy to improve mental health and overall wellbeing in cities. PMID:28098785

  5. Design, Synthesis, and Antibacterial Activities of Novel Heterocyclic Arylsulphonamide Derivatives.

    PubMed

    Singh, Anuradha; Srivastava, Ritika; Singh, Ramendra K

    2017-02-13

    Design, synthesis, and antibacterial activities of a series of arylsulphonamide derivatives as probable peptide deformylase (PDF) inhibitors have been discussed. Compounds have been designed following Lipinski's rule and after docking into the active site of PDF protein (PDB code: 1G2A) synthesized later on. Furthermore, to assess their antibacterial activity, screening of the compound was done in vitro conditions against Gram-positive and Gram-negative bacterial strains. In silico, studies revealed these compounds as potential antibacterial agents and this fact was also supported by their prominent scoring functions. Antibacterial results indicated that these molecules possessed a significant activity against Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, and Escherichia coli with MIC values ranging from 0.06 to 0.29 μM. TOPKAT results showed that high LD50 values and the compounds were assumed non-carcinogenic when various animal models were studied computationally.

  6. Designing the Color of Hot-Dip Galvanized Steel Sheet Through Destructive Light Interference Using a Zn-Ti Liquid Metallic Bath

    NASA Astrophysics Data System (ADS)

    Levai, Gabor; Godzsák, Melinda; Török, Tamas I.; Hakl, Jozsef; Takáts, Viktor; Csik, Attila; Vad, Kalman; Kaptay, George

    2016-07-01

    The color of hot-dip galvanized steel sheet was adjusted in a reproducible way using a liquid Zn-Ti metallic bath, air atmosphere, and controlling the bath temperature as the only experimental parameter. Coloring was found only for samples cooled in air and dipped into Ti-containing liquid Zn. For samples dipped into a 0.15 wt pct Ti-containing Zn bath, the color remained metallic (gray) below a 792 K (519 °C) bath temperature; it was yellow at 814 K ± 22 K (541 °C ± 22 °C), violet at 847 K ± 10 K (574 °C ± 10 °C), and blue at 873 K ± 15 K (600 °C ± 15 °C). With the increasing bath temperature, the thickness of the adhered Zn-Ti layer gradually decreased from 52 to 32 micrometers, while the thickness of the outer TiO2 layer gradually increased from 24 to 69 nm. Due to small Al contamination of the Zn bath, a thin (around 2 nm) alumina-rich layer is found between the outer TiO2 layer and the inner macroscopic Zn layer. It is proven that the color change was governed by the formation of thin outer TiO2 layer; different colors appear depending on the thickness of this layer, mostly due to the destructive interference of visible light on this transparent nano-layer. A complex model was built to explain the results using known relationships of chemical thermodynamics, adhesion, heat flow, kinetics of chemical reactions, diffusion, and optics. The complex model was able to reproduce the observations and allowed making predictions on the color of the hot-dip galvanized steel sample, as a function of the following experimental parameters: temperature and Ti content of the Zn bath, oxygen content, pressure, temperature and flow rate of the cooling gas, dimensions of the steel sheet, velocity of dipping the steel sheet into the Zn-Ti bath, residence time of the steel sheet within the bath, and the velocity of its removal from the bath. These relationships will be valuable for planning further experiments and technologies on color hot-dip galvanization of steel

  7. Chitosan/polyurethane blended fiber sheets containing silver sulfadiazine for use as an antimicrobial wound dressing.

    PubMed

    Lee, Sang Jin; Heo, Dong Nyoung; Moon, Ji-Hoi; Park, Ha Na; Ko, Wan-Kyu; Bae, Min Soo; Lee, Jung Bok; Park, Se Woong; Kim, Eun-Cheol; Lee, Chang Hoon; Jung, Bock-Young; Kwon, Il Keun

    2014-10-01

    Electrospun chitosan (CTS) nanofibers have been well known for use as a wound dressing in the biomedical field. Nevertheless, fatal bacterial infections are still a serious problem when CTS nanofibers are used for wound treatment. In this study, we designed a novel wound dressing based on blending the chitosan with polyurethane (CTS/PU) containing silver sulfadiazine (AgSD) in order to enhance both antibacterial activity and mechanical strength. This fiber sheet was produced using the electrospinning (ELSP) technique. The CTS/PU containing AgSD fiber sheet was characterized by energy-dispersive X-ray spectroscopy (EDX). The physicochemical properties of the CTS/PU/AgSD fiber sheets were also characterized by thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR). The electrospun fibers were morphologically characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). For an in vitro evaluation, the CTS/PU/AgSD fiber sheets were tested for their antibacterial activity against gram-negative Pseudomonas aeruginosa (P. aeruginosa), gram-positive Staphylococcus aureus (S. aureus) and Methicillin-resistant Staphylococcus aureus (MRSA). The results indicate that CTS/PU/AgSD fiber sheets have strong antimicrobial activity as displayed by inhibition of bacterial growth and prevention of infection during the healing process. These results indicate that this material would be good for use as a wound dressing material.

  8. Liquid sheet radiator

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; White, K. Alan, III

    1987-01-01

    A new external flow radiator concept, the liquid sheet radiator (LSR), is introduced. The LSR sheet flow is described and an expression for the length/width (l/w), ratio is presented. A linear dependence of l/w on velocity is predicted that agrees with experimental results. Specific power for the LSR is calculated and is found to be nearly the same as the specific power of a liquid droplet radiator, (LDR). Several sheet thicknesses and widths were experimentally investigated. In no case was the flow found to be unstable.

  9. Microcomponent sheet architecture

    DOEpatents

    Wegeng, Robert S.; Drost, M. Kevin; McDonald, Carolyn E.

    1997-01-01

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.

  10. Microcomponent sheet architecture

    DOEpatents

    Wegeng, R.S.; Drost, M.K..; McDonald, C.E.

    1997-03-18

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 14 figs.

  11. Silicon sheet technologies

    SciTech Connect

    Ciszek, T.F.

    1982-09-01

    A classification of silicon sheet growth methods by meniscus geometry permits them to be discussed in three groups: short meniscus techniques, high meniscus techniques, and extended meniscus or large solid/liquid interface area techniques. A second parameter, meniscus shaper interaction with the liquid silicon, is also instrumental in determining the characteristics of the various sheet processes. The current status of each process is discussed in the context of meniscus geometry and shaper/melt interaction. One aspect of sheet growth, surface area generation rate, is quantitatively compared with combined ingot growth and wafering surface area generation rates.

  12. Circuit Design: An Inquiry Lab Activity at Maui Community College

    NASA Astrophysics Data System (ADS)

    Morzinski, K.; Azucena, O.; Downs, C.; Favaloro, T.; Park, J.; U, Vivian

    2010-12-01

    We present an inquiry lab activity on Circuit Design that was conducted in Fall 2009 with first-year community college students majoring in Electrical Engineering Technology. This inquiry emphasized the use of engineering process skills, including circuit assembly and problem solving, while learning technical content. Content goals of the inquiry emphasized understanding voltage dividers (Kirchoff's voltage law) and analysis and optimization of resistive networks (Thévenin equivalence). We assumed prior exposure to series and parallel circuits and Ohm's law (the relationship between voltage, current, and resistance) and designed the inquiry to develop these skills. The inquiry utilized selection of engineering challenges on a specific circuit (the Wheatstone Bridge) to realize these learning goals. Students generated questions and observations during the starters, which were categorized into four engineering challenges or design goals. The students formed teams and chose one challenge to focus on during the inquiry. We created a rubric for summative assessment which helped to clarify and solidify project goals while designing the inquiry and aided in formative assessment during the activity. After describing implementation, we compare and contrast engineering-oriented inquiry design as opposed to activities geared toward science learning.

  13. Comparison of manufacturing of lightweight corrugated sheet sandwiches by hydroforming and incremental sheet forming

    NASA Astrophysics Data System (ADS)

    Maqbool, Fawad; Elze, Lars; Seidlitz, Holger; Bambach, Markus

    2016-10-01

    Sandwich materials made from corrugated sheet metal provide excellent mechanical properties for lightweight design without using filler material. The increased mechanical properties of these sandwich materials are achieved by the 3-D geometry of the corrugated sheet and the hardening due to pre-forming. In the present study, manufacturing of corrugated sheet metal consisting of hexagonal bulge patterns through hydroforming and incremental forming is analyzed. Double layered corrugated sheet metal sandwiches with hexagonal patterns of free-form bulge geometries are investigated through finite element analysis for the maximum increase in stiffness over the normal flat sheets. The analysis shows that a bending stiffness increase of up to 13 times over flat sheet of the same mass is attainable by corrugated sandwiches. Further, it is proved for these types of corrugation sandwiches that stiffness increases by increasing the height of the corrugation bulge but that hydroforming poses restrictions with respect to bulge height, since it is limited by forming force and formability of the material. Incremental sheet metal forming can be used to produce sheets with a hexagonal bulge pattern with increased height. Hence, a higher increase in stiffness as compared to hydroforming is possible but at the expense of process speed.

  14. Adult Learning Principles in Designing Learning Activities for Teacher Development

    ERIC Educational Resources Information Center

    Gravani, Maria N.

    2012-01-01

    The research reported in this paper is an investigation of the application of adult learning principles in designing learning activities for teachers' life-long development. The exploration is illustrated by qualitative data from a case study of adult educators' and adult learners' insights and experiences of a teacher development course organised…

  15. Programming biological operating systems: genome design, assembly and activation.

    PubMed

    Gibson, Daniel G

    2014-05-01

    The DNA technologies developed over the past 20 years for reading and writing the genetic code converged when the first synthetic cell was created 4 years ago. An outcome of this work has been an extraordinary set of tools for synthesizing, assembling, engineering and transplanting whole bacterial genomes. Technical progress, options and applications for bacterial genome design, assembly and activation are discussed.

  16. Designing the Perfect Plant: Activities to Investigate Plant Ecology

    ERIC Educational Resources Information Center

    Lehnhoff, Erik; Woolbaugh, Walt; Rew, Lisa

    2008-01-01

    Plant ecology is an important subject that often receives little attention in middle school, as more time during science classes is devoted to plant biology. Therefore, the authors have developed a series of activities, including a card game--Designing the Perfect Plant--to introduce student's to plant ecology and the ecological trade offs…

  17. Using Fall to Design Activities: In the Classroom.

    ERIC Educational Resources Information Center

    Grambo, Gregory

    1994-01-01

    Examples of fall activities to bring the natural world into the classroom are offered including conducting a simple chromatography experiment on leaves, correlating number of seeds with the lines on pumpkins, planting colored corn kernels, and designing and making scarecrows. (DB)

  18. Active flutter suppression - Control system design and experimental validation

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Srinathkumar, S.

    1991-01-01

    The synthesis and experimental validation of an active flutter suppression controller for the Active Flexible Wing wind-tunnel model is presented. The design is accomplished with traditional root locus and Nyquist methods using interactive computer graphics tools and with extensive use of simulation-based analysis. The design approach uses a fundamental understanding of the flutter mechanism to formulate a simple controller structure to meet stringent design specifications. Experimentally, the flutter suppression controller succeeded in simultaneous suppression of two flutter modes, significantly increasing the flutter dynamic pressure despite errors in flutter dynamic pressure and flutter frequency in the mathematical model. The flutter suppression controller was also successfully operated in combination with a roll maneuver controller to perform flutter suppression during rapid rolling maneuvers.

  19. Optical design and active optics methods in astronomy

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gerard R.

    2013-03-01

    Optical designs for astronomy involve implementation of active optics and adaptive optics from X-ray to the infrared. Developments and results of active optics methods for telescopes, spectrographs and coronagraph planet finders are presented. The high accuracy and remarkable smoothness of surfaces generated by active optics methods also allow elaborating new optical design types with high aspheric and/or non-axisymmetric surfaces. Depending on the goal and performance requested for a deformable optical surface analytical investigations are carried out with one of the various facets of elasticity theory: small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, weakly conical shell theory. The resulting thickness distribution and associated bending force boundaries can be refined further with finite element analysis.

  20. Statistics of Plasma Properties in Different Magnetotail Plasma Sheet Regions and their Dependence on Magnetic Activity and Solar Wind Driving Conditions, using the ECLAT Dataset

    NASA Astrophysics Data System (ADS)

    Boakes, P. D.; Nakamura, R.; Volwerk, M.; Milan, S. E.

    2013-12-01

    As part of the European Seventh Framework Programme project 'European Cluster Assimilation Technology (ECLAT)', we have developed a comprehensive list of plasma region encountered in the Earth's magnetotail (X<-8 RE, │Y│<15 RE) by each of the four ESA Cluster spacecraft. The regions identified are the inner plasma sheet, outer plasma sheet, boundary layer, magnetospheric lobes, as well as crossings of the neutral sheet. Each plasma region encountered is recorded with an entry and exit time and averaged parameters, such as magnetic field, plasma, and velocity, describing each region. In this presentation, we statistically investigate the spatial characteristics of the magnetotail region parameters and their dependence on the magnetic/solar wind conditions, for each type of plasma region identified in the ECLAT database.

  1. Sepsis Fact Sheet

    MedlinePlus

    ... Remains Mysterious Life After Traumatic Injury: How the Body Responds Other NIGMS Fact Sheets Related Links Up to top This page last reviewed on February 01, 2017 Social Media Links Bookmark & Share Free Subscriptions Twitter Facebook YouTube ...

  2. Chlamydia - CDC Fact Sheet

    MedlinePlus

    Chlamydia – CDC Fact Sheet Chlamydia is a common sexually transmitted disease (STD) that can be easily cured. If left ... DSTDP) Centers for Disease Control and Prevention www. cdc. gov/ std CDC-INFO Contact Center 1-800- ...

  3. CMAQ Fact Sheet

    EPA Pesticide Factsheets

    For more than a decade, EPA and states have used EPA’s Community Multiscale Air Quality (CMAQ) Modeling System, a powerful computational tool for air quality management. Learn more about CMAQv5.2 by browsing our fact sheet.

  4. Avian Fact Sheet

    SciTech Connect

    NWCC Wildlife Work Group

    2004-12-01

    OAK-B135 After conducting four national research meetings, producing a document guiding research: Metrics and Methods for Determining or Monitoring Potential Impacts on Birds at Existing and Proposed Wind Energy Sites, 1999, and another paper, Avian Collisions with Wind Turbines: A Summary of Existing Studies and Comparisons to Other Sources of Avian Collision Mortality in the United States, 2001, the subcommittee recognized a need to summarize in a short fact sheet what is known about avian-wind interaction and what questions remain. This fact sheet attempts to summarize in lay terms the result of extensive discussion about avian-wind interaction on land. This fact sheet does not address research conducted on offshore development. This fact sheet is not intended as a conclusion on the subject; rather, it is a summary as of Fall/Winter 2002.

  5. Global ice sheet modeling

    SciTech Connect

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed.

  6. Design, synthesis and insecticidal activity of novel phenylurea derivatives.

    PubMed

    Sun, Jialong; Zhou, Yuanming

    2015-03-19

    A series of novel phenylurea derivatives were designed and synthesized according to the method of active groups linkage and the principle of aromatic groups bioisosterism in this study. The structures of the novel phenylurea derivatives were confirmed based on ESI-MS, IR and 1H-NMR spectral data. All of the compounds were evaluated for the insecticidal activity against the third instars larvae of Spodoptera exigua Hiibner, Plutella xyllostella Linnaeus, Helicoverpa armigera Hubner and Pieris rapae Linne respectively, at the concentration of 10 mg/L. The results showed that all of the derivatives displayed strong insecticidal activity. Most of the compounds presented higher insecticidal activity against S. exigua than the reference compounds tebufenozide, chlorbenzuron and metaflumizone. Among the synthesized compounds, 3b, 3d, 3f, 4b and 4g displayed broad spectrum insecticidal activity.

  7. Development of an improved active gas target design for ANASEN

    NASA Astrophysics Data System (ADS)

    Schill, Sabina; Blackmon, J. C.; Deibel, C. M.; Macon, K. T.; Rasco, B. C.; Wiedenhoever, I.

    2014-09-01

    The Array for Nuclear Astrophysics and Structure with Exotic Nuclei (ANASEN) is a charged particle detector array with an active gas target-detector capability for sensitive measurements using radioactive ion beams. One of the main goals is to improve our understanding of nuclear reactions important in stellar explosions. Following initial experimental campaigns with ANASEN, we have been developing an improved active gas target design for ANASEN that incorporates an innovative cylindrical gas ionization detector for heavy ions surrounding the beam axis inside of the other ANASEN charged particle detectors. The detection of heavy ions in coincidence with lighter ions in a redesigned proportional counter will provide greater discriminating power. The new active gas target design will be presented, and its simulated performance will be compared with test data. The Array for Nuclear Astrophysics and Structure with Exotic Nuclei (ANASEN) is a charged particle detector array with an active gas target-detector capability for sensitive measurements using radioactive ion beams. One of the main goals is to improve our understanding of nuclear reactions important in stellar explosions. Following initial experimental campaigns with ANASEN, we have been developing an improved active gas target design for ANASEN that incorporates an innovative cylindrical gas ionization detector for heavy ions surrounding the beam axis inside of the other ANASEN charged particle detectors. The detection of heavy ions in coincidence with lighter ions in a redesigned proportional counter will provide greater discriminating power. The new active gas target design will be presented, and its simulated performance will be compared with test data. This work was supported by the U.S. National Science Foundation and the Dept of Energy's Office of Science.

  8. Biodiesel Basics (Fact Sheet)

    SciTech Connect

    Not Available

    2014-06-01

    This fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  9. Energy information sheets

    SciTech Connect

    1995-07-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  10. Singular points of protein beta-sheets.

    PubMed Central

    Liu, W. M.; Chou, K. C.

    1998-01-01

    Protein beta-sheets can be regarded as surfaces. Two surfaces can be connected along a common edge to form a larger surface, or two edges of a surface can coalesce to form a closed sheet such as a beta-barrel. Singular points are locations where these connections are not perfect. In protein beta-sheets, a singular point is characterized by a residue separating two beta-ladders. In this paper, we study the singular points of protein beta-sheets from the surface topologic viewpoint, summarize our search results from the protein structural data in the Protein Data Bank, and present examples where singular points are near the active sites and may contribute to forming the proper relative positions of catalytic residues. PMID:9827998

  11. Design, Synthesis, and Monitoring of Light-Activated Motorized Nanomachines

    NASA Astrophysics Data System (ADS)

    Chiang, Pinn-Tsong

    Our group has developed a family of single molecules termed nanocars, which are aimed at performing controllable motion on surfaces. In this work, a series of light-activated motorized nanomachines incorporated with a MHz frequency light-activated unidirectional rotary motor were designed and synthesized. We hope the light-activated motor can serve as the powering unit for the nanomachines, and perform controllable translational motion on surfaces or in solution. A series of motorized nanovehicles intended for scanning tunneling microscopy (STM) imaging were designed and synthesized. A p-carborane-wheeled motorized nanocar was synthesized and monitored by STM. Single-molecule imaging was accomplished on a Cu(111) surface. However, further manipulations did lead to motor induced lateral motion. We attributed this result to the strong molecule-surface interactions between the p-carborane-wheeled nanocar and the Cu(111) surface and possible energy transfer between the rotary motor and the Cu(111) surface. To fine-tune the molecule-surface interactions, an adamantane-wheeled motorized nanocar and a three-wheel nanoroadster were designed and synthesized. In addition, the STM substrates will be varied and different combinations of molecule-surface interactions will be studied. As a complimentary imaging method to STM, single-molecule fluorescence microscopy (SMFM) also provides single-molecule level resolution. Unlike STM experiment requires ultra-high vacuum and conductive substrate, SMFM experiment is conducted at ambient conditions and uses non-conductive substrate. This imaging method allows us to study another category of molecule-surface interactions. We plan to design a fluorescent motorized nanocar that is suitable for SMFM studies. However, both the motor and fluorophore are photochemically active molecules. In proximity, some undesired energy transfer or interference could occur. A cyanine 5- (cy5-) tagged motorized nanocar incorporated with the MHz motor was

  12. Fashion Design: Designing a Learner-Active, Multi-Level High School Course

    ERIC Educational Resources Information Center

    Nelson, Diane

    2009-01-01

    A high school fashion design teacher has much in common with the ringmaster of a three-ring circus. The challenges of teaching a hands-on course are to facilitate the entire class and to meet the needs of individual students. When teaching family and consumer sciences, the goal is to have a learner-active classroom. Revamping the high school's…

  13. Designing an Energy Drink: High School Students Learn Design and Marketing Skills in This Activity

    ERIC Educational Resources Information Center

    Martin, Doug

    2008-01-01

    A decade ago, energy drinks were almost nonexistent in the United States, but in the past five years they've become wildly popular. In fact, the $3.4 billion energy-drink market is expected to double this year alone, and the younger generation is the market targeted by manufacturers. This article presents an energy-drink designing activity. This…

  14. Design Activity in the Software Cost Reduction Project.

    DTIC Science & Technology

    1986-08-18

    PM Physical Model S G System Generation SS Shared Services SU System Utilities . NOV M N 1600SEP A 0 JUL TOTAL 14000 MAAR cc 100 FEB :IESGN 0o 10000...iy---- .... ;’ TESTING Jan 78 Jan 79 Jan 80 Jan 81 Jan 82 Jan 83 Jan 84 Jan 85 M3ITH Fig. 7 - Shared services activities A F 0 U E C 1600 G B T...DISCUSSING 200M Jan 78 Jan 79 Jan 80 Jan 81 Jan 82 Jan 83 Jan 84 Jan 85 Fig 13 - Shared services design activities 5.~ S% 12 ......,ooU7 . . NRL REPORT 8974 A

  15. UML activity diagram swimlanes in logic controller design

    NASA Astrophysics Data System (ADS)

    Grobelny, Michał; Grobelna, Iwona

    2015-12-01

    Logic controller behavior can be specified using various techniques, including UML activity diagrams and control Petri nets. Each technique has its advantages and disadvantages. Application of both specification types in one project allows to take benefits from both of them. Additional elements of UML models make it possible to divide a specification into some parts, considered from other point of view (logic controller, user or system). The paper introduces an idea to use UML activity diagrams with swimlanes to increase the understandability of design models.

  16. A designed supramolecular protein assembly with in vivo enzymatic activity.

    PubMed

    Song, Woon Ju; Tezcan, F Akif

    2014-12-19

    The generation of new enzymatic activities has mainly relied on repurposing the interiors of preexisting protein folds because of the challenge in designing functional, three-dimensional protein structures from first principles. Here we report an artificial metallo-β-lactamase, constructed via the self-assembly of a structurally and functionally unrelated, monomeric redox protein into a tetrameric assembly that possesses catalytic zinc sites in its interfaces. The designed metallo-β-lactamase is functional in the Escherichia coli periplasm and enables the bacteria to survive treatment with ampicillin. In vivo screening of libraries has yielded a variant that displays a catalytic proficiency [(k(cat)/K(m))/k(uncat)] for ampicillin hydrolysis of 2.3 × 10(6) and features the emergence of a highly mobile loop near the active site, a key component of natural β-lactamases to enable substrate interactions.

  17. Numerical Tool Path Optimization for Conventional Sheet Metal Spinning Processes

    NASA Astrophysics Data System (ADS)

    Rentsch, Benedikt; Manopulo, Niko; Hora, Pavel

    2016-08-01

    To this day, conventional sheet metal spinning processes are designed with a very low degree of automation. They are usually executed by experienced personnel, who actively adjust the tool paths during production. The practically unlimited freedom in designing the tool paths enables the efficient manufacturing of complex geometries on one hand, but is challenging to translate into a standardized procedure on the other. The present study aims to propose a systematic methodology, based on a 3D FEM model combined with a numerical optimization strategy, in order to design tool paths. The accurate numerical modelling of the spinning process is firstly discussed, followed by an analysis of appropriate objective functions and constraints required to obtain a failure free tool path design.

  18. "Ramona Quimby": Adapted by Len Jenkin from the Ramona Books by Beverly Cleary. Cue Sheet for Students.

    ERIC Educational Resources Information Center

    Aguirre-Sacasa, Roberto

    This performance guide is designed for teachers to use with students before and after a performance of "Ramona Quimby," adapted by Len Jenkin from the Ramona books by Beverly Cleary. The guide, called a "Cuesheet," contains seven activity sheets for use in class, addressing: (1) The Characters (introducing the characters in the…

  19. "Caddie Woodlawn": Adapted by Greg Gunning from the Novel by Carol Ryrie Brink. Cue Sheet for Students.

    ERIC Educational Resources Information Center

    Aguirre-Sacasa, Roberto

    This performance guide is designed for teachers to use with students before and after a performance of "Caddie Woodlawn," adapted by Greg Gunning from the novel by Carol Ryrie Brink. The guide, called a "Cuesheet," contains seven activity sheets for use in class, addressing: (1) The Characters (introducing the characters in the…

  20. "Lyle, Lyle, Crocodile": A New Musical Based on the Books by Bernard Waber. Cue Sheet for Teachers.

    ERIC Educational Resources Information Center

    Selwyn, Karen P.

    This performance guide is designed for teachers to use with students before and after a performance of "Lyle, Lyle, Crocodile," a musical based on the books by Bernard Waber, with book by Michael Slade, music by David Evans, and lyrics by Mindi Dickstein. The guide, called a "Cuesheet," contains four activity sheets for use in…

  1. Materials design data for reduced activation martensitic steel type EUROFER

    NASA Astrophysics Data System (ADS)

    Tavassoli, A.-A. F.; Alamo, A.; Bedel, L.; Forest, L.; Gentzbittel, J.-M.; Rensman, J.-W.; Diegele, E.; Lindau, R.; Schirra, M.; Schmitt, R.; Schneider, H. C.; Petersen, C.; Lancha, A.-M.; Fernandez, P.; Filacchioni, G.; Maday, M. F.; Mergia, K.; Boukos, N.; Baluc; Spätig, P.; Alves, E.; Lucon, E.

    2004-08-01

    Materials design limits derived so far from the data generated in Europe for the reduced activation ferritic/martensitic (RAFM) steel type Eurofer are presented. These data address the short-term needs of the ITER Test Blanket Modules and a DEMOnstration fusion reactor. Products tested include plates, bars, tubes, TIG and EB welds, as well as powder consolidated blocks and solid-solid HIP joints. Effects of thermal ageing and low dose neutron irradiation are also included. Results are sorted and screened according to design code requirements before being introduced in reference databases. From the physical properties databases, variations of magnetic properties, modulus of elasticity, density, thermal conductivity, thermal diffusivity, specific heat, mean and instantaneous linear coefficients of thermal expansion versus temperature are derived. From the tensile and creep properties databases design allowable stresses are derived. From the instrumented Charpy impact and fracture toughness databases, ductile to brittle transition temperature, toughness and behavior of materials in different fracture modes are evaluated. From the fatigue database, total strain range versus number of cycles to failure curves are plotted and used to derive fatigue design curves. Cyclic curves are also derived and compared with monotonic hardening curves. Finally, irradiated and aged materials data are compared to ensure that the safety margins incorporated in unirradiated design limits are not exceeded.

  2. Design, synthesis and antiviral activity of novel quinazolinones.

    PubMed

    Wang, Ziwen; Wang, Mingxiao; Yao, Xue; Li, Yue; Tan, Juan; Wang, Lizhong; Qiao, Wentao; Geng, Yunqi; Liu, Yuxiu; Wang, Qingmin

    2012-07-01

    HIV-1 integrase (IN) is a validated therapeutic target for antiviral drug design. However, the emergence of viral strains resistant to clinically studied IN inhibitors demands the discovery of novel inhibitors that are structurally as well as mechanistically different. Herein, a series of quinazolinones were designed and synthesized as novel HIV-1 inhibitors. The new synthetic route provides a practical method for the preparation of 5-hydroxy quinazolinones. Primary bioassay results indicated that most of the quinazolinones possess anti-HIV activity, especially for compound 11b with 77.5% inhibition rate at 10 μM emerged as a new active lead. Most of the synthesized compounds were also found to exhibit good anti-TMV activity, of which compo und 9a showed similar in vivo anti-TMV activity to commercial plant virucide Ribavirin. This work provides a new and efficient approach to evolve novel multi-functional antiviral agents by rational integration and optimization of previously reported antiviral agents.

  3. Active learning by design: an undergraduate introductory public health course.

    PubMed

    Yeatts, Karin B

    2014-01-01

    Principles of active learning were used to design and implement an introductory public health course. Students were introduced to the breadth and practice of public health through team and individual-based activities. Team assignments covered topics in epidemiology, biostatistics, health behavior, nutrition, maternal and child health, environment, and health policy. Students developed an appreciation of the population perspective through an "experience" trip and related intervention project in a public health area of their choice. Students experienced several key critical component elements of a public health undergraduate major; they explored key public health domains, experience public health practice, and integrated concepts with their assignments. In this paper, course assignments, lessons learned, and student successes are described. Given the increased growth in the undergraduate public health major, these active learning assignments may be of interest to undergraduate public health programs at both liberal arts colleges and research universities.

  4. Active Learning by Design: An Undergraduate Introductory Public Health Course

    PubMed Central

    Yeatts, Karin B.

    2014-01-01

    Principles of active learning were used to design and implement an introductory public health course. Students were introduced to the breadth and practice of public health through team and individual-based activities. Team assignments covered topics in epidemiology, biostatistics, health behavior, nutrition, maternal and child health, environment, and health policy. Students developed an appreciation of the population perspective through an “experience” trip and related intervention project in a public health area of their choice. Students experienced several key critical component elements of a public health undergraduate major; they explored key public health domains, experience public health practice, and integrated concepts with their assignments. In this paper, course assignments, lessons learned, and student successes are described. Given the increased growth in the undergraduate public health major, these active learning assignments may be of interest to undergraduate public health programs at both liberal arts colleges and research universities. PMID:25566526

  5. Activation product safety in the ARIES-I reactor design

    SciTech Connect

    Herring, J.S. ); Sze, D.K. ); Wong, C.; Cheng, E.T. ); Grotz, S.P. )

    1990-01-01

    The ARIES design effort has sought to maximize the environmental and safety advantages of fusion through careful selection of materials and careful design. Three goals are that the reactor achieve inherent or passive safety, that no public evacuation plan be necessary and that the waste be disposable as 10CFR61 Class C waste. The ARIES-I reactor consists of a SiC composite structure for the first wall and blanket, cooled by 10 MPa He. The breeder is Li{sub 2}ZrO{sub 3}, although Li{sub 2}O and Li{sub 4}SiO{sub 4} were also considered. The divertor consists of SiC composite tubes coated with 2 mm of tungsten. Due to the minimal afterheat of this blanket design, LOCA calculations indicate maximum temperatures will not cause damage if the plasma is promptly extinguished. Two primary safety issues are the zirconium in the breeder and tungsten on the divertor. Li{sub 2}ZrO{sub 3} was chosen because of its demonstrated high-temperature stability. The other breeders have lower afterheat and activation. Use of zirconium in the breeder will necessitate isotopic tailoring to remove {sup 90}Zr and {sup 94}Zr. The 5.8 tonnes of W on the divertor would also have to be tailored to remove {sup 186}W and/or to concentrate {sup 183}W. Thus the ARIES-I design achieves the passive safety and low-level waste disposal criteria with respect to activation products. Development of low activation materials to replace zirconium and tungsten is needed to avoid requiring an evacuation plan.

  6. Design considerations in an active medical product safety monitoring system.

    PubMed

    Gagne, Joshua J; Fireman, Bruce; Ryan, Patrick B; Maclure, Malcolm; Gerhard, Tobias; Toh, Sengwee; Rassen, Jeremy A; Nelson, Jennifer C; Schneeweiss, Sebastian

    2012-01-01

    Active medical product monitoring systems, such as the Sentinel System, will utilize electronic healthcare data captured during routine health care. Safety signals that arise from these data may be spurious because of chance or bias, particularly confounding bias, given the observational nature of the data. Applying appropriate monitoring designs can filter out many false-positive and false-negative associations from the outset. Designs can be classified by whether they produce estimates based on between-person or within-person comparisons. In deciding which approach is more suitable for a given monitoring scenario, stakeholders must consider the characteristics of the monitored product, characteristics of the health outcome of interest (HOI), and characteristics of the potential link between these. Specifically, three factors drive design decisions: (i) strength of within-person and between-person confounding; (ii) whether circumstances exist that may predispose to misclassification of exposure or misclassification of the timing of the HOI; and (iii) whether the exposure of interest is predominantly transient or sustained. Additional design considerations include whether to focus on new users, the availability of appropriate active comparators, the presence of an exposure time trend, and the measure of association of interest. When the key assumptions of self-controlled designs are fulfilled (i.e., lack of within-person, time-varying confounding; abrupt HOI onset; and transient exposure), within-person comparisons are preferred because they inherently avoid confounding by fixed factors. The cohort approach generally is preferred in other situations and particularly when timing of exposure or outcome is uncertain because cohort approaches are less vulnerable to biases resulting from misclassification.

  7. Who Is Billy Still? Cue Sheet for Students.

    ERIC Educational Resources Information Center

    John F. Kennedy Center for the Performing Arts, Washington, DC.

    Designed to be used before and after attending a centennial performance of the music of African American composer William Grant Still, this cue sheet presents information about the performance. The cue sheet presents biographical information about Still and background information on the Lincoln Theatre in Washington, D.C., which had been closed…

  8. Precision Sheet Metal. Progress Record and Theory Outline.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    This combination progress record and course outline is designed for use by individuals teaching a course in precision sheet metal. Included among the topics addressed in the course are the following: employment opportunities in metalworking, measurement and layout, orthographic projection, precision sheet metal drafting, simple layout, hand tools,…

  9. Red facts: Ethylene. Fact sheet

    SciTech Connect

    Not Available

    1992-09-01

    EPA is directed by the Federal Insecticide, Fungicide, and Rodenticide Act as amended in 1988 (FIFRA '88) to review all pesticide products containing active ingredients initially registered before November 1, 1984, and to reregister those products that have a substantially complete data base and do not pose unreasonable adverse effects to people or the environment. The pesticide reregistration program is to be completed by the late 1990's. The RED FACTS fact sheet summarizes EPA's conclusion, as set forth in the Reregistration Eligibility Document (or RED), that products containing a pesticide do not pose unreasonable risks when used as directed by Agency-approved labeling, and are eligible for reregistration.

  10. Energy information sheets

    SciTech Connect

    Not Available

    1993-12-02

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the general public. Written for the general public, the EIA publication Energy Information Sheets was developed to provide information on various aspects of fuel production, prices, consumption and capability. The information contained herein pertains to energy data as of December 1991. Additional information on related subject matter can be found in other EIA publications as referenced at the end of each sheet.

  11. Curved cap corrugated sheet

    NASA Technical Reports Server (NTRS)

    Davis, R. C.; Bales, T. T.; Royster, D. M.; Jackson, L. R. (Inventor)

    1984-01-01

    The report describes a structure for a strong, lightweight corrugated sheet. The sheet is planar or curved and includes a plurality of corrugation segments, each segment being comprised of a generally U-shaped corrugation with a part-cylindrical crown and cap strip, and straight side walls and with secondary corrugations oriented at right angles to said side walls. The cap strip is bonded to the crown and the longitudinal edge of said cap strip extends beyond edge at the intersection between said crown and said side walls. The high strength relative to weight of the structure makes it desirable for use in aircraft or spacecraft.

  12. THE LANGUAGE LABORATORY--WORK SHEET.

    ERIC Educational Resources Information Center

    CROSBIE, KEITH

    DESIGNED FOR TEACHERS AND ADMINISTRATORS, THIS WORK SHEET PROVIDES GENERAL AND SPECIFIC INFORMATION ABOUT THE PHILOSOPHY, TYPES, AND USES OF LANGUAGE LABORATORIES IN SECONDARY SCHOOL LANGUAGE PROGRAMS. THE FIRST SECTION DISCUSSES THE ADVANTAGES OF USING THE LABORATORY EFFECTIVELY TO REINFORCE AND CONSOLIDATE CLASSROOM LEARNING, AND MENTIONS SOME…

  13. Laboratory Powder Metallurgy Makes Tough Aluminum Sheet

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Thomas, J. R.; Singleton, O. R.

    1993-01-01

    Aluminum alloy sheet exhibits high tensile and Kahn tear strengths. Rapid solidification of aluminum alloys in powder form and subsequent consolidation and fabrication processes used to tailor parts made of these alloys to satisfy such specific aerospace design requirements as high strength and toughness.

  14. Design, test, and evaluation of three active flutter suppression controllers

    NASA Technical Reports Server (NTRS)

    Adams, William M., Jr.; Christhilf, David M.; Waszak, Martin R.; Mukhopadhyay, Vivek; Srinathkumar, S.

    1992-01-01

    Three control law design techniques for flutter suppression are presented. Each technique uses multiple control surfaces and/or sensors. The first method uses traditional tools (such as pole/zero loci and Nyquist diagrams) for producing a controller that has minimal complexity and which is sufficiently robust to handle plant uncertainty. The second procedure uses linear combinations of several accelerometer signals and dynamic compensation to synthesize the model rate of the critical mode for feedback to the distributed control surfaces. The third technique starts with a minimum-energy linear quadratic Gaussian controller, iteratively modifies intensity matrices corresponding to input and output noise, and applies controller order reduction to achieve a low-order, robust controller. The resulting designs were implemented digitally and tested subsonically on the active flexible wing wind-tunnel model in the Langley Transonic Dynamics Tunnel. Only the traditional pole/zero loci design was sufficiently robust to errors in the nominal plant to successfully suppress flutter during the test. The traditional pole/zero loci design provided simultaneous suppression of symmetric and antisymmetric flutter with a 24-percent increase in attainable dynamic pressure. Posttest analyses are shown which illustrate the problems encountered with the other laws.

  15. When Inert Becomes Active: A Fascinating Route for Catalyst Design.

    PubMed

    Lyalin, Andrey; Gao, Min; Taketsugu, Tetsuya

    2016-10-01

    In this Personal Account, we review the work of our group in the area of environmental and energy-related nanocatalysis over the past seven years. We focus on understanding the fundamental mechanisms that control the properties of atomic clusters and nanoparticles - a form of matter that is intermediate between atoms and their bulk counterpart. The emphasis is on the theoretical design of effective catalysts based on cheap and abundant elements. The main idea that stands behind our work is that even catalytically inactive or completely inert materials can be functionalized at the nanoscale via the size, structure, morphology, and support effects. Such an approach opens up new ways to design catalytically active systems based on materials never before considered as catalysts. In particular, we demonstrate that hexagonal boron nitride (h-BN), which has been traditionally considered an inert material, can be functionalized and become active for a number of catalytic reactions involving oxygen activation, oxidation by molecular oxygen, and the oxygen reduction reaction.

  16. 46. HANDRAILING, DETAILS TYPE 'B' (Sheet 12 of 14 sheets), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. HANDRAILING, DETAILS TYPE 'B' (Sheet 12 of 14 sheets), April 5, 1932 - West End-North Side Bridge, Spanning Ohio River, approximately 1 mile downstream from confluence of Monongahela & Allegheny rivers, Pittsburgh, Allegheny County, PA

  17. 5. Historic American Buildings Survey Taken from drawing sheet, SHEET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey Taken from drawing sheet, SHEET #21, Showing the house as restored since Survey. (Dormer windows omitted as not authentic) - Samuel des Marest House, River Road, New Milford, Bergen County, NJ

  18. 71. PALMDALE WATER COMPANY, EASTWOOD MULTIPLEARCHED DAM: STRESS SHEET, SHEET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. PALMDALE WATER COMPANY, EASTWOOD MULTIPLE-ARCHED DAM: STRESS SHEET, SHEET 3; DECEMBER 20, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  19. Nicotinamide phosphoribosyltransferase inhibitors, design, preparation, and structure-activity relationship.

    PubMed

    Christensen, Mette K; Erichsen, Kamille D; Olesen, Uffe H; Tjørnelund, Jette; Fristrup, Peter; Thougaard, Annemette; Nielsen, Søren Jensby; Sehested, Maxwell; Jensen, Peter B; Loza, Einars; Kalvinsh, Ivars; Garten, Antje; Kiess, Wieland; Björkling, Fredrik

    2013-11-27

    Existing pharmacological inhibitors for nicotinamide phosphoribosyltransferase (NAMPT) are promising therapeutics for treating cancer. By using medicinal and computational chemistry methods, the structure-activity relationship for novel classes of NAMPT inhibitors is described, and the compounds are optimized. Compounds are designed inspired by the NAMPT inhibitor APO866 and cyanoguanidine inhibitor scaffolds. In comparison with recently published derivatives, the new analogues exhibit an equally potent antiproliferative activity in vitro and comparable activity in vivo. The best performing compounds from these series showed subnanomolar antiproliferative activity toward a series of cancer cell lines (compound 15: IC50 0.025 and 0.33 nM, in A2780 (ovarian carcinoma) and MCF-7 (breast), respectively) and potent antitumor in vivo activity in well-tolerated doses in a xenograft model. In an A2780 xenograft mouse model with large tumors (500 mm(3)), compound 15 reduced the tumor volume to one-fifth of the starting volume at a dose of 3 mg/kg administered ip, bid, days 1-9. Thus, compounds found in this study compared favorably with compounds already in the clinic and warrant further investigation as promising lead molecules for the inhibition of NAMPT.

  20. Design of phosphorylated dendritic architectures to promote human monocyte activation.

    PubMed

    Poupot, Mary; Griffe, Laurent; Marchand, Patrice; Maraval, Alexandrine; Rolland, Olivier; Martinet, Ludovic; L'Faqihi-Olive, Fatima-Ezzahra; Turrin, Cédric-Olivier; Caminade, Anne-Marie; Fournié, Jean-Jacques; Majoral, Jean-Pierre; Poupot, Rémy

    2006-11-01

    As first defensive line, monocytes are a pivotal cell population of innate immunity. Monocyte activation can be relevant to a range of immune conditions and responses. Here we present new insights into the activation of monocytes by a series of phosphonic acid-terminated, phosphorus-containing dendrimers. Various dendritic or subdendritic structures were synthesized and tested, revealing the basic structural requirements for monocyte activation. We showed that multivalent character and phosphonic acid capping of dendrimers are crucial for monocyte targeting and activation. Confocal videomicroscopy showed that a fluorescein-tagged dendrimer binds to isolated monocytes and gets internalized within a few seconds. We also found that dendrimers follow the phagolysosomial route during internalization by monocytes. Finally, we performed fluorescence resonance energy transfer (FRET) experiments between a specifically designed fluorescent dendrimer and phycoerythrin-coupled antibodies. We showed that the typical innate Toll-like receptor (TLR)-2 is clearly involved, but not alone, in the sensing of dendrimers by monocytes. In conclusion, phosphorus-containing dendrimers appear as precisely tunable nanobiotools able to target and activate human innate immunity and thus prove to be good candidates to develop new drugs for immunotherapies.

  1. Design of active orthoses for a robotic gait rehabilitation system

    NASA Astrophysics Data System (ADS)

    Villa-Parra, A. C.; Broche, L.; Delisle-Rodríguez, D.; Sagaró, R.; Bastos, T.; Frizera-Neto, A.

    2015-09-01

    An active orthosis (AO) is a robotic device that assists both human gait and rehabilitation therapy. This work proposes portable AOs, one for the knee joint and another for the ankle joint. Both AOs will be used to complete a robotic system that improves gait rehabilitation. The requirements for actuator selection, the biomechanical considerations during the AO design, the finite element method, and a control approach based on electroencephalographic and surface electromyographic signals are reviewed. This work contributes to the design of AOs for users with foot drop and knee flexion impairment. However, the potential of the proposed AOs to be part of a robotic gait rehabilitation system that improves the quality of life of stroke survivors requires further investigation.

  2. On the modified active region design of interband cascade lasers

    SciTech Connect

    Motyka, M.; Ryczko, K.; Dyksik, M.; Sęk, G.; Misiewicz, J.; Weih, R.; Dallner, M.; Kamp, M.; Höfling, S.

    2015-02-28

    Type II InAs/GaInSb quantum wells (QWs) grown on GaSb or InAs substrates and designed to be integrated in the active region of interband cascade lasers (ICLs) emitting in the mid infrared have been investigated. Optical spectroscopy, combined with band structure calculations, has been used to probe their electronic properties. A design with multiple InAs QWs has been compared with the more common double W-shaped QW and it has been demonstrated that it allows red shifting the emission wavelength and enhancing the transition oscillator strength. This can be beneficial for the improvements of the ICLs performances, especially when considering their long-wavelength operation.

  3. Shuttle Orbiter Active Thermal Control Subsystem design and flight experience

    NASA Technical Reports Server (NTRS)

    Bond, Timothy A.; Metcalf, Jordan L.; Asuncion, Carmelo

    1991-01-01

    The paper examines the design of the Space Shuttle Orbiter Active Thermal Control Subsystem (ATCS) constructed for providing the vehicle and payload cooling during all phases of a mission and during ground turnaround operations. The operation of the Shuttle ATCS and some of the problems encountered during the first 39 flights of the Shuttle program are described, with special attention given to the major problems encountered with the degradation of the Freon flow rate on the Orbiter Columbia, the Flash Evaporator Subsystem mission anomalies which occurred on STS-26 and STS-34, and problems encountered with the Ammonia Boiler Subsystem. The causes and the resolutions of these problems are discussed.

  4. First enzymatically activated Taxotere prodrugs designed for ADEPT and PMT.

    PubMed

    Bouvier, Emmanuel; Thirot, Sylvie; Schmidt, Frédéric; Monneret, Claude

    2004-03-01

    Described here are the syntheses and preliminary biological evaluations of the first two enzymatically activated prodrugs of docetaxel (Taxotere) reported to date. These prodrugs were designed as potential candidates for selective chemotherapy in ADEPT or PMT. They are constituted of a glucuronic acid moiety, a double spacer and the cytotoxic drug, differing only by the spacer substitution. The prodrugs were stable in a buffer, and the in vitro studies showed good detoxification and hydrolysis kinetics. As docetaxel was efficiently released in both cases, these compounds are very valuable candidates for further biological evaluations.

  5. Design and implementation of a project-based active/cooperative engineering design course for freshmen

    NASA Astrophysics Data System (ADS)

    Abdulaal, R. M.; Al-Bahi, A. M.; Soliman, A. Y.; Iskanderani, F. I.

    2011-08-01

    A project-based active/cooperative design course is planned, implemented, assessed and evaluated to achieve several desired engineering outcomes. The course allows freshman-level students to gain professional hands-on engineering design experience through an opportunity to practise teamwork, quality principles, communication skills, life-long learning, realistic constraints and awareness of current domestic and global challenges. Throughout successive design reports and in-class assignments, the students are required by the end of the semester to communicate, clearly and concisely, the details of their design both orally and in writing through a functional artefact/prototype, a design notebook, an A0 project poster and a final oral presentation. In addition to these direct assessment tools, several indirect measures are used to ensure triangulation. Assignments are based on customer expectations using a detailed checklist. This paper shows the direct and indirect assessment tools that indicated a high level of achievement of course learning outcomes and a high level of student satisfaction.

  6. Designing MgFe2O4 decorated on green mediated reduced graphene oxide sheets showing photocatalytic performance and luminescence property

    NASA Astrophysics Data System (ADS)

    Shetty, Krushitha; Lokesh, S. V.; Rangappa, Dinesh; Nagaswarupa, H. P.; Nagabhushana, H.; Anantharaju, K. S.; Prashantha, S. C.; Vidya, Y. S.; Sharma, S. C.

    2017-02-01

    Here, a green route has been reported to convert Graphene Oxide (GO) to reduced graphene oxide (RGO) using clove extract. A modest and eco-accommodating sol-gel strategy has been employed to prepare MgFe2O4 nanoparticles, MgFe2O4-RGO nanocomposite samples. The samples were analyzed by Powder X-ray diffraction (PXRD), Fourier Transform Infrared Spectroscopy (FTIR), UV-Visible Spectroscopy, Scanning Electron Microcopy (SEM), Transmission Electron Microscopy (TEM), Photoluminescence (PL) and Electrochemical Impedance Spectroscopy (EIS). PXRD result revealed that the prepared samples were cubic spinel in nature. SEM results uncovered flake like surface morphology of the prepared nanomaterial. Better PL emission signature was observed when excited at 329 nm. PL studies demonstrated that the present samples were potential for the fabrication of white component of white light emitting diodes (WLEDs). Further, MgFe2O4-RGO nanocomposite showed enhanced photocatalytic movement (PCM) and photostability under Sunlight in the decomposition of Malachite Green (MG) compared to MgFe2O4. This can be attributed to the interaction of MgFe2O4 surface with RGO sheets which results in PL quenching, demonstrates that the recombination of photo-induced electrons and holes in MgFe2O4-RGO nanocomposite is more effectively inhibited. A possible mechanism for the enhanced properties of MgFe2O4-RGO nanocomposite was discussed. Moreover, MgFe2O4-RGO photocatalyst also showed easy magnetic separation with high reusability. These results unveil that the synthesized sample can be used in display applications and also as a potential photocatalyst.

  7. Algal Biofuels Fact Sheet

    SciTech Connect

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  8. Ethanol Myths Fact Sheet

    SciTech Connect

    2009-10-27

    Ethanol is a clean, renewable fuel that is helping to reduce our nation’s dependence on oil and can offer additional economic and environmental benefits in the future. This fact sheet is intended to address some common misconceptions about this important alternative fuel.

  9. Quick Information Sheets. 1988.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. Trace Center.

    The Trace Center gathers and organizes information on communication, control, and computer access for handicapped individuals. The information is disseminated in the form of brief sheets describing print, nonprint, and organizational resources and listing addresses and telephone numbers for ordering or for additional information. This compilation…

  10. Quick Information Sheets.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. Trace Center.

    This compilation of "Trace Quick Sheets" provides descriptions, prices, and ordering information for products and services that assist with communication, control, and computer access for disabled individuals. Product descriptions or product sources are included for: adaptive toys and toy modifications; head pointers, light pointers, and…

  11. SILICON CARBIDE DATA SHEETS

    DTIC Science & Technology

    These data sheets present a compilation of a wide range of electrical, optical and energy values for alpha and beta- silicon carbide in bulk and film...spectrum. Energy data include energy bands, energy gap and energy levels for variously-doped silicon carbide , as well as effective mass tables, work

  12. Insulation Fact Sheet.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    Heating and cooling account for 50-70% of the energy consumed in the average American home. Heating water accounts for another 20%. A poorly insulated home loses much of this energy, causing drafty rooms and high energy bills. This fact sheet discusses how to determine if your home needs more insulation, the additional thermal resistance (called…

  13. GED Testing Fact Sheet

    ERIC Educational Resources Information Center

    GED Testing Service, 2009

    2009-01-01

    This GED Testing fact sheet provides information on: (1) GED[R] Tests; (2) Versions and Editions of the GED Tests; (3) Earning a Credential; (4) GED Testing Service[R]; (5) History of the GED Tests; (6) Who Accepts the GED Credential; (7) Public/Private Partnership of GEDTS; (8) Renowned GED Credential Recipients; (9) GED Testing Numbers for 2008;…

  14. Youth Demographics. Fact Sheet

    ERIC Educational Resources Information Center

    Lopez, Mark Hugo; Marcelo, Karlo Barrios

    2006-01-01

    This fact sheet compares the numbers of 18-25 year-old residents and citizens by gender, race, ethnicity, geographic distribution, marital status, military status, unemployment, educational attainment, and assesses population trends from 1968-2006. It explores such demographic characteristics of young people using data from the March Annual…

  15. Ethanol Basics (Fact Sheet)

    SciTech Connect

    Not Available

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  16. A pincer-shaped plasma sheet at Uranus

    SciTech Connect

    Hammond, C.M.; Walker, R.J.; Kivelson, M.G. )

    1990-09-01

    A model from Voigt et al. (1987) and an MHD simulation from Walker et al. (1989) both show that the curvature of the plasma sheet at Uranus changes as the dipole tilt varies between 38{degree} and 22{degree}. The models suggest that one of the two partial traversals of the uranian plasma sheet made during the outbound trajectory of Voyager 2 can be explained as an entry into the highly curved plasma sheet that develops when Uranus is near the maximum dipole tilt value of 38{degree}; previously both partial traversals have been explained as anomalous. The spacecraft would have reversed its motion relative to the plasma sheet as the continued rotation diminished the dipole tilt and the retreating plasma sheet uncurled. As the dipole tilt approached its minimum value, spacecraft motion towards the neutral sheet resumed and the traversal of the plasma sheet was completed. Evidence from the PWS plasma wave detector suggests that the spacecraft trajectory skimmed the plasma sheet boundary layer for several hours prior to the partial immersion. The plasma sheet of the Voigt et al. model was not located near the spacecraft during this time interval. On the other hand, the MHD simulation reveals a plasma sheet that is more curved than in the Boigt et al. model; near maximum dipole tilt, the plasma sheet is pincer-shaped. The unusual geometry implies that Voyager 2 remained near the plasma sheet boundary layer during the period suggested by the PWS data. Thus the simulation accounts easily for the first of the plasma sheet encounters previously called anomalous. The second partial immersion remains anomalous, having previously been related to substorm activity, and thus is not discussed here. The stagnation distances of the earth and Uranus at the nose of the magnetopause were used to scale the Walker et al. (1989) simulation of the terrestrial magnetosphere to represent the uranian magnetosphere.

  17. Criminal investigations and the Superfund program. Fact sheet (Final)

    SciTech Connect

    Not Available

    1990-09-01

    The fact sheet, directed toward any one who witnesses fraudulent activity in EPA programs, discusses areas in which fraud and abuse can occur and provides an understanding of the criminal investigation process that results from reports of suspicious activity.

  18. Design of the Active Elevon Rotor for Low Vibration

    NASA Technical Reports Server (NTRS)

    Fulton, Mark V.; Rutkowski, Michael (Technical Monitor)

    2000-01-01

    Helicopter fuselages vibrate more than desired, and traditional solutions have limited effectiveness and can impose an appreciable weight penalty. Alternative methods of combating high vibration, including Higher Harmonic Control (HHC) via harmonic swashplate motion and Individual Blade Control (IBC) via active pitch links, have been studied for several decades. HHC via an on-blade control surface was tested in 1977 on a full scale rotor using a secondary active swashplate and a mechanical control system. Recent smart material advances have prompted new research into the use of on-blade control concepts. Recent analytical studies have indicated that the use of on-blade control surfaces produces vibration reduction comparable to swashplate-based HHC but for less power. Furthermore, smart materials (such as piezoceramics) have been shown to provide sufficient control authority for preliminary rotor experiments. These experiments were initially performed at small scale for reduced tip speeds. More recent experiments have been conducted at or near full tip speeds, and a full-scale active rotor is under development by Boeing with Eurocopter et al. pursuing a similarly advanced full-scale implementation. The US Army Aeroflightdynamics Directorate has undertaken a new research program called the Active Elevon Rotor (AER) Focus Demo. This program includes the design, fabrication, and wind. tunnel testing of a four-bladed, 12.96 ft diameter rotor with one or two on-blade elevons per blade. The rotor, which will be Mach scaled, will use 2-5/rev elevon motion for closed-loop control and :will be tested in late 2001. The primary goal of the AER Focus Demo is the reduction of vibratory hub loads by 80% and the reduction of vibratory blade structural loads. A secondary goal is the reduction of rotor power. The third priority is the measurement and possible reduction of Blade Vortex Interaction (BVI) noise. The present study is focused on elevon effectiveness, that is, the elevon

  19. Rubella - Fact Sheet for Parents

    MedlinePlus

    ... this page: About CDC.gov . Redirect for the Rubella fact sheet page. The current fact sheet can ... http://www.cdc.gov/vaccines/parents/diseases/child/rubella.html Print page Share Compartir File Formats Help: ...

  20. Enhancement of polarization properties of reflective composite sheet

    NASA Astrophysics Data System (ADS)

    Kim, Taehyung; Park, Sang Seok; Kim, Kibeom; Im, Jung Nam; Lee, Moo Sung; Lim, Dae Young; Choi, Suk-Won

    2015-07-01

    We propose a substantially improved reflective composite sheet design, in which the fibers in the layers are shifted periodically with respect to those in the underlying layer to eliminate even the slightest light leakage. Furthermore, to broaden the bandwidth, the fibers between the upper and lower layers are intentionally overlapped. Commercial software was used to investigate the optical properties of the sheets, and cast-film extrusion was used to manufacture the modified reflective composite sheet. We observed that the proposed reflective composite sheet, with overlaps of more than 1 μm in size, had distinct polarization and reflectance characteristics and, thus, confirmed the feasibility of the design for the production of actual reflective polarizers. In fact, 10-layer composite sheet configurations exhibited a high polarization efficiency of more than 90% in the entire visible range.

  1. ISMIP6: Ice Sheet Model Intercomparison Project for CMIP6

    NASA Technical Reports Server (NTRS)

    Nowicki, S.

    2015-01-01

    ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6) targets the Cryosphere in a Changing Climate and the Future Sea Level Grand Challenges of the WCRP (World Climate Research Program). Primary goal is to provide future sea level contribution from the Greenland and Antarctic ice sheets, along with associated uncertainty. Secondary goal is to investigate feedback due to dynamic ice sheet models. Experiment design uses and augment the existing CMIP6 (Coupled Model Intercomparison Project Phase 6) DECK (Diagnosis, Evaluation, and Characterization of Klima) experiments. Additonal MIP (Model Intercomparison Project)- specific experiments will be designed for ISM (Ice Sheet Model). Effort builds on the Ice2sea, SeaRISE (Sea-level Response to Ice Sheet Evolution) and COMBINE (Comprehensive Modelling of the Earth System for Better Climate Prediction and Projection) efforts.

  2. [Design, synthesis and activities of novel benzothiazole derivatives containing arylpiperazine].

    PubMed

    Liu, Wen-Hu; Chang, Jin-Xia; Liu, Yi; Luo, Jie-Wei; Zhang, Jian-Wu

    2013-08-01

    Twenty-four novel benzothiazole derivatives containing arylpiperazine were designed and synthesized by bioisosterism principle. Anti-proliferative effect of these synthesized compounds against four cancer cell and two normal cell lines were evaluated in vitro by the standard MTT assay. Pharmacological test showed that most of the compounds exhibited potent antitumor activity. Some of the compounds (II2, II3, II6, II7) showed strong anti-proliferation activities against HepG2 and HeLa229 cell lines with the IC 50 values of 1.6-4.5 micromol x L(-1) and 2.5-5.3 micromol x L(-1), respectively, and compounds having cyan in p-substituted benzene ring (I4, I8, I12, II4, II8 and II12) were found to have better antitumor activities against AsPC-1 cell lines with the IC50 values of 5.2-11.3 micromol x L(-1). The structure-activity relationship of benzothiazole derivatives containing arylpiperazine was also discussed preliminarily.

  3. Sequential self-folding of polymer sheets

    PubMed Central

    Liu, Ying; Shaw, Brandi; Dickey, Michael D.; Genzer, Jan

    2017-01-01

    Shape plays an important role in defining the function of materials, particularly those found in nature. Several strategies exist to program materials to change from one shape to another; however, few can temporally and spatially control the shape. Programming the sequence of shape transformation with temporal control has been driven by the desire to generate complex shapes with high yield and to create multiple shapes from the same starting material. This paper demonstrates a markedly simple strategy for programmed self-folding of two-dimensional (2D) polymer sheets into 3D objects in a sequential manner using external light. Printed ink on the surface of the polymer sheets discriminately absorbs light on the basis of the wavelength of the light and the color of the ink that defines the hinge about which the sheet folds. The absorbed light gradually heats the underlying polymer across the thickness of the sheet, which causes relief of strain to induce folding. These color patterns can be designed to absorb only specific wavelengths of light (or to absorb differently at the same wavelength using color hues), thereby providing control of sheet folding with respect to time and space. This type of shape programming may have numerous applications, including reconfigurable electronics, actuators, sensors, implantable devices, smart packaging, and deployable structures. PMID:28275736

  4. Experimental Investigation of Current Sheet Instabilities

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas E.; Choveiri, E. Y.; Schafer, Charles (Technical Monitor)

    2001-01-01

    Configuration space instabilities of propagating current sheets were studied in order to better understand acceleration mechanisms in pulsed plasma thrusters. Experiments were carried out in a parallel plate accelerator with argon as propellant. Propagating current sheets were visualized using fast framing cameras with inter-frame delays ranging between 0.05 - 2 microsecond. Schlieren photography using a pulse-burst Nd:YAG laser was used to image electron density gradients in the discharge. Magnetic field probes were used to map the magnetic field topology during the evolution of the discharge. Pressure probes were used to monitor axial pressure gradients. Emission spectroscopy was used to estimate the electron temperature in the arc. The motivation for applying all of these diagnostics was to gain an understanding of what parameters influence the macroscopic stability of a propagating current sheet. Since a stable current sheet is required for any effective snowplow-type of accelerator, an understanding of the processes which can cause current sheets to break apart into filaments is essential for the design of future pulsed plasma thrusters.

  5. Positive lithiation potential on functionalized Graphene sheets

    NASA Astrophysics Data System (ADS)

    Chouhan, Rajiv Kumar; Raghani, Pushpa

    2015-03-01

    Designing lithium batteries with high capacities is major challenge in the field of energy storage. As an alternative to the conventional graphitic anode with a capacity of ~372 mAhg-1 , we look at the adsorption of lithium on 2D graphene oxide (GO) sheets. We have included van-der-waal's interaction in our calculation and compared with literature showing its importance in Li binding on Graphene sheets. In comparison to the negative lithiation potential in prestine graphene sheets, we were able to get positive lithiation potential by introducing functional groups such as epoxy(-O-) and hydroxyl(-OH) on graphene. Also the non-stoichiometic nature of GO provides better potential to increase the lithiation potential in compare to the defects induced graphene 2D sheet. Dramatic charge redistribution within the sheet due to presence of highly electronegative oxygen plays an important role in increasing the capacity. Financial support from Research Corporation's Cottrell College Science award and National Science Foundation's CAREER award (DMR-1255584). Computational facilities provided by HPC center of Idaho National Laboratory.

  6. Design Strategies for Redox Active Metalloenzymes: Applications in Hydrogen Production.

    PubMed

    Alcala-Torano, R; Sommer, D J; Bahrami Dizicheh, Z; Ghirlanda, G

    2016-01-01

    The last decades have seen an increased interest in finding alternative means to produce renewable fuels in order to satisfy the growing energy demands and to minimize environmental impact. Nature can serve as an inspiration for development of these methodologies, as enzymes are able to carry out a wide variety of redox processes at high efficiency, employing a wide array of earth-abundant transition metals to do so. While it is well recognized that the protein environment plays an important role in tuning the properties of the different metal centers, the structure/function relationships between amino acids and catalytic centers are not well resolved. One specific approach to study the role of proteins in both electron and proton transfer is the biomimetic design of redox active peptides, binding organometallic clusters in well-understood protein environments. Here we discuss different strategies for the design of peptides incorporating redox active FeS clusters, [FeFe]-hydrogenase organometallic mimics, and porphyrin centers into different peptide and protein environments in order to understand natural redox enzymes.

  7. Tumor therapeutics by design: targeting and activation of death receptors.

    PubMed

    Wajant, Harald; Gerspach, Jeannette; Pfizenmaier, Klaus

    2005-02-01

    Due to their strong apoptosis-inducing capacity, the death receptor ligands CD95L, TNF and TRAIL have been widely viewed as potential cancer therapeutics. While clinical data with CD95L and TRAIL are not yet available, TNF is a registered drug, albeit only for loco-regional application in a limited number of indications. The TNF experience has told us that specific delivery and restricted action is a major challenge in the development of multifunctional, pleiotropically acting cytokines into effective cancer therapeutics. Thus, gene-therapeutic approaches and new cytokine variants have been designed over the last 10 years with the aim of increasing anti-tumoral activity and reducing systemic side effects. Here, we present our current view of the therapeutic potential of the death receptor ligands TNF, CD95L and TRAIL and of the progress made towards improving their efficacy by tumor targeting, use of gene therapy and genetic engineering. Results generated with newly designed fusion proteins suggest that enhanced tumor-directed activity and prevention of undesirable actions of death receptor ligands is possible, thereby opening up a useful therapeutic window for all of the death receptor ligands, including CD95L.

  8. Fast Light-Sheet Scanner

    NASA Technical Reports Server (NTRS)

    Hunter, William W., Jr.; Humphreys, William M., Jr.; Bartram, Scott M.

    1995-01-01

    Optomechanical apparatus maintains sheet of pulsed laser light perpendicular to reference axis while causing sheet of light to translate in oscillatory fashion along reference axis. Produces illumination for laser velocimeter in which submicrometer particles entrained in flow illuminated and imaged in parallel planes displaced from each other in rapid succession. Selected frequency of oscillation range upward from tens of hertz. Rotating window continuously shifts sheet of light laterally while maintaining sheet parallel to same plane.

  9. Sensitivity method for integrated structure/active control law design

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    1987-01-01

    The development is described of an integrated structure/active control law design methodology for aeroelastic aircraft applications. A short motivating introduction to aeroservoelasticity is given along with the need for integrated structures/controls design algorithms. Three alternative approaches to development of an integrated design method are briefly discussed with regards to complexity, coordination and tradeoff strategies, and the nature of the resulting solutions. This leads to the formulation of the proposed approach which is based on the concepts of sensitivity of optimum solutions and multi-level decompositions. The concept of sensitivity of optimum is explained in more detail and compared with traditional sensitivity concepts of classical control theory. The analytical sensitivity expressions for the solution of the linear, quadratic cost, Gaussian (LQG) control problem are summarized in terms of the linear regulator solution and the Kalman Filter solution. Numerical results for a state space aeroelastic model of the DAST ARW-II vehicle are given, showing the changes in aircraft responses to variations of a structural parameter, in this case first wing bending natural frequency.

  10. Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics.

    PubMed

    Yamane, Masako; Yokoyama, Yusuke; Abe-Ouchi, Ayako; Obrochta, Stephen; Saito, Fuyuki; Moriwaki, Kiichi; Matsuzaki, Hiroyuki

    2015-04-24

    The Late Pliocene epoch is a potential analogue for future climate in a warming world. Here we reconstruct Plio-Pleistocene East Antarctic Ice Sheet (EAIS) variability using cosmogenic nuclide exposure ages and model simulations to better understand ice sheet behaviour under such warm conditions. New and previously published exposure ages indicate interior-thickening during the Pliocene. An ice sheet model with mid-Pliocene boundary conditions also results in interior thickening and suggests that both the Wilkes Subglacial and Aurora Basins largely melted, offsetting increased ice volume. Considering contributions from West Antarctica and Greenland, this is consistent with the most recent IPCC AR5 estimate, which indicates that the Pliocene sea level likely did not exceed +20 m on Milankovitch timescales. The inception of colder climate since ∼3 Myr has increased the sea ice cover and inhibited active moisture transport to Antarctica, resulting in reduced ice sheet thickness, at least in coastal areas.

  11. Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics

    PubMed Central

    Yamane, Masako; Yokoyama, Yusuke; Abe-Ouchi, Ayako; Obrochta, Stephen; Saito, Fuyuki; Moriwaki, Kiichi; Matsuzaki, Hiroyuki

    2015-01-01

    The Late Pliocene epoch is a potential analogue for future climate in a warming world. Here we reconstruct Plio-Pleistocene East Antarctic Ice Sheet (EAIS) variability using cosmogenic nuclide exposure ages and model simulations to better understand ice sheet behaviour under such warm conditions. New and previously published exposure ages indicate interior-thickening during the Pliocene. An ice sheet model with mid-Pliocene boundary conditions also results in interior thickening and suggests that both the Wilkes Subglacial and Aurora Basins largely melted, offsetting increased ice volume. Considering contributions from West Antarctica and Greenland, this is consistent with the most recent IPCC AR5 estimate, which indicates that the Pliocene sea level likely did not exceed +20 m on Milankovitch timescales. The inception of colder climate since ∼3 Myr has increased the sea ice cover and inhibited active moisture transport to Antarctica, resulting in reduced ice sheet thickness, at least in coastal areas. PMID:25908601

  12. Skill Sheets for Agricultural Mechanics.

    ERIC Educational Resources Information Center

    Iowa State Univ. of Science and Technology, Ames. Dept. of Agricultural Education.

    This set of 33 skill sheets for agricultural mechanics was developed for use in high school and vocational school agricultural mechanics programs. Some sheets teach operational procedures while others are for simple projects. Each skill sheet covers a single topic and includes: (1) a diagram, (2) a step-by-step construction or operational…

  13. Fact Sheets on Selected Programs.

    ERIC Educational Resources Information Center

    Administration for Children and Families (DHHS), Washington, DC.

    This paper provides 1- to 6-page fact sheets on 15 programs administered by the U.S. Department of Health and Human Services' Administration for Children and Families. Each fact sheet provides information on program services and funding. The fact sheets cover the following programs: Youth Gang Drug Prevention, Refugee Assistance, Runaway and…

  14. The Physics of Ice Sheets

    ERIC Educational Resources Information Center

    Bassis, J. N.

    2008-01-01

    The great ice sheets in Antarctica and Greenland are vast deposits of frozen freshwater that contain enough to raise sea level by approximately 70 m if they were to completely melt. Because of the potentially catastrophic impact that ice sheets can have, it is important that we understand how ice sheets have responded to past climate changes and…

  15. Infiltrated Porous Polymer Sheets as Free-Standing Flexible Lithium-Sulfur Battery Electrodes.

    PubMed

    Wu, Feixiang; Zhao, Enbo; Gordon, Daniel; Xiao, Yiran; Hu, Chenchen; Yushin, Gleb

    2016-08-01

    Free-standing, high-capacity Li2 S electrodes with capacity loadings in the range from 1.5 to 3.8 mA h cm(-2) are produced by using infiltration of active materials into porous carbonized biomass sheets. The proposed electrode design can be effectively utilized for the low-cost fabrication of flexible lithium batteries with high specific energy.

  16. Design and Implementation of Alkali Activated Cement For Sustainable Development

    NASA Astrophysics Data System (ADS)

    Moseson, Alexander James

    Herein, progress is presented on the design and implementation of technology for sustainable development in general and international development in particular. Necessarily interdisciplinary, the work draws upon the tools and techniques of Mechanical, Materials, and Civil Engineering; and History & Politics. The work was conducted along two paths, the first being the theory and methodology of sustainable development. A flexible design and dissemination framework was developed, Technology Seeding, defined as: development by the transfer and participatory adaptation of appropriate proven conceptual designs. The methodology was developed in part through two case studies which implemented, respectively, wood-turning lathes in Tanzania and upland rice planters in Thailand. The second path is the design and investigation of alkali-activated cements (AACs) for practical use. Those developed herein, for US markets, comprise ground granulated blast furnace slag, soda ash (sodium carbonate), and up to 68 wt.% granular limestone. Mixture Design of Experiment (DOE) was utilized to guide empirical and theoretical analysis of performance (e.g. compressive strength), economic & ecological aspects (e.g. cost, CO2 production, energy consumption), and chemistry (e.g. Rietveld analysis of x-ray diffractograms). Models were derived to understand the impact of mix design on performance and for optimization. Successful formulations are hydraulic and cure at room temperature, with strengths as high as 41 MPa at 3 days and 65 MPa at 28 days. Some of these formulations, compared to OPC, are competitive in performance, reduce cost by up to 40%, and reduce both CO2 production and energy consumption by up to 97%. Major chemical products include calcium silicate hydrates / calcium aluminum silicate hydrates (C-(A)-S-H), gaylussite, and calcite (both newly formed and remaining from limestone). Calcite/dolomite and C-(A)-S-H both contribute to strength. A fraction of the limestone is consumed

  17. Comparison of arrhythmogenicity and proinflammatory activity induced by intramyocardial or epicardial myoblast sheet delivery in a rat model of ischemic heart failure.

    PubMed

    Pätilä, Tommi; Miyagawa, Shigeru; Imanishi, Yukiko; Fukushima, Satsuki; Siltanen, Antti; Mervaala, Eero; Kankuri, Esko; Harjula, Ari; Sawa, Yoshiki

    2015-01-01

    Although cell therapy of the failing heart by intramyocardial injections of myoblasts to results in regenerative benefit, it has also been associated with undesired and prospectively fatal arrhythmias. We hypothesized that intramyocardial injections of myoblasts could enhance inflammatory reactivity and facilitate electrical cardiac abnormalities that can be reduced by epicardial myoblast sheet delivery. In a rat model of ischemic heart failure, myoblast therapy either by intramyocardial injections or epicardial cell sheets was given 2 weeks after occlusion of the coronary artery. Ventricular premature contractions (VPCs) were assessed, using an implanted three-lead electrocardiograph at 1, 7, and 14 days after therapy, and 16-point epicardial electropotential mapping (EEPM) was used to evaluate ventricular arrhythmogenicity under isoproterenol stress. Cardiac functioning was assessed by echocardiography. Both transplantation groups showed therapeutic benefit over sham therapy. However, VPCs were more frequent in the Injection group on day 1 and day 14 after therapy than in animals receiving epicardial or sham therapy (p < 0.05 and p < 0.01, respectively). EEPM under isoproterenol stress showed macroreentry at the infarct border area, leading to ventricular tachycardias in the Injection group, but not in the myoblast sheet- or sham-treated groups (p = 0.045). Both transplantation types modified the myocardial cytokine expression profile. In animals receiving epicardial myoblast therapy, selective reductions in the expressions of interferon gamma, interleukin (IL)-1β and IL12 were observed, accompanied by reduced infiltration of inflammatory CD11b- and CD68-positive leukocytes, compared with animals receiving myoblasts as intramyocardial injections. Intramyocardial myoblast delivery was associated with enhanced inflammatory and immunomodulatory reactivity and increased frequency of VPCs. In comparison to intramyocardial injection, the epicardial route may serve as

  18. Physical Activity (Exercise)

    MedlinePlus

    ... Physical activity (exercise) fact sheet ePublications Physical activity (exercise) fact sheet How can physical activity improve my ... recent hip surgery More information on physical activity (exercise) For more information about physical activity (exercise), call ...

  19. Resolving Behavioral Output via Chemogenetic Designer Receptors Exclusively Activated by Designer Drugs

    PubMed Central

    Burnett, C. Joseph

    2016-01-01

    Designer receptors exclusively activated by designer drugs (DREADDs) have proven to be highly effective neuromodulatory tools for the investigation of neural circuits underlying behavioral outputs. They exhibit a number of advantages: they rely on cell-specific manipulations through canonical intracellular signaling pathways, they are easy and cost-effective to implement in a laboratory setting, and they are easily scalable for single-region or full-brain manipulations. On the other hand, DREADDs rely on ligand–G-protein-coupled receptor interactions, leading to coarse temporal dynamics. In this review we will provide a brief overview of DREADDs, their implementation, and the advantages and disadvantages of their use in animal systems. We also will provide numerous examples of their use across a broad variety of biomedical research fields. PMID:27605603

  20. College Experience and Volunteering. Fact Sheet

    ERIC Educational Resources Information Center

    Marcelo, Karlo Barrios

    2007-01-01

    College experience and volunteering are positively correlated. Measurable differences in civic activity exist between young people who attend college and young people who do not. This fact sheet explores volunteering as civic engagement among youth with college experience, ages 19-25, which was down for the second year in a row in 2006. The…

  1. Modeling and design aspects of active caloric regenerators

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Kurt

    2015-03-01

    A cooling device based on a solid caloric material using, for example, the elastocaloric, magnetocaloric, barocaloric or electrocaloric effect has the potential to replace vapor-compression based systems for a variety of applications. Any caloric device using a solid refrigerant may benefit from using a regenerative cycle to increase the operating temperature span. This presentation shows how all active caloric regenerators can be modeled using similar techniques and how they are related to passive regenerator performance. The advantages and disadvantages of using a regenerative cycle are also discussed. The issue of hysteresis in caloric materials is investigated from a system/thermodynamic standpoint and the effects on cooling power and efficiency are quantified using a numerical model of an active regenerator using model caloric materials with assumed properties. The implementation in a working device will be discussed for elastocaloric and magnetocaloric cooling devices. It is shown that demagnetization effects for magnetocaloric systems and stress concentration effects in elastocaloric system reduce the overall effect in the regenerator and care must be taken in regenerator design for both technologies. Other loss mechanisms outside the regenerator such as heat leaks are also discussed. Finally, experimental results for active magnetic regenerative cooler are given for a range of operating conditions. The most recently published device uses a regenerator consisting of Gd and three alloys of GdY and has demonstrated a COP over 3.

  2. Clouds enhance Greenland ice sheet meltwater runoff.

    PubMed

    Van Tricht, K; Lhermitte, S; Lenaerts, J T M; Gorodetskaya, I V; L'Ecuyer, T S; Noël, B; van den Broeke, M R; Turner, D D; van Lipzig, N P M

    2016-01-12

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m(-2). Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise.

  3. Clouds enhance Greenland ice sheet meltwater runoff

    PubMed Central

    Van Tricht, K.; Lhermitte, S.; Lenaerts, J. T. M.; Gorodetskaya, I. V.; L'Ecuyer, T. S.; Noël, B.; van den Broeke, M. R.; Turner, D. D.; van Lipzig, N. P. M.

    2016-01-01

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m−2. Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise. PMID:26756470

  4. Clouds enhance Greenland ice sheet meltwater runoff

    NASA Astrophysics Data System (ADS)

    Van Tricht, Kristof; Lhermitte, Stef; Lenaerts, Jan T. M.; Gorodetskaya, Irina V.; L'Ecuyer, Tristan S.; Noël, Brice; van den Broeke, Michiel R.; Turner, David D.; van Lipzig, Nicole P. M.

    2016-04-01

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m-2. Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise.

  5. SHEET PLASMA DEVICE

    DOEpatents

    Henderson, O.A.

    1962-07-17

    An ion-electron plasma heating apparatus of the pinch tube class was developed wherein a plasma is formed by an intense arc discharge through a gas and is radially constricted by the magnetic field of the discharge. To avoid kink and interchange instabilities which can disrupt a conventional arc shortiy after it is formed, the apparatus is a pinch tube with a flat configuration for forming a sheet of plasma between two conductive plates disposed parallel and adjacent to the plasma sheet. Kink instabilities are suppressed by image currents induced in the conductive plates while the interchange instabilities are neutrally stable because of the flat plasma configuration wherein such instabilities may occur but do not dynamically increase in amplitude. (AEC)

  6. Clean Cities Fact Sheet

    SciTech Connect

    Not Available

    2004-01-01

    This fact sheet explains the Clean Cities Program and provides contact information for all coalitions and regional offices. It answers key questions such as: What is the Clean Cities Program? What are alternative fuels? How does the Clean Cities Program work? What sort of assistance does Clean Cities offer? What has Clean Cities accomplished? What is Clean Cities International? and Where can I find more information?

  7. Design of a novel chimeric tissue plasminogen activator with favorable Vampire bat plasminogen activator properties.

    PubMed

    Kazemali, MohammadReza; Majidzadeh-A, Keivan; Sardari, Soroush; Saadatirad, Amir Hossein; Khalaj, Vahid; Zarei, Najmeh; Barkhordari, Farzaneh; Adeli, Ahmad; Mahboudi, Fereidoun

    2014-12-01

    Fibrinolytic agents are widely used in treatment of the thromboembolic disorders. The new generations like recombinant tissue plasminogen activator (t-PA, alteplase) are not showing promising results in clinical practice in spite of displaying specific binding to fibrin in vitro. Vampire bat plasminogen activator (b-PA) is a plasminogen activator with higher fibrin affinity and specificity in comparison to t-PA resulting in reduced probability of hemorrhage. b-PA is also resistant to plasminogen activator inhibitor-1 (PAI-1) showing higher half-life compared to other variants of t-PA. However, its non-human origin was a driving force to design a human t-PA with favorable properties of b-PA. In the present study, we designed a chimeric t-PA with desirable b-PA properties and this new molecule was called as CT-b. The construct was prepared through kringle 2 domain removal and replacement of t-PA finger domain with b-PA one. In addition, the KHRR sequence at the initial part of protease domain was replaced by four alanine residues. The novel construct was integrated in Pichia pastoris genome by electroporation. Catalytic activity was investigated in the presence and absence of fibrin. The purified protein was analyzed by western blot. Fibrin binding and PAI resistance assays were also conducted. The activity of the recombinant protein in the presence of fibrin was 1560 times more than its activity in the absence of fibrin, showing its higher specificity to fibrin. The fibrin binding of CT-b was 1.2 fold more than t-PA. In addition, it was inhibited by PAI enzyme 44% less than t-PA. Although the presented data demonstrate a promising in vitro activity, more in vivo studies are needed to confirm the therapeutic advantage of this novel plasminogen activator.

  8. Atomic hydrogen maser active oscillator cavity and bulb design optimization

    NASA Technical Reports Server (NTRS)

    Peters, H. E.; Washburn, P. J.

    1984-01-01

    The performance characteristics and reliability of the active oscillator atomic hydrogen maser depend upon oscillation parameters which characterize the interaction region of the maser, the resonant cavity and atom storage bulb assembly. With particular attention to use of the cavity frequency switching servo (1) to reduce cavity pulling, it is important to maintain high oscillation level, high atomic beam flux utilization efficiency, small spin exchange parameter and high cavity quality factor. It is also desirable to have a small and rigid cavity and bulb structure and to minimize the cavity temperature sensitivity. Curves for a novel hydrogen maser cavity configuration which is partially loaded with a quartz dielectric cylinder and show the relationships between cavity length, cavity diameter, bulb size, dielectric thickness, cavity quality factor, filling factor and cavity frequency temperature coefficient are presented. The results are discussed in terms of improvement in maser performance resulting from particular design choices.

  9. Active noise control: A tutorial for HVAC designers

    SciTech Connect

    Gelin, L.J.

    1997-08-01

    This article will identify the capabilities and limitations of ANC in its application to HVAC noise control. ANC can be used in ducted HVAC systems to cancel ductborne, low-frequency fan noise by injecting sound waves of equal amplitude and opposite phase into an air duct, as close as possible to the source of the unwanted noise. Destructive interference of the fan noise and injected noise results in sound cancellation. The noise problems that it solves are typically described as rumble, roar or throb, all of which are difficult to address using traditional noise control methods. This article will also contrast the use of active against passive noise control techniques. The main differences between the two noise control measures are acoustic performance, energy consumption, and design flexibility. The article will first present the fundamentals and basic physics of ANC. The application to real HVAC systems will follow.

  10. Design and development of an active Gurney flap for rotorcraft

    NASA Astrophysics Data System (ADS)

    Freire Gómez, Jon; Booker, Julian D.; Mellor, Phil H.

    2013-03-01

    The EU's Green Rotorcraft programme will develop an Active Gurney Flap (AGF) for a full-scale helicopter main rotor blade as part of its `smart adaptive rotor blade' technology demonstrators. AGFs can be utilized to provide a localized and variable lift enhancement on the rotor, enabling a redistribution of loading on the rotor blade around the rotor azimuth. Further advantages include the possibility of using AGFs to allow a rotor speed reduction, which subsequently provides acoustic benefits. Designed to be integrable into a commercial helicopter blade, and thereby capable of withstanding real in-flight centrifugal loading, blade vibrations and aerodynamic loads, the demonstrator is expected to achieve a high technology readiness level (TRL). The AGF will be validated initially by a constant blade section 2D wind tunnel test and latterly by full blade 3D whirl tower testing. This paper presents the methodology adopted for the AGF concept topology selection, based on a series of both qualitative and quantitative performance criteria. Two different AGF candidate mechanisms are compared, both powered by a small commercial electromagnetic actuator. In both topologies, the link between the actuator and the control surface consists of two rotating torque bars, pivoting on flexure bearings. This provides the required reliability and precision, while making the design virtually frictionless. The engineering analysis presented suggests that both candidates would perform satisfactorily in a 2D wind tunnel test, but that equally, both have design constraints which limit their potential to be further taken into a whirl tower test under full scale centrifugal and inertial loads.

  11. Design of Responsive and Active (Soft) Materials Using Liquid Crystals.

    PubMed

    Bukusoglu, Emre; Bedolla Pantoja, Marco; Mushenheim, Peter C; Wang, Xiaoguang; Abbott, Nicholas L

    2016-06-07

    Liquid crystals (LCs) are widely known for their use in liquid crystal displays (LCDs). Indeed, LCDs represent one of the most successful technologies developed to date using a responsive soft material: An electric field is used to induce a change in ordering of the LC and thus a change in optical appearance. Over the past decade, however, research has revealed the fundamental underpinnings of potentially far broader and more pervasive uses of LCs for the design of responsive soft material systems. These systems involve a delicate interplay of the effects of surface-induced ordering, elastic strain of LCs, and formation of topological defects and are characterized by a chemical complexity and diversity of nano- and micrometer-scale geometry that goes well beyond that previously investigated. As a reflection of this evolution, the community investigating LC-based materials now relies heavily on concepts from colloid and interface science. In this context, this review describes recent advances in colloidal and interfacial phenomena involving LCs that are enabling the design of new classes of soft matter that respond to stimuli as broad as light, airborne pollutants, bacterial toxins in water, mechanical interactions with living cells, molecular chirality, and more. Ongoing efforts hint also that the collective properties of LCs (e.g., LC-dispersed colloids) will, over the coming decade, yield exciting new classes of driven or active soft material systems in which organization (and useful properties) emerges during the dissipation of energy.

  12. Design of a Split Intein with Exceptional Protein Splicing Activity

    PubMed Central

    2016-01-01

    Protein trans-splicing (PTS) by split inteins has found widespread use in chemical biology and biotechnology. Herein, we describe the use of a consensus design approach to engineer a split intein with enhanced stability and activity that make it more robust than any known PTS system. Using batch mutagenesis, we first conduct a detailed analysis of the difference in splicing rates between the Npu (fast) and Ssp (slow) split inteins of the DnaE family and find that most impactful residues lie on the second shell of the protein, directly adjacent to the active site. These residues are then used to generate an alignment of 73 naturally occurring DnaE inteins that are predicted to be fast. The consensus sequence from this alignment (Cfa) demonstrates both rapid protein splicing and unprecedented thermal and chaotropic stability. Moreover, when fused to various proteins including antibody heavy chains, the N-terminal fragment of Cfa exhibits increased expression levels relative to other N-intein fusions. The durability and efficiency of Cfa should improve current intein based technologies and may provide a platform for the development of new protein chemistry techniques. PMID:26854538

  13. Multirate Flutter Suppression System Design for the Benchmark Active Controls Technology Wing. Part 1; Theory and Design Procedure

    NASA Technical Reports Server (NTRS)

    Mason, Gregory S.; Berg, Martin C.; Mukhopadhyay, Vivek

    2002-01-01

    To study the effectiveness of various control system design methodologies, the NASA Langley Research Center initiated the Benchmark Active Controls Project. In this project, the various methodologies were applied to design a flutter suppression system for the Benchmark Active Controls Technology (BACT) Wing. This report describes a project at the University of Washington to design a multirate suppression system for the BACT wing. The objective of the project was two fold. First, to develop a methodology for designing robust multirate compensators, and second, to demonstrate the methodology by applying it to the design of a multirate flutter suppression system for the BACT wing.

  14. [Designation, solid-phase synthesis and antimicrobial activity of Mytilin derived peptides based on Mytilin-1 from Mytilus coruscus].

    PubMed

    Liu, Mei; Wu, Mei; Zhou, Shiquan; Gao, Peng; Lu, Tao; Wang, Rixin; Shi, Ge; Liao, Zhi

    2010-04-01

    As a key role in mussel defense system, Mytilin is an important antibacterial peptide isolated from the mussel serum. The structural and functional researches on Mytilin showed that the fragment connecting two beta-sheets in a stable beta-hairpin structure was probably required for antimicrobial activity. To elucidate the structural features and the antimicrobial activity of this fragment, we re-designed and synthesized two peptides corresponding to the main mimic structures of Mytilin-1 from Mytilus coruscus, we named these two peptides Mytilin Derived Peptide-1 and Mytilin Derived Peptide-2, respectively. Using a liquid growth inhibition assay, we evaluated their activity towards Gram-positive, Gram-negative bacteria and fungus. The results showed that both peptides can inhibit the growth of Gram-positive, Gram-negative bacteria and fungus. Besides, these two peptides showed high stability in heat water and human serum. These works laid the foundation for further research on the molecular mechanism of Mytilin and for further exploitation of antibacterial peptides with lower molecular mass and more stable structure.

  15. Concentrating Solar Power Fact Sheet

    SciTech Connect

    2015-12-01

    This fact sheet is an overview of the Concentrating Solar Power (CSP) subprogram at the U.S. Department of Energy SunShot Initiative. CSP is a dispatchable, renewable energy option that uses mirrors to focus and concentrate sunlight onto a receiver, from which a heat transfer fluid carries the intense thermal energy to a power block to generate electricity. CSP systems can store solar energy to be used when the sun is not shining. It will help meet the nation’s goal of making solar energy fully cost-competitive with other energy sources by the end of the decade. Worldwide, CSP activity is rapidly scaling, with approximately 10 gigawatts (GW) in various stages of operation or development. In the United States alone, nearly 2 GW of CSP are in operation.

  16. Offshore Wind Research (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

  17. Magnetic Co@g-C3N4 Core-Shells on rGO Sheets for Momentum Transfer with Catalytic Activity toward Continuous-Flow Hydrogen Generation.

    PubMed

    Duan, Shasha; Han, Guosheng; Su, Yongheng; Zhang, Xiaoyu; Liu, Yanyan; Wu, Xianli; Li, Baojun

    2016-06-28

    Magnetic core-shell structures provide abundant opportunities for the construction of multifunctional composites. In this article, magnetic core-shells were fabricated with Co nanoparticles (NPs) as cores and g-C3N4 as shells. In the fabrication process, the Co@g-C3N4 core-shells were anchored onto the rGO nanosheets to form a Co@g-C3N4-rGO composite (CNG-I). For hydrogen generation from the hydrolysis of NaBH4 or NH3BH3, the Co NP cores act as catalytic active sites. The g-C3N4 shells protect Co NPs cores from aggregating or growing. The connection between Co NPs and rGO was strengthened by the g-C3N4 shells to prevent them from leaching or flowing away. The g-C3N4 shells also work as a cocatalyst for hydrogen generation. The magnetism of Co NPs and the shape of rGO nanosheets achieve effective momentum transfer in the external magnetic field. In the batch reactor, a higher catalytic activity was obtained for CNG-I in self-stirring mode than in magneton stirring mode. In the continuous-flow process, stable hydrogen generation was carried out with CNG-I being fixed and propelled by the external magnetic field. The separation film is unnecessary because of magnetic momentum transfer. This idea of the composite design and magnetic momentum transfer will be useful for the development of both hydrogen generation and multifunctional composite materials.

  18. ISSM: Ice Sheet System Model

    NASA Technical Reports Server (NTRS)

    Larour, Eric; Schiermeier, John E.; Seroussi, Helene; Morlinghem, Mathieu

    2013-01-01

    In order to have the capability to use satellite data from its own missions to inform future sea-level rise projections, JPL needed a full-fledged ice-sheet/iceshelf flow model, capable of modeling the mass balance of Antarctica and Greenland into the near future. ISSM was developed with such a goal in mind, as a massively parallelized, multi-purpose finite-element framework dedicated to ice-sheet modeling. ISSM features unstructured meshes (Tria in 2D, and Penta in 3D) along with corresponding finite elements for both types of meshes. Each finite element can carry out diagnostic, prognostic, transient, thermal 3D, surface, and bed slope simulations. Anisotropic meshing enables adaptation of meshes to a certain metric, and the 2D Shelfy-Stream, 3D Blatter/Pattyn, and 3D Full-Stokes formulations capture the bulk of the ice-flow physics. These elements can be coupled together, based on the Arlequin method, so that on a large scale model such as Antarctica, each type of finite element is used in the most efficient manner. For each finite element referenced above, ISSM implements an adjoint. This adjoint can be used to carry out model inversions of unknown model parameters, typically ice rheology and basal drag at the ice/bedrock interface, using a metric such as the observed InSAR surface velocity. This data assimilation capability is crucial to allow spinning up of ice flow models using available satellite data. ISSM relies on the PETSc library for its vectors, matrices, and solvers. This allows ISSM to run efficiently on any parallel platform, whether shared or distrib- ISSM: Ice Sheet System Model NASA's Jet Propulsion Laboratory, Pasadena, California uted. It can run on the largest clusters, and is fully scalable. This allows ISSM to tackle models the size of continents. ISSM is embedded into MATLAB and Python, both open scientific platforms. This improves its outreach within the science community. It is entirely written in C/C++, which gives it flexibility in its

  19. Strengthening America's Energy Security with Offshore Wind (Fact Sheet)

    SciTech Connect

    Not Available

    2012-02-01

    This fact sheet describes the current state of the offshore wind industry in the United States and the offshore wind research and development activities conducted the U.S. Department of Energy Wind and Water Power Program.

  20. Solar America Cities Awards: Solar America Initiative Fact Sheet

    SciTech Connect

    Not Available

    2008-03-01

    This fact sheet provides an overview of the Solar America Cities activities within the Solar America Initiative and lists the 25 cities that have received financial awards from the U.S. Department of Energy.

  1. National Greenhouse Gas Inventory Fact Sheet and Brochure

    EPA Pesticide Factsheets

    View a program fact sheet that highlights EPA's capacity-building activities to help developing countries create a national GHG inventory. Also view a brochure that highlights the benefits of developing GHG inventories.

  2. Solar: A Clean Energy Source for Utilities (Fact Sheet)

    SciTech Connect

    Not Available

    2010-09-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts with utilities to remove the technical, regulatory, and market challenges they face in deploying solar technologies.

  3. Ice sheets play important role in climate change

    NASA Astrophysics Data System (ADS)

    Clark, Peter U.; MacAyeal, Douglas R.; Andrews, John T.; Bartlein, Patrick J.

    Ice sheets once were viewed as passive elements in the climate system enslaved to orbitally generated variations in solar radiation. Today, modeling results and new geologic records suggest that ice sheets actively participated in late-Pleistocene climate change, amplifying or driving significant variability at millennial as well as orbital timescales. Although large changes in global ice volume were ultimately caused by orbital variations (the Milankovitch hypothesis), once in existence, the former ice sheets behaved dynamically and strongly influenced regional and perhaps even global climate by altering atmospheric and oceanic circulation and temperature.Experiments with General Circulation Models (GCMs) yielded the first inklings of ice sheets' climatic significance. Manabe and Broccoli [1985], for example, found that the topographic and albedo effects of ice sheets alone explain much of the Northern Hemisphere cooling identified in paleoclimatic records of the last glacial maximum (˜21 ka).

  4. Design and Analysis of an Active Helical Drive Downhole Tractor

    NASA Astrophysics Data System (ADS)

    LI, Yujia; LIU, Qingyou; CHEN, Yonghua; REN, Tao

    2017-03-01

    During oil-gas well drilling and completion, downhole tools and apparatus should be conveyed to the destination to complete a series of downhole works. Downhole tractors have been used to convey tools in complex wellbores, however a very large tractive force is needed to carry more downhole tools to accomplish works with high efficiency. A novel serial active helical drive downhole tractor which has significantly improved performance compared with previous work is proposed. All previously reported helical drive downhole tractors need stators to balance the torque generated by the rotator. By contrast, the proposed serial downhole tractor does not need a stator; several rotator-driven units should only be connected to one another to achieve a tractive force multifold higher than that was previously reported. As a result, the length of a single unit is shortened, and the motion flexibility of the downhole tractor is increased. The major performance indicators, namely, gear ratio, velocity, and tractive force, are analyzed. Experimental results show that the maximum tractive force of a single-unit prototype with a length of 900 mm is 165.3 kg or 1620 N. The analysis and experimental results show that the proposed design has considerable potential for downhole works.

  5. Interfacial Assembly of Graphene Oxide Sheets

    NASA Astrophysics Data System (ADS)

    Cote, Laura J.

    Scientific interest in graphene oxide (GO) sheets, the product of chemical oxidation and exfoliation of graphite powder, has resurged in recent years because GO is considered a promising precursor for the bulk production of graphene-based sheets for a variety of applications. In addition, GO can be viewed as an unconventional type of soft material as it is characterized by two abruptly different length scales. Its thickness is of typical molecular dimensions, measured to be about 1 nm by atomic force microscopy, but its lateral dimensions are that of common colloidal particles, ranging from nanometers to tens of microns. This high anisotropy leads to interesting fundamental colloidal interactions between the soft sheets which have practical implications in the solution processing and assembly of the material. This research therefore aims to use a variety of techniques to control these inter-sheet interactions to gain an understanding of the processing-structure relationships which ultimately determine the overall properties of the bulk GO assembly. GO is identified as a two-dimensional amphiphile with a unique edge-to-center arrangement of hydrophilic and hydrophobic groups, which has led to the demonstration of its pH- and size-dependent surface activity. The water surface is then utilized, as in the Langmuir-Blodgett technique, as an ideal substrate to tile up the GO sheets and study the interactions between them. Sheet-sheet interaction morphologies were successfully altered between wrinkled and overlapped states by pH tuning of sheet charge density, and the resulting structure-property relationships are explored. In addition, a novel flash-reduction and assembly process is described in which a simple photographic camera flash can rapidly and cleanly turn an insulating, well-stacked GO paper to a more open and fluffy conducting film. Lastly, the use of these research results as educational outreach platforms is highlighted. A variety of outlets, such as You

  6. Design of electro-active polymer gels as actuator materials

    NASA Astrophysics Data System (ADS)

    Popovic, Suzana

    Smart materials, alternatively called active or adaptive, differ from passive materials in their sensing and activation capability. These materials can sense changes in environment such as: electric field, magnetic field, UV light, pH, temperature. They are capable of responding in numerous ways. Some change their stiffness properties (electro-rheological fluids), other deform (piezos, shape memory alloys, electrostrictive materials) or change optic properties (electrochromic polymers). Polymer gels are one of such materials which can change the shape, volume and even optical properties upon different applied stimuli. Due to their low stiffness property they are capable of having up to 100% of strain in a short time, order of seconds. Their motion resembles the one of biosystems, and they are often seen as possible artificial muscle materials. Despite their delicate nature, appropriate design can make them being used as actuator materials which can form controllable surfaces and mechanical switches. In this study several different groups of polymer gel material were investigated: (a) acrylamide based gels are sensitive to pH and electric field and respond in volume change, (b) polyacrylonitrile (PAN) gel is sensitive to pH and electric field and responds in axial strain and bending, (c) polyvinylalcohol (PVA) gel is sensitive to electric field and responds in axial strain and bending and (d) perfluorinated sulfonic acid membrane, Nafion RTM, is sensitive to electric field and responds in bending. Electro-mechanical and chemo-mechanical behavior of these materials is a function of a variety of phenomena: polymer structure, affinity of polymer to the solvent, charge distribution within material, type of solvent, elasticity of polymer matrix, etc. Modeling of this behavior is a task aimed to identify what is driving mechanism for activation and express it in a quantitative way in terms of deformation of material. In this work behavior of the most promising material as

  7. "Borrowed Black": A Labrador Fantasy from the Book by Ellen Bryan Obed, Adapted for Stage by Mermaid Theatre of Nova Scotia. Cue Sheet for Students.

    ERIC Educational Resources Information Center

    Brown, Victoria

    This performance guide is designed for teachers to use with students before and after a performance of "Borrowed Black: A Labrador Fantasy," by the Mermaid Theatre of Nova Scotia. The guide, called a "Cuesheet," contains seven reproducible activity sheets for use in class, addressing: (1) The Story (orienting students to the…

  8. "Where's Waldo?": A One-Act Musical Based on Martin Handford's Books. Book by Michael Slade, Presented by Theatreworks U.S.A. Cue Sheet for Students.

    ERIC Educational Resources Information Center

    Flynn, Rosalind

    This performance guide is designed for teachers to use with students before and after a performance of the one-act musical based on Martin Handford's books, "Where's Waldo?" book by Michael Slade, music by David Evans, and lyrics by Faye Greenberg. The guide, called a "Cuesheet," contains four activity sheets for use in class,…

  9. Technology Learning Activities. Design Brief--Measuring Inaccessible Distances. Alternative Energy Sources: Designing a Wind Powered Generator. Alternative Energy Sources: Designing a Hot Dog Heater Using Solar Energy.

    ERIC Educational Resources Information Center

    Technology Teacher, 1991

    1991-01-01

    These three learning activities are on measuring accessible distances, designing a wind powered generator, and designing a hot dog heater using solar energy. Each activity includes description of context, objectives, list of materials and equipment, challenge to students, and evaluation questions. (SK)

  10. Perchlorate Regulatory Determination Fact Sheets

    EPA Pesticide Factsheets

    Fact sheets have been developed for the perchlorate regulatory determination corresponding to the following stages published in the Federal Register: Final, Supplemental request for comments, and Preliminary.

  11. Ice sheets and nitrogen

    PubMed Central

    Wolff, Eric W.

    2013-01-01

    Snow and ice play their most important role in the nitrogen cycle as a barrier to land–atmosphere and ocean–atmosphere exchanges that would otherwise occur. The inventory of nitrogen compounds in the polar ice sheets is approximately 260 Tg N, dominated by nitrate in the much larger Antarctic ice sheet. Ice cores help to inform us about the natural variability of the nitrogen cycle at global and regional scale, and about the extent of disturbance in recent decades. Nitrous oxide concentrations have risen about 20 per cent in the last 200 years and are now almost certainly higher than at any time in the last 800 000 years. Nitrate concentrations recorded in Greenland ice rose by a factor of 2–3, particularly between the 1950s and 1980s, reflecting a major change in NOx emissions reaching the background atmosphere. Increases in ice cores drilled at lower latitudes can be used to validate or constrain regional emission inventories. Background ammonium concentrations in Greenland ice show no significant recent trend, although the record is very noisy, being dominated by spikes of input from biomass burning events. Neither nitrate nor ammonium shows significant recent trends in Antarctica, although their natural variations are of biogeochemical and atmospheric chemical interest. Finally, it has been found that photolysis of nitrate in the snowpack leads to significant re-emissions of NOx that can strongly impact the regional atmosphere in snow-covered areas. PMID:23713125

  12. Ice sheets and nitrogen.

    PubMed

    Wolff, Eric W

    2013-07-05

    Snow and ice play their most important role in the nitrogen cycle as a barrier to land-atmosphere and ocean-atmosphere exchanges that would otherwise occur. The inventory of nitrogen compounds in the polar ice sheets is approximately 260 Tg N, dominated by nitrate in the much larger Antarctic ice sheet. Ice cores help to inform us about the natural variability of the nitrogen cycle at global and regional scale, and about the extent of disturbance in recent decades. Nitrous oxide concentrations have risen about 20 per cent in the last 200 years and are now almost certainly higher than at any time in the last 800 000 years. Nitrate concentrations recorded in Greenland ice rose by a factor of 2-3, particularly between the 1950s and 1980s, reflecting a major change in NOx emissions reaching the background atmosphere. Increases in ice cores drilled at lower latitudes can be used to validate or constrain regional emission inventories. Background ammonium concentrations in Greenland ice show no significant recent trend, although the record is very noisy, being dominated by spikes of input from biomass burning events. Neither nitrate nor ammonium shows significant recent trends in Antarctica, although their natural variations are of biogeochemical and atmospheric chemical interest. Finally, it has been found that photolysis of nitrate in the snowpack leads to significant re-emissions of NOx that can strongly impact the regional atmosphere in snow-covered areas.

  13. Rapid fabrication system for three-dimensional tissues using cell sheet engineering and centrifugation.

    PubMed

    Hasegawa, Akiyuki; Haraguchi, Yuji; Shimizu, Tatsuya; Okano, Teruo

    2015-12-01

    Three-dimensional (3D) tissues can be reconstructed by cell sheet technology, and various clinical researches using these constructed tissues have already been initiated to regenerate damaged tissues. While 3D tissues can be easily fabricated by layering cell sheets, the attachment period for cell adhesion between a cell sheet and a culture dish, or double-layered cell sheets normally takes 20-30 min. This study proposed a more rapid fabrication system for bioengineered tissue using cell sheet technology and centrifugation. A C2C12 mouse myoblast sheet harvested from a temperature-responsive culture dish will attach tightly to a culture dish or another cell sheet at 37°C after a 20 min-incubation. However, the same cell sheet centrifuged (12-34 × g) for 3 min also attached tightly to a dish or another cell sheet at 37°C after only a 3 min-incubation. The manipulation time was reduced by approximately two-thirds by centrifugation. The rapid attachments were also cross-sectionally confirmed by optical coherence tomography. These rapidly constructed cell sheet-tissues using centrifugation showed active cell metabolism, cell viability, and very high production of vascular endothelial growth factor, like those prepared by the conventional method; indicating complete cell sheet-attachment without any cell damage. This new system will be a powerful tool in the fields of cell sheet-based tissue engineering and regenerative medicine, and accelerate the use of cell sheets in clinical applications.

  14. Laminated sheet composites reinforced with modular filament sheet

    NASA Technical Reports Server (NTRS)

    Reece, O. Y.

    1968-01-01

    Aluminum and magnesium composite sheet laminates reinforced with low density, high strength modular filament sheets are produced by diffusion bonding and explosive bonding. Both processes are accomplished in normal atmosphere and require no special tooling or cleaning other than wire brushing the metal surfaces just prior to laminating.

  15. 17. INTAKE PIER, BRIDGE STRESS SHEET, SHEET 8 OF 117, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. INTAKE PIER, BRIDGE STRESS SHEET, SHEET 8 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  16. Active Debris Removal mission design in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Martin, Th.; Pérot, E.; Desjean, M.-Ch.; Bitetti, L.

    2013-03-01

    Active Debris Removal (ADR) aims at removing large sized intact objects ― defunct satellites, rocket upper-stages ― from space crowded regions. Why? Because they constitute the main source of the long-term debris environment deterioration caused by possible future collisions with fragments and worse still with other intact but uncontrolled objects. In order to limit the growth of the orbital debris population in the future (referred to as the Kessler syndrome), it is now highly recommended to carry out such ADR missions, together with the mitigation measures already adopted by national agencies (such as postmission disposal). At the French Space Agency, CNES, and in the frame of advanced studies, the design of such an ADR mission in Low Earth Orbit (LEO) is under evaluation. A two-step preliminary approach has been envisaged. First, a reconnaissance mission based on a small demonstrator (˜500 kg) rendezvousing with several targets (observation and in-flight qualification testing). Secondly, an ADR mission based on a larger vehicle (inherited from the Orbital Transfer Vehicle (OTV) concept) being able to capture and deorbit several preselected targets by attaching a propulsive kit to these targets. This paper presents a flight dynamics level tradeoff analysis between different vehicle and mission concepts as well as target disposal options. The delta-velocity, times, and masses required to transfer, rendezvous with targets and deorbit are assessed for some propelled systems and propellant less options. Total mass budgets are then derived for two end-to-end study cases corresponding to the reconnaissance and ADR missions mentioned above.

  17. New directions in the science and technology of advanced sheet explosive formulations and the key energetic materials used in the processing of sheet explosives: Emerging trends.

    PubMed

    Talawar, M B; Jangid, S K; Nath, T; Sinha, R K; Asthana, S N

    2015-12-30

    This review presents the work carried out by the international community in the area of sheet explosive formulations and its applications in various systems. The sheet explosive is also named as PBXs and is a composite material in which solid explosive particles like RDX, HMX or PETN are dispersed in a polymeric matrix, forms a flexible material that can be rolled/cut into sheet form which can be applied to any complex contour. The designed sheet explosive must possess characteristic properties such as flexible, cuttable, water proof, easily initiable, and safe handling. The sheet explosives are being used for protecting tanks (ERA), light combat vehicle and futuristic infantry carrier vehicle from different attacking war heads etc. Besides, sheet explosives find wide applications in demolition of bridges, ships, cutting and metal cladding. This review also covers the aspects such as risks and hazard analysis during the processing of sheet explosive formulations, effect of ageing on sheet explosives, detection and analysis of sheet explosive ingredients and the R&D efforts of Indian researchers in the development of sheet explosive formulations. To the best of our knowledge, there has been no review article published in the literature in the area of sheet explosives.

  18. Method for heating a glass sheet

    DOEpatents

    Boaz, P.T.

    1998-07-21

    A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed. 5 figs.

  19. Method for heating a glass sheet

    DOEpatents

    Boaz, Premakaran Tucker

    1998-01-01

    A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed.

  20. Using iPads to Help Teens Design Their Own Activities

    ERIC Educational Resources Information Center

    Underwood, Joshua

    2014-01-01

    This paper reports on action research aimed at helping teenage English language learners become more aware of ways they might use technology to support their learning. Over nine-months we used iPads to support a wide variety of teacher-designed learning activities and then used design thinking to help students co-design their own activities.…

  1. Students' Interest and Expectancy for Success while Engaged in Analysis- and Creative Design Activities

    ERIC Educational Resources Information Center

    Lawanto, Oenardi; Stewardson, Gary

    2013-01-01

    Inasmuch as design is a central activity in K-12 engineering education, understanding the students' motivation during engaging in engineering design activities will help educators to develop and evaluate strategies for engineering design challenges, and improve curriculum. The objective of this study is to better understand the relationship…

  2. Color and shape changing polymeric ribbons and sheets

    DOEpatents

    Stevens, Raymond C.; Cheng, Quan; Song, Jie

    2006-05-23

    The present invention herein provides the design, synthesis and characterization of compositions comprising asymmetric bolaamphiphilic lipids that form extended polymeric ribbons and wide sheets. These compositions may be doped, or interspersed, with various compounds to fine-tune the fluidity and rigidity of the bolaamphiphilic lipid composition, and promote other morphologies of the composition, including fluid vesicles and truncated flat sheets. Upon an increase in pH these compositions undergo a calorimetric and morphological transformation.

  3. Measuring Ice Sheet Height with ICESat-2

    NASA Astrophysics Data System (ADS)

    Walsh, K.; Smith, B.; Neumann, T.; Hancock, D.

    2015-12-01

    ICESat-2 is NASA's next-generation laser altimeter, designed to measure changes in ice sheet height and sea ice freeboard. Over the ice sheets, it will use a continuous repeat-track pointing strategy to ensure that it accurately measures elevation changes along a set of reference tracks. Over most of the area of Earth's ice sheets, ICESat-2 will provide coverage with a track-to-track spacing better than ~3 km. The onboard ATLAS instrument will use a photon-counting approach to provide a global geolocated photon point cloud, which is then converted into surface-specific elevation data sets. In this presentation, we will outline our strategy for taking the low-level photon point cloud and turning it into measurements posted at 20 m along-track for a set of pre-defined reference points by (1) selecting groups of photon events (PEs) around each along-track point, (2) refining the initial PE selection by fitting selected PEs with an along-track segment model and eliminating outliers to the model, (3) applying histogram-based corrections to the surface height based on the residuals to the along-track segment model, (4) calculate error estimates based on estimates of relative contributions of signal and noise PEs to the observed PE count, and (5) determining the final location and surface height of the along-track segment. These measurements are then corrected for short-scale (100-200 m) across-track surface topography around the reference points to develop a time series of land ice heights. The resulting data products will allow us to measure ice sheet elevation change with a point-for-point accuracy of a few centimeters over Earth's ice sheets.

  4. DDE-MURR Status Report of Conceptual Design Activities

    SciTech Connect

    N.E. Woolstenhulme; R.B. Nielson; M.H. Sprenger; G.K. Housley

    2012-09-01

    The Design Demonstration Experiment for the University of Missouri Research Reactor (DDE-MURR) is intended to facilitate Low Enriched Uranium (LEU) conversion of the MURR by demonstrating the performance and fabrication of the LEU fuel element design through an irradiation test in a 200mm channel at the Belgium Reactor 2. At the time this report was prepared the resources for furthering DDE design work were expected to be postponed. As such, the conceptual design effort to date is summarized herein in order to provide the status of key objectives, notable results, and provisions for future design work. These demonstrate that the DDE-MURR design effort is well on the path to producing a suitable irradiation experiment, but also exhibits several challenges for which timely resolution is recommend in order to facilitate success of the irradiation campaign and ultimate conversion of the MURR.

  5. DDE-NBSR Status Report of Conceptual Design Activities

    SciTech Connect

    N.E. Woolstenhulme; R.B. Nielson; B.P. Durtschi; C.R. Glass; G.A. Roth; D.T. Clark

    2012-09-01

    The Design Demonstration Experiment for the National Bureau of Standard Reactor (DDE-NBSR) is intended to facilitate Low Enriched Uranium (LEU) conversion of the NBSR by demonstrating the performance and fabrication of the LEU fuel element design through an irradiation test in the Advanced Test Reactor center flux trap. At the time this report was prepared the resources for furthering DDE design work were expected to be postponed. As such, the conceptual design effort to date is summarized herein in order to provide the status of key objectives, notable results, and provisions for future design work. These demonstrate that the DDE-NBSR design effort is well on the path to producing a suitable irradiation experiment, but also exhibits several challenges for which timely resolution is recommend in order to facilitate success of the irradiation campaign and ultimate conversion of the NBSR.

  6. DDE-MITR Status Report of Conceptual Design Activities

    SciTech Connect

    N.E. Woolstenhulme; R.B. Nielson; J.D. Wiest; J.W. Nielsen; G.A. Roth; S.D. Snow

    2012-09-01

    The Design Demonstration Experiment for the Massachusetts Institute of Technology Reactor (DDE-MITR) is intended to facilitate Low Enriched Uranium (LEU) conversion of the MITR by demonstrating the performance and fabrication of the LEU fuel element design through an irradiation test in the Advanced Test Reactor center flux trap. At the time this report was prepared the resources for furthering DDE design work were expected to be postponed. As such, the conceptual design effort to date is summarized herein in order to provide the status of key objectives, notable results, and provisions for future design work. These demonstrate that the DDE-MITR design effort is well on the path to producing a suitable irradiation experiment, but also exhibits several challenges for which timely resolution is recommend in order to facilitate success of the irradiation campaign and ultimate conversion of the MITR.

  7. Particulate photocatalyst sheets for Z-scheme water splitting: advantages over powder suspension and photoelectrochemical systems and future challenges.

    PubMed

    Wang, Qian; Hisatomi, Takashi; Katayama, Masao; Takata, Tsuyoshi; Minegishi, Tsutomu; Kudo, Akihiko; Yamada, Taro; Domen, Kazunari

    2017-02-06

    Water splitting using semiconductor photocatalysts has been attracting growing interest as a means of solar energy based conversion of water to hydrogen, a clean and renewable fuel. Z-scheme photocatalytic water splitting based on the two-step excitation of an oxygen evolution photocatalyst (OEP) and a hydrogen evolution photocatalyst (HEP) is a promising approach toward the utilisation of visible light. In particular, a photocatalyst sheet system consisting of HEP and OEP particles embedded in a conductive layer has been recently proposed as a new means of obtaining efficient and scalable redox mediator-free Z-scheme solar water splitting. In this paper, we discuss the advantages and disadvantages of the photocatalyst sheet approach compared to conventional photocatalyst powder suspension and photoelectrochemical systems through an examination of the water splitting activity of Z-scheme systems based on SrTiO3:La,Rh as the HEP and BiVO4:Mo as the OEP. This photocatalyst sheet was found to split pure water much more efficiently than the powder suspension and photoelectrochemical systems, because the underlying metal layer efficiently transfers electrons from the OEP to the HEP. The photocatalyst sheet also outperformed a photoelectrochemical parallel cell during pure water splitting. The effects of H(+)/OH(-) concentration overpotentials and of the IR drop are reduced in the case of the photocatalyst sheet compared to photoelectrochemical systems, because the HEP and OEP are situated in close proximity to one another. Therefore, the photocatalyst sheet design is well-suited to efficient large-scale applications. Nevertheless, it is also noted that the photocatalytic activity of these sheets drops markedly with increasing background pressure because of reverse reactions involving molecular oxygen under illumination as well as delays in gas bubble desorption. It is shown that appropriate surface modifications allow the photocatalyst sheet to maintain its water

  8. Active cooling design for scramjet engines using optimization methods

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.; Martin, Carl J.; Lucas, Stephen H.

    1988-01-01

    A methodology for using optimization in designing metallic cooling jackets for scramjet engines is presented. The optimal design minimizes the required coolant flow rate subject to temperature, mechanical-stress, and thermal-fatigue-life constraints on the cooling-jacket panels, and Mach-number and pressure contraints on the coolant exiting the panel. The analytical basis for the methodology is presented, and results for the optimal design of panels are shown to demonstrate its utility.

  9. NASA/USRA advanced design program activity, 1991-1992

    NASA Technical Reports Server (NTRS)

    Dorrity, J. Lewis; Patel, Suneer

    1992-01-01

    The School of Textile and Fiber Engineering continued to pursue design projects with the Mechanical Engineering School giving the students an outstanding opportunity to interact with students from another discipline. Four problems were defined which had aspects which would be reasonably assigned to an interdisciplinary team. The design problems are described. The projects included lunar preform manufacturing, dust control for Enabler, an industrial sewing machine variable speed controllor, Enabler operation station, and design for producing fiberglass fabric in a lunar environment.

  10. Active cooling design for scramjet engines using optimization methods

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.; Martin, Carl J.; Lucas, Stephen H.

    1988-01-01

    A methodology for using optimization in designing metallic cooling jackets for scramjet engines is presented. The optimal design minimizes the required coolant flow rate subject to temperature, mechanical-stress, and thermal-fatigue-life constraints on the cooling-jacket panels, and Mach-number and pressure constraints on the coolant exiting the panel. The analytical basis for the methodology is presented, and results for the optimal design of panels are shown to demonstrate its utility.

  11. Design, structure activity relationship, cytotoxicity and evaluation of antioxidant activity of curcumin derivatives/analogues.

    PubMed

    Sahu, Pramod K

    2016-10-04

    New fourteen 3,4-dihydropyrimidine derivatives/analogues of curcumin (2a-2n) were designed, synthesized and biologically evaluated for their cytotoxicity and antioxidant activity. Cytotoxicity effect has been evaluated against three cell lines HeLa, HCT-116 and QG-56 by MTT assay method. From SAR study, it has been revealed that particularly, compound 2e and 2j (IC50 value 12.5 μM) have shown better cytotoxicity effect against three cell lines. According to results of SAR study, it was found that 3,4-dihydropyrimidines of curcumin, 2c, 2d, 2j and 2n exhibited better antioxidant activity than curcumin. A correlation of structure and activities relationship of these compounds with respect to drug score profiles and other physico-chemical properties of drugs are described and verified experimentally. Therefore, we conclude that physico-chemical analyses may prove structural features of curcumin analogues with their promising combined cytotoxicity/antioxidant activity and it is also concluded from virtual and practical screening that the compounds were varied to possess a broad range of lipophilic character, revealed by Log P values.

  12. Using Critical Incidents of Instructional Design and Multimedia Production Activities to Investigate Instructional Designers' Current Practices and Roles

    ERIC Educational Resources Information Center

    Sugar, William A.; Luterbach, Kenneth J.

    2016-01-01

    Through consideration of critical incidents, this study analyzed 106 effective, ineffective and extraordinary instructional design and multimedia production (MP) activities discussed by 36 instructional design professionals. This evaluation provided insights into these professionals' best and not so best practices during the past 6 months.…

  13. Thermal design for areas of interference heating on actively cooled hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Herring, R. L.; Stone, J. E.

    1978-01-01

    Numerous actively cooled panel design alternatives for application in regions on high speed aircraft that are subject to interference heating effects were studied. Candidate design concepts were evaluated using mass, producibility, reliability and inspectability/maintainability as figures of merit. Three design approaches were identified as superior within certain regimes of the matrix of design heating conditions considered. Only minor modifications to basic actively cooled panel design are required to withstand minor interference heating effects. Designs incorporating internally finned coolant tubes to augment heat transfer are recommended for moderate design heating conditions. At severe heating conditions, an insulated panel concept is required.

  14. Photovoltaics Fact Sheet

    SciTech Connect

    2016-02-01

    This fact sheet is an overview of the Photovoltaics (PV) subprogram at the U.S. Department of Energy SunShot Initiative. The U.S. Department of Energy (DOE)’s Solar Energy Technologies Office works with industry, academia, national laboratories, and other government agencies to advance solar PV, which is the direct conversion of sunlight into electricity by a semiconductor, in support of the goals of the SunShot Initiative. SunShot supports research and development to aggressively advance PV technology by improving efficiency and reliability and lowering manufacturing costs. SunShot’s PV portfolio spans work from early-stage solar cell research through technology commercialization, including work on materials, processes, and device structure and characterization techniques.

  15. Systems Integration Fact Sheet

    SciTech Connect

    2016-06-01

    This fact sheet is an overview of the Systems Integration subprogram at the U.S. Department of Energy SunShot Initiative. The Systems Integration subprogram enables the widespread deployment of safe, reliable, and cost-effective solar energy technologies by addressing the associated technical and non-technical challenges. These include timely and cost-effective interconnection procedures, optimal system planning, accurate prediction of solar resources, monitoring and control of solar power, maintaining grid reliability and stability, and many more. To address the challenges associated with interconnecting and integrating hundreds of gigawatts of solar power onto the electricity grid, the Systems Integration program funds research, development, and demonstration projects in four broad, interrelated focus areas: grid performance and reliability, dispatchability, power electronics, and communications.

  16. Hyperspectral light sheet microscopy

    NASA Astrophysics Data System (ADS)

    Jahr, Wiebke; Schmid, Benjamin; Schmied, Christopher; Fahrbach, Florian O.; Huisken, Jan

    2015-09-01

    To study the development and interactions of cells and tissues, multiple fluorescent markers need to be imaged efficiently in a single living organism. Instead of acquiring individual colours sequentially with filters, we created a platform based on line-scanning light sheet microscopy to record the entire spectrum for each pixel in a three-dimensional volume. We evaluated data sets with varying spectral sampling and determined the optimal channel width to be around 5 nm. With the help of these data sets, we show that our setup outperforms filter-based approaches with regard to image quality and discrimination of fluorophores. By spectral unmixing we resolved overlapping fluorophores with up to nanometre resolution and removed autofluorescence in zebrafish and fruit fly embryos.

  17. Soft Costs Fact Sheet

    SciTech Connect

    2016-05-01

    This fact sheet is an overview of the systems integration subprogram at the U.S. Department of Energy SunShot Initiative. Soft costs can vary significantly as a result of a fragmented energy marketplace. In the U.S., there are 18,000 jurisdictions and 3,000 utilities with different rules and regulations for how to go solar. The same solar equipment may vary widely in its final installation price due to process and market variations across jurisdictions, creating barriers to rapid industry growth. SunShot supports the development of innovative solutions that enable communities to build their local economies and establish clean energy initiatives that meet their needs, while at the same time creating sustainable solar market conditions.

  18. Cutting Guide for Fibrous Sheets

    NASA Technical Reports Server (NTRS)

    Warren, A., D.

    1985-01-01

    Tool facilitates repetitive cutting of fibrous sheets. Flexible aluminum tape allows metal strips folded back on themselves, exposing fresh material for cutting. More than one strip folded back, and cutting width therefore increased in multiples of strip width. Developed for cutting strips of alumina-fiber matting, tool also used on such materials as felts, textiles, and sheet metals.

  19. Silicone Coating on Polyimide Sheet

    NASA Technical Reports Server (NTRS)

    Park, J. J.

    1985-01-01

    Silicone coatings applied to polyimide sheeting for variety of space-related applications. Coatings intended to protect flexible substrates of solar-cell blankets from degradation by oxygen atoms, electrons, plasmas, and ultraviolet light in low Earth orbit and outer space. Since coatings are flexible, generally useful in forming flexible laminates or protective layers on polyimide-sheet products.

  20. Communication Fact Sheets for Parents.

    ERIC Educational Resources Information Center

    Stremel, Kathleen; Bixler, Betsy; Morgan, Susanne; Layton, Kristen

    This booklet contains 28 fact sheets on communication written primarily for parents and families with a child who is deaf-blind. They attempt to address fundamental but complex issues related to the communication needs of children with vision and hearing impairments. Each fact sheet targets a specific area, including: (1) communication; (2)…

  1. Ganges Chasma Sand Sheet

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    Today's sand sheet is located in the Ganges Chasma portion of Valles Marineris. As with yesterday's image, note that the dune forms are seen only at the margin and that the interior of the sand sheet at this resolution appears to completely lack dune forms.

    Image information: VIS instrument. Latitude -6.4, Longitude 310.7 East (49.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. Orchestrating Learning Activities Using the CADMOS Learning Design Tool

    ERIC Educational Resources Information Center

    Katsamani, Maria; Retalis, Symeon

    2013-01-01

    This paper gives an overview of CADMOS (CoursewAre Development Methodology for Open instructional Systems), a graphical IMS-LD Level A & B compliant learning design (LD) tool, which promotes the concept of "separation of concerns" during the design process, via the creation of two models: the conceptual model, which describes the…

  3. Position paper - peer review and design verification of selected activities

    SciTech Connect

    Stine, M.D.

    1994-09-01

    Position Paper to develop and document a position on the performance of independent peer reviews on selected design and analysis components of the Title I (preliminary) and Title II (detailed) design phases of the Multi-Function Waste Tank Facility project.

  4. Evidence for in-situ metabolic activity in ice sheets based on anomalous trace gas records from the Vostok and other ice cores

    NASA Astrophysics Data System (ADS)

    Sowers, T.

    2003-04-01

    Measurements of trace gas species in ice cores are the primary means for reconstructing the composition of the atmosphere. The longest such record comes from the Vostok core taken from the central portion of the East Antarctic ice sheet [Petit et al., 1999]. In general, the trace gas records from Vostok are utilized as the reference signal when correlating trace gas measurements from other ice cores. The underlying assumption implicit in such endeavors is that the bubbles recovered from the ice cores record the composition of the atmosphere at the time the bubbles were formed. Another implicit assumption is that the composition of the bubbles has not been compromised by the extremely long storage periods within the ice sheet. While there is ample evidence that certain trace gas records (e.g. CO2 and CH4) have probably not been compromised, anomalous nitrous oxide (N2O) measurements from the penultimate glacial termination at Vostok are consistent with in-situ (N2O) production [Sowers, 2001]. In general, trace gas measurements from high altitude tropical/temperate glaciers are higher than expected based on contemporaneous measurements from polar cores. Measurements spanning the last 25kyr from the Sajama ice core from central Bolivia (18oS, 69oW, 6542masl), for example, were 1X-5X higher than contemporaneous values recorded in polar ice cores [Campen et al., 2003]. While other physical factors (like temperature/melting) may contribute to the elevated trace gas levels at these sites, the most likely explanation involves the accumulation of in-situ metabolic trace gas byproducts. Stable isotope measurements provide independent information for assessing the origin of the elevated trace gas levels in select samples. For the penultimate glacial termination at Vostok, the anomalous (N2O) values carry high δ15Nbulk and low δ18Obulk values that would be predicted if the added (N2O) was associated with in-situ nitrification. At Sajama, low δ13CH4 values observed during

  5. How To Cut a Round and a Square Inside Opening in a Piece of Sheet Metal Using Aviation Snips. Sheet Metal 1-001. Lesson Plan No. 2.

    ERIC Educational Resources Information Center

    Shibayama, Guy T.

    As part of a 90-hour community college course in sheet metal working, this 50-minute lesson was designed to enable a student to: (1) identify and use right and left hand aviation snips; (2) cut out a 6-inch round opening in a piece of sheet metal using aviation snips; and (3) cut out a 6-by-6 inch square opening in a piece of sheet metal using…

  6. Vertically scanned laser sheet microscopy.

    PubMed

    Dong, Di; Arranz, Alicia; Zhu, Shouping; Yang, Yujie; Shi, Liangliang; Wang, Jun; Shen, Chen; Tian, Jie; Ripoll, Jorge

    2014-01-01

    Laser sheet microscopy is a widely used imaging technique for imaging the three-dimensional distribution of a fluorescence signal in fixed tissue or small organisms. In laser sheet microscopy, the stripe artifacts caused by high absorption or high scattering structures are very common, greatly affecting image quality. To solve this problem, we report here a two-step procedure which consists of continuously acquiring laser sheet images while vertically displacing the sample, and then using the variational stationary noise remover (VSNR) method to further reduce the remaining stripes. Images from a cleared murine colon acquired with a vertical scan are compared with common stitching procedures demonstrating that vertically scanned light sheet microscopy greatly improves the performance of current light sheet microscopy approaches without the need for complex changes to the imaging setup and allows imaging of elongated samples, extending the field of view in the vertical direction.

  7. How might the North American ice sheet influence the Northwestern Eurasian climate?

    NASA Astrophysics Data System (ADS)

    Beghin, P.; Charbit, S.; Kageyama, M.; Dumas, C.; Ritz, C.

    2015-01-01

    During the last glacial period (∼21 000 years ago), two continental-scale ice sheets covered the Canada and northern Europe. It is now widely acknowledged that these past ice sheets exerted a strong influence on climate by causing changes in atmospheric and oceanic circulations. In turn, these changes may have impacted the development of the ice sheets themselves through a combination of different feedback mechanisms. The present study is designed to investigate the potential impact of the North American ice sheet on the surface mass balance (SMB) of the Eurasian ice sheet through simulated changes in the past glacial atmospheric circulation. Using the LMDz5 atmospheric circulation model, we carried out twelve experiments run under constant Last Glacial Maximum (LGM) conditions for insolation, greenhouse gases and ocean. In the all experiments, the Eurasian ice sheet is removed. The twelve experiments differ in the North American ice-sheet topography, ranging from a white and flat (present-day topography) ice sheet to a full-size LGM ice sheet. This experimental design allows to disentangle the albedo and the topographic impacts of the North American ice sheet onto the climate. The results are compared to our baseline experiment where both the North American and the Eurasian ice sheets have been removed. In summer, we show that the only albedo effect of the American ice sheet modifies the pattern of planetary waves with respect to the no-ice sheet case, causing a cooling of the Eurasian region. By contrast, the atmospheric circulation changes induced by the topography of the North American ice sheet imply summer warming in Northwestern Eurasia. In winter, the Scandinavian and the Barents-Kara regions respond differently to the albedo effect: in response to atmospheric circulation changes, Scandinavia is warmed up and precipitation is more abundant whereas Barents-Kara area is cooled down, decreasing convection process and thus leading to less precipitation. The

  8. Ultrasonic Cold Forming of Aircraft Sheet Materials

    DTIC Science & Technology

    1981-01-01

    sheet materials, including titanium 6A1-4V alloy, nickel, and stainless steel AM355 -CRT, into a helicopter rotor blade nose cap contour. Equipment for...were nickel 200, 6A1-4V titanium alloy, and AM355 -CRT stainlesb steel. Ultrasonic activation has been demonstrated to produce significant benefits In...titanium alloy, and AM355 -CRT stainless steel. Modifications in the equipment and procedures were made as the work pro- gressed. Samples of the formed

  9. Wind Powering America Initiative (Fact Sheet)

    SciTech Connect

    Not Available

    2011-01-01

    The U.S. Department of Energy's Wind Powering America initiative engages in technology market acceptance, barrier reduction, and technology deployment support activities. This fact sheet outlines ways in which the Wind Powering America team works to reduce barriers to appropriate wind energy deployment, primarily by focusing on six program areas: workforce development, communications and outreach, stakeholder analysis and resource assessment, wind technology technical support, wind power for Native Americans, and federal sector support and collaboration.

  10. The Discourse of Design-Based Science Classroom Activities

    ERIC Educational Resources Information Center

    Azevedo, Flávio S.; Martalock, Peggy L.; Keser, Tugba

    2015-01-01

    This paper is an initial contribution to a general theory in which science classroom "activity types" and epistemological "discourse practices" are systematically linked. The idea is that activities and discourse are reflexively related, so that different types of science classroom activities (e.g., scientific argumentation,…

  11. Neptunium flow-sheet verification at reprocessing plants

    SciTech Connect

    Rance, P.; Chesnay, B.; Killeen, T.; Murray, M.; Nikkinen, M.; Petoe, A.; Plumb, J.; Saukkonen, H.

    2007-07-01

    Due to their fissile nature, neptunium and americium have at least a theoretical potential application as nuclear explosives and their proliferation potential was considered by the IAEA in studies in the late 1990's. This work was motivated by an increased awareness of the proliferation potential of americium and neptunium and a number of emerging projects in peaceful nuclear programmes which could result in an increase in the available quantities of these minor actinides. The studies culminated in proposals for various voluntary measures including the reporting of international transfers of separated americium and neptunium, declarations concerning the amount of separated neptunium and americium held by states and the application of flow-sheet verification to ensure that facilities capable of separating americium or neptunium are operated in a manner consistent with that declared. This paper discusses the issue of neptunium flowsheet verification in reprocessing plants. The proliferation potential of neptunium is first briefly discussed and then the chemistry of neptunium relevant to reprocessing plants described with a view to indicating a number of issues relevant to the verification of neptunium flow-sheets. Finally, the scope of verification activities is discussed including analysis of process and engineering design information, plant monitoring and sampling and the potential application of containment and surveillance measures. (authors)

  12. DDE-MURR Status Report of Conceptual Design Activities

    SciTech Connect

    N.E. Woolstenhulme; R.B. Nielson; M.H. Sprenger; G.K. Housley

    2013-09-01

    The Design Demonstration Experiment for the University of Missouri Research Reactor (DDE-MURR) is intended to facilitate Low Enriched Uranium (LEU) conversion of the MURR by demonstrating the performance and fabrication of the LEU fuel element design through an irradiation test in a 200mm channel at the Belgium Reactor 2 (BR2). Revision 0 of this report was prepared at the end of government fiscal year 2012 when most of the resources for furthering DDE design work were expected to be postponed. Hence, the conceptual design efforts were summarized to provide the status of key objectives, notable results, and provisions for future design work. Revision 1 of this report was prepared at the end of fiscal year 2013 in order to include results from a neutronic study performed by BR2, to incorporate further details that had been achieved in the engineering sketches of the irradiation devices, and to provide an update of the DDE-MURR campaign in relation to program objectives and opportunities for its eventual irradiation. These updates were purposed to bring the DDE-MURR conceptual design to level of maturity similar to that of the other two DDE efforts (DDE-MITR and DDE-NBSR). This report demonstrates that the DDE-MURR design effort is well on the path to producing a suitable irradiation experiment, but also puts forth several recommendations in order to facilitate success of the irradiation campaign.

  13. Chronologic evidence for multiple periods of loess deposition during the Late Pleistocene in the Missouri and Mississippi River Valley, United States: Implications for the activity of the Laurentide ice sheet

    USGS Publications Warehouse

    Forman, S.L.; Bettis, E. Arthur; Kemmis, T.J.; Miller, B.B.

    1992-01-01

    The loess stratigraphy of the mid-continental U.S. is an important proxy record for the activity of the Laurentide Ice Sheet in North America. One of the most outstanding problems is deciphering the age of loess deposits in this area during the late Pleistocene. Radiocarbon dating of snails and thermoluminescence dating of the fine-silt fraction (4-11 ??m) from loess at the Loveland Loess type section, Loveland, Iowa and a recent excavation at the Pleasant Grove School section. Madison County, Illinois provide new chronologic control on loess deposition in the Mississippi/Missouri River Valley chronology indicates that the Loveland Loess is Illinoian in age (135??20 ka) but is not correlative with the Teneriffe Silt which is dated to 77 ?? 8 ka. Concordant radiocarbon and thermoluminescence age estimates demonstrate that the Roxana Silt and a correlative loess in Iowa, the Pisgah Formation, is probably 40-30 ka old. These age estimates in conjunction with previous results indicate that there were four periods of loess deposition during the last 150 ka at 25-12 ka, 45-30 ka, 85-70 ka and at ca. 135 ?? 20 ka. This chronology of loess deposition supports the presence of both a late Illinoian and early Wisconsinan loess and associated soils. Thus, there may be more than one soil in the loess stratigraphy of the mid-continental U.S. with morphologies similar to the Sangamon Soil. The last three periods of loess deposition may be correlative with periods of elevated dust concentrations recorded in the Dye 3 ice core from southern Greenland. This is particularly significant because both areas possibly had the same source for eolian particles. Reconstructions of atmospheric circulation for glacial periods show a southerly deflected jet stream that could have transported dust from the mid-continental USA to southern Greenland. Lastly, the inferred record of loess deposition is parallel to a chronology for deglaciation of the Laurentide Ice Sheet deciphered from chronologic

  14. NASA/USRA advanced design program activity 1990/1991

    NASA Technical Reports Server (NTRS)

    Dorrity, J. Lewis; Davis, Jill B.

    1991-01-01

    Four problems were defined which had aspects which would be reasonably assigned to an interdisciplinary design team. The design problems are: (1) design of a thermal shield for a lunar telescope (thermal protection for a lunar telescope); (2) selenotextile shielding structure (a structure to protect a lunar habitat from intense solar radiation of tubes of woven polytetrafluoroethylene coated fiberglass fabric); (3) pneumatically assisted elbow joint design for the NASA Zero-prebreathe suit (will allow astronauts to make the transition from a high pressure internal environment to a lower pressure suit without spending time in an air lock); and (4) electrochemical system to power assist an astronaut's finger joints (assist in the movement of an astronaut's distal and proximal interphalangeal finger joints).

  15. Design and Testing of an Active Core for Sandwich Panels

    DTIC Science & Technology

    2008-03-01

    some degrees of unimorph from the design. In the experiment, the current prototype, which is made of polycarbonate material and Nitinol spring...such as Nitinol , is chosen due to its greater shape memory strain (8.5%), practical fabrication technique, and is relatively in- expansive. 2.2... Nitinol and its volume fractions are 5%, 7.5%, and 10% of the total design domain. The artificial stiffness implemented at the top and bottom right hand

  16. KJRR-FAI Status Report of Conceptual Design Activities

    SciTech Connect

    N.E. Woolstenhulme; B.P. Nielson; D.B. Chapman; J.W. Nielsen; P.E. Murray; D.S. Crawford; S.D. Snow

    2013-12-01

    The Korea Atomic Energy Research Institute has initiated the Ki-Jang Research Reactor (KJRR) project to construct a new dedicated radio-isotope production facility in the KiJang province of South Korea. The KJRR will employ a uranium-molybdenum dispersion plate-type fuel clad in aluminum. The KJRR fuel assembly design will undergo irradiation in the Advanced Test Reactor (ATR) as part of the regulatory qualification of the fuel. The Idaho National Laboratory performed a multi-disciplined conceptual design effort and found that one full-size KJRR fuel assembly can be irradiated in the ATR’s north east flux trap. The analyses accomplished during the conceptual design phase are sufficient to prove viability of the overall design and irradiation campaign. Requirements for fission power can be met. The desired burnup can be achieved well within 15% depending on reactor operating availability. Mechanical design and structural analysis show that structural integrity of the irradiation test is maintained. It is recommended that future detailed design efforts be based on the concept described in this report.

  17. Simultaneous observation of the poleward expansion of substorm electrojet activity and the tailward expansion of current sheet disruption in the near-earth magnetotail

    NASA Technical Reports Server (NTRS)

    Lopez, R. E.; Koskinen, H. E. J.; Pulkkinen, T. I.; Bosinger, T.; Mcentire, R. W.; Potemra, T. A.

    1993-01-01

    A substorm that occurred on 7 June 1985 at 2209 UT for which simultaneous measurements from ground stations and CCE are available is considered. The event occurred during a close conjunction between CCE, the EISCAT magnetometer cross, and the STARE radar, allowing a detailed comparison of satellite and ground-based data. Two discrete activations took place during the first few minutes of this substorm: the expansion phase onset at 2209 UT and an intensification at 2212 UT, corresponding to a poleward expansion of activity. The energetic particle data indicate that the active region of the magnetotail during the 2212 UT intensification was located tailward of the active region at 2209 UT. This is direct evidence for a correspondence between tailward expansion of localized activity in the near-earth magnetotail (current disruption and particle energization) and poleward expansion of activity (electrojet formation) in the ionosphere.

  18. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction

    PubMed Central

    Lei, Fengcai; Liu, Wei; Sun, Yongfu; Xu, Jiaqi; Liu, Katong; Liang, Liang; Yao, Tao; Pan, Bicai; Wei, Shiqiang; Xie, Yi

    2016-01-01

    Ultrathin metal layers can be highly active carbon dioxide electroreduction catalysts, but may also be prone to oxidation. Here we construct a model of graphene confined ultrathin layers of highly reactive metals, taking the synthetic highly reactive tin quantum sheets confined in graphene as an example. The higher electrochemical active area ensures 9 times larger carbon dioxide adsorption capacity relative to bulk tin, while the highly-conductive graphene favours rate-determining electron transfer from carbon dioxide to its radical anion. The lowered tin–tin coordination numbers, revealed by X-ray absorption fine structure spectroscopy, enable tin quantum sheets confined in graphene to efficiently stabilize the carbon dioxide radical anion, verified by 0.13 volts lowered potential of hydroxyl ion adsorption compared with bulk tin. Hence, the tin quantum sheets confined in graphene show enhanced electrocatalytic activity and stability. This work may provide a promising lead for designing efficient and robust catalysts for electrolytic fuel synthesis. PMID:27585984

  19. Thermomechanical processing of HAYNES alloy No. 188 sheet to improve creep strength

    NASA Technical Reports Server (NTRS)

    Klarstrom, D. L.

    1978-01-01

    Improvements in the low strain creep strength of HAYNES alloy No. 188 thin gauge sheet by means of thermomechanical processing were developed. Processing methods designed to develop a sheet with strong crystallographic texture after recrystallization and to optimize grain size were principally studied. The effects of thickness-to-grain diameter ratio and prestrain on low strain creep strength were also briefly examined. Results indicate that the most significant improvements were obtained in the sheets having a strong crystallographic texture. The low strain creep strength of the textured sheets was observed to be superior to that of standard production sheets in the 922 K to 1255 K temperature range. Tensile, stress rupture, fabricability, and surface stability properties of the experimental sheets were also measured and compared to property values reported for the baseline production sheets.

  20. A Web-Based Fact Sheet Series for Grandparents Raising Grandchildren and the Professionals Who Serve Them

    ERIC Educational Resources Information Center

    Brintnall-Peterson, Mary; Poehlmann, Julie; Morgan, Kari; Shlafer, Rebecca

    2009-01-01

    Purpose: To develop and evaluate a series of web-based fact sheets for grandparents raising grandchildren. The fact sheets focus on child development issues that grandparents may face when raising their grandchildren. Design and Methods: The fact sheets were developed using research on attachment theory, child development, and the needs of…

  1. Photobiology Research Laboratory (Fact Sheet)

    SciTech Connect

    Not Available

    2012-06-01

    This fact sheet provides information about Photobiology Research Laboratory capabilities and applications at NREL. The photobiology group's research is in four main areas: (1) Comprehensive studies of fuel-producing photosynthetic, fermentative, and chemolithotrophic model microorganisms; (2) Characterization and engineering of redox enzymes and proteins for fuel production; (3) Genetic and pathway engineering of model organisms to improve production of hydrogen and hydrocarbon fuels; and (4) Studies of nanosystems using biological and non-biological materials in hybrid generation. NREL's photobiology research capabilities include: (1) Controlled and automated photobioreactors and fermenters for growing microorganisms under a variety of environmental conditions; (2) High-and medium-throughput screening of H{sub 2}-producing organisms; (3) Homologous and heterologous expression, purification, and biochemical/biophysical characterization of redox enzymes and proteins; (4) Qualitative and quantitative analyses of gases, metabolites, carbohydrates, lipids, and proteins; (5) Genetic and pathway engineering and development of novel genetic toolboxes; and (6) Design and spectroscopic characterization of enzyme-based biofuel cells and energy conversion nanodevices.

  2. Ohmic heated sheet for the Ca ion beam production

    SciTech Connect

    Efremov, A.; Bogomolov, S.; Kazarinov, N.; Kochagov, O.; Loginov, V.

    2008-02-15

    The production of intense accelerated {sup 48}Ca ion beams is the key problem in the experiments on the synthesis of new superheavy nuclei. For this purpose in the FLNR (JINR), an electron cyclotron resonance ion source is used at the U-400 cyclotron. The combination of a micro oven with a hot tantalum sheet inside the discharge chamber allowed the production of the intense {sup 48}Ca{sup 5+} ion beam at the {sup 48}Ca consumption of about 0.5 mg/h. In this case, the tantalum sheet is heated by microwaves and plasma electrons. The microwave power of up to 500 W is required to heat the sheet to the temperature of about 500 deg. C. To decrease the required microwave power, a new sheet with a direct Ohmic heating was designed. The present paper describes the method, technique, and preliminary experimental results on the production of the Ca ion beam.

  3. Controllable curvature from planar polymer sheets in response to light.

    PubMed

    Hubbard, Amber M; Mailen, Russell W; Zikry, Mohammed A; Dickey, Michael D; Genzer, Jan

    2017-02-24

    The ability to change shape and control curvature in 3D structures starting from planar sheets can aid in assembly and add functionality to an object. Herein, we convert planar sheets of shape memory polymers (SMPs) into 3D objects with controllable curvature by dictating where the sheets shrink. Ink patterned on the surface of the sheet absorbs infrared (IR) light, resulting in localized heating, and the material shrinks locally wherever the temperature exceeds the activation temperature, Ta. We introduce two different mechanisms for controlling curvature within SMP sheets. The 'direct' mechanism uses localized shrinkage to induce curvature only in regions patterned with ink. The 'indirect' mechanism uses localized shrinkage in regions patterned with ink to induce curvature in neighboring regions without ink through a balance of internal stresses. Finite element analysis predicts the final shape of the polymer sheets with excellent qualitative agreement with experimental studies. Results from this study show that curvature can be controlled by the distribution and darkness of the ink pattern on the polymer sheet. Additionally, we utilize the direct and indirect curvature mechanisms to demonstrate the formation and actuation of gripper devices, which represent the potential utility of this approach.

  4. Eruptive Current Sheets Trailing SOHO/LASCO CMEs

    NASA Astrophysics Data System (ADS)

    Webb, David F.

    2015-04-01

    Current sheets are important signatures of magnetic reconnection during the eruption of solar magnetic structures. Many models of eruptive flare/Coronal Mass Ejections (CMEs) involve formation of a current sheet connecting the ejecting CME flux rope with the post-eruption magnetic loop arcade. Current sheets have been interpreted in white light images as narrow rays trailing the outward-moving CME, in ultraviolet spectra as narrow, bright hot features, and with different manifestations in other wavebands. This study continues that of Webb et al. (2003), who analyzed SMM white light CMEs having candidate magnetic disconnection features at the base of the CME. About half of those were followed by coaxial, bright rays suggestive of newly formed current sheets, and Webb et al. (2003) presented detailed results of analysis of those structures. In this work we extend the study of white light eruptive current sheets to the more sensitive and extensive SOHO/LASCO coronagraph data on CMEs. We comprehensively examined all LASCO CMEs during two periods that we identify with the minimum and maximum activity of solar cycle 23. We identified ~130 ray/current sheets during these periods, nearly all of which trailed CMEs with concave-outward backs. The occurrence rate of the ray/current sheets is 6-7% of all CMEs, irrespective of the solar cycle. We analyze the rays for durations, speeds, alignments, and motions and compare the observational results with some model predictions.

  5. Design, synthesis and cytotoxic activity evaluation of new aminosubstituted benzofurans.

    PubMed

    Daniilides, Konstantinos; Lougiakis, Nikolaos; Pouli, Nicole; Marakos, Panagiotis; Samara, Pinelopi; Tsitsilonis, Ourania

    2014-01-01

    A number of new aminosubstituted benzofuran analogues have been prepared and their cytotoxic/cytostatic activity was investigated against five human tumor cell lines (MCF-7, SKBR3, SKOV3, HCT-116 and HeLa). Certain compounds showed noticeable tumor cell growth inhibition, indicative of possible structure-activity relationships.

  6. Teaching for Engagement: Part 3: Designing for Active Learning

    ERIC Educational Resources Information Center

    Hunter, William J.

    2015-01-01

    In the first two parts of this series, ("Teaching for Engagement: Part 1: Constructivist Principles, Case-Based Teaching, and Active Learning") and ("Teaching for Engagement: Part 2: Technology in the Service of Active Learning"), William J. Hunter sought to outline the theoretical rationale and research basis for such active…

  7. Designing Culturally Responsive Organized After-School Activities

    ERIC Educational Resources Information Center

    Simpkins, Sandra D.; Riggs, Nathaniel R.; Ngo, Bic; Vest Ettekal, Andrea; Okamoto, Dina

    2017-01-01

    Organized after-school activities promote positive youth development across a range of outcomes. To be most effective, organized activities need to meet high-quality standards. The eight features of quality developed by the National Research Council's Committee on Community-Level Programs for Youth have helped guide the field in this regard.…

  8. Reconstructing the last Newfoundland Ice Sheet,Canada.

    NASA Astrophysics Data System (ADS)

    McHenry, Maureen; Dunlop, Paul

    2015-04-01

    attempt at unravelling this new record using flowset analysis which separates discrete ice flow patterns into snapshots of ice sheet behaviour through time. Our initial flowset analysis shows the NIS was a dynamic ice sheet which was susceptible to configuration changes throughout the last glacial cycle including ice divide migration, regional configuration changes, ice stream activity and enhanced ice flow caused by marine drawdown.

  9. Design.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    Provides an annotated bibliography of resources on this month's theme "Design" for K-8 language arts, art and architecture, music and dance, science, math, social studies, health, and physical education. Includes Web sites, CD-ROMs and software, videos, books, audiotapes, magazines, professional resources and classroom activities.…

  10. Light-activated DNA binding in a designed allosteric protein

    SciTech Connect

    Strickland, Devin; Moffat, Keith; Sosnick, Tobin R.

    2008-09-03

    An understanding of how allostery, the conformational coupling of distant functional sites, arises in highly evolvable systems is of considerable interest in areas ranging from cell biology to protein design and signaling networks. We reasoned that the rigidity and defined geometry of an {alpha}-helical domain linker would make it effective as a conduit for allosteric signals. To test this idea, we rationally designed 12 fusions between the naturally photoactive LOV2 domain from Avena sativa phototropin 1 and the Escherichia coli trp repressor. When illuminated, one of the fusions selectively binds operator DNA and protects it from nuclease digestion. The ready success of our rational design strategy suggests that the helical 'allosteric lever arm' is a general scheme for coupling the function of two proteins.

  11. Microcomponent chemical process sheet architecture

    DOEpatents

    Wegeng, R.S.; Drost, M.K.; Call, C.J.; Birmingham, J.G.; McDonald, C.E.; Kurath, D.E.; Friedrich, M.

    1998-09-22

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 26 figs.

  12. Microcomponent chemical process sheet architecture

    DOEpatents

    Wegeng, Robert S.; Drost, M. Kevin; Call, Charles J.; Birmingham, Joseph G.; McDonald, Carolyn Evans; Kurath, Dean E.; Friedrich, Michele

    1998-01-01

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.

  13. Current sheets in solar flares

    NASA Technical Reports Server (NTRS)

    Priest, E. R.

    1985-01-01

    Numerical simulations of current sheets in solar flares are described, including new features such as the presence of a shock in Petschek's mechanism and impulsive burst-like reconnection due to secondary tearing and coalescence. The general properties of magnetic reconnection are discussed in connection with the basic requirements of numerical current sheet models. Emphasis is given to the need for realistic criteria for energy balance, the Lundquist number, and line tying in calculations of tearing and reconnection modes. The need for analytical models of current sheet processes to compare with the numerical simulations is also stressed.

  14. An ice sheet model validation framework for the Greenland ice sheet

    DOE PAGES

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; ...

    2017-01-17

    decades. An extensible design will allow for continued use of the CMCT as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation.« less

  15. An ice sheet model validation framework for the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P.; Evans, Katherine J.; Kennedy, Joseph H.; Lenaerts, Jan; Lipscomb, William H.; Perego, Mauro; Salinger, Andrew G.; Tuminaro, Raymond S.; van den Broeke, Michiel R.; Nowicki, Sophie M. J.

    2017-01-01

    Greenland over the past few decades. An extensible design will allow for continued use of the CmCt as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation.

  16. Selectively reflective transparent sheets

    NASA Astrophysics Data System (ADS)

    Waché, Rémi; Florescu, Marian; Sweeney, Stephen J.; Clowes, Steven K.

    2015-08-01

    We investigate the possibility to selectively reflect certain wavelengths while maintaining the optical properties on other spectral ranges. This is of particular interest for transparent materials, which for specific applications may require high reflectivity at pre-determined frequencies. Although there exist currently techniques such as coatings to produce selective reflection, this work focuses on new approaches for mass production of polyethylene sheets which incorporate either additives or surface patterning for selective reflection between 8 to 13 μ m. Typical additives used to produce a greenhouse effect in plastics include particles such as clays, silica or hydroxide materials. However, the absorption of thermal radiation is less efficient than the decrease of emissivity as it can be compared with the inclusion of Lambertian materials. Photonic band gap engineering by the periodic structuring of metamaterials is known in nature for producing the vivid bright colors in certain organisms via strong wavelength-selective reflection. Research to artificially engineer such structures has mainly focused on wavelengths in the visible and near infrared. However few studies to date have been carried out to investigate the properties of metastructures in the mid infrared range even though the patterning of microstructure is easier to achieve. We present preliminary results on the diffuse reflectivity using FDTD simulations and analyze the technical feasibility of these approaches.

  17. Active Learning Methods and Technology: Strategies for Design Education

    ERIC Educational Resources Information Center

    Coorey, Jillian

    2016-01-01

    The demands in higher education are on the rise. Charged with teaching more content, increased class sizes and engaging students, educators face numerous challenges. In design education, educators are often torn between the teaching of technology and the teaching of theory. Learning the formal concepts of hierarchy, contrast and space provide the…

  18. Options Study Documenting the Fast Reactor Fuels Innovative Design Activity

    SciTech Connect

    Jon Carmack; Kemal Pasamehmetoglu

    2010-07-01

    This document provides presentation and general analysis of innovative design concepts submitted to the FCRD Advanced Fuels Campaign by nine national laboratory teams as part of the Innovative Transmutation Fuels Concepts Call for Proposals issued on October 15, 2009 (Appendix A). Twenty one whitepapers were received and evaluated by an independent technical review committee.

  19. Empowering Students as Active Participants in Curriculum Design and Implementation

    ERIC Educational Resources Information Center

    Jagersma, John

    2010-01-01

    Curriculum is constructed with the learner as its central focus. Yet the voice of the learner is largely excluded from the curriculum design and implementation process. The author is both an educator and administrator and the intent of this paper is to provide other educators with a deeper understanding of the potential for increased learning when…

  20. ISEE observations of the plasma sheet boundary, plasma sheet, and neutral sheet. I - Electric field, magnetic field, plasma, and ion composition

    NASA Technical Reports Server (NTRS)

    Cattell, C. A.; Mozer, F. S.; Hones, E. W., Jr.; Anderson, R. R.; Sharp, R. D.

    1986-01-01

    The first simultaneous study of dc and ac electric and magnetic fields, E x B velocity, plasma flows, ratio of plasma to magnetic field pressure, total energy density, energetic particles, and ion composition from the ISEE satellites and ground and interplanetary magnetic fields has been made to determine (1) the relationship of the previously observed electric fields at the plasma sheet boundary and at the neutral sheet to plasma parameters, and (2) whether the phenomena occurring during quiet and active times were consistent with the formation of a near-earth neutral line during substorms or with the boundary layer model. Five observations made during the study of two substorms were seen to be in agreement with the neutral-line model. The observations are consistent with the satellite being located at varying distances from the neutral line and diffusion region where reconnection and plasma acceleration were occurring. Although the z component (into or out of the ecliptic plane) of E x B convection was generally toward the neutral sheet, there were examples when it was consistent with the inferred motion of the plasma sheet past the satellite. A synthesis of previous reports on large electric fields at the plasma sheet boundary and variable fields at the neutral sheet including the associated plasma flows is also described.

  1. Robust control design techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Ozbay, Hitay; Bachmann, Glen R.

    1994-01-01

    In this paper, an active flutter suppression problem is studied for a thin airfoil in unsteady aerodynamics. The mathematical model of this system is infinite dimensional because of Theodorsen's function which is irrational. Several second order approximations of Theodorsen's function are compared. A finite dimensional model is obtained from such an approximation. We use H infinity control techniques to find a robustly stabilizing controller for active flutter suppression.

  2. Synthetic β-sheet forming peptide amphiphiles for treatment of fungal keratitis.

    PubMed

    Wu, Hong; Ong, Zhan Yuin; Liu, Shaoqiong; Li, Yan; Wiradharma, Nikken; Yang, Yi Yan; Ying, Jackie Y

    2015-03-01

    Fungal keratitis is a leading cause of ocular morbidity. It is frequently misdiagnosed as bacterial keratitis, causing a delay in proper treatment. Furthermore, due to the lack of safe and effective anti-fungal agents for clinical use, treatment of fugal keratitis remains a challenge. In recent years, antimicrobial peptides (AMPs) have received considerable attention as potent and broad-spectrum antimicrobial agents with the potential to overcome antibiotics resistance. We previously reported the design of short synthetic β-sheet forming peptides (IKIK)2-NH2 and (IRIK)2-NH2 with excellent antimicrobial activities and selectivities against various clinically relevant microorganisms, including Gram-positive Staphylococcus epidermidis and Staphylococcus aureus, Gram-negative Escherichia coli and Pseudomonas aeruginosa, and yeast Candida albicans (C. albicans). In this study, we evaluated the application of the two most promising synthetic β-sheet forming peptide candidates for in vivo fungal keratitis treatment in comparison with the commercially available amphotericin B. It was found that topical solutions of the designed peptides are safe, and as effective as the clinically used amphotericin B. Compared to the costly and unstable amphotericin B, (IKIK)2-NH2 and (IRIK)2-NH2 are water-soluble, less expensive and stable. Thus, the synthetic β-sheet forming peptides are presented as promising candidates for the treatment of fungal keratitis.

  3. Industrial Stormwater Fact Sheet Series

    EPA Pesticide Factsheets

    Fact sheets for the industrial sectors regulated by the MSGP. Each describes the types of facilities included in the sector, typical pollutants associated with the sector, and types of stormwater control measures used to minimize pollutant discharge.

  4. 2007 Swimming Season Fact Sheets

    EPA Pesticide Factsheets

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  5. 2006 Swimming Season Fact Sheets

    EPA Pesticide Factsheets

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  6. Analysis of a Sheet Silicate.

    ERIC Educational Resources Information Center

    Adams, J. M.; Evans, S.

    1980-01-01

    Describes a student project in analytical chemistry using sheet silicates. Provides specific information regarding the use of phlogopite in an experiment to analyze samples for silicon, aluminum, magnesium, iron, potassium, and fluoride. (CS)

  7. Palaeoclimate science: Pulsating ice sheet

    NASA Astrophysics Data System (ADS)

    Vieli, Andreas

    2017-02-01

    During the last ice age, huge numbers of icebergs were episodically discharged from an ice sheet that covered North America. Numerical modelling suggests that these events resulted from a conceptually simple feedback cycle. See Letter p.332

  8. 2009 Swimming Season Fact Sheets

    EPA Pesticide Factsheets

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  9. 2010 Swimming Season Fact Sheets

    EPA Pesticide Factsheets

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  10. Concentrating Solar Power (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    Fact sheet describing the overall capabilities of the NREL CSP Program: collector/receiver characterization, advanced reflector and absorber materials, thermal storage and advanced heat transfer fluids, and CSP modeling and analysis.

  11. 2008 Swimming Season Fact Sheets

    EPA Pesticide Factsheets

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  12. Measurements and Characterization (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Measurements and Characterization that includes scope, core competencies and capabilities, and contact/web information for Analytical Microscopy, Electro-Optical Characterization, Surface Analysis, and Cell and Module Performance.

  13. Subwavelength Imaging Using Conducting Sheets

    NASA Astrophysics Data System (ADS)

    Monzon, Cesar

    2009-05-01

    Here we demonstrate that, paradoxically, subwavelength imaging can be produced by purely resistive means. Space acts like a low pass filter for highly evanescent field components, and if a sheet or thin layer of imperfectly conducting material is placed adjacent to a source, such that the layer overcomes the larger impedance of the spatial low pass filter, no relative attenuation of evanescent components is experienced at the location of the sheet. This results in near-field subwavelength imaging, which also holds for reactive sheets. The conducting layer enables us to trade definition for amplitude. Impedance sheets are commonplace in radio frequencies or microwaves, hence the phenomenon identified here is widespread, and can be extended into the IR or optical region, as well as to other areas of physics where wave motion exists.

  14. Teachers as Co-Designers of Technology-Rich Learning Activities for Early Literacy

    ERIC Educational Resources Information Center

    Cviko, Amina; McKenney, Susan; Voogt, Joke

    2015-01-01

    Although kindergarten teachers often struggle with implementing technology, they are rarely involved in co-designing technology-rich learning activities. This study involved teachers in the co-design of technology-rich learning activities and sought to explore implementation and pupil learning outcomes. A case-study method was used to investigate:…

  15. The Structural Challenge: A Simple Design-Based Science Activity to Foster Creativity among Kinaesthetic Learners

    ERIC Educational Resources Information Center

    Amir, Nazir; Subramaniam, R.

    2014-01-01

    A suitable way for teachers to present science content and foster creativity in less academically inclined students is by getting them to engage in design-based science activities and guiding them along the way. This study illustrates how a design-and-make activity was carried out with the aim of getting students to showcase their creativity while…

  16. Design Manual: Removal of Fluoride from Drinking Water Supplies by Activated Alumina

    EPA Science Inventory

    This document is an updated version of the Design Manual: Removal of Fluoride from Drinking Water Supplies by Activated Alumina (Rubel, 1984). The manual is an in-depth presentation of the steps required to design and operate a fluoride removal plant using activated alumina (AA)...

  17. Using Importance-Performance Analysis to Guide Instructional Design of Experiential Learning Activities

    ERIC Educational Resources Information Center

    Anderson, Sheri; Hsu, Yu-Chang; Kinney, Judy

    2016-01-01

    Designing experiential learning activities requires an instructor to think about what they want the students to learn. Using importance-performance analysis can assist with the instructional design of the activities. This exploratory study used importance-performance analysis in an online introduction to criminology course. There is limited…

  18. How Was the Activity? A Visualization Support for a Case of Location-Based Learning Design

    ERIC Educational Resources Information Center

    Melero, Javier; Hernández-Leo, Davinia; Sun, Jing; Santos, Patricia; Blat, Josep

    2015-01-01

    Over the last few years, the use of mobile technologies has brought the formulation of location-based learning approaches shaping new or enhanced educational activities. Involving teachers in the design of these activities is important because the designs need to be aligned with the requirements of the specific educational settings. Yet analysing…

  19. An Active Learning Exercise for Product Design from an Operations Perspective

    ERIC Educational Resources Information Center

    Hill, Stephen; Baker, Elizabeth

    2016-01-01

    Product design is a topic that is regularly covered in introductory operations management courses. However, a pedagogical challenge exists related to the presentation of introductory-level product design in a way that promotes active learning. The hands-on exercise presented in this article provides instructors with an activity that gives students…

  20. Learners' Perceptions of Instructional Design Practice in a Situated Learning Activity

    ERIC Educational Resources Information Center

    Woolf, Nicholas; Quinn, James

    2009-01-01

    This case study investigated learners' perceptions of value from participating in a learning activity designed to model professional instructional design practice. Learners developed instructional design products for a corporate client in the context of a classroom-based course. The findings indicate that learners perceived different kinds of…

  1. Energy information sheets, July 1998

    SciTech Connect

    1998-07-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  2. Electromechanical resonators from graphene sheets.

    PubMed

    Bunch, J Scott; van der Zande, Arend M; Verbridge, Scott S; Frank, Ian W; Tanenbaum, David M; Parpia, Jeevak M; Craighead, Harold G; McEuen, Paul L

    2007-01-26

    Nanoelectromechanical systems were fabricated from single- and multilayer graphene sheets by mechanically exfoliating thin sheets from graphite over trenches in silicon oxide. Vibrations with fundamental resonant frequencies in the megahertz range are actuated either optically or electrically and detected optically by interferometry. We demonstrate room-temperature charge sensitivities down to 8 x 10(-4) electrons per root hertz. The thinnest resonator consists of a single suspended layer of atoms and represents the ultimate limit of two-dimensional nanoelectromechanical systems.

  3. Energy information sheets, September 1996

    SciTech Connect

    1996-09-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  4. Soil Moisture Active Passive Mission: Fault Management Design Analyses

    NASA Technical Reports Server (NTRS)

    Meakin, Peter; Weitl, Raquel

    2013-01-01

    As a general trend, the complexities of modern spacecraft are increasing to include more ambitious mission goals with tighter timing requirements and on-board autonomy. As a byproduct, the protective features that monitor the performance of these systems have also increased in scope and complexity. Given cost and schedule pressures, there is an increasing emphasis on understanding the behavior of the system at design time. Formal test-driven verification and validation (V&V) is rarely able to test the significant combinatorics of states, and often finds problems late in the development cycle forcing design changes that can be costly. This paper describes the approach the SMAP Fault Protection team has taken to address some of the above-mentioned issues.

  5. Activation Cross Sections Improvements needed for IFE Power Reactors Designs

    SciTech Connect

    Rodriguez, A; Cabellos, O; Sanz, J; FalQuina, R; Latkowski, J; Reyes, S

    2003-10-02

    Uncertainties in the prediction of the neutron induced long-lived activity in the natural elements from H to Bi due to activation cross section uncertainties are estimated assuming as neutron environment those of the HYLIFE-II and Sombrero vessel structures. The latest available activation cross section data are employed. The random variables used in the uncertainty analysis have been the concentration limits (CL's) corresponding to hands-on recycling, remote recycling and shallow land burial, quantities typically considered in ranking elements under waste management considerations. The CL standard value (CL{sub nom}), i.e. without uncertainties, is compared with the 95th percentile CL value (CL95). The results of the analysis are very helpful in assessing the quality of the current activation data for IFE applications, providing a rational basis for programmatic priority assignments for new cross sections measurements or evaluations. The HYLIFE-II results shown that a significant error is estimated in predicting the activation of several elements. The estimated errors in the Sombrero case are much less important.

  6. Characterization of Tensile Mechanical Behavior of MSCs/PLCL Hybrid Layered Sheet

    PubMed Central

    Pangesty, Azizah Intan; Arahira, Takaaki; Todo, Mitsugu

    2016-01-01

    A layered construct was developed by combining a porous polymer sheet and a cell sheet as a tissue engineered vascular patch. The primary objective of this study is to investigate the influence of mesenchymal stem cells (MSCs) sheet on the tensile mechanical properties of porous poly-(l-lactide-co-ε-caprolactone) (PLCL) sheet. The porous PLCL sheet was fabricated by the solid-liquid phase separation method and the following freeze-drying method. The MSCs sheet, prepared by the temperature-responsive dish, was then layered on the top of the PLCL sheet and cultured for 2 weeks. During the in vitro study, cellular properties such as cell infiltration, spreading and proliferation were evaluated. Tensile test of the layered construct was performed periodically to characterize the tensile mechanical behavior. The tensile properties were then correlated with the cellular properties to understand the effect of MSCs sheet on the variation of the mechanical behavior during the in vitro study. It was found that MSCs from the cell sheet were able to migrate into the PLCL sheet and actively proliferated into the porous structure then formed a new layer of MSCs on the opposite surface of the PLCL sheet. Mechanical evaluation revealed that the PLCL sheet with MSCs showed enhancement of tensile strength and strain energy density at the first week of culture which is characterized as the effect of MSCs proliferation and its infiltration into the porous structure of the PLCL sheet. New technique was presented to develop tissue engineered patch by combining MSCs sheet and porous PLCL sheet, and it is expected that the layered patch may prolong biomechanical stability when implanted in vivo. PMID:27271675

  7. Characterization of Tensile Mechanical Behavior of MSCs/PLCL Hybrid Layered Sheet.

    PubMed

    Pangesty, Azizah Intan; Arahira, Takaaki; Todo, Mitsugu

    2016-06-03

    A layered construct was developed by combining a porous polymer sheet and a cell sheet as a tissue engineered vascular patch. The primary objective of this study is to investigate the influence of mesenchymal stem cells (MSCs) sheet on the tensile mechanical properties of porous poly-(l-lactide-co-ε-caprolactone) (PLCL) sheet. The porous PLCL sheet was fabricated by the solid-liquid phase separation method and the following freeze-drying method. The MSCs sheet, prepared by the temperature-responsive dish, was then layered on the top of the PLCL sheet and cultured for 2 weeks. During the in vitro study, cellular properties such as cell infiltration, spreading and proliferation were evaluated. Tensile test of the layered construct was performed periodically to characterize the tensile mechanical behavior. The tensile properties were then correlated with the cellular properties to understand the effect of MSCs sheet on the variation of the mechanical behavior during the in vitro study. It was found that MSCs from the cell sheet were able to migrate into the PLCL sheet and actively proliferated into the porous structure then formed a new layer of MSCs on the opposite surface of the PLCL sheet. Mechanical evaluation revealed that the PLCL sheet with MSCs showed enhancement of tensile strength and strain energy density at the first week of culture which is characterized as the effect of MSCs proliferation and its infiltration into the porous structure of the PLCL sheet. New technique was presented to develop tissue engineered patch by combining MSCs sheet and porous PLCL sheet, and it is expected that the layered patch may prolong biomechanical stability when implanted in vivo.

  8. The active comparator, new user study design in pharmacoepidemiology: historical foundations and contemporary application.

    PubMed

    Lund, Jennifer L; Richardson, David B; Stürmer, Til

    2015-12-01

    Better understanding of biases related to selective prescribing of, and adherence to, preventive treatments has led to improvements in the design and analysis of pharmacoepidemiologic studies. One influential development has been the "active comparator, new user" study design, which seeks to emulate the design of a head-to-head randomized controlled trial. In this review, we first discuss biases that may affect pharmacoepidemiologic studies and describe their direction and magnitude in a variety of settings. We then present the historical foundations of the active comparator, new user study design and explain how this design conceptually mitigates biases leading to a paradigm shift in pharmacoepidemiology. We offer practical guidance on the implementation of the study design using administrative databases. Finally, we provide an empirical example in which the active comparator, new user study design addresses biases that have previously impeded pharmacoepidemiologic studies.

  9. Design, synthesis and potent cytotoxic activity of novel podophyllotoxin derivatives.

    PubMed

    Li, Wen-Qun; Wang, Xu-Li; Qian, Keduo; Liu, Ying-Qian; Wang, Chih-Ya; Yang, Liu; Tian, Jin; Morris-Natschke, Susan L; Zhou, Xing-Wen; Lee, Kuo-Hsiung

    2013-04-15

    Twenty new acyl thiourea derivatives of podophyllotoxin and 4'-demethylepipodophyllotoxin were prepared and screened for their cytotoxicity against four human tumor cell lines, A-549, DU-145, KB, and KBvin. With IC50 values of 0.098-1.13 μM, compounds 13b, 13c, and 13o displayed much better cytotoxic activity than the control etoposide. Most importantly, 13b and 13o exhibited promising cytotoxicity against the drug resistant tumor cell line KBvin with IC50 values of 0.098 and 0.13 μM, respectively, while etoposide lost activity completely. Structure-activity relationship (SAR) correlations of the new derivatives have been established. Compounds 13b and 13o merit further development as a new generation of epipodophyllotoxin-derived antitumor clinical trial candidates.

  10. Selective and efficient electrochemical biosensing of ultrathin molybdenum disulfide sheets

    NASA Astrophysics Data System (ADS)

    Narayanan, Tharangattu N.; Vusa, Chiranjeevi S. R.; Alwarappan, Subbiah

    2014-08-01

    Atomically thin molybdenum disulfide (MoS2) sheets were synthesized and isolated via solvent-assisted chemical exfoliation. The charge-dependent electrochemical activities of these MoS2 sheets were studied using positively charged hexamine ruthenium (III) chloride and negatively charged ferricyanide/ferrocyanide redox probes. Ultrathin MoS2 sheet-based electrodes were employed for the electrochemical detection of an important neurotransmitter, namely dopamine (DA), in the presence of ascorbic acid (AA). MoS2 electrodes were identified as being capable of distinguishing the coexistence of the DA and the AA with an excellent stability. Moreover, the enzymatic detection of the glucose was studied by immobilizing glucose oxidase on the MoS2. This study opens enzymatic and non-enzymatic electrochemical biosensing applications of atomic MoS2 sheets, which will supplement their established electronic applications.

  11. Current status of solar cell performance of unconventional silicon sheets

    NASA Technical Reports Server (NTRS)

    Yoo, H. I.; Liu, J. K.

    1981-01-01

    It is pointed out that activities in recent years directed towards reduction in the cost of silicon solar cells for terrestrial photovoltaic applications have resulted in impressive advancements in the area of silicon sheet formation from melt. The techniques used in the process of sheet formation can be divided into two general categories. All approaches in one category require subsequent ingot wavering. The various procedures of the second category produce silicon in sheet form. The performance of baseline solar cells is discussed. The baseline process included identification marking, slicing to size, and surface treatment (etch-polishing) when needed. Attention is also given to the performance of cells with process variations, and the effects of sheet quality on performance and processing.

  12. Diabetes Fact Sheet

    MedlinePlus

    ... active less than three times a week Having polycystic ovary syndrome (PCOS) Personal history of heart disease or stroke If ... active less than three times a week Having polycystic ovary syndrome (PCOS) Personal history of heart disease or stroke ...

  13. Dynamic behavior of liquid sheets

    NASA Astrophysics Data System (ADS)

    Mansour, Adel; Chigier, Norman

    1991-12-01

    An experiment was conducted to study the aerodynamic instability of liquid sheets issuing from a two-dimensional air-assisted nozzle. Detailed measurements of the frequency of oscillation of the liquid sheet have been made. The measured vibrational frequencies were then correlated with the resulting spray angle. It was shown that the liquid sheet oscillations are dynamically similar to that of hard spring systems. For each air pressure, three distinct modes of breakup are distinguished. At low liquid flow rates, both the sinusoidal and the dilational modes are superimposed on the liquid sheet. With a further increase in liquid flow rate, the liquid sheet oscillations mainly become of the dilational type. It was also shown that the effect of introducing air in the nozzle is similar to the effect of inducing forced vibrations on the nozzle jaws. Thus, for each air flow rate, there is a specific vibration frequency for the nozzle. The frequency of these vibrations is proportional to the air velocity. As the liquid sheet natural frequency approaches that of the nozzle, resonance is established. At resonance, the maximum spray angle is achieved.

  14. FDTD modeling of thin impedance sheets

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. In this paper it is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods.

  15. Cryosphere: Warming ocean erodes ice sheets

    NASA Astrophysics Data System (ADS)

    Kusahara, Kazuya

    2016-01-01

    Antarctic ice sheets are a key player in sea-level rise in a warming climate. Now an ice-sheet modelling study clearly demonstrates that an Antarctic ice sheet/shelf system in the Atlantic Ocean will be regulated by the warming of the surrounding Southern Ocean, not by marine-ice-sheet instability.

  16. Journal Sheets in the Choral Rehearsal.

    ERIC Educational Resources Information Center

    Kassler, David J.

    2001-01-01

    Discusses the use of journal sheets with choral students. Addresses the benefits of journal sheets, such as providing a means to determine the level of students' critical thinking skills or as a way to reinforce concepts. Includes a copy of a journal sheet and journal sheet responses from choral students. (CMK)

  17. A Comparative Study of Active Play on Differently Designed Playgrounds

    ERIC Educational Resources Information Center

    Luchs, Antje; Fikus, Monika

    2013-01-01

    The physical and social environment of children in cities is continuously changing. Knowledge about the positive effects of natural play experiences within the child's development is becoming widely known. Affordances of diverse landscape elements and especially loose parts for play in natural environments influence play activities. New concepts…

  18. Math Activities Using LogoWriter--Patterns and Designs.

    ERIC Educational Resources Information Center

    Flewelling, Gary

    This book is one in a series of teacher resource books developed to: (1) rescue students from the clutches of computers that drill and control; and (2) supply teachers with computer activities compatible with a mathematics program that emphasizes investigation, problem solving, creativity, and hypothesis making and testing. This is not a book…

  19. Design and photocatalytic activity of nanosized zinc oxides

    NASA Astrophysics Data System (ADS)

    Gancheva, M.; Markova-Velichkova, M.; Atanasova, G.; Kovacheva, D.; Uzunov, I.; Cukeva, R.

    2016-04-01

    Zinc oxide particles with various morphologies were successfully prepared via three synthesis methods: precipitation; tribophysical treatment and sonochemistry. The as-synthesized samples were characterized by X-ray diffraction (XRD); infrared spectroscopy (IR); scanning electron microscope (SEM); BET specific surface area; electron-paramagnetic resonance (EPR), UV-Vis absorption/diffuse reflectance and X-ray photoelectron spectroscopy (XPS). Photocatalytic activities of the samples were evaluated by degradation of Malachite Green (MG) in an aqueous solution under UV and visible irradiation. The obtained ZnO powders possess crystallites size below 20 nm. The ZnO with spherical particles were obtained by precipitation method. The sonochemistry approach leads to preparation of ZnO with nanorod particles. The calculated band gaps of various ZnO powders belong to the range from 3.12 to 3.30 eV. The obtained polycrystalline zinc oxides exhibit good photocatalytic activity which is strongly influenced by the preparation conditions. The nanorod ZnO exhibits high photocatalytic activity under UV irradiation which is attributed to the morphology and the geometric surface of the particles. The ZnO obtained by precipitation has better photocatalytic efficiency under visible irradiation due to high B.E.T. specific surface area and the low level of band gap. Tribophysical treatment of a particle size-homogeneous system leads to deterioration of the photocatalytic activity of the material.

  20. From Rhetoric to Reality: Designing Activities to Foster Creativity

    ERIC Educational Resources Information Center

    Cropley, David H.

    2014-01-01

    As teachers strive to make sense of and implement knowledge of creativity that is available from the research community, school librarians are called upon to help turn rhetoric into reality. Developing the creativity habit is far more meaningful and effective if the classroom activity is representative of the real-world problem-solving process.…

  1. Instructional Design for Teaching Physical Activities: A Knowledge Structures Approach.

    ERIC Educational Resources Information Center

    Vickers, Joan N.

    This text uses the unique Knowledge Structures (KS) Model developed specifically for those who teach and coach complex physical skills. The KS Model provides the framework for constructing a sport-specific curriculum based on all of the pertinent information needed to perform a sport or activity. The model is cross-disciplinary, integrating…

  2. Perceptual Motor Activities in the Home.

    ERIC Educational Resources Information Center

    Brinning, Dorothy; And Others

    Designed for parents, the guide offers instructions for home activities to supplement the school program for children with perceptual motor disturbances. An individual program sheet is provided; behavioral characteristics and the child's need for structure are explained. Activities detailed include motor planning, body image, fine motor…

  3. Ice_Sheets_CCI: Essential Climate Variables for the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Sørensen, L. S.; Khan, A.; Aas, C.; Evansberget, D.; Adalsteinsdottir, G.; Mottram, R.; Andersen, S. B.; Ahlstrøm, A.; Dall, J.; Kusk, A.; Merryman, J.; Hvidberg, C.; Khvorostovsky, K.; Nagler, T.; Rott, H.; Scharrer, M.; Shepard, A.; Ticconi, F.; Engdahl, M.

    2012-04-01

    As part of the ESA Climate Change Initiative (www.esa-cci.org) a long-term project "ice_sheets_cci" started January 1, 2012, in addition to the existing 11 projects already generating Essential Climate Variables (ECV) for the Global Climate Observing System (GCOS). The "ice_sheets_cci" goal is to generate a consistent, long-term and timely set of key climate parameters for the Greenland ice sheet, to maximize the impact of European satellite data on climate research, from missions such as ERS, Envisat and the future Sentinel satellites. The climate parameters to be provided, at first in a research context, and in the longer perspective by a routine production system, would be grids of Greenland ice sheet elevation changes from radar altimetry, ice velocity from repeat-pass SAR data, as well as time series of marine-terminating glacier calving front locations and grounding lines for floating-front glaciers. The ice_sheets_cci project will involve a broad interaction of the relevant cryosphere and climate communities, first through user consultations and specifications, and later in 2012 optional participation in "best" algorithm selection activities, where prototype climate parameter variables for selected regions and time frames will be produced and validated using an objective set of criteria ("Round-Robin intercomparison"). This comparative algorithm selection activity will be completely open, and we invite all interested scientific groups with relevant experience to participate. The results of the "Round Robin" exercise will form the algorithmic basis for the future ECV production system. First prototype results will be generated and validated by early 2014. The poster will show the planned outline of the project and some early prototype results.

  4. Application of subharmonics for active sound design of electric vehicles.

    PubMed

    Gwak, Doo Young; Yoon, Kiseop; Seong, Yeolwan; Lee, Soogab

    2014-12-01

    The powertrain of electric vehicles generates an unfamiliar acoustical environment for customers. This paper seeks optimal interior sound for electric vehicles based on psychoacoustic knowledge and musical harmonic theory. The concept of inserting a virtual sound, which consists of the subharmonics of an existing high-frequency component, is suggested to improve sound quality. Subjective evaluation results indicate that the impression of interior sound can be enhanced in this manner. Increased appeal is achieved through two designed stimuli, which proves the effectiveness of the method proposed.

  5. FDTD modeling of thin impedance sheets

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond; Kunz, Karl

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. It is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods. These sheets are characterized by a discontinuity in the tangential magnetic field on either side of the sheet but no discontinuity in tangential electric field. This continuity, or single valued behavior of the electric field, allows the sheet current to be expressed in terms of an impedance multiplying this electric field.

  6. Aligned carbon nanotube-silicon sheets: a novel nano-architecture for flexible lithium ion battery electrodes.

    PubMed

    Fu, Kun; Yildiz, Ozkan; Bhanushali, Hardik; Wang, Yongxin; Stano, Kelly; Xue, Leigang; Zhang, Xiangwu; Bradford, Philip D

    2013-09-25

    Aligned carbon nanotube sheets provide an engineered scaffold for the deposition of a silicon active material for lithium ion battery anodes. The sheets are low-density, allowing uniform deposition of silicon thin films while the alignment allows unconstrained volumetric expansion of the silicon, facilitating stable cycling performance. The flat sheet morphology is desirable for battery construction.

  7. Cholera Fact Sheet

    MedlinePlus

    ... works to: promote the design and implementation of global strategies to contribute to capacity development for cholera prevention ... countries for the implementation of effective cholera control strategies and monitoring ... global public health problem through the dissemination of information ...

  8. AQUATOX Fact Sheet

    EPA Pesticide Factsheets

    AQUATOX Release 3.1 includes numerous enhancements designed to improve model performance, more closely match data requirements with generally available data, improve data manipulation and analysis, and increase user friendliness.

  9. An Overview of Research and Design Activities at CTFusion

    NASA Astrophysics Data System (ADS)

    Sutherland, D. A.; Jarboe, T. R.; Hossack, A. C.

    2016-10-01

    CTFusion, a newly formed company dedicated to the development of compact, toroidal fusion energy, is a spin-off from the University of Washington that will build upon the successes of the HIT-SI research program. The mission of the company to develop net-gain fusion power cores that will serve as the heart of economical fusion power plants or radioactive-waste destroying burner reactors. The overarching vision and development plan of the company will be presented, along with a detailed justification and design for our next device, the HIT-TD (Technology Demonstration) prototype. By externally driving the edge current and imposing non-axisymmetric magnetic perturbations, HIT-TD should demonstrate the sustainment of stable spheromak configurations with Imposed-Dynamo Current Drive (IDCD), as was accomplished in the HIT-SI device, with higher current gains and temperatures than previously possible. HIT-TD, if successful, will be an instrumental step along this path to economical fusion energy, and will serve as the stepping stone to our Proof-Of-Principle device (HIT-PoP). Beyond the implications of higher performance, sustained spheromaks for fusion applications, the HIT-TD platform will provide a unique system to observe plasma self-organizational phenomena of interest for other fusion devices, and astrophysical systems as well. Lastly, preliminary nuclear engineering design simulations with the MCNP6 code of the HIT-FNSF (Fusion Nuclear Science Facility) device will be presented.

  10. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design

    PubMed Central

    Li, Jianguo; Koh, Jun-Jie; Liu, Shouping; Lakshminarayanan, Rajamani; Verma, Chandra S.; Beuerman, Roger W.

    2017-01-01

    Antimicrobial peptides (AMPs) are promising next generation antibiotics that hold great potential for combating bacterial resistance. AMPs can be both bacteriostatic and bactericidal, induce rapid killing and display a lower propensity to develop resistance than do conventional antibiotics. Despite significant progress in the past 30 years, no peptide antibiotic has reached the clinic yet. Poor understanding of the action mechanisms and lack of rational design principles have been the two major obstacles that have slowed progress. Technological developments are now enabling multidisciplinary approaches including molecular dynamics simulations combined with biophysics and microbiology toward providing valuable insights into the interactions of AMPs with membranes at atomic level. This has led to increasingly robust models of the mechanisms of action of AMPs and has begun to contribute meaningfully toward the discovery of new AMPs. This review discusses the detailed action mechanisms that have been put forward, with detailed atomistic insights into how the AMPs interact with bacterial membranes. The review further discusses how this knowledge is exploited toward developing design principles for novel AMPs. Finally, the current status, associated challenges, and future directions for the development of AMP therapeutics are discussed. PMID:28261050

  11. Design of Raman active nanoparticles for SERS-based detection

    NASA Astrophysics Data System (ADS)

    Garza, Javier T.; Cote, Gerard L.

    2016-03-01

    Timely detection of cardiac biomarkers is needed to diagnose acute myocardial infarction, implement the appropriate early treatment, and significantly reduce the chance of mortality. Ideally, for maximizing patient impact, a point of care device needs to be designed that is fast, sensitive, reliable, and small enough to be used in the ambulance and emergency department. Surface enhanced Raman spectroscopy (SERS) is a sensitive optical technique that can potentially be used to quantify the cardiac biomarkers of interest. In this work, silver nanoparticles were functionalized with a Raman reporter molecule and human cardiac Troponin I (cTnI) as an essential component of binding assays. Aggregated nanoparticles with the Raman reporter molecules were encapsulated in a silica shell to form SERS hotspots. Besides having a specific Raman spectra and binding affinity to cardiac Troponin I antibodies, the nanoparticles were designed to exhibit stability by using silica and polyethylene glycol (PEG) as part of the bioconjugation strategy. The specific narrow peaks from the Raman reporter molecule SERS signal allow for potential multiplexing capabilities as different Raman reporter molecules can be used in functionalized nanoparticles with different cardiac biomarkers. The SERS spectrum of the functionalized nanoparticles was measured to assess its potential to be used in an assay.

  12. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design.

    PubMed

    Li, Jianguo; Koh, Jun-Jie; Liu, Shouping; Lakshminarayanan, Rajamani; Verma, Chandra S; Beuerman, Roger W

    2017-01-01

    Antimicrobial peptides (AMPs) are promising next generation antibiotics that hold great potential for combating bacterial resistance. AMPs can be both bacteriostatic and bactericidal, induce rapid killing and display a lower propensity to develop resistance than do conventional antibiotics. Despite significant progress in the past 30 years, no peptide antibiotic has reached the clinic yet. Poor understanding of the action mechanisms and lack of rational design principles have been the two major obstacles that have slowed progress. Technological developments are now enabling multidisciplinary approaches including molecular dynamics simulations combined with biophysics and microbiology toward providing valuable insights into the interactions of AMPs with membranes at atomic level. This has led to increasingly robust models of the mechanisms of action of AMPs and has begun to contribute meaningfully toward the discovery of new AMPs. This review discusses the detailed action mechanisms that have been put forward, with detailed atomistic insights into how the AMPs interact with bacterial membranes. The review further discusses how this knowledge is exploited toward developing design principles for novel AMPs. Finally, the current status, associated challenges, and future directions for the development of AMP therapeutics are discussed.

  13. Design of an Optically Controlled MR-Compatible Active Needle

    PubMed Central

    Ryu, Seok Chang; Quek, Zhan Fan; Koh, Je-Sung; Renaud, Pierre; Black, Richard J.; Moslehi, Behzad; Daniel, Bruce L.; Cho, Kyu-Jin; Cutkosky, Mark R.

    2015-01-01

    An active needle is proposed for the development of magnetic resonance imaging (MRI)-guided percutaneous procedures. The needle uses a low-transition-temperature shape memory alloy (LT SMA) wire actuator to produce bending in the distal section of the needle. Actuation is achieved with internal optical heating using laser light transported via optical fibers and side coupled to the LT SMA. A prototype, with a size equivalent to a standard 16-gauge biopsy needle, exhibits significant bending, with a tip deflection of more than 14° in air and 5° in hard tissue. A single-ended optical sensor with a gold-coated tip is developed to measure the curvature independently of temperature. The experimental results in tissue phantoms show that human tissue causes fast heat dissipation from the wire actuator; however, the active needle can compensate for typical targeting errors during prostate biopsy. PMID:26512231

  14. 3D design activities at Fermilab: Opportunities for physics

    SciTech Connect

    Yarema, Raymond; Deptuch, Grezgorz; Hoff, Jim; Shenai, Alpana; Trimpl, Marcel; Zimmerman, Tom; Demarteau, Marcel; Liptona, Ron; Christian, Dave; /Fermilab

    2009-01-01

    Fermilab began exploring the technologies for vertically integrated circuits (also commonly known as 3D circuits) in 2006. These technologies include through silicon vias (TSV), circuit thinning, and bonding techniques to replace conventional bump bonds. Since then, the interest within the High Energy Physics community has grown considerably. This paper will present an overview of the activities at Fermilab over the last 3 years which have helped spark this interest.

  15. The design of the TASD (totally active scintillator detector) prototype

    SciTech Connect

    Mefodiev, A. V. Kudenko, Yu. G.

    2015-12-15

    Totally active and magnetic segmented scintillation neutrino detectors are developed for the nextgeneration accelerator neutrino experiments. Such detectors will incorporate scintillation modules with scintillation counters that form X and Y planes. A single counter is a 7 × 10 × 90 mm{sup 3} scintillation bar with gluedin wavelength-shifting fibers and micropixel avalanche photodiodes. The results of measurements of the parameters of these detectors are presented.

  16. Ionospheric effects in active retrodirective array and mitigating system design

    NASA Technical Reports Server (NTRS)

    Nandi, A. K.; Tomita, C. Y.

    1980-01-01

    The operation of an active retrodirective array (ARA) in an ionospheric environment (that is either stationary or slowly-varying) was examined. The restrictions imposed on the pilot signal structure as a result of such operation were analyzed. A 3 tone pilot beam system was defined which first estimates the total electron content along paths of interest and then utilizes this information to aid the phase conjugator so that correct beam pointing can be achieved.

  17. Hybrid simulations of thin current sheets

    NASA Technical Reports Server (NTRS)

    Burkhart, G. R.; Dusenbery, P. B.; Speiser, T. W.

    1993-01-01

    A one-dimensional, hybrid simulation code is used to study current sheets with a nonzero normal magnetic field B(sub z) and a dawn-to-dusk electric field E(sub y). Such configurations are dependent upon only two parameters: we use the normalized normal magnetic field B-normalized (sub z) = B(sub z)/(4(pi)(n(sub b)) (v(exp 2 sub T))(exp 1/2) and normalized electric field V-normalized (sub D) = (1/V(sub T)(cE(sub y)/B(sub z)), where V(sub T) is the thermal velocity of ions prior to their interaction with the current sheet and n(sub b) is the number density outside the current sheet (at the simulation boundary). A third parameter that is relevant to the motion of particles in current sheets is kappa(sub A), the value of kappa = (R(sub min)/rho(sub max))(exp 1/2) for particles of average energy. We find that if either B-normalized (sub z) is close to or greater than 1, or if kappa(sub A) is close to 1, a rotational mode develops in which the z = 0 current rotates with the ion sense about the normal magnetic field, while for small values of both B-normalized (sub z) or kappa(sub A), the configuration is quasi-steady. To achieve values of kappa(sub A) of the order of or larger than 1, we decrease the value of V-normalized (sub D) uniformly. We find that the magnetic field fluctuations and particle distribution functions are similar in many respects to what was observed in the day 240, 1986, Active Magnetospheric Particle Tracer Explorer (AMPTE)/CCE current disruption event, an event that appears to be located at the site of initiation of current disruption and related particle energization.

  18. Preparation of creep data sheet: Material strength data sheet

    NASA Astrophysics Data System (ADS)

    Tanaka, Chiaki; Yagi, Koichi; Ikeda, Sadao; Ito, Hiroshi; Baba, Eiji; Shimizu, Masaru; Tanaka, Hideo; Yokokawa, Kenji; Nagai, Hideo; Kanamaru, Osamu

    1993-01-01

    Continuing from the first and the second term, creep rupture data sheet on metals for high temperatures was continued targeting for 100,000 hours. Creep strain data sheet for elastic analysis, conceived in the second term was carried out this term. Additionally, research was planned into the Cr group steel, which is increasingly in demand for high temperature equipment, and material sampling and testing commenced accordingly. In 1986, the creep data sheet (B Version) was published for the first time, including the creep rupture data exceeding final target of 100,000 hours. Since then, B versions were published on 12 different materials this term. There has been much research using the data from creep data sheets and test samples, including creep strain characteristics, stress relaxation characteristics, creep rupture characteristics and life estimate, with substantial results. In the creep test technology aiming for highly reliable data, deterioration factors of thermocouples were investigated. The results from creep data sheets and related research contributed to improvement in strength reliability of metals at high temperatures.

  19. Effect of innovative building design on physical activity.

    PubMed

    Nicoll, Gayle; Zimring, Craig

    2009-01-01

    Stair climbing can be a low-cost and relatively accessible way to add everyday physical activity, but many building stairwells are inaccessible or unpleasant and elevators are far more convenient. This study explores the use of and attitude toward stairs in an innovative office building where the main elevators for able-bodied users stop only at every third floor ("skip-stop" elevators). These users are expected to walk up or down nearby stairs that have been made open and appealing ("skip-stop" stairs). The study takes advantage of a natural experiment. Some workers' offices were clustered around the skip-stop elevator and the stairs, whereas others had access to a traditional elevator core, that is, an elevator that stopped at each floor with nearby fire exit stairs. Stair use on the open skip-stop stairs and enclosed fire stairs was measured using infrared monitors and card-reader activity logs. An online survey of employees (N=299, a 17.4% response rate) gathered information on stair use and attitudes and behaviors toward physical activity; interviews with key personnel identified major implementation issues. The skip-stop stair was used 33 times more than the enclosed stair of the traditional elevator core, with 72% of survey participants reporting daily stair use. Although implementation issues related to organizational objectives, costs, security, barrier-free accessibility, and building codes exist, the skip-stop feature offers a successful strategy for increasing stair use in workplaces.

  20. Design, Synthesis and Inhibitory Activity of Photoswitchable RET Kinase Inhibitors

    PubMed Central

    Ferreira, Rubén; Nilsson, Jesper R.; Solano, Carlos; Andréasson, Joakim; Grøtli, Morten

    2015-01-01

    REarranged during Transfection (RET) is a transmembrane receptor tyrosine kinase required for normal development and maintenance of neurons of the central and peripheral nervous systems. Deregulation of RET and hyperactivity of the RET kinase is intimately connected to several types of human cancers, most notably thyroid cancers, making it an attractive therapeutic target for small-molecule kinase inhibitors. Novel approaches, allowing external control of the activity of RET, would be key additions to the signal transduction toolbox. In this work, photoswitchable RET kinase inhibitors based on azo-functionalized pyrazolopyrimidines were developed, enabling photonic control of RET activity. The most promising compound displays excellent switching properties and stability with good inhibitory effect towards RET in cell-free as well as live-cell assays and a significant difference in inhibitory activity between its two photoisomeric forms. As the first reported photoswitchable small-molecule kinase inhibitor, we consider the herein presented effector to be a significant step forward in the development of tools for kinase signal transduction studies with spatiotemporal control over inhibitor concentration in situ. PMID:25944708