Sample records for activity size distribution

  1. Simultaneous Measurements of Nanoaerosols and Radioactive Aerosols Containing the Short-lived Radon Isotopes.

    PubMed

    Otahal, P P S; Burian, I; Ondracek, J; Zdimal, V; Holub, R F

    2017-11-01

    The activity size distribution of the Equilibrium-Equivalent Concentration (EER) of 222Rn is one of the most important parameters for the estimation of radiation dose by inhalation of radon decay products. A series of measurements of the EER activity size distribution were performed by the screen diffusion battery in Radon-Aerosol chamber (10 m3) at the National Institute for Nuclear, Chemical, and Biological Protection (SUJCHBO). These measurements were performed at different levels of radon concentration. For this study, the Graded Screen Array Diffusion Battery (GSA DB), developed by the SUJCHBO (based on Earl Knutson and Robert F Holub design), consists of 10 screens and backup filter used to collect all particles that penetrated the screens. The measuring range of this GSA DB allows measuring the radioactive nanoaerosols in the size range from 0.5 to 100 nm. The Earl Knutson algorithm was used for EER activity size distribution evaluation. The results of EER activity size distribution were subsequently compared with the aerosol particle size distribution measured by Scanning Mobility Particle Sizer Spectrometer (SMPS 3936 N, TSI Inc., MN, USA). © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Effects of Vertex Activity and Self-organized Criticality Behavior on a Weighted Evolving Network

    NASA Astrophysics Data System (ADS)

    Zhang, Gui-Qing; Yang, Qiu-Ying; Chen, Tian-Lun

    2008-08-01

    Effects of vertex activity have been analyzed on a weighted evolving network. The network is characterized by the probability distribution of vertex strength, each edge weight and evolution of the strength of vertices with different vertex activities. The model exhibits self-organized criticality behavior. The probability distribution of avalanche size for different network sizes is also shown. In addition, there is a power law relation between the size and the duration of an avalanche and the average of avalanche size has been studied for different vertex activities.

  3. The interrupted power law and the size of shadow banking.

    PubMed

    Fiaschi, Davide; Kondor, Imre; Marsili, Matteo; Volpati, Valerio

    2014-01-01

    Using public data (Forbes Global 2000) we show that the asset sizes for the largest global firms follow a Pareto distribution in an intermediate range, that is "interrupted" by a sharp cut-off in its upper tail, where it is totally dominated by financial firms. This flattening of the distribution contrasts with a large body of empirical literature which finds a Pareto distribution for firm sizes both across countries and over time. Pareto distributions are generally traced back to a mechanism of proportional random growth, based on a regime of constant returns to scale. This makes our findings of an "interrupted" Pareto distribution all the more puzzling, because we provide evidence that financial firms in our sample should operate in such a regime. We claim that the missing mass from the upper tail of the asset size distribution is a consequence of shadow banking activity and that it provides an (upper) estimate of the size of the shadow banking system. This estimate-which we propose as a shadow banking index-compares well with estimates of the Financial Stability Board until 2009, but it shows a sharper rise in shadow banking activity after 2010. Finally, we propose a proportional random growth model that reproduces the observed distribution, thereby providing a quantitative estimate of the intensity of shadow banking activity.

  4. Coagulation effect on the activity size distributions of long lived radon progeny aerosols and its application to atmospheric residence time estimation techniques.

    PubMed

    Anand, S; Mayya, Y S

    2015-03-01

    The long lived naturally occurring radon progeny species in the atmosphere, namely (210)Pb, (210)Bi and (210)Po, have been used as important tracers for understanding the atmospheric mixing processes and estimating aerosol residence times. Several observations in the past have shown that the activity size distribution of these species peaks at larger particle sizes as compared to the short lived radon progeny species - an effect that has been attributed to the process of coagulation of the background aerosols to which they are attached. To address this issue, a mathematical equation is derived for the activity-size distribution of tracer species by formulating a generalized distribution function for the number of tracer atoms present in coagulating background particles in the presence of radioactive decay and removal. A set of these equations is numerically solved for the progeny chain using Fuchs coagulation kernel combined with a realistic steady-state aerosol size spectrum that includes nucleation, accumulation and coarse mode components. The important findings are: (i) larger shifts in the modal sizes of (210)Pb and (210)Po at higher aerosol concentrations such as that found in certain Asian urban regions (ii) enrichment of tracer specific activity on particles as compared to that predicted by pure attachment laws (iii) sharp decline of daughter-to-parent activity ratios for decreasing particle sizes. The implication of the results to size-fractionated residence time estimation techniques is highlighted. A coagulation corrected graphical approach is presented for estimating the residence times from the size-segregated activity ratios of (210)Bi and (210)Po with respect to (210)Pb. The discrepancy between the residence times predicted by conventional formula and the coagulation corrected approach for specified activity ratios increases at higher atmospheric aerosol number concentrations (>10(10) #/m(3)) for smaller sizes (<1 μm). The results are further discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Physicochemical Characterization of Capstone Depleted Uranium Aerosols II: Particle Size Distributions as a Function of Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yung-Sung; Kenoyer, Judson L.; Guilmette, Raymond A.

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing depleted uranium from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluated particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using beta spectrometry, and themore » derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements was quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 um and a large size mode between 2 and 15 um. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 um shortly after perforation to around 1 um at the end of the 2-hr sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles.« less

  6. The Interrupted Power Law and the Size of Shadow Banking

    PubMed Central

    Fiaschi, Davide; Kondor, Imre; Marsili, Matteo; Volpati, Valerio

    2014-01-01

    Using public data (Forbes Global 2000) we show that the asset sizes for the largest global firms follow a Pareto distribution in an intermediate range, that is “interrupted” by a sharp cut-off in its upper tail, where it is totally dominated by financial firms. This flattening of the distribution contrasts with a large body of empirical literature which finds a Pareto distribution for firm sizes both across countries and over time. Pareto distributions are generally traced back to a mechanism of proportional random growth, based on a regime of constant returns to scale. This makes our findings of an “interrupted” Pareto distribution all the more puzzling, because we provide evidence that financial firms in our sample should operate in such a regime. We claim that the missing mass from the upper tail of the asset size distribution is a consequence of shadow banking activity and that it provides an (upper) estimate of the size of the shadow banking system. This estimate–which we propose as a shadow banking index–compares well with estimates of the Financial Stability Board until 2009, but it shows a sharper rise in shadow banking activity after 2010. Finally, we propose a proportional random growth model that reproduces the observed distribution, thereby providing a quantitative estimate of the intensity of shadow banking activity. PMID:24728096

  7. Temporal change in the size distribution of airborne Radiocesium derived from the Fukushima accident

    NASA Astrophysics Data System (ADS)

    Kaneyasu, Naoki; Ohashi, Hideo; Suzuki, Fumie; Okuda, Tomoaki; Ikemori, Fumikazu; Akata, Naofumi

    2013-04-01

    The accident of Fukushima Dai-ichi nuclear power plant discharged a large amount of radioactive materials into the environment. After 40 days of the accident, we started to collect the size-segregated aerosol at Tsukuba City, Japan, located 170 km south of the plant, by use of a low-pressure cascade impactor. The sampling continued from April 28, through October 26, 2011. The number of sample sets collected in total was 8. The radioactivity of 134Cs and 137Cs in aerosols collected at each stage were determined by gamma-ray with a high sensitivity Germanic detector. After the gamma-ray spectrometry analysis, the chemical species in the aerosols were analyzed. The analyses of first (April 28-May 12) and second (May 12-26) samples showed that the activity size distributions of 134Cs and 137Cs in aerosols reside mostly in the accumulation mode size range. These activity size distributions almost overlapped with the mass size distribution of non-sea-salt sulfate aerosol. From the results, we regarded that sulfate is the main transport medium of these radionuclides, and re-suspended soil particles that attached radionuclides were not the major airborne radioactive substances by the end of May, 2011 (Kaneyasu et al., 2012). We further conducted the successive extraction experiment of radiocesium from the aerosol deposits on the aluminum sheet substrate (8th stage of the first aerosol sample, 0.5-0.7 μm in aerodynamic diameter) with water and 0.1M HCl. In contrast to the relatively insoluble property of Chernobyl radionuclides, those in aerosols collected at Tsukuba in fine mode are completely water-soluble (100%). From the third aerosol sample, the activity size distributions started to change, i.e., the major peak in the accumulation mode size range seen in the first and second aerosol samples became smaller and an additional peak appeared in the coarse mode size range. The comparison of the activity size distributions of radiocesium and the mass size distributions of major aerosol components collected by the end of August, 2011, (i.e., sample No.5) and its implication will be discussed in the presentation. Reference Kaneyasu et al., Environ. Sci. Technol. 46, 5720-5726 (2012).

  8. Theoretical analysis of the influence of aerosol size distribution and physical activity on particle deposition pattern in human lungs.

    PubMed

    Voutilainen, Arto; Kaipio, Jari P; Pekkanen, Juha; Timonen, Kirsi L; Ruuskanen, Juhani

    2004-01-01

    A theoretical comparison of modeled particle depositions in the human respiratory tract was performed by taking into account different particle number and mass size distributions and physical activity in an urban environment. Urban-air data on particulate concentrations in the size range 10 nm-10 microm were used to estimate the hourly average particle number and mass size distribution functions. The functions were then combined with the deposition probability functions obtained from a computerized ICRP 66 deposition model of the International Commission on Radiological Protection to calculate the numbers and masses of particles deposited in five regions of the respiratory tract of a male adult. The man's physical activity and minute ventilation during the day were taken into account in the calculations. Two different mass and number size distributions of aerosol particles with equal (computed) <10 microm particle mass concentrations gave clearly different deposition patterns in the central and peripheral regions of the human respiratory tract. The deposited particle numbers and masses were much higher during the day (0700-1900) than during the night (1900-0700) because an increase in physical activity and ventilation were temporally associated with highly increased traffic-derived particles in urban outdoor air. In future analyses of the short-term associations between particulate air pollution and health, it would not only be important to take into account the outdoor-to-indoor penetration of different particle sizes and human time-activity patterns, but also actual lung deposition patterns and physical activity in significant microenvironments.

  9. Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okoli, Celest U.; Kuttiyiel, Kurian A.; Cole, Jesse

    Nanomaterials are now widely used in the fabrication of electrodes and electrocatalysts. In this paper, we report a sonochemical study of the synthesis of molybdenum and palladium alloy nanomaterials supported on functionalized carbon material in various solvents: hexadecane, ethanol, ethylene glycol, polyethylene glycol (PEG 400) and Ionic liquids (ILs). The objective was to identify simple and more environmentally friendly design and fabrication methods for nanomaterial synthesis that are suitable as electrocatalysts in electrochemical applications. The particles size and distribution of nanomaterials were compared on two different carbons as supports: activated carbon and multiwall carbon nanotubes (MWCNTs). The results show thatmore » carbon materials functionalized with ILs in ethanol/deionized water mixture solvent produced smaller particles sizes (3.00 ± 0.05 nm) with uniform distribution while in PEG 400, functionalized materials produced 4.00 ± 1 nm sized particles with uneven distribution (range). In hexadecane solvents with Polyvinylpyrrolidone (PVP) as capping ligands, large particle sizes (14.00 ± 1 nm) were produced with wide particle size distribution. Finally, the metal alloy nanoparticles produced in ILs without any external reducing agent have potential to exhibit a higher catalytic activity due to smaller particle size and uniform distribution.« less

  10. Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts

    DOE PAGES

    Okoli, Celest U.; Kuttiyiel, Kurian A.; Cole, Jesse; ...

    2017-10-03

    Nanomaterials are now widely used in the fabrication of electrodes and electrocatalysts. In this paper, we report a sonochemical study of the synthesis of molybdenum and palladium alloy nanomaterials supported on functionalized carbon material in various solvents: hexadecane, ethanol, ethylene glycol, polyethylene glycol (PEG 400) and Ionic liquids (ILs). The objective was to identify simple and more environmentally friendly design and fabrication methods for nanomaterial synthesis that are suitable as electrocatalysts in electrochemical applications. The particles size and distribution of nanomaterials were compared on two different carbons as supports: activated carbon and multiwall carbon nanotubes (MWCNTs). The results show thatmore » carbon materials functionalized with ILs in ethanol/deionized water mixture solvent produced smaller particles sizes (3.00 ± 0.05 nm) with uniform distribution while in PEG 400, functionalized materials produced 4.00 ± 1 nm sized particles with uneven distribution (range). In hexadecane solvents with Polyvinylpyrrolidone (PVP) as capping ligands, large particle sizes (14.00 ± 1 nm) were produced with wide particle size distribution. Finally, the metal alloy nanoparticles produced in ILs without any external reducing agent have potential to exhibit a higher catalytic activity due to smaller particle size and uniform distribution.« less

  11. Effects of Porous Polystyrene Resin Parameters on Candida antarctica Lipase B Adsorption, Distribution, and Polyester Synthesis Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen,B.; Miller, M.; Gross, R.

    2007-01-01

    Polystyrene resins with varied particle sizes (35 to 350-600 {mu}m) and pore diameters (300-1000 {angstrom}) were employed to study the effects of immobilization resin particle size and pore diameter on Candida antarctica Lipase B (CALB) loading, distribution within resins, fraction of active sites, and catalytic properties for polyester synthesis. CALB adsorbed rapidly (saturation time {<=}4 min) for particle sizes 120 {mu}m (pore size = 300 {angstrom}). Infrared microspectroscopy showed that CALB forms protein loading fronts regardless of resin particle size at similar enzyme loadings ({approx}8%). From the IR images, the fractions of total surface area available to the enzyme aremore » 21, 33, 35, 37, and 88% for particle sizes 350-600, 120, 75, 35 {mu}m (pore size 300 {angstrom}), and 35 {mu}m (pore size 1000 {angstrom}), respectively. Titration with methyl p-nitrophenyl n-hexylphosphate (MNPHP) showed that the fraction of active CALB molecules adsorbed onto resins was {approx}60%. The fraction of active CALB molecules was invariable as a function of resin particle and pore size. At {approx}8% (w/w) CALB loading, by increasing the immobilization support pore diameter from 300 to 1000 {angstrom}, the turnover frequency (TOF) of {var_epsilon}-caprolactone ({var_epsilon}-CL) to polyester increased from 12.4 to 28.2 s{sup -1}. However, the {var_epsilon}-CL conversion rate was not influenced by changes in resin particle size. Similar trends were observed for condensation polymerizations between 1,8-octanediol and adipic acid. The results herein are compared to those obtained with a similar series of methyl methacrylate resins, where variations in particle size largely affected CALB distribution within resins and catalyst activity for polyester synthesis.« less

  12. Mass and number size distributions of emitted particulates at five important operation units in a hazardous industrial waste incineration plant.

    PubMed

    Lin, Chi-Chi; Huang, Hsiao-Lin; Hsiao, Wen-Yuan

    2016-01-01

    Past studies indicated particulates generated by waste incineration contain various hazardous compounds. The aerosol characteristics are very important for particulate hazard control and workers' protection. This study explores the detailed characteristics of emitted particulates from each important operation unit in a rotary kiln-based hazardous industrial waste incineration plant. A dust size analyzer (Grimm 1.109) and a scanning mobility particle sizer (SMPS) were used to measure the aerosol mass concentration, mass size distribution, and number size distribution at five operation units (S1-S5) during periods of normal operation, furnace shutdown, and annual maintenance. The place with the highest measured PM10 concentration was located at the area of fly ash discharge from air pollution control equipment (S5) during the period of normal operation. Fine particles (PM2.5) constituted the majority of the emitted particles from the incineration plant. The mass size distributions (elucidated) made it clear that the size of aerosols caused by the increased particulate mass, resulting from work activities, were mostly greater than 1.5 μm. Whereas the number size distributions showed that the major diameters of particulates that caused the increase of particulate number concentrations, from work activities, were distributed in the sub micrometer range. The process of discharging fly ash from air pollution control equipment can significantly increase the emission of nanoparticles. The mass concentrations and size distributions of emitted particulates were different at each operation unit. This information is valuable for managers to take appropriate strategy to reduce the particulate emission and associated worker exposure.

  13. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation.

    PubMed

    He, Qian; Freakley, Simon J; Edwards, Jennifer K; Carley, Albert F; Borisevich, Albina Y; Mineo, Yuki; Haruta, Masatake; Hutchings, Graham J; Kiely, Christopher J

    2016-09-27

    The identity of active species in supported gold catalysts for low temperature carbon monoxide oxidation remains an unsettled debate. With large amounts of experimental evidence supporting theories of either gold nanoparticles or sub-nm gold species being active, it was recently proposed that a size-dependent activity hierarchy should exist. Here we study the diverging catalytic behaviours after heat treatment of Au/FeO x materials prepared via co-precipitation and deposition precipitation methods. After ruling out any support effects, the gold particle size distributions in different catalysts are quantitatively studied using aberration corrected scanning transmission electron microscopy (STEM). A counting protocol is developed to reveal the true particle size distribution from HAADF-STEM images, which reliably includes all the gold species present. Correlation of the populations of the various gold species present with catalysis results demonstrate that a size-dependent activity hierarchy must exist in the Au/FeO x catalyst.

  14. Limits of the memory coefficient in measuring correlated bursts

    NASA Astrophysics Data System (ADS)

    Jo, Hang-Hyun; Hiraoka, Takayuki

    2018-03-01

    Temporal inhomogeneities in event sequences of natural and social phenomena have been characterized in terms of interevent times and correlations between interevent times. The inhomogeneities of interevent times have been extensively studied, while the correlations between interevent times, often called correlated bursts, are far from being fully understood. For measuring the correlated bursts, two relevant approaches were suggested, i.e., memory coefficient and burst size distribution. Here a burst size denotes the number of events in a bursty train detected for a given time window. Empirical analyses have revealed that the larger memory coefficient tends to be associated with the heavier tail of the burst size distribution. In particular, empirical findings in human activities appear inconsistent, such that the memory coefficient is close to 0, while burst size distributions follow a power law. In order to comprehend these observations, by assuming the conditional independence between consecutive interevent times, we derive the analytical form of the memory coefficient as a function of parameters describing interevent time and burst size distributions. Our analytical result can explain the general tendency of the larger memory coefficient being associated with the heavier tail of burst size distribution. We also find that the apparently inconsistent observations in human activities are compatible with each other, indicating that the memory coefficient has limits to measure the correlated bursts.

  15. Measuring firm size distribution with semi-nonparametric densities

    NASA Astrophysics Data System (ADS)

    Cortés, Lina M.; Mora-Valencia, Andrés; Perote, Javier

    2017-11-01

    In this article, we propose a new methodology based on a (log) semi-nonparametric (log-SNP) distribution that nests the lognormal and enables better fits in the upper tail of the distribution through the introduction of new parameters. We test the performance of the lognormal and log-SNP distributions capturing firm size, measured through a sample of US firms in 2004-2015. Taking different levels of aggregation by type of economic activity, our study shows that the log-SNP provides a better fit of the firm size distribution. We also formally introduce the multivariate log-SNP distribution, which encompasses the multivariate lognormal, to analyze the estimation of the joint distribution of the value of the firm's assets and sales. The results suggest that sales are a better firm size measure, as indicated by other studies in the literature.

  16. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    NASA Astrophysics Data System (ADS)

    Plionis, A. A.; Peterson, D. S.; Tandon, L.; LaMont, S. P.

    2010-03-01

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid non-distructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  17. Platinum nanoparticle during electrochemical hydrogen evolution: Adsorbate distribution, active reaction species, and size effect

    DOE PAGES

    Tan, Teck L.; Wang, Lin -Lin; Zhang, Jia; ...

    2015-03-02

    For small Pt nanoparticles (NPs), catalytic activity is, as observed, adversely affected by size in the 1–3 nm range. We elucidate, via first-principles-based thermodynamics, the operation H* distribution and cyclic voltammetry (CV) during the hydrogen evolution reaction (HER) across the electrochemical potential, including the underpotential region (U ≤ 0) that is difficult to assess in experiment. We consider multiple adsorption sites on a 1 nm Pt NP model and show that the characteristic CV peaks from different H* species correspond well to experiment. We next quantify the activity contribution from each H* species to explain the adverse effect of size.more » From the resolved CV peaks at the standard hydrogen electrode potential (U = 0), we first deduce that the active species for the HER are the partially covered (100)-facet bridge sites and the (111)-facet hollow sites. Upon evaluation of the reaction barriers at operation H* distribution and microkinetic modeling of the exchange current, we find that the nearest-neighbor (100)-facet bridge site pairs have the lowest activation energy and contribute to ~75% of the NP activity. Edge bridge sites (fully covered by H*) per se are not active; however, they react with neighboring (100)-facet H* to account for ~18% of the activity, whereas (111)-facet hollow sites contribute little. As a result, extrapolating the relative contributions to larger NPs in which the ratio of facet-to-edge sites increases, we show that the adverse size effect of Pt NP HER activity kicks in for sizes below 2 nm.« less

  18. Specific Features in Measuring Particle Size Distributions in Highly Disperse Aerosol Systems

    NASA Astrophysics Data System (ADS)

    Zagaynov, V. A.; Vasyanovich, M. E.; Maksimenko, V. V.; Lushnikov, A. A.; Biryukov, Yu. G.; Agranovskii, I. E.

    2018-06-01

    The distribution of highly dispersed aerosols is studied. Particular attention is given to the diffusion dynamic approach, as it is the best way to determine particle size distribution. It shown that the problem can be divided into two steps: directly measuring particle penetration through diffusion batteries and solving the inverse problem (obtaining a size distribution from the measured penetrations). No reliable way of solving the so-called inverse problem is found, but it can be done by introducing a parametrized size distribution (i.e., a gamma distribution). The integral equation is therefore reduced to a system of nonlinear equations that can be solved by elementary mathematical means. Further development of the method requires an increase in sensitivity (i.e., measuring the dimensions of molecular clusters with radioactive sources, along with the activity of diffusion battery screens).

  19. Thermal induced carrier's transfer in bimodal size distribution InAs/GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Ilahi, B.; Alshehri, K.; Madhar, N. A.; Sfaxi, L.; Maaref, H.

    2018-06-01

    This work reports on the investigation of the thermal induced carriers' transfer mechanism in vertically stacked bimodal size distribution InAs/GaAs quantum dots (QD). A model treating the QD as a localized states ensemble (LSE) has been employed to fit the atypical temperature dependence of the photoluminescence (PL) emission energies and linewidth. The results suggest that thermally activated carriers transfer within the large size QD family occurs through the neighboring smaller size QD as an intermediate channel before direct carriers redistribution. The obtained activation energy suggests also the possible contribution of the wetting layer (WL) continuum states as a second mediator channel for carriers transfer.

  20. Comparing particle-size distributions in modern and ancient sand-bed rivers

    NASA Astrophysics Data System (ADS)

    Hajek, E. A.; Lynds, R. M.; Huzurbazar, S. V.

    2011-12-01

    Particle-size distributions yield valuable insight into processes controlling sediment supply, transport, and deposition in sedimentary systems. This is especially true in ancient deposits, where effects of changing boundary conditions and autogenic processes may be detected from deposited sediment. In order to improve interpretations in ancient deposits and constrain uncertainty associated with new methods for paleomorphodynamic reconstructions in ancient fluvial systems, we compare particle-size distributions in three active sand-bed rivers in central Nebraska (USA) to grain-size distributions from ancient sandy fluvial deposits. Within the modern rivers studied, particle-size distributions of active-layer, suspended-load, and slackwater deposits show consistent relationships despite some morphological and sediment-supply differences between the rivers. In particular, there is substantial and consistent overlap between bed-material and suspended-load distributions, and the coarsest material found in slackwater deposits is comparable to the coarse fraction of suspended-sediment samples. Proxy bed-load and slackwater-deposit samples from the Kayenta Formation (Lower Jurassic, Utah/Colorado, USA) show overlap similar to that seen in the modern rivers, suggesting that these deposits may be sampled for paleomorphodynamic reconstructions, including paleoslope estimation. We also compare grain-size distributions of channel, floodplain, and proximal-overbank deposits in the Willwood (Paleocene/Eocene, Bighorn Basin, Wyoming, USA), Wasatch (Paleocene/Eocene, Piceance Creek Basin, Colorado, USA), and Ferris (Cretaceous/Paleocene, Hanna Basin, Wyoming, USA) formations. Grain-size characteristics in these deposits reflect how suspended- and bed-load sediment is distributed across the floodplain during channel avulsion events. In order to constrain uncertainty inherent in such estimates, we evaluate uncertainty associated with sample collection, preparation, analytical particle-size analysis, and statistical characterization in both modern and ancient settings. We consider potential error contributions and evaluate the degree to which this uncertainty might be significant in modern sediment-transport studies and ancient paleomorphodynamic reconstructions.

  1. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Qian; Freakley, Simon J.; Edwards, Jennifer K.

    The identity of active species in supported gold catalysts for low temperature carbon monoxide oxidation remains an unsettled debate. With large amounts of experimental evidence supporting theories of either gold nanoparticles or sub-nm gold species being active, it was recently proposed that a size-dependent activity hierarchy should exist. Here we study the diverging catalytic behaviors after heat treatment of Au/FeO x materials prepared via co-precipitation and deposition precipitation methods. After ruling out any support effects, the gold particle size distributions in different catalysts are quantitatively studied using aberration corrected scanning transmission electron microscopy (STEM). A counting protocol is developed tomore » reveal the true particle size distribution from HAADF-STEM images, which reliably includes all the gold species present. As a result, correlation of the populations of the various gold species present with catalysis results demonstrate that a size-dependent activity hierarchy must exist in the Au/FeO x catalyst.« less

  2. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation

    DOE PAGES

    He, Qian; Freakley, Simon J.; Edwards, Jennifer K.; ...

    2016-09-27

    The identity of active species in supported gold catalysts for low temperature carbon monoxide oxidation remains an unsettled debate. With large amounts of experimental evidence supporting theories of either gold nanoparticles or sub-nm gold species being active, it was recently proposed that a size-dependent activity hierarchy should exist. Here we study the diverging catalytic behaviors after heat treatment of Au/FeO x materials prepared via co-precipitation and deposition precipitation methods. After ruling out any support effects, the gold particle size distributions in different catalysts are quantitatively studied using aberration corrected scanning transmission electron microscopy (STEM). A counting protocol is developed tomore » reveal the true particle size distribution from HAADF-STEM images, which reliably includes all the gold species present. As a result, correlation of the populations of the various gold species present with catalysis results demonstrate that a size-dependent activity hierarchy must exist in the Au/FeO x catalyst.« less

  3. Particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist Route "Liczyrzepa" Mine in Kowary Adit

    NASA Astrophysics Data System (ADS)

    Wołoszczuk, Katarzyna; Skubacz, Krystian

    2018-01-01

    Central Laboratory for Radiological Protection, in cooperation with Central Mining Institute performed measurements of radon concentration in air, potential alpha energy concentration (PAEC), particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist-Educational Route "Liczyrzepa" Mine in Kowary Adit. A research study was developed to investigate the appropriate dose conversion factors for short-lived radon progeny. The particle size distribution of radon progeny was determined using Radon Progeny Particle Size Spectrometer (RPPSS). The device allows to receive the distribution of PAEC in the particle size range from 0.6 nm to 2494 nm, based on their activity measured on 8 stages composed of impaction plates or diffusion screens. The measurements of the ambient airborne particle size distribution were performed in the range from a few nanometres to about 20 micrometres using Aerodynamic Particle Sizer (APS) spectrometer and the Scanning Mobility Particle Sizer Spectrometer (SMPS).

  4. Pore size distribution and supercritical hydrogen adsorption in activated carbon fibers

    NASA Astrophysics Data System (ADS)

    Purewal, J. J.; Kabbour, H.; Vajo, J. J.; Ahn, C. C.; Fultz, B.

    2009-05-01

    Pore size distributions (PSD) and supercritical H2 isotherms have been measured for two activated carbon fiber (ACF) samples. The surface area and the PSD both depend on the degree of activation to which the ACF has been exposed. The low-surface-area ACF has a narrow PSD centered at 0.5 nm, while the high-surface-area ACF has a broad distribution of pore widths between 0.5 and 2 nm. The H2 adsorption enthalpy in the zero-coverage limit depends on the relative abundance of the smallest pores relative to the larger pores. Measurements of the H2 isosteric adsorption enthalpy indicate the presence of energy heterogeneity in both ACF samples. Additional measurements on a microporous, coconut-derived activated carbon are presented for reference.

  5. Pore size distribution and supercritical hydrogen adsorption in activated carbon fibers.

    PubMed

    Purewal, J J; Kabbour, H; Vajo, J J; Ahn, C C; Fultz, B

    2009-05-20

    Pore size distributions (PSD) and supercritical H2 isotherms have been measured for two activated carbon fiber (ACF) samples. The surface area and the PSD both depend on the degree of activation to which the ACF has been exposed. The low-surface-area ACF has a narrow PSD centered at 0.5 nm, while the high-surface-area ACF has a broad distribution of pore widths between 0.5 and 2 nm. The H2 adsorption enthalpy in the zero-coverage limit depends on the relative abundance of the smallest pores relative to the larger pores. Measurements of the H2 isosteric adsorption enthalpy indicate the presence of energy heterogeneity in both ACF samples. Additional measurements on a microporous, coconut-derived activated carbon are presented for reference.

  6. How the Emitted Size Distribution and Mixing State of Feldspar Affect Ice Nucleating Particles in a Global Model

    NASA Technical Reports Server (NTRS)

    Perlwitz, Jan P.; Fridlind, Ann M.; Knopf, Daniel A.; Miller, Ron L.; García-Pando, Carlos Perez

    2017-01-01

    The effect of aerosol particles on ice nucleation and, in turn, the formation of ice and mixed phase clouds is recognized as one of the largest sources of uncertainty in climate prediction. We apply an improved dust mineral specific aerosol module in the NASA GISS Earth System ModelE, which takes into account soil aggregates and their fragmentation at emission as well as the emission of large particles. We calculate ice nucleating particle concentrations from K-feldspar abundance for an active site parameterization for a range of activation temperatures and external and internal mixing assumption. We find that the globally averaged INP concentration is reduced by a factor of two to three, compared to a simple assumption on the size distribution of emitted dust minerals. The decrease can amount to a factor of five in some geographical regions. The results vary little between external and internal mixing and different activation temperatures, except for the coldest temperatures. In the sectional size distribution, the size range 24 micrometer contributes the largest INP number.

  7. How the Emitted Size Distribution and Mixing State of Feldspar Affect Ice Nucleating Particles in a Global Model

    NASA Astrophysics Data System (ADS)

    Perlwitz, J. P.; Fridlind, A. M.; Knopf, D. A.; Miller, R. L.; Pérez García-Pando, C.

    2017-12-01

    The effect of aerosol particles on ice nucleation and, in turn, the formation of ice and mixed phase clouds is recognized as one of the largest sources of uncertainty in climate prediction. We apply an improved dust mineral specific aerosol module in the NASA GISS Earth System ModelE, which takes into account soil aggregates and their fragmentation at emission as well as the emission of large particles. We calculate ice nucleating particle concentrations from K-feldspar abundance for an active site parameterization for a range of activation temperatures and external and internal mixing assumption. We find that the globally averaged INP concentration is reduced by a factor of two to three, compared to a simple assumption on the size distribution of emitted dust minerals. The decrease can amount to a factor of five in some geographical regions. The results vary little between external and internal mixing and different activation temperatures, except for the coldest temperatures. In the sectional size distribution, the size range 2-4 μm contributes the largest INP number.

  8. Sampling the structure and chemical order in assemblies of ferromagnetic nanoparticles by nuclear magnetic resonance

    PubMed Central

    Liu, Yuefeng; Luo, Jingjie; Shin, Yooleemi; Moldovan, Simona; Ersen, Ovidiu; Hébraud, Anne; Schlatter, Guy; Pham-Huu, Cuong; Meny, Christian

    2016-01-01

    Assemblies of nanoparticles are studied in many research fields from physics to medicine. However, as it is often difficult to produce mono-dispersed particles, investigating the key parameters enhancing their efficiency is blurred by wide size distributions. Indeed, near-field methods analyse a part of the sample that might not be representative of the full size distribution and macroscopic methods give average information including all particle sizes. Here, we introduce temperature differential ferromagnetic nuclear resonance spectra that allow sampling the crystallographic structure, the chemical composition and the chemical order of non-interacting ferromagnetic nanoparticles for specific size ranges within their size distribution. The method is applied to cobalt nanoparticles for catalysis and allows extracting the size effect from the crystallographic structure effect on their catalytic activity. It also allows sampling of the chemical composition and chemical order within the size distribution of alloyed nanoparticles and can thus be useful in many research fields. PMID:27156575

  9. SEASONAL VARIATION OF THE PARTICLE SIZE DISTRIBUTION OF POLYCYCLIC AROMATIC HYDROCARBONS AND OF MAJOR AEROSOL SPECIES IN CLAREMONT, CALIFORNIA. (R827352C020)

    EPA Science Inventory

    As part of the Southern California Particle Center and Supersite (SCPCS) activities, we measured, during all seasons, particle size distributions of 12 priority pollutant polycyclic aromatic hydrocarbons (PAHs), concurrently with elemental carbon (EC), organic carbon (OC), sul...

  10. Measurements of cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2011-04-01

    This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN) activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT) and Köhler theory (KT) to describe the CCN activity of the considered samples. Regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC) analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (of low solubility compounds like calcite) present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method. Based on a threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to describe the CCN activity of aged or hygroscopic dusts.

  11. Characterizations of particle size distribution of the droplets exhaled by sneeze

    PubMed Central

    Han, Z. Y.; Weng, W. G.; Huang, Q. Y.

    2013-01-01

    This work focuses on the size distribution of sneeze droplets exhaled immediately at mouth. Twenty healthy subjects participated in the experiment and 44 sneezes were measured by using a laser particle size analyser. Two types of distributions are observed: unimodal and bimodal. For each sneeze, the droplets exhaled at different time in the sneeze duration have the same distribution characteristics with good time stability. The volume-based size distributions of sneeze droplets can be represented by a lognormal distribution function, and the relationship between the distribution parameters and the physiological characteristics of the subjects are studied by using linear regression analysis. The geometric mean of the droplet size of all the subjects is 360.1 µm for unimodal distribution and 74.4 µm for bimodal distribution with geometric standard deviations of 1.5 and 1.7, respectively. For the two peaks of the bimodal distribution, the geometric mean (the geometric standard deviation) is 386.2 µm (1.8) for peak 1 and 72.0 µm (1.5) for peak 2. The influences of the measurement method, the limitations of the instrument, the evaporation effects of the droplets, the differences of biological dynamic mechanism and characteristics between sneeze and other respiratory activities are also discussed. PMID:24026469

  12. Active control of impulsive noise with symmetric α-stable distribution based on an improved step-size normalized adaptive algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Yali; Zhang, Qizhi; Yin, Yixin

    2015-05-01

    In this paper, active control of impulsive noise with symmetric α-stable (SαS) distribution is studied. A general step-size normalized filtered-x Least Mean Square (FxLMS) algorithm is developed based on the analysis of existing algorithms, and the Gaussian distribution function is used to normalize the step size. Compared with existing algorithms, the proposed algorithm needs neither the parameter selection and thresholds estimation nor the process of cost function selection and complex gradient computation. Computer simulations have been carried out to suggest that the proposed algorithm is effective for attenuating SαS impulsive noise, and then the proposed algorithm has been implemented in an experimental ANC system. Experimental results show that the proposed scheme has good performance for SαS impulsive noise attenuation.

  13. Tuning the gate-opening pressure and particle size distribution of the switchable metal-organic framework DUT-8(Ni) by controlled nucleation in a micromixer.

    PubMed

    Miura, Hiroki; Bon, Volodymyr; Senkovska, Irena; Ehrling, Sebastian; Watanabe, Satoshi; Ohba, Masaaki; Kaskel, Stefan

    2017-10-17

    Controlled nucleation in a micromixer and further crystal growth were used to synthesize Ni 2 (2,6-ndc) 2 dabco (2,6-ndc - 2,6-naphthalenedicarboxylate, dabco - 1,4-diazabicyclo[2.2.2]octane), also termed DUT-8(Ni) (DUT = Dresden University of Technology), with narrow particle size distribution in a range of a few nm to several μm. The crystal size was found to significantly affect the switching characteristics, in particular the gate opening pressure in nitrogen adsorption isotherms at 77 K for this highly porous and flexible network. Below a critical size of about 500 nm, a type Ia isotherm typical of rigid MOFs is observed, while above approximately 1000 nm a pronounced gating behaviour is detected, starting at p/p 0 = 0.2. With increasing crystal size this transition gate becomes steeper indicating a more uniform distribution of activation energies within the crystal ensemble. At an intermediate size (500-1000 nm), the DUT-8(Ni) crystals close during activation but cannot be reopened by nitrogen at 77 K possibly indicating monodomain switching.

  14. Modeling of Grain Size Distribution of Tsunami Sand Deposits in V-shaped Valley of Numanohama During the 2011 Tohoku Tsunami

    NASA Astrophysics Data System (ADS)

    Gusman, A. R.; Satake, K.; Goto, T.; Takahashi, T.

    2016-12-01

    Estimating tsunami amplitude from tsunami sand deposit has been a challenge. The grain size distribution of tsunami sand deposit may have correlation with tsunami inundation process, and further with its source characteristics. In order to test this hypothesis, we need a tsunami sediment transport model that can accurately estimate grain size distribution of tsunami deposit. Here, we built and validate a tsunami sediment transport model that can simulate grain size distribution. Our numerical model has three layers which are suspended load layer, active bed layer, and parent bed layer. The two bed layers contain information about the grain size distribution. This numerical model can handle a wide range of grain sizes from 0.063 (4 ϕ) to 5.657 mm (-2.5 ϕ). We apply the numerical model to simulate the sedimentation process during the 2011 Tohoku earthquake in Numanohama, Iwate prefecture, Japan. The grain size distributions at 15 sample points along a 900 m transect from the beach are used to validate the tsunami sediment transport model. The tsunami deposits are dominated by coarse sand with diameter of 0.5 - 1 mm and their thickness are up to 25 cm. Our tsunami model can well reproduce the observed tsunami run-ups that are ranged from 16 to 34 m along the steep valley in Numanohama. The shapes of the simulated grain size distributions at many sample points located within 300 m from the shoreline are similar to the observations. The differences between observed and simulated peak of grain size distributions are less than 1 ϕ. Our result also shows that the simulated sand thickness distribution along the transect is consistent with the observation.

  15. Lognormal field size distributions as a consequence of economic truncation

    USGS Publications Warehouse

    Attanasi, E.D.; Drew, L.J.

    1985-01-01

    The assumption of lognormal (parent) field size distributions has for a long time been applied to resource appraisal and evaluation of exploration strategy by the petroleum industry. However, frequency distributions estimated with observed data and used to justify this hypotheses are conditional. Examination of various observed field size distributions across basins and over time shows that such distributions should be regarded as the end result of an economic filtering process. Commercial discoveries depend on oil and gas prices and field development costs. Some new fields are eliminated due to location, depths, or water depths. This filtering process is called economic truncation. Economic truncation may occur when predictions of a discovery process are passed through an economic appraisal model. We demonstrate that (1) economic resource appraisals, (2) forecasts of levels of petroleum industry activity, and (3) expected benefits of developing and implementing cost reducing technology are sensitive to assumptions made about the nature of that portion of (parent) field size distribution subject to economic truncation. ?? 1985 Plenum Publishing Corporation.

  16. Determination of hand soil loading, soil transfer, and particle size variations after hand-pressing and hand-mouthing activities

    EPA Science Inventory

    Hand-pressing trials and hand-to-mouth soil transfer experiments were conducted to better understand soil loadings, soil transfer ratios for three mouthing activities, and variations in particle size distributions under various conditions. Results indicated that sand caused highe...

  17. Where Gibrat meets Zipf: Scale and scope of French firms

    NASA Astrophysics Data System (ADS)

    Bee, Marco; Riccaboni, Massimo; Schiavo, Stefano

    2017-09-01

    The proper characterization of the size distribution and growth of firms represents an important issue in economics and business. We use the Maximum Entropy approach to assess the plausibility of the assumption that firm size follows Lognormal or Pareto distributions, which underlies most recent works on the subject. A comprehensive dataset covering the universe of French firms allows us to draw two major conclusions. First, the Pareto hypothesis for the whole distribution should be rejected. Second, by discriminating across firms based on the number of products sold and markets served, we find that, within the class of multi-product companies active in multiple markets, the distribution converges to a Zipf's law. Conversely, Lognormal distribution is a good benchmark for small single-product firms. The size distribution of firms largely depends on firms' diversification patterns.

  18. Impact of aerosol size representation on modeling aerosol-cloud interactions

    DOE PAGES

    Zhang, Y.; Easter, R. C.; Ghan, S. J.; ...

    2002-11-07

    In this study, we use a 1-D version of a climate-aerosol-chemistry model with both modal and sectional aerosol size representations to evaluate the impact of aerosol size representation on modeling aerosol-cloud interactions in shallow stratiform clouds observed during the 2nd Aerosol Characterization Experiment. Both the modal (with prognostic aerosol number and mass or prognostic aerosol number, surface area and mass, referred to as the Modal-NM and Modal-NSM) and the sectional approaches (with 12 and 36 sections) predict total number and mass for interstitial and activated particles that are generally within several percent of references from a high resolution 108-section approach.more » The modal approach with prognostic aerosol mass but diagnostic number (referred to as the Modal-M) cannot accurately predict the total particle number and surface areas, with deviations from the references ranging from 7-161%. The particle size distributions are sensitive to size representations, with normalized absolute differences of up to 12% and 37% for the 36- and 12-section approaches, and 30%, 39%, and 179% for the Modal-NSM, Modal-NM, and Modal-M, respectively. For the Modal-NSM and Modal-NM, differences from the references are primarily due to the inherent assumptions and limitations of the modal approach. In particular, they cannot resolve the abrupt size transition between the interstitial and activated aerosol fractions. For the 12- and 36-section approaches, differences are largely due to limitations of the parameterized activation for non-log-normal size distributions, plus the coarse resolution for the 12-section case. Differences are larger both with higher aerosol (i.e., less complete activation) and higher SO2 concentrations (i.e., greater modification of the initial aerosol distribution).« less

  19. Diurnal and seasonal variations of concentration and size distribution of nano aerosols (10-1100 nm) enclosing radon decay products in the Postojna Cave, Slovenia.

    PubMed

    Bezek, M; Gregoric, A; Kávási, N; Vaupotic, J

    2012-11-01

    At the lowest point along the tourist route in the Postojna Cave, the activity concentration of radon ((222)Rn) short-lived decay products and number concentration and size distribution of background aerosol particles in the size range of 10-1100 nm were measured. In the warm yearly season, aerosol concentration was low (52 cm(-3)) with 21 % particles smaller than 50 nm, while in the cold season, it was higher (1238 cm(-3)) with 8 % of <50 nm particles. Radon activity concentrations were 4489 and 1108 Bq m(-3), and fractions of unattached radon decay products were 0.62 and 0.13, respectively.

  20. Multi-step rhodopsin inactivation schemes can account for the size variability of single photon responses in Limulus ventral photoreceptors

    PubMed Central

    1994-01-01

    Limulus ventral photoreceptors generate highly variable responses to the absorption of single photons. We have obtained data on the size distribution of these responses, derived the distribution predicted from simple transduction cascade models and compared the theory and data. In the simplest of models, the active state of the visual pigment (defined by its ability to activate G protein) is turned off in a single reaction. The output of such a cascade is predicted to be highly variable, largely because of stochastic variation in the number of G proteins activated. The exact distribution predicted is exponential, but we find that an exponential does not adequately account for the data. The data agree much better with the predictions of a cascade model in which the active state of the visual pigment is turned off by a multi-step process. PMID:8057085

  1. Effect of sacrificial agents on the dispersion of metal cocatalysts for photocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Cao, Shaowen; Shen, Baojia; Huang, Qian; Chen, Zhe

    2018-06-01

    Surface photodeposition of noble metal cocatalyst has been regarded as an effective approach to facilitate the separation of charge carriers and reduce the over-potential of water reduction, thus to enhance the photocatalytic H2-production activities of semiconductor photocatalyst. Herein, the influences of sacrificial agents used in the photodeposition process on the dispersion of noble metal nanoparticles are investigated, via a series of technique of photocatalytic hydrogen evolution test, microstructure analysis and photoelectrochemical measurement. As a result, the sacrificial agents are found to show large impact on the loading amount, particle size and distribution of different metals on the surface of g-C3N4. The real loading amount of Pt and Au is higher in methanol solution than that in triethanolamine solution. Better distribution and smaller size of Pt nanoparticles are achieved in the presence of methanol; while better distribution and smaller size of Au nanoparticles are achieved in the presence of triethanolamine. As a result, quite different charge transfer ability is achieved for the synthesized Pt and Au decorated g-C3N4, which subsequently leads to disparate photocatalytic activities of the same g-C3N4 photocatalyst under various conditions. The finding in this work indicates that the valid deposition content, particle size and distribution of metal cocatalysts should be carefully taken into account when comparing the photocatalytic activities among various samples.

  2. Effects of grain size, mineralogy, and acid-extractable grain coatings on the distribution of the fallout radionuclides 7Be, 10Be, 137Cs, and 210Pb in river sediment

    NASA Astrophysics Data System (ADS)

    Singleton, Adrian A.; Schmidt, Amanda H.; Bierman, Paul R.; Rood, Dylan H.; Neilson, Thomas B.; Greene, Emily Sophie; Bower, Jennifer A.; Perdrial, Nicolas

    2017-01-01

    Grain-size dependencies in fallout radionuclide activity have been attributed to either increase in specific surface area in finer grain sizes or differing mineralogical abundances in different grain sizes. Here, we consider a third possibility, that the concentration and composition of grain coatings, where fallout radionuclides reside, controls their activity in fluvial sediment. We evaluated these three possible explanations in two experiments: (1) we examined the effect of sediment grain size, mineralogy, and composition of the acid-extractable materials on the distribution of 7Be, 10Be, 137Cs, and unsupported 210Pb in detrital sediment samples collected from rivers in China and the United States, and (2) we periodically monitored 7Be, 137Cs, and 210Pb retention in samples of known composition exposed to natural fallout in Ohio, USA for 294 days. Acid-extractable materials (made up predominately of Fe, Mn, Al, and Ca from secondary minerals and grain coatings produced during pedogenesis) are positively related to the abundance of fallout radionuclides in our sediment samples. Grain-size dependency of fallout radionuclide concentrations was significant in detrital sediment samples, but not in samples exposed to fallout under controlled conditions. Mineralogy had a large effect on 7Be and 210Pb retention in samples exposed to fallout, suggesting that sieving sediments to a single grain size or using specific surface area-based correction terms may not completely control for preferential distribution of these nuclides. We conclude that time-dependent geochemical, pedogenic, and sedimentary processes together result in the observed differences in nuclide distribution between different grain sizes and substrate compositions. These findings likely explain variability of measured nuclide activities in river networks that exceeds the variability introduced by analytical techniques as well as spatial and temporal differences in erosion rates and processes. In short, we suggest that presence and amount of pedogenic grain coatings is more important than either specific surface area or surface charge in setting the distribution of fallout radionuclides.

  3. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    NASA Astrophysics Data System (ADS)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  4. Technique for active measurement of atmospheric transmittance using an imaging system: implementation at 10.6-μm wavelength

    NASA Astrophysics Data System (ADS)

    Sadot, Dan; Zaarur, O.; Zaarur, S.; Kopeika, Norman S.

    1994-10-01

    An active method is presented for measuring atmospheric transmittance with an imaging system. In comparison to other measurement methods, this method has the advantage of immunity to background noise, independence of atmospheric conditions such as solar radiation, and an improved capability to evaluate effects of turbulence on the measurements. Other significant advantages are integration over all particulate size distribution effects including very small and very large particulates whose concentration is hard to measure, and the fact that this method is a path-integrated measurement. In this implementation attenuation deriving from molecular absorption and from small and large particulate scatter and absorption and their weather dependences are separated out. Preliminary results indicate high correlation with direct transmittance calculations via particle size distribution measurement, and that even at 10.6 micrometers wavelength atmospheric transmission depends noticeably on aerosol size distribution and concentration.

  5. A technique for active measurement of atmospheric transmittance using an imaging system: implementation at 10.6 μm wavelength

    NASA Astrophysics Data System (ADS)

    Sadot, D.; Zaarur, O.; Zaarur, S.

    1995-12-01

    An active method is presented for measuring atmospheric transmittance with an imaging system. In comparison to other measurement methods, this method has the advantage of immunity to background noise, independence of atmospheric conditions such as solar radiation, and an improved capability to evaluate effects of turbulence on the measurements. Other significant advantages are integration over all particulate size distribution effects including very small and very large particulates whose concentration is hard to measure, and the fact that this method is a path-integrated measurement. Attenuation deriving from molecular absorption and from small and large particulate scatter and absorption and their weather dependences are separated out. Preliminary results indicate high correlation with direct transmittance calculations via particle size distribution measurement, and that even at 10.6 μm wavelength atmospheric transmission depends noticeably on aerosol size distribution and concentration.

  6. The measurement of the size distribution of artificial fogs

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Cliff, W. C.; Mcdonald, J. R.; Ozarski, R.; Thomson, J. A. L.; Huffaker, R. M.

    1974-01-01

    The size-distribution of the fog droplets at various fog particle concentrations in fog chamber was determined by two methods: (1) the Stokes' velocity photographic method and (2) using the active scattering particle spectrometer. It is shown that the two techniques are accurate in two different ranges of particle size - the former in the radii range (0.1 micrometers to 10.0 micrometers), and the latter for radii greater than 10.0 micrometers. This was particularly true for high particle concentration, low visibility fogs.

  7. Statistical electric field and switching time distributions in PZT 1Nb2Sr ceramics: Crystal- and microstructure effects

    NASA Astrophysics Data System (ADS)

    Zhukov, Sergey; Kungl, Hans; Genenko, Yuri A.; von Seggern, Heinz

    2014-01-01

    Dispersive polarization response of ferroelectric PZT ceramics is analyzed assuming the inhomogeneous field mechanism of polarization switching. In terms of this model, the local polarization switching proceeds according to the Kolmogorov-Avrami-Ishibashi scenario with the switching time determined by the local electric field. As a result, the total polarization reversal is dominated by the statistical distribution of the local field magnitudes. Microscopic parameters of this model (the high-field switching time and the activation field) as well as the statistical field and consequent switching time distributions due to disorder at a mesoscopic scale can be directly determined from a set of experiments measuring the time dependence of the total polarization switching, when applying electric fields of different magnitudes. PZT 1Nb2Sr ceramics with Zr/Ti ratios 51.5/48.5, 52.25/47.75, and 60/40 with four different grain sizes each were analyzed following this approach. Pronounced differences of field and switching time distributions were found depending on the Zr/Ti ratios. Varying grain size also affects polarization reversal parameters, but in another way. The field distributions remain almost constant with grain size whereas switching times and activation field tend to decrease with increasing grain size. The quantitative changes of the latter parameters with grain size are very different depending on composition. The origin of the effects on the field and switching time distributions are related to differences in structural and microstructural characteristics of the materials and are discussed with respect to the hysteresis loops observed under bipolar electrical cycling.

  8. Where are the NGOs and why? The distribution of health and development NGOs in Bolivia.

    PubMed

    Galway, Lindsay P; Corbett, Kitty K; Zeng, Leilei

    2012-11-23

    The presence and influence of nongovernmental organizations (NGOs) in the landscape of global health and development have dramatically increased over the past several decades. The distribution of NGO activity and the ways in which contextual factors influence the distribution of NGO activity across geographies merit study. This paper explores the distribution of NGO activity, using Bolivia as a case study, and identifies local factors that are related to the distribution of NGO activity across municipalities in Bolivia. The research question is addressed using a geographic information system (GIS) and multiple regression analyses of count data. We used count data of the total number of NGO projects across Bolivian municipalities to measure NGO activity both in general and in the health sector specifically and national census data for explanatory variables of interest. This study provides one of the first empirical analyses exploring factors related to the distribution of NGO activity at the national scale. Our analyses show that NGO activity in Bolivia, both in general and health-sector specific, is distributed unevenly across the country. Results indicate that NGO activity is related to population size, extent of urbanization, size of the indigenous population, and health system coverage. Results for NGO activity in general and health-sector specific NGO activity were similar. The uneven distribution of NGO activity may suggest a lack of co-ordination among NGOs working in Bolivia as well as a lack of co-ordination among NGO funders. Co-ordination of NGO activity is most needed in regions characterized by high NGO activity in order to avoid duplication of services and programmes and inefficient use of limited resources. Our findings also indicate that neither general nor health specific NGO activity is related to population need, when defined as population health status or education level or poverty levels. Considering these results we discuss broader implications for global health and development and make several recommendations relevant for development and health practice and research.

  9. Where are the NGOs and why? The distribution of health and development NGOs in Bolivia

    PubMed Central

    2012-01-01

    Background The presence and influence of nongovernmental organizations (NGOs) in the landscape of global health and development have dramatically increased over the past several decades. The distribution of NGO activity and the ways in which contextual factors influence the distribution of NGO activity across geographies merit study. This paper explores the distribution of NGO activity, using Bolivia as a case study, and identifies local factors that are related to the distribution of NGO activity across municipalities in Bolivia. Methods The research question is addressed using a geographic information system (GIS) and multiple regression analyses of count data. We used count data of the total number of NGO projects across Bolivian municipalities to measure NGO activity both in general and in the health sector specifically and national census data for explanatory variables of interest. Results This study provides one of the first empirical analyses exploring factors related to the distribution of NGO activity at the national scale. Our analyses show that NGO activity in Bolivia, both in general and health-sector specific, is distributed unevenly across the country. Results indicate that NGO activity is related to population size, extent of urbanization, size of the indigenous population, and health system coverage. Results for NGO activity in general and health-sector specific NGO activity were similar. Conclusions The uneven distribution of NGO activity may suggest a lack of co-ordination among NGOs working in Bolivia as well as a lack of co-ordination among NGO funders. Co-ordination of NGO activity is most needed in regions characterized by high NGO activity in order to avoid duplication of services and programmes and inefficient use of limited resources. Our findings also indicate that neither general nor health specific NGO activity is related to population need, when defined as population health status or education level or poverty levels. Considering these results we discuss broader implications for global health and development and make several recommendations relevant for development and health practice and research. PMID:23173815

  10. The effect of different physical activity levels on muscle fiber size and type distribution of lumbar multifidus. A biopsy study on low back pain patient groups and healthy control subjects.

    PubMed

    Mazis, N; Papachristou, D J; Zouboulis, P; Tyllianakis, M; Scopa, C D; Megas, P

    2009-12-01

    Previous studies examining the multifidus fiber characteristics among low back pain (LBP) patients have not considered the variable of physical activity. The present study sought to investigate the muscle fiber size and type distribution of the lumbar multifidus muscle among LBP patient groups with different physical activity levels and healthy controls. Sixty-four patients were assigned to one of three groups named according to the physical activity level, determined for each patient by the International Physical Activity Questionnaire. These were low (LPA), medium (MPA) and high (HPA) physical activity groups. A control group comprising of 17 healthy individuals was also recruited. Muscle biopsy samples were obtained from the multifidus muscle at the level L4-L5. contrast with the control group, LBP patient groups showed a significantly higher Type II fiber distribution as well as reduced diameter in both fiber types (P<0.05). The physical activity level did not have an effect on multifidus characteristics since no significant differences were observed in fiber type and diameter (P>0.05) among LPA, MPA and HPA patient groups. Various pathological conditions were detected which were more pronounced in LBP groups compared to the control (P<0.05). Males had a larger fiber diameter compared to females for both fiber types (P<0.05). The results showed that the level of physical activity did not affect muscle fiber size and type distribution among LBP patients groups. These findings suggest that not only inactivity but also high physical activity levels can have an adverse effect on the multifidus muscle fiber characteristics.

  11. Tin particle size measurements in high explosively driven shockwave experiments using Mie scattering method

    NASA Astrophysics Data System (ADS)

    Monfared, Shabnam; Buttler, William; Schauer, Martin; Lalone, Brandon; Pack, Cora; Stevens, Gerald; Stone, Joseph; Special Technologies Laboratory Collaboration; Los Alamos National Laboratory Team

    2014-03-01

    Los Alamos National Laboratory is actively engaged in the study of material failure physics to support the hydrodynamic models development, where an important failure mechanism of explosively shocked metals causes mass ejection from the backside of a shocked surface with surface perturbations. Ejecta models are in development for this situation. Our past work has clearly shown that the total ejected mass and mass-velocity distribution sensitively link to the wavelength and amplitude of these perturbations. While we have had success developing ejecta mass and mass-velocity models, we need to better understand the size and size-velocity distributions of the ejected mass. To support size measurements we have developed a dynamic Mie scattering diagnostic based on a CW laser that permits measurement of the forward attenuation cross-section combined with a dynamic mass-density and mass-velocity distribution, as well as a measurement of the forward scattering cross-section at 12 angles (5- 32.5 degrees) in increments of 2.5 degrees. We compare size distribution followed from Beers law with attenuation cross-section and mass measurement to the dynamic size distribution determined from scattering cross-section alone. We report results from our first quality experiments.

  12. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems.

    PubMed

    Huxman, Travis E; Snyder, Keirith A; Tissue, David; Leffler, A Joshua; Ogle, Kiona; Pockman, William T; Sandquist, Darren R; Potts, Daniel L; Schwinning, Susan

    2004-10-01

    In the arid and semiarid regions of North America, discrete precipitation pulses are important triggers for biological activity. The timing and magnitude of these pulses may differentially affect the activity of plants and microbes, combining to influence the C balance of desert ecosystems. Here, we evaluate how a "pulse" of water influences physiological activity in plants, soils and ecosystems, and how characteristics, such as precipitation pulse size and frequency are important controllers of biological and physical processes in arid land ecosystems. We show that pulse size regulates C balance by determining the temporal duration of activity for different components of the biota. Microbial respiration responds to very small events, but the relationship between pulse size and duration of activity likely saturates at moderate event sizes. Photosynthetic activity of vascular plants generally increases following relatively larger pulses or a series of small pulses. In this case, the duration of physiological activity is an increasing function of pulse size up to events that are infrequent in these hydroclimatological regions. This differential responsiveness of photosynthesis and respiration results in arid ecosystems acting as immediate C sources to the atmosphere following rainfall, with subsequent periods of C accumulation should pulse size be sufficient to initiate vascular plant activity. Using the average pulse size distributions in the North American deserts, a simple modeling exercise shows that net ecosystem exchange of CO2 is sensitive to changes in the event size distribution representative of wet and dry years. An important regulator of the pulse response is initial soil and canopy conditions and the physical structuring of bare soil and beneath canopy patches on the landscape. Initial condition influences responses to pulses of varying magnitude, while bare soil/beneath canopy patches interact to introduce nonlinearity in the relationship between pulse size and soil water response. Building on this conceptual framework and developing a greater understanding of the complexities of these eco-hydrologic systems may enhance our ability to describe the ecology of desert ecosystems and their sensitivity to global change.

  13. Cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2011-08-01

    This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN) activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT) and Köhler theory (KT) to describe the CCN activity of the considered samples. Wet generated regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Wet generated clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC) analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (from low solubility compounds like calcite) present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method. Based on the method of threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to describe the CCN activity of aged or hygroscopic dusts.

  14. Modeling and Scaling of the Distribution of Trade Avalanches in a STOCK Market

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Joo

    We study the trading activity in the Korea Stock Exchange by considering trade avalanches. A series of successive trading with small trade time interval is regarded as a trade avalanche of which the size s is defined as the number of trade in a series of successive trades. We measure the distribution of trade avalanches sizes P(s) and find that it follows the power-law behavior P(s) ~ s-α with the exponent α ≈ 2 for two stocks with the largest number of trades. A simple stochastic model which describes the power-law behavior of the distribution of trade avalanche size is introduced. In the model it is assumed that the some trades induce the accompanying trades, which results in the trade avalanches and we find that the distribution of the trade avalanche size also follows power-law behavior with the exponent α ≈ 2.

  15. Avalanches and generalized memory associativity in a network model for conscious and unconscious mental functioning

    NASA Astrophysics Data System (ADS)

    Siddiqui, Maheen; Wedemann, Roseli S.; Jensen, Henrik Jeldtoft

    2018-01-01

    We explore statistical characteristics of avalanches associated with the dynamics of a complex-network model, where two modules corresponding to sensorial and symbolic memories interact, representing unconscious and conscious mental processes. The model illustrates Freud's ideas regarding the neuroses and that consciousness is related with symbolic and linguistic memory activity in the brain. It incorporates the Stariolo-Tsallis generalization of the Boltzmann Machine in order to model memory retrieval and associativity. In the present work, we define and measure avalanche size distributions during memory retrieval, in order to gain insight regarding basic aspects of the functioning of these complex networks. The avalanche sizes defined for our model should be related to the time consumed and also to the size of the neuronal region which is activated, during memory retrieval. This allows the qualitative comparison of the behaviour of the distribution of cluster sizes, obtained during fMRI measurements of the propagation of signals in the brain, with the distribution of avalanche sizes obtained in our simulation experiments. This comparison corroborates the indication that the Nonextensive Statistical Mechanics formalism may indeed be more well suited to model the complex networks which constitute brain and mental structure.

  16. Statistical analyses support power law distributions found in neuronal avalanches.

    PubMed

    Klaus, Andreas; Yu, Shan; Plenz, Dietmar

    2011-01-01

    The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i) analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii) model parameter estimation to determine the specific exponent of the power law, and (iii) comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect). This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanping Guo; Abhishek Yadav; Tanju Karanfil

    Adsorption of trichloroethylene (TCE) and atrazine, two synthetic organic contaminants (SOCs) having different optimum adsorption pore regions, by four activated carbons and an activated carbon fiber (ACF) was examined. Adsorbents included two coconut-shell based granular activated carbons (GACs), two coal-based GACs (F400 and HD4000) and a phenol formaldehyde-based activated carbon fiber. The selected adsorbents had a wide range of pore size distributions but similar surface acidity and hydrophobicity. Single solute and preloading (with a dissolved organic matter (DOM)) isotherms were performed. Single solute adsorption results showed that (i) the adsorbents having higher amounts of pores with sizes about the dimensionsmore » of the adsorbate molecules exhibited higher uptakes, (ii) there were some pore structure characteristics, which were not completely captured by pore size distribution analysis, that also affected the adsorption, and (iii) the BET surface area and total pore volume were not the primary factors controlling the adsorption of SOCs. The preloading isotherm results showed that for TCE adsorbing primarily in pores <10 {angstrom}, the highly microporous ACF and GACs, acting like molecular sieves, exhibited the highest uptakes. For atrazine with an optimum adsorption pore region of 10-20 {angstrom}, which overlaps with the adsorption region of some DOM components, the GACs with a broad pore size distribution and high pore volumes in the 10-20 {angstrom} region had the least impact of DOM on the adsorption. 25 refs., 3 figs., 3 tabs.« less

  18. Avalanche dynamics for active matter in heterogeneous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichhardt, C. J. O.; Reichhardt, C.

    Using numerical simulations, we examine the dynamics of run-and-tumble disks moving in a disordered array of fixed obstacles. As a function of increasing active disk density and activity, we find a transition from a completely clogged state to a continuous flowing phase, and in the large activity limit, we observe an intermittent state where the motion occurs in avalanches that are power law distributed in size with an exponent ofmore » $$\\beta =1.46$$. In contrast, in the thermal or low activity limit we find bursts of motion that are not broadly distributed in size. We argue that in the highly active regime, the system reaches a self-jamming state due to the activity-induced self-clustering, and that the intermittent dynamics is similar to that found in the yielding of amorphous solids. Our results show that activity is another route by which particulate systems can be tuned to a nonequilibrium critical state.« less

  19. Avalanche dynamics for active matter in heterogeneous media

    DOE PAGES

    Reichhardt, C. J. O.; Reichhardt, C.

    2017-12-21

    Using numerical simulations, we examine the dynamics of run-and-tumble disks moving in a disordered array of fixed obstacles. As a function of increasing active disk density and activity, we find a transition from a completely clogged state to a continuous flowing phase, and in the large activity limit, we observe an intermittent state where the motion occurs in avalanches that are power law distributed in size with an exponent ofmore » $$\\beta =1.46$$. In contrast, in the thermal or low activity limit we find bursts of motion that are not broadly distributed in size. We argue that in the highly active regime, the system reaches a self-jamming state due to the activity-induced self-clustering, and that the intermittent dynamics is similar to that found in the yielding of amorphous solids. Our results show that activity is another route by which particulate systems can be tuned to a nonequilibrium critical state.« less

  20. Avalanche dynamics for active matter in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Reichhardt, C. J. O.; Reichhardt, C.

    2018-02-01

    Using numerical simulations, we examine the dynamics of run-and-tumble disks moving in a disordered array of fixed obstacles. As a function of increasing active disk density and activity, we find a transition from a completely clogged state to a continuous flowing phase, and in the large activity limit, we observe an intermittent state where the motion occurs in avalanches that are power law distributed in size with an exponent of β =1.46. In contrast, in the thermal or low activity limit we find bursts of motion that are not broadly distributed in size. We argue that in the highly active regime, the system reaches a self-jamming state due to the activity-induced self-clustering, and that the intermittent dynamics is similar to that found in the yielding of amorphous solids. Our results show that activity is another route by which particulate systems can be tuned to a nonequilibrium critical state.

  1. Ceramic powder for sintering materials

    NASA Technical Reports Server (NTRS)

    Akiya, H.; Saito, A.

    1984-01-01

    Surface activity of ceramic powders such as MgO and Al2O3, for use in sintering with sp. emphasis on their particle size, shape, particle size distribution, packing, and coexisting additives and impurities are reviewed.

  2. Processing statistics: an examination of focused and distributed attention using event related potentials.

    PubMed

    Baijal, Shruti; Nakatani, Chie; van Leeuwen, Cees; Srinivasan, Narayanan

    2013-06-07

    Human observers show remarkable efficiency in statistical estimation; they are able, for instance, to estimate the mean size of visual objects, even if their number exceeds the capacity limits of focused attention. This ability has been understood as the result of a distinct mode of attention, i.e. distributed attention. Compared to the focused attention mode, working memory representations under distributed attention are proposed to be more compressed, leading to reduced working memory loads. An alternate proposal is that distributed attention uses less structured, feature-level representations. These would fill up working memory (WM) more, even when target set size is low. Using event-related potentials, we compared WM loading in a typical distributed attention task (mean size estimation) to that in a corresponding focused attention task (object recognition), using a measure called contralateral delay activity (CDA). Participants performed both tasks on 2, 4, or 8 different-sized target disks. In the recognition task, CDA amplitude increased with set size; notably, however, in the mean estimation task the CDA amplitude was high regardless of set size. In particular for set-size 2, the amplitude was higher in the mean estimation task than in the recognition task. The result showed that the task involves full WM loading even with a low target set size. This suggests that in the distributed attention mode, representations are not compressed, but rather less structured than under focused attention conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Pollinator communities in strawberry crops - variation at multiple spatial scales.

    PubMed

    Ahrenfeldt, E J; Klatt, B K; Arildsen, J; Trandem, N; Andersson, G K S; Tscharntke, T; Smith, H G; Sigsgaard, L

    2015-08-01

    Predicting potential pollination services of wild bees in crops requires knowledge of their spatial distribution within fields. Field margins can serve as nesting and foraging habitats for wild bees and can be a source of pollinators. Regional differences in pollinator community composition may affect this spill-over of bees. We studied how regional and local differences affect the spatial distribution of wild bee species richness, activity-density and body size in crop fields. We sampled bees both from the field centre and at two different types of semi-natural field margins, grass strips and hedges, in 12 strawberry fields. The fields were distributed over four regions in Northern Europe, representing an almost 1100 km long north-south gradient. Even over this gradient, daytime temperatures during sampling did not differ significantly between regions and did therefore probably not impact bee activity. Bee species richness was higher in field margins compared with field centres independent of field size. However, there was no difference between centre and margin in body-size or activity-density. In contrast, bee activity-density increased towards the southern regions, whereas the mean body size increased towards the north. In conclusion, our study revealed a general pattern across European regions of bee diversity, but not activity-density, declining towards the field interior which suggests that the benefits of functional diversity of pollinators may be difficult to achieve through spill-over effects from margins to crop. We also identified dissimilar regional patterns in bee diversity and activity-density, which should be taken into account in conservation management.

  4. The effect of microstructure on the performance of Li-ion porous electrodes

    NASA Astrophysics Data System (ADS)

    Chung, Ding-Wen

    By combining X-ray tomography data and computer-generated porous elec- trodes, the impact of microstructure on the energy and power density of lithium-ion batteries is analyzed. Specifically, for commercial LiMn2O4 electrodes, results indi- cate that a broad particle size distribution of active material delivers up to two times higher energy density than monodisperse-sized particles for low discharge rates, and a monodisperse particle size distribution delivers the highest energy and power density for high discharge rates. The limits of traditionally used microstructural properties such as tortuosity, reactive area density, particle surface roughness, morphological anisotropy were tested against degree of particle size polydispersity, thus enabling the identification of improved porous architectures. The effects of critical battery processing parameters, such as layer compaction and carbon black, were also rationalized in the context of electrode performance. While a monodisperse particle size distribution exhibits the lowest possible tortuosity and three times higher surface area per unit volume with respect to an electrode conformed of a polydisperse particle size distribution, a comparable performance can be achieved by polydisperse particle size distributions with degrees of polydispersity less than 0.2 of particle size standard deviation. The use of non-spherical particles raises the tortuosity by as much as three hundred percent, which considerably lowers the power performance. However, favorably aligned particles can maximize power performance, particularly for high discharge rate applications.

  5. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery

    NASA Astrophysics Data System (ADS)

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-01

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.

  6. Size distribution of radon daughter particles in uranium mine atmospheres.

    PubMed

    George, A C; Hinchliffe, L; Sladowski, R

    1975-06-01

    The size distribution of radon daughters was measured in several uranium mines using four compact diffusion batteries and a round jet cascade impactor. Simultaneously, measurements were made of uncombined fractions of radon daughters, radon concentration, working level and particle concentration. The size distributions found for radon daughters were log normal. The activity median diameters ranged from 0.09 mum to 0.3 mum with a mean value of 0.17 mum. Geometric standard deviations were in the range from 1.3 to 4 with a mean value of 2.7. Uncombined fractions expressed in accordance with the ICRP definition ranged from 0.004 to 0.16 with a mean value of 0.04. The radon daughter sizes in these mines are greater than the sizes assumed by various authors in calculating respiratory tract dose. The disparity may reflect the widening use of diesel-powered equipment in large uranium mines.

  7. Activity rhythms and distribution of natal dens for red foxes

    USGS Publications Warehouse

    Wenyang, Zhou; Wanhong, Wei; Biggins, Dean E.

    1995-01-01

    The red fox, Vulpes vulpes, was investigated with snow tracking, radiotracking and directive observation at the Haibei Research Station of Alpine Meadow Ecosystem, Academia Sinica, from March to September 1994. The objectives of this study were to determine the distribution and use of natal dens, activity rhythms, and home range sizes for the foxes.

  8. Effect of nitric acid treatment on activated carbon derived from oil palm shell

    NASA Astrophysics Data System (ADS)

    Allwar, Allwar; Hartati, Retno; Fatimah, Is

    2017-03-01

    The primary object of this work is to study the effect of nitric acid on the porous and morphology structure of activated carbon. Production of activated carbon from oil palm shell was prepared with pyrolysis process at temperature 900°C and by introduction of 10 M nitric acid. Determination of surface area, pore volume and pore size distribution of activated carbon was conducted by the N2 adsorption-desorption isotherm at 77 K. Morphology structure and elemental micro-analysis of activated carbon were estimated by Scanning Electron Microscopy (SEM) and energy dispersive X-ray (EDX), respectively. The result shows that activated carbon after treating with nitric acid proved an increasing porous characteristics involving surface area, pore volume and pore size distribution. It also could remove the contaminants including metals and exhibit an increasing of pores and crevices all over the surface.

  9. Size distribution of planktonic autotrophy and microheterotrophy in DeGray Reservoir, Arkansas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmel, B.L.; Groeger, A.W.

    1983-01-01

    Naturally occurring assemblages of phytoplankton and bacterioplankton were radiolabelled with sodium /sup 14/C-bicarbonate and sodium /sup 3/H-acetate and size fractionated to determine the size structure of planktonic autotrophy and microheterotrophy in DeGray Reservoir, an oligotrophic impoundment of the Caddo River in south-central Arkansas. Size distributions of autotrophy and microheterotrophy were remarkably uniform seasonally, vertically within the water column, and along the longitudinal axis of the reservoir despite significant changes in environmental conditions. Planktonic autotrophy was dominated by small algal cells with usually >50% of the photosynthetic carbon uptake accounted for by organisms <8.0 ..mu..m. Microheterotrophic activity in the 0.2- tomore » 1.0-..mu..m size fraction, presumably associated with free-living bacterioplankton not attached to suspended particles, usually accounted for >75% of the planktonic microheterotrophy. Longitudinal patterns in autotrophic and microheterotrophic activities associated with >3-..mu..m and >1-..mu..m size fractions, respectively, suggest an uplake to downlake shift from riverine to lacustrine environmental influences within the reservoir. 83 references, 7 figures.« less

  10. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Kinetics of catalytically activated duplication in aggregation growth

    NASA Astrophysics Data System (ADS)

    Wang, Hai-Feng; Lin, Zhen-Quan; Gao, Yan; Xu, Chao

    2009-08-01

    We propose a catalytically activated duplication model to mimic the coagulation and duplication of the DNA polymer system under the catalysis of the primer RNA. In the model, two aggregates of the same species can coagulate themselves and a DNA aggregate of any size can yield a new monomer or double itself with the help of RNA aggregates. By employing the mean-field rate equation approach we analytically investigate the evolution behaviour of the system. For the system with catalysis-driven monomer duplications, the aggregate size distribution of DNA polymers ak(t) always follows a power law in size in the long-time limit, and it decreases with time or approaches a time-independent steady-state form in the case of the duplication rate independent of the size of the mother aggregates, while it increases with time increasing in the case of the duplication rate proportional to the size of the mother aggregates. For the system with complete catalysis-driven duplications, the aggregate size distribution ak(t) approaches a generalized or modified scaling form.

  11. Size resolved ultrafine particles emission model--a continues size distribution approach.

    PubMed

    Nikolova, Irina; Janssen, Stijn; Vrancken, Karl; Vos, Peter; Mishra, Vinit; Berghmans, Patrick

    2011-08-15

    A new parameterization for size resolved ultrafine particles (UFP) traffic emissions is proposed based on the results of PARTICULATES project (Samaras et al., 2005). It includes the emission factors from the Emission Inventory Guidebook (2006) (total number of particles, #/km/veh), the shape of the corresponding particle size distribution given in PARTICULATES and data for the traffic activity. The output of the model UFPEM (UltraFine Particle Emission Model) is a sum of continuous distributions of ultrafine particles emissions per vehicle type (passenger cars and heavy duty vehicles), fuel (petrol and diesel) and average speed representative for urban, rural and highway driving. The results from the parameterization are compared with measured total number of ultrafine particles and size distributions in a tunnel in Antwerp (Belgium). The measured UFP concentration over the entire campaign shows a close relation to the traffic activity. The modelled concentration is found to be lower than the measured in the campaign. The average emission factor from the measurement is 4.29E+14 #/km/veh whereas the calculated is around 30% lower. A comparison of emission factors with literature is done as well and in overall a good agreement is found. For the size distributions it is found that the measured distributions consist of three modes--Nucleation, Aitken and accumulation and most of the ultrafine particles belong to the Nucleation and the Aitken modes. The modelled Aitken mode (peak around 0.04-0.05 μm) is found in a good agreement both as amplitude of the peak and the number of particles whereas the modelled Nucleation mode is shifted to smaller diameters and the peak is much lower that the observed. Time scale analysis shows that at 300 m in the tunnel coagulation and deposition are slow and therefore neglected. The UFPEM emission model can be used as a source term in dispersion models. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suchomel, Petr; Kvitek, Libor; Prucek, Robert

    The controlled preparation of Au nanoparticles (NPs) in the size range of 6 to 22 nm is explored in this study. The Au NPs were prepared by the reduction of tetrachloroauric acid using maltose in the presence of nonionic surfactant Tween 80 at various concentrations to control the size of the resulting Au NPs. With increasing concentration of Tween 80 a decrease in the size of produced Au NPs was observed, along with a significant decrease in their size distribution. The size-dependent catalytic activity of the synthesized Au NPs was tested in the reduction of 4-nitrophenol with sodium borohydride, resultingmore » in increasing catalytic activity with decreasing size of the prepared nanoparticles. Eley-Rideal catalytic mechanism emerges as the more probable, in contrary to the Langmuir-Hinshelwood mechanism reported for other noble metal nanocatalysts.« less

  13. Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity

    DOE PAGES

    Suchomel, Petr; Kvitek, Libor; Prucek, Robert; ...

    2018-03-15

    The controlled preparation of Au nanoparticles (NPs) in the size range of 6 to 22 nm is explored in this study. The Au NPs were prepared by the reduction of tetrachloroauric acid using maltose in the presence of nonionic surfactant Tween 80 at various concentrations to control the size of the resulting Au NPs. With increasing concentration of Tween 80 a decrease in the size of produced Au NPs was observed, along with a significant decrease in their size distribution. The size-dependent catalytic activity of the synthesized Au NPs was tested in the reduction of 4-nitrophenol with sodium borohydride, resultingmore » in increasing catalytic activity with decreasing size of the prepared nanoparticles. Eley-Rideal catalytic mechanism emerges as the more probable, in contrary to the Langmuir-Hinshelwood mechanism reported for other noble metal nanocatalysts.« less

  14. Elemental composition and size distribution of particulates in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    King, R. B.; Fordyce, J. S.; Neustadter, H. E.; Leibecki, H. F.

    1975-01-01

    Measurements were made of the elemental particle size distribution at five contrasting urban environments with different source-type distributions in Cleveland, Ohio. Air quality conditions ranged from normal to air pollution alert levels. A parallel network of high-volume cascade impactors (5-state) were used for simultaneous sampling on glass fiber surfaces for mass determinations and on Whatman-41 surfaces for elemental analysis by neutron activation for 25 elements. The elemental data are assessed in terms of distribution functions and interrelationships and are compared between locations as a function of resultant wind direction in an attempt to relate the findings to sources.

  15. Elemental composition and size distribution of particulates in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; King, R. B.; Fordyce, J. S.; Neustadter, H. E.

    1975-01-01

    Measurements have been made of the elemental particle size distribution at five contrasting urban environments with different source-type distributions in Cleveland, Ohio. Air quality conditions ranged from normal to air pollution alert levels. A parallel network of high-volume cascade impactors (5-stage) were used for simultaneous sampling on glass fiber surfaces for mass determinations and on Whatman-41 surfaces for elemental analysis by neutron activation for 25 elements. The elemental data are assessed in terms of distribution functions and interrelationships and are compared between locations as a function of resultant wind direction in an attempt to relate the findings to sources.

  16. Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon.

    PubMed

    Liu, Fengling; Xu, Zhaoyi; Wan, Haiqin; Wan, Yuqiu; Zheng, Shourong; Zhu, Dongqiang

    2011-04-01

    Humic acids are ubiquitous in surface and underground waters and may pose potential risk to human health when present in drinking water sources. In this study, ordered mesoporous carbon was synthesized by means of a hard template method and further characterized by X-ray diffraction, N2 adsorption, transition electron microscopy, elemental analysis, and zeta-potential measurement. Batch experiments were conducted to evaluate adsorption of two humic acids from coal and soil, respectively, on the synthesized carbon. For comparison, a commercial microporous activated carbon and nonporous graphite were included as additional adsorbents; moreover, phenol was adopted as a small probe adsorbate. Pore size distribution characterization showed that the synthesized carbon had ordered mesoporous structure, whereas the activated carbon was composed mainly of micropores with a much broader pore size distribution. Accordingly, adsorption of the two humic acids was substantially lower on the activated carbon than on the synthesized carbon, because of the size-exclusion effect. In contrast, the synthesized carbon and activated carbon showed comparable adsorption for phenol when the size-exclusion effect was not in operation. Additionally, we verified by size-exclusion chromatography studies that the synthesized carbon exhibited greater adsorption for the large humic acid fraction than the activated carbon. The pH dependence of adsorption on the three carbonaceous adsorbents was also compared between the two test humic acids. The findings highlight the potential of using ordered mesoporous carbon as a superior adsorbent for the removal of humic acids. Copyright © 2011 SETAC.

  17. Observation and analysis of aerosol optical properties and aerosol growth in two New Year celebrations in Manila Observatory (14.64N, 127.07E)

    NASA Astrophysics Data System (ADS)

    Lagrosas, N.; Bautista, D. L. B.; Miranda, J. P.

    2016-12-01

    Aerosol optical properties and growth were measured during 2014 and 2016 New Year celebrations at Manila Observatory, Philippines. Measurements were done using a USB2000 spectrometer from 22:00 of 31 December 2013 to 03:00 of 01 January 2014 and from 18:00 of 31 December 2015 to 05:30 01 January 2016. A xenon lamp was used as a light source 150m from the spectrometer. Fireworks and firecrackers were the main sources of aerosols during these festivities. Data were collected every 60s and 10s for 2014 and 2016 respectively. The aerosol volume size distribution was derived using the parametric inversion method proposed by Kaijser (1983). The method is performed by selecting 8 wavelengths from 387.30nm to 600.00nm. The reference intensities were obtained when firework activities were considerably low and the air was assumed to be relatively clean. Using Mie theory and assuming that the volume size distribution is a linear combination of 33 bimodal lognormal distribution functions with geometric mean radii between 0.003um and 1.2um, a least-square minimization process was implemented between measured optical depths and computed optical depths. The 2016 New Year distribution showed mostly a unimodal size distribution (mean radius = 0.3um) from 23:00 to 05:30 (Fig. 1a). The mean Angstrom coefficient value during the same time interval was approximately 0.75. This could be attributed to a constant RH (100%) during this time interval. A bimodal distribution was observed when RH value was 94% from 18:30 to 21:30. The transition to a unimodal distribution was observed at 21:00 when the RH value changes from 94% to 100%. In contrast to the 2016 New Year celebration, the 2014 size distribution was bimodal from 23:30 to 02:30 (Fig 1b). The bimodal distribution is the result of firework activities before New Year. Aerosol growth was evident when the size distribution became unimodal after 02:30 (mean radius = 1.1um). The mean Angstrom coefficient, when the size distribution is unimodal, was around 0.5 and this could be attributed to increasing RH from 78% to 88% during this time interval. The two New Year celebrations showed different patterns of aerosols growth. Aerosols produced at high RH tend to be unimodal while aerosols produced at low RH tend to have a bimodal distribution. As RH increased, the bimodal distribution became unimodal.

  18. Straight from the source's mouth; a quantitative study of grain-size export for an entire active rift, the Corinth Rift, central Greece

    NASA Astrophysics Data System (ADS)

    Watkins, Stephen E.; Whittaker, Alexander C.; Bell, Rebecca E.; Brooke, Sam A. S.; McNeill, Lisa C.; Gawthorpe, Robert L.

    2017-04-01

    The volumes, grain sizes and characteristics of sediment supplied from source catchments fundamentally controls basin stratigraphy. However, to date, few studies have constrained sediment budgets, including grain size, released into an active rift basin at a regional scale. The Gulf of Corinth, central Greece, is one of the most rapidly extending rifts in the world, with geodetic measurements of 5 mm/yr in the East to 15 mm/yr in the West. It has well-constrained climatic and tectonic boundary conditions and bedrock lithologies are well-characterised. It is therefore an ideal natural laboratory to study the grain-size export for a rift. In the field, we visited the river mouths of 49 catchments draining into the Corinth Gulf, which in total drain 83% of the rift. At each site, hydraulic geometries, surface grain-size of channel bars and full-weighted grain-size distributions of river sediment were obtained. The surface grain-size was measured using the Wolman point count method and the full-weighted grain-size distribution of the bedload by in-situ sieving. In total, approximately 17,000 point counts and 3 tonnes of sediment were processed. The grain-size distributions show an overall increase from East to West on the southern coast of the gulf, with largest grain-sizes exported from the Western rift catchments. D84 ranges from 20 to 110 mm, however 50% of D84 grain-sizes are less than 40 mm. Subsequently, we derived the full Holocene sediment budget for the Corinth Gulf by combining our grain size data with catchment sediment fluxes, constrained using the BQART model and calibrated to known Holocene sediment volumes in the basin from seismic data (c.f. Watkins et al., in review). This is the first time such a budget has been derived for the Corinth Rift. Finally, our estimates of sediment budgets and grain sizes were compared to regional uplift constraints, fault distributions, slip rates and lithology to identify the relative importance of these controls on sediment supply to the basin.

  19. Barley processing, forage:concentrate, and forage length effects on chewing and digesta passage in lactating cows.

    PubMed

    Yang, W Z; Beauchemin, K A; Rode, L M

    2001-12-01

    Dietary factors that alter fermentability, NDF content, or particle size of the diet were evaluated for their effects on chewing behavior and distribution and passage of feed particles in the digestive tract of dairy cows. A double 4 x 4 quasi-Latin square design with a 2(3) factorial arrangement of treatments was used. The dietary factors were: extent of barley grain processing, coarse (1.60 mm) or flat (1.36 mm); forage-to-concentrate ratio (F:C), low (35:65) or high (55:45) (dry matter basis); and forage particle length, long (7.59 mm) or short (6.08 mm). Eight lactating cows with ruminal and duodenal cannulas were offered ad libitum access to total mixed diets. Chewing time, expressed as minutes per day or per kilogram of dry matter or neutral detergent fiber (NDF), was increased with high F:C diets due to increased eating and ruminating times but was decreased when expressed per kilogram of NDF intake from forage. The influence of forage particle length or grain processing on chewing activity was less pronounced than F:C ratio. Chewing activity was positively correlated to proportion of long forage particles in the diet but not to particle length of the diets. Influence of feed particle size on particle size distribution in different sites of the digestive tract was minimal. Particle size distributions of duodenal digesta and feces differed; the proportion of particles retained on the 3.35- or 1.18-mm screens was higher, but proportion of particles that passed through the 1.18-mm screen was lower in duodenal digesta than in feces. Relationships between chewing activities and ruminal pH or fractional passage rate of rumen contents were not significant. These results indicate that particle size of barley-based diets was not a reliable indicator of chewing activity. Forage particle size and NDF content of the diets were more reliable indicators of chewing activity than was the NDF content of forage. Fecal particle size was not an appropriate means of estimating the size of particles exiting the reticulorumen, at least for barley-based diets. Breakdown of coarse particles was necessary, but not a rate-limiting step for particles exiting the rumen. Passage rate of the rumen contents was affected by numerous factors including chewing activity.

  20. Interference from Proteins and Surfactants on Particle Size Distributions Measured by Nanoparticle Tracking Analysis (NTA).

    PubMed

    Bai, Kelvin; Barnett, Gregory V; Kar, Sambit R; Das, Tapan K

    2017-04-01

    Characterization of submicron protein particles continues to be challenging despite active developments in the field. NTA is a submicron particle enumeration technique, which optically tracks the light scattering signal from suspended particles undergoing Brownian motion. The submicron particle size range NTA can monitor in common protein formulations is not well established. We conducted a comprehensive investigation with several protein formulations along with corresponding placebos using NTA to determine submicron particle size distributions and shed light on potential non-particle origin of size distribution in the range of approximately 50-300 nm. NTA and DLS are performed on polystyrene size standards as well as protein and placebo formulations. Protein formulations filtered through a 20 nm filter, with and without polysorbate-80, show NTA particle counts. As such, particle counts above 20 nm are not expected in these solutions. Several other systems including positive and negative controls were studied using NTA and DLS. These apparent particles measured by NTA are not observed in DLS measurements and may not correspond to real particles. The intent of this article is to raise awareness about the need to interpret particle counts and size distribution from NTA with caution.

  1. Implications of Atmospheric Test Fallout Data for Nuclear Winter.

    NASA Astrophysics Data System (ADS)

    Baker, George Harold, III

    1987-09-01

    Atmospheric test fallout data have been used to determine admissable dust particle size distributions for nuclear winter studies. The research was originally motivated by extreme differences noted in the magnitude and longevity of dust effects predicted by particle size distributions routinely used in fallout predictions versus those used for nuclear winter studies. Three different sets of historical data have been analyzed: (1) Stratospheric burden of Strontium -90 and Tungsten-185, 1954-1967 (92 contributing events); (2) Continental U.S. Strontium-90 fallout through 1958 (75 contributing events); (3) Local Fallout from selected Nevada tests (16 events). The contribution of dust to possible long term climate effects following a nuclear exchange depends strongly on the particle size distribution. The distribution affects both the atmospheric residence time and optical depth. One dimensional models of stratospheric/tropospheric fallout removal were developed and used to identify optimum particle distributions. Results indicate that particle distributions which properly predict bulk stratospheric activity transfer tend to be somewhat smaller than number size distributions used in initial nuclear winter studies. In addition, both ^{90}Sr and ^ {185}W fallout behavior is better predicted by the lognormal distribution function than the prevalent power law hybrid function. It is shown that the power law behavior of particle samples may well be an aberration of gravitational cloud stratification. Results support the possible existence of two independent particle size distributions in clouds generated by surface or near surface bursts. One distribution governs late time stratospheric fallout, the other governs early time fallout. A bimodal lognormal distribution is proposed to describe the cloud particle population. The distribution predicts higher initial sunlight attenuation and lower late time attenuation than the power law hybrid function used in initial nuclear winter studies.

  2. ELISPOTs Produced by CD8 and CD4 Cells Follow Log Normal Size Distribution Permitting Objective Counting

    PubMed Central

    Karulin, Alexey Y.; Karacsony, Kinga; Zhang, Wenji; Targoni, Oleg S.; Moldovan, Ioana; Dittrich, Marcus; Sundararaman, Srividya; Lehmann, Paul V.

    2015-01-01

    Each positive well in ELISPOT assays contains spots of variable sizes that can range from tens of micrometers up to a millimeter in diameter. Therefore, when it comes to counting these spots the decision on setting the lower and the upper spot size thresholds to discriminate between non-specific background noise, spots produced by individual T cells, and spots formed by T cell clusters is critical. If the spot sizes follow a known statistical distribution, precise predictions on minimal and maximal spot sizes, belonging to a given T cell population, can be made. We studied the size distributional properties of IFN-γ, IL-2, IL-4, IL-5 and IL-17 spots elicited in ELISPOT assays with PBMC from 172 healthy donors, upon stimulation with 32 individual viral peptides representing defined HLA Class I-restricted epitopes for CD8 cells, and with protein antigens of CMV and EBV activating CD4 cells. A total of 334 CD8 and 80 CD4 positive T cell responses were analyzed. In 99.7% of the test cases, spot size distributions followed Log Normal function. These data formally demonstrate that it is possible to establish objective, statistically validated parameters for counting T cell ELISPOTs. PMID:25612115

  3. Scaling of size distributions of C60 and C70 fullerene surface islands

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.; Berdnikov, Y.; Olyanich, D. A.; Mararov, V. V.; Utas, T. V.; Zotov, A. V.; Saranin, A. A.

    2017-06-01

    We present experimental data and a theoretical analysis for the size distributions of C60 and C70 surface islands deposited onto In-modified Si(111)√3 × √3-Au surface under different conditions. We show that both fullerene islands feature an analytic Vicsek-Family scaling shape where the scaled size distributions are given by a power law times an incomplete beta-function with the required normalization. The power exponent in this distribution corresponds to the fractal shape of two-dimensional islands, confirmed by the experimentally observed morphologies. Quite interestingly, we do not see any significant difference between C60 and C70 fullerenes in terms of either scaling parameters or temperature dependence of the diffusion constants. In particular, we deduce the activation energy for surface diffusion of ED = 140 ± 10 meV for both types of fullerenes.

  4. Scaling and allometry in the building geometries of Greater London

    NASA Astrophysics Data System (ADS)

    Batty, M.; Carvalho, R.; Hudson-Smith, A.; Milton, R.; Smith, D.; Steadman, P.

    2008-06-01

    Many aggregate distributions of urban activities such as city sizes reveal scaling but hardly any work exists on the properties of spatial distributions within individual cities, notwithstanding considerable knowledge about their fractal structure. We redress this here by examining scaling relationships in a world city using data on the geometric properties of individual buildings. We first summarise how power laws can be used to approximate the size distributions of buildings, in analogy to city-size distributions which have been widely studied as rank-size and lognormal distributions following Zipf [ Human Behavior and the Principle of Least Effort (Addison-Wesley, Cambridge, 1949)] and Gibrat [ Les Inégalités Économiques (Librarie du Recueil Sirey, Paris, 1931)]. We then extend this analysis to allometric relationships between buildings in terms of their different geometric size properties. We present some preliminary analysis of building heights from the Emporis database which suggests very strong scaling in world cities. The data base for Greater London is then introduced from which we extract 3.6 million buildings whose scaling properties we explore. We examine key allometric relationships between these different properties illustrating how building shape changes according to size, and we extend this analysis to the classification of buildings according to land use types. We conclude with an analysis of two-point correlation functions of building geometries which supports our non-spatial analysis of scaling.

  5. 76 FR 35669 - Sunscreen Drug Products for Over-the-Counter Human Use; Request for Data and Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... of sunscreen active ingredients and propellants? What are typical particle size distributions for... risks associated with inhalation of sunscreen active ingredients and propellants?), we request...

  6. Sequential associative memory with nonuniformity of the layer sizes.

    PubMed

    Teramae, Jun-Nosuke; Fukai, Tomoki

    2007-01-01

    Sequence retrieval has a fundamental importance in information processing by the brain, and has extensively been studied in neural network models. Most of the previous sequential associative memory embedded sequences of memory patterns have nearly equal sizes. It was recently shown that local cortical networks display many diverse yet repeatable precise temporal sequences of neuronal activities, termed "neuronal avalanches." Interestingly, these avalanches displayed size and lifetime distributions that obey power laws. Inspired by these experimental findings, here we consider an associative memory model of binary neurons that stores sequences of memory patterns with highly variable sizes. Our analysis includes the case where the statistics of these size variations obey the above-mentioned power laws. We study the retrieval dynamics of such memory systems by analytically deriving the equations that govern the time evolution of macroscopic order parameters. We calculate the critical sequence length beyond which the network cannot retrieve memory sequences correctly. As an application of the analysis, we show how the present variability in sequential memory patterns degrades the power-law lifetime distribution of retrieved neural activities.

  7. Quartz crystal microbalance as a sensing active element for rupture scanning within frequency band.

    PubMed

    Dultsev, F N; Kolosovsky, E A

    2011-02-14

    A new method based on the use of quartz crystal microbalance (QCM) as an active sensing element is developed, optimized and tested in a model system to measure the rupture force and deduce size distribution of nanoparticles. As suggested by model predictions, the QCM is shaped as a strip. The ratio of rupture signals at the second and the third harmonics versus the geometric position of a body on QCM surface is investigated theoretically. Recommendations concerning the use of the method for measuring the nanoparticle size distribution are presented. It is shown experimentally for an ensemble of test particles with a characteristic size within 20-30 nm that the proposed method allows one to determine particle size distribution. On the basis of the position and value of the measured rupture signal, a histogram of particle size distribution and percentage of each size fraction were determined. The main merits of the bond-rupture method are its rapid response, simplicity and the ability to discriminate between specific and non-specific interactions. The method is highly sensitive with respect to mass (the sensitivity is generally dependent on the chemical nature of receptor and analyte and may reach 8×10(-14) g mm(-2)) and applicable to measuring rupture forces either for weak bonds, for example hydrogen bonds, or for strong covalent bonds (10(-11)-10(-9) N). This procedure may become a good alternative for the existing methods, such as AFM or optical methods of determining biological objects, and win a broad range of applications both in laboratory research and in biosensing for various purposes. Possible applications include medicine, diagnostics, environmental or agricultural monitoring. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. EMISSION MEASUREMENTS OF PARTICLE MASS AND SIZE EMISSION PROFILES FROM CONSTRUCTION ACTIVITIES

    EPA Science Inventory

    The report gives results from field tests that characterize the amount and size distribution of particulate matter (PM) emissions from operations at construction sites. Of particular interest is the movement of earth by scraper loading and unloading, grading, transit vehicular m...

  9. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles.

    PubMed

    Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum

    2018-01-01

    In this study, we analyzed the antimicrobial activities of poly- N -isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH 2 -based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO 3 using NaBH 4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative ( Escherichia coli ) and Gram-positive ( Staphylococcus aureus ) bacteria depending on the nanoparticle size and amount of AgNO 3 used during fabrication.

  10. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles

    PubMed Central

    Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum

    2018-01-01

    In this study, we analyzed the antimicrobial activities of poly-N-isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH2-based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO3 using NaBH4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria depending on the nanoparticle size and amount of AgNO3 used during fabrication. PMID:29379284

  11. Size-Resolved Dust and Aerosol Contaminants Associated with Copper and Lead Smelting Emissions: Implications for Emissions Management and Human Health

    PubMed Central

    Csavina, Janae; Taylor, Mark P.; Félix, Omar; Rine, Kyle P.; Sáez, A. Eduardo; Betterton, Eric A.

    2014-01-01

    Mining operations, including crushing, grinding, smelting, refining, and tailings management, are a significant source of airborne metal and metalloid contaminants such as As, Pb and other potentially toxic elements. In this work, we show that size-resolved concentrations of As and Pb generally follow a bimodal distribution with the majority of contaminants in the fine size fraction (< 1 μm) around mining activities that include smelting operations at various sites in Australia and Arizona. This evidence suggests that contaminated fine particles (< 1 μm) are the result of vapor condensation and coagulation from smelting operations while coarse particles are most likely the result of windblown dust from contaminated mine tailings and fugitive emissions from crushing and grinding activities. These results on the size distribution of contaminants around mining operations are reported to demonstrate the ubiquitous nature of this phenomenon so that more effective emissions management and practices that minimize health risks associated with metal extraction and processing can be developed. PMID:24995641

  12. The Starspots of HAT-P-11: Evidence for a Solar-like Dynamo

    NASA Astrophysics Data System (ADS)

    Morris, Brett M.; Hebb, Leslie; Davenport, James R. A.; Rohn, Graeme; Hawley, Suzanne L.

    2017-09-01

    We measure the starspot radii and latitude distribution on the K4 dwarf HAT-P-11 from Kepler short-cadence photometry. We take advantage of starspot occultations by HAT-P-11’s highly misaligned planet to compare the spot size and latitude distributions to those of sunspots. We find that HAT-P-11’s spots are distributed in latitude much like sunspots near the solar activity maximum, with a mean spot latitude of ≈16° ± 1°. The majority of HAT-P-11’s starspots have physical sizes that closely resemble the sizes of sunspots at solar maximum. We estimate the mean spotted area coverage on HAT-P-11 to be {3}-1+6 % , roughly two orders of magnitude greater than the typical solar spotted area.

  13. Variations of soil profile characteristics due to varying time spans since ice retreat in the inner Nordfjord, western Norway

    NASA Astrophysics Data System (ADS)

    Navas, A.; Laute, K.; Beylich, A. A.; Gaspar, L.

    2014-06-01

    In the Erdalen and Bødalen drainage basins located in the inner Nordfjord in western Norway the soils were formed after deglaciation. The climate in the uppermost valley areas is sub-arctic oceanic, and the lithology consists of Precambrian granitic orthogneisses on which Leptosols and Regosols are the most common soils. The Little Ice Age glacier advance affected parts of the valleys with the maximum glacier extent around AD 1750. In this study five sites on moraine and colluvium materials were selected to examine main soil properties, grain size distribution, soil organic carbon and pH to assess if soil profile characteristics and patterns of fallout radionuclides (FRNs) and environmental radionuclides (ERNs) are affected by different stages of ice retreat. The Leptosols on the moraines are shallow, poorly developed and vegetated with moss and small birches. The two selected profiles show different radionuclide activities and grain size distribution. The sampled soils on the colluviums outside the LIA glacier limit became ice-free during the Preboral. The Regosols present better-developed profiles, thicker organic horizons and are fully covered by grasses. Activity of 137Cs and 210Pbex concentrate at the topsoil and decrease sharply with depth. The grain size distribution of these soils also reflects the difference in geomorphic processes that have affected the colluvium sites. Significantly lower mass activities of FRNs were found in soils on the moraines than on colluviums. Variations of ERN activities in the valleys were related to characteristics of soil mineralogical composition. These results indicate differences in soil development that are consistent with the age of ice retreat. In addition, the pattern distribution of 137Cs and 210Pbex activities differs in the soils related to the LIA glacier limits in the drainage basins.

  14. Factor contribution to fire occurrence, size, and burn probability in a subtropical coniferous forest in East China.

    PubMed

    Ye, Tao; Wang, Yao; Guo, Zhixing; Li, Yijia

    2017-01-01

    The contribution of factors including fuel type, fire-weather conditions, topography and human activity to fire regime attributes (e.g. fire occurrence, size distribution and severity) has been intensively discussed. The relative importance of those factors in explaining the burn probability (BP), which is critical in terms of fire risk management, has been insufficiently addressed. Focusing on a subtropical coniferous forest with strong human disturbance in East China, our main objective was to evaluate and compare the relative importance of fuel composition, topography, and human activity for fire occurrence, size and BP. Local BP distribution was derived with stochastic fire simulation approach using detailed historical fire data (1990-2010) and forest-resource survey results, based on which our factor contribution analysis was carried out. Our results indicated that fuel composition had the greatest relative importance in explaining fire occurrence and size, but human activity explained most of the variance in BP. This implies that the influence of human activity is amplified through the process of overlapping repeated ignition and spreading events. This result emphasizes the status of strong human disturbance in local fire processes. It further confirms the need for a holistic perspective on factor contribution to fire likelihood, rather than focusing on individual fire regime attributes, for the purpose of fire risk management.

  15. Ultrasensitive electroanalytical tool for detecting, sizing, and evaluating the catalytic activity of platinum nanoparticles.

    PubMed

    Dasari, Radhika; Robinson, Donald A; Stevenson, Keith J

    2013-01-16

    Here we describe a very simple, reliable, low-cost electrochemical approach to detect single nanoparticles (NPs) and evaluate NP size distributions and catalytic activity in a fast and reproducible manner. Single NPs are detected through an increase in current caused by electrocatalytic oxidation of N(2)H(4) at the surface of the NP when it contacts a Hg-modified Pt ultramicroelectrode (Hg/Pt UME). Once the NP contacts the Hg/Pt UME, Hg poisons the Pt NP, deactivating the N(2)H(4) oxidation reaction. Hence, the current response is a "spike" that decays to the background current level rather than a stepwise "staircase" response as previously described for a Au UME. The use of Hg as an electrode material has several quantitative advantages including suppression of the background current by 2 orders of magnitude over a Au UME, increased signal-to-noise ratio for detection of individual collisions, precise integration of current transients to determine charge passed and NP size, reduction of surface-induced NP aggregation and electrode fouling processes, and reproducible and renewable electrodes for routine detection of catalytic NPs. The NP collision frequency was found to scale linearly with the NP concentration (0.016 to 0.024 pM(-1)s(-1)). NP size distributions of 4-24 nm as determined from the current-time transients correlated well with theory and TEM-derived size distributions.

  16. Exploring Explanations of Subglacial Bedform Sizes Using Statistical Models.

    PubMed

    Hillier, John K; Kougioumtzoglou, Ioannis A; Stokes, Chris R; Smith, Michael J; Clark, Chris D; Spagnolo, Matteo S

    2016-01-01

    Sediments beneath modern ice sheets exert a key control on their flow, but are largely inaccessible except through geophysics or boreholes. In contrast, palaeo-ice sheet beds are accessible, and typically characterised by numerous bedforms. However, the interaction between bedforms and ice flow is poorly constrained and it is not clear how bedform sizes might reflect ice flow conditions. To better understand this link we present a first exploration of a variety of statistical models to explain the size distribution of some common subglacial bedforms (i.e., drumlins, ribbed moraine, MSGL). By considering a range of models, constructed to reflect key aspects of the physical processes, it is possible to infer that the size distributions are most effectively explained when the dynamics of ice-water-sediment interaction associated with bedform growth is fundamentally random. A 'stochastic instability' (SI) model, which integrates random bedform growth and shrinking through time with exponential growth, is preferred and is consistent with other observations of palaeo-bedforms and geophysical surveys of active ice sheets. Furthermore, we give a proof-of-concept demonstration that our statistical approach can bridge the gap between geomorphological observations and physical models, directly linking measurable size-frequency parameters to properties of ice sheet flow (e.g., ice velocity). Moreover, statistically developing existing models as proposed allows quantitative predictions to be made about sizes, making the models testable; a first illustration of this is given for a hypothesised repeat geophysical survey of bedforms under active ice. Thus, we further demonstrate the potential of size-frequency distributions of subglacial bedforms to assist the elucidation of subglacial processes and better constrain ice sheet models.

  17. Optimal Sizing and Placement of Battery Energy Storage in Distribution System Based on Solar Size for Voltage Regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazaripouya, Hamidreza; Wang, Yubo; Chu, Peter

    2016-07-26

    This paper proposes a new strategy to achieve voltage regulation in distributed power systems in the presence of solar energy sources and battery storage systems. The goal is to find the minimum size of battery storage and its corresponding location in the network based on the size and place of the integrated solar generation. The proposed method formulates the problem by employing the network impedance matrix to obtain an analytical solution instead of using a recursive algorithm such as power flow. The required modifications for modeling the slack and PV buses (generator buses) are utilized to increase the accuracy ofmore » the approach. The use of reactive power control to regulate the voltage regulation is not always an optimal solution as in distribution systems R/X is large. In this paper the minimum size and the best place of battery storage is achieved by optimizing the amount of both active and reactive power exchanged by battery storage and its gridtie inverter (GTI) based on the network topology and R/X ratios in the distribution system. Simulation results for the IEEE 14-bus system verify the effectiveness of the proposed approach.« less

  18. Reducing Capacities and Distribution of Redox-Active Functional Groups in Low Molecular Weight Fractions of Humic Acids.

    PubMed

    Yang, Zhen; Kappler, Andreas; Jiang, Jie

    2016-11-15

    Humic substances (HS) are redox-active organic compounds with a broad spectrum of molecular sizes and reducing capacities, that is, number of electrons donated or accepted. However, it is unknown which role the distribution of redox-active functional groups in different molecule sizes plays for HS redox reactions in varying pore sizes microenvironments. We used dialysis experiments to separate bulk humic acids (HA) into low molecular weight fractions (LMWF) and retentate, for example, the remaining HA in the dialysis bag. LMWF accounted for only 2% of the total organic carbon content of the HA. However, their reducing capacities per gram of carbon were up to 33 times greater than either those of the bulk HA or the retentate. For a structural/mechanistic understanding of the high reducing capacity of the LMWF, we used fluorescence spectroscopy. We found that the LWMF showed significant fluorescence intensities for quinone-like functional groups, as indicated by the quinoid π-π* transition, that are probably responsible for the high reducing capacities. Therefore, the small-sized HS fraction can play a major role for redox transformation of metals or pollutants trapped in soil micropores (<2.5 nm diameter).

  19. Influence of Particle Size Distribution on the Performance of Ionic Liquid-based Electrochemical Double Layer Capacitors

    PubMed Central

    Rennie, Anthony J. R.; Martins, Vitor L.; Smith, Rachel M.; Hall, Peter J.

    2016-01-01

    Electrochemical double layer capacitors (EDLCs) employing ionic liquid electrolytes are the subject of much research as they promise increased operating potentials, and hence energy densities, when compared with currently available devices. Herein we report on the influence of the particle size distribution of activated carbon material on the performance of ionic liquid based EDLCs. Mesoporous activated carbon was ball-milled for increasing durations and the resultant powders characterized physically (using laser diffraction, nitrogen sorption and SEM) and investigated electrochemically in the form of composite EDLC electrodes. A bi-modal particle size distribution was found for all materials demonstrating an increasing fraction of smaller particles with increased milling duration. In general, cell capacitance decreased with increased milling duration over a wide range of rates using CV and galvanostatic cycling. Reduced coulombic efficiency is observed at low rates (<25 mVs−1) and the efficiency decreases as the volume fraction of the smaller particles increases. Efficiency loss was attributed to side reactions, particularly electrolyte decomposition, arising from interactions with the smaller particles. The effect of reduced efficiency is confirmed by cycling for over 15,000 cycles, which has the important implication that diminished performance and reduced cycle life is caused by the presence of submicron-sized particles. PMID:26911531

  20. Bistability, non-ergodicity, and inhibition in pairwise maximum-entropy models

    PubMed Central

    Grün, Sonja; Helias, Moritz

    2017-01-01

    Pairwise maximum-entropy models have been used in neuroscience to predict the activity of neuronal populations, given only the time-averaged correlations of the neuron activities. This paper provides evidence that the pairwise model, applied to experimental recordings, would produce a bimodal distribution for the population-averaged activity, and for some population sizes the second mode would peak at high activities, that experimentally would be equivalent to 90% of the neuron population active within time-windows of few milliseconds. Several problems are connected with this bimodality: 1. The presence of the high-activity mode is unrealistic in view of observed neuronal activity and on neurobiological grounds. 2. Boltzmann learning becomes non-ergodic, hence the pairwise maximum-entropy distribution cannot be found: in fact, Boltzmann learning would produce an incorrect distribution; similarly, common variants of mean-field approximations also produce an incorrect distribution. 3. The Glauber dynamics associated with the model is unrealistically bistable and cannot be used to generate realistic surrogate data. This bimodality problem is first demonstrated for an experimental dataset from 159 neurons in the motor cortex of macaque monkey. Evidence is then provided that this problem affects typical neural recordings of population sizes of a couple of hundreds or more neurons. The cause of the bimodality problem is identified as the inability of standard maximum-entropy distributions with a uniform reference measure to model neuronal inhibition. To eliminate this problem a modified maximum-entropy model is presented, which reflects a basic effect of inhibition in the form of a simple but non-uniform reference measure. This model does not lead to unrealistic bimodalities, can be found with Boltzmann learning, and has an associated Glauber dynamics which incorporates a minimal asymmetric inhibition. PMID:28968396

  1. Bistability, non-ergodicity, and inhibition in pairwise maximum-entropy models.

    PubMed

    Rostami, Vahid; Porta Mana, PierGianLuca; Grün, Sonja; Helias, Moritz

    2017-10-01

    Pairwise maximum-entropy models have been used in neuroscience to predict the activity of neuronal populations, given only the time-averaged correlations of the neuron activities. This paper provides evidence that the pairwise model, applied to experimental recordings, would produce a bimodal distribution for the population-averaged activity, and for some population sizes the second mode would peak at high activities, that experimentally would be equivalent to 90% of the neuron population active within time-windows of few milliseconds. Several problems are connected with this bimodality: 1. The presence of the high-activity mode is unrealistic in view of observed neuronal activity and on neurobiological grounds. 2. Boltzmann learning becomes non-ergodic, hence the pairwise maximum-entropy distribution cannot be found: in fact, Boltzmann learning would produce an incorrect distribution; similarly, common variants of mean-field approximations also produce an incorrect distribution. 3. The Glauber dynamics associated with the model is unrealistically bistable and cannot be used to generate realistic surrogate data. This bimodality problem is first demonstrated for an experimental dataset from 159 neurons in the motor cortex of macaque monkey. Evidence is then provided that this problem affects typical neural recordings of population sizes of a couple of hundreds or more neurons. The cause of the bimodality problem is identified as the inability of standard maximum-entropy distributions with a uniform reference measure to model neuronal inhibition. To eliminate this problem a modified maximum-entropy model is presented, which reflects a basic effect of inhibition in the form of a simple but non-uniform reference measure. This model does not lead to unrealistic bimodalities, can be found with Boltzmann learning, and has an associated Glauber dynamics which incorporates a minimal asymmetric inhibition.

  2. Coupling between skeletal muscle fiber size and capillarization is maintained during healthy aging.

    PubMed

    Barnouin, Yoann; McPhee, Jamie S; Butler-Browne, Gillian; Bosutti, Alessandra; De Vito, Giuseppe; Jones, David A; Narici, Marco; Behin, Anthony; Hogrel, Jean-Yves; Degens, Hans

    2017-08-01

    As muscle capillarization is related to the oxidative capacity of the muscle and the size of muscle fibres, capillary rarefaction may contribute to sarcopenia and functional impairment in older adults. Therefore, it is important to assess how ageing affects muscle capillarization and the interrelationship between fibre capillary supply with the oxidative capacity and size of the fibres. Muscle biopsies from healthy recreationally active young (22 years; 14 men and 5 women) and older (74 years; 22 men and 6 women) people were assessed for muscle capillarization and the distribution of capillaries with the method of capillary domains. Oxidative capacity of muscle fibres was assessed with quantitative histochemistry for succinate dehydrogenase (SDH) activity. There was no significant age-related reduction in muscle fibre oxidative capacity. Despite 18% type II fibre atrophy (P = 0.019) and 23% fewer capillaries per fibre (P < 0.002) in the old people, there was no significant difference in capillary distribution between young and old people, irrespective of sex. The capillary supply to a fibre was primarily determined by fibre size and only to a small extent by oxidative capacity, irrespective of age and sex. Based on SDH, the maximal oxygen consumption supported by a capillary did not differ significantly between young and old people. The similar quantitative and qualitative distribution of capillaries within muscle from healthy recreationally active older people and young adults indicates that the age-related capillary rarefaction, which does occur, nevertheless maintains the coupling between skeletal muscle fibre size and capillarization during healthy ageing. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  3. Atmospheric particulate matter size distribution and concentration in West Virginia coal mining and non-mining areas.

    PubMed

    Kurth, Laura M; McCawley, Michael; Hendryx, Michael; Lusk, Stephanie

    2014-07-01

    People who live in Appalachian areas where coal mining is prominent have increased health problems compared with people in non-mining areas of Appalachia. Coal mines and related mining activities result in the production of atmospheric particulate matter (PM) that is associated with human health effects. There is a gap in research regarding particle size concentration and distribution to determine respiratory dose around coal mining and non-mining areas. Mass- and number-based size distributions were determined with an Aerodynamic Particle Size and Scanning Mobility Particle Sizer to calculate lung deposition around mining and non-mining areas of West Virginia. Particle number concentrations and deposited lung dose were significantly greater around mining areas compared with non-mining areas, demonstrating elevated risks to humans. The greater dose was correlated with elevated disease rates in the West Virginia mining areas. Number concentrations in the mining areas were comparable to a previously documented urban area where number concentration was associated with respiratory and cardiovascular disease.

  4. How old are lunar lobate scarps? 1. Seismic resetting of crater size-frequency distributions

    NASA Astrophysics Data System (ADS)

    van der Bogert, Carolyn H.; Clark, Jaclyn D.; Hiesinger, Harald; Banks, Maria E.; Watters, Thomas R.; Robinson, Mark S.

    2018-05-01

    Previous studies have estimated the ages of lunar lobate scarps, some of the youngest tectonic landforms on the Moon, based on the estimated life-times of their fresh morphologies and associated small graben, using crater degradation ages, or via buffered and traditional crater size-frequency distribution (CSFD) measurements. Here, we reexamine five scarps previously dated by Binder and Gunga (1985) with crater degradation ages to benchmark the evaluation of both the buffered and traditional CSFD approaches for determination of absolute model ages (AMAs) at scarps. Both CSFD methods yield similar ages for each individual scarp, indicating that fault activity not only can be measured on the scarp itself, but also in the surrounding terrain - an indication that tectonic activity causes surface renewal both adjacent to and even kilometers distant from scarps. Size-frequency variations in the regions surrounding the scarps are thus useful for studying the extent and severity of the ground motion caused by coseismic slip events during scarp formation. All age determination approaches continue to indicate that lunar lobate scarps were active in the late Copernican, with some scarps possibly experiencing activity within the last 100 Ma.

  5. How Old are Lunar Lobate Scarps? 1. Seismic Resetting of Crater Size-Frequency Distributions

    NASA Technical Reports Server (NTRS)

    Van Der Bogert, Carolyn H.; Clark, Jaclyn D.; Hiesinger, Harald; Banks, Maria E.; Watters, Thomas R.; Robinson, Mark S.

    2018-01-01

    Previous studies have estimated the ages of lunar lobate scarps, some of the youngest tectonic landforms on the Moon, based on the estimated life-times of their fresh morphologies and associated small graben, using crater degradation ages, or via buffered and traditional crater size-frequency distribution (CSFD) measurements. Here, we reexamine five scarps previously dated by Binder and Gunga (1985) with crater degradation ages to benchmark the evaluation of both the buffered and traditional CSFD approaches for determination of absolute model ages (AMAs) at scarps. Both CSFD methods yield similar ages for each individual scarp, indicating that fault activity not only can be measured on the scarp itself, but also in the surrounding terrain - an indication that tectonic activity causes surface renewal both adjacent to and even kilometers distant from scarps. Size-frequency variations in the regions surrounding the scarps are thus useful for studying the extent and severity of the ground motion caused by coseismic slip events during scarp formation. All age determination approaches continue to indicate that lunar lobate scarps were active in the late Copernican, with some scarps possibly experiencing activity within the last 100 Ma.

  6. Workplace exposure to nanoparticles from gas metal arc welding process

    NASA Astrophysics Data System (ADS)

    Zhang, Meibian; Jian, Le; Bin, Pingfan; Xing, Mingluan; Lou, Jianlin; Cong, Liming; Zou, Hua

    2013-11-01

    Workplace exposure to nanoparticles from gas metal arc welding (GMAW) process in an automobile manufacturing factory was investigated using a combination of multiple metrics and a comparison with background particles. The number concentration (NC), lung-deposited surface area concentration (SAC), estimated SAC and mass concentration (MC) of nanoparticles produced from the GMAW process were significantly higher than those of background particles before welding ( P < 0.01). A bimodal size distribution by mass for welding particles with two peak values (i.e., 10,000-18,000 and 560-320 nm) and a unimodal size distribution by number with 190.7-nm mode size or 154.9-nm geometric size were observed. Nanoparticles by number comprised 60.7 % of particles, whereas nanoparticles by mass only accounted for 18.2 % of the total particles. The morphology of welding particles was dominated by the formation of chain-like agglomerates of primary particles. The metal composition of these welding particles consisted primarily of Fe, Mn, and Zn. The size distribution, morphology, and elemental compositions of welding particles were significantly different from background particles. Working activities, sampling distances from the source, air velocity, engineering control measures, and background particles in working places had significant influences on concentrations of airborne nanoparticle. In addition, SAC showed a high correlation with NC and a relatively low correlation with MC. These findings indicate that the GMAW process is able to generate significant levels of nanoparticles. It is recommended that a combination of multiple metrics is measured as part of a well-designed sampling strategy for airborne nanoparticles. Key exposure factors, such as particle agglomeration/aggregation, background particles, working activities, temporal and spatial distributions of the particles, air velocity, engineering control measures, should be investigated when measuring workplace exposure to nanoparticles.

  7. Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Yunus, Wan Md Zin Wan; Rustaiyan, Abdolhossein; Ibrahim, Nor Azowa; Zargar, Mohsen; Abdollahi, Yadollah

    2010-01-01

    In this study, silver nanoparticles (Ag-NPs) were synthesized using a green physical synthetic route into the lamellar space of montmorillonite (MMT)/chitosan (Cts) utilizing the ultraviolet (UV) irradiation reduction method in the absence of any reducing agent or heat treatment. Cts, MMT, and AgNO3 were used as the natural polymeric stabilizer, solid support, and silver precursor, respectively. The properties of Ag/MMT/Cts bionanocomposites (BNCs) were studied as the function of UV irradiation times. UV irradiation disintegrated the Ag-NPs into smaller sizes until a relatively stable size and size distribution were achieved. Meanwhile, the crystalline structure and d-spacing of the MMT interlayer, average size and size distribution, surface morphology, elemental signal peaks, functional groups, and surface plasmon resonance of Ag/MMT/Cts BNCs were determined by powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, Fourier transform infrared, and UV-visible spectroscopy. The antibacterial activity of Ag-NPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria (ie, Escherichia coli) by the disk diffusion method on Muller–Hinton Agar at different sizes of Ag-NPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biologic research and biomedical applications, such as surgical devices and drug delivery vehicles. PMID:21116328

  8. Microencapsulation by Membrane Emulsification of Biophenols Recovered from Olive Mill Wastewaters

    PubMed Central

    Piacentini, Emma; Poerio, Teresa; Bazzarelli, Fabio; Giorno, Lidietta

    2016-01-01

    Biophenols are highly prized for their free radical scavenging and antioxidant activities. Olive mill wastewaters (OMWWs) are rich in biophenols. For this reason, there is a growing interest in the recovery and valorization of these compounds. Applications for the encapsulation have increased in the food industry as well as the pharmaceutical and cosmetic fields, among others. Advancements in micro-fabrication methods are needed to design new functional particles with target properties in terms of size, size distribution, and functional activity. This paper describes the use of the membrane emulsification method for the fine-tuning of microparticle production with biofunctional activity. In particular, in this pioneering work, membrane emulsification has been used as an advanced method for biophenols encapsulation. Catechol has been used as a biophenol model, while a biophenols mixture recovered from OMWWs were used as a real matrix. Water-in-oil emulsions with droplet sizes approximately 2.3 times the membrane pore diameter, a distribution span of 0.33, and high encapsulation efficiency (98% ± 1% and 92% ± 3%, for catechol and biophenols, respectively) were produced. The release of biophenols was also investigated. PMID:27171115

  9. Construction of selenium nanoparticles/β-glucan composites for enhancement of the antitumor activity.

    PubMed

    Jia, Xuewei; Liu, Qingye; Zou, Siwei; Xu, Xiaojuan; Zhang, Lina

    2015-03-06

    We report on a green procedure for the stabilization of selenium nanoparticles (SeNPs) by a naturally occurring β-glucan with triple helical conformation known as Lentinan (t-LNT) in water after denaturing into single chains (s-LNT) at 140 °C. The results demonstrated that the s-LNT can interact with SeNPs through Se-O-H interaction. Transmission electron microscopy (TEM), energy dispersive X-ray (EDX) spectra, UV/vis, X-ray diffraction (XRD) and dynamic light scattering (DLS) showed that s-LNT coated SeNPs to form a stable nano-composite Se/s-LNT, leading to good dispersion of SeNPs. Especially, the as-prepared Se/s-LNT composite in the solution could remain homogeneous and translucent for 30 days without any precipitates. Different size distribution of SeNPs was prepared by simply controlling the concentrations of selenite sodium and the corresponding reducing agent ascorbic acid. The size effect of SeNPs on anti-tumor activity was revealed that the SeNPs with more evenly particle size distribution show the higher anticancer activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Exploring Explanations of Subglacial Bedform Sizes Using Statistical Models

    PubMed Central

    Kougioumtzoglou, Ioannis A.; Stokes, Chris R.; Smith, Michael J.; Clark, Chris D.; Spagnolo, Matteo S.

    2016-01-01

    Sediments beneath modern ice sheets exert a key control on their flow, but are largely inaccessible except through geophysics or boreholes. In contrast, palaeo-ice sheet beds are accessible, and typically characterised by numerous bedforms. However, the interaction between bedforms and ice flow is poorly constrained and it is not clear how bedform sizes might reflect ice flow conditions. To better understand this link we present a first exploration of a variety of statistical models to explain the size distribution of some common subglacial bedforms (i.e., drumlins, ribbed moraine, MSGL). By considering a range of models, constructed to reflect key aspects of the physical processes, it is possible to infer that the size distributions are most effectively explained when the dynamics of ice-water-sediment interaction associated with bedform growth is fundamentally random. A ‘stochastic instability’ (SI) model, which integrates random bedform growth and shrinking through time with exponential growth, is preferred and is consistent with other observations of palaeo-bedforms and geophysical surveys of active ice sheets. Furthermore, we give a proof-of-concept demonstration that our statistical approach can bridge the gap between geomorphological observations and physical models, directly linking measurable size-frequency parameters to properties of ice sheet flow (e.g., ice velocity). Moreover, statistically developing existing models as proposed allows quantitative predictions to be made about sizes, making the models testable; a first illustration of this is given for a hypothesised repeat geophysical survey of bedforms under active ice. Thus, we further demonstrate the potential of size-frequency distributions of subglacial bedforms to assist the elucidation of subglacial processes and better constrain ice sheet models. PMID:27458921

  11. Synthesis and comparative photocatalytic activity of Pt/WO 3 and Au/WO 3 nanocomposites under sunlight-type excitation

    NASA Astrophysics Data System (ADS)

    Qamar, M.; Yamani, Z. H.; Gondal, M. A.; Alhooshani, K.

    2011-09-01

    The article deals with the synthesis of highly active visible-light-driven nanocomposite for the decontamination of water hazards under sunlight-type excitation. The surface of visible-light-active nanostructured photocatalyst tungsten oxide (WO 3) was modified with noble metals, such as platinum (Pt) and gold (Au) nanoparticles, and the resulting photocatalytic activity of the nanocomposites was investigated by studying the removal of Methyl Orange and 2,4-Dichlorophenoxyacetic acid (2,4-D) under sunlight-type excitation. The study revealed that the deposited noble metals are not always favorable for the enhancement of photocatalytic response of catalysts; the activity of WO 3 was enhanced manyfold (˜8 times) by depositing an optimum amount of Pt nanoparticles after certain photodeposition time whereas the presence of Au nanoparticles onto the WO 3 surface, under identical experimental conditions, affected the removal process negatively. The variation in the photocatalytic activity of nanocomposites was attributed to the size of the deposited metals; Pt nanoparticles were uniformly dispersed with narrow size distribution (2-4 nm) while the size distribution of Au nanoparticles was found to be 10-15 nm for similar preparation conditions. The effects of critical parameters, such as metal deposition time and metal contents, on the photocatalytic activity of WO 3 were investigated. Furthermore, Pt/WO 3 nanocomposites showed good stability and recyclability under the conditions studied.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horiike, S.; Okazaki, Y.

    This paper describes a performance estimation tool developed for modeling and simulation of open distributed energy management systems to support their design. The approach of discrete event simulation with detailed models is considered for efficient performance estimation. The tool includes basic models constituting a platform, e.g., Ethernet, communication protocol, operating system, etc. Application softwares are modeled by specifying CPU time, disk access size, communication data size, etc. Different types of system configurations for various system activities can be easily studied. Simulation examples show how the tool is utilized for the efficient design of open distributed energy management systems.

  13. Factor contribution to fire occurrence, size, and burn probability in a subtropical coniferous forest in East China

    PubMed Central

    Guo, Zhixing; Li, Yijia

    2017-01-01

    The contribution of factors including fuel type, fire-weather conditions, topography and human activity to fire regime attributes (e.g. fire occurrence, size distribution and severity) has been intensively discussed. The relative importance of those factors in explaining the burn probability (BP), which is critical in terms of fire risk management, has been insufficiently addressed. Focusing on a subtropical coniferous forest with strong human disturbance in East China, our main objective was to evaluate and compare the relative importance of fuel composition, topography, and human activity for fire occurrence, size and BP. Local BP distribution was derived with stochastic fire simulation approach using detailed historical fire data (1990–2010) and forest-resource survey results, based on which our factor contribution analysis was carried out. Our results indicated that fuel composition had the greatest relative importance in explaining fire occurrence and size, but human activity explained most of the variance in BP. This implies that the influence of human activity is amplified through the process of overlapping repeated ignition and spreading events. This result emphasizes the status of strong human disturbance in local fire processes. It further confirms the need for a holistic perspective on factor contribution to fire likelihood, rather than focusing on individual fire regime attributes, for the purpose of fire risk management. PMID:28207837

  14. Size-resolved dust and aerosol contaminants associated with copper and lead smelting emissions: implications for emission management and human health.

    PubMed

    Csavina, Janae; Taylor, Mark P; Félix, Omar; Rine, Kyle P; Eduardo Sáez, A; Betterton, Eric A

    2014-09-15

    Mining operations, including crushing, grinding, smelting, refining, and tailings management, are a significant source of airborne metal and metalloid contaminants such as As, Pb and other potentially toxic elements. In this work, we show that size-resolved concentrations of As and Pb generally follow a bimodal distribution with the majority of contaminants in the fine size fraction (<1 μm) around mining activities that include smelting operations at various sites in Australia and Arizona. This evidence suggests that contaminated fine particles (<1 μm) are the result of vapor condensation and coagulation from smelting operations while coarse particles are most likely the result of windblown dust from contaminated mine tailings and fugitive emissions from crushing and grinding activities. These results on the size distribution of contaminants around mining operations are reported to demonstrate the ubiquitous nature of this phenomenon so that more effective emission management and practices that minimize health risks associated with metal extraction and processing can be developed. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Local Plasticity of Al Thin Films as Revealed by X-Ray Microdiffraction

    NASA Astrophysics Data System (ADS)

    Spolenak, R.; Brown, W. L.; Tamura, N.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Valek, B.; Bravman, J. C.; Marieb, T.; Fujimoto, H.; Batterman, B. W.; Patel, J. R.

    2003-03-01

    Grain-to-grain interactions dominate the plasticity of Al thin films and establish effective length scales smaller than the grain size. We have measured large strain distributions and their changes under plastic strain in 1.5-μm-thick Al0.5%Cu films using a 0.8-μm-diameter white x-ray probe at the Advanced Light Source. Strain distributions arise not only from the distribution of grain sizes and orientation, but also from the differences in grain shape and from stress environment. Multiple active glide plane domains have been found within single grains. Large grains behave like multiple smaller grains even before a dislocation substructure can evolve.

  16. Size-dependent electrocatalytic activity of gold nanoparticles on HOPG and highly boron-doped diamond surfaces.

    PubMed

    Brülle, Tine; Ju, Wenbo; Niedermayr, Philipp; Denisenko, Andrej; Paschos, Odysseas; Schneider, Oliver; Stimming, Ulrich

    2011-12-06

    Gold nanoparticles were prepared by electrochemical deposition on highly oriented pyrolytic graphite (HOPG) and boron-doped, epitaxial 100-oriented diamond layers. Using a potentiostatic double pulse technique, the average particle size was varied in the range from 5 nm to 30 nm in the case of HOPG as a support and between < 1 nm and 15 nm on diamond surfaces, while keeping the particle density constant. The distribution of particle sizes was very narrow, with standard deviations of around 20% on HOPG and around 30% on diamond. The electrocatalytic activity towards hydrogen evolution and oxygen reduction of these carbon supported gold nanoparticles in dependence of the particle sizes was investigated using cyclic voltammetry. For oxygen reduction the current density normalized to the gold surface (specific current density) increased for decreasing particle size. In contrast, the specific current density of hydrogen evolution showed no dependence on particle size. For both reactions, no effect of the different carbon supports on electrocatalytic activity was observed.

  17. Spike avalanches in vivo suggest a driven, slightly subcritical brain state

    PubMed Central

    Priesemann, Viola; Wibral, Michael; Valderrama, Mario; Pröpper, Robert; Le Van Quyen, Michel; Geisel, Theo; Triesch, Jochen; Nikolić, Danko; Munk, Matthias H. J.

    2014-01-01

    In self-organized critical (SOC) systems avalanche size distributions follow power-laws. Power-laws have also been observed for neural activity, and so it has been proposed that SOC underlies brain organization as well. Surprisingly, for spiking activity in vivo, evidence for SOC is still lacking. Therefore, we analyzed highly parallel spike recordings from awake rats and monkeys, anesthetized cats, and also local field potentials from humans. We compared these to spiking activity from two established critical models: the Bak-Tang-Wiesenfeld model, and a stochastic branching model. We found fundamental differences between the neural and the model activity. These differences could be overcome for both models through a combination of three modifications: (1) subsampling, (2) increasing the input to the model (this way eliminating the separation of time scales, which is fundamental to SOC and its avalanche definition), and (3) making the model slightly sub-critical. The match between the neural activity and the modified models held not only for the classical avalanche size distributions and estimated branching parameters, but also for two novel measures (mean avalanche size, and frequency of single spikes), and for the dependence of all these measures on the temporal bin size. Our results suggest that neural activity in vivo shows a mélange of avalanches, and not temporally separated ones, and that their global activity propagation can be approximated by the principle that one spike on average triggers a little less than one spike in the next step. This implies that neural activity does not reflect a SOC state but a slightly sub-critical regime without a separation of time scales. Potential advantages of this regime may be faster information processing, and a safety margin from super-criticality, which has been linked to epilepsy. PMID:25009473

  18. Effects of irradiation intensity and pH on nutrients release and solids destruction of waste activated sludge using the microwave-enhanced advanced oxidation process.

    PubMed

    Chan, W I; Liao, P H; Lo, K V

    2010-11-01

    Using the microwave-enhanced advanced oxidation process (MW/H2O2-AOP), the pH and irradiation intensity on waste activated sludge samples were investigated to provide insight to the athermal effects on nutrients release, solids destruction, particle size distribution and dewaterability, and to demonstrate their interrelationships. Carbonaceous matters and nutrients released into solution depended on the irradiation intensity and time. Higher irradiation levels tended to be more effective in the solubilization of nutrients and had more pronounced effects in the dewaterability of sludge. In terms of particle size distribution, detectable particles increased in size for treatments in acidic conditions, while the dewaterability of treated sludge was improved. In treatments under neutral and alkaline conditions, the particle size range increased, with more small particles formed, thereby significantly deteriorating the dewaterability of sludge treated in alkaline conditions. The best results for the solubilization of nutrients were in alkaline conditions with high irradiation power, but dewaterability of the sludge was compromised. Sludge treatment with the MW/H2O2-AOP in acidic conditions with high irradiation power yielded the best dewaterable sludge and significant nutrient solubilization; therefore, it is the recommended treatment condition for activated sludge.

  19. Flow cytometry of human embryonic kidney cells: A light scattering approach

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Goolsby, C. L.; Todd, P. W.; Morrison, D. R.; Lewis, M. L.

    1985-01-01

    The mammalian kidney contains cells that transport water, convert vitamin D to active forms, synthesize hormones such a renin and erythropoietin, and produce enzymes such as urokinase, a plasminogen activator. Several of these functions are maintained by human embryonic kidney cells (HEK) cultivated in vitro. Biochemical study of these functions in their individual cell types in vitro requires purified populations of cells. Light-scattering activated cell sorting (LACS) was explored as a means of achieving such purifications. It was found that HEK cells at the first 1 to 5 passages in culture were heterogeneous with respect to 2-parameter light scattering intensity distribution, in which combined measurements included forward angle scattering (2.5 to 19 deg), 90 deg scattering, and time-of-flight size measurements. Size was measured at a resolution of 0.15 microns/channel in 256 channels using pulse-height independent pulse-width measurements. Two-parameter distributions combining these measurements were obtained for HEK cell subpopulations that had been purified by microgravity electrophoresis and subsequently propagated in culture. These distributions contained at least 3 subpopulations in all purified fractions, and results of experiments with prepurified cultured HEK cells indicated that subpopulations of living cells that were high in plasminogen-activator activity also contained the highest per cent of cells with high 90 deg light scatter intensity.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Yoshio; Yoshizawa, Noriko; Furuta, Takeshi

    Activated carbons are commercially produced by steam or CO{sub 2} activation of coal, coconut shell and so on. In general the carbons obtained give pores with a broad range of distribution. The objective of this study was to prepare activated carbons from coal by use of various organometallic compounds. The carbons were evaluated for pore size by nitrogen adsorption experiments.

  1. Seasonal variations of number size distributions and mass concentrations of atmospheric particles in Beijing

    NASA Astrophysics Data System (ADS)

    Yu, Jianhua; Guinot, Benjamin; Yu, Tong; Wang, Xin; Liu, Wenqing

    2005-06-01

    Particle number and mass concentrations were measured in Beijing during the winter and summer periods in 2003, together with some other parameters including black carbon (BC) and meteorological conditions. Particle mass concentrations exhibited low seasonality, and the ratio of PM2.5/PM10 in winter was higher than that in summer. Particle number size distribution (PSD) was characterized by four modes and exhibited low seasonality. BC was well correlated with the number and mass concentrations of accumulation and coarse particles, indicating these size particles are related to anthropogenic activities. Particle mass and number concentrations (except ultra-fine and nucleation particles) followed well the trends of BC concentration for the majority of the day, indicating that most particles were associated with primary emissions. The diurnal number distributions of accumulation and coarse mode particles were characterized by two peaks.

  2. Modeling intersubject variability of bronchial doses for inhaled radon progeny.

    PubMed

    Hofmann, Werner; Winkler-Heil, Renate; Hussain, Majid

    2010-10-01

    The main sources of intersubject variations considered in the present study were: (1) size and structure of nasal and oral passages, affecting extrathoracic deposition and, in further consequence, the fraction of the inhaled activity reaching the bronchial region; (2) size and asymmetric branching of the human bronchial airway system, leading to variations of diameters, lengths, branching angles, etc.; (3) respiratory parameters, such as tidal volume, and breathing frequency; (4) mucociliary clearance rates; and (5) thickness of the bronchial epithelium and depth of target cells, related to airway diameters. For the calculation of deposition fractions, retained surface activities, and bronchial doses, parameter values were randomly selected from their corresponding probability density functions, derived from experimental data, by applying Monte Carlo methods. Bronchial doses, expressed in mGy WLM-1, were computed for specific mining conditions, i.e., for defined size distributions, unattached fractions, and physical activities. Resulting bronchial dose distributions could be approximated by lognormal distributions. Geometric standard deviations illustrating intersubject variations ranged from about 2 in the trachea to about 7 in peripheral bronchiolar airways. The major sources of the intersubject variability of bronchial doses for inhaled radon progeny are the asymmetry and variability of the linear airway dimensions, the filtering efficiency of the nasal passages, and the thickness of the bronchial epithelium, while fluctuations of the respiratory parameters and mucociliary clearance rates seem to compensate each other.

  3. Comparison of the distribution of large magmatic centers on Earth, Venus, and Mars

    NASA Technical Reports Server (NTRS)

    Crumpler, L. S.

    1993-01-01

    Volcanism is widely distributed over the surfaces of the major terrestrial planets: Venus, Earth, and Mars. Anomalous centers of magmatic activity occur on each planet and are characterized by evidence for unusual concentrations of volcanic centers, long-lived activity, unusual rates of effusion, extreme size of volcanic complexes, compositionally unusual magmatism, and evidence for complex geological development. The purpose of this study is to compare the characteristics and distribution of these magmatic anomalies on Earth, Venus, and Mars in order to assess these characteristics as they may relate to global characteristics and evolution of the terrestrial planets.

  4. Time-dependent solutions for a stochastic model of gene expression with molecule production in the form of a compound Poisson process.

    PubMed

    Jędrak, Jakub; Ochab-Marcinek, Anna

    2016-09-01

    We study a stochastic model of gene expression, in which protein production has a form of random bursts whose size distribution is arbitrary, whereas protein decay is a first-order reaction. We find exact analytical expressions for the time evolution of the cumulant-generating function for the most general case when both the burst size probability distribution and the model parameters depend on time in an arbitrary (e.g., oscillatory) manner, and for arbitrary initial conditions. We show that in the case of periodic external activation and constant protein degradation rate, the response of the gene is analogous to the resistor-capacitor low-pass filter, where slow oscillations of the external driving have a greater effect on gene expression than the fast ones. We also demonstrate that the nth cumulant of the protein number distribution depends on the nth moment of the burst size distribution. We use these results to show that different measures of noise (coefficient of variation, Fano factor, fractional change of variance) may vary in time in a different manner. Therefore, any biological hypothesis of evolutionary optimization based on the nonmonotonic dependence of a chosen measure of noise on time must justify why it assumes that biological evolution quantifies noise in that particular way. Finally, we show that not only for exponentially distributed burst sizes but also for a wider class of burst size distributions (e.g., Dirac delta and gamma) the control of gene expression level by burst frequency modulation gives rise to proportional scaling of variance of the protein number distribution to its mean, whereas the control by amplitude modulation implies proportionality of protein number variance to the mean squared.

  5. Size-frequency distribution of boulders ≥7 m on comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Pajola, Maurizio; Vincent, Jean-Baptiste; Güttler, Carsten; Lee, Jui-Chi; Bertini, Ivano; Massironi, Matteo; Simioni, Emanuele; Marzari, Francesco; Giacomini, Lorenza; Lucchetti, Alice; Barbieri, Cesare; Cremonese, Gabriele; Naletto, Giampiero; Pommerol, Antoine; El-Maarry, Mohamed R.; Besse, Sébastien; Küppers, Michael; La Forgia, Fiorangela; Lazzarin, Monica; Thomas, Nicholas; Auger, Anne-Thérèse; Sierks, Holger; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst U.; Agarwal, Jessica; A'Hearn, Michael F.; Barucci, Maria A.; Bertaux, Jean-Loup; Da Deppo, Vania; Davidsson, Björn; De Cecco, Mariolino; Debei, Stefano; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Groussin, Olivier; Gutierrez, Pedro J.; Hviid, Stubbe F.; Ip, Wing-Huen; Jorda, Laurent; Knollenberg, Jörg; Kramm, J.-Rainer; Kürt, Ekkehard; Lara, Luisa M.; Lin, Zhong-Yi; Lopez Moreno, Jose J.; Magrin, Sara; Marchi, Simone; Michalik, Harald; Moissl, Richard; Mottola, Stefano; Oklay, Nilda; Preusker, Frank; Scholten, Frank; Tubiana, Cecilia

    2015-11-01

    Aims: We derive for the first time the size-frequency distribution of boulders on a comet, 67P/Churyumov-Gerasimenko (67P), computed from the images taken by the Rosetta/OSIRIS imaging system. We highlight the possible physical processes that lead to these boulder size distributions. Methods: We used images acquired by the OSIRIS Narrow Angle Camera, NAC, on 5 and 6 August 2014. The scale of these images (2.44-2.03 m/px) is such that boulders ≥7 m can be identified and manually extracted from the datasets with the software ArcGIS. We derived both global and localized size-frequency distributions. The three-pixel sampling detection, coupled with the favorable shadowing of the surface (observation phase angle ranging from 48° to 53°), enables unequivocally detecting boulders scattered all over the illuminated side of 67P. Results: We identify 3546 boulders larger than 7 m on the imaged surface (36.4 km2), with a global number density of nearly 100/km2 and a cumulative size-frequency distribution represented by a power-law with index of -3.6 +0.2/-0.3. The two lobes of 67P appear to have slightly different distributions, with an index of -3.5 +0.2/-0.3 for the main lobe (body) and -4.0 +0.3/-0.2 for the small lobe (head). The steeper distribution of the small lobe might be due to a more pervasive fracturing. The difference of the distribution for the connecting region (neck) is much more significant, with an index value of -2.2 +0.2/-0.2. We propose that the boulder field located in the neck area is the result of blocks falling from the contiguous Hathor cliff. The lower slope of the size-frequency distribution we see today in the neck area might be due to the concurrent processes acting on the smallest boulders, such as i) disintegration or fragmentation and vanishing through sublimation; ii) uplifting by gas drag and consequent redistribution; and iii) burial beneath a debris blanket. We also derived the cumulative size-frequency distribution per km2 of localized areas on 67P. By comparing the cumulative size-frequency distributions of similar geomorphological settings, we derived similar power-law index values. This suggests that despite the selected locations on different and often opposite sides of the comet, similar sublimation or activity processes, pit formation or collapses, as well as thermal stresses or fracturing events occurred on multiple areas of the comet, shaping its surface into the appearance we see today.

  6. Green Route for Silver Nanoparticles Synthesis by Raphanus Sativus Extract in a Continuous Flow Tubular Microreactor

    NASA Astrophysics Data System (ADS)

    Jolhe, P. D.; Bhanvase, B. A.; Patil, V. S.; Sonawane, S. H.

    The present work deals with the investigation of the greener route for the production of silver nanoparticles using Raphanus sativus (R. sativus) bioextract in a continuous flow tubular microreactor. The parameters affecting the particle size and distribution were investigated. From the results obtained it can be inferred that the ascorbic acid (reducing agent) present in the R. sativus bioextract is responsible for the reduction of silver ions. At optimum condition, the particle size distribution of nanoparticles is found between 18nm and 39nm. The absorbance value was found to be decreased with an increase in the diameter of the microreactor. It indicates that a number of nuclei are formed in the micrometer sized (diameter) reactor because of the better solute transfer rate leading to the formation of large number of silver nanoparticles. The study of antibacterial activity of green synthesized silver nanoparticles shows effective inhibitory activity against waterborne pathogens, Shegella and Listeria bacteria.

  7. DETACHMENT OF BACTERIOPHAGE FROM ITS CARRIER PARTICLES.

    PubMed

    Hetler, D M; Bronfenbrenner, J

    1931-05-20

    The active substance (phage) present in the lytic broth filtrate is distributed through the medium in the form of particles. These particles vary in size within broad limits. The average size of these particles as calculated on the basis of the rate of diffusion approximates 4.4 mmicro in radius. Fractionation by means of ultrafiltration permits partial separation of particles of different sizes. Under conditions of experiments here reported the particles varied in the radius size from 0.6 mmicro to 11.4 mmicro. The active agent apparently is not intimately identified with these particles. It is merely carried by them by adsorption, and under suitable experimental conditions it can be detached from the larger particles and redistributed on smaller particles of the medium.

  8. Retrieving the complex refractive index of atmospheric aerosols from ratios of solar spectral extinction measurements

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.; Mease, K. D.

    1978-01-01

    The technique proposed by Fymat (1976) for retrieving the complex refractive index of atmospheric aerosols using narrowband spectral transmission ratios, taken within an overall narrow spectral interval, is investigated in the case of modelled polydispersions of rural, maritime-continental, maritime-sea spray and meteoric dust aerosols. It is confirmed that for not too broad size distributions most of the information comes from a narrow size range of 'active' aerosols so that, under these circumstances, the refractive index components can indeed be retrieved essentially independently of the size distribution. For 0.1% accurate data in three colors, the technique can provide the real and imaginary components of the index respectively within 0.07% and 0.3% accuracy.

  9. Variability of space climate and its extremes with successive solar cycles

    NASA Astrophysics Data System (ADS)

    Chapman, Sandra; Hush, Phillip; Tindale, Elisabeth; Dunlop, Malcolm; Watkins, Nicholas

    2016-04-01

    Auroral geomagnetic indices coupled with in situ solar wind monitors provide a comprehensive data set, spanning several solar cycles. Space climate can be considered as the distribution of space weather. We can then characterize these observations in terms of changing space climate by quantifying how the statistical properties of ensembles of these observed variables vary between different phases of the solar cycle. We first consider the AE index burst distribution. Bursts are constructed by thresholding the AE time series; the size of a burst is the sum of the excess in the time series for each time interval over which the threshold is exceeded. The distribution of burst sizes is two component with a crossover in behaviour at thresholds ≈ 1000 nT. Above this threshold, we find[1] a range over which the mean burst size is almost constant with threshold for both solar maxima and minima. The burst size distribution of the largest events has a functional form which is exponential. The relative likelihood of these large events varies from one solar maximum and minimum to the next. If the relative overall activity of a solar maximum/minimum can be estimated, these results then constrain the likelihood of extreme events of a given size for that solar maximum/minimum. We next develop and apply a methodology to quantify how the full distribution of geomagnetic indices and upstream solar wind observables are changing between and across different solar cycles. This methodology[2] estimates how different quantiles of the distribution, or equivalently, how the return times of events of a given size, are changing. [1] Hush, P., S. C. Chapman, M. W. Dunlop, and N. W. Watkins (2015), Robust statistical properties of the size of large burst events in AE, Geophys. Res. Lett.,42 doi:10.1002/2015GL066277 [2] Chapman, S. C., D. A. Stainforth, N. W. Watkins, (2013) On estimating long term local climate trends , Phil. Trans. Royal Soc., A,371 20120287 DOI:10.1098/rsta.2012.0287

  10. Investigation of the milling capabilities of the F10 Fine Grind mill using Box-Behnken designs.

    PubMed

    Tan, Bernice Mei Jin; Tay, Justin Yong Soon; Wong, Poh Mun; Chan, Lai Wah; Heng, Paul Wan Sia

    2015-01-01

    Size reduction or milling of the active is often the first processing step in the design of a dosage form. The ability of a mill to convert coarse crystals into the target size and size distribution efficiently is highly desirable as the quality of the final pharmaceutical product after processing is often still dependent on the dimensional attributes of its component constituents. The F10 Fine Grind mill is a mechanical impact mill designed to produce unimodal mid-size particles by utilizing a single-pass two-stage size reduction process for fine grinding of raw materials needed in secondary processing. Box-Behnken designs were used to investigate the effects of various mill variables (impeller, blower and feeder speeds and screen aperture size) on the milling of coarse crystals. Response variables included the particle size parameters (D10, D50 and D90), span and milling rate. Milled particles in the size range of 5-200 μm, with D50 ranging from 15 to 60 μm, were produced. The impeller and feeder speeds were the most critical factors influencing the particle size and milling rate, respectively. Size distributions of milled particles were better described by their goodness-of-fit to a log-normal distribution (i.e. unimodality) rather than span. Milled particles with symmetrical unimodal distributions were obtained when the screen aperture size was close to the median diameter of coarse particles employed. The capacity for high throughput milling of particles to a mid-size range, which is intermediate between conventional mechanical impact mills and air jet mills, was demonstrated in the F10 mill. Prediction models from the Box-Behnken designs will aid in providing a better guide to the milling process and milled product characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Measuring neuronal avalanches in disordered systems with absorbing states

    NASA Astrophysics Data System (ADS)

    Girardi-Schappo, M.; Tragtenberg, M. H. R.

    2018-04-01

    Power-law-shaped avalanche-size distributions are widely used to probe for critical behavior in many different systems, particularly in neural networks. The definition of avalanche is ambiguous. Usually, theoretical avalanches are defined as the activity between a stimulus and the relaxation to an inactive absorbing state. On the other hand, experimental neuronal avalanches are defined by the activity between consecutive silent states. We claim that the latter definition may be extended to some theoretical models to characterize their power-law avalanches and critical behavior. We study a system in which the separation of driving and relaxation time scales emerges from its structure. We apply both definitions of avalanche to our model. Both yield power-law-distributed avalanches that scale with system size in the critical point as expected. Nevertheless, we find restricted power-law-distributed avalanches outside of the critical region within the experimental procedure, which is not expected by the standard theoretical definition. We remark that these results are dependent on the model details.

  12. Evolutionary model of the growth and size of firms

    NASA Astrophysics Data System (ADS)

    Kaldasch, Joachim

    2012-07-01

    The key idea of this model is that firms are the result of an evolutionary process. Based on demand and supply considerations the evolutionary model presented here derives explicitly Gibrat's law of proportionate effects as the result of the competition between products. Applying a preferential attachment mechanism for firms, the theory allows to establish the size distribution of products and firms. Also established are the growth rate and price distribution of consumer goods. Taking into account the characteristic property of human activities to occur in bursts, the model allows also an explanation of the size-variance relationship of the growth rate distribution of products and firms. Further the product life cycle, the learning (experience) curve and the market size in terms of the mean number of firms that can survive in a market are derived. The model also suggests the existence of an invariant of a market as the ratio of total profit to total revenue. The relationship between a neo-classic and an evolutionary view of a market is discussed. The comparison with empirical investigations suggests that the theory is able to describe the main stylized facts concerning the size and growth of firms.

  13. New insights into respirable protein powder preparation using a nano spray dryer.

    PubMed

    Bürki, K; Jeon, I; Arpagaus, C; Betz, G

    2011-04-15

    In this study the Nano Spray Dryer B-90 (BÜCHI Labortechnik AG, Flawil, Switzerland) was evaluated with regard to the drying of proteins and the preparation of respirable powders in the size range of 1-5 μm. β-galactosidase was chosen as a model protein and trehalose was added as a stabilizer. The influence of inlet temperature, hole size of the spray cap membrane and ethanol concentration in the spray solution was studied using a 3³ full factorial design. The investigated responses were enzyme activity, particle size, span, yield and shelf life. Furthermore, the particle morphology was examined. The inlet temperature as well as the interaction of inlet temperature and spray cap size significantly influenced the enzyme activity. Full activity was retained with the optimized process. The particle size was affected by the hole size of the spray cap membrane and the ethanol content. The smallest cap led to a monodisperse particle size distribution and the greatest yield of particles of respirable size. Higher product recovery was achieved with lower inlet temperatures, higher ethanol contents and smaller cap sizes. Particle morphology differed depending on the cap size. The protein exhibited higher storage stability when spray dried without ethanol and when a larger spray cap size was used. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Simulation of particle size distributions in Polar Mesospheric Clouds from Microphysical Models

    NASA Astrophysics Data System (ADS)

    Thomas, G. E.; Merkel, A.; Bardeen, C.; Rusch, D. W.; Lumpe, J. D.

    2009-12-01

    The size distribution of ice particles is perhaps the most important observable aspect of microphysical processes in Polar Mesospheric Cloud (PMC) formation and evolution. A conventional technique to derive such information is from optical observation of scattering, either passive solar scattering from photometric or spectrometric techniques, or active backscattering by lidar. We present simulated size distributions from two state-of-the-art models using CARMA sectional microphysics: WACCM/CARMA, in which CARMA is interactively coupled with WACCM3 (Bardeen et al, 2009), and stand-alone CARMA forced by WACCM3 meteorology (Merkel et al, this meeting). Both models provide well-resolved size distributions of ice particles as a function of height, location and time for realistic high-latitude summertime conditions. In this paper we present calculations of the UV scattered brightness at multiple scattering angles as viewed by the AIM Cloud Imaging and Particle Size (CIPS) satellite experiment. These simulations are then considered discretely-sampled “data” for the scattering phase function, which are inverted using a technique (Lumpe et al, this meeting) to retrieve particle size information. We employ a T-matrix scattering code which applies to a wide range of non-sphericity of the ice particles, using the conventional idealized prolate/oblate spheroidal shape. This end-to-end test of the relatively new scattering phase function technique provides insight into both the retrieval accuracy and the information content in passive remote sensing of PMC.

  15. Size distributions and failure initiation of submarine and subaerial landslides

    USGS Publications Warehouse

    ten Brink, Uri S.; Barkan, R.; Andrews, B.D.; Chaytor, J.D.

    2009-01-01

    Landslides are often viewed together with other natural hazards, such as earthquakes and fires, as phenomena whose size distribution obeys an inverse power law. Inverse power law distributions are the result of additive avalanche processes, in which the final size cannot be predicted at the onset of the disturbance. Volume and area distributions of submarine landslides along the U.S. Atlantic continental slope follow a lognormal distribution and not an inverse power law. Using Monte Carlo simulations, we generated area distributions of submarine landslides that show a characteristic size and with few smaller and larger areas, which can be described well by a lognormal distribution. To generate these distributions we assumed that the area of slope failure depends on earthquake magnitude, i.e., that failure occurs simultaneously over the area affected by horizontal ground shaking, and does not cascade from nucleating points. Furthermore, the downslope movement of displaced sediments does not entrain significant amounts of additional material. Our simulations fit well the area distribution of landslide sources along the Atlantic continental margin, if we assume that the slope has been subjected to earthquakes of magnitude ??? 6.3. Regions of submarine landslides, whose area distributions obey inverse power laws, may be controlled by different generation mechanisms, such as the gradual development of fractures in the headwalls of cliffs. The observation of a large number of small subaerial landslides being triggered by a single earthquake is also compatible with the hypothesis that failure occurs simultaneously in many locations within the area affected by ground shaking. Unlike submarine landslides, which are found on large uniformly-dipping slopes, a single large landslide scarp cannot form on land because of the heterogeneous morphology and short slope distances of tectonically-active subaerial regions. However, for a given earthquake magnitude, the total area affected by subaerial landslides is comparable to that calculated by slope stability analysis for submarine landslides. The area distribution of subaerial landslides from a single event may be determined by the size distribution of the morphology of the affected area, not by the initiation process. ?? 2009 Elsevier B.V.

  16. Asymmetric TDP pathology in primary progressive aphasia with right hemisphere language dominance.

    PubMed

    Kim, Garam; Vahedi, Shahrooz; Gefen, Tamar; Weintraub, Sandra; Bigio, Eileen H; Mesulam, Marek-Marsel; Geula, Changiz

    2018-01-30

    To quantitatively examine the regional densities and hemispheric distribution of the 43-kDa transactive response DNA-binding protein (TDP-43) inclusions, neurons, and activated microglia in a left-handed patient with right hemisphere language dominance and logopenic-variant primary progressive aphasia (PPA). Phosphorylated TDP-43 inclusions, neurons, and activated microglia were visualized with immunohistochemical and histologic methods. Markers were quantified bilaterally with unbiased stereology in language- and memory-related cortical regions. Clinical MRI indicated cortical atrophy in the right hemisphere, mostly in the temporal lobe. Significantly higher densities of TDP-43 inclusions were present in right language-related temporal regions compared to the left or to other right hemisphere regions. The memory-related entorhinal cortex (ERC) and language regions without significant atrophy showed no asymmetry. Activated microglia displayed extensive asymmetry (R > L). A substantial density of neurons remained in all areas and showed no hemispheric asymmetry. However, perikaryal size was significantly smaller in the right hemisphere across all regions except the ERC. To demonstrate the specificity of this finding, sizes of residual neurons were measured in a right-handed case with PPA and were found to be smaller in the language-dominant left hemisphere. The distribution of TDP-43 inclusions and microglial activation in right temporal language regions showed concordance with anatomic distribution of cortical atrophy and clinical presentation. The results revealed no direct relationship between density of TDP-43 inclusions and activated microglia. Reduced size of the remaining neurons is likely to contribute to cortical atrophy detected by MRI. These findings support the conclusion that there is no obligatory relationship between logopenic PPA and Alzheimer pathology. © 2018 American Academy of Neurology.

  17. Size distribution of dust grains: A problem of self-similarity

    NASA Technical Reports Server (NTRS)

    Henning, TH.; Dorschner, J.; Guertler, J.

    1989-01-01

    Distribution functions describing the results of natural processes frequently show the shape of power laws, e.g., mass functions of stars and molecular clouds, velocity spectrum of turbulence, size distributions of asteroids, micrometeorites and also interstellar dust grains. It is an open question whether this behavior is a result simply coming about by the chosen mathematical representation of the observational data or reflects a deep-seated principle of nature. The authors suppose the latter being the case. Using a dust model consisting of silicate and graphite grains Mathis et al. (1977) showed that the interstellar extinction curve can be represented by taking a grain radii distribution of power law type n(a) varies as a(exp -p) with 3.3 less than or equal to p less than or equal to 3.6 (example 1) as a basis. A different approach to understanding power laws like that in example 1 becomes possible by the theory of self-similar processes (scale invariance). The beta model of turbulence (Frisch et al., 1978) leads in an elementary way to the concept of the self-similarity dimension D, a special case of Mandelbrot's (1977) fractal dimension. In the frame of this beta model, it is supposed that on each stage of a cascade the system decays to N clumps and that only the portion beta N remains active further on. An important feature of this model is that the active eddies become less and less space-filling. In the following, the authors assume that grain-grain collisions are such a scale-invarient process and that the remaining grains are the inactive (frozen) clumps of the cascade. In this way, a size distribution n(a) da varies as a(exp -(D+1))da (example 2) results. It seems to be highly probable that the power law character of the size distribution of interstellar dust grains is the result of a self-similarity process. We can, however, not exclude that the process leading to the interstellar grain size distribution is not fragmentation at all. It could be, e.g., diffusion-limited growth discussed by Sander (1986), who applied the theory of fractal geometry to the classification of non-equilibrium growth processes. He received D=2.4 for diffusion-limited aggregation in 3d-space.

  18. Aerosol in the Pacific troposphere

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.

    1989-01-01

    The use of near real-time optical techniques is emphasized for the measurement of mid-tropospheric aerosol over the Central Pacific. The primary focus is on measurement of the aerosol size distribution over the range of particle diameters from 0.15 to 5.0 microns that are essential for modeling CO2 backscatter values in support of the laser atmospheric wind sounder (LAWS) program. The measurement system employs a LAS-X (Laser Aerosol Spectrometer-PMS, Boulder, CO) with a custom 256 channel pulse height analyzer and software for detailed measurement and analysis of aerosol size distributions. A thermal preheater system (Thermo Optic Aerosol Descriminator (TOAD) conditions the aerosol in a manner that allows the discrimination of the size distribution of individual aerosol components such as sulfuric acid, sulfates and refractory species. This allows assessment of the relative contribution of each component to the BCO2 signal. This is necessary since the different components have different sources, exhibit independent variability and provide different BCO2 signals for a given mass and particle size. Field activities involve experiments designed to examine both temporal and spatial variability of these aerosol components from ground based and aircraft platforms.

  19. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes

    PubMed Central

    Brangwynne, Clifford P.; Mitchison, Timothy J.; Hyman, Anthony A.

    2011-01-01

    For most intracellular structures with larger than molecular dimensions, little is known about the connection between underlying molecular activities and higher order organization such as size and shape. Here, we show that both the size and shape of the amphibian oocyte nucleolus ultimately arise because nucleoli behave as liquid-like droplets of RNA and protein, exhibiting characteristic viscous fluid dynamics even on timescales of < 1 min. We use these dynamics to determine an apparent nucleolar viscosity, and we show that this viscosity is ATP-dependent, suggesting a role for active processes in fluidizing internal contents. Nucleolar surface tension and fluidity cause their restructuring into spherical droplets upon imposed mechanical deformations. Nucleoli exhibit a broad distribution of sizes with a characteristic power law, which we show is a consequence of spontaneous coalescence events. These results have implications for the function of nucleoli in ribosome subunit processing and provide a physical link between activity within a macromolecular assembly and its physical properties on larger length scales. PMID:21368180

  20. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes.

    PubMed

    Brangwynne, Clifford P; Mitchison, Timothy J; Hyman, Anthony A

    2011-03-15

    For most intracellular structures with larger than molecular dimensions, little is known about the connection between underlying molecular activities and higher order organization such as size and shape. Here, we show that both the size and shape of the amphibian oocyte nucleolus ultimately arise because nucleoli behave as liquid-like droplets of RNA and protein, exhibiting characteristic viscous fluid dynamics even on timescales of < 1 min. We use these dynamics to determine an apparent nucleolar viscosity, and we show that this viscosity is ATP-dependent, suggesting a role for active processes in fluidizing internal contents. Nucleolar surface tension and fluidity cause their restructuring into spherical droplets upon imposed mechanical deformations. Nucleoli exhibit a broad distribution of sizes with a characteristic power law, which we show is a consequence of spontaneous coalescence events. These results have implications for the function of nucleoli in ribosome subunit processing and provide a physical link between activity within a macromolecular assembly and its physical properties on larger length scales.

  1. A fast integrated mobility spectrometer for rapid measurement of sub-micrometer aerosol size distribution, Part I: Design and model evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian; Pikridas, Michael; Spielman, Steven R.

    This study discusses, a fast integrated mobility spectrometer (FIMS) was previously developed to characterize submicron aerosol size distributions at a frequency of 1 Hz and with high size resolution and counting statistics. However, the dynamic size range of the FIMS was limited to one decade in particle electrical mobility. It was proposed that the FIMS dynamic size range can be greatly increased by using a spatially varying electric field. This electric field creates regions with drastically different field strengths in the separator, such that particles of a wide diameter range can be simultaneously classified and subsequently measured. A FIMS incorporatingmore » this spatially varying electric field is developed. This paper describes the theoretical frame work and numerical simulations of the FIMS with extended dynamic size range, including the spatially varying electric field, particle trajectories, activation of separated particles in the condenser, and the transfer function, transmission efficiency, and mobility resolution. The influences of the particle Brownian motion on FIMS transfer function and mobility resolution are examined. The simulation results indicate that the FIMS incorporating the spatially varying electric field is capable of measuring aerosol size distribution from 8 to 600 nm with high time resolution. As a result, the experimental characterization of the FIMS is presented in an accompanying paper.« less

  2. A fast integrated mobility spectrometer for rapid measurement of sub-micrometer aerosol size distribution, Part I: Design and model evaluation

    DOE PAGES

    Wang, Jian; Pikridas, Michael; Spielman, Steven R.; ...

    2017-06-01

    This study discusses, a fast integrated mobility spectrometer (FIMS) was previously developed to characterize submicron aerosol size distributions at a frequency of 1 Hz and with high size resolution and counting statistics. However, the dynamic size range of the FIMS was limited to one decade in particle electrical mobility. It was proposed that the FIMS dynamic size range can be greatly increased by using a spatially varying electric field. This electric field creates regions with drastically different field strengths in the separator, such that particles of a wide diameter range can be simultaneously classified and subsequently measured. A FIMS incorporatingmore » this spatially varying electric field is developed. This paper describes the theoretical frame work and numerical simulations of the FIMS with extended dynamic size range, including the spatially varying electric field, particle trajectories, activation of separated particles in the condenser, and the transfer function, transmission efficiency, and mobility resolution. The influences of the particle Brownian motion on FIMS transfer function and mobility resolution are examined. The simulation results indicate that the FIMS incorporating the spatially varying electric field is capable of measuring aerosol size distribution from 8 to 600 nm with high time resolution. As a result, the experimental characterization of the FIMS is presented in an accompanying paper.« less

  3. Empirical Reference Distributions for Networks of Different Size

    PubMed Central

    Smith, Anna; Calder, Catherine A.; Browning, Christopher R.

    2016-01-01

    Network analysis has become an increasingly prevalent research tool across a vast range of scientific fields. Here, we focus on the particular issue of comparing network statistics, i.e. graph-level measures of network structural features, across multiple networks that differ in size. Although “normalized” versions of some network statistics exist, we demonstrate via simulation why direct comparison is often inappropriate. We consider normalizing network statistics relative to a simple fully parameterized reference distribution and demonstrate via simulation how this is an improvement over direct comparison, but still sometimes problematic. We propose a new adjustment method based on a reference distribution constructed as a mixture model of random graphs which reflect the dependence structure exhibited in the observed networks. We show that using simple Bernoulli models as mixture components in this reference distribution can provide adjusted network statistics that are relatively comparable across different network sizes but still describe interesting features of networks, and that this can be accomplished at relatively low computational expense. Finally, we apply this methodology to a collection of ecological networks derived from the Los Angeles Family and Neighborhood Survey activity location data. PMID:27721556

  4. Motor unit activity within the depth of the masseter characterized by an adapted scanning EMG technique.

    PubMed

    van Dijk, J P; Eiglsperger, U; Hellmann, D; Giannakopoulos, N N; McGill, K C; Schindler, H J; Lapatki, B G

    2016-09-01

    To study motor unit activity in the medio-lateral extension of the masseter using an adapted scanning EMG technique that allows studying the territories of multiple motor units (MUs) in one scan. We studied the m. masseter of 10 healthy volunteers in whom two scans were performed. A monopolar scanning needle and two pairs of fine-wire electrodes were inserted into the belly of the muscle. The signals of the fine wire electrodes were decomposed into the contribution of single MUs and used as a trigger for the scanning needle. In this manner multiple MU territory scans were obtained simultaneously. We determined 161 MU territories. The maximum number of territories obtained in one scan was 15. The median territory size was 4.0mm. Larger and smaller MU territories were found throughout the muscle. The presented technique showed its feasibility in obtaining multiple MU territories in one scan. MUs were active throughout the depth of the muscle. The distribution of electrical and anatomical size of MUs substantiates the heterogeneous distribution of MUs throughout the muscle volume. This distributed activity may be of functional significance for the stabilization of the muscle during force generation. Copyright © 2016 International Federation of Clinical Neurophysiology. All rights reserved.

  5. The mass disruption of Jupiter Family comets

    NASA Astrophysics Data System (ADS)

    Belton, Michael J. S.

    2015-01-01

    I show that the size-distribution of small scattered-disk trans-neptunian objects when derived from the observed size-distribution of Jupiter Family comets (JFCs) and other observational constraints implies that a large percentage (94-97%) of newly arrived active comets within a range of 0.2-15.4 km effective radius must physically disrupt, i.e., macroscopically disintegrate, within their median dynamical lifetime. Additional observational constraints include the numbers of dormant and active nuclei in the near-Earth object (NEO) population and the slope of their size distributions. I show that the cumulative power-law slope (-2.86 to -3.15) of the scattered-disk TNO hot population between 0.2 and 15.4 km effective radius is only weakly dependent on the size-dependence of the otherwise unknown disruption mechanism. Evidently, as JFC nuclei from the scattered disk evolve into the inner Solar System only a fraction achieve dormancy while the vast majority of small nuclei (e.g., primarily those with effective radius <2 km) break-up. The percentage disruption rate appears to be comparable with that of the dynamically distinct Oort cloud and Halley type comets (Levison, H.F., Morbidelli, A., Dones, L., Jedicke, R., Wiegert, P.A., Bottke Jr., W.F. [2002]. Science 296, 2212-2215) suggesting that all types of comet nuclei may have similar structural characteristics even though they may have different source regions and thermal histories. The typical disruption rate for a 1 km radius active nucleus is ∼5 × 10-5 disruptions/year and the dormancy rate is typically 3 times less. We also estimate that average fragmentation rates range from 0.01 to 0.04 events/year/comet, somewhat above the lower limit of 0.01 events/year/comet observed by Chen and Jewitt (Chen, J., Jewitt, D.C. [1994]. Icarus 108, 265-271).

  6. Effects of Sediment Patches on Sediment Transport Predictions in Steep Mountain Channels

    NASA Astrophysics Data System (ADS)

    Monsalve Sepulveda, A.; Yager, E.

    2013-12-01

    Bed surface patches occur in most gravel-bedded rivers and in steep streams can be divided between relatively immobile boulders and more mobile patches of cobbles and gravel. This spatial variability in grain size, roughness and sorting impact bed load transport by altering the relative local mobility of different grain sizes and creating complex local flow fields. Large boulders also bear a significant part of the total shear stress and we hypothesize that the remaining shear stress on a given mobile patch is a distribution of values that depend on the local topography, patch type and location relative to the large roughness elements and thalweg. Current sediment transport equations do not account for the variation in roughness, local flow and grain size distributions on and between patches and often use an area-weighted approach to obtain a representative grain size distribution and reach-averaged shear stress. Such equations also do not distinguish between active (patches where at least one grain size is in motion) and inactive patches or include the difference in mobility between patch classes as result of spatial shear stress distributions. To understand the effects of sediment patches on sediment transport in steep channels, we calculated the shear stress distributions over a range of patch classes in a 10% gradient step-pool stream. We surveyed the bed with a high density resolution (every 5 cm in horizontal and vertical directions over a 40 m long reach) using a total station and terrestrial LiDAR, mapped and classified patches by their grain size distributions, and measured water surface elevations and mean velocities for low to moderate flow events. Using these data we calibrated a quasi-three dimensional model (FaSTMECH) to obtain shear stress distributions over each patch for a range of flow discharges. We modified Parker's (1990) equations to use the calculated shear stress distribution, measured grain sizes, and a specific hiding function for each patch class, and then added the bedload fluxes for each patch to calculate the reach-averaged sediment transport rate. Sediment mobility in patches was highly dependent on the patch's class and location relative to the thalweg and large roughness elements. Compared to deterministic formulations, the use of distributions of shear stress improved predictions of bedload transport in steep mountain channels.

  7. Statistical Analysis of Streambed Sediment Grain Size Distributions: Implications for Environmental Management and Regulatory Policy

    Treesearch

    Brenda Rosser; Matt O' Connor

    2007-01-01

    Fish habitat in cold water streams in many northwestern California watersheds has been declared degraded under provisions of the Federal Clean Water Act, contributing to listings of anadromous fish species under the Endangered Species Act. It is believed that past and present land management activities induce erosion that contributes excess sand-size and finer sediment...

  8. New insights in morphological analysis for managing activated sludge systems.

    PubMed

    Oliveira, Pedro; Alliet, Marion; Coufort-Saudejaud, Carole; Frances, Christine

    2018-06-01

    In activated sludge (AS) process, the impact of the operational parameters on process efficiency is assumed to be correlated with the sludge properties. This study provides a better insight into these interactions by subjecting a laboratory-scale AS system to a sequence of operating condition modifications enabling typical situations of a wastewater treatment plant to be represented. Process performance was assessed and AS floc morphology (size, circularity, convexity, solidity and aspect ratio) was quantified by measuring 100,000 flocs per sample with an automated image analysis technique. Introducing 3D distributions, which combine morphological properties, allowed the identification of a filamentous bulking characterized by a floc population shift towards larger sizes and lower solidity and circularity values. Moreover, a washout phenomenon was characterized by smaller AS flocs and an increase in their solidity. Recycle ratio increase and COD:N ratio decrease both promoted a slight reduction of floc sizes and a constant evolution of circularity and convexity values. The analysis of the volume-based 3D distributions turned out to be a smart tool to combine size and shape data, allowing a deeper understanding of the dynamics of floc structure under process disturbances.

  9. Surface properties of heat-induced soluble soy protein aggregates of different molecular masses.

    PubMed

    Guo, Fengxian; Xiong, Youling L; Qin, Fang; Jian, Huajun; Huang, Xiaolin; Chen, Jie

    2015-02-01

    Suspensions (2% and 5%, w/v) of soy protein isolate (SPI) were heated at 80, 90, or 100 °C for different time periods to produce soluble aggregates of different molecular sizes to investigate the relationship between particle size and surface properties (emulsions and foams). Soluble aggregates generated in these model systems were characterized by gel permeation chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Heat treatment increased surface hydrophobicity, induced SPI aggregation via hydrophobic interaction and disulfide bonds, and formed soluble aggregates of different sizes. Heating of 5% SPI always promoted large-size aggregate (LA; >1000 kDa) formation irrespective of temperature, whereas the aggregate size distribution in 2% SPI was temperature dependent: the LA fraction progressively rose with temperature (80→90→100 °C), corresponding to the attenuation of medium-size aggregates (MA; 670 to 1000 kDa) initially abundant at 80 °C. Heated SPI with abundant LA (>50%) promoted foam stability. LA also exhibited excellent emulsifying activity and stabilized emulsions by promoting the formation of small oil droplets covered with a thick interfacial protein layer. However, despite a similar influence on emulsion stability, MA enhanced foaming capacity but were less capable of stabilizing emulsions than LA. The functionality variation between heated SPI samples is clearly related to the distribution of aggregates that differ in molecular size and surface activity. The findings may encourage further research to develop functional SPI aggregates for various commercial applications. © 2015 Institute of Food Technologists®

  10. Size distributions of aerosol and water-soluble ions in Nanjing during a crop residual burning event.

    PubMed

    Wang, Honglei; Zhu, Bin; Shen, Lijuan; Kang, Hanqing

    2012-01-01

    To investigate the impact on urban air pollution by crop residual burning outside Nanjing, aerosol concentration, pollution gas concentration, mass concentration, and water-soluble ion size distribution were observed during one event of November 4-9, 2010. Results show that the size distribution of aerosol concentration is bimodal on pollution days and normal days, with peak values at 60-70 and 200-300 nm, respectively. Aerosol concentration is 10(4) cm(-3) x nm(-1) on pollution days. The peak value of spectrum distribution of aerosol concentration on pollution days is 1.5-3.3 times higher than that on a normal day. Crop residual burning has a great impact on the concentration of fine particles. Diurnal variation of aerosol concentration is trimodal on pollution days and normal days, with peak values at 03:00, 09:00 and 19:00 local standard time. The first peak is impacted by meteorological elements, while the second and third peaks are due to human activities, such as rush hour traffic. Crop residual burning has the greatest impact on SO2 concentration, followed by NO2, O3 is hardly affected. The impact of crop residual burning on fine particles (< 2.1 microm) is larger than on coarse particles (> 2.1 microm), thus ion concentration in fine particles is higher than that in coarse particles. Crop residual burning leads to similar increase in all ion components, thus it has a small impact on the water-soluble ions order. Crop residual burning has a strong impact on the size distribution of K+, Cl-, Na+, and F- and has a weak impact on the size distributions of NH4+, Ca2+, NO3- and SO4(2-).

  11. On wildfire complexity, simple models and environmental templates for fire size distributions

    NASA Astrophysics Data System (ADS)

    Boer, M. M.; Bradstock, R.; Gill, M.; Sadler, R.

    2012-12-01

    Vegetation fires affect some 370 Mha annually. At global and continental scales, fire activity follows predictable spatiotemporal patterns driven by gradients and seasonal fluctuations of primary productivity and evaporative demand that set constraints for fuel accumulation rates and fuel dryness, two key ingredients of fire. At regional scales, fires are also known to affect some landscapes more than others and within landscapes to occur preferentially in some sectors (e.g. wind-swept ridges) and rarely in others (e.g. wet gullies). Another common observation is that small fires occur relatively frequent yet collectively burn far less country than relatively infrequent large fires. These patterns of fire activity are well known to management agencies and consistent with their (informal) models of how the basic drivers and constraints of fire (i.e. fuels, ignitions, weather) vary in time and space across the landscape. The statistical behaviour of these landscape fire patterns has excited the (academic) research community by showing some consistency with that of complex dynamical systems poised at a phase transition. The common finding that the frequency-size distributions of actual fires follow power laws that resemble those produced by simple cellular models from statistical mechanics has been interpreted as evidence that flammable landscapes operate as self-organising systems with scale invariant fire size distributions emerging 'spontaneously' from simple rules of contagious fire spread and a strong feedback between fires and fuel patterns. In this paper we argue that the resemblance of simulated and actual fire size distributions is an example of equifinality, that is fires in model landscapes and actual landscapes may show similar statistical behaviour but this is reached by qualitatively different pathways or controlling mechanisms. We support this claim with two key findings regarding simulated fire spread mechanisms and fire-fuel feedbacks. Firstly, we demonstrate that the power law behaviour of fire size distributions in the widely used Drossel and Schwabl (1992) Forest Fire Model (FFM) is strictly conditional on simulating fire spread as a cell-to-cell contagion over a fixed distance; the invariant scaling of fire sizes breaks down under the slightest variation in that distance, suggesting that pattern formation in the FFM is irreconcilable with the reality of disparate rates and modes of fire spread observed in the field. Secondly, we review field evidence showing that fuel age effects on the probability of fire spread, a key assumption in simulation models like the FFM, do not generally apply across flammable environments. Finally, we explore alternative explanations for the formation of scale invariant fire sizes in real landscapes. Using observations from southern Australian forest regions we demonstrate that the spatiotemporal patterns of fuel dryness and magnitudes of fire driving weather events set strong environmental templates for regional fire size distributions.

  12. The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons.

    PubMed

    Cooper, Anne Marie; Hristovski, Kiril D; Möller, Teresia; Westerhoff, Paul; Sylvester, Paul

    2010-11-15

    This study investigates the impact of the type of virgin granular activated carbon (GAC) media used to synthesize iron (hydr)oxide nanoparticle-impregnated granular activated carbon (Fe-GAC) on its properties and its ability to remove arsenate and organic trichloroethylene (TCE) from water. Two Fe-GAC media were synthesized via a permanganate/ferrous ion synthesis method using bituminous and lignite-based virgin GAC. Data obtained from an array of characterization techniques (pore size distribution, surface charge, etc.) in correlation with batch equilibrium tests, and continuous flow modeling suggested that GAC type and pore size distribution control the iron (nanoparticle) contents, Fe-GAC synthesis mechanisms, and contaminant removal performances. Pore surface diffusion model calculations predicted that lignite Fe-GAC could remove ∼6.3 L g(-1) dry media and ∼4 L g(-1) dry media of water contaminated with 30 μg L(-1) TCE and arsenic, respectively. In contrast, the bituminous Fe-GAC could remove only ∼0.2 L/g dry media for TCE and ∼2.8 L/g dry media for As of the same contaminated water. The results show that arsenic removal capability is increased while TCE removal is decreased as a result of Fe nanoparticle impregnation. This tradeoff is related to several factors, of which changes in surface properties and pore size distributions appeared to be the most dominant. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Birth Size and Later Central Obesity Among Adolescent Girls of Asian, White, and Mixed Ethnicities

    PubMed Central

    Vijayadeva, Vinutha; Grove, John; Lim, Unhee; Le Marchand, Loic

    2013-01-01

    Birth size has important implications for health and disease in adulthood. This study examined the association of birth size with central body fat distribution in late adolescence. Data were from a cross-sectional survey of adolescent girls (N = 143, 13–18y) of Asian, White and Mixed Asian-white ethnicity collected in 2005–2007 in Hawai‘i, USA. Central body fat distribution was assessed with dual-energy x-ray absorptiometry and birth size from birth certificates and parent recall. Food diaries (3-day) were used to determine energy intake and metabolic equivalents of energy expenditure. The proportion of Asian ancestry was determined by questions and anthropometry was performed. T-tests compared groups, and multiple regression examined predictors of central body fat distribution, adjusting for potential confounders. Asian girls had a lower mean weight and gestational age at birth than White girls, and a lower mean dietary fat intake in adolescence. Girls of Asian and Mixed Asian-white ancestry had a more body fat distribution than White girls. Lower birth weight was associated with greater central body fat distribution (0.1 or 10% higher central body fat distribution for every 10 grams lower birth weight), after adjusting for age, ancestry, physical activity, energy intake, and bi-iliac breadth, and gestational age. Further adjusting for birth length attenuated the birth weight effect, and shorter birth length was the significant predictor of central body fat distribution. (0.1 or 10% higher central body fat distribution for every 0.01mm shorter length). If confirmed, these findings would suggest that linear growth may be more relevant to metabolic programming than growth in mass. PMID:23467588

  14. Birth size and later central obesity among adolescent girls of Asian, White, and Mixed ethnicities.

    PubMed

    Novotny, Rachel; Vijayadeva, Vinutha; Grove, John; Lim, Unhee; Le Marchand, Loic

    2013-02-01

    Birth size has important implications for health and disease in adulthood. This study examined the association of birth size with central body fat distribution in late adolescence. Data were from a cross-sectional survey of adolescent girls (N = 143, 13-18y) of Asian, White and Mixed Asian-white ethnicity collected in 2005-2007 in Hawai'i, USA. Central body fat distribution was assessed with dual-energy x-ray absorptiometry and birth size from birth certificates and parent recall. Food diaries (3-day) were used to determine energy intake and metabolic equivalents of energy expenditure. The proportion of Asian ancestry was determined by questions and anthropometry was performed. T-tests compared groups, and multiple regression examined predictors of central body fat distribution, adjusting for potential confounders. Asian girls had a lower mean weight and gestational age at birth than White girls, and a lower mean dietary fat intake in adolescence. Girls of Asian and Mixed Asian-white ancestry had a more body fat distribution than White girls. Lower birth weight was associated with greater central body fat distribution (0.1 or 10% higher central body fat distribution for every 10 grams lower birth weight), after adjusting for age, ancestry, physical activity, energy intake, and bi-iliac breadth, and gestational age. Further adjusting for birth length attenuated the birth weight effect, and shorter birth length was the significant predictor of central body fat distribution. (0.1 or 10% higher central body fat distribution for every 0.01mm shorter length). If confirmed, these findings would suggest that linear growth may be more relevant to metabolic programming than growth in mass.

  15. Morphological characteristics of mechanochemically synthesized Fe/Ti composites

    NASA Astrophysics Data System (ADS)

    Grigor'eva, T. F.; Kovaleva, S. A.; Kiseleva, T. Yu.; Vosmerikov, S. V.; Devyatkina, E. T.; Pastukhov, E. A.; Lyakhov, N. Z.

    2016-08-01

    The joint mechanical activation of chemically interacting iron and titanium has been studied by X-ray diffraction and atomic force microscopy. It is shown that chemically interacting metals Fe and Ti do not form any intermetallic compounds or solid solutions upon intense mechanical activation in a high-energy planetary mill. The products of mechanical activation are Fe/Ti mechanocomposites, in which titanium is distributed over the iron grain surface. An increase in the mechanical activation time leads to the agglomeration of powders and the formation of particles with a wide size range (5-25 μm). The iron crystallite sizes and the level of microstresses are reduced, indicating a decrease in the particle strength.

  16. [Concentration and Size Distribution of Bioaerosols in Indoor Environment of University Dormitory During the Plum Rain Period].

    PubMed

    Liu, Ting; Li, Lu; Zhang, Jia-quan; Zhan, Chang-lin; Liu, Hong-xia; Zheng, Jing-ru; Yao, Rui-zhen; Cao, Jun-ji

    2016-04-15

    Bioaerosols of university dormitory can spread through air and cause a potential health risk for student staying in indoor environment. To quantify the characteristics of bioaerosols in indoor environment of university dormitory, concentration and size distribution of culturable bioaerosols were detected during the plum rain period, the correlations of culturable bioaerosol with concentration of particulate matter, the ambient temperature and relative humidity were analyzed using Spearman's correlation coefficient and finally the changes of size distribution of culturable bioaerosol caused by activities of students were detected. The results showed that the mean concentrations of culturable airborne bacteria and fungi were (2133 +/- 1617) CFUm' and (3111 +/- 2202) CFU x m(-3). The concentrations of culturable airborne bacteria and fungi exhibited negative correlation with PM1, PM2.5, and PM10, respectively. The respirable fractions of bacteria exhibited positive correlation with PM2.5, and the respirable fractions of fungi exhibited significant positive correlation with PM10. Ambient temperature had positive correlation with culturable airborne bacteria and fungi, and relative humidity had negative correlation with culturable airborne bacteria and fungi. In the afternoon, concentrations of culturable airborne fungi in indoor environment of university dormitory significantly increased, and the size distribution of culturable hioaerosols was different in the morning and afternoon.

  17. DETACHMENT OF BACTERIOPHAGE FROM ITS CARRIER PARTICLES

    PubMed Central

    Hetler, D. M.; Bronfenbrenner, J.

    1931-01-01

    The active substance (phage) present in the lytic broth filtrate is distributed through the medium in the form of particles. These particles vary in size within broad limits. The average size of these particles as calculated on the basis of the rate of diffusion approximates 4.4 mµ in radius. Fractionation by means of ultrafiltration permits partial separation of particles of different sizes. Under conditions of experiments here reported the particles varied in the radius size from 0.6 mµ to 11.4 mµ. The active agent apparently is not intimately identified with these particles. It is merely carried by them by adsorption, and under suitable experimental conditions it can be detached from the larger particles and redistributed on smaller particles of the medium. PMID:19872604

  18. Heuristic considerations pertaining to hailstone size distributions in the plain of Friuli-Venezia Giulia

    NASA Astrophysics Data System (ADS)

    Giaiotti, Dario; Gianesini, Elena; Stel, Fulvio

    In this work, the hailstone size distributions at the ground in the plain of Friuli-Venezia Giulia are presented, as revealed through a network of polystyrene pads (hailpads), managed by volunteers, which has been active since 1988. The aim of this work is to highlight possible differences in the diurnal and seasonal behavior of hail at the ground, both from Friuli-Venezia Giulia and other countries, in order to improve the knowledge of this meteorological phenomenon. In the comparison between different countries, differences are found between the yearly size distributions of Friuli-Venezia Giulia and those of North-East Colorado, measured during the National Hail Research Experiment (NHRE). The size distributions obtained in South West France and in Friuli-Venezia Giulia are quite similar and they are slightly different from those of the Grossversuch experiment. In the comparison between different periods of the year, relevant differences are found between April and May and the other months. In particular, thunderstorms are less efficient in producing big hailstones during the former months. The most prolific month in producing hailstones is June, followed by September. This feature is interpreted as due to a form of synergy between the frequency of the synoptic forcing of storms and the amount of available energy at the ground. Analyzing the size distributions at different times of the day, the greatest differences are found in the intervals [00-06] and [06-12] in local time (respectively, [22-04] and [04-10] in UTC). These differences cannot be ascribed to the melting of the hailstones during their fall.

  19. Signatures of human impact: size distributions and spatial organization of wetlands in the Prairie Pothole landscape.

    PubMed

    Van Meter, Kimberly J; Basu, Nandita B

    2015-03-01

    More than 50% of global wetland area has been lost over the last 200 years, resulting in losses of habitat and species diversity as well as decreased hydrologic and biogeochemical functionality. Recognition of the magnitude of wetland loss as well as the wide variety of ecosystem services provided by wetlands has in recent decades led to an increased focus on wetland restoration. Restoration activities, however, often proceed in an ad hoc manner, with a focus on maximizing the total restored area rather than on other spatial attributes of the wetland network, which are less well understood. In this study, we have addressed the question of how human activities have altered the size distribution and spatial organization of wetlands over the Prairie Pothole Region of the Des Moines Lobe using high- resolution LIDAR data. Our results show that as well as the generally accepted 90% loss of depressional wetland area, there has been a preferential loss of smaller wetlands, with a marked alteration of the historical power-law relationship observed between wetland size and frequency and a resulting homogenization of the wetland size distribution. In addition, our results show significant decreases in perimeter-to-area ratios, increased mean distances between wetlands, particularly between smaller wetlands, and a reduced likelihood that current wetlands will, be located in upland areas. Such patterns of loss can lead to disproportionate losses of ecosystem services, as smaller wetlands with larger perimeter-to- area ratios have been found to provide higher rates of biogeochemical processing and groundwater recharge, while increased mean distances between wetlands hinder species migration and thus negatively impact biodiversity. These results suggest the need to gear restoration efforts toward understanding and recreating the size distribution and spatial organization of historical wetlands, rather than focusing primarily on an increase in overall area.

  20. Trichoderma koningii assisted biogenic synthesis of silver nanoparticles and evaluation of their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Tripathi, R. M.; Gupta, Rohit Kumar; Shrivastav, Archana; Singh, M. P.; Shrivastav, B. R.; Singh, Priti

    2013-09-01

    The present study demonstrates the biosynthesis of silver nanoparticles using Trichoderma koningii and evaluation of their antibacterial activity. Trichoderma koningii secretes proteins and enzymes that act as reducing and capping agent. The biosynthesized silver nanoparticles (AgNPs) were characterized by UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM) and x-ray diffraction (XRD). UV-Vis spectra showed absorbance peak at 413 nm corresponding to the surface plasmon resonance of silver nanoparticles. DLS was used to find out the size distribution profile. The size and morphology of the AgNPs was determined by TEM, which shows the formation of spherical nanoparticles in the size range of 8-24 nm. X-ray diffraction showed intense peaks corresponding to the crystalline silver. The antibacterial activity of biosynthesized AgNPs was evaluated by growth curve and inhibition zone and it was found that the AgNPs show potential effective antibacterial activity.

  1. Checking the possibility of controlling fuel element by X-ray computerized tomography

    NASA Astrophysics Data System (ADS)

    Trinh, V. B.; Zhong, Y.; Osipov, S. P.; Batranin, A. V.

    2017-08-01

    The article considers the possibility of checking fuel elements by X-ray computerized tomography. The checking tasks are based on the detection of particles of active material, evaluation of the heterogeneity of the distribution of uranium salts and the detection of clusters of uranium particles. First of all, scheme of scanning improve the performance and quality of the resulting three-dimensional images of the internal structure is determined. Further, the possibility of detecting clusters of uranium particles having the size of 1 mm3 and measuring the coordinates of clusters of uranium particles in the middle layer with the accuracy of within a voxel size (for the considered experiments of about 80 μm) is experimentally proved in the main part. The problem of estimating the heterogeneity of the distribution of the active material in the middle layer and the detection of particles of active material with a nominal diameter of 0.1 mm in the “blank” is solved.

  2. Griffiths phase and long-range correlations in a biologically motivated visual cortex model

    NASA Astrophysics Data System (ADS)

    Girardi-Schappo, M.; Bortolotto, G. S.; Gonsalves, J. J.; Pinto, L. T.; Tragtenberg, M. H. R.

    2016-07-01

    Activity in the brain propagates as waves of firing neurons, namely avalanches. These waves’ size and duration distributions have been experimentally shown to display a stable power-law profile, long-range correlations and 1/f b power spectrum in vivo and in vitro. We study an avalanching biologically motivated model of mammals visual cortex and find an extended critical-like region - a Griffiths phase - characterized by divergent susceptibility and zero order parameter. This phase lies close to the expected experimental value of the excitatory postsynaptic potential in the cortex suggesting that critical be-havior may be found in the visual system. Avalanches are not perfectly power-law distributed, but it is possible to collapse the distributions and define a cutoff avalanche size that diverges as the network size is increased inside the critical region. The avalanches present long-range correlations and 1/f b power spectrum, matching experiments. The phase transition is analytically determined by a mean-field approximation.

  3. Photoballistics of volcanic jet activity at Stromboli, Italy

    NASA Technical Reports Server (NTRS)

    Chouet, B.; Hamisevicz, N.; Mcgetchin, T. R.

    1974-01-01

    Two night eruptions of the volcano Stromboli were studied through 70-mm photography. Single-camera techniques were used. Particle sphericity, constant velocity in the frame, and radial symmetry were assumed. Properties of the particulate phase found through analysis include: particle size, velocity, total number of particles ejected, angular dispersion and distribution in the jet, time variation of particle size and apparent velocity distribution, averaged volume flux, and kinetic energy carried by the condensed phase. The frequency distributions of particle size and apparent velocities are found to be approximately log normal. The properties of the gas phase were inferred from the fact that it was the transporting medium for the condensed phase. Gas velocity and time variation, volume flux of gas, dynamic pressure, mass erupted, and density were estimated. A CO2-H2O mixture is possible for the observed eruptions. The flow was subsonic. Velocity variations may be explained by an organ pipe resonance. Particle collimation may be produced by a Magnus effect.

  4. Common ecology quantifies human insurgency.

    PubMed

    Bohorquez, Juan Camilo; Gourley, Sean; Dixon, Alexander R; Spagat, Michael; Johnson, Neil F

    2009-12-17

    Many collective human activities, including violence, have been shown to exhibit universal patterns. The size distributions of casualties both in whole wars from 1816 to 1980 and terrorist attacks have separately been shown to follow approximate power-law distributions. However, the possibility of universal patterns ranging across wars in the size distribution or timing of within-conflict events has barely been explored. Here we show that the sizes and timing of violent events within different insurgent conflicts exhibit remarkable similarities. We propose a unified model of human insurgency that reproduces these commonalities, and explains conflict-specific variations quantitatively in terms of underlying rules of engagement. Our model treats each insurgent population as an ecology of dynamically evolving, self-organized groups following common decision-making processes. Our model is consistent with several recent hypotheses about modern insurgency, is robust to many generalizations, and establishes a quantitative connection between human insurgency, global terrorism and ecology. Its similarity to financial market models provides a surprising link between violent and non-violent forms of human behaviour.

  5. Cation disorder in Ga1212.

    PubMed

    Greenwood, K B; Ko, D; Vander Griend, D A; Sarjeant, G M; Milgram, J W; Garrity, E S; DeLoach, D I; Poeppelmeier, K R; Salvador, P A; Mason, T O

    2000-07-24

    Substitution of calcium for strontium in LnSr2-xCaxCu2GaO7 (Ln = La, Pr, Nd, Gd, Ho, Er, Tm, and Yb) materials at ambient pressure and 975 degrees C results in complete substitution of calcium for strontium in the lanthanum and praseodymium systems and partial substitution in the other lanthanide systems. The calcium saturation level depends on the size of the Ln cation, and in all cases, a decrease in the lattice parameters with calcium concentration was observed until a common, lower bound, average A-cation size is reached. Site occupancies from X-ray and neutron diffraction experiments for LnSr2-xCaxCu2GaO7 (x = 0 and x = 2) confirm that the A-cations distribute between the two blocking-layer sites and the active-layer site based on size. A quantitative link between cation distribution and relative site-specific cation enthalpy for calcium, strontium, and lanthanum within the gallate structure is derived. The cation distribution in other similar materials can potentially be modeled.

  6. Determination of hydrogen abundance in selected lunar soils

    NASA Technical Reports Server (NTRS)

    Bustin, Roberta

    1987-01-01

    Hydrogen was implanted in lunar soil through solar wind activity. In order to determine the feasibility of utilizing this solar wind hydrogen, it is necessary to know not only hydrogen abundances in bulk soils from a variety of locations but also the distribution of hydrogen within a given soil. Hydrogen distribution in bulk soils, grain size separates, mineral types, and core samples was investigated. Hydrogen was found in all samples studied. The amount varied considerably, depending on soil maturity, mineral types present, grain size distribution, and depth. Hydrogen implantation is definitely a surface phenomenon. However, as constructional particles are formed, previously exposed surfaces become embedded within particles, causing an enrichment of hydrogen in these species. In view of possibly extracting the hydrogen for use on the lunar surface, it is encouraging to know that hydrogen is present to a considerable depth and not only in the upper few millimeters. Based on these preliminary studies, extraction of solar wind hydrogen from lunar soil appears feasible, particulary if some kind of grain size separation is possible.

  7. Meteorological and Aerosol effects on Marine Cloud Microphysical Properties

    NASA Astrophysics Data System (ADS)

    Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Roberts, G.; Hawkins, L. N.; Schroder, J. C.; Wang, Z.; Lee, A.; Abbatt, J.; Lin, J.; Nenes, A.; Wonaschuetz, A.; Sorooshian, A.; Noone, K.; Jonsson, H.; Albrecht, B. A.; Desiree, T. S.; Macdonald, A. M.; Seinfeld, J.; Zhao, R.

    2015-12-01

    Both meteorology and microphysics affect cloud formation and consequently their droplet distributions and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment (EPEACE) and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets (SOLEDAD) studies provide detailed measurements in 6 case studies of both cloud thermodynamic properties and initial particle number distribution and composition, as well as the resulting cloud drop distribution and composition. This study uses simulations of a detailed chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce the observed cloud droplet distribution and composition. Four of the cases examined had a sub-adiabatic lapse rate, which was shown to have fewer droplets due to decreased maximum supersaturation, lower LWC and higher cloud base height, consistent with previous findings. These detailed case studies provided measured thermodynamics and microphysics that constrained the simulated droplet size distribution sufficiently to match the droplet number within 6% and the size within 19% for 4 of the 6 cases, demonstrating "closure" or consistency of the measured composition with the measured CCN spectra and the inferred and modeled supersaturation. The contribution of organic components to droplet formation shows small effects on the droplet number and size in the 4 marine cases that had background aerosol conditions with varying amounts of coastal, ship or other non-biogenic sources. In contrast, the organic fraction and hygroscopicity increased the droplet number and size in the cases with generated smoke and cargo ship plumes that were freshly emitted and not yet internally mixed with the background particles. The simulation results show organic hygroscopicity causes small effects on cloud reflectivity (<0.7%) with the exception of the cargo ship plume and smoke plume which increased absolute cloud reflectivity fraction by 0.02 and 0.20 respectively. In addition, the ACP model simulations are compared to those from a numerical parameterization of cloud droplet activation that is suitable for GCMs and show droplet concentrations are comparable between the two methods.

  8. Size distribution and coating thickness of black carbon from the Canadian oil sands operations

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan; Li, Shao-Meng; Gordon, Mark; Liu, Peter

    2018-02-01

    Black carbon (BC) plays an important role in the Earth's climate system. However, parameterizations of BC size and mixing state have not been well addressed in aerosol-climate models, introducing substantial uncertainties into the estimation of radiative forcing by BC. In this study, we focused on BC emissions from the oil sands (OS) surface mining activities in northern Alberta, based on an aircraft campaign conducted over the Athabasca OS region in 2013. A total of 14 flights were made over the OS source area, in which the aircraft was typically flown in a four- or five-sided polygon pattern along flight tracks encircling an OS facility. Another 3 flights were performed downwind of the OS source area, each of which involved at least three intercepting locations where the well-mixed OS plume was measured along flight tracks perpendicular to the wind direction. Comparable size distributions were observed for refractory black carbon (rBC) over and downwind of the OS facilities, with rBC mass median diameters (MMDs) between ˜ 135 and 145 nm that were characteristic of fresh urban emissions. This MMD range corresponded to rBC number median diameters (NMDs) of ˜ 60-70 nm, approximately 100 % higher than the NMD settings in some aerosol-climate models. The typical in- and out-of-plume segments of a flight, which had different rBC concentrations and photochemical ages, showed consistent rBC size distributions in terms of MMD, NMD and the corresponding distribution widths. Moreover, rBC size distributions remained unchanged at different downwind distances from the source area, suggesting that atmospheric aging would not necessarily change rBC size distribution. However, aging indeed influenced rBC mixing state. Coating thickness for rBC cores in the diameter range of 130-160 nm was nearly doubled (from ˜ 20 to 40 nm) within 3 h when the OS plume was transported over a distance of 90 km from the source area.

  9. A numerical study of the segregation phenomenon of lognormal particle size distributions in the rotating drum

    NASA Astrophysics Data System (ADS)

    Yang, Shiliang; Sun, Yuhao; Zhao, Ya; Chew, Jia Wei

    2018-05-01

    Granular materials are mostly polydisperse, which gives rise to phenomena such as segregation that has no monodisperse counterpart. The discrete element method is applied to simulate lognormal particle size distributions (PSDs) with the same arithmetic mean particle diameter but different PSD widths in a three-dimensional rotating drum operating in the rolling regime. Despite having the same mean particle diameter, as the PSD width of the lognormal PSDs increases, (i) the steady-state mixing index, the total kinetic energy, the ratio of the active region depth to the total bed depth, the mass fraction in the active region, the steady-state active-passive mass-based exchanging rate, and the mean solid residence time (SRT) of the particles in the active region increase, while (ii) the steady-state gyration radius, the streamwise velocity, and the SRT in the passive region decrease. Collectively, these highlight the need for more understanding of the effect of PSD width on the granular flow behavior in the rotating drum operating in the rolling flow regime.

  10. Surface plasmon enhanced cell microscopy with blocked random spatial activation

    NASA Astrophysics Data System (ADS)

    Son, Taehwang; Oh, Youngjin; Lee, Wonju; Yang, Heejin; Kim, Donghyun

    2016-03-01

    We present surface plasmon enhanced fluorescence microscopy with random spatial sampling using patterned block of silver nanoislands. Rigorous coupled wave analysis was performed to confirm near-field localization on nanoislands. Random nanoislands were fabricated in silver by temperature annealing. By analyzing random near-field distribution, average size of localized fields was found to be on the order of 135 nm. Randomly localized near-fields were used to spatially sample F-actin of J774 cells (mouse macrophage cell-line). Image deconvolution algorithm based on linear imaging theory was established for stochastic estimation of fluorescent molecular distribution. The alignment between near-field distribution and raw image was performed by the patterned block. The achieved resolution is dependent upon factors including the size of localized fields and estimated to be 100-150 nm.

  11. The tungsten powder study of the dispenser cathode

    NASA Astrophysics Data System (ADS)

    Bao, Ji-xiu; Wan, Bao-fei

    2006-06-01

    The intercorrelation of tungsten powder properties, such as grain size, distribution and morphology, and porous matrix parameters with electron emission capability and longevity of Ba dispenser cathodes has been investigated for the different grain morphologies. It is shown that a fully cleaning step of the tungsten powder is so necessary that the tungsten powder will be reduction of oxide in hydrogen atmosphere above 700 °C. The porosity of the tungsten matrix distributes more even and the closed pore is fewer, the average granule size of the tungsten powder distributes more convergent. The porosity of the tungsten matrix and the evaporation of the activator are bigger and the pulse of the cathode is smaller when the granularity is bigger by the analysis of the electronic microscope and diode experiment.

  12. MID-INFRARED SPECTROPHOTOMETRIC OBSERVATIONS OF FRAGMENTS B AND C OF COMET 73P/SCHWASSMANN-WACHMANN 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harker, David E.; Woodward, Charles E.; Kelley, Michael S.

    2011-01-15

    We present mid-infrared spectra and images from the Gemini-N (+ Michelle) observations of fragments SW3-[B] and SW3-[C] of the ecliptic (Jupiter family) comet 73P/Schwassmann-Wachmann 3 pre-perihelion. We observed fragment B soon after an outburst event (between 2006 April 16-26 UT) and detected crystalline silicates. The mineralogy of both fragments was dominated by amorphous carbon and amorphous pyroxene. The grain size distribution (assuming a Hanner-modified power law) for fragment SW3-[B] has a peak grain radius of a{sub p} {approx} 0.5 {mu}m, and for fragment SW3-[C], a{sub p} {approx} 0.3 {mu}m; both values are larger than the peak grain radius of themore » size distribution for the dust ejected from ecliptic comet 9P/Tempel 1 during the Deep Impact event (a{sub p} = 0.2 {mu}m). The silicate-to-carbon ratio and the silicate crystalline mass fraction for the submicron to micron-sized portion of the grain size distribution on the nucleus of fragment SW3-[B] were 1.341{sup +0.250}{sub -0.253} and 0.335{sup +0.089}{sub -0.112}, respectively, while on the nucleus of fragment SW3-[C] they were 0.671{sup +0.076}{sub -0.076} and 0.257{sup +0.039}{sub -0.043}, respectively. The similarity in mineralogy and grain properties between the two fragments implies that 73P/Schwassmann-Wachmann 3 is homogeneous in composition. The slight differences in grain size distribution and silicate-to-carbon ratio between the two fragments likely arise because SW3-[B] was actively fragmenting throughout its passage while the activity in SW3-[C] was primarily driven by jets. The lack of diverse mineralogy in the fragments SW3-[B] and SW3-[C] of 73P/Schwassmann-Wachmann 3 along with the relatively larger peak in the coma grain size distribution suggests that the parent body of this comet may have formed in a region of the solar nebula with different environmental properties than the natal sites where comet C/1995 O1 (Hale-Bopp) and 9P/Tempel 1 nuclei aggregated.« less

  13. Power laws, discontinuities and regional city size distributions

    USGS Publications Warehouse

    Garmestani, A.S.; Allen, Craig R.; Gallagher, C.M.

    2008-01-01

    Urban systems are manifestations of human adaptation to the natural environment. City size distributions are the expression of hierarchical processes acting upon urban systems. In this paper, we test the entire city size distributions for the southeastern and southwestern United States (1990), as well as the size classes in these regions for power law behavior. We interpret the differences in the size of the regional city size distributions as the manifestation of variable growth dynamics dependent upon city size. Size classes in the city size distributions are snapshots of stable states within urban systems in flux.

  14. The pebbles/boulders size distributions on Sais: Rosetta's final landing site on comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Pajola, M.; Lucchetti, A.; Fulle, M.; Mottola, S.; Hamm, M.; Da Deppo, V.; Penasa, L.; Kovacs, G.; Massironi, M.; Shi, X.; Tubiana, C.; Güttler, C.; Oklay, N.; Vincent, J. B.; Toth, I.; Davidsson, B.; Naletto, G.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J. L.; Bertini, I.; Cremonese, G.; Debei, S.; De Cecco, M.; Deller, J.; El Maarry, M. R.; Fornasier, S.; Frattin, E.; Gicquel, A.; Groussin, O.; Gutierrez, P. J.; Höfner, S.; Hofmann, M.; Hviid, S. F.; Ip, W. H.; Jorda, L.; Knollenberg, J.; Kramm, J. R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Moreno, J. J. Lopez; Marzari, F.; Michalik, H.; Preusker, F.; Scholten, F.; Thomas, N.

    2017-07-01

    By using the imagery acquired by the Optical, Spectroscopic, and Infrared Remote Imaging System Wide-Angle Camera (OSIRIS WAC), we prepare a high-resolution morphological map of the Rosetta Sais final landing site, characterized by an outcropping consolidated terrain unit, a coarse boulder deposit and a fine particle deposit. Thanks to the 0.014 m resolution images, we derive the pebbles/boulders size-frequency distribution (SFD) of the area in the size range of 0.07-0.70 m. Sais' SFD is best fitted with a two-segment differential power law: the first segment is in the range 0.07-0.26 m, with an index of -1.7 ± 0.1, while the second is in the range 0.26-0.50 m, with an index of -4.2 +0.4/-0.8. The `knee' of the SFD, located at 0.26 m, is evident both in the coarse and fine deposits. When compared to the Agilkia Rosetta Lander Imaging System images, Sais surface is almost entirely free of the ubiquitous, cm-sized debris blanket observed by Philae. None the less, a similar SFD behaviour of Agilkia, with a steeper distribution above ˜0.3 m, and a flatter trend below that, is observed. The activity evolution of 67P along its orbit provides a coherent scenario of how these deposits were formed. Indeed, different lift pressure values occurring on the two locations and at different heliocentric distances explain the presence of the cm-sized debris blanket on Agilkia observed at 3.0 au inbound. Contrarily, Sais activity after 2.1 au outbound has almost completely eroded the fine deposits fallen during perihelion, resulting in an almost dust-free surface observed at 3.8 au.

  15. Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities

    NASA Astrophysics Data System (ADS)

    Chudasama, Bhupendra; Vala, Anjana K.; Andhariya, Nidhi; Mehta, R. V.; Upadhyay, R. V.

    2010-06-01

    In this article, we describe a simple one-pot rapid synthesis route to produce uniform silver nanoparticles by thermal reduction of AgNO3 using oleylamine as reducing and capping agent. To enhance the dispersal ability of as-synthesized hydrophobic silver nanoparticles in water, while maintaining their unique properties, a facile phase transfer mechanism has been developed using biocompatible block co-polymer pluronic F-127. Formation of silver nanoparticles is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectroscopy. Hydrodynamic size and its distribution are obtained from dynamic light scattering (DLS). Hydrodynamic size and size distribution of as-synthesized and phase transferred silver nanoparticles are 8.2 ± 1.5 nm (σ = 18.3%) and 31.1 ± 4.5 nm (σ = 14.5%), respectively. Antimicrobial activities of hydrophilic silver nanoparticles is tested against two Gram positive ( Bacillus megaterium and Staphylococcus aureus), and three Gram negative ( Escherichia coli, Proteus vulgaris and Shigella sonnei) bacteria. Minimum inhibitory concentration (MIC) values obtained in the present study for the tested microorganisms are found much better than those reported for commercially available antibacterial agents.

  16. Spontaneous Self-Assembly of Polymeric Nanoparticles in Aqueous Media: New Insights From Microfluidics, In Situ Size Measurements, and Individual Particle Tracking.

    PubMed

    Li, Xue; Salzano, Giuseppina; Zhang, Jiwen; Gref, Ruxandra

    2017-01-01

    Supramolecular cyclodextrin-based nanoparticles (CD-NPs) mediated by host-guest interactions have gained increased popularity because of their "green" and simple preparation procedure, as well as their versatility in terms of inclusion of active molecules. Herein, we showed that original CD-NPs of around 100 nm are spontaneously formed in water, by mixing 2 aqueous solutions of (1) a CD polymer and (2) dextran grafted with benzophenone moieties. For the first time, CD-NPs were instantaneously produced in a microfluidic interaction chamber by mixing 2 aqueous solutions of neutral polymers, in the absence of organic solvents. Whatever the mixing conditions, CD-NPs with narrow size distributions were immediately formed upon contact of the 2 polymeric solutions. In situ size measurements showed that the CD-NPs were spontaneously formed. Nanoparticle tracking analysis was used to individually follow the CD-NPs in their Brownian motions, to gain insights on their size distribution, concentration, and stability on extreme dilution. Nanoparticle tracking analysis allowed to establish that despite their non-covalent nature, and the CD-NPs were remarkably stable in terms of concentration and size distribution, even on extreme dilution (concentrations as low as 100 ng/mL). Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. The effect of dispersed Petrobaltic oil droplet size on photosynthetically active radiation in marine environment.

    PubMed

    Haule, Kamila; Freda, Włodzimierz

    2016-04-01

    Oil pollution in seawater, primarily visible on sea surface, becomes dispersed as an effect of wave mixing as well as chemical dispersant treatment, and forms spherical oil droplets. In this study, we examined the influence of oil droplet size of highly dispersed Petrobaltic crude on the underwater visible light flux and the inherent optical properties (IOPs) of seawater, including absorption, scattering, backscattering and attenuation coefficients. On the basis of measured data and Mie theory, we calculated the IOPs of dispersed Petrobaltic crude oil in constant concentration, but different log-normal size distributions. We also performed a radiative transfer analysis, in order to evaluate the influence on the downwelling irradiance Ed, remote sensing reflectance Rrs and diffuse reflectance R, using in situ data from the Baltic Sea. We found that during dispersion, there occurs a boundary size distribution characterized by a peak diameter d0  = 0.3 μm causing a maximum E d increase of 40% within 0.5-m depth, and the maximum Ed decrease of 100% at depths below 5 m. Moreover, we showed that the impact of size distribution on the "blue to green" ratios of Rrs and R varies from 24% increase to 27% decrease at the same crude oil concentration.

  18. Size-frequency distribution of boulders ≥10 m on comet 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Pajola, Maurizio; Lucchetti, Alice; Bertini, Ivano; Marzari, Francesco; A'Hearn, Michael F.; La Forgia, Fiorangela; Lazzarin, Monica; Naletto, Giampiero; Barbieri, Cesare

    2016-01-01

    Aims: We derive the size-frequency distribution of boulders on comet 103P/Hartley 2, which are computed from the images taken by the Deep Impact/HRI-V imaging system. We indicate the possible physical processes that lead to these boulder size distributions. Methods: We used images acquired by the High Resolution Imager-Visible CCD camera on 4 November 2010. Boulders ≥10 m were identified and manually extracted from the datasets with the software ArcGIS. We derived the global size-frequency distribution of the illuminated side of the comet (~50%) and identified the power-law indexes characterizing the two lobes of 103P. The three-pixel sampling detection, together with the shadowing of the surface, enables unequivocally detection of boulders scattered all over the illuminated surface. Results: We identify 332 boulders ≥10 m on the imaged surface of the comet, with a global number density of nearly 140/km2 and a cumulative size-frequency distribution represented by a power law with index of -2.7 ± 0.2. The two lobes of 103P show similar indexes, I.e., -2.7 ± 0.2 for the bigger lobe (called L1) and -2.6+ 0.2/-0.5 for the smaller lobe (called L2). The similar power-law indexes and similar maximum boulder sizes derived for the two lobes both point toward a similar fracturing/disintegration phenomena of the boulders as well as similar lifting processes that may occur in L1 and L2. The difference in the number of boulders per km2 between L1 and L2 suggests that the more diffuse H2O sublimation on L1 produce twice the boulders per km2 with respect to those produced on L2 (primary activity CO2 driven). The 103P comet has a lower global power-law index (-2.7 vs. -3.6) with respect to 67P. The global differences between the two comets' activities, coupled with a completely different surface geomorphology, make 103P hardly comparable to 67P. A shape distribution analysis of boulders ≥30 m performed on 103P suggests that the cometary boulders show more elongated shapes when compared to collisional laboratory fragments as well as to the boulders present on the surfaces of 25 143 Itokawa and 433 Eros asteroids. Consequently, this supports the interpretation that cometary boulders have different origins with respect to the impact-related asteroidal boulders.

  19. Lineage-tracking of stem cell differentiation: a neutral model of hematopoiesis in rhesus macaque

    NASA Astrophysics Data System (ADS)

    Chou, Tom

    How a potentially diverse population of hematopoietic stem cells (HSCs) differentiates and proliferates to supply more than 1011 mature blood cells every day in humans remains a key biological question. We investigated this process by quantitatively analyzing the clonal structure of peripheral blood that is generated by a population of transplanted lentivirus-marked HSCs in myeloablated rhesus macaques. Each transplanted HSC generates a clonal lineage of cells in the peripheral blood that is then detected and quantified through deep sequencing of the viral vector integration sites (VIS) common within each lineage. This approach allowed us to observe, over a period of 4-12 years, hundreds of distinct clonal lineages. Surprisingly, while the distinct clone sizes varied by three orders of magnitude, we found that collectively, they form a steady-state clone size-distribution with a distinctive shape. Our concise model shows that slow HSC differentiation followed by fast progenitor growth is responsible for the observed broad clone size-distribution. Although all cells are assumed to be statistically identical, analogous to a neutral theory for the different clone lineages, our mathematical approach captures the intrinsic variability in the times to HSC differentiation after transplantation. Steady-state solutions of our model show that the predicted clone size-distribution is sensitive to only two combinations of parameters. By fitting the measured clone size-distributions to our mechanistic model, we estimate both the effective HSC differentiation rate and the number of active HSCs. NSF and NIH.

  20. Chemical release from single-PMMA microparticles monitored by CARS microscopy

    NASA Astrophysics Data System (ADS)

    Enejder, Annika; Svedberg, Fredrik; Nordstierna, Lars; Nydén, Magnus

    2011-03-01

    Microparticles loaded with antigens, proteins, DNA, fungicides, and other functional agents emerge as ideal vehicles for vaccine, drug delivery, genetic therapy, surface- and crop protection. The microscopic size of the particles and their collective large specific surface area enables highly active and localized release of the functional substance. In order to develop designs with release profiles optimized for the specific application, it is desirable to map the distribution of the active substance within the particle and how parameters such as size, material and morphology affect release rates at single particle level. Current imaging techniques are limited in resolution, sensitivity, image acquisition time, or sample treatment, excluding dynamic studies of active agents in microparticles. Here, we demonstrate that the combination of CARS and THG microscopy can successfully be used, by mapping the spatial distribution and release rates of the fungicide and food preservative IPBC from different designs of PMMA microparticles at single-particle level. By fitting a radial diffusion model to the experimental data, single particle diffusion coefficients can be determined. We show that release rates are highly dependent on the size and morphology of the particles. Hence, CARS and THG microscopy provides adequate sensitivity and spatial resolution for quantitative studies on how singleparticle properties affect the diffusion of active agents at microscopic level. This will aid the design of innovative microencapsulating systems for controlled release.

  1. Gentamicin Sulfate PEG-PLGA/PLGA-H Nanoparticles: Screening Design and Antimicrobial Effect Evaluation toward Clinic Bacterial Isolates

    PubMed Central

    Dorati, Rossella; DeTrizio, Antonella; Spalla, Melissa; Migliavacca, Roberta; Pagani, Laura; Pisani, Silvia; Chiesa, Enrica; Modena, Tiziana; Genta, Ida

    2018-01-01

    Nanotechnology is a promising approach both for restoring or enhancing activity of old and conventional antimicrobial agents and for treating intracellular infections by providing intracellular targeting and sustained release of drug inside infected cells. The present paper introduces a formulation study of gentamicin loaded biodegradable nanoparticles (Nps). Solid-oil-in water technique was studied for gentamicin sulfate nanoencapsulation using uncapped Polylactide-co-glycolide (PLGA-H) and Polylactide-co-glycolide-co-Polyethylenglycol (PLGA-PEG) blends. Screening design was applied to optimize: drug payload, Nps size and size distribution, stability and resuspendability after freeze-drying. PLGA-PEG concentration resulted most significant factor influencing particles size and drug content (DC): 8 w/w% DC and 200 nm Nps were obtained. Stirring rate resulted most influencing factor for size distribution (PDI): 700 rpm permitted to obtain homogeneous Nps dispersion (PDI = 1). Further experimental parameters investigated, by 23 screening design, were: polymer blend composition (PLGA-PEG and PLGA-H), Polyvinylalcohol (PVA) and methanol concentrations into aqueous phase. Drug content was increased to 10.5 w/w%. Nanoparticle lyophilization was studied adding cryoprotectants, polyvinypirrolidone K17 and K32, and sodiumcarboxymetylcellulose. Freeze-drying protocol was optimized by a mixture design. A freeze-dried Nps powder free resuspendable with stable Nps size and payload, was developed. The powder was tested on clinic bacterial isolates demonstrating that after encapsulation, gentamicin sulfate kept its activity. PMID:29329209

  2. A Study of the Relationship Between Anthropogenic Sulfate and Cloud Drop Nucleation

    NASA Technical Reports Server (NTRS)

    Chuang, Catherine C.; Penner, Joyce E.

    1994-01-01

    The characteristics of the cloud drop size distribution near cloud base are initially determined by the aerosol particles that serve as CCN and by the local updraft velocity. Chemical reactions of the emitted gaseous sulfur compounds due to human activities will alter, through gas-to-particle conversion, the aerosol size distribution, total number, and its chemical composition. Recently, Boucher and Rodhe and Jones et.al have each developed parameterizations relating cloud drop concentration to sulfate mass or aerosol number concentration, respectively, and used them to develop estimates of the indirect forcing by anthropogenic sulfate aerosols. THese parameterizations made use of measure relationships in continental and maritime clouds. However, these relationships are inherently noisy, yielding more than a factor of 2 variation in cloud drop concentration for a given aerosol number (or for a given sulfate mass) concentration. The large spatial and temporal variabilities in the concentration, chemical characteristics, and size distribution of aerosols have made it difficult to develop such a parameterization from data. In this paper, our focus is to develop a means for relating the predicted anthropogenic sulfate mass to cloud drop number concentration over the range of expected conditions associated with continental and marine aerosol. We start with an assumed pre-existing particle size distribution and develop an approximation of the altered distribution after addition of anthropogenic sulfate. We thereby develop a conservative estimate of the possible change in cloud drop number concentration due to anthropogenic sulfate.

  3. Characterization of modified zeolite as microbial immobilization media on POME anaerobic digestion

    NASA Astrophysics Data System (ADS)

    Cahyono, Rochim B.; Ismiyati, Sri; Ginting, Simparmin Br; Mellyanawaty, Melly; Budhijanto, Wiratni

    2018-03-01

    As the world’s biggest palm oil producer, Indonesia generates also huge amount of Palm Oil Mill Effluent (POME) wastewater and causes serious problem in environment. In conventional method, POME was converted into biogas using lagoon system which required extensive land area. Anaerobic Fluidized Bed Reactor (AFBR) proposes more effective biogas producing with smaller land area. In the proposed system, a immobilization media would be main factor for enhancing productivity. This research studied on characterization of Lampung natural zeolite as immobilization media in the AFBR system for POME treatment. Various activation method such as physical and chemical were attempted to create more suitable material which has larger surface area, pore size distribution as well as excellent surface structures. The physical method was applied by heating up the material till 400°C while HCl was used on the chemical activation. Based on the result, the chemical activation increased the surface area significantly into 71 m2/g compared to physical as well as original zeolite. The strong acid material was quite effective to enforce the impurities within zeolite pore structure compared to heating up the material. According to distribution data, the Lampung zeolite owned the pore size with the range of 3 – 5 μm which was mesopore material. The pore size was appropriate for immobilization media as it was smaller than size of biogas microbial. The XRD patterns verified that chemical activation could maintain the zeolite structure as the original. Obviously, the SEM photograph showed apparent structure and pore size on the modified zeolite using chemical method. The testing of modified zeolite on the batch system was done to evaluate the characterization process. The modified zeolite using chemical process resulted fast reduction of COD and stabilized the volatile fatty acid as the intermediate product of anaerobic digestion, especially in the beginning of the process. Therefore, the chemical activation process was most suitable to produce the immobilization media from Lampung natural zeolite for POME waste treatment

  4. The Determination of Production and Distribution Policy in Push-Pull Production Chain with Supply Hub as the Junction Point

    NASA Astrophysics Data System (ADS)

    Sinaga, A. T.; Wangsaputra, R.

    2018-03-01

    The development of technology causes the needs of products and services become increasingly complex, diverse, and fluctuating. This causes the level of inter-company dependencies within a production chains increased. To be able to compete, efficiency improvements need to be done collaboratively in the production chain network. One of the efforts to increase efficiency is to harmonize production and distribution activities in the production chain network. This paper describes the harmonization of production and distribution activities by applying the use of push-pull system and supply hub in the production chain between two companies. The research methodology begins with conducting empirical and literature studies, formulating research questions, developing mathematical models, conducting trials and analyses, and taking conclusions. The relationship between the two companies is described in the MINLP mathematical model with the total cost of production chain as the objective function. Decisions generated by the mathematical models are the size of production lot, size of delivery lot, number of kanban, frequency of delivery, and the number of understock and overstock lot.

  5. Seasonal variations in size distribution, water-soluble ions, and carbon content of size-segregated aerosols over New Delhi.

    PubMed

    Kumar, Pawan; Kumar, Sushil; Yadav, Sudesh

    2018-02-01

    Size distribution, water-soluble inorganic ions (WSII), and organic carbon (OC) and elemental carbon (EC) in size-segregated aerosols were investigated during a year-long sampling in 2010 over New Delhi. Among different size fractions of PM 10 , PM 0.95 was the dominant fraction (45%) followed by PM 3-7.2 (20%), PM 7.2-10 (15%), PM 0.95-1.5 (10%), and PM 1.5-3 (10%). All size fractions exceeded the ambient air quality standards of India for PM 2.5 . Annual average mass size distributions of ions were specific to size and ion(s); Ca 2+ , Mg 2+ , K + , NO 3 - , and Cl - followed bimodal distribution while SO 4 2- and NH 4 + ions showed one mode in PM 0.95 . The concentrations of secondary WSII (NO 3 - , SO 4 2- , and NH 4 + ) increased in winters due to closed and moist atmosphere whereas open atmospheric conditions in summers lead to dispersal of pollutants. NH 4 + and Ca 2+ were dominant neutralization ions but in different size fractions. The summer-time dust transport from upwind region by S SW winds resulted in significantly high concentrations of PM 0.95 and PM 3-7.2 and PM 7.2-10 . This indicted influence of dust generation in Thar Desert and its transport is size selective in nature in downwind direction. The mixing of different sources (geogenic, coal combustions, biomass burning, plastic burning, incinerators, and vehicular emissions sources) for soluble ions in different size fractions was noticed in principle component analysis. Total carbon (TC = EC + OC) constituted 8-31% of the total PM 0.95 mass, and OC dominated over EC. Among EC, char (EC1) dominated over soot (EC2 + EC3). High SOC contribution (82%) to OC and OC/EC ratio of 2.7 suggested possible role of mineral dust and high photochemical activity in SOC production. Mass concentrations of aerosols and WSII and their contributions to each size fraction of PM 10 are governed by nature of sources, emission strength of source(s), and seasonality in meteorological parameters.

  6. MISR UAE2 Aerosol Versioning

    Atmospheric Science Data Center

    2013-03-21

    ... The "Beta" designation means particle microphysical property validation is in progress, uncertainty envelopes on particle size distribution, ... UAE-2 campaign activities are part of the validation process, so two versions of the MISR aerosol products are included in this ...

  7. Distinguishing molecular environments in supported Pt catalysts and their influences on activity and selectivity

    NASA Astrophysics Data System (ADS)

    Jones, Louis Chin

    This thesis entails the synthesis, automated catalytic testing, and in situ molecular characterization of supported Pt and Pt-alloy nanoparticle (NP) catalysts, with emphasis on how to assess the molecular distributions of Pt environments that are affecting overall catalytic activity and selectivity. We have taken the approach of (a) manipulating nucleation and growth of NPs using oxide supports, surfactants, and inorganic complexes to create Pt NPs with uniform size, shape, and composition, (b) automating batch and continuous flow catalytic reaction tests, and (c) characterizing the molecular environments of Pt surfaces using in situ infrared (IR) spectroscopy and solid-state 195Pt NMR. The following will highlight the synthesis and characterization of Ag-doped Pt NPs and their influence on C 2H2 hydrogenation selectivity, and the implementation of advanced solid-state 195Pt NMR techniques to distinguish how distributions of molecular Pt environments vary with nanoparticle size, support, and surface composition.

  8. Superficial distribution of aromatic compounds and geomicrobiology of sediments from Suruí Mangrove, Guanabara Bay, RJ, Brazil.

    PubMed

    Fontana, Luiz F; da Silva, Frederico S; de Figueiredo, Natália G; Brum, Daniel M; Netto, Annibal D Pereira; de Gigueiredo Junior, Alberto G; Crapez, Mirian A C

    2010-12-01

    The distribution of selected aromatic compounds and microbiology were assessed in superficial sediments from Suruí Mangrove, Guanabara Bay. Samples were collected at 23 stations, and particle size, organic matter, aromatic compounds, microbiology activity, biopolymers, and topography were determined. The concentration of aromatic compounds was distributed in patches over the entire mangrove, and their highest total concentration was determinated in the mangrove's central area. Particle size differed from most mangroves in that Suruí Mangrove has chernies on the edges and in front of the mangrove, and sand across the whole surface, which hampers the relationship between particle size and hydrocarbons. An average @ 10% p/p of organic matter was obtained, and biopolymers presented high concentrations, especially in the central and back areas of the mangrove. The biopolymers were distributed in high concentrations. The presence of fine sediments is an important factor in hydrocarbon accumulation. With high concentration of organic matter and biopolymers, and the topography with chernies and roots protecting the mangrove, calmer areas are created with the deposition of material transported by wave action. Compared to global distributions, concentrations of aromatic compounds in Suruí Mangrove may be classified from moderate to high, showing that the studied area is highly impacted.

  9. Fleet Sizing of Automated Material Handling Using Simulation Approach

    NASA Astrophysics Data System (ADS)

    Wibisono, Radinal; Ai, The Jin; Ratna Yuniartha, Deny

    2018-03-01

    Automated material handling tends to be chosen rather than using human power in material handling activity for production floor in manufacturing company. One critical issue in implementing automated material handling is designing phase to ensure that material handling activity more efficient in term of cost spending. Fleet sizing become one of the topic in designing phase. In this research, simulation approach is being used to solve fleet sizing problem in flow shop production to ensure optimum situation. Optimum situation in this research means minimum flow time and maximum capacity in production floor. Simulation approach is being used because flow shop can be modelled into queuing network and inter-arrival time is not following exponential distribution. Therefore, contribution of this research is solving fleet sizing problem with multi objectives in flow shop production using simulation approach with ARENA Software

  10. Preparation of SiO2@Ag Composite Nanoparticles and Their Antimicrobial Activity.

    PubMed

    Qin, Rui; Li, Guian; Pan, Liping; Han, Qingyan; Sun, Yan; He, Qiao

    2017-04-01

    At normal atmospheric temperature, the modified sol–gel method was employed to synthesize SiO2 nanospheres (SiO2 NSs) whose average size was about 352 nm. Silver nanoparticles (Ag NPs) were uniformly distributed on the surface of SiO2 nanospheres (SiO2 NSs) by applying chemical reduction method at 95 °C and the size of silver nanoparticles (Ag NPs) could be controlled by simply tuning the reaction time and the concentration of sodium citrate. Besides, the size, morphology, structure and optical absorption properties of SiO2@Ag composite nanoparticles were measured and characterized by laser particle size analyzer (LPSA), transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD) and ultraviolet visible absorption spectrometer (UV-Vis), respectively. Furthermore, antimicrobial effect experiments that against gram-negative bacteria (E. coli) and gram-positive bacteria (S. aureus) were carried out to characterize the antibacterial activity of synthesized SiO2@Ag composite nanoparticles. The results show that the prepared SiO2@Ag composite nanoparticles have strong antimicrobial activity, which is associated with the size of silver nanoparticles.

  11. Modelling and validation of particle size distributions of supported nanoparticles using the pair distribution function technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.

    The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately andin situusing crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormal size distribution.more » The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. This work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.« less

  12. Isolating the effect of pore size distribution on electrochemical double-layer capacitance using activated fluid coke

    NASA Astrophysics Data System (ADS)

    Zuliani, Jocelyn E.; Tong, Shitang; Kirk, Donald W.; Jia, Charles Q.

    2015-12-01

    Electrochemical double-layer capacitors (EDLCs) use physical ion adsorption in the capacitive electrical double layer of high specific surface area (SSA) materials to store electrical energy. Previous work shows that the SSA-normalized capacitance increases when pore diameters are less than 1 nm. However, there still remains uncertainty about the charge storage mechanism since the enhanced SSA-normalized capacitance is not observed in all microporous materials. In previous studies, the total specific surface area and the chemical composition of the electrode materials were not controlled. The current work is the first reported study that systematically compares the performance of activated carbon prepared from the same raw material, with similar chemical composition and specific surface area, but different pore size distributions. Preparing samples with similar SSAs, but different pores sizes is not straightforward since increasing pore diameters results in decreasing the SSA. This study observes that the microporous activated carbon has a higher SSA-normalized capacitance, 14.1 μF cm-2, compared to the mesoporous material, 12.4 μF cm-2. However, this enhanced SSA-normalized capacitance is only observed above a threshold operating voltage. Therefore, it can be concluded that a minimum applied voltage is required to induce ion adsorption in these sub-nanometer micropores, which increases the capacitance.

  13. Size-dependent disorder-order transformation in the synthesis of monodisperse intermetallic PdCu nanocatalysts

    DOE PAGES

    Wang, Chenyu; Chen, Dennis P.; Unocic, Raymond R.; ...

    2016-05-23

    The high performance of Pd-based intermetallic nanocatalysts has the potential to replace Pt-containing catalysts for fuel-cell reactions. Conventionally, intermetallic particles are obtained through the annealing of nanoparticles of a random alloy distribution. However, this method inevitably leads to sintering of the nanoparticles and generates polydisperse samples. Here, monodisperse PdCu nanoparticles with the ordered B2 phase were synthesized by seed-mediated co-reduction using PdCu nanoparticle seeds with a random alloy distribution (A1 phase). A time-evolution study suggests that the particles must overcome a size-dependent activation barrier for the ordering process to occur. Characterization of the as-prepared PdCu B2 nanoparticles by electron microscopymore » techniques revealed surface segregation of Pd as a thin shell over the PdCu core. The ordered nanoparticles exhibit superior activity and durability for the oxygen reduction reaction in comparison with PdCu A1 nanoparticles. This seed-mediated co-reduction strategy produced monodisperse nanoparticles ideally suited for structure–activity studies. Furthermore, the study of their growth mechanism provides insights into the size dependence of disorder–order transformations of bimetallic alloys at the nanoscale, which should enable the design of synthetic strategies toward other intermetallic systems.« less

  14. High surface area carbon and process for its production

    DOEpatents

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (<1 nm) pore volumes, and supra-nm (1-5 nm) pore volumes may be achieved by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  15. Design for the fabrication of high efficiency solar cells

    DOEpatents

    Simmons, Joseph H.

    1998-01-01

    A method and apparatus for a photo-active region for generation of free carriers when a first surface is exposed to optical radiation. The photo-active region includes a conducting transparent matrix and clusters of semiconductor materials embedded within the conducting transparent matrix. The clusters are arranged in the matrix material so as to define at least a first distribution of cluster sizes ranging from those with the highest bandgap energy near a light incident surface of the photo-active region to those with the smallest bandgap energy near an opposite second surface of the photo-active region. Also disclosed is a method and apparatus for a solar cell. The solar cell includes a photo-active region containing a plurality of semiconductor clusters of varying sizes as described.

  16. Activity of a social dynamics model

    NASA Astrophysics Data System (ADS)

    Reia, Sandro M.; Neves, Ubiraci P. C.

    2015-10-01

    Axelrod's model was proposed to study interactions between agents and the formation of cultural domains. It presents a transition from a monocultural to a multicultural steady state which has been studied in the literature by evaluation of the relative size of the largest cluster. In this article, we propose new measurements based on the concept of activity per agent to study the Axelrod's model on the square lattice. We show that the variance of system activity can be used to indicate the critical points of the transition. Furthermore the frequency distribution of the system activity is able to show a coexistence of phases typical of a first order phase transition. Finally, we verify a power law dependence between cluster activity and cluster size for multicultural steady state configurations at the critical point.

  17. Gold nanoparticles synthesis and biological activity estimation in vitro and in vivo.

    PubMed

    Rieznichenko, L S; Dybkova, S M; Gruzina, T G; Ulberg, Z R; Todor, I N; Lukyanova, N Yu; Shpyleva, S I; Chekhun, V F

    2012-01-01

    The aim of the work was the synthesis of gold nanoparticles (GNP) of different sizes and the estimation of their biological activity in vitro and in vivo. Water dispersions of gold nanoparticles of different sizes have been synthesized by Davis method and characterized by laser-correlation spectroscopy and transmission electron microscopy methods. The GNP interaction with tumor cells has been visualized by confocal microscopy method. The enzyme activity was determined by standard biochemical methods. GNP distribution and content in organs and tissues have been determined via atomic-absorption spectrometry method; genotoxic influence has been estimated by "Comet-assay" method. The GNP size-dependent accumulation in cultured U937 tumor cells and their ability to modulate U937 cell membrane Na(+),K(+)-АТР-ase activity value has been revealed in vitro. Using in vivo model of Guerin carcinoma it has been shown that GNP possess high affinity to tumor cells. Our results indicate the perspectives of use of the synthesized GNP water dispersions for cancer diagnostics and treatment. It's necessary to take into account a size-dependent biosafety level of nanoparticles.

  18. The effects of surfactant and electrolyte concentrations on the size of nanochitosan during storage

    NASA Astrophysics Data System (ADS)

    Primaningtyas, Annisa; Budhijanto, Wiratni; Fahrurrozi, Mohammad; Kusumastuti, Yuni

    2017-05-01

    The nano-sized particle of chitosan (nanochitosan) is a potential natural preservative agent for fresh fish and fish product preservation. Theoretically, nano-sized particles exert strong van der Waals force to each other so that the problem associated with nanochitosan is agglomeration that leads to size instability during storage. Size stability is of importance in the application of nanochitosan as an antimicrobial agent because it considerably affects the antimicrobial activity of chitosan. In this study, the formulation of nanochitosan was optimized with respect to the two major factors in colloid dispersion theory, which were the presence of surfactant and electrolyte. Polysorbate-80 was chosen as the representative of food grade surfactant while NaCl was used as the electrolyte. The purposes of this study were to evaluate the effect of polysorbate-80 concentration and to determine the effect of NaCl ions on the particle size of nanochitosan for at least one month storage period. Data were analyzed using Analysis of Variance (ANOVA) to identify the factors significantly affect the size stability. The dynamics of particle size distribution during storage was measured by Particle Size Analyzer (PSA). The result showed that surfactant did not significantly affect the particle size stability. On the other hand, the addition of electrolyte into the colloidal dispersion of nanochitosan consistently stabilized and also narrowed the particle size distribution during storage in the range of 175-391 nm.

  19. Adsorption of pharmaceuticals to microporous activated carbon treated with potassium hydroxide, carbon dioxide, and steam.

    PubMed

    Fu, Heyun; Yang, Liuyan; Wan, Yuqiu; Xu, Zhaoyi; Zhu, Dongqiang

    2011-01-01

    Adsorption of sulfapyridine, tetracycline, and tylosin to a commercial microporous activated carbon (AC) and its potassium hydroxide (KOH)-, CO-, and steam-treated counterparts (prepared by heating at 850°C) was studied to explore efficient adsorbents for the removal of selected pharmaceuticals from water. Phenol and nitrobenzene were included as additional adsorbates, and nonporous graphite was included as a model adsorbent. The activation treatments markedly increased the specific surface area and enlarged the pore sizes of the mesopores of AC (with the strongest effects shown on the KOH-treated AC). Adsorption of large-size tetracycline and tylosin was greatly enhanced, especially for the KOH-treated AC (more than one order of magnitude), probably due to the alleviated size-exclusion effect. However, the treatments had little effect on adsorption of low-size phenol and nitrobenzene due to the predominance of micropore-filling effect in adsorption and the nearly unaffected content of small micropores causative to such effect. These hypothesized mechanisms on pore-size dependent adsorption were further tested by comparing surface area-normalized adsorption data and adsorbent pore size distributions with and without the presence of adsorbed antibiotics. The findings indicate that efficient adsorption of bulky pharmaceuticals to AC can be achieved by enlarging the adsorbent pore size through suitable activation treatments. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Habitat shifts and spatial distribution of the intertidal crab Neohelice ( Chasmagnathus ) granulata Dana

    NASA Astrophysics Data System (ADS)

    Casariego, Agustina Mendez; Alberti, Juan; Luppi, Tomás; Daleo, Pedro; Iribarne, Oscar

    2011-08-01

    Intertidal zones of estuaries and embayments of the SW Atlantic are dominated by the semiterrestrial burrowing grapsid crab, Neohelice ( Chasmagnathus) granulata, and characterized by extensive mud flats surrounded by salt marshes. In this work we examined spatial patterns of distribution of N. granulata during two years to explain their movement patterns. The results of the population sampling showed segregation by sex and size throughout the intertidal, with seasonal variations in densities and different condition indices for adults and juveniles at the different zones. The comparison of seasonal activity (ambulatory activity outside burrows) between marshes and mudflats shows that short term (e.g. daily) variations in activity were controlled by tides. Crabs were active at high tides but increased their activity on days with higher tidal amplitude. Seasonal activity showed that at both areas, females remain with low activity except for a peak in winter, while males showed the highest activity during summer in the mudflat zone, but not so in the marsh. This pattern can be the response to differences in stress tolerance, suggesting that high temperatures are limiting the performance of adult crabs during summer, especially at the marsh where physical conditions can be more critical. The spatial size segregation can be explained by differential mortality in each zone (estimated with tethered crabs), and by the juvenile movement between these zones (estimated with movement traps). Juvenile mortality is higher at the mudflat, while adult mortality is higher in the marsh. Smaller juveniles moved to the marsh, where the mortality is lower, and the larger juveniles moved towards the mudflat. This mortality is due almost exclusively to cannibalism, so our results suggest that this movement of different size classes between zones is controlled, at least in part, by intraspecific predation.

  1. Design and analysis of three-arm trials with negative binomially distributed endpoints.

    PubMed

    Mütze, Tobias; Munk, Axel; Friede, Tim

    2016-02-20

    A three-arm clinical trial design with an experimental treatment, an active control, and a placebo control, commonly referred to as the gold standard design, enables testing of non-inferiority or superiority of the experimental treatment compared with the active control. In this paper, we propose methods for designing and analyzing three-arm trials with negative binomially distributed endpoints. In particular, we develop a Wald-type test with a restricted maximum-likelihood variance estimator for testing non-inferiority or superiority. For this test, sample size and power formulas as well as optimal sample size allocations will be derived. The performance of the proposed test will be assessed in an extensive simulation study with regard to type I error rate, power, sample size, and sample size allocation. For the purpose of comparison, Wald-type statistics with a sample variance estimator and an unrestricted maximum-likelihood estimator are included in the simulation study. We found that the proposed Wald-type test with a restricted variance estimator performed well across the considered scenarios and is therefore recommended for application in clinical trials. The methods proposed are motivated and illustrated by a recent clinical trial in multiple sclerosis. The R package ThreeArmedTrials, which implements the methods discussed in this paper, is available on CRAN. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Structure and ionic diffusion of alkaline-earth ions in mixed cation glasses A 2O–2MO–4SiO 2 with molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantinou, Konstantinos; Sushko, Petr; Duffy, Dorothy M.

    2015-05-15

    A series of mixed cation silicate glasses of the composition A2O – 2MO – 4SiO2, with A=Li,Na,K and M=Ca,Sr,Ba has been investigated by means of molecular dynamics simulations in order to understand the effect of the nature of the cations on the mobility of the alkaline-earth ions within the glass network. The size of the alkaline-earth cation was found to affect the inter-atomic distances, the coordination number distributions and the bond angle distributions , whereas the medium-range order was almost unaffected by the type of the cation. All the alkaline-earth cations contribute to lower vibrational frequencies but it is observedmore » that that there is a shift to smaller frequencies and the vibrational density of states distribution gets narrower as the size of the alkaline-earth increases. The results from our modeling for the ionic diffusion of the alkaline-earth cations are in a qualitative agreement with the experimental observations in that there is a distinct correlation between the activation energy for diffusion of alkaline earth-ions and the cation radii ratio. An asymmetrical linear behavior in the diffusion activation energy with increasing size difference is observed. The results can be described on the basis of a theoretical model that relates the diffusion activation energy to the electrostatic interactions of the cations with the oxygens and the elastic deformation of the silicate network.« less

  3. 3.5-D model of sediment age and grain size for the Northern Gulf of Aqaba-Elat (Red Sea) using submarine cores

    NASA Astrophysics Data System (ADS)

    Kanari, Mor; Ben-Avraham, Zvi; Tibor, Gideon; Goodman Tchernov, Beverly N.; Bookman, Revital; Taha, Nimer; Marco, Shmuel

    2016-04-01

    The Northern Gulf of Aqaba-Elat (NGAE) is the northeast extension of the Red Sea, located at the southernmost part of the Dead Sea Fault, at the transition zone between the deep en-echelon submarine basins of the Red Sea and the shallow continental basins of the Arava Valley (Israel and Jordan). We aim to characterize the top sedimentary cover across the NGAE in order to check the effect of tectonics on the sedimentary column, using high resolution grain size data and radiocarbon dating of core sediments. We analyzed 11 piston cores and 9 short cores: high resolution grain-size and radiocarbon age determinations were used to compile a 3.5-D (3.5 dimensional) model of age-depth-grain size for the top 3-5 meters of the NGAE. Two general trends of the grain size spatial distribution are observed: grains are coarsest at the NE corner of the NGAE (Aqaba coastline) and grow finer with the distance to the west on the shelf and with the distance from shore to the south. Long- and short-term accumulation rates were compiled for the entire NGAE, demonstrating a distinct E-W trend on the shelf and a NNE-SSW trend in the deep basin. The 3.5-D age-depth-grain size model conforms to- and validates the tectonic structure of the shelf detailed by previous authors. We suggest that the impact of tectonic structure of the shelf is highly significant in terms of spatial variations across the shelf, both in age of the sediment and its grain size characteristics. The temporal-spatial distribution of the grain size in the deep basin of the NGAE reveals a correlation between sediment age, dominant grain size and active tectonics: fine-grain, old sediment in the margins (Late Pleistocene, as old as >40 ka on the west margin; Early Holocene, as old as 7.5 ka, on the east margin), and Late Pleistocene sediment farther south from the dominant active diagonal fault which underlies the Elat Canyon. Young coarse sediment is present in the middle of the basin, where most of the active sediment transportation (and tectonic activity) take place. The dominant sedimentary activity follows the migration of the active tectonic fault segments from east to west between 40 ka to present. We observe focusing of turbidites to the location of the dominant active tectonic fault. A spatial/temporal evolutionary model is presented for the sedimentary processes of the NGAE since 40 ka to present, suggesting three phases of development: (a) Late Pleistocene 40 to 12 ka; (b) Early to Mid-Holocene 12 to 5-4 ka; (c) Late Holocene 5-4 ka to present.

  4. Auditory Power-Law Activation Avalanches Exhibit a Fundamental Computational Ground State

    NASA Astrophysics Data System (ADS)

    Stoop, Ruedi; Gomez, Florian

    2016-07-01

    The cochlea provides a biological information-processing paradigm that we are only beginning to understand in its full complexity. Our work reveals an interacting network of strongly nonlinear dynamical nodes, on which even a simple sound input triggers subnetworks of activated elements that follow power-law size statistics ("avalanches"). From dynamical systems theory, power-law size distributions relate to a fundamental ground state of biological information processing. Learning destroys these power laws. These results strongly modify the models of mammalian sound processing and provide a novel methodological perspective for understanding how the brain processes information.

  5. A log-normal distribution model for the molecular weight of aquatic fulvic acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Zhou, Q.; Maurice, P.A.; Chin, Y.-P.; Aiken, G.R.

    2000-01-01

    The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a lognormal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured M(n) and M(w) and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several types of molecular weight data, including the shapes of high- pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a log-normal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured Mn and Mw and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several type's of molecular weight data, including the shapes of high-pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.

  6. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation

    PubMed Central

    Shiraiwa, Manabu; Yee, Lindsay D.; Schilling, Katherine A.; Loza, Christine L.; Craven, Jill S.; Zuend, Andreas; Ziemann, Paul J.; Seinfeld, John H.

    2013-01-01

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634

  7. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    PubMed

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

  8. Functional response of osteoblasts in functionally gradient titanium alloy mesh arrays processed by 3D additive manufacturing.

    PubMed

    Nune, K C; Kumar, A; Misra, R D K; Li, S J; Hao, Y L; Yang, R

    2017-02-01

    We elucidate here the osteoblasts functions and cellular activity in 3D printed interconnected porous architecture of functionally gradient Ti-6Al-4V alloy mesh structures in terms of cell proliferation and growth, distribution of cell nuclei, synthesis of proteins (actin, vinculin, and fibronectin), and calcium deposition. Cell culture studies with pre-osteoblasts indicated that the interconnected porous architecture of functionally gradient mesh arrays was conducive to osteoblast functions. However, there were statistically significant differences in the cellular response depending on the pore size in the functionally gradient structure. The interconnected porous architecture contributed to the distribution of cells from the large pore size (G1) to the small pore size (G3), with consequent synthesis of extracellular matrix and calcium precipitation. The gradient mesh structure significantly impacted cell adhesion and influenced the proliferation stage, such that there was high distribution of cells on struts of the gradient mesh structure. Actin and vinculin showed a significant difference in normalized expression level of protein per cell, which was absent in the case of fibronectin. Osteoblasts present on mesh struts formed a confluent sheet, bridging the pores through numerous cytoplasmic extensions. The gradient mesh structure fabricated by electron beam melting was explored to obtain fundamental insights on cellular activity with respect to osteoblast functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The Structure of the Young Star Cluster NGC 6231. II. Structure, Formation, and Fate

    NASA Astrophysics Data System (ADS)

    Kuhn, Michael A.; Getman, Konstantin V.; Feigelson, Eric D.; Sills, Alison; Gromadzki, Mariusz; Medina, Nicolás; Borissova, Jordanka; Kurtev, Radostin

    2017-12-01

    The young cluster NGC 6231 (stellar ages ˜2-7 Myr) is observed shortly after star formation activity has ceased. Using the catalog of 2148 probable cluster members obtained from Chandra, VVV, and optical surveys (Paper I), we examine the cluster’s spatial structure and dynamical state. The spatial distribution of stars is remarkably well fit by an isothermal sphere with moderate elongation, while other commonly used models like Plummer spheres, multivariate normal distributions, or power-law models are poor fits. The cluster has a core radius of 1.2 ± 0.1 pc and a central density of ˜200 stars pc-3. The distribution of stars is mildly mass segregated. However, there is no radial stratification of the stars by age. Although most of the stars belong to a single cluster, a small subcluster of stars is found superimposed on the main cluster, and there are clumpy non-isotropic distributions of stars outside ˜4 core radii. When the size, mass, and age of NGC 6231 are compared to other young star clusters and subclusters in nearby active star-forming regions, it lies at the high-mass end of the distribution but along the same trend line. This could result from similar formation processes, possibly hierarchical cluster assembly. We argue that NGC 6231 has expanded from its initial size but that it remains gravitationally bound.

  10. Elemental analysis of size-fractionated particulate matter sampled in Göteborg, Sweden

    NASA Astrophysics Data System (ADS)

    Wagner, Annemarie; Boman, Johan; Gatari, Michael J.

    2008-12-01

    The aim of the study was to investigate the mass distribution of trace elements in aerosol samples collected in the urban area of Göteborg, Sweden, with special focus on the impact of different air masses and anthropogenic activities. Three measurement campaigns were conducted during December 2006 and January 2007. A PIXE cascade impactor was used to collect particulate matter in 9 size fractions ranging from 16 to 0.06 µm aerodynamic diameter. Polished quartz carriers were chosen as collection substrates for the subsequent direct analysis by TXRF. To investigate the sources of the analyzed air masses, backward trajectories were calculated. Our results showed that diurnal sampling was sufficient to investigate the mass distribution for Br, Ca, Cl, Cu, Fe, K, Sr and Zn, whereas a 5-day sampling period resulted in additional information on mass distribution for Cr and S. Unimodal mass distributions were found in the study area for the elements Ca, Cl, Fe and Zn, whereas the distributions for Br, Cu, Cr, K, Ni and S were bimodal, indicating high temperature processes as source of the submicron particle components. The measurement period including the New Year firework activities showed both an extensive increase in concentrations as well as a shift to the submicron range for K and Sr, elements that are typically found in fireworks. Further research is required to validate the quantification of trace elements directly collected on sample carriers.

  11. Latitudinal variation in the shape of the species body size distribution: an analysis using freshwater fishes.

    PubMed

    Knouft, Jason H

    2004-05-01

    Many taxonomic and ecological assemblages of species exhibit a right-skewed body size-frequency distribution when characterized at a regional scale. Although this distribution has been frequently described, factors influencing geographic variation in the distribution are not well understood, nor are mechanisms responsible for distribution shape. In this study, variation in the species body size-frequency distributions of 344 regional communities of North American freshwater fishes is examined in relation to latitude, species richness, and taxonomic composition. Although the distribution of all species of North American fishes is right-skewed, a negative correlation exists between latitude and regional community size distribution skewness, with size distributions becoming left-skewed at high latitudes. This relationship is not an artifact of the confounding relationship between latitude and species richness in North American fishes. The negative correlation between latitude and regional community size distribution skewness is partially due to the geographic distribution of families of fishes and apparently enhanced by a nonrandom geographic distribution of species within families. These results are discussed in the context of previous explanations of factors responsible for the generation of species size-frequency distributions related to the fractal nature of the environment, energetics, and evolutionary patterns of body size in North American fishes.

  12. 3D-HST+CANDELS: The Evolution of the Galaxy Size-Mass Distribution since z = 3

    NASA Astrophysics Data System (ADS)

    van der Wel, A.; Franx, M.; van Dokkum, P. G.; Skelton, R. E.; Momcheva, I. G.; Whitaker, K. E.; Brammer, G. B.; Bell, E. F.; Rix, H.-W.; Wuyts, S.; Ferguson, H. C.; Holden, B. P.; Barro, G.; Koekemoer, A. M.; Chang, Yu-Yen; McGrath, E. J.; Häussler, B.; Dekel, A.; Behroozi, P.; Fumagalli, M.; Leja, J.; Lundgren, B. F.; Maseda, M. V.; Nelson, E. J.; Wake, D. A.; Patel, S. G.; Labbé, I.; Faber, S. M.; Grogin, N. A.; Kocevski, D. D.

    2014-06-01

    Spectroscopic+photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift range 0 < z < 3. Separating early- and late-type galaxies on the basis of star-formation activity, we confirm that early-type galaxies are on average smaller than late-type galaxies at all redshifts, and we find a significantly different rate of average size evolution at fixed galaxy mass, with fast evolution for the early-type population, R effvprop(1 + z)-1.48, and moderate evolution for the late-type population, R effvprop(1 + z)-0.75. The large sample size and dynamic range in both galaxy mass and redshift, in combination with the high fidelity of our measurements due to the extensive use of spectroscopic data, not only fortify previous results but also enable us to probe beyond simple average galaxy size measurements. At all redshifts the slope of the size-mass relation is shallow, R_{eff}\\propto M_*^{0.22}, for late-type galaxies with stellar mass >3 × 109 M ⊙, and steep, R_{eff}\\propto M_*^{0.75}, for early-type galaxies with stellar mass >2 × 1010 M ⊙. The intrinsic scatter is lsim0.2 dex for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric but is skewed toward small sizes: at all redshifts and masses, a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (~1011 M ⊙), compact (R eff < 2 kpc) early-type galaxies increases from z = 3 to z = 1.5-2 and then strongly decreases at later cosmic times.

  13. Effects of dynamical grouping on cooperation in N-person evolutionary snowdrift game

    NASA Astrophysics Data System (ADS)

    Ji, M.; Xu, C.; Hui, P. M.

    2011-09-01

    A population typically consists of agents that continually distribute themselves into different groups at different times. This dynamic grouping has recently been shown to be essential in explaining many features observed in human activities including social, economic, and military activities. We study the effects of dynamic grouping on the level of cooperation in a modified evolutionary N-person snowdrift game. Due to the formation of dynamical groups, the competition takes place in groups of different sizes at different times and players of different strategies are mixed by the grouping dynamics. It is found that the level of cooperation is greatly enhanced by the dynamic grouping of agents, when compared with a static population of the same size. As a parameter β, which characterizes the relative importance of the reward and cost, increases, the fraction of cooperative players fC increases and it is possible to achieve a fully cooperative state. Analytically, we present a dynamical equation that incorporates the effects of the competing game and group size distribution. The distribution of cooperators in different groups is assumed to be a binomial distribution, which is confirmed by simulations. Results from the analytic equation are in good agreement with numerical results from simulations. We also present detailed simulation results of fC over the parameter space spanned by the probabilities of group coalescence νm and group fragmentation νp in the grouping dynamics. A high νm and low νp promotes cooperation, and a favorable reward characterized by a high β would lead to a fully cooperative state.

  14. The role of aqueous leaf extract of Tinospora crispa as reducing and capping agents for synthesis of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Apriandanu, D. O. B.; Yulizar, Y.

    2017-04-01

    Environmentally friendly method for green synthesis of Au nanoparticles (AuNP) using aqueous leaf extract of Tinospora crispa (TLE) was reported. TLE has the ability for reducing and capping AuNP. Identification of active compounds in aqueous leaf extract was obtained by phytochemical analysis and Fourier transform infrared spectroscopy (FTIR). The AuNP-TLE growth was characterized using UV-Vis spectrophotometer. The particle size and the distribution of AuNP were confirmed by particle size analyzer (PSA). AuNP-TLE formation was optimized by varying the extract concentration and time of the synthesis process. UV-Vis absorption spectrum of optimum AuNP formation displayed by the surface plasmon resonance at maximum wavelength of λmax 536 nm. The PSA result showed that AuNP has size distribution of 80.60 nm and stable up to 21 days. TEM images showed that the size of the AuNP is ± 25 nm.

  15. Modelling and validation of particle size distributions of supported nanoparticles using the pair distribution function technique

    DOE PAGES

    Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.; ...

    2017-04-13

    The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately and in situ using crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormalmore » size distribution. The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. As a result, this work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.« less

  16. Modelling and validation of particle size distributions of supported nanoparticles using the pair distribution function technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.

    The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately and in situ using crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormalmore » size distribution. The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. As a result, this work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.« less

  17. Ejecta Production and Properties

    NASA Astrophysics Data System (ADS)

    Williams, Robin

    2017-06-01

    The interaction of an internal shock with the free surface of a dense material leads to the production of jets of particulate material from the surface into its environment. Understanding the processes which control the production of these jets -- both their occurrence, and properties such as the mass, velocity, and particle size distribution of material injected -- has been a topic of active research at AWE for over 50 years. I will discuss the effect of material physics, such as strength and spall, on the production of ejecta, drawing on experimental history and recent calculations, and consider the processes which determine the distribution of particle sizes which result as ejecta jets break up. British Crown Owned Copyright 2017/AWE.

  18. Emergent polyethism as a consequence of increased colony size in insect societies.

    PubMed

    Gautrais, Jacques; Theraulaz, Guy; Deneubourg, Jean-Louis; Anderson, Carl

    2002-04-07

    A threshold reinforcement model in insect societies is explored over a range of colony sizes and levels of task demand to examine their effects upon worker polyethism. We find that increasing colony size while keeping the demand proportional to the colony size causes an increase in the differentiation among individuals in their activity levels, thus explaining the occurrence of elitism (individuals that do a disproportionately large proportion of work) in insect societies. Similar results were obtained when the overall work demand is increased while keeping the colony size constant. Our model can reproduce a whole suite of distributions of the activity levels among colony members that have been found in empirical studies. When there are two tasks, we demonstrate that increasing demand and colony size generates highly specialized individuals, but without invoking any strict assumptions about spatial organization of work or any inherent abilities of individuals to tackle different tasks. Importantly, such specialization only occurs above a critical colony size such that smaller colonies contain a set of undifferentiated equally inactive individuals while larger colonies contain both active specialists and inactive generalists, as has been found in empirical studies and is predicted from other theoretical considerations. Copyright 2002 Elsevier Science Ltd. All rights reserved.

  19. A new method for assessment of the sludge disintegration degree with the use of differential centrifugal sedimentation.

    PubMed

    Silvestri, Daniele; Wacławek, Stanisław; Gončuková, Zuzanna; Padil, Vinod V T; Grübel, Klaudiusz; Černík, Miroslav

    2018-05-24

    A novel method for assessing the disintegration degree (DD) of waste activated sludge (WAS) with the use of differential centrifugal sedimentation method (DCS) was shown herein. The method was validated for a WAS sample at four levels of disintegration in the range of 14.4-82.6% corresponding to the median particle size range of 8.5-1.6 µm. From the several sludge disintegration methods used (i.e. microwave, alkalization, ultrasounds and peroxydisulfate activated by ultrasounds), the activated peroxydisulfate disintegration resulted in the greatest DD 83% and the smallest median particle size of WAS. Particle size distribution of pretreated sludge, measured by DCS, was in a negative correlation with the DD, determined from soluble chemical oxygen demand (SCOD; determination coefficient of 0.995). Based on the obtained results, it may be concluded that the DCS analysis can approximate the WAS disintegration degree.

  20. Pulsed Laser Ablation-Induced Green Synthesis of TiO2 Nanoparticles and Application of Novel Small Angle X-Ray Scattering Technique for Nanoparticle Size and Size Distribution Analysis.

    PubMed

    Singh, Amandeep; Vihinen, Jorma; Frankberg, Erkka; Hyvärinen, Leo; Honkanen, Mari; Levänen, Erkki

    2016-12-01

    This paper aims to introduce small angle X-ray scattering (SAXS) as a promising technique for measuring size and size distribution of TiO 2 nanoparticles. In this manuscript, pulsed laser ablation in liquids (PLAL) has been demonstrated as a quick and simple technique for synthesizing TiO 2 nanoparticles directly into deionized water as a suspension from titanium targets. Spherical TiO 2 nanoparticles with diameters in the range 4-35 nm were observed with transmission electron microscopy (TEM). X-ray diffraction (XRD) showed highly crystalline nanoparticles that comprised of two main photoactive phases of TiO 2 : anatase and rutile. However, presence of minor amounts of brookite was also reported. The traditional methods for nanoparticle size and size distribution analysis such as electron microscopy-based methods are time-consuming. In this study, we have proposed and validated SAXS as a promising method for characterization of laser-ablated TiO 2 nanoparticles for their size and size distribution by comparing SAXS- and TEM-measured nanoparticle size and size distribution. SAXS- and TEM-measured size distributions closely followed each other for each sample, and size distributions in both showed maxima at the same nanoparticle size. The SAXS-measured nanoparticle diameters were slightly larger than the respective diameters measured by TEM. This was because SAXS measures an agglomerate consisting of several particles as one big particle which slightly increased the mean diameter. TEM- and SAXS-measured mean diameters when plotted together showed similar trend in the variation in the size as the laser power was changed which along with extremely similar size distributions for TEM and SAXS validated the application of SAXS for size distribution measurement of the synthesized TiO 2 nanoparticles.

  1. Feeding biomechanics of Late Triassic metoposaurids (Amphibia: Temnospondyli): a 3D finite element analysis approach.

    PubMed

    Fortuny, Josep; Marcé-Nogué, Jordi; Konietzko-Meier, Dorota

    2017-06-01

    The Late Triassic freshwater ecosystems were occupied by different tetrapod groups including large-sized anamniotes, such as metoposaurids. Most members of this group of temnospondyls acquired gigantic sizes (up to 5 m long) with a nearly worldwide distribution. The paleoecology of metoposaurids is controversial; they have been historically considered passive, bottom-dwelling animals, waiting for prey on the bottom of rivers and lakes, or they have been suggested to be active mid-water feeders. The present study aims to expand upon the paleoecological interpretations of these animals using 3D finite element analyses (FEA). Skulls from two taxa, Metoposaurus krasiejowensis, a gigantic taxon from Europe, and Apachesaurus gregorii, a non-gigantic taxon from North America, were analyzed under different biomechanical scenarios. Both 3D models of the skulls were scaled to allow comparisons between them and reveal that the general stress distribution pattern found in both taxa is clearly similar in all scenarios. In light of our results, both previous hypotheses about the paleoecology of these animals can be partly merged: metoposaurids probably were ambush and active predators, but not the top predators of these aquatic environments. The FEA results demonstrate that they were particularly efficient at bilateral biting, and together with their characteristically anteropositioned orbits, optimal for an ambush strategy. Nonetheless, the results also show that these animals were capable of lateral strikes of the head, suggesting active hunting of prey. Regarding the important skull size differences between the taxa analyzed, our results suggest that the size reduction in the North American taxon could be related to drastic environmental changes or the increase of competitors. The size reduction might have helped them expand into new ecological niches, but they likely remained fully aquatic, as are all other metoposaurids. © 2017 Anatomical Society.

  2. A General Class of Signed Rank Tests for Clustered Data when the Cluster Size is Potentially Informative

    PubMed Central

    Datta, Somnath; Nevalainen, Jaakko; Oja, Hannu

    2012-01-01

    SUMMARY Rank based tests are alternatives to likelihood based tests popularized by their relative robustness and underlying elegant mathematical theory. There has been a serge in research activities in this area in recent years since a number of researchers are working to develop and extend rank based procedures to clustered dependent data which include situations with known correlation structures (e.g., as in mixed effects models) as well as more general form of dependence. The purpose of this paper is to test the symmetry of a marginal distribution under clustered data. However, unlike most other papers in the area, we consider the possibility that the cluster size is a random variable whose distribution is dependent on the distribution of the variable of interest within a cluster. This situation typically arises when the clusters are defined in a natural way (e.g., not controlled by the experimenter or statistician) and in which the size of the cluster may carry information about the distribution of data values within a cluster. Under the scenario of an informative cluster size, attempts to use some form of variance adjusted sign or signed rank tests would fail since they would not maintain the correct size under the distribution of marginal symmetry. To overcome this difficulty Datta and Satten (2008; Biometrics, 64, 501–507) proposed a Wilcoxon type signed rank test based on the principle of within cluster resampling. In this paper we study this problem in more generality by introducing a class of valid tests employing a general score function. Asymptotic null distribution of these tests is obtained. A simulation study shows that a more general choice of the score function can sometimes result in greater power than the Datta and Satten test; furthermore, this development offers the user a wider choice. We illustrate our tests using a real data example on spinal cord injury patients. PMID:23074359

  3. A General Class of Signed Rank Tests for Clustered Data when the Cluster Size is Potentially Informative.

    PubMed

    Datta, Somnath; Nevalainen, Jaakko; Oja, Hannu

    2012-09-01

    Rank based tests are alternatives to likelihood based tests popularized by their relative robustness and underlying elegant mathematical theory. There has been a serge in research activities in this area in recent years since a number of researchers are working to develop and extend rank based procedures to clustered dependent data which include situations with known correlation structures (e.g., as in mixed effects models) as well as more general form of dependence.The purpose of this paper is to test the symmetry of a marginal distribution under clustered data. However, unlike most other papers in the area, we consider the possibility that the cluster size is a random variable whose distribution is dependent on the distribution of the variable of interest within a cluster. This situation typically arises when the clusters are defined in a natural way (e.g., not controlled by the experimenter or statistician) and in which the size of the cluster may carry information about the distribution of data values within a cluster.Under the scenario of an informative cluster size, attempts to use some form of variance adjusted sign or signed rank tests would fail since they would not maintain the correct size under the distribution of marginal symmetry. To overcome this difficulty Datta and Satten (2008; Biometrics, 64, 501-507) proposed a Wilcoxon type signed rank test based on the principle of within cluster resampling. In this paper we study this problem in more generality by introducing a class of valid tests employing a general score function. Asymptotic null distribution of these tests is obtained. A simulation study shows that a more general choice of the score function can sometimes result in greater power than the Datta and Satten test; furthermore, this development offers the user a wider choice. We illustrate our tests using a real data example on spinal cord injury patients.

  4. Number concentration, size distribution and horizontal mass flux of Asian dust particles collected over free troposphere of Chinese desert region in calm weather condition using balloon borne measurements.

    NASA Astrophysics Data System (ADS)

    Habib, A.; Chen, B.

    2017-12-01

    Balloon borne measurements were carried out during calm weather conditions in Taklamakan Desert, which is considered as one of the major source areas of Asian dust (KOSA) particles. Vertical distribution of aerosols number concentration, size distribution, mass concentration and horizontal mass flux due to westerly wind was investigated .Vertical distribution of aerosol number concentration and size distribution at Dunhuang (40 °00'N, 94°30'E) China were observed by optical particle counter (OPC) on August 17, 2001, October 17, 2011, January 11, 2002, April 30, 2002. Five channels (0.3, 0.5, 0.8, 1.2 and 3.6 µm) were used in OPC for particle sizing measurements. Aerosol number concentration in winter season (January 11, 2002) at 3-5 km was very high. Variation of free tropospheric aerosols in April 30, 2002 was noticeable. Many inversions of temperature and aerosol concentration change are found at these inversion points. Super micron range was noticeable in size distribution of all balloon borne measurements. High values of estimated mass concentration of aerosols were observed at the ground atmosphere (1-2 km), and interestingly relatively high concentrations were frequently detected above about 2 km. Wind pattern observed by ERA-interim data sets at 500 and 850 hPa, shows that westerly winds were dominated in Taklamakan Desert during balloon borne observation period. Average horizontal mass flux of background Asian dust due to westerly wind was about in the range of 1219-58.5 μg/m³ tons/km2/day. Most of the profiles showed active transport of aerosols in the westerly dominated region, while, fluxes were found to be very low on January 11, 2002, compared with the other seasons. Vertical profiles of aerosols number concentration showed that significant transport of aerosols was dominated in westerly region (4-7 km). Low horizontal mass flux of aerosols was found in winter season

  5. Succinate dehydrogenase activity and soma size of motoneurons innervating different portions of the rat tibialis anterior

    NASA Technical Reports Server (NTRS)

    Ishihara, A.; Roy, R. R.; Edgerton, V. R.

    1995-01-01

    The spatial distribution, soma size and oxidative enzyme activity of gamma and alpha motoneurons innervating muscle fibres in the deep (away from the surface of the muscle) and superficial (close to the surface of the muscle) portions of the tibialis anterior in normal rats were determined. The deep portion had a higher percentage of high oxidative fibres than the superficial portion of the muscle. Motoneurons were labelled by retrograde neuronal transport of fluorescent tracers: Fast Blue and Nuclear Yellow were injected into the deep portion and Nuclear Yellow into the superficial portion of the muscle. Therefore, motoneurons innervating the deep portion were identified by both a blue fluorescent cytoplasm and a golden-yellow fluorescent nucleus, while motoneurons innervating the superficial portion were identified by only a golden-yellow fluorescent nucleus. After staining for succinate dehydrogenase activity on the same section used for the identification of the motoneurons, soma size and succinate dehydrogenase activity of the motoneurons were measured. The gamma and alpha motoneurons innervating both the deep and superficial portions were located primarily at L4 and were intermingled within the same region of the dorsolateral portion of the ventral horn in the spinal cord. Mean soma size was similar for either gamma or alpha motoneurons in the two portions of the muscle. The alpha motoneurons innervating the superficial portion had a lower mean succinate dehydrogenase activity than those innervating the deep portion of the muscle. An inverse relationship between soma size and succinate dehydrogenase activity of alpha, but not gamma, motoneurons innervating both the deep and superficial portions was observed. Based on three-dimensional reconstructions within the spinal cord, there were no apparent differences in the spatial distribution of the motoneurons, either gamma or alpha, associated with the deep and superficial compartments of the muscle. The data provide evidence for an interdependence in the oxidative capacity between a motoneuron and its target muscle fibres in two subpopulations of motoneurons from the same motor pool, i.e. the same muscle.

  6. Observed oil and gas field size distributions: A consequence of the discovery process and prices of oil and gas

    USGS Publications Warehouse

    Drew, L.J.; Attanasi, E.D.; Schuenemeyer, J.H.

    1988-01-01

    If observed oil and gas field size distributions are obtained by random samplings, the fitted distributions should approximate that of the parent population of oil and gas fields. However, empirical evidence strongly suggests that larger fields tend to be discovered earlier in the discovery process than they would be by random sampling. Economic factors also can limit the number of small fields that are developed and reported. This paper examines observed size distributions in state and federal waters of offshore Texas. Results of the analysis demonstrate how the shape of the observable size distributions change with significant hydrocarbon price changes. Comparison of state and federal observed size distributions in the offshore area shows how production cost differences also affect the shape of the observed size distribution. Methods for modifying the discovery rate estimation procedures when economic factors significantly affect the discovery sequence are presented. A primary conclusion of the analysis is that, because hydrocarbon price changes can significantly affect the observed discovery size distribution, one should not be confident about inferring the form and specific parameters of the parent field size distribution from the observed distributions. ?? 1988 International Association for Mathematical Geology.

  7. PECASE: Nanostructure Hybrid Organic/Inorganic Materials for Active Opto-Electronic Devices

    DTIC Science & Technology

    2011-01-03

    FWHM= 30 nm), green-emitting core–shell material ( 4 nm in diameter) suitable for QD- LED display applications (Figure 1b). An alloyed material for...electroluminescence (EL) that can be of use in fields as diverse as optical communications, spectroscopy, and environmental and industrial sensing. The RC structure...variety of QD size distributions (of Gaussian size profile). Such QD monoalyers have already been utilized in a number of thin-film applications , QD

  8. Infrared spectroscopy and Mie scattering of acetylene aerosols formed in a low temperature diffusion cell

    NASA Technical Reports Server (NTRS)

    Dunder, T.; Miller, R. E.

    1990-01-01

    A method is described for forming and spectroscopically characterizing cryogenic aerosols formed in a low temperature gas cell. By adjusting the cell pressure, gas composition and flow rate, the size distribution of aerosol particles can be varied over a wide range. The combination of pressure and flow rate determine the residence time of the aerosols in the cell and hence the time available for the particles to grow. FTIR spectroscopy, over the range from 600/cm to 6000/cm, is used to characterize the aerosols. The particle size distribution can be varied so that, at one extreme, the spectra show only absorption features associated with the infrared active vibrational bands and, at the other, they display both absorption and Mie scattering. In the latter case, Mie scattering theory is used to obtain semiquantitative aerosol size distributions, which can be understood in terms of the interplay between nucleation and condensation. In the case of acetylene aerosols, the infrared spectra suggest that the particles exist in the high temperature cubic phase of the solid.

  9. One-step preparation of antimicrobial silver nanoparticles in polymer matrix

    NASA Astrophysics Data System (ADS)

    Lyutakov, O.; Kalachyova, Y.; Solovyev, A.; Vytykacova, S.; Svanda, J.; Siegel, J.; Ulbrich, P.; Svorcik, V.

    2015-03-01

    Simple one-step procedure for in situ preparation of silver nanoparticles (AgNPs) in the polymer thin films is described. Nanoparticles (NPs) were prepared by reaction of N-methyl pyrrolidone with silver salt in semi-dry polymer film and characterized by transmission electron microscopy, XPS, and UV-Vis spectroscopy techniques. Direct synthesis of NPs in polymer has several advantages; even though it avoids time-consuming NPs mixing with polymer matrix, uniform silver distribution in polymethylmethacrylate (PMMA) films is achieved without necessity of additional stabilization. The influence of the silver concentration, reaction temperature and time on reaction conversion rate, and the size and size-distribution of the AgNPs was investigated. Polymer films doped with AgNPs were tested for their antibacterial activity on Gram-negative bacteria. Antimicrobial properties of AgNPs/PMMA films were found to be depended on NPs concentration, their size and distribution. Proposed one-step synthesis of functional polymer containing AgNPs is environmentally friendly, experimentally simple and extremely quick. It opens up new possibilities in development of antimicrobial coatings with medical and sanitation applications.

  10. Gradually truncated log-normal in USA publicly traded firm size distribution

    NASA Astrophysics Data System (ADS)

    Gupta, Hari M.; Campanha, José R.; de Aguiar, Daniela R.; Queiroz, Gabriel A.; Raheja, Charu G.

    2007-03-01

    We study the statistical distribution of firm size for USA and Brazilian publicly traded firms through the Zipf plot technique. Sale size is used to measure firm size. The Brazilian firm size distribution is given by a log-normal distribution without any adjustable parameter. However, we also need to consider different parameters of log-normal distribution for the largest firms in the distribution, which are mostly foreign firms. The log-normal distribution has to be gradually truncated after a certain critical value for USA firms. Therefore, the original hypothesis of proportional effect proposed by Gibrat is valid with some modification for very large firms. We also consider the possible mechanisms behind this distribution.

  11. Atmospheric aerosols size distribution properties in winter and pre-monsoon over western Indian Thar Desert location

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panwar, Chhagan, E-mail: chhaganpanwar@gmail.com; Vyas, B. M.

    The first ever experimental results over Indian Thar Desert region concerning to height integrated aerosols size distribution function in particles size ranging between 0.09 to 2 µm such as, aerosols columnar size distribution (CSD), effective radius (R{sub eff}), integrated content of total aerosols (N{sub t}), columnar content of accumulation and coarse size aerosols particles concentration (N{sub a}) (size < 0.5 µm) and (N{sub c}) (size between 0.5 to 2 µm) have been described specifically during winter (a stable weather condition and intense anthropogenic pollution activity period) and pre-monsoon (intense dust storms of natural mineral aerosols as well as unstable atmospheric weather condition period)more » at Jaisalmer (26.90°N, 69.90°E, 220 m above surface level (asl)) located in central Thar desert vicinity of western Indian site. The CSD and various derived other aerosols size parameters are retrieved from their average spectral characteristics of Aerosol Optical Thickness (AOT) from UV to Infrared wavelength spectrum measured from Multi-Wavelength solar Radiometer (MWR). The natures of CSD are, in general, bio-modal character, instead of uniformly distributed character and power law distributions. The observed primary peaks in CSD plots are seen around about 10{sup 13} m{sup 2} μm{sup −1} at radius range 0.09-0.20 µm during both the seasons. But, in winter months, secondary peaks of relatively lower CSD values of 10{sup 10} to 10{sup 11} m{sup 2}/μm{sup −1} occur within a lower radius size range 0.4 to 0.6 µm. In contrast to this, while in dust dominated and hot season, the dominated secondary maxima of the higher CSD of about 10{sup 12} m{sup 2}μm{sup −3} is found of bigger aerosols size particles in a rage of 0.6 to 1.0 µm which is clearly demonstrating the characteristics of higher aerosols laden of bigger size aerosols in summer months relative to their prevailed lower aerosols loading of smaller size aerosols particles (0.4 to 0.6 µm) in cold months. Several other interesting features of changing nature of monthly spectral AOT, R{sub eff}, N{sub t}, N{sub a} and N{sub C} (particles/m{sup 2}) have been discussed in detail in this paper.« less

  12. Predominance of single bacterial cells in composting bioaerosols

    NASA Astrophysics Data System (ADS)

    Galès, Amandine; Bru-Adan, Valérie; Godon, Jean-Jacques; Delabre, Karine; Catala, Philippe; Ponthieux, Arnaud; Chevallier, Michel; Birot, Emmanuel; Steyer, Jean-Philippe; Wéry, Nathalie

    2015-04-01

    Bioaerosols emitted from composting plants have become an issue because of their potential harmful impact on public or workers' health. Accurate knowledge of the particle-size distribution in bioaerosols emitted from open-air composting facilities during operational activity is a requirement for improved modeling of air dispersal. In order to investigate the aerodynamic diameter of bacteria in composting bioaerosols this study used an Electrical Low Pressure Impactor for sampling and quantitative real-time PCR for quantification. Quantitative PCR results show that the size of bacteria peaked between 0.95 μm and 2.4 μm and that the geometric mean diameter of the bacteria was 1.3 μm. In addition, total microbial cells were counted by flow cytometry and revealed that these qPCR results corresponded to single whole bacteria. Finally, the enumeration of cultivable thermophilic microorganisms allowed us to set the upper size limit for fragments at an aerodynamic diameter of ∼0.3 μm. Particle-size distributions of microbial groups previously used to monitor composting bioaerosols were also investigated. In collected the bioaerosols, the aerodynamic diameter of the actinomycetes Saccharopolyspora rectivirgula-and-relatives and also of the fungus Aspergillus fumigatus, appeared to be consistent with a majority of individual cells. Together, this study provides the first culture-independent data on particle-size distribution of composting bioaerosols and reveals that airborne single bacteria were emitted predominantly from open-air composting facilities.

  13. The distribution of sediments grain size along the depth in source of the Yangtze River, Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Yao, S.; Zhou, S.; Liu, X.; Yan, X.; Lu, J.

    2017-12-01

    Sediment was the one result of river process, in alluvial rive, it can reflect the hydrodynamic characteristic, even the hydrology and climate. In the source region of the Yangtze River with few human activities, The Qumalai Reach of the Tongtianhe River was selected to research the distribution of sediments grain size along the depth. The vertical drilling tools were used to obtain 7 boreholes along the river cross section, and the sedimentary cores were made analysis of stratification and granularity. The results show: The sediments are dominated by sand and grail, the sediment transport capacity of river sources is strong; the grain size frequency distribution curve with 2 3 kurtosis, main peak is sharp, it is typical deposit sediment of the suspended load; The grain size coarsen from the stream terrace to the main channel, sediment transport capacity of main stream is bigger; There are several coarse and fine sediments layers in the sedimentary core of the terrace and flood plain, medium diameters of each layer are various from 0.4mm to 80mm, different layer with different grain size can reflect the different hydrodynamic characteristic of each historical period. This result can provide the original data and enlightenment to support the research for historical river process and hydrology so much as the climate change.

  14. Spatial patterns of serial murder: an analysis of disposal site location choice.

    PubMed

    Lundrigan, S; Canter, D

    2001-01-01

    Although the murders committed by serial killers may not be considered rational, there is growing evidence that the locations in which they commit their crimes may be guided by an implicit, if limited rationality. The hypothesized logic of disposal site choice of serial killers led to predictions that (a) their criminal domains would be around their home base and relate to familiar travel distances, (b) they would have a size that was characteristic of each offender, (c) the distribution would be biased towards other non-criminal activities, and (d) the size of the domains would increase over time. Examination of the geographical distribution of the sites at which 126 US and 29 UK serial killers disposed of their victims' bodies supported all four hypotheses. It was found that rational choice and routine activity models of criminal behavior could explain the spatial choices of serial murderers. It was concluded that the locations at which serial killers dispose of their victims' bodies reflect the inherent logic of the choices that underlie their predatory activities. Copyright 2001 John Wiley & Sons, Ltd.

  15. Green synthesis of silver nanoparticles using flower extract of Malva sylvestris and investigation of their antibacterial activity.

    PubMed

    Mahmoodi Esfanddarani, Hassan; Abbasi Kajani, Abolghasem; Bordbar, Abdol-Khalegh

    2018-06-01

    High-quality colloidal silver nanoparticles (AgNP) were synthesised via a green approach by using hydroalcoholic extracts of Malva sylvestris . Silver nitrate was used as a substrate ion while the plant extract successfully played the role of reducing and stabilising agents. The synthesised nanoparticles were carefully characterised by using transmission electron microscopy, atomic-force microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and UV-vis spectroscopy. The maximum absorption wavelengths of the colloidal solutions synthesised using 70 and 96% ethanol and 100% methanol, as extraction solvents, were 430, 485 and 504 nm, respectively. Interestingly, the size distribution of nanoparticles depended on the used solvent. The best particle size distribution belonged to the nanoparticles synthesised by 70% ethanol extract, which was 20-40 nm. The antibacterial activity of the synthesised nanoparticles was studied on Escherichia coli , Staphylococcus aureus and Streptococcus pyogenes using disk diffusion, minimum inhibitory concentrations and minimum bactericidal concentrations assays. The best antibacterial activity obtained for the AgNPs produced by using 96% ethanolic extract.

  16. Do small animals have a biogeography?

    PubMed

    Valdecasas, A G; Camacho, A I; Peláez, M L

    2006-01-01

    It has been stated that small organisms do not have barriers for distribution and will not show biogeographic discreteness. General models for size-mediated biogeographies establish a transition region between ubiquitous dispersal and restricted biogeography at about 1-10 mm. We tested patterns of distribution versus size with water mites, a group of freshwater organisms with sizes between 300 microm and 10 mm. We compiled a list of all known water mite species for Sierra del Guadarrama (a mountain range in the centre of the Iberian Peninsula) from different authors and our own studies in the area. Recorded habitats include lotic, lentic and interstitial environments. Species body size and world distribution were drawn from our work and published specialized taxonomic literature. The null hypothesis was that distribution is size-independent. The relationship between distribution and size was approached via analysis of variance and between size and habitat via logistic regression. Contrary to expectations, there is no special relationship between water mite size and area size distribution. On the other hand, water mite size is differentially distributed among habitats, although this ecological sorting is very weak. Larger water mites are more common in lentic habitats and smaller water mites in lotic habitats. Size-dependent distribution in which small organisms tend to be cosmopolitan breaks down when the particular biology comes into play. Water mites do not fit a previously proposed size-dependent biogeographical distribution, and are in accordance with similar data published on Tardigrada, Rotifera, Gastrotricha and the like.

  17. High Resolution Characterization of Engineered Nanomaterial Dispersions in Complex Media Using Tunable Resistive Pulse Sensing Technology

    PubMed Central

    2015-01-01

    In vitro toxicity assessment of engineered nanomaterials (ENM), the most common testing platform for ENM, requires prior ENM dispersion, stabilization, and characterization in cell culture media. Dispersion inefficiencies and active aggregation of particles often result in polydisperse and multimodal particle size distributions. Accurate characterization of important properties of such polydisperse distributions (size distribution, effective density, charge, mobility, aggregation kinetics, etc.) is critical for understanding differences in the effective dose delivered to cells as a function of time and dispersion conditions, as well as for nano–bio interactions. Here we have investigated the utility of tunable nanopore resistive pulse sensing (TRPS) technology for characterization of four industry relevant ENMs (oxidized single-walled carbon nanohorns, carbon black, cerium oxide and nickel nanoparticles) in cell culture media containing serum. Harvard dispersion and dosimetry platform was used for preparing ENM dispersions and estimating delivered dose to cells based on dispersion characterization input from dynamic light scattering (DLS) and TRPS. The slopes of cell death vs administered and delivered ENM dose were then derived and compared. We investigated the impact of serum protein content, ENM concentration, and cell medium on the size distributions. The TRPS technology offers higher resolution and sensitivity compared to DLS and unique insights into ENM size distribution and concentration, as well as particle behavior and morphology in complex media. The in vitro dose–response slopes changed significantly for certain nanomaterials when delivered dose to cells was taken into consideration, highlighting the importance of accurate dispersion and dosimetry in in vitro nanotoxicology. PMID:25093451

  18. Size distributions of micro-bubbles generated by a pressurized dissolution method

    NASA Astrophysics Data System (ADS)

    Taya, C.; Maeda, Y.; Hosokawa, S.; Tomiyama, A.; Ito, Y.

    2012-03-01

    Size of micro-bubbles is widely distributed in the range of one to several hundreds micrometers and depends on generation methods, flow conditions and elapsed times after the bubble generation. Although a size distribution of micro-bubbles should be taken into account to improve accuracy in numerical simulations of flows with micro-bubbles, a variety of the size distribution makes it difficult to introduce the size distribution in the simulations. On the other hand, several models such as the Rosin-Rammler equation and the Nukiyama-Tanazawa equation have been proposed to represent the size distribution of particles or droplets. Applicability of these models to the size distribution of micro-bubbles has not been examined yet. In this study, we therefore measure size distribution of micro-bubbles generated by a pressurized dissolution method by using a phase Doppler anemometry (PDA), and investigate the applicability of the available models to the size distributions of micro-bubbles. Experimental apparatus consists of a pressurized tank in which air is dissolved in liquid under high pressure condition, a decompression nozzle in which micro-bubbles are generated due to pressure reduction, a rectangular duct and an upper tank. Experiments are conducted for several liquid volumetric fluxes in the decompression nozzle. Measurements are carried out at the downstream region of the decompression nozzle and in the upper tank. The experimental results indicate that (1) the Nukiyama-Tanasawa equation well represents the size distribution of micro-bubbles generated by the pressurized dissolution method, whereas the Rosin-Rammler equation fails in the representation, (2) the bubble size distribution of micro-bubbles can be evaluated by using the Nukiyama-Tanasawa equation without individual bubble diameters, when mean bubble diameter and skewness of the bubble distribution are given, and (3) an evaluation method of visibility based on the bubble size distribution and bubble number density is proposed, and the evaluated visibility agrees well with the visibility measured in the upper tank.

  19. IASON - Intelligent Activated Sludge Operated by Nanotechnology - Hydrogel Microcarriers in Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Fleit, E.; Melicz, Z.; Sándor, D.; Zrínyi, M.; Filipcsei, G.; László, K.; Dékány, I.; Király, Z.

    Performance of biological wastewater treatment depends to a large extent on mechanical strength, size distribution, permeability and other textural properties of the activated sludge flocs. A novel approach was developed in applying synthetic polymer materials to organize floc architecture instead of spontaneously formed activated sludge floc. Developed microcarrier polymer materials were used in our experiments to mitigate technological goals. Preliminary results suggest that the PVA-PAA (polyvinyl alcohol-polyacrylic acid copolymer) is a feasible choice for skeleton material replacing "traditional" activated sludge floc. Use of PVA-PAA hydrogel material as microreactors and methods for biofilm formation of wastewater bacteria on the carrier material are described. Laboratory scale experimental results with microscopic size bioreactors and their potential application for simultaneous nitrification and denitrification are presented.

  20. A general approach for sample size calculation for the three-arm 'gold standard' non-inferiority design.

    PubMed

    Stucke, Kathrin; Kieser, Meinhard

    2012-12-10

    In the three-arm 'gold standard' non-inferiority design, an experimental treatment, an active reference, and a placebo are compared. This design is becoming increasingly popular, and it is, whenever feasible, recommended for use by regulatory guidelines. We provide a general method to calculate the required sample size for clinical trials performed in this design. As special cases, the situations of continuous, binary, and Poisson distributed outcomes are explored. Taking into account the correlation structure of the involved test statistics, the proposed approach leads to considerable savings in sample size as compared with application of ad hoc methods for all three scale levels. Furthermore, optimal sample size allocation ratios are determined that result in markedly smaller total sample sizes as compared with equal assignment. As optimal allocation makes the active treatment groups larger than the placebo group, implementation of the proposed approach is also desirable from an ethical viewpoint. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Characterization of the size distribution and aggregation of virus-like nanoparticles used as active ingredients of the HeberNasvac therapeutic vaccine against chronic hepatitis B

    NASA Astrophysics Data System (ADS)

    Lopez, Matilde; Rodriguez, Elias Nelson; Lobaina, Yadira; Musacchio, Alexis; Falcon, Viviana; Guillen, Gerardo; Aguilar, Julio C.

    2017-06-01

    The use of virus-like particles (VLPs) as antigens constitutes a well established strategy in preventive vaccination. These non-infective particles have a composition, size, and structure favoring their interaction and processing by the immune system. Recombinant viral nucleocapsids encapsulating bacterial nucleic acids result in potent Th1-driving immunogens. Several antigens have been coadministered with VLPs or conjugated to them to further increase their immunogenicity. In the present work we characterize the size distribution of two different recombinant VLPs obtained as components of HeberNasvac, a novel therapeutic vaccine recently registered to treat chronic hepatitis B. The vaccine ingredients, hepatitis B virus surface and nucleocapsid antigens (HBsAg and HBcAg, respectively) and the vaccine formulation, were evaluated using dynamic light scattering (DLS), transmission electron microscopy (TEM) and light obscuration technology. The results demonstrate that both antigens are nanoparticles with sizes ranging between 20-30 nm, in line with reports in the literature. In addition, DLS studies evidenced the capacity of both antigens to form homologous and heterologous aggregates, both as active ingredients as well as being part of the final product. The evaluation of subvisible particles in HeberNasvac formulation fulfills the requirements in terms of quantity and size established for parenteral pharmaceutical compositions. Invited talk at 8th Int. Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016) (Ha Long City, Vietnam, 8-12 November 2016)

  2. Effects of particle size distribution in thick film conductors

    NASA Technical Reports Server (NTRS)

    Vest, R. W.

    1983-01-01

    Studies of particle size distribution in thick film conductors are discussed. The distribution of particle sizes does have an effect on fired film density but the effect is not always positive. A proper distribution of sizes is necessary, and while the theoretical models can serve as guides to selecting this proper distribution, improved densities can be achieved by empirical variations from the predictions of the models.

  3. Aerosol mixingstate, hygroscopic growth and cloud activation efficiency during MIRAGE 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lance, Sara; Raatikainen, T.; Onasch, Timothy B.

    2013-05-15

    Observations of aerosol hygroscopic growth and CCN activation spectra for submicron particles are reported for the T1 ground site outside of Mexico City during the MIRAGE 2006 campaign. K¨ohler theory is used to evaluate the characteristic water uptake coefficient, k*, for the CCN active aerosol population using both size-resolved HTMDA and size-resolved CCNc measurements. Organic mass fractions, (forg), are evaluated from size-resolved aerosol mass spectrometer (AMS) measurements, from which kAMS is inferred and compared against k*. Strong diurnal profiles of aerosol water uptake parameters and aerosol composition are observed. We find that new particle formation (NPF) events are correlated withmore » an increased k* and CCN-active fraction during the daytime, with greater impact on smaller particles. During NPF events, the number concentration of 40 nm particles acting as CCN can surpass by more than a factor of two the concentrations of 100 nm particles acting as CCN, at supersaturations of 0.51% +/- 0.06%. We also find that at 0600-0800 in the morning throughout the campaign, fresh traffic emissions result in substantial changes to the chemical distribution of the aerosol, with on average 65% externally-mixed fraction for 40 nm particles and 30% externally-mixed fraction for 100 nm particles, whereas at midday nearly all particles of both sizes can be described as “internally-mixed”. Average activation spectra and growth factor distributions are analyzed for different time periods characterizing the daytime (with and without NPF events), the early morning “rush hour”, and the entire campaign. We show that k* derived from CCNc measurements decreases as a function of size during all time periods, while the CCN-active fraction increases as a function of size. Size-resolved AMS measurements do not predict the observed trend for k* versus particle size, which can be attributed to unresolved mixing-state and the presence of refractory material not measured by the AMS. Measured k* typically ranges from 0.2 to 0.35, and organics typically make up 60-85% of the aerosol mass in the size range studied. Despite some disagreement between kAMS and kCCNc, we show that kAMS is able to describe CCN concentrations reasonably well, especially at the highest CCN concentrations. This is consistent with other CCN studies carried out in urban environments, and is partly due to the fact that the highest CCN concentrations occur during the daytime when the aerosol is internally-mixed and the organic fraction is relatively low. During the early morning rush hour, however, failing to account for the aerosol mixing state results in systematic overestimation of CCN concentrations by 50-100%.« less

  4. Release of ultrafine particles from three simulated building processes

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Mulheron, Mike; Som, Claudia

    2012-03-01

    Building activities are recognised to produce coarse particulate matter but less is known about the release of airborne ultrafine particles (UFPs; those below 100 nm in diameter). For the first time, this study has investigated the release of particles in the 5-560 nm range from three simulated building activities: the crushing of concrete cubes, the demolition of old concrete slabs, and the recycling of concrete debris. A fast response differential mobility spectrometer (Cambustion DMS50) was used to measure particle number concentrations (PNC) and size distributions (PNDs) at a sampling frequency of 10 Hz in a confined laboratory room providing controlled environment and near-steady background PNCs. The sampling point was intentionally kept close to the test samples so that the release of new UFPs during these simulated processes can be quantified. Tri-modal particle size distributions were recorded for all cases, demonstrating different peak diameters in fresh nuclei (<10 nm), nucleation (10-30 nm) and accumulation (30-300 nm) modes for individual activities. The measured background size distributions showed modal peaks at about 13 and 49 nm with average background PNCs 1.47 × 104 cm-3. These background modal peaks shifted towards the larger sizes during the work periods (i.e. actual experiments) and the total PNCs increased between 2 and 17 times over the background PNCs for different activities. After adjusting for background concentrations, the net release of PNCs during cube crushing, slab demolition, and `dry' and `wet' recycling events were measured as 0.77, 19.1, 22.7 and 1.76 (×104) cm-3, respectively. The PNDs were converted into particle mass concentrations (PMCs). While majority of new PNC release was below 100 nm (i.e. UFPs), the bulk of new PMC emissions were constituted by the particles over 100 nm; 95, 79, 73 and 90% of total PNCs, and 71, 92, 93 and 91% of total PMCs, for cube crushing, slab demolition, dry recycling and wet recycling, respectively. The results of this study firmly elucidate the release of UFPs and raise a need for further detailed studies and designing health and safety related exposure guidelines for laboratory workplaces and operational building sites.

  5. The Italian primary school-size distribution and the city-size: a complex nexus

    NASA Astrophysics Data System (ADS)

    Belmonte, Alessandro; di Clemente, Riccardo; Buldyrev, Sergey V.

    2014-06-01

    We characterize the statistical law according to which Italian primary school-size distributes. We find that the school-size can be approximated by a log-normal distribution, with a fat lower tail that collects a large number of very small schools. The upper tail of the school-size distribution decreases exponentially and the growth rates are distributed with a Laplace PDF. These distributions are similar to those observed for firms and are consistent with a Bose-Einstein preferential attachment process. The body of the distribution features a bimodal shape suggesting some source of heterogeneity in the school organization that we uncover by an in-depth analysis of the relation between schools-size and city-size. We propose a novel cluster methodology and a new spatial interaction approach among schools which outline the variety of policies implemented in Italy. Different regional policies are also discussed shedding lights on the relation between policy and geographical features.

  6. High-performance super capacitors based on activated anthracite with controlled porosity

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Chul; Byamba-Ochir, Narandalai; Shim, Wang-Geun; Balathanigaimani, M. S.; Moon, Hee

    2015-02-01

    Mongolian anthracite is chemically activated using potassium hydroxide as an activation agent to make activated carbon materials. Prior to the chemical activation, the chemical agent is introduced by two different methods as follows, (1) simple physical mixing, (2) impregnation. The physical properties such as specific surface area, pore volume, pore size distribution, and adsorption energy distribution are measured to assess them as carbon electrode materials for electric double-layer capacitors (EDLC). The surface functional groups and morphology are also characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analyses respectively. The electrochemical results for the activated carbon electrodes in 3 M sulfuric acid electrolyte solution indicate that the activated Mongolian anthracite has relatively large specific capacitances in the range of 120-238 F g-1 and very high electrochemical stability, as they keep more than 98% of initial capacitances until 1000 charge/discharge cycles.

  7. Size distributions of coastal ocean suspended particulate inorganic matter: Amorphous silica and clay minerals and their dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Stavn, Robert H.; Falster, Alexander U.; Rick, Johannes J.; Gray, Deric; Gould, Richard W.

    2017-04-01

    Particulate inorganic matter (PIM) is a key component in estuarine and coastal systems and plays a critical role in trace metal cycling. Better understanding of coastal dynamics and biogeochemistry requires improved quantification of PIM in terms of its concentration, size distribution, and mineral species composition. The angular pattern of light scattering contains detailed information about the size and composition of particles. These volume scattering functions (VSFs) were measured in Mobile Bay, Alabama, USA, a dynamic, PIM dominated coastal environment. From measured VSFs, we determined through inversion the particle size distributions (PSDs) of major components of PIM, amorphous silica and clay minerals. An innovation here is the extension of our reported PSDs significantly into the submicron range. The PSDs of autochthonous amorphous silica exhibit two unique features: a peak centered at about 0.8 μm between 0.2 and 4 μm and a very broad shoulder essentially extending from 4 μm to >100 μm. With an active and steady particle source from blooming diatoms, the shapes of amorphous silica PSDs for sizes <10 μm varied little across the study area, but showed more particles of sizes >10 μm inside the bay, likely due to wind-induced resuspension of larger frustules that have settled. Compared to autochthonous amorphous silica, the allochthonous clay minerals are denser and exhibit relatively narrower PSDs with peaks located between 1 and 4 μm. Preferential settling of larger mineral particles as well as the smaller but denser illite component further narrowed the size distributions of clay minerals as they were being transported outside the bay. The derived PSDs also indicated a very dynamic situation in Mobile Bay when a cold weather front passed through during the experiment. With northerly winds of speeds up to 15 m s-1, both amorphous silica and clay minerals showed a dramatic increase in concentration and broadening in size distribution outside the exit of the barrier islands, indicative of wind-induced resuspension and subsequent advection of particles out of Mobile Bay. While collectively recognized as the PIM, amorphous silica and clay minerals, as shown in this study, possess very different size distributions. Considering how differences in PSDs and the associated particle areas will effect differences in sorption/desorption properties of these components, the results also demonstrate the potential of applying VSF-inversion in studying biogeochemistry in the estuarine-coastal ocean system.

  8. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contescu, Cristian I.; Gallego, Nidia C.; Thibaud-Erkey, Catherine

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC formore » measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.« less

  9. REMEDIATION OF RADIUM FROM CONTAMINATED SOIL

    EPA Science Inventory

    The objective of this study was to demonstrate the application of a physico-chemical separation process for the removal of radium from a sample of contaminated soil at the Ottawa, Illinois, site near Chicago. The size/activity distribution analyzed among the particles coarser tha...

  10. Characterizing climate change impacts on human exposures to air pollutants

    EPA Science Inventory

    Human exposures to air pollutants such as ozone (O3) have the potential to be altered by changes in climate through multiple factors that drive population exposures, including: ambient pollutant concentrations, human activity patterns, population sizes and distributions, and hous...

  11. Evidence of Chemical Cloud Processing from In Situ Measurements in the Polluted Marine Environment

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Noble, S. R., Jr.

    2017-12-01

    Chemical cloud processing alters activated cloud condensation nuclei (CCN). Aqueous oxidation of trace gases dissolved within cloud droplets adds soluble material. As most cloud droplets evaporate, the residual material produces CCN that are larger and with a different hygroscopicity (κ). This improves the CCN, lowering the critical supersaturation (Sc), making it more easily activated. This process separates the processed (accumulation) and unprocessed (Aitken) modes creating bimodal CCN distributions (Hudson et al., 2015). Various measurements made during the MArine Stratus/stratocumulus Experiment (MASE), including CCN, exhibited aqueous processing signals. Particle size distributions; measured by a differential mobility analyzer; were compared with CCN distributions; measured by the Desert Research Institute CCN spectrometer; by converting size to Sc using κ to overlay concurrent distributions. By tuning each mode to the best agreement, κ for each mode is determined; processed κ (κp), unprocessed κ (κu). In MASE, 59% of bimodal distributions had different κ for the two modes indicating dominance of chemical processing via aqueous oxidation. This is consistent with Hudson et al. (2015). Figure 1A also indicates chemical processing with larger κp between 0.35-0.75. Processed CCN had an influx of soluble material from aqueous oxidation which increased κp versus κu. Above 0.75 κp is lower than κu (Fig. 1A). When κu is high and sulfate material is added, κp tends towards κ of the added material. Thus, κp is reduced by additional material that is less soluble than the original material. Chemistry measurements in MASE also indicate in-cloud aqueous oxidation (Fig. 1B and 1C). Higher fraction of CCN concentrations in the processed mode are also associated with larger amounts of sulfates (Fig. 1B, red) and nitrates (Fig. 1C, orange) while SO2 (Fig. 1B, black) and O3 (Fig. 1C, blue) have lower amounts. This larger amount of sulfate is at the expense of SO2, indicating aqueous oxidation within cloud as associated with larger concentrations in the processed mode. Thus, in situ measurements indicate that chemical cloud processing alters size, Sc and κ of activated CCN. Hudson et al. (2015), JGRA, 120, 3436-3452.

  12. Preliminary Investigation of the Role that DMS (Dimethyl Sulfide) and Cloud Cycles Play in the Formation of the Aerosol Size Distribution.

    DTIC Science & Technology

    1987-07-29

    Osmotic and Activity Coefficients for Aqueous Methane Sulfonic Acid Solutions at 25 deg C," J. Chem. and Eng. Data 18... osmotic coefficient and MSA activity coefficient have been measured by Coving- ton et al. (1973). The water vapor pressure of the solution can be obtained...from f2L(M) M_ (7)6.5 x 10" where -f is the activity coefficient . Values of the osmotic coefficient and activity coefficient (from

  13. The evolution of biomass-burning aerosol size distributions due to coagulation: dependence on fire and meteorological details and parameterization

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kimiko M.; Laing, James R.; Stevens, Robin G.; Jaffe, Daniel A.; Pierce, Jeffrey R.

    2016-06-01

    Biomass-burning aerosols have a significant effect on global and regional aerosol climate forcings. To model the magnitude of these effects accurately requires knowledge of the size distribution of the emitted and evolving aerosol particles. Current biomass-burning inventories do not include size distributions, and global and regional models generally assume a fixed size distribution from all biomass-burning emissions. However, biomass-burning size distributions evolve in the plume due to coagulation and net organic aerosol (OA) evaporation or formation, and the plume processes occur on spacial scales smaller than global/regional-model grid boxes. The extent of this size-distribution evolution is dependent on a variety of factors relating to the emission source and atmospheric conditions. Therefore, accurately accounting for biomass-burning aerosol size in global models requires an effective aerosol size distribution that accounts for this sub-grid evolution and can be derived from available emission-inventory and meteorological parameters. In this paper, we perform a detailed investigation of the effects of coagulation on the aerosol size distribution in biomass-burning plumes. We compare the effect of coagulation to that of OA evaporation and formation. We develop coagulation-only parameterizations for effective biomass-burning size distributions using the SAM-TOMAS large-eddy simulation plume model. For the most-sophisticated parameterization, we use the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) to build a parameterization of the aged size distribution based on the SAM-TOMAS output and seven inputs: emission median dry diameter, emission distribution modal width, mass emissions flux, fire area, mean boundary-layer wind speed, plume mixing depth, and time/distance since emission. This parameterization was tested against an independent set of SAM-TOMAS simulations and yields R2 values of 0.83 and 0.89 for Dpm and modal width, respectively. The size distribution is particularly sensitive to the mass emissions flux, fire area, wind speed, and time, and we provide simplified fits of the aged size distribution to just these input variables. The simplified fits were tested against 11 aged biomass-burning size distributions observed at the Mt. Bachelor Observatory in August 2015. The simple fits captured over half of the variability in observed Dpm and modal width even though the freshly emitted Dpm and modal widths were unknown. These fits may be used in global and regional aerosol models. Finally, we show that coagulation generally leads to greater changes in the particle size distribution than OA evaporation/formation does, using estimates of OA production/loss from the literature.

  14. A statistical approach to estimate the 3D size distribution of spheres from 2D size distributions

    USGS Publications Warehouse

    Kong, M.; Bhattacharya, R.N.; James, C.; Basu, A.

    2005-01-01

    Size distribution of rigidly embedded spheres in a groundmass is usually determined from measurements of the radii of the two-dimensional (2D) circular cross sections of the spheres in random flat planes of a sample, such as in thin sections or polished slabs. Several methods have been devised to find a simple factor to convert the mean of such 2D size distributions to the actual 3D mean size of the spheres without a consensus. We derive an entirely theoretical solution based on well-established probability laws and not constrained by limitations of absolute size, which indicates that the ratio of the means of measured 2D and estimated 3D grain size distribution should be r/4 (=.785). Actual 2D size distribution of the radii of submicron sized, pure Fe0 globules in lunar agglutinitic glass, determined from backscattered electron images, is tested to fit the gamma size distribution model better than the log-normal model. Numerical analysis of 2D size distributions of Fe0 globules in 9 lunar soils shows that the average mean of 2D/3D ratio is 0.84, which is very close to the theoretical value. These results converge with the ratio 0.8 that Hughes (1978) determined for millimeter-sized chondrules from empirical measurements. We recommend that a factor of 1.273 (reciprocal of 0.785) be used to convert the determined 2D mean size (radius or diameter) of a population of spheres to estimate their actual 3D size. ?? 2005 Geological Society of America.

  15. In Situ Sampling of Relative Dust Devil Particle Loads and Their Vertical Grain Size Distributions.

    PubMed

    Raack, Jan; Reiss, Dennis; Balme, Matthew R; Taj-Eddine, Kamal; Ori, Gian Gabriele

    2017-04-19

    During a field campaign in the Sahara Desert in southern Morocco, spring 2012, we sampled the vertical grain size distribution of two active dust devils that exhibited different dimensions and intensities. With these in situ samples of grains in the vortices, it was possible to derive detailed vertical grain size distributions and measurements of the lifted relative particle load. Measurements of the two dust devils show that the majority of all lifted particles were only lifted within the first meter (∼46.5% and ∼61% of all particles; ∼76.5 wt % and ∼89 wt % of the relative particle load). Furthermore, ∼69% and ∼82% of all lifted sand grains occurred in the first meter of the dust devils, indicating the occurrence of "sand skirts." Both sampled dust devils were relatively small (∼15 m and ∼4-5 m in diameter) compared to dust devils in surrounding regions; nevertheless, measurements show that ∼58.5% to 73.5% of all lifted particles were small enough to go into suspension (<31 μm, depending on the used grain size classification). This relatively high amount represents only ∼0.05 to 0.15 wt % of the lifted particle load. Larger dust devils probably entrain larger amounts of fine-grained material into the atmosphere, which can have an influence on the climate. Furthermore, our results indicate that the composition of the surface, on which the dust devils evolved, also had an influence on the particle load composition of the dust devil vortices. The internal particle load structure of both sampled dust devils was comparable related to their vertical grain size distribution and relative particle load, although both dust devils differed in their dimensions and intensities. A general trend of decreasing grain sizes with height was also detected. Key Words: Mars-Dust devils-Planetary science-Desert soils-Atmosphere-Grain sizes. Astrobiology 17, xxx-xxx.

  16. Preparation and characterization of mesoporous TiO2-sphere-supported Au-nanoparticle catalysts with high activity for CO oxidation at ambient temperature

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Huang, Shouying; Zhu, Baolin; Zhang, Shoumin; Huang, Weiping

    2016-11-01

    Mesoporous TiO2-sphere-supported Au-nanoparticles (Au/m-TiO2-spheres) catalysts have been synthesized by a simple method using tetrabutyl titanate as TiO2 precursor and characterized with XRD, BET, ICP, SEM, TEM, UV-Vis DRS, XPS, as well as FT-IR. The samples with the size in the range of 200-400 nm were almost perfectly spherical. The average diameter of pores was about 3.6 nm, and the mesopore size distribution was in the range of 2-6 nm with a narrow distribution. When the catalyst was calcined at 300 °C, the Au NPs with the size ca. 5 nm were highly dispersed on the surfaces of m-TiO2 spheres and partially embedded in the supports. Remarkably, the specific surface area of the Au/m-TiO2-spheres was as high as 117 m2 g-1. The CO-adsorbed catalyst showed an apparent IR adsorption peak at 1714 cm-1 that matched with bridging model CO. It means the catalysts should be of high catalytic activity for the CO oxidation due to they could adsorb and activate CO commendably. When Au-content was 0.48 wt.%, the Au/m-TiO2-spheres could convert CO completely into CO2 at ambient temperature.

  17. Unlike fellows - a review of primate-non-primate associations.

    PubMed

    Heymann, Eckhard W; Hsia, Shin S

    2015-02-01

    Throughout many regions of the tropics, non-primate animals - mainly birds and mammals - have been observed to follow primate groups and to exploit dropped food and flushed prey. The anecdotal nature of most of the numerous reports on these primate-non-primate associations (PNPAs) may obscure the biological significance of such associations. We review the existing literature and test predictions concerning the influence of primate traits (body size, activity patterns, dietary strategies, habitat, group size) on the occurrence of PNPAs. Furthermore, we examine the influence of non-primates' dietary strategies on the occurrence of PNPAs, and the distribution of benefits and costs. We detected a strong signal in the geographic distribution of PNPAs, with a larger number of such associations in the Neotropics compared to Africa and Asia. Madagascar lacks PNPAs altogether. Primate body size, activity patterns, habitat and dietary strategies as well as non-primate dietary strategies affect the occurrence of PNPAs, while primate group size did not play a role. Benefits are asymmetrically distributed and mainly accrue to non-primates. They consist of foraging benefits through the consumption of dropped leaves and fruits and flushed prey, and anti-predation benefits through eavesdropping on primate alarm calls and vigilance. Where quantitative information is available, it has been shown that benefits for non-primates can be substantial. The majority of PNPAs can thus be categorized as cases of commensalism, while mutualism is very rare. Our review provides evidence that the ecological function of primates extends beyond their manifold interactions with plants, but may remain underestimated. © 2014 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  18. Characterization of distinct Arctic aerosol accumulation modes and their sources

    NASA Astrophysics Data System (ADS)

    Lange, R.; Dall'Osto, M.; Skov, H.; Nøjgaard, J. K.; Nielsen, I. E.; Beddows, D. C. S.; Simo, R.; Harrison, R. M.; Massling, A.

    2018-06-01

    In this work we use cluster analysis of long term particle size distribution data to expand an array of different shorter term atmospheric measurements, thereby gaining insights into longer term patterns and properties of Arctic aerosol. Measurements of aerosol number size distributions (9-915 nm) were conducted at Villum Research Station (VRS), Station Nord in North Greenland during a 5 year record (2012-2016). Alongside this, measurements of aerosol composition, meteorological parameters, gaseous compounds and cloud condensation nuclei (CCN) activity were performed during different shorter occasions. K-means clustering analysis of particle number size distributions on daily basis identified several clusters. Clusters of accumulation mode aerosols (main size modes > 100 nm) accounted for 56% of the total aerosol during the sampling period (89-91% during February-April, 1-3% during June-August). By association to chemical composition, cloud condensation nuclei properties, and meteorological variables, three typical accumulation mode aerosol clusters were identified: Haze (32% of the time), Bimodal (14%) and Aged (6%). In brief: (1) Haze accumulation mode aerosol shows a single mode at 150 nm, peaking in February-April, with highest loadings of sulfate and black carbon concentrations. (2) Accumulation mode Bimodal aerosol shows two modes, at 38 nm and 150 nm, peaking in June-August, with the highest ratio of organics to sulfate concentrations. (3) Aged accumulation mode aerosol shows a single mode at 213 nm, peaking in September-October and is associated with cloudy and humid weather conditions during autumn. The three aerosol clusters were considered alongside CCN concentrations. We suggest that organic compounds, that are likely marine biogenic in nature, greatly influence the Bimodal cluster and contribute significantly to its CCN activity. This stresses the importance of better characterizing the marine ecosystem and the aerosol-mediated climate effects in the Arctic.

  19. Particle size concentration distribution and influences on exhaled breath particles in mechanically ventilated patients.

    PubMed

    Wan, Gwo-Hwa; Wu, Chieh-Liang; Chen, Yi-Fang; Huang, Sheng-Hsiu; Wang, Yu-Ling; Chen, Chun-Wan

    2014-01-01

    Humans produce exhaled breath particles (EBPs) during various breath activities, such as normal breathing, coughing, talking, and sneezing. Airborne transmission risk exists when EBPs have attached pathogens. Until recently, few investigations had evaluated the size and concentration distributions of EBPs from mechanically ventilated patients with different ventilation mode settings. This study thus broke new ground by not only evaluating the size concentration distributions of EBPs in mechanically ventilated patients, but also investigating the relationship between EBP level and positive expiratory end airway pressure (PEEP), tidal volume, and pneumonia. This investigation recruited mechanically ventilated patients, with and without pneumonia, aged 20 years old and above, from the respiratory intensive care unit of a medical center. Concentration distributions of EBPs from mechanically ventilated patients were analyzed with an optical particle analyzer. This study finds that EBP concentrations from mechanically ventilated patients during normal breathing were in the range 0.47-2,554.04 particles/breath (0.001-4.644 particles/mL). EBP concentrations did not differ significantly between the volume control and pressure control modes of the ventilation settings in the mechanically ventilated patients. The patient EBPs were sized below 5 µm, and 80% of them ranged from 0.3 to 1.0 µm. The EBPs concentrations in patients with high PEEP (> 5 cmH₂O) clearly exceeded those in patients with low PEEP (≤ 5 cmH₂O). Additionally, a significant negative association existed between pneumonia duration and EBPs concentration. However, tidal volume was not related to EBPs concentration.

  20. Particle size distributions from laboratory-scale biomass fires using fast response instruments

    Treesearch

    S Hosseini; L. Qi; D. Cocker; D. Weise; A. Miller; M. Shrivastava; J.W. Miller; S. Mahalingam; M. Princevac; H. Jung

    2010-01-01

    Particle size distribution from biomass combustion is an important parameter as it affects air quality, climate modelling and health effects. To date, particle size distributions reported from prior studies vary not only due to difference in fuels but also difference in experimental conditions. This study aims to report characteristics of particle size distributions in...

  1. Global Particle Size Distributions: Measurements during the Atmospheric Tomography (ATom) Project

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Williamson, C.; Kupc, A.; Froyd, K. D.; Richardson, M.; Weinzierl, B.; Dollner, M.; Schuh, H.; Erdesz, F.

    2016-12-01

    The Atmospheric Tomography (ATom) project is a three-year NASA-sponsored program to map the spatial and temporal distribution of greenhouse gases, reactive species, and aerosol particles from the Arctic to the Antarctic. In situ measurements are being made on the NASA DC-8 research aircraft, which will make four global circumnavigations of the Earth over the mid-Pacific and mid-Atlantic Oceans while continuously profiling between 0.2 and 13 km altitude. In situ microphysical measurements will provide an unique and unprecedented dataset of aerosol particle size distributions between 0.004 and 50 µm diameter. This unbiased, representative dataset allows investigation of new particle formation in the remote troposphere, placing strong observational constraints on the chemical and physical mechanisms that govern particle formation and growth to cloud-active sizes. Particles from 0.004 to 0.055 µm are measured with 10 condensation particle counters. Particles with diameters from 0.06 to 1.0 µm are measured with one-second resolution using two ultra-high sensitivity aerosol size spectrometers (UHSASes). A laser aerosol spectrometer (LAS) measures particle size distributions between 0.12 and 10 µm in diameter. Finally, a cloud, aerosol and precipitation spectrometer (CAPS) underwing optical spectrometer probe sizes ambient particles with diameters from 0.5 to 50 µm and images and sizes precipitation-sized particles. Additional particle instruments on the payload include a high-resolution time-of-flight aerosol mass spectrometer and a single particle laser-ablation aerosol mass spectrometer. The instruments are calibrated in the laboratory and on the aircraft. Calibrations are checked in flight by introducing four sizes of polystyrene latex (PSL) microspheres into the sampling inlet. The CAPS probe is calibrated using PSL and glass microspheres that are aspirated into the sample volume. Comparisons between the instruments and checks with the calibration aerosol indicate flight performance within uncertainties expected from laboratory calibrations. Analysis of data from the first ATom circuit in August 2016 shows high concentrations of newly formed particles in the tropical middle and upper troposphere and Arctic lower troposphere.

  2. Major and trace element chemistry of Luna 24 samples from Mare Crisium

    NASA Technical Reports Server (NTRS)

    Blanchard, D. P.; Brannon, J. C.; Aaboe, E.; Budahn, J. R.

    1978-01-01

    Atomic absorption spectrometry and instrumental neutron activation analysis were employed to analyze six Luna 24 soils for major and trace elements. The analysis revealed well-mixed soils, though size fractions of each of the soils showed quite dissimilar compositions. Thus the regolith apparently has not been extensively reworked. Noritic breccia admixed preferentially to the finest size fractions and differential comminution of one or more other soil components accounted for the observed elemental distributions as a function of grain size. The ferrobasalt composition and one or more components with higher MgO contents have been identified in the samples.

  3. Particle interaction of lubricated or unlubricated binary mixtures according to their particle size and densification mechanism.

    PubMed

    Di Martino, Piera; Joiris, Etienne; Martelli, Sante

    2004-09-01

    The aim of this study is to assess an experimental approach for technological development of a direct compression formulation. A simple formula was considered composed by an active ingredient, a diluent and a lubricant. The active ingredient and diluent were selected as an example according to their typical densification mechanism: the nitrofurantoine, a fragmenting material, and the cellulose microcrystalline (Vivapur), which is a typical visco-elastic material, equally displaying good bind and disintegrant properties. For each ingredient, samples of different particle size distribution were selected. Initially, tabletability of pure materials was studied by a rotary press without magnesium stearate. Vivapur tabletability decreases with increase in particle size. The addition of magnesium stearate as lubricant decreases tabletability of Vivapur of greater particle size, while it kept unmodified that of Vivapur of lower particle size. Differences in tabletability can be related to differences in particle-particle interactions; for Vivapur of higher particle size (Vivapur 200, 102 and 101), the lower surface area develops lower surface available for bonds, while for Vivapur of lower particle size (99 and 105) the greater surface area allows high particle proximity favouring particle cohesivity. Nitrofurantoine shows great differences in compression behaviour according to its particle size distribution. Large crystals show poorer tabletability than fine crystals, further decreased by lubricant addition. The large crystals poor tabletability is due to their poor compactibility, in spite of high compressibility and plastic intrinsic deformability; in fact, in spite of the high densification tendency, the nature of the involved bonds is very weak. Nitrofurantoine samples were then mixed with Vivapurs in different proportions. Compression behaviour of binary mixes (tabletability and compressibility) was then evaluated according to diluents proportion in the mixes. The mix of either nitrofurantoine large crystals or fine crystals with cellulose microcrystalline showed a negative interaction in all proportions, whatever particle sizes. The lubricant addition induced a positive interaction with Vivapur of greater particle size distribution (200, 102 and 101) favouring higher particle adhesivity, while it maintained unaltered that of Vivapurs of lower particle size (105 and 99). Definitely, when cohesive forces are predominant (Vivapur 105 and 99), the establishment of adhesive bonds between nitrofurantoine and Vivapur remain unnoticed; on the contrary, when cohesion bonds between microcrystalline cellulose particles are weakened by the presence of magnesium stearate, the existence of adhesion bonds between particles of different nature is in evidence, leading to a positive interaction.

  4. Production of nanoparticle drug delivery systems with microfluidics tools.

    PubMed

    Khan, Ikram Ullah; Serra, Christophe A; Anton, Nicolas; Vandamme, Thierry F

    2015-04-01

    Nowadays the development of composite nano- and microparticles is an extensively studied area of research. This interest is growing because of the potential use of such particles in drug delivery systems. Indeed they can be used in various medical disciplines depending upon their sizes and their size distribution, which determine their final biomedical applications. Amongst the different techniques to produce nanoparticles, microfluidic techniques allow preparing particles having a specific size, a narrow size distribution and high encapsulation efficiency with ease. This review covers the general description of microfluidics, its techniques, advantages and disadvantages with focus on the encapsulation of active principles in polymeric nanoparticles as well as on pure drug nanoparticles. Polymeric nanoparticles constitute the majority of the examples reported; however lipid nanoparticulate systems (DNA, SiRNA nanocarriers) are very comparable and their formulation processes are in most cases exactly similar. Accordingly this review focuses also on active ingredient nanoparticles formulated by nanoprecipitation processes in microfluidic devices in general. It also provides detailed description of the different geometries of most common microfluidic devices and the crucial parameters involved in techniques designed to obtain the desired properties. Although the classical fabrication of nanoparticles drug delivery systems in batch is extremely well-described and developed, their production with microfluidic tools arises today as an emerging field with much more potential. In this review we present and discuss these new possibilities for biomedical applications through the current emerging developments.

  5. Resonance-induced multimodal body-size distributions in ecosystems

    PubMed Central

    Lampert, Adam; Tlusty, Tsvi

    2013-01-01

    The size of an organism reflects its metabolic rate, growth rate, mortality, and other important characteristics; therefore, the distribution of body size is a major determinant of ecosystem structure and function. Body-size distributions often are multimodal, with several peaks of abundant sizes, and previous studies suggest that this is the outcome of niche separation: species from distinct peaks avoid competition by consuming different resources, which results in selection of different sizes in each niche. However, this cannot explain many ecosystems with several peaks competing over the same niche. Here, we suggest an alternative, generic mechanism underlying multimodal size distributions, by showing that the size-dependent tradeoff between reproduction and resource utilization entails an inherent resonance that may induce multiple peaks, all competing over the same niche. Our theory is well fitted to empirical data in various ecosystems, in which both model and measurements show a multimodal, periodically peaked distribution at larger sizes, followed by a smooth tail at smaller sizes. Moreover, we show a universal pattern of size distributions, manifested in the collapse of data from ecosystems of different scales: phytoplankton in a lake, metazoans in a stream, and arthropods in forests. The demonstrated resonance mechanism is generic, suggesting that multimodal distributions of numerous ecological characters emerge from the interplay between local competition and global migration. PMID:23248320

  6. A new stochastic algorithm for inversion of dust aerosol size distribution

    NASA Astrophysics Data System (ADS)

    Wang, Li; Li, Feng; Yang, Ma-ying

    2015-08-01

    Dust aerosol size distribution is an important source of information about atmospheric aerosols, and it can be determined from multiwavelength extinction measurements. This paper describes a stochastic inverse technique based on artificial bee colony (ABC) algorithm to invert the dust aerosol size distribution by light extinction method. The direct problems for the size distribution of water drop and dust particle, which are the main elements of atmospheric aerosols, are solved by the Mie theory and the Lambert-Beer Law in multispectral region. And then, the parameters of three widely used functions, i.e. the log normal distribution (L-N), the Junge distribution (J-J), and the normal distribution (N-N), which can provide the most useful representation of aerosol size distributions, are inversed by the ABC algorithm in the dependent model. Numerical results show that the ABC algorithm can be successfully applied to recover the aerosol size distribution with high feasibility and reliability even in the presence of random noise.

  7. Prediction of the filtrate particle size distribution from the pore size distribution in membrane filtration: Numerical correlations from computer simulations

    NASA Astrophysics Data System (ADS)

    Marrufo-Hernández, Norma Alejandra; Hernández-Guerrero, Maribel; Nápoles-Duarte, José Manuel; Palomares-Báez, Juan Pedro; Chávez-Rojo, Marco Antonio

    2018-03-01

    We present a computational model that describes the diffusion of a hard spheres colloidal fluid through a membrane. The membrane matrix is modeled as a series of flat parallel planes with circular pores of different sizes and random spatial distribution. This model was employed to determine how the size distribution of the colloidal filtrate depends on the size distributions of both, the particles in the feed and the pores of the membrane, as well as to describe the filtration kinetics. A Brownian dynamics simulation study considering normal distributions was developed in order to determine empirical correlations between the parameters that characterize these distributions. The model can also be extended to other distributions such as log-normal. This study could, therefore, facilitate the selection of membranes for industrial or scientific filtration processes once the size distribution of the feed is known and the expected characteristics in the filtrate have been defined.

  8. Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories

    NASA Astrophysics Data System (ADS)

    Schmale, Julia; Henning, Silvia; Decesari, Stefano; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Pöhlker, Mira L.; Brito, Joel; Bougiatioti, Aikaterini; Kristensson, Adam; Kalivitis, Nikos; Stavroulas, Iasonas; Carbone, Samara; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Iwamoto, Yoko; Aalto, Pasi; Äijälä, Mikko; Bukowiecki, Nicolas; Ehn, Mikael; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Herrmann, Erik; Herrmann, Hartmut; Holzinger, Rupert; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Nenes, Athanasios; O'Dowd, Colin; Petäjä, Tuukka; Picard, David; Pöhlker, Christopher; Pöschl, Ulrich; Poulain, Laurent; Prévôt, André Stephan Henry; Swietlicki, Erik; Andreae, Meinrat O.; Artaxo, Paulo; Wiedensohler, Alfred; Ogren, John; Matsuki, Atsushi; Yum, Seong Soo; Stratmann, Frank; Baltensperger, Urs; Gysel, Martin

    2018-02-01

    Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Here we present a data set - ready to be used for model validation - of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles > 20 nm) across the range of 0.1 to 1.0 % supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season) or Finokalia (wildfire influence in autumn). The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, κ, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6) and lowest at the rain forest station ATTO (0.2-0.3). We performed closure studies based on κ-Köhler theory to predict CCN number concentrations. The ratio of predicted to measured CCN concentrations is between 0.87 and 1.4 for five different types of κ. The temporal variability is also well captured, with Pearson correlation coefficients exceeding 0.87. Information on CCN number concentrations at many locations is important to better characterise ACI and their radiative forcing. But long-term comprehensive aerosol particle characterisations are labour intensive and costly. Hence, we recommend operating migrating-CCNCs to conduct collocated CCN number concentration and particle number size distribution measurements at individual locations throughout one year at least to derive a seasonally resolved hygroscopicity parameter. This way, CCN number concentrations can only be calculated based on continued particle number size distribution information and greater spatial coverage of long-term measurements can be achieved.

  9. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution

    NASA Astrophysics Data System (ADS)

    Mahata, S.; Mahato, S. S.; Nandi, M. M.; Mondal, B.

    2012-07-01

    Here we report the synthesis and characterization of a stable suspension of modified titania nanoparticles. Phase-pure TiO2 nanocrystallites with narrow particle-size distributions were selectively prepared by hydrolysis-peptization of modified alkoxide followed by hydrothermal treatment. Autoclaving modified TiO2 in the presence of HNO3 as cooperative catalysts led to the formation of crystalline TiO2 with narrow-sized distribution. Following the hydrothermal treatment at 150°C, X-ray diffraction shows the particles to be exclusively anatase. Synthesized powder is characterized by FT-IR, scanning electron microscopy (FESEM) and transmission electron microscopy (HRTEM). The photocatalytic activity in the degradation of orange-II is quite comparable to good anatase and rutile nanocrystallites.

  10. Observation of Chorus Waves by the Van Allen Probes: Dependence on Solar Wind Parameters and Scale Size

    NASA Technical Reports Server (NTRS)

    Aryan, Homayon; Sibeck, David; Balikhin, Michael; Agapitov, Oleksiy; Kletzing, Craig

    2016-01-01

    Highly energetic electrons in the Earths Van Allen radiation belts can cause serious damage to spacecraft electronic systems and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity. However, geomagnetic indices are nonspecific parameters that are compiled from imperfectly covered ground based measurements. The present study uses wave data from the two Van Allen Probes to present the distribution of lower band chorus waves not only as functions of single geomagnetic index and solar wind parameters but also as functions of combined parameters. Also the current study takes advantage of the unique equatorial orbit of the Van Allen Probes to estimate the average scale size of chorus wave packets, during close separations between the two spacecraft, as a function of radial distance, magnetic latitude, and geomagnetic activity, respectively. Results show that the average scale size of chorus wave packets is approximately 13002300 km. The results also show that the inclusion of combined parameters can provide better representation of the chorus wave distributions in the inner magnetosphere and therefore can further improve our knowledge of the acceleration and loss of radiation belt electrons.

  11. Studies of Isolated and Non-isolated Photospheric Bright Points in an Active Region Observed by the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Liu, Yanxiao; Xiang, Yongyuan; Erdélyi, Robertus; Liu, Zhong; Li, Dong; Ning, Zongjun; Bi, Yi; Wu, Ning; Lin, Jun

    2018-03-01

    Properties of photospheric bright points (BPs) near an active region have been studied in TiO λ 7058 Å images observed by the New Vacuum Solar Telescope of the Yunnan Observatories. We developed a novel recognition method that was used to identify and track 2010 BPs. The observed evolving BPs are classified into isolated (individual) and non-isolated (where multiple BPs are observed to display splitting and merging behaviors) sets. About 35.1% of BPs are non-isolated. For both isolated and non-isolated BPs, the brightness varies from 0.8 to 1.3 times the average background intensity and follows a Gaussian distribution. The lifetimes of BPs follow a log-normal distribution, with characteristic lifetimes of (267 ± 140) s and (421 ± 255) s, respectively. Their size also follows log-normal distribution, with an average size of about (2.15 ± 0.74) × 104 km2 and (3.00 ± 1.31) × 104 km2 for area, and (163 ± 27) km and (191 ± 40) km for diameter, respectively. Our results indicate that regions with strong background magnetic field have higher BP number density and higher BP area coverage than regions with weak background field. Apparently, the brightness/size of BPs does not depend on the background field. Lifetimes in regions with strong background magnetic field are shorter than those in regions with weak background field, on average.

  12. The population of faint Jupiter family comets near the Earth

    NASA Astrophysics Data System (ADS)

    Fernández, Julio A.; Morbidelli, Alessandro

    2006-11-01

    We study the population of faint Jupiter family comets (JFCs) that approach the Earth (perihelion distances q<1.3 AU) by applying a debiasing technique to the observed sample. We found for the debiased cumulative luminosity function (CLF) of absolute total magnitudes H a bimodal distribution in which brighter comets ( H≲9) follow a linear relation with a steep slope α=0.65±0.14, while fainter comets follow a much shallower slope α=0.25±0.06 down to H˜18. The slope can be pushed up to α=0.35±0.09 if a second break in the H distribution to a much shallower slope is introduced at H˜16. We estimate a population of about 10 3 faint JFCs with q<1.3 AU and 10

  13. Country Profiles, Malaysia.

    ERIC Educational Resources Information Center

    Marzuki, Ariffin Bin; Peng, J. Y.

    A profile of Malaysia is sketched in this paper. Emphasis is placed on the nature, scope, and accomplishments of population activities in the country. Topics and sub-topics include: location and description of the country; population (size, growth patterns, age structure, urban/rural distribution, ethnic and religious composition, migration,…

  14. Country Profiles, Jamaica.

    ERIC Educational Resources Information Center

    Population Council, New York, NY.

    A profile of Jamaica is sketched in this paper. Emphasis is placed on the nature, scope, and accomplishments of population activities in the country. Topics and sub-topics include: location and description of the island; population - size, growth patterns, age structure, rural/urban distribution, ethnic and religious composition, literacy, future…

  15. Country Profiles, Indonesia.

    ERIC Educational Resources Information Center

    Population Council, New York, NY.

    A profile of Indonesia is sketched in this paper. Emphasis is placed on the nature, scope, and accomplishments of population activities in the country. Topics and sub-topics include: location and description of the country; population - size, growth patterns, age structure, urban/rural distribution, ethnic and religious composition, migration,…

  16. Country Profiles, Taiwan.

    ERIC Educational Resources Information Center

    Keeny, S. M.; And Others

    A profile of Taiwan is sketched in this paper. Emphasis is placed on the nature, scope, and accomplishments of population activities in the country. Topics and sub-topics include: location and description of the country; population (size, growth patterns, age structure, urban/rural distribution, ethnic and religious composition, migration,…

  17. PACKMAN-Net: A Distributed, Open-Access, and Scalable Network of User-Friendly Space Weather Stations

    NASA Astrophysics Data System (ADS)

    Zorzano, M.-P.; Martín-Torres, J.; Mathanlal, T.; Vakkada Ramachandran, A.; Ramirez-Luque, J.-A.

    2018-04-01

    The purpose of this work is to demonstrate the operability of a network of small-sized detectors of the PACKMAN instrument, operated simultaneously to provide real time cosmic ray and solar activity monitoring over the entire planet.

  18. Atmospheric aerosols: A literature summary of their physical characteristics and chemical composition

    NASA Technical Reports Server (NTRS)

    Harris, F. S., Jr.

    1976-01-01

    This report contains a summary of 199 recent references on the characterization of atmospheric aerosols with respect to their composition, sources, size distribution, and time changes, and with particular reference to the chemical elements measured by modern techniques, especially activation analysis.

  19. Quantitative accuracy of the closed-form least-squares solution for targeted SPECT.

    PubMed

    Shcherbinin, S; Celler, A

    2010-10-07

    The aim of this study is to investigate the quantitative accuracy of the closed-form least-squares solution (LSS) for single photon emission computed tomography (SPECT). The main limitation for employing this method in actual clinical reconstructions is the computational cost related to operations with a large-sized system matrix. However, in some clinical situations, the size of the system matrix can be decreased using targeted reconstruction. For example, some oncology SPECT studies are characterized by intense tracer uptakes that are localized in relatively small areas, while the remaining parts of the patient body have only a low activity background. Conventional procedures reconstruct the activity distribution in the whole object, which leads to relatively poor image accuracy/resolution for tumors while computer resources are wasted, trying to rebuild diagnostically useless background. In this study, we apply a concept of targeted reconstruction to SPECT phantom experiments imitating such oncology scans. Our approach includes two major components: (i) disconnection of the entire imaging system of equations and extraction of only those parts that correspond to the targets, i.e., regions of interest (ROI) encompassing active containers/tumors and (ii) generation of the closed-form LSS for each target ROI. We compared these ROI-based LSS with those reconstructed by the conventional MLEM approach. The analysis of the five processed cases from two phantom experiments demonstrated that the LSS approach outperformed MLEM in terms of the noise level inside ROI. On the other hand, MLEM better recovered total activity if the number of iterations was large enough. For the experiment without background activity, the ROI-based LSS led to noticeably better spatial activity distribution inside ROI. However, the distributions pertaining to both approaches were practically identical for the experiment with the concentration ratio 7:1 between the containers and the background.

  20. A two step method to treat variable winds in fallout smearing codes. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, A.T.

    1982-03-01

    A method was developed to treat non-constant winds in fallout smearing codes. The method consists of two steps: (1) location of the curved hotline (2) determination of the off-hotline activity. To locate the curved hotline, the method begins with an initial cloud of 20 discretely-sized pancake clouds, located at altitudes determined by weapon yield. Next, the particles are tracked through a 300 layer atmosphere, translating with different winds in each layer. The connection of the 20 particles' impact points is the fallout hotline. The hotline location was found to be independent of the assumed particle size distribution in the stabilizedmore » cloud. The off-hotline activity distribution is represented as a two-dimensional gaussian function, centered on the curved hotline. Hotline locator model results were compared to numerical calculations of hypothetical 100 kt burst and to the actual hotline produced by the Castle-Bravo 15 Mt nuclear test.« less

  1. Differentiating gold nanorod samples using particle size and shape distributions from transmission electron microscope images

    NASA Astrophysics Data System (ADS)

    Grulke, Eric A.; Wu, Xiaochun; Ji, Yinglu; Buhr, Egbert; Yamamoto, Kazuhiro; Song, Nam Woong; Stefaniak, Aleksandr B.; Schwegler-Berry, Diane; Burchett, Woodrow W.; Lambert, Joshua; Stromberg, Arnold J.

    2018-04-01

    Size and shape distributions of gold nanorod samples are critical to their physico-chemical properties, especially their longitudinal surface plasmon resonance. This interlaboratory comparison study developed methods for measuring and evaluating size and shape distributions for gold nanorod samples using transmission electron microscopy (TEM) images. The objective was to determine whether two different samples, which had different performance attributes in their application, were different with respect to their size and/or shape descriptor distributions. Touching particles in the captured images were identified using a ruggedness shape descriptor. Nanorods could be distinguished from nanocubes using an elongational shape descriptor. A non-parametric statistical test showed that cumulative distributions of an elongational shape descriptor, that is, the aspect ratio, were statistically different between the two samples for all laboratories. While the scale parameters of size and shape distributions were similar for both samples, the width parameters of size and shape distributions were statistically different. This protocol fulfills an important need for a standardized approach to measure gold nanorod size and shape distributions for applications in which quantitative measurements and comparisons are important. Furthermore, the validated protocol workflow can be automated, thus providing consistent and rapid measurements of nanorod size and shape distributions for researchers, regulatory agencies, and industry.

  2. Experimental study on pore structure and performance of sintered porous wick

    NASA Astrophysics Data System (ADS)

    He, Da; Wang, Shufan; Liu, Rutie; Wang, Zhubo; Xiong, Xiang; Zou, Jianpeng

    2018-02-01

    Porous wicks were prepared via powder metallurgy using NH4HCO3 powders as pore-forming agent. The pore-forming agent particle size was varied to control the pore structure and equivalent pore size distribution feature of porous wick. The effect of pore-forming agent particle size on the porosity, pore structures, equivalent pore size distribution and capillary pumping performance were investigated. Results show that with the particle size of pore-forming agent decrease, the green density and the volume shrinkage of the porous wicks gradually increase and the porosity reduces slightly. There are two types of pores inside the porous wick, large-sized prefabricated pores and small-sized gap pores. With the particle size of pore-forming agent decrease, the size of the prefabricated pores becomes smaller and the distribution tends to be uniform. Gap pores and prefabricated pores inside the wick can make up different types of pore channels. The equivalent pore size of wick is closely related to the structure of pore channels. Furthermore, the equivalent pore size distribution of wick shows an obvious double-peak feature when the pore-forming agent particle size is large. With the particle size of pore-forming agent decrease, the two peaks of equivalent pore size distribution approach gradually to each other, resulting in a single-peak feature. Porous wick with single-peak feature equivalent pore size distribution possesses the better capillary pumping performances.

  3. The Italian primary school-size distribution and the city-size: a complex nexus

    PubMed Central

    Belmonte, Alessandro; Di Clemente, Riccardo; Buldyrev, Sergey V.

    2014-01-01

    We characterize the statistical law according to which Italian primary school-size distributes. We find that the school-size can be approximated by a log-normal distribution, with a fat lower tail that collects a large number of very small schools. The upper tail of the school-size distribution decreases exponentially and the growth rates are distributed with a Laplace PDF. These distributions are similar to those observed for firms and are consistent with a Bose-Einstein preferential attachment process. The body of the distribution features a bimodal shape suggesting some source of heterogeneity in the school organization that we uncover by an in-depth analysis of the relation between schools-size and city-size. We propose a novel cluster methodology and a new spatial interaction approach among schools which outline the variety of policies implemented in Italy. Different regional policies are also discussed shedding lights on the relation between policy and geographical features. PMID:24954714

  4. Habitat structure and body size distributions: Cross-ecosystem comparison for taxa with determinate and indeterminate growth

    USGS Publications Warehouse

    Nash, Kirsty L.; Allen, Craig R.; Barichievy, Chris; Nystrom, Magnus; Sundstrom, Shana M.; Graham, Nicholas A.J.

    2014-01-01

    Habitat structure across multiple spatial and temporal scales has been proposed as a key driver of body size distributions for associated communities. Thus, understanding the relationship between habitat and body size is fundamental to developing predictions regarding the influence of habitat change on animal communities. Much of the work assessing the relationship between habitat structure and body size distributions has focused on terrestrial taxa with determinate growth, and has primarily analysed discontinuities (gaps) in the distribution of species mean sizes (species size relationships or SSRs). The suitability of this approach for taxa with indeterminate growth has yet to be determined. We provide a cross-ecosystem comparison of bird (determinate growth) and fish (indeterminate growth) body mass distributions using four independent data sets. We evaluate three size distribution indices: SSRs, species size–density relationships (SSDRs) and individual size–density relationships (ISDRs), and two types of analysis: looking for either discontinuities or abundance patterns and multi-modality in the distributions. To assess the respective suitability of these three indices and two analytical approaches for understanding habitat–size relationships in different ecosystems, we compare their ability to differentiate bird or fish communities found within contrasting habitat conditions. All three indices of body size distribution are useful for examining the relationship between cross-scale patterns of habitat structure and size for species with determinate growth, such as birds. In contrast, for species with indeterminate growth such as fish, the relationship between habitat structure and body size may be masked when using mean summary metrics, and thus individual-level data (ISDRs) are more useful. Furthermore, ISDRs, which have traditionally been used to study aquatic systems, present a potentially useful common currency for comparing body size distributions across terrestrial and aquatic ecosystems.

  5. Size-controlled synthesis of nanocrystalline CdSe thin films by inert gas condensation

    NASA Astrophysics Data System (ADS)

    Sharma, Jeewan; Singh, Randhir; Kumar, Akshay; Singh, Tejbir; Agrawal, Paras; Thakur, Anup

    2018-02-01

    Size, shape and structure are considered to have significant influence on various properties of semiconducting nanomaterials. Different properties of these materials can be tailored by controlling the size. Size-controlled CdSe crystallites ranging from ˜ 04 to 95 nm were deposited by inert gas-condensation technique (IGC). In IGC method, by controlling the inert gas pressure in the condensation chamber and the substrate temperature or both, it was possible to produce nanoparticles with desired size. Structure and crystallite size of CdSe thin films were determined from Hall-Williamson method using X-ray diffraction data. The composition of CdSe samples was estimated by X-ray microanalysis. It was confirmed that CdSe thin film with different nanometer range crystallite sizes were synthesized with this technique, depending upon the synthesis conditions. The phase of deposited CdSe thin films also depend upon deposition conditions and cubic to hexagonal phase transition was observed with increase in substrate temperature. The effect of crystallite size on optical and electrical properties of these films was also studied. The crystallite size affects the optical band gap, electrical conductivity and mobility activation of nanocrystalline CdSe thin films. Mobility activation study suggested that there is a quasi-continuous linear distribution of three different trap levels below the conduction band.

  6. Theoretical and Experimental Evaluation of the Bond Strength Under Peeling Loads

    NASA Technical Reports Server (NTRS)

    Nayeb-Hashemi, Hamid; Jawad, Oussama Cherkaoui

    1997-01-01

    Reliable applications of adhesively bonded joints require understanding of the stress distribution along the bond-line and the stresses that are responsible for the joint failure. To properly evaluate factors affecting peel strength, effects of defects such as voids on the stress distribution in the overlap region must be understood. In this work, the peel stress distribution in a single lap joint is derived using a strength of materials approach. The bonded joint is modeled as Euler-Bernoulli beams, bonded together with an adhesive. which is modeled as an elastic foundation which can resist both peel and shear stresses. It is found that for certain adhesive and adherend geometries and properties, a central void with the size up to 50 percent of the overlap length has negligible effect on the peak peel and shear stresses. To verify the solutions obtained from the model, the problem is solved again by using the finite element method and by treating the adherends and the adhesive as elastic materials. It is found that the model used in the analysis not only predicts the correct trend for the peel stress distribution but also gives rather surprisingly close results to that of the finite element analysis. It is also found that both shear and peel stresses can be responsible for the joint performance and when a void is introduced, both of these stresses can contribute to the joint failure as the void size increases. Acoustic emission (AE) activities of aluminum-adhesive-aluminum specimens with different void sizes were monitored. The AE ringdown counts and energy were very sensitive and decreased significantly with the void size. It was observed that the AE events were shifting towards the edge of the overlap where the maximum peeling and shearing stresses were occurring as the void size increased.

  7. Ejected Particle Size Distributions from Shocked Metal Surfaces

    DOE PAGES

    Schauer, M. M.; Buttler, W. T.; Frayer, D. K.; ...

    2017-04-12

    Here, we present size distributions for particles ejected from features machined onto the surface of shocked Sn targets. The functional form of the size distributions is assumed to be log-normal, and the characteristic parameters of the distribution are extracted from the measured angular distribution of light scattered from a laser beam incident on the ejected particles. We also found strong evidence for a bimodal distribution of particle sizes with smaller particles evolved from features machined into the target surface and larger particles being produced at the edges of these features.

  8. Ejected Particle Size Distributions from Shocked Metal Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schauer, M. M.; Buttler, W. T.; Frayer, D. K.

    Here, we present size distributions for particles ejected from features machined onto the surface of shocked Sn targets. The functional form of the size distributions is assumed to be log-normal, and the characteristic parameters of the distribution are extracted from the measured angular distribution of light scattered from a laser beam incident on the ejected particles. We also found strong evidence for a bimodal distribution of particle sizes with smaller particles evolved from features machined into the target surface and larger particles being produced at the edges of these features.

  9. Comparing Pyroclastic Density Current (PDC) deposits at Colima (Mexico) and Tungurahua (Ecuador) volcanoes

    NASA Astrophysics Data System (ADS)

    Goldstein, Fabian; Varley, Nick; Bustillos, Jorge; Kueppers, Ulrich; Lavallee, Yan; Dingwell, Donald B.

    2010-05-01

    Sudden transitions from effusive to explosive eruptive behaviour have been observed at several volcanoes. As a result of explosive activity, pyroclastic density currents represent a major threat to life and infrastructure, mostly due to their unpredictability, mass, and velocity. Difficulties in direct observation force us to deduce crucial information from their deposits. Here, we present data from field work performed in 2009 on primary deposits from recent explosive episodes at Volcán de Colima (Mexico) and Tungurahua (Ecuador). Volcán de Colima, located 40km away from the Capital city Colima with 300,000 inhabitants, has been active since 1999. Activity has been primarily characterized by the slow effusion of lava dome with the daily occurrence of episodic gas (and sometimes ash) explosion events. During a period of peak activity in 2005, explosive eruptions repeatedly destroyed the dome and column collapse resulted in several PDCs that travelled down the W, S, and SE flanks. Tungurahua looms over the 20,000 inhabitants of the city of Baños, located 5km away, and is considered one of the most active volcanoes in Ecuador. The most recent eruptive cycle began in 1999 and climaxed in July and August of 2006 with the eruptions of several PDCs that traveled down the western flanks, controlled by the hydrological network. During two field campaigns, we collected an extensive data set of porosity and grain size distribution on PDCs at both volcanoes. The deposits have been mapped in detail and the porosity distribution of clasts across the surface of the deposits has been measured at more than 30 sites (> 3.000 samples). Our porosity distribution data (mean porosity values range between 17 and 24%) suggests an influence of run out distance and lateral position. Preliminary results of grain size analysis of ash and lapilli (< 5mm) has been performed at approximately 50 sites at varying longitudinal, lateral and vertical positions, and show a correlation with run-out distance, morphology, and stratigraphic context. Sedimentary structures such as dunes, grain size distribution, and the observed damage to vegetation help depict the progression of the flow and its dynamics. We also present optical microscopic analysis of ash and lapilli particles which portray the fundamental processes occurring during PDCs.

  10. New general pore size distribution model by classical thermodynamics application: Activated carbon

    USGS Publications Warehouse

    Lordgooei, M.; Rood, M.J.; Rostam-Abadi, M.

    2001-01-01

    A model is developed using classical thermodynamics to characterize pore size distributions (PSDs) of materials containing micropores and mesopores. The thermal equation of equilibrium adsorption (TEEA) is used to provide thermodynamic properties and relate the relative pore filling pressure of vapors to the characteristic pore energies of the adsorbent/adsorbate system for micropore sizes. Pore characteristic energies are calculated by averaging of interaction energies between adsorbate molecules and adsorbent pore walls as well as considering adsorbate-adsorbate interactions. A modified Kelvin equation is used to characterize mesopore sizes by considering variation of the adsorbate surface tension and by excluding the adsorbed film layer for the pore size. The modified-Kelvin equation provides similar pore filling pressures as predicted by density functional theory. Combination of these models provides a complete PSD of the adsorbent for the micropores and mesopores. The resulting PSD is compared with the PSDs from Jaroniec and Choma and Horvath and Kawazoe models as well as a first-order approximation model using Polanyi theory. The major importance of this model is its basis on classical thermodynamic properties, less simplifying assumptions in its derivation compared to other methods, and ease of use.

  11. Lunar Dust Characterization Activity at GRC

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W.

    2008-01-01

    The fidelity of lunar simulants as compared to actual regolith is evaluated using Figures of Merit (FOM) which are based on four criteria: Particle Size, Particle Shape, Composition, and Density of the bulk material. In practice, equipment testing will require other information about both the physical properties (mainly of the dust fraction) and composition as a function of particle size. At Glenn Research Center (GRC) we are involved in evaluating a number of simulant properties of consequence to testing of lunar equipment in a relevant environment, in order to meet Technology Readiness Level (TRL) 6 criteria. Bulk regolith has been characterized for many decades, but surprisingly little work has been done on the dust fraction (particles less than 20 micrometers in diameter). GRC is currently addressing the information shortfall by characterizing the following physical properties: Particle Size Distribution, Adhesion, Abrasivity, Surface Energy, Magnetic Susceptibility, Tribocharging and Surface Chemistry/Reactivity. Since some of these properties are also dependent on the size of the particles we have undertaken the construction of a six stage axial cyclone particle separator to fractionate dust into discrete particle size distributions for subsequent evaluation of these properties. An introduction to this work and progress to date will be presented.

  12. On the Distribution of Earthquake Interevent Times and the Impact of Spatial Scale

    NASA Astrophysics Data System (ADS)

    Hristopulos, Dionissios

    2013-04-01

    The distribution of earthquake interevent times is a subject that has attracted much attention in the statistical physics literature [1-3]. A recent paper proposes that the distribution of earthquake interevent times follows from the the interplay of the crustal strength distribution and the loading function (stress versus time) of the Earth's crust locally [4]. It was also shown that the Weibull distribution describes earthquake interevent times provided that the crustal strength also follows the Weibull distribution and that the loading function follows a power-law during the loading cycle. I will discuss the implications of this work and will present supporting evidence based on the analysis of data from seismic catalogs. I will also discuss the theoretical evidence in support of the Weibull distribution based on models of statistical physics [5]. Since other-than-Weibull interevent times distributions are not excluded in [4], I will illustrate the use of the Kolmogorov-Smirnov test in order to determine which probability distributions are not rejected by the data. Finally, we propose a modification of the Weibull distribution if the size of the system under investigation (i.e., the area over which the earthquake activity occurs) is finite with respect to a critical link size. keywords: hypothesis testing, modified Weibull, hazard rate, finite size References [1] Corral, A., 2004. Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes, Phys. Rev. Lett., 9210) art. no. 108501. [2] Saichev, A., Sornette, D. 2007. Theory of earthquake recurrence times, J. Geophys. Res., Ser. B 112, B04313/1-26. [3] Touati, S., Naylor, M., Main, I.G., 2009. Origin and nonuniversality of the earthquake interevent time distribution Phys. Rev. Lett., 102 (16), art. no. 168501. [4] Hristopulos, D.T., 2003. Spartan Gibbs random field models for geostatistical applications, SIAM Jour. Sci. Comput., 24, 2125-2162. [5] I. Eliazar and J. Klafter, 2006. Growth-collapse and decay-surge evolutions, and geometric Langevin equations, Physica A, 367, 106 - 128.

  13. Land cover, more than monthly fire weather, drives fire-size distribution in Southern Québec forests: Implications for fire risk management

    PubMed Central

    Marchal, Jean; Cumming, Steve G.; McIntire, Eliot J. B.

    2017-01-01

    Fire activity in North American forests is expected to increase substantially with climate change. This would represent a growing risk to human settlements and industrial infrastructure proximal to forests, and to the forest products industry. We modelled fire size distributions in southern Québec as functions of fire weather and land cover, thus explicitly integrating some of the biotic interactions and feedbacks in a forest-wildfire system. We found that, contrary to expectations, land-cover and not fire weather was the primary driver of fire size in our study region. Fires were highly selective on fuel-type under a wide range of fire weather conditions: specifically, deciduous forest, lakes and to a lesser extent recently burned areas decreased the expected fire size in their vicinity compared to conifer forest. This has large implications for fire risk management in that fuels management could reduce fire risk over the long term. Our results imply, for example, that if 30% of a conifer-dominated landscape were converted to hardwoods, the probability of a given fire, occurring in that landscape under mean fire weather conditions, exceeding 100,000 ha would be reduced by a factor of 21. A similarly marked but slightly smaller effect size would be expected under extreme fire weather conditions. We attribute the decrease in expected fire size that occurs in recently burned areas to fuel availability limitations on fires spread. Because regenerating burned conifer stands often pass through a deciduous stage, this would also act as a negative biotic feedback whereby the occurrence of fires limits the size of nearby future for some period of time. Our parameter estimates imply that changes in vegetation flammability or fuel availability after fires would tend to counteract shifts in the fire size distribution favoring larger fires that are expected under climate warming. Ecological forecasts from models neglecting these feedbacks may markedly overestimate the consequences of climate warming on fire activity, and could be misleading. Assessments of vulnerability to climate change, and subsequent adaptation strategies, are directly dependent on integrated ecological forecasts. Thus, we stress the need to explicitly incorporate land-cover’s direct effects and feedbacks in simulation models of coupled climate–fire–fuels systems. PMID:28609467

  14. Land cover, more than monthly fire weather, drives fire-size distribution in Southern Québec forests: Implications for fire risk management.

    PubMed

    Marchal, Jean; Cumming, Steve G; McIntire, Eliot J B

    2017-01-01

    Fire activity in North American forests is expected to increase substantially with climate change. This would represent a growing risk to human settlements and industrial infrastructure proximal to forests, and to the forest products industry. We modelled fire size distributions in southern Québec as functions of fire weather and land cover, thus explicitly integrating some of the biotic interactions and feedbacks in a forest-wildfire system. We found that, contrary to expectations, land-cover and not fire weather was the primary driver of fire size in our study region. Fires were highly selective on fuel-type under a wide range of fire weather conditions: specifically, deciduous forest, lakes and to a lesser extent recently burned areas decreased the expected fire size in their vicinity compared to conifer forest. This has large implications for fire risk management in that fuels management could reduce fire risk over the long term. Our results imply, for example, that if 30% of a conifer-dominated landscape were converted to hardwoods, the probability of a given fire, occurring in that landscape under mean fire weather conditions, exceeding 100,000 ha would be reduced by a factor of 21. A similarly marked but slightly smaller effect size would be expected under extreme fire weather conditions. We attribute the decrease in expected fire size that occurs in recently burned areas to fuel availability limitations on fires spread. Because regenerating burned conifer stands often pass through a deciduous stage, this would also act as a negative biotic feedback whereby the occurrence of fires limits the size of nearby future for some period of time. Our parameter estimates imply that changes in vegetation flammability or fuel availability after fires would tend to counteract shifts in the fire size distribution favoring larger fires that are expected under climate warming. Ecological forecasts from models neglecting these feedbacks may markedly overestimate the consequences of climate warming on fire activity, and could be misleading. Assessments of vulnerability to climate change, and subsequent adaptation strategies, are directly dependent on integrated ecological forecasts. Thus, we stress the need to explicitly incorporate land-cover's direct effects and feedbacks in simulation models of coupled climate-fire-fuels systems.

  15. Modeling East Asian Dust and Its Radiative Feedbacks in CAM4-BAM

    NASA Astrophysics Data System (ADS)

    Xie, Xiaoning; Liu, Xiaodong; Che, Huizheng; Xie, Xiaoxun; Wang, Hongli; Li, Jiandong; Shi, Zhengguo; Liu, Yangang

    2018-01-01

    East Asian dust and its radiative feedbacks are analyzed by the use of the fourth version of the Community Atmosphere Model (CAM4) with a bulk aerosol model parameterization (BAM) for the dust size distribution (CAM4-BAM). Two numerical experiments are conducted and intercompared: one with (Active) and one without (Passive) the radiative effects of dust aerosols. This CAM4-BAM captures the main spatial distribution of the dust aerosol optical depth (AOD) and the dust surface concentrations over East Asia, with positive correlations with the local observational data on annual and seasonal means. A comparative analysis of the Active and Passive experiments reveals that consideration of the dust-radiation interaction can significantly reduce dust emissions, loading, transport, and dry and wet depositions over East Asia, which is opposite to the enhanced dust cycle over North Africa. Further analysis of the contrasting dust-radiation feedbacks between North Africa and East Asia shows that over North Africa, the dust radiative forcing significantly increases the surface temperature and 10 m wind speed, whereas it decreases the surface temperature and the surface wind speeds over East Asia. These contrasting radiative effects, in turn, result in distinct dust cycle changes over these two regions. Mechanistic analysis reveals that the radiative contrasts between East Asia and North Africa are mainly due to the differences in their regional surface albedo, dust vertical distribution, and size distribution.

  16. Log-Normal Distribution of Cosmic Voids in Simulations and Mocks

    NASA Astrophysics Data System (ADS)

    Russell, E.; Pycke, J.-R.

    2017-01-01

    Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of these data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.

  17. Multivariate quadrature for representing cloud condensation nuclei activity of aerosol populations

    DOE PAGES

    Fierce, Laura; McGraw, Robert L.

    2017-07-26

    Here, sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the quadrature method of moments. Given a set of moment constraints, we show how linear programming, combined with an entropy-inspired cost function, can be used to construct optimized quadrature representations of aerosol distributions. The sparse representations derived from this approach accurately reproduce cloud condensation nuclei (CCN) activity for realistically complex distributions simulated by a particleresolved model. Additionally, the linear programming techniques described in this study can be used to bound key aerosolmore » properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy approach described here is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a particle-based aerosol scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.« less

  18. Multivariate quadrature for representing cloud condensation nuclei activity of aerosol populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fierce, Laura; McGraw, Robert L.

    Here, sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the quadrature method of moments. Given a set of moment constraints, we show how linear programming, combined with an entropy-inspired cost function, can be used to construct optimized quadrature representations of aerosol distributions. The sparse representations derived from this approach accurately reproduce cloud condensation nuclei (CCN) activity for realistically complex distributions simulated by a particleresolved model. Additionally, the linear programming techniques described in this study can be used to bound key aerosolmore » properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy approach described here is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a particle-based aerosol scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.« less

  19. Particle size distributions in chondritic meteorites: Evidence for pre-planetesimal histories

    NASA Astrophysics Data System (ADS)

    Simon, J. I.; Cuzzi, J. N.; McCain, K. A.; Cato, M. J.; Christoffersen, P. A.; Fisher, K. R.; Srinivasan, P.; Tait, A. W.; Olson, D. M.; Scargle, J. D.

    2018-07-01

    Magnesium-rich silicate chondrules and calcium-, aluminum-rich refractory inclusions (CAIs) are fundamental components of primitive chondritic meteorites. It has been suggested that concentration of these early-formed particles by nebular sorting processes may lead to accretion of planetesimals, the planetary bodies that represent the building blocks of the terrestrial planets. In this case, the size distributions of the particles may constrain the accretion process. Here we present new particle size distribution data for Northwest Africa 5717, a primitive ordinary chondrite (ungrouped 3.05) and the well-known carbonaceous chondrite Allende (CV3). Instead of the relatively narrow size distributions obtained in previous studies (Ebel et al., 2016; Friedrich et al., 2015; Paque and Cuzzi, 1997, and references therein), we observed broad size distributions for all particle types in both meteorites. Detailed microscopic image analysis of Allende shows differences in the size distributions of chondrule subtypes, but collectively these subpopulations comprise a composite "chondrule" size distribution that is similar to the broad size distribution found for CAIs. Also, we find accretionary 'dust' rims on only a subset (∼15-20%) of the chondrules contained in Allende, which indicates that subpopulations of chondrules experienced distinct histories prior to planetary accretion. For the rimmed subset, we find positive correlation between rim thickness and chondrule size. The remarkable similarity between the size distributions of various subgroups of particles, both with and without fine grained rims, implies a common size sorting process. Chondrite classification schemes, astrophysical disk models that predict a narrow chondrule size population and/or a common localized formation event, and conventional particle analysis methods must all be critically reevaluated. We support the idea that distinct "lithologies" in NWA 5717 are nebular aggregates of chondrules. If ≥cm-sized aggregates of chondrules can form it will have implications for planet formation and suggests the sticking stage is where the preferential size physics is operating.

  20. Empirical evidence for multi-scaled controls on wildfire size distributions in California

    NASA Astrophysics Data System (ADS)

    Povak, N.; Hessburg, P. F., Sr.; Salter, R. B.

    2014-12-01

    Ecological theory asserts that regional wildfire size distributions are examples of self-organized critical (SOC) systems. Controls on SOC event-size distributions by virtue are purely endogenous to the system and include the (1) frequency and pattern of ignitions, (2) distribution and size of prior fires, and (3) lagged successional patterns after fires. However, recent work has shown that the largest wildfires often result from extreme climatic events, and that patterns of vegetation and topography may help constrain local fire spread, calling into question the SOC model's simplicity. Using an atlas of >12,000 California wildfires (1950-2012) and maximum likelihood estimation (MLE), we fit four different power-law models and broken-stick regressions to fire-size distributions across 16 Bailey's ecoregions. Comparisons among empirical fire size distributions across ecoregions indicated that most ecoregion's fire-size distributions were significantly different, suggesting that broad-scale top-down controls differed among ecoregions. One-parameter power-law models consistently fit a middle range of fire sizes (~100 to 10000 ha) across most ecoregions, but did not fit to larger and smaller fire sizes. We fit the same four power-law models to patch size distributions of aspect, slope, and curvature topographies and found that the power-law models fit to a similar middle range of topography patch sizes. These results suggested that empirical evidence may exist for topographic controls on fire sizes. To test this, we used neutral landscape modeling techniques to determine if observed fire edges corresponded with aspect breaks more often than expected by random. We found significant differences between the empirical and neutral models for some ecoregions, particularly within the middle range of fire sizes. Our results, combined with other recent work, suggest that controls on ecoregional fire size distributions are multi-scaled and likely are not purely SOC. California wildfire ecosystems appear to be adaptive, governed by stationary and non-stationary controls, which may be either exogenous or endogenous to the system.

  1. Particle Size Distributions in Chondritic Meteorites: Evidence for Pre-Planetesimal Histories

    NASA Technical Reports Server (NTRS)

    Simon, J. I.; Cuzzi, J. N.; McCain, K. A.; Cato, M. J.; Christoffersen, P. A.; Fisher, K. R.; Srinivasan, P.; Tait, A. W.; Olson, D. M.; Scargle, J. D.

    2018-01-01

    Magnesium-rich silicate chondrules and calcium-, aluminum-rich refractory inclusions (CAIs) are fundamental components of primitive chondritic meteorites. It has been suggested that concentration of these early-formed particles by nebular sorting processes may lead to accretion of planetesimals, the planetary bodies that represent the building blocks of the terrestrial planets. In this case, the size distributions of the particles may constrain the accretion process. Here we present new particle size distribution data for Northwest Africa 5717, a primitive ordinary chondrite (ungrouped 3.05) and the well-known carbonaceous chondrite Allende (CV3). Instead of the relatively narrow size distributions obtained in previous studies (Ebel et al., 2016; Friedrich et al., 2015; Paque and Cuzzi, 1997, and references therein), we observed broad size distributions for all particle types in both meteorites. Detailed microscopic image analysis of Allende shows differences in the size distributions of chondrule subtypes, but collectively these subpopulations comprise a composite "chondrule" size distribution that is similar to the broad size distribution found for CAIs. Also, we find accretionary 'dust' rims on only a subset (approximately 15-20 percent) of the chondrules contained in Allende, which indicates that subpopulations of chondrules experienced distinct histories prior to planetary accretion. For the rimmed subset, we find positive correlation between rim thickness and chondrule size. The remarkable similarity between the size distributions of various subgroups of particles, both with and without fine grained rims, implies a common size sorting process. Chondrite classification schemes, astrophysical disk models that predict a narrow chondrule size population and/or a common localized formation event, and conventional particle analysis methods must all be critically reevaluated. We support the idea that distinct "lithologies" in NWA 5717 are nebular aggregates of chondrules. If greater than or equal to centimeter-sized aggregates of chondrules can form it will have implications for planet formation and suggests the sticking stage is where the preferential size physics is operating.

  2. Physicochemical and functional properties of coconut (Cocos nucifera L) cake dietary fibres: Effects of cellulase hydrolysis, acid treatment and particle size distribution.

    PubMed

    Zheng, Yajun; Li, Yan

    2018-08-15

    Effects of cellulase hydrolysis, acid treatment and particle size distribution on the structure, physicochemical and functional properties of coconut cake dietary fiber (DCCDF) were studied. Results showed that both the cellulase hydrolysis and acid treatment contributed to the structural modification of DCCDF as evident from XRD, FT-IR and SEM analysis. Moreover, the cellulase hydrolysis enhanced soluble carbohydrate content, water holding capacity (WHC) and swelling capacity (WSC), α-amylase inhibition activity (α-AAIR), glucose dialysis retardation index (GDRI) and cation-exchange capacity (CEC) of DCCDF; but it had undesirable effects on colour, oil holding capacity (OHC) and emulsifying capacity (EC). On other hand, acid treatment decreased the WHC, WSC and GDRI, but improved the colour, CEC, OHC and emulsion stability of DCCDF. Furthermore, the WHC, WSC and EC of DCCDF increased as the particle size reduced from 250 to 167 μm, while the GDRI, OHC, α-AAIR and emulsion stability decreased with decreasing particle size. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Effect of dust size distribution on ion-acoustic solitons in dusty plasmas with different dust grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Dong-Ning; Yang, Yang; Yan, Qiang

    Theoretical studies are carried out for ion acoustic solitons in multicomponent nonuniform plasma considering the dust size distribution. The Korteweg−de Vries equation for ion acoustic solitons is given by using the reductive perturbation technique. Two special dust size distributions are considered. The dependences of the width and amplitude of solitons on dust size parameters are shown. It is found that the properties of a solitary wave depend on the shape of the size distribution function of dust grains.

  4. Size-biased distributions in the generalized beta distribution family, with applications to forestry

    Treesearch

    Mark J. Ducey; Jeffrey H. Gove

    2015-01-01

    Size-biased distributions arise in many forestry applications, as well as other environmental, econometric, and biomedical sampling problems. We examine the size-biased versions of the generalized beta of the first kind, generalized beta of the second kind and generalized gamma distributions. These distributions include, as special cases, the Dagum (Burr Type III),...

  5. DEPOSITION DISTRIBUTION OF NANO AND ULTRAFINE PARTICLES IN HUMAN LUNGS DURING CONTROLLED MOUTH BREATHING

    EPA Science Inventory

    Nano and ultrafine particles are abundant in the atmosphere and the level of human exposure to these tiny particles is expected to increase markedly as industrial activities increase manufacturing nano-sized materials. Exposure-dose relationships and site-specific internal dose a...

  6. Characterization of Nanomaterials Using Field Flow Fractionation and Single Particle Inductively Coupled Plasma Mass Spectrometery (FFF-ICP-MS and SP-ICP-MS): Scientific Operating Procedure SOP-C

    DTIC Science & Technology

    2015-04-01

    monodisperse particles. ENPs in environmental samples will likely have much broader size distributions and thus FFF-ICP-MS was tested over a greater...Figure 6). Resolution is based on ICP-MS sensitivity, and will likely decrease as the difference in particle diameter decreases. Second, this...Alvarez. 2006. Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size. Environmental Science

  7. Mixing State and Optical Properties of Biomass Burning Aerosol during the SAMBBA 2012 Campaign

    NASA Astrophysics Data System (ADS)

    Brooke, Jennifer; Brooks, Barbara; McQuaid, Jim; Osborne, Simon

    2013-04-01

    Emissions of black carbon are a global phenomenon associated with combustion activities with an estimated 40 % of global emissions from biomass burning. These emissions are typically dominated in regional hotspots, such as along the edges of the Amazon Basin, and contribute to the regional air quality and have associated health impacts as well as the global climatic impacts of this major source of black carbon as well as other radiatively active species. New airborne measurements will be presented of biomass burning emissions across the Amazon region from the South AMerican Biomass Burning Analysis (SAMBBA) campaign based at Porto Vehlo, Rondônia, Brazil in September 2012. This airborne campaign aboard the FAAM BAe-146 coincided with the seasonal peak in South American biomass burning emissions, which make up the most dominant source of atmospheric pollutants in the region at this time. SAMBBA included dedicated flights involving in-situ measurements and remote sensing of single plume studies through to multi-plume sampling of smouldering and flaming vegetation fires, regional haze sampling, and measurements of biogenic aerosol and gases across Amazonas. This presentation summarises early findings from the SAMBBA aircraft observations focusing on the relationship between biomass burning aerosol properties; size distributions, aerosol mixing state and optical properties from a suite of instruments onboard the FAAM BAe-146. The interplay of these properties influences the regional radiative balance impacting on weather and climate. The Leeds airborne VACC (Volatile Aerosol Concentration and Composition) instrument is designed to investigate the volatility properties of different aerosol species in order to determine aerosol composition; furthermore it can be used to infer the mixing state of the aerosol. Size distributions measured with the volatility system will be compared with ambient size distribution measurements this allows information on organic coating loadings to be derived. Cases of different aerosol mixing state have been identified from almost entirely externally mixed aerosol with a mono-modal size distribution across the rainforest of Amazonas in contrast to sampled Rondônian regional haze which was identified to be externally mixed with a coated non-volatile core with a volatile mode. Future and ongoing analysis from SAMBBA will improve the knowledge of the regional and climatic implications of biomass burning activities in the Amazon basin which are a significant issue globally.

  8. Body size distribution of the dinosaurs.

    PubMed

    O'Gorman, Eoin J; Hone, David W E

    2012-01-01

    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size.

  9. Body Size Distribution of the Dinosaurs

    PubMed Central

    O’Gorman, Eoin J.; Hone, David W. E.

    2012-01-01

    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size. PMID:23284818

  10. Effects of the turnover rate on the size distribution of firms: An application of the kinetic exchange models

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Anindya S.

    2012-12-01

    We address the issue of the distribution of firm size. To this end we propose a model of firms in a closed, conserved economy populated with zero-intelligence agents who continuously move from one firm to another. We then analyze the size distribution and related statistics obtained from the model. There are three well known statistical features obtained from the panel study of the firms i.e., the power law in size (in terms of income and/or employment), the Laplace distribution in the growth rates and the slowly declining standard deviation of the growth rates conditional on the firm size. First, we show that the model generalizes the usual kinetic exchange models with binary interaction to interactions between an arbitrary number of agents. When the number of interacting agents is in the order of the system itself, it is possible to decouple the model. We provide exact results on the distributions which are not known yet for binary interactions. Our model easily reproduces the power law for the size distribution of firms (Zipf’s law). The fluctuations in the growth rate falls with increasing size following a power law (though the exponent does not match with the data). However, the distribution of the difference of the firm size in this model has Laplace distribution whereas the real data suggests that the difference of the log of sizes has the same distribution.

  11. Extreme value statistics analysis of fracture strengths of a sintered silicon nitride failing from pores

    NASA Technical Reports Server (NTRS)

    Chao, Luen-Yuan; Shetty, Dinesh K.

    1992-01-01

    Statistical analysis and correlation between pore-size distribution and fracture strength distribution using the theory of extreme-value statistics is presented for a sintered silicon nitride. The pore-size distribution on a polished surface of this material was characterized, using an automatic optical image analyzer. The distribution measured on the two-dimensional plane surface was transformed to a population (volume) distribution, using the Schwartz-Saltykov diameter method. The population pore-size distribution and the distribution of the pore size at the fracture origin were correllated by extreme-value statistics. Fracture strength distribution was then predicted from the extreme-value pore-size distribution, usin a linear elastic fracture mechanics model of annular crack around pore and the fracture toughness of the ceramic. The predicted strength distribution was in good agreement with strength measurements in bending. In particular, the extreme-value statistics analysis explained the nonlinear trend in the linearized Weibull plot of measured strengths without postulating a lower-bound strength.

  12. A New Bond Albedo for Performing Orbital Debris Brightness to Size Transformations

    NASA Technical Reports Server (NTRS)

    Mulrooney, Mark K.; Matney, Mark J.

    2008-01-01

    We have developed a technique for estimating the intrinsic size distribution of orbital debris objects via optical measurements alone. The process is predicated on the empirically observed power-law size distribution of debris (as indicated by radar RCS measurements) and the log-normal probability distribution of optical albedos as ascertained from phase (Lambertian) and range-corrected telescopic brightness measurements. Since the observed distribution of optical brightness is the product integral of the size distribution of the parent [debris] population with the albedo probability distribution, it is a straightforward matter to transform a given distribution of optical brightness back to a size distribution by the appropriate choice of a single albedo value. This is true because the integration of a powerlaw with a log-normal distribution (Fredholm Integral of the First Kind) yields a Gaussian-blurred power-law distribution with identical power-law exponent. Application of a single albedo to this distribution recovers a simple power-law [in size] which is linearly offset from the original distribution by a constant whose value depends on the choice of the albedo. Significantly, there exists a unique Bond albedo which, when applied to an observed brightness distribution, yields zero offset and therefore recovers the original size distribution. For physically realistic powerlaws of negative slope, the proper choice of albedo recovers the parent size distribution by compensating for the observational bias caused by the large number of small objects that appear anomalously large (bright) - and thereby skew the small population upward by rising above the detection threshold - and the lower number of large objects that appear anomalously small (dim). Based on this comprehensive analysis, a value of 0.13 should be applied to all orbital debris albedo-based brightness-to-size transformations regardless of data source. Its prima fascia genesis, derived and constructed from the current RCS to size conversion methodology (SiBAM Size-Based Estimation Model) and optical data reduction standards, assures consistency in application with the prior canonical value of 0.1. Herein we present the empirical and mathematical arguments for this approach and by example apply it to a comprehensive set of photometric data acquired via NASA's Liquid Mirror Telescopes during the 2000-2001 observing season.

  13. An improved methodology of asymmetric flow field flow fractionation hyphenated with inductively coupled mass spectrometry for the determination of size distribution of gold nanoparticles in dietary supplements.

    PubMed

    Mudalige, Thilak K; Qu, Haiou; Linder, Sean W

    2015-11-13

    Engineered nanoparticles are available in large numbers of commercial products claiming various health benefits. Nanoparticle absorption, distribution, metabolism, excretion, and toxicity in a biological system are dependent on particle size, thus the determination of size and size distribution is essential for full characterization. Number based average size and size distribution is a major parameter for full characterization of the nanoparticle. In the case of polydispersed samples, large numbers of particles are needed to obtain accurate size distribution data. Herein, we report a rapid methodology, demonstrating improved nanoparticle recovery and excellent size resolution, for the characterization of gold nanoparticles in dietary supplements using asymmetric flow field flow fractionation coupled with visible absorption spectrometry and inductively coupled plasma mass spectrometry. A linear relationship between gold nanoparticle size and retention times was observed, and used for characterization of unknown samples. The particle size results from unknown samples were compared to results from traditional size analysis by transmission electron microscopy, and found to have less than a 5% deviation in size for unknown product over the size range from 7 to 30 nm. Published by Elsevier B.V.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yoonyoung; Ishiguro, Masateru; Usui, Fumihiko

    We investigated the population of asteroids in comet-like orbits using available asteroid size and albedo catalogs of data taken with the Infrared Astronomical Satellite, AKARI, and the Wide-field Infrared Survey Explorer on the basis of their orbital properties (i.e., the Tisserand parameter with respect to Jupiter, T{sub J}, and the aphelion distance, Q). We found that (1) there are 123 asteroids in comet-like orbits by our criteria (i.e., Q > 4.5 AU and T{sub J} < 3), (2) 80% of them have low albedo, p{sub v} < 0.1, consistent with comet nuclei, (3) the low-albedo objects among them have amore » size distribution shallower than that of active comet nuclei, that is, the power index of the cumulative size distribution is around 1.1, and (4) unexpectedly, a considerable number (i.e., 25 by our criteria) of asteroids in comet-like orbits have high albedo, p{sub v} > 0.1. We noticed that such high-albedo objects mostly consist of small (D < 3 km) bodies distributed in near-Earth space (with perihelion distance of q < 1.3 AU). We suggest that such high-albedo, small objects were susceptible to the Yarkovsky effect and drifted into comet-like orbits via chaotic resonances with planets.« less

  15. Earth Observing System Covariance Realism

    NASA Technical Reports Server (NTRS)

    Zaidi, Waqar H.; Hejduk, Matthew D.

    2016-01-01

    The purpose of covariance realism is to properly size a primary object's covariance in order to add validity to the calculation of the probability of collision. The covariance realism technique in this paper consists of three parts: collection/calculation of definitive state estimates through orbit determination, calculation of covariance realism test statistics at each covariance propagation point, and proper assessment of those test statistics. An empirical cumulative distribution function (ECDF) Goodness-of-Fit (GOF) method is employed to determine if a covariance is properly sized by comparing the empirical distribution of Mahalanobis distance calculations to the hypothesized parent 3-DoF chi-squared distribution. To realistically size a covariance for collision probability calculations, this study uses a state noise compensation algorithm that adds process noise to the definitive epoch covariance to account for uncertainty in the force model. Process noise is added until the GOF tests pass a group significance level threshold. The results of this study indicate that when outliers attributed to persistently high or extreme levels of solar activity are removed, the aforementioned covariance realism compensation method produces a tuned covariance with up to 80 to 90% of the covariance propagation timespan passing (against a 60% minimum passing threshold) the GOF tests-a quite satisfactory and useful result.

  16. Variation of radiation level and radionuclide enrichment in high background area.

    PubMed

    Shetty, P K; Narayana, Y

    2010-12-01

    Significantly high radiation level and radionuclide concentration along Quilon beach area of coastal Kerala have been reported by several investigators. Detailed gamma radiation level survey was carried out using a portable scintillometer. Detailed studies on radionuclides concentration in different environmental matrices of high background areas were undertaken in the coastal areas of Karunagapalli, Kayankulam, Chavara, Neendakara and Kollam to study the distribution and enrichment of the radionuclides in the region. The absorbed gamma dose rates in air in high background area are in the range 43-17,400nGyh⁻¹. Gamma radiation level is found to be maximum at a distance of 20m from the sea waterline in all beaches. The soil samples collected from different locations were analysed for primordial radionuclides by gamma spectrometry. The activity of primordial radionuclides was determined for the different size fractions of soil to study the enrichment pattern. The highest activity of (232)Th and (226)Ra was found to be enriched in 125-63μ size fraction. The preferential accumulation of (40)K was found in <63μ fraction. The minimum (232)Th activity was 30.2Bqkg⁻¹, found in 1000-500μ particle size fraction at Kollam and maximum activity of 3250.4Bqkg⁻¹ was observed in grains of size 125-63μ at Neendakara. The lowest (226)Ra activity observed was 33.9Bqkg⁻¹ at Neendakara in grains of size 1000-500μ and the highest activity observed was 482.6Bqkg⁻¹ in grains of size 125-63μ in Neendakara. The highest (40)K activity found was 1923Bqkg⁻¹ in grains of size <63μ for a sample collected from Neendakara. A good correlation was observed between computed dose and measured dose in air. The correlation between (232)Th and (226)Ra was also moderately high. The results of these investigations are presented and discussed in this paper. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Particle-size distribution modified effective medium theory and validation by magneto-dielectric Co-Ti substituted BaM ferrite composites

    NASA Astrophysics Data System (ADS)

    Li, Qifan; Chen, Yajie; Harris, Vincent G.

    2018-05-01

    This letter reports an extended effective medium theory (EMT) including particle-size distribution functions to maximize the magnetic properties of magneto-dielectric composites. It is experimentally verified by Co-Ti substituted barium ferrite (BaCoxTixFe12-2xO19)/wax composites with specifically designed particle-size distributions. In the form of an integral equation, the extended EMT formula essentially takes the size-dependent parameters of magnetic particle fillers into account. It predicts the effective permeability of magneto-dielectric composites with various particle-size distributions, indicating an optimal distribution for a population of magnetic particles. The improvement of the optimized effective permeability is significant concerning magnetic particles whose properties are strongly size dependent.

  18. Numerical evaluation of the laser-pulse modification modes of the metal surface layer in the presence of a surface-active component in the melt

    NASA Astrophysics Data System (ADS)

    Popov, V. N.; Cherepanov, A. N.

    2017-09-01

    Numerical evaluation of the laser-pulse modification of a metal layer with refractory nano-size particles was done. The modes of the laser-pulse action promoting creation of the flows for homogeneous distribution of modifying particles in the melt were determined for various amounts of the surface-active admixture in the metal.

  19. Structure and haemostatic effects of generic versions of enoxaparin available for clinical use in Brazil: similarity to the original drug.

    PubMed

    Glauser, Bianca F; Vairo, Bruno C; Oliveira, Stephan-Nicollas M C G; Cinelli, Leonardo P; Pereira, Mariana S; Mourão, Paulo A S

    2012-02-01

    Patent protection for enoxaparin has expired. Generic preparations are developed and approved for clinical use in different countries. However, there is still skepticism about the possibility of making an exact copy of the original drug due to the complex processes involved in generating low-molecular-weight heparins. We have undertaken a careful analysis of generic versions of enoxaparin available for clinical use in Brazil. Thirty-three batches of active ingredient and 70 of the final pharmaceutical product were obtained from six different suppliers. They were analysed for their chemical composition, molecular size distribution, in vitro anticoagulant activity and pharmacological effects on animal models of experimental thrombosis and bleeding. Clearly, the generic versions of enoxaparin available for clinical use in Brazil are similar to the original drug. Only three out of 33 batches of active ingredient from one supplier showed differences in molecular size distribution, resulting from a low percentage of tetrasaccharide or the presence of a minor component eluted as monosaccharide. Three out of 70 batches of the final pharmaceutical products contained lower amounts of the active ingredient than that declared by the suppliers. Our results suggest that the generic versions of enoxaparin are a viable therapeutic option, but their use requires strict regulations to ensure accurate standards.

  20. Acoustic Cluster Therapy: In Vitro and Ex Vivo Measurement of Activated Bubble Size Distribution and Temporal Dynamics.

    PubMed

    Healey, Andrew John; Sontum, Per Christian; Kvåle, Svein; Eriksen, Morten; Bendiksen, Ragnar; Tornes, Audun; Østensen, Jonny

    2016-05-01

    Acoustic cluster technology (ACT) is a two-component, microparticle formulation platform being developed for ultrasound-mediated drug delivery. Sonazoid microbubbles, which have a negative surface charge, are mixed with micron-sized perfluoromethylcyclopentane droplets stabilized with a positively charged surface membrane to form microbubble/microdroplet clusters. On exposure to ultrasound, the oil undergoes a phase change to the gaseous state, generating 20- to 40-μm ACT bubbles. An acoustic transmission technique is used to measure absorption and velocity dispersion of the ACT bubbles. An inversion technique computes bubble size population with temporal resolution of seconds. Bubble populations are measured both in vitro and in vivo after activation within the cardiac chambers of a dog model, with catheter-based flow through an extracorporeal measurement flow chamber. Volume-weighted mean diameter in arterial blood after activation in the left ventricle was 22 μm, with no bubbles >44 μm in diameter. After intravenous administration, 24.4% of the oil is activated in the cardiac chambers. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Particle size distribution of radioactive aerosols after the Fukushima and the Chernobyl accidents.

    PubMed

    Malá, Helena; Rulík, Petr; Bečková, Vera; Mihalík, Ján; Slezáková, Miriam

    2013-12-01

    Following the Fukushima accident, a series of aerosol samples were taken between 24th March and 13th April 2011 by cascade impactors in the Czech Republic to obtain the size distribution of (131)I, (134)Cs, (137)Cs, and (7)Be aerosols. All distributions could be considered monomodal. The arithmetic means of the activity median aerodynamic diameters (AMADs) for artificial radionuclides and for (7)Be were 0.43 and 0.41 μm with GDSs 3.6 and 3.0, respectively. The time course of the AMADs of (134)Cs, (137)Cs and (7)Be in the sampled period showed a slight decrease at a significance level of 0.05, whereas the AMAD pertaining to (131)I increased at a significance level of 0.1. Results obtained after the Fukushima accident were compared with results obtained after the Chernobyl accident. The radionuclides released during the Chernobyl accident for which we determined the AMAD fell into two categories: refractory radionuclides ((140)Ba, (140)La (141)Ce, (144)Ce, (95)Zr and (95)Nb) and volatile radionuclides ((134)Cs, (137)Cs, (103)Ru, (106)Ru, (131)I, and (132)Te). The AMAD of the refractory radionuclides was approximately 3 times higher than the AMAD of the volatile radionuclides; nevertheless, the size distributions for volatile radionuclides having a mean AMAD value of 0.51 μm were very close to the distributions after the Fukushima accident. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Coaching the exploration and exploitation in active learning for interactive video retrieval.

    PubMed

    Wei, Xiao-Yong; Yang, Zhen-Qun

    2013-03-01

    Conventional active learning approaches for interactive video/image retrieval usually assume the query distribution is unknown, as it is difficult to estimate with only a limited number of labeled instances available. Thus, it is easy to put the system in a dilemma whether to explore the feature space in uncertain areas for a better understanding of the query distribution or to harvest in certain areas for more relevant instances. In this paper, we propose a novel approach called coached active learning that makes the query distribution predictable through training and, therefore, avoids the risk of searching on a completely unknown space. The estimated distribution, which provides a more global view of the feature space, can be used to schedule not only the timing but also the step sizes of the exploration and the exploitation in a principled way. The results of the experiments on a large-scale data set from TRECVID 2005-2009 validate the efficiency and effectiveness of our approach, which demonstrates an encouraging performance when facing domain-shift, outperforms eight conventional active learning methods, and shows superiority to six state-of-the-art interactive video retrieval systems.

  3. Species distribution model transferability and model grain size - finer may not always be better.

    PubMed

    Manzoor, Syed Amir; Griffiths, Geoffrey; Lukac, Martin

    2018-05-08

    Species distribution models have been used to predict the distribution of invasive species for conservation planning. Understanding spatial transferability of niche predictions is critical to promote species-habitat conservation and forecasting areas vulnerable to invasion. Grain size of predictor variables is an important factor affecting the accuracy and transferability of species distribution models. Choice of grain size is often dependent on the type of predictor variables used and the selection of predictors sometimes rely on data availability. This study employed the MAXENT species distribution model to investigate the effect of the grain size on model transferability for an invasive plant species. We modelled the distribution of Rhododendron ponticum in Wales, U.K. and tested model performance and transferability by varying grain size (50 m, 300 m, and 1 km). MAXENT-based models are sensitive to grain size and selection of variables. We found that over-reliance on the commonly used bioclimatic variables may lead to less accurate models as it often compromises the finer grain size of biophysical variables which may be more important determinants of species distribution at small spatial scales. Model accuracy is likely to increase with decreasing grain size. However, successful model transferability may require optimization of model grain size.

  4. Distribution and spatial variation of hydrothermal faunal assemblages at Lucky Strike (Mid-Atlantic Ridge) revealed by high-resolution video image analysis

    NASA Astrophysics Data System (ADS)

    Cuvelier, Daphne; Sarrazin, Jozée; Colaço, Ana; Copley, Jon; Desbruyères, Daniel; Glover, Adrian G.; Tyler, Paul; Serrão Santos, Ricardo

    2009-11-01

    Whilst the fauna inhabiting hydrothermal vent structures in the Atlantic Ocean is reasonably well known, less is understood about the spatial distributions of the fauna in relation to abiotic and biotic factors. In this study, a major active hydrothermal edifice (Eiffel Tower, at 1690 m depth) on the Lucky Strike vent field (Mid-Atlantic Ridge (MAR)) was investigated. Video transects were carried out by ROV Victor 6000 and complete image coverage was acquired. Four distinct assemblages, ranging from dense larger-sized Bathymodiolus mussel beds to smaller-sized mussel clumps and alvinocaridid shrimps, and two types of substrata were defined based on high definition photographs and video imagery. To evaluate spatial variation, faunal distribution was mapped in three dimensions. A high degree of patchiness characterizes this 11 m high sulfide structure. The differences observed in assemblage and substratum distribution were related to habitat characteristics (fluid exits, depth and structure orientation). Gradients in community structure were observed, which coincided with an increasing distance from the fluid exits. A biological zonation model for the Eiffel Tower edifice was created in which faunal composition and distribution can be visually explained by the presence/absence of fluid exits.

  5. A model for distribution centers location-routing problem on a multimodal transportation network with a meta-heuristic solving approach

    NASA Astrophysics Data System (ADS)

    Fazayeli, Saeed; Eydi, Alireza; Kamalabadi, Isa Nakhai

    2017-07-01

    Nowadays, organizations have to compete with different competitors in regional, national and international levels, so they have to improve their competition capabilities to survive against competitors. Undertaking activities on a global scale requires a proper distribution system which could take advantages of different transportation modes. Accordingly, the present paper addresses a location-routing problem on multimodal transportation network. The introduced problem follows four objectives simultaneously which form main contribution of the paper; determining multimodal routes between supplier and distribution centers, locating mode changing facilities, locating distribution centers, and determining product delivery tours from the distribution centers to retailers. An integer linear programming is presented for the problem, and a genetic algorithm with a new chromosome structure proposed to solve the problem. Proposed chromosome structure consists of two different parts for multimodal transportation and location-routing parts of the model. Based on published data in the literature, two numerical cases with different sizes generated and solved. Also, different cost scenarios designed to better analyze model and algorithm performance. Results show that algorithm can effectively solve large-size problems within a reasonable time which GAMS software failed to reach an optimal solution even within much longer times.

  6. A model for distribution centers location-routing problem on a multimodal transportation network with a meta-heuristic solving approach

    NASA Astrophysics Data System (ADS)

    Fazayeli, Saeed; Eydi, Alireza; Kamalabadi, Isa Nakhai

    2018-07-01

    Nowadays, organizations have to compete with different competitors in regional, national and international levels, so they have to improve their competition capabilities to survive against competitors. Undertaking activities on a global scale requires a proper distribution system which could take advantages of different transportation modes. Accordingly, the present paper addresses a location-routing problem on multimodal transportation network. The introduced problem follows four objectives simultaneously which form main contribution of the paper; determining multimodal routes between supplier and distribution centers, locating mode changing facilities, locating distribution centers, and determining product delivery tours from the distribution centers to retailers. An integer linear programming is presented for the problem, and a genetic algorithm with a new chromosome structure proposed to solve the problem. Proposed chromosome structure consists of two different parts for multimodal transportation and location-routing parts of the model. Based on published data in the literature, two numerical cases with different sizes generated and solved. Also, different cost scenarios designed to better analyze model and algorithm performance. Results show that algorithm can effectively solve large-size problems within a reasonable time which GAMS software failed to reach an optimal solution even within much longer times.

  7. [Quantitative study of diesel/CNG buses exhaust particulate size distribution in a road tunnel].

    PubMed

    Zhu, Chun; Zhang, Xu

    2010-10-01

    Vehicle emission is one of main sources of fine/ultra-fine particles in many cities. This study firstly presents daily mean particle size distributions of mixed diesel/CNG buses traffic flow by 4 days consecutive real world measurement in an Australia road tunnel. Emission factors (EFs) of particle size distribution of diesel buses and CNG buses are obtained by MLR methods, particle distributions of diesel buses and CNG buses are observed as single accumulation mode and nuclei-mode separately. Particle size distributions of mixed traffic flow are decomposed by two log-normal fitting curves for each 30 min interval mean scans, the degrees of fitting between combined fitting curves and corresponding in-situ scans for totally 90 fitting scans are from 0.972 to 0.998. Finally particle size distributions of diesel buses and CNG buses are quantified by statistical whisker-box charts. For log-normal particle size distribution of diesel buses, accumulation mode diameters are 74.5-86.5 nm, geometric standard deviations are 1.88-2.05. As to log-normal particle size distribution of CNG buses, nuclei-mode diameters are 19.9-22.9 nm, geometric standard deviations are 1.27-1.3.

  8. Aerosol and CCN in southwest Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Collins, Don; Li, Runjun; Axisa, Duncan; Kucera, Paul; Burger, Roelof

    2010-05-01

    As part of an ongoing study of the microphysical and dynamical controls on precipitation in southwest Saudi Arabia, a number of surface and aircraft-based instruments were used in summer / fall 2009 to measure the size distribution, hygroscopic properties, and cloud droplet nucleation efficiency of the local aerosol. Submicron size distributions were measured using differential mobility analyzers both on the ground and on board the aircraft, while an aerodynamic particle sizer and a forward scattering spectrometer probe were used to measure the supermicron size distributions on the ground and from on board the aircraft, respectively. Identical continuous flow cloud condensation nuclei counters were used to measure CCN spectra at the surface and aloft and a humidified tandem differential mobility analyzer was operated on the ground to measure size-resolved hygroscopicity. The aerosol in this arid environment is characterized by a persistent accumulation mode having hygroscopic and CCN efficiency properties consistent with a sulfate-rich aged aerosol. The particles in that background aerosol are generally sufficiently large and hygroscopic to activate at those supersaturations expected in the convective clouds responsible for most of the regional precipitation, which consequently acts as a lower bound on the resulting cloud droplet concentrations. Though the concentration, size distribution, and properties of the submicron aerosol generally changed very slowly over periods of several hours, abrupt ~doubling in concentration almost always accompanied the arrival of the sea breeze front that began along the Red Sea. Interestingly, the hygroscopicity and the shape of the size distribution differed little in the pre- and post-sea breeze air masses. The dust-dominated coarse mode typically contributed significantly more to the aerosol mass concentration than did the submicron mode and likely controlled the ice nuclei concentration, though no direct measurements were made to confirm this. Results of routine flight patterns designed to examine the spatial, vertical, and day-to-day variability of the aerosol will be presented and the link between the aerosol at the surface and aloft will be quantified. This presentation will emphasize the regional character of the aerosol and will assess its influence on cloud microphysics.

  9. Positive and Negative Feedbacks and Free-Scale Pattern Distribution in Rural-Population Dynamics

    PubMed Central

    Alados, Concepción L.; Errea, Paz; Gartzia, Maite; Saiz, Hugo; Escós, Juan

    2014-01-01

    Depopulation of rural areas is a widespread phenomenon that has occurred in most industrialized countries, and has contributed significantly to a reduction in the productivity of agro-ecological resources. In this study, we identified the main trends in the dynamics of rural populations in the Central Pyrenees in the 20th C and early 21st C, and used density independent and density dependent models and identified the main factors that have influenced the dynamics. In addition, we investigated the change in the power law distribution of population size in those periods. Populations exhibited density-dependent positive feedback between 1960 and 2010, and a long-term positive correlation between agricultural activity and population size, which has resulted in a free-scale population distribution that has been disrupted by the collapse of the traditional agricultural society and by emigration to the industrialized cities. We concluded that complex socio-ecological systems that have strong feedback mechanisms can contribute to disruptive population collapses, which can be identified by changes in the pattern of population distribution. PMID:25474704

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chenyu; Chen, Dennis P.; Unocic, Raymond R.

    The high performance of Pd-based intermetallic nanocatalysts has the potential to replace Pt-containing catalysts for fuel-cell reactions. Conventionally, intermetallic particles are obtained through the annealing of nanoparticles of a random alloy distribution. However, this method inevitably leads to sintering of the nanoparticles and generates polydisperse samples. Here, monodisperse PdCu nanoparticles with the ordered B2 phase were synthesized by seed-mediated co-reduction using PdCu nanoparticle seeds with a random alloy distribution (A1 phase). A time-evolution study suggests that the particles must overcome a size-dependent activation barrier for the ordering process to occur. Characterization of the as-prepared PdCu B2 nanoparticles by electron microscopymore » techniques revealed surface segregation of Pd as a thin shell over the PdCu core. The ordered nanoparticles exhibit superior activity and durability for the oxygen reduction reaction in comparison with PdCu A1 nanoparticles. This seed-mediated co-reduction strategy produced monodisperse nanoparticles ideally suited for structure–activity studies. Furthermore, the study of their growth mechanism provides insights into the size dependence of disorder–order transformations of bimetallic alloys at the nanoscale, which should enable the design of synthetic strategies toward other intermetallic systems.« less

  11. Parametric Coding of the Size and Clutter of Natural Scenes in the Human Brain

    PubMed Central

    Park, Soojin; Konkle, Talia; Oliva, Aude

    2015-01-01

    Estimating the size of a space and its degree of clutter are effortless and ubiquitous tasks of moving agents in a natural environment. Here, we examine how regions along the occipital–temporal lobe respond to pictures of indoor real-world scenes that parametrically vary in their physical “size” (the spatial extent of a space bounded by walls) and functional “clutter” (the organization and quantity of objects that fill up the space). Using a linear regression model on multivoxel pattern activity across regions of interest, we find evidence that both properties of size and clutter are represented in the patterns of parahippocampal cortex, while the retrosplenial cortex activity patterns are predominantly sensitive to the size of a space, rather than the degree of clutter. Parametric whole-brain analyses confirmed these results. Importantly, this size and clutter information was represented in a way that generalized across different semantic categories. These data provide support for a property-based representation of spaces, distributed across multiple scene-selective regions of the cerebral cortex. PMID:24436318

  12. Surface Segregation in Ag/TiOx 3D Nanocomposite Prepared by Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Xiong, J.; He, L. Y.

    2018-05-01

    The antimicrobial activities of silver based nanocomposites are usually studied in terms of Ag content and ion release rate. Under this condition, controllable silver ions release with high antibacterial activity is the basis for silver based nanocomposite. The goal is to investigate the influence of O2 content and titanium oxide barrier thickness on the evolution in morphology. The SEM/TEM results showed that the size of Ag nanoparticles has a clear dependence on O2 concentration in reactive sputtering process; increased oxygen implies larger Ag nanoparticles in the matrix. In addition, a clear suppressing effect and better size distribution is obtained after the thickness of coated titanium oxide barrier is verified.

  13. LOG-NORMAL DISTRIBUTION OF COSMIC VOIDS IN SIMULATIONS AND MOCKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, E.; Pycke, J.-R., E-mail: er111@nyu.edu, E-mail: jrp15@nyu.edu

    2017-01-20

    Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of thesemore » data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.« less

  14. The effect of particle shape and size distribution on the acoustical properties of mixtures of hemp particles.

    PubMed

    Glé, Philippe; Gourdon, Emmanuel; Arnaud, Laurent; Horoshenkov, Kirill-V; Khan, Amir

    2013-12-01

    Hemp concrete is an attractive alternative to traditional materials used in building construction. It has a very low environmental impact, and it is characterized by high thermal insulation. Hemp aggregate particles are parallelepiped in shape and can be organized in a plurality of ways to create a considerable proportion of open pores with a complex connectivity pattern, the acoustical properties of which have never been examined systematically. Therefore this paper is focused on the fundamental understanding of the relations between the particle shape and size distribution, pore size distribution, and the acoustical properties of the resultant porous material mixture. The sound absorption and the transmission loss of various hemp aggregates is characterized using laboratory experiments and three theoretical models. These models are used to relate the particle size distribution to the pore size distribution. It is shown that the shape of particles and particle size control the pore size distribution and tortuosity in shiv. These properties in turn relate directly to the observed acoustical behavior.

  15. Variations of soil profile characteristics due to varying time spans since ice retreat in the inner Nordfjord, western Norway

    NASA Astrophysics Data System (ADS)

    Navas, A.; Laute, K.; Beylich, A. A.; Gaspar, L.

    2014-01-01

    In the Erdalen and Bødalen drainage basins located in the inner Nordfjord in western Norway the soils have been formed after deglaciation. The climate in the uppermost valley areas is sub-arctic oceanic and the lithology consists of Precambrian granitic orthogneisses on which Leptosols and Regosols are the most common soils. The Little Ice Age glacier advance affected parts of the valleys with the maximum glacier extent around AD 1750. In this study five sites on moraine and colluvium materials were selected to examine the main soil properties to assess if soil profile characteristics and pattern of fallout radionuclides (FRNs) and environmental radionuclides (ERNs) are affected by different stages of ice retreat. The Leptosols on the moraines are shallow, poorly developed and vegetated with moss and small birches. The two selected profiles show different radionuclide activities and grain size distribution. The sampled soils on the colluviums outside the LIA glacier limit became ice-free during the Preboral. The Regosols present better-developed profiles, thicker organic horizons and are fully covered by grasses. Activity of 137Cs and 210Pbex concentrate at the topsoil and decrease sharply with depth. The grain size distribution of these soils also reflects the difference in geomorphic processes that have affected the colluvium sites. Significant lower mass activities of FRNs are found in soils on the moraines than on colluviums. Variations of ERNs activities in the valleys are related to characteristics soil mineralogical composition. These results indicate differences in soil development that are consistent with the age of ice retreat. In addition, the pattern distribution of 137Cs and 210Pbex activities differs in the soils related to the LIA glacier limits in the drainage basins.

  16. Liposuction induces a compensatory increase of visceral fat which is effectively counteracted by physical activity: a randomized trial.

    PubMed

    Benatti, Fabiana; Solis, Marina; Artioli, Guilherme; Montag, Eduardo; Painelli, Vitor; Saito, Fábio; Baptista, Luciana; Costa, Luiz Augusto; Neves, Rodrigo; Seelaender, Marília; Ferriolli, Eduardo; Pfrimer, Karina; Lima, Fernanda; Roschel, Hamilton; Gualano, Bruno; Lancha, Antonio

    2012-07-01

    Liposuction is suggested to result in long-term body fat regain that could lead to increased cardiometabolic risk. We hypothesized that physical activity could prevent this effect. Our objective was to investigate the effects of liposuction on body fat distribution and cardiometabolic risk factors in women who were either exercise trained or not after surgery. Thirty-six healthy normal-weight women participated in this 6-month randomized controlled trial at the University of Sao Paulo, Sao Paulo, Brazil. Patients underwent a small-volume abdominal liposuction. Two months after surgery, the subjects were randomly allocated into two groups: trained (TR, n = 18, 4-month exercise program) and nontrained (NT, n = 18). Body fat distribution (assessed by computed tomography) was assessed before the intervention (PRE) and 2 months (POST2), and 6 months (POST6) after surgery. Secondary outcome measures included body composition, metabolic parameters and dietary intake, assessed at PRE, POST2, and POST6, and total energy expenditure, physical capacity, and sc adipocyte size and lipid metabolism-related gene expression, assessed at PRE and POST6. Liposuction was effective in reducing sc abdominal fat (PRE vs. POST2, P = 0.0001). Despite the sustained sc abdominal fat decrement at POST6 (P = 0.0001), the NT group showed a significant 10% increase in visceral fat from PRE to POST6 (P = 0.04; effect size = -0.72) and decreased energy expenditure (P = 0.01; effect size = 0.95) when compared with TR. Dietary intake, adipocyte size, and gene expression were unchanged over time. Abdominal liposuction does not induce regrowth of fat, but it does trigger a compensatory increase of visceral fat, which is effectively counteracted by physical activity.

  17. Item usage in a multidimensional computerized adaptive test (MCAT) measuring health-related quality of life.

    PubMed

    Paap, Muirne C S; Kroeze, Karel A; Terwee, Caroline B; van der Palen, Job; Veldkamp, Bernard P

    2017-11-01

    Examining item usage is an important step in evaluating the performance of a computerized adaptive test (CAT). We study item usage for a newly developed multidimensional CAT which draws items from three PROMIS domains, as well as a disease-specific one. The multidimensional item bank used in the current study contained 194 items from four domains: the PROMIS domains fatigue, physical function, and ability to participate in social roles and activities, and a disease-specific domain (the COPD-SIB). The item bank was calibrated using the multidimensional graded response model and data of 795 patients with chronic obstructive pulmonary disease. To evaluate the item usage rates of all individual items in our item bank, CAT simulations were performed on responses generated based on a multivariate uniform distribution. The outcome variables included active bank size and item overuse (usage rate larger than the expected item usage rate). For average θ-values, the overall active bank size was 9-10%; this number quickly increased as θ-values became more extreme. For values of -2 and +2, the overall active bank size equaled 39-40%. There was 78% overlap between overused items and active bank size for average θ-values. For more extreme θ-values, the overused items made up a much smaller part of the active bank size: here the overlap was only 35%. Our results strengthen the claim that relatively short item banks may suffice when using polytomous items (and no content constraints/exposure control mechanisms), especially when using MCAT.

  18. Zipf's law and city size distribution: A survey of the literature and future research agenda

    NASA Astrophysics Data System (ADS)

    Arshad, Sidra; Hu, Shougeng; Ashraf, Badar Nadeem

    2018-02-01

    This study provides a systematic review of the existing literature on Zipf's law for city size distribution. Existing empirical evidence suggests that Zipf's law is not always observable even for the upper-tail cities of a territory. However, the controversy with empirical findings arises due to sample selection biases, methodological weaknesses and data limitations. The hypothesis of Zipf's law is more likely to be rejected for the entire city size distribution and, in such case, alternative distributions have been suggested. On the contrary, the hypothesis is more likely to be accepted if better empirical methods are employed and cities are properly defined. The debate is still far from to be conclusive. In addition, we identify four emerging areas in Zipf's law and city size distribution research including the size distribution of lower-tail cities, the size distribution of cities in sub-national regions, the alternative forms of Zipf's law, and the relationship between Zipf's law and the coherence property of the urban system.

  19. Documentation of Measles Elimination in Iran: Evidences from 2012 to 2014.

    PubMed

    Karami, Manoochehr; Zahraei, Seyed Mohsen; Sabouri, Azam; Soltanshahi, Rambod; Biderafsh, Azam; Piri, Naser; Lee, Jong-Koo

    2017-08-05

    Documentation of achieving the goal of measles elimination to justify to international organizations including the WHO is a priority for public health authorities. This study aimed to address the status of Iran in the achievement of the measles elimination goal from 2012-2014. A descriptive study METHODS: Data on the measles outbreaks were extracted from the national notifiable measles surveillance system in Iran from 2012 to 2014. The required documents regarding the achievement of measles elimination, including Effective Reproduction Number (R) and the distribution of outbreak size, was addressed. The R was calculated using the proportion of imported cases as 1 - P, where P is equal to the proportion of cases that were imported. The distribution of the measles outbreaks size was described using descriptive statistics to show their magnitudes. The proportion of large outbreaks with more than 10 cases was considered as a proxy of the R value. The total number of measles cases was 232 cases (including 186 outbreak related cases) in 2012 and 142 cases in 2014, including108 outbreak related cases. The distribution of the measles outbreak size of occurred outbreaks from that period indicated that there were 37 outbreaks with three or more than three cases. The R value in 2012 was 0.87 and the corresponding value for 2014 was 0.76. According to the magnitude of effective reproduction number and distribution of outbreaks' size, measles has been eliminated in Iran. However, it is necessary to consider the potential endemic activity of measles because of no authorized immigration.

  20. Effects of wet deposition on the abundance and size distribution of black carbon in East Asia

    NASA Astrophysics Data System (ADS)

    Kondo, Y.; Moteki, N.; Oshima, N.; Ohata, S.; Koike, M.; Shibano, Y.; Takegawa, N.; Kita, K.

    2016-05-01

    An improved understanding of the variations in the mass concentration and size distribution of black carbon (BC) in the free troposphere (FT) over East Asia, where BC emissions are very high, is needed to reliably estimate the radiative forcing of BC in climate models. We measured these parameters and the carbon monoxide (CO) concentration by conducting the Aerosol Radiative Forcing in East Asia (A-FORCE) 2013W aircraft campaign in East Asia in winter 2013 and compared these data with measurements made in the same region in spring 2009. The median BC concentrations in the FT originating from North China (NC) and South China (SC) showed different seasonal variations, which were primarily caused by variations in meteorological conditions. CO concentrations above the background were much higher in SC than in NC in both seasons, suggesting a more active upward transport of CO. In SC, precipitation greatly increased from winter to spring, leading to an increased wet deposition of BC. As a result, the median BC concentration in the FT was highest in SC air in winter. This season and region were optimal for the effective transport of BC from the planetary boundary layer to the FT. The count median diameters of the BC size distributions generally decreased with altitude via wet removal during upward transport. The altitude dependence of the BC size distributions was similar in winter and spring, in accord with the similarity in the BC mixing state. The observed BC concentrations and microphysical properties will be useful for evaluating the performance of climate models.

  1. Pesticides in the atmosphere: a comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides

    NASA Astrophysics Data System (ADS)

    Degrendele, C.; Okonski, K.; Melymuk, L.; Landlová, L.; Kukučka, P.; Audy, O.; Kohoutek, J.; Čupr, P.; Klánová, J.

    2016-02-01

    This study presents a comparison of seasonal variation, gas-particle partitioning, and particle-phase size distribution of organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in air. Two years (2012/2013) of weekly air samples were collected at a background site in the Czech Republic using a high-volume air sampler. To study the particle-phase size distribution, air samples were also collected at an urban and rural site in the area of Brno, Czech Republic, using a cascade impactor separating atmospheric particulates according to six size fractions. Major differences were found in the atmospheric distribution of OCPs and CUPs. The atmospheric concentrations of CUPs were driven by agricultural activities while secondary sources such as volatilization from surfaces governed the atmospheric concentrations of OCPs. Moreover, clear differences were observed in gas-particle partitioning; CUP partitioning was influenced by adsorption onto mineral surfaces while OCPs were mainly partitioning to aerosols through absorption. A predictive method for estimating the gas-particle partitioning has been derived and is proposed for polar and non-polar pesticides. Finally, while OCPs and the majority of CUPs were largely found on fine particles, four CUPs (carbendazim, isoproturon, prochloraz, and terbuthylazine) had higher concentrations on coarse particles ( > 3.0 µm), which may be related to the pesticide application technique. This finding is particularly important and should be further investigated given that large particles result in lower risks from inhalation (regardless the toxicity of the pesticide) and lower potential for long-range atmospheric transport.

  2. Determination of the cumulus size distribution from LANDSAT pictures

    NASA Technical Reports Server (NTRS)

    Karg, E.; Mueller, H.; Quenzel, H.

    1983-01-01

    Varying insolation causes undesirable thermic stress to the receiver of a solar power plant. The rapid change of insolation depends on the size distribution of the clouds; in order to measure these changes, it is suitable to determine typical cumulus size distributions. For this purpose, LANDSAT-images are adequate. Several examples of cumulus size distributions will be presented and their effects on the operation of a solar power plant are discussed.

  3. Unfolding sphere size distributions with a density estimator based on Tikhonov regularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weese, J.; Korat, E.; Maier, D.

    1997-12-01

    This report proposes a method for unfolding sphere size distributions given a sample of radii that combines the advantages of a density estimator with those of Tikhonov regularization methods. The following topics are discusses in this report to achieve this method: the relation between the profile and the sphere size distribution; the method for unfolding sphere size distributions; the results based on simulations; and the experimental data comparison.

  4. Field size, length, and width distributions based on LACIE ground truth data. [large area crop inventory experiment

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Badhwar, G.

    1980-01-01

    The development of agricultural remote sensing systems requires knowledge of agricultural field size distributions so that the sensors, sampling frames, image interpretation schemes, registration systems, and classification systems can be properly designed. Malila et al. (1976) studied the field size distribution for wheat and all other crops in two Kansas LACIE (Large Area Crop Inventory Experiment) intensive test sites using ground observations of the crops and measurements of their field areas based on current year rectified aerial photomaps. The field area and size distributions reported in the present investigation are derived from a representative subset of a stratified random sample of LACIE sample segments. In contrast to previous work, the obtained results indicate that most field-size distributions are not log-normally distributed. The most common field size observed in this study was 10 acres for most crops studied.

  5. Grain size distribution in sheared polycrystals

    NASA Astrophysics Data System (ADS)

    Sarkar, Tanmoy; Biswas, Santidan; Chaudhuri, Pinaki; Sain, Anirban

    2017-12-01

    Plastic deformation in solids induced by external stresses is of both fundamental and practical interest. Using both phase field crystal modeling and molecular dynamics simulations, we study the shear response of monocomponent polycrystalline solids. We subject mesocale polycrystalline samples to constant strain rates in a planar Couette flow geometry for studying its plastic flow, in particular its grain deformation dynamics. As opposed to equilibrium solids where grain dynamics is mainly driven by thermal diffusion, external stress/strain induce a much higher level of grain deformation activity in the form of grain rotation, coalescence, and breakage, mediated by dislocations. Despite this, the grain size distribution of this driven system shows only a weak power-law correction to its equilibrium log-normal behavior. We interpret the grain reorganization dynamics using a stochastic model.

  6. Synthesis of TiO{sub 2} nanoparticles by hydrolysis and peptization of titanium isopropoxide solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahata, S.; Mahato, S. S.; Nandi, M. M.

    2012-07-23

    Here we report the synthesis and characterization of a stable suspension of modified titania nanoparticles. Phase-pure TiO{sub 2} nanocrystallites with narrow particle-size distributions were selectively prepared by hydrolysis-peptization of modified alkoxide followed by hydrothermal treatment. Autoclaving modified TiO{sub 2} in the presence of HNO3 as cooperative catalysts led to the formation of crystalline TiO{sub 2} with narrow-sized distribution. Following the hydrothermal treatment at 150 Degree-Sign C, X-ray diffraction shows the particles to be exclusively anatase. Synthesized powder is characterized by FT-IR, scanning electron microscopy (FESEM) and transmission electron microscopy (HRTEM). The photocatalytic activity in the degradation of orange-II is quitemore » comparable to good anatase and rutile nanocrystallites.« less

  7. The Size Distribution Of Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Kuchner, U.; Ziegler, B.; Bamford, S.; Verdugo, M.; Haeussler, B.

    2017-06-01

    We establish a sample of 560 spectroscopically confirmed cluster members of MACS J1206.2- 0847 at z = 0.45 and utilize multi-wavelength and multi-component Sersic profile fitting to provide luminosities and sizes for the key structural components bulge and disk. While the difference between field and cluster galaxy properties are mostly due to a preference for cluster members to be early-type (quiescent, bulge-dominated), we see evidence for an outer disk fading and a sharp rise in the number of red disks with smaller effective radii at the tidally active cluster region around R200. Even though red disks are already virialized according to their velocity distribution, they are clearly not part of the old population found in the innermost region; they represent an important population of transitional objects in clusters.

  8. Comparative assessment of synthetic strategies toward active platinum-rhodium-tin electrocatalysts for efficient ethanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Erini, Nina; Krause, Paul; Gliech, Manuel; Yang, Ruizhi; Huang, Yunhui; Strasser, Peter

    2015-10-01

    The present work explores the effect of autoclave-based autogenous-pressure vs. ambient pressure conditions on the synthesis and properties of carbon-supported Pt-Rh-Sn nanoparticle electrocatalysts. The Pt-Rh-Sn nanoparticles were characterized by X-ray spectroscopy, electron microscopy and mass spectroscopy and deployed as catalysts for the electrocatalytic ethanol oxidation reaction. Pt-Rh-Sn catalysts precipitated with carbon already present showed narrow particle size distribution around 7 nm, while catalysts supported on carbon after particle formation showed broader size distribution ranging from 8 to 16 nm, similar metal loadings between 40 and 48 wt.% and similar atomic ratios of Pt:Rh:Sn of 30:10:60. The highest ethanol oxidation activity at low overpotentials associated with exceptionally early ethanol oxidation onset potential was observed for ambient-pressure catalysts with the active ternary alloy phase formed in presence of the carbon supports. In contrast, catalysts prepared under ambient pressure in a two-step approach, involving alloy particle formation followed by particle separation and subsequent deposition on the carbon support, yielded the highest overall mass activities. Based on the observed synthesis-activity correlations, a comparative assessment is provided of the synthetic techniques at high vs. low pressures, and in presence and absence of carbon support. Plausible hypotheses in terms of particle dispersion and interparticle distance accounting for these observed differences are discussed.

  9. Steering a crystallization process to reduce crystal polydispersity; case study of insulin crystallization

    NASA Astrophysics Data System (ADS)

    Nanev, Christo N.; Petrov, Kostadin P.

    2017-12-01

    The use of the classical nucleation-growth-separation principle (NGSP) was restricted hitherto to nucleation kinetics studies only. A novel application of the NGSP is proposed. To reduce crystal polydispersity internal seeding of equally-sized crystals is suggested, the advantage being avoidance of crystal grinding, sieving and any introduction of impurities. In the present study, size distributions of grown insulin crystals are interpreted retrospectively to select the proper nucleation stage parameters. The conclusion is that when steering a crystallization process aimed at reducing crystal polydispersity, the shortest possible nucleation stage duration has to be chosen because it renders the closest size distribution of the nucleated crystal seeds. Causes of inherent propensity to increasing crystal polydispersity during prolonged growth are also explored. Step sources of increased activity, present in some crystals while absent in others, are pointed as the major polydispersity cause. Insulin crystal morphology is also considered since it determines the dissolution rate of a crystalline medicine.

  10. Size distributions of organic nitrogen and carbon in remote marine aerosols: Evidence of marine biological origin based on their isotopic ratios

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yuzo; Kawamura, Kimitaka; Sawano, Maki

    2010-03-01

    Size-segregated aerosol samples were collected over the western North Pacific in summer 2008 for the measurements of organic nitrogen (ON) and organic carbon (OC). ON and OC showed bimodal size distributions. Their concentrations showed positive correlation with those of biogenic tracers, methanesulfonic acid (MSA) and azelaic acid (C9). We found that average ON and OC concentrations were twice greater in aerosols collected in the oceanic region with higher biological productivity than in the regions with lower productivity. The average ON/OC ratios are higher (0.49 ± 0.11) in more biologically influenced aerosols than those (0.35 ± 0.10) in less influenced aerosols. Stable carbon isotopic analysis indicates that marine-derived carbon accounted for ˜46-72% of total carbon in more biologically influenced aerosols. These results provide evidence that organic aerosols in this region are enriched in ON that is linked to oceanic biological activity and the subsequent emissions to the atmosphere.

  11. Observational Evidence of Shallow Origins for the Magnetic Fields of Solar Cycles - a review

    NASA Astrophysics Data System (ADS)

    Martin, Sara F.

    2018-05-01

    Observational evidence for the origin of active region magnetic fields has been sought from published information on extended solar cycles, statistical distributions of active regions and ephemeral regions, helioseismology results, positional relationships to supergranules, and fine-scale magnetic structure of active regions and their sunspots during their growth. Statistical distributions of areas of ephemeral and active regions blend together to reveal a single power law. The shape of the size distribution in latitude of all active regions is independent of time during the solar cycle, yielding further evidence that active regions of all sizes belong to the same population. Elementary bipoles, identified also by other names, appear to be the building blocks of active regions; sunspots form from elementary bipoles and are therefore deduced to develop from the photosphere downward, consistent with helioseismic detection of downflows to 3-4 Mm below sunspots as well as long-observed downflows from chromospheric/coronal arch filaments into sunspots from their earliest appearance. Time-distance helioseismology has been effective in revealing flows related to sunspots to depths of 20 Mm. Ring diagram analysis shows a statistically significant preference for upflows to precede major active region emergence and downflows after flux emergence but both are often observed together or sometimes not detected. From deep-focus helioseismic techniques for seeking magnetic flux below the photosphere prior major active regions, there is evidence of acoustic travel-time perturbation signatures rising in the limited range of depths of 42-75 Mm but these have not been verified or found at more shallow depths by helioseismic holographic techniques. The development of active regions from clusters of elementary bipoles appears to be the same irrespective of how much flux an active region eventually develops. This property would be consistent with the magnetic fields of large active regions being generated in the same way and close the same depth as small active regions in a shallow zone below the photosphere. All evidence considered together, understanding the origins of the magnetic fields of solar cycles boils down to learning how and where elementary bipoles are generated beneath the photosphere.

  12. Aerosol partitioning in mixed-phase clouds at the Jungfraujoch (3580 m asl)

    NASA Astrophysics Data System (ADS)

    Henning, S.; Bojinski, S.; Diehl, K.; Ghan, S.; Nyeki, S.; Weingartner, E.; Wurzler, S.; Baltensperger, U.

    2003-04-01

    Field measurements on the partitioning between the interstitial and the liquid/ice phase in natural clouds were performed at the high-alpine research station Jungfraujoch (3580 m asl, Switzerland) during a summer and a winter campaign. The size distributions of the total and the interstitial aerosol were determined by means of a scanning mobility particle sizer (SMPS). From these, size resolved scavenging ratios were calculated. Simultaneously, cloud water content (CWC) and cloud particle size distributions along with meteorological data were obtained. In cold mixed phase clouds (existing of liquid droplets and ice crystals), strong differences were found in comparison to the warm summer clouds. In the warm cloud types all particles above a certain diameter were activated and thereby the scavenging ratio (number of activated particles divided by the total number concentration) above a certain threshold diameter approached 1. In the winter clouds, the scavenging ratio never reached the value of 1 and could be as low as 0. These observations are explained by the Bergeron-Findeisen process: Here, particles are also activated to droplets in the first step, but after the formation of the ice phase droplets evaporate while the ice crystals grow, due to difference in the saturation vapor pressure over water and ice. This release of aerosol particles to the interstitial aerosol has significant implications for the climate forcing: It can be expected that the number of CCN is of less importance as soon as ice crystals are formed.

  13. Microstructural investigations on carbonate fault core rocks in active extensional fault zones from the central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Cortinovis, Silvia; Balsamo, Fabrizio; Storti, Fabrizio

    2017-04-01

    The study of the microstructural and petrophysical evolution of cataclasites and gouges has a fundamental impact on both hydraulic and frictional properties of fault zones. In the last decades, growing attention has been payed to the characterization of carbonate fault core rocks due to the nucleation and propagation of coseismic ruptures in carbonate successions (e.g., Umbria-Marche 1997, L'Aquila 2009, Amatrice 2016 earthquakes in Central Apennines, Italy). Among several physical parameters, grain size and shape in fault core rocks are expected to control the way of sliding along the slip surfaces in active fault zones, thus influencing the propagation of coseismic ruptures during earthquakes. Nevertheless, the role of grain size and shape distribution evolution in controlling the weakening or strengthening behavior in seismogenic fault zones is still not fully understood also because a comprehensive database from natural fault cores is still missing. In this contribution, we present a preliminary study of seismogenic extensional fault zones in Central Apennines by combining detailed filed mapping with grain size and microstructural analysis of fault core rocks. Field mapping was aimed to describe the structural architecture of fault systems and the along-strike fault rock distribution and fracturing variations. In the laboratory we used a Malvern Mastersizer 3000 granulometer to obtain a precise grain size characterization of loose fault rocks combined with sieving for coarser size classes. In addition, we employed image analysis on thin sections to quantify the grain shape and size in cemented fault core rocks. The studied fault zones consist of an up to 5-10 m-thick fault core where most of slip is accommodated, surrounded by a tens-of-meters wide fractured damage zone. Fault core rocks consist of (1) loose to partially cemented breccias characterized by different grain size (from several cm up to mm) and variable grain shape (from very angular to sub-rounded), and (2) very fine-grained gouges (< 1 mm) localized along major and minor mirror-like slip surfaces. Damage zones mostly consist of fractured rocks and, locally, pulverized rocks. Collectively, field observations and laboratory analyses indicate that within the fault cores of the studied fault zones, grain size progressively decreases approaching the master slip surfaces. Furthermore, grain shape changes from very angular to sub-rounded clasts moving toward the master slip surfaces. These features suggest that the progressive evolution of grain size and shape distributions within fault cores may have determined the development of strain localization by the softening and cushioning effects of smaller particles in loose fault rocks.

  14. Droplet activation, separation, and compositional analysis: laboratory studies and atmospheric measurements

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Kohn, M.; Pekour, M. S.; Nelson, D. A.; Shilling, J. E.; Cziczo, D. J.

    2011-10-01

    Droplets produced in a cloud condensation nuclei chamber (CCNC) as a function of supersaturation have been separated from unactivated aerosol particles using counterflow virtual impaction. Residual material after droplets were evaporated was chemically analyzed with an Aerodyne Aerosol Mass Spectrometer (AMS) and the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Experiments were initially conducted to verify activation conditions for monodisperse ammonium sulfate particles and to determine the resulting droplet size distribution as a function of supersaturation. Based on the observed droplet size, the counterflow virtual impactor cut-size was set to differentiate droplets from unactivated interstitial particles. Validation experiments were then performed to verify that only droplets with sufficient size passed through the counterflow virtual impactor for subsequent analysis. A two-component external mixture of monodisperse particles was also exposed to a supersaturation which would activate one of the types (hygroscopic salts) but not the other (polystyrene latex spheres or adipic acid). The mass spectrum observed after separation indicated only the former, validating separation of droplets from unactivated particles. Results from ambient measurements using this technique and AMS analysis were inconclusive, showing little chemical differentiation between ambient aerosol and activated droplet residuals, largely due to low signal levels. When employing as single particle mass spectrometer for compositional analysis, however, we observed enhancement of sulfate in droplet residuals.

  15. Tracking the Spatiotemporal Neural Dynamics of Real-world Object Size and Animacy in the Human Brain.

    PubMed

    Khaligh-Razavi, Seyed-Mahdi; Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2018-06-07

    Animacy and real-world size are properties that describe any object and thus bring basic order into our perception of the visual world. Here, we investigated how the human brain processes real-world size and animacy. For this, we applied representational similarity to fMRI and MEG data to yield a view of brain activity with high spatial and temporal resolutions, respectively. Analysis of fMRI data revealed that a distributed and partly overlapping set of cortical regions extending from occipital to ventral and medial temporal cortex represented animacy and real-world size. Within this set, parahippocampal cortex stood out as the region representing animacy and size stronger than most other regions. Further analysis of the detailed representational format revealed differences among regions involved in processing animacy. Analysis of MEG data revealed overlapping temporal dynamics of animacy and real-world size processing starting at around 150 msec and provided the first neuromagnetic signature of real-world object size processing. Finally, to investigate the neural dynamics of size and animacy processing simultaneously in space and time, we combined MEG and fMRI with a novel extension of MEG-fMRI fusion by representational similarity. This analysis revealed partly overlapping and distributed spatiotemporal dynamics, with parahippocampal cortex singled out as a region that represented size and animacy persistently when other regions did not. Furthermore, the analysis highlighted the role of early visual cortex in representing real-world size. A control analysis revealed that the neural dynamics of processing animacy and size were distinct from the neural dynamics of processing low-level visual features. Together, our results provide a detailed spatiotemporal view of animacy and size processing in the human brain.

  16. Undersampling power-law size distributions: effect on the assessment of extreme natural hazards

    USGS Publications Warehouse

    Geist, Eric L.; Parsons, Thomas E.

    2014-01-01

    The effect of undersampling on estimating the size of extreme natural hazards from historical data is examined. Tests using synthetic catalogs indicate that the tail of an empirical size distribution sampled from a pure Pareto probability distribution can range from having one-to-several unusually large events to appearing depleted, relative to the parent distribution. Both of these effects are artifacts caused by limited catalog length. It is more difficult to diagnose the artificially depleted empirical distributions, since one expects that a pure Pareto distribution is physically limited in some way. Using maximum likelihood methods and the method of moments, we estimate the power-law exponent and the corner size parameter of tapered Pareto distributions for several natural hazard examples: tsunamis, floods, and earthquakes. Each of these examples has varying catalog lengths and measurement thresholds, relative to the largest event sizes. In many cases where there are only several orders of magnitude between the measurement threshold and the largest events, joint two-parameter estimation techniques are necessary to account for estimation dependence between the power-law scaling exponent and the corner size parameter. Results indicate that whereas the corner size parameter of a tapered Pareto distribution can be estimated, its upper confidence bound cannot be determined and the estimate itself is often unstable with time. Correspondingly, one cannot statistically reject a pure Pareto null hypothesis using natural hazard catalog data. Although physical limits to the hazard source size and by attenuation mechanisms from source to site constrain the maximum hazard size, historical data alone often cannot reliably determine the corner size parameter. Probabilistic assessments incorporating theoretical constraints on source size and propagation effects are preferred over deterministic assessments of extreme natural hazards based on historic data.

  17. Evolution of body size in Galapagos marine iguanas.

    PubMed

    Wikelski, Martin

    2005-10-07

    Body size is one of the most important traits of organisms and allows predictions of an individual's morphology, physiology, behaviour and life history. However, explaining the evolution of complex traits such as body size is difficult because a plethora of other traits influence body size. Here I review what we know about the evolution of body size in a group of island reptiles and try to generalize about the mechanisms that shape body size. Galapagos marine iguanas occupy all 13 larger islands in this Pacific archipelago and have maximum island body weights between 900 and 12 000g. The distribution of body sizes does not match mitochondrial clades, indicating that body size evolves independently of genetic relatedness. Marine iguanas lack intra- and inter-specific food competition and predators are not size-specific, discounting these factors as selective agents influencing body size. Instead I hypothesize that body size reflects the trade-offs between sexual and natural selection. We found that sexual selection continuously favours larger body sizes. Large males establish display territories and some gain over-proportional reproductive success in the iguanas' mating aggregations. Females select males based on size and activity and are thus responsible for the observed mating skew. However, large individuals are strongly selected against during El Niño-related famines when dietary algae disappear from the intertidal foraging areas. We showed that differences in algae sward ('pasture') heights and thermal constraints on large size are causally responsible for differences in maximum body size among populations. I hypothesize that body size in many animal species reflects a trade-off between foraging constraints and sexual selection and suggest that future research could focus on physiological and genetic mechanisms determining body size in wild animals. Furthermore, evolutionary stable body size distributions within populations should be analysed to better understand selection pressures on individual body size.

  18. Evolution of body size in Galapagos marine iguanas

    PubMed Central

    Wikelski, Martin

    2005-01-01

    Body size is one of the most important traits of organisms and allows predictions of an individual's morphology, physiology, behaviour and life history. However, explaining the evolution of complex traits such as body size is difficult because a plethora of other traits influence body size. Here I review what we know about the evolution of body size in a group of island reptiles and try to generalize about the mechanisms that shape body size. Galapagos marine iguanas occupy all 13 larger islands in this Pacific archipelago and have maximum island body weights between 900 and 12 000 g. The distribution of body sizes does not match mitochondrial clades, indicating that body size evolves independently of genetic relatedness. Marine iguanas lack intra- and inter-specific food competition and predators are not size-specific, discounting these factors as selective agents influencing body size. Instead I hypothesize that body size reflects the trade-offs between sexual and natural selection. We found that sexual selection continuously favours larger body sizes. Large males establish display territories and some gain over-proportional reproductive success in the iguanas' mating aggregations. Females select males based on size and activity and are thus responsible for the observed mating skew. However, large individuals are strongly selected against during El Niño-related famines when dietary algae disappear from the intertidal foraging areas. We showed that differences in algae sward (‘pasture’) heights and thermal constraints on large size are causally responsible for differences in maximum body size among populations. I hypothesize that body size in many animal species reflects a trade-off between foraging constraints and sexual selection and suggest that future research could focus on physiological and genetic mechanisms determining body size in wild animals. Furthermore, evolutionary stable body size distributions within populations should be analysed to better understand selection pressures on individual body size. PMID:16191607

  19. Pan-Arctic aerosol number size distributions: seasonality and transport patterns

    NASA Astrophysics Data System (ADS)

    Freud, Eyal; Krejci, Radovan; Tunved, Peter; Leaitch, Richard; Nguyen, Quynh T.; Massling, Andreas; Skov, Henrik; Barrie, Leonard

    2017-07-01

    The Arctic environment has an amplified response to global climatic change. It is sensitive to human activities that mostly take place elsewhere. For this study, a multi-year set of observed aerosol number size distributions in the diameter range of 10 to 500 nm from five sites around the Arctic Ocean (Alert, Villum Research Station - Station Nord, Zeppelin, Tiksi and Barrow) was assembled and analysed.A cluster analysis of the aerosol number size distributions revealed four distinct distributions. Together with Lagrangian air parcel back-trajectories, they were used to link the observed aerosol number size distributions with a variety of transport regimes. This analysis yields insight into aerosol dynamics, transport and removal processes, on both an intra- and an inter-monthly scale. For instance, the relative occurrence of aerosol number size distributions that indicate new particle formation (NPF) event is near zero during the dark months, increases gradually to ˜ 40 % from spring to summer, and then collapses in autumn. Also, the likelihood of Arctic haze aerosols is minimal in summer and peaks in April at all sites.The residence time of accumulation-mode particles in the Arctic troposphere is typically long enough to allow tracking them back to their source regions. Air flow that passes at low altitude over central Siberia and western Russia is associated with relatively high concentrations of accumulation-mode particles (Nacc) at all five sites - often above 150 cm-3. There are also indications of air descending into the Arctic boundary layer after transport from lower latitudes.

    The analysis of the back-trajectories together with the meteorological fields along them indicates that the main driver of the Arctic annual cycle of Nacc, on the larger scale, is when atmospheric transport covers the source regions for these particles in the 10-day period preceding the observations in the Arctic. The scavenging of these particles by precipitation is shown to be important on a regional scale and it is most active in summer. Cloud processing is an additional factor that enhances the Nacc annual cycle.There are some consistent differences between the sites that are beyond the year-to-year variability. They are the result of differences in the proximity to the aerosol source regions and to the Arctic Ocean sea-ice edge, as well as in the exposure to free-tropospheric air and in precipitation patterns - to mention a few. Hence, for most purposes, aerosol observations from a single Arctic site cannot represent the entire Arctic region. Therefore, the results presented here are a powerful observational benchmark for evaluation of detailed climate and air chemistry modelling studies of aerosols throughout the vast Arctic region.

  20. New particle formation in the Svalbard region 2006-2015

    NASA Astrophysics Data System (ADS)

    Heintzenberg, Jost; Tunved, Peter; Galí, Martí; Leck, Caroline

    2017-05-01

    Events of new particle formation (NPF) were analyzed in a 10-year data set of hourly particle size distributions recorded on Mt. Zeppelin, Spitsbergen, Svalbard. Three different types of NPF events were identified through objective search algorithms. The first and simplest algorithm utilizes short-term increases in particle concentrations below 25 nm (PCT (percentiles) events). The second one builds on the growth of the sub-50 nm diameter median (DGR (diameter growth) events) and is most closely related to the classical banana type of event. The third and most complex, multiple-size approach to identifying NPF events builds on a hypothesis suggesting the concurrent production of polymer gel particles at several sizes below ca. 60 nm (MEV (multi-size growth) events). As a first and general conclusion, we can state that NPF events are a summer phenomenon and not related to Arctic haze, which is a late winter to early spring feature. The occurrence of NPF events appears to be somewhat sensitive to the available data on precipitation. The seasonal distribution of solar flux suggests some photochemical control that may affect marine biological processes generating particle precursors and/or atmospheric photochemical processes that generate condensable vapors from precursor gases. Notably, the seasonal distribution of the biogenic methanesulfonate (MSA) follows that of the solar flux although it peaks before the maxima in NPF occurrence. A host of ancillary data and findings point to varying and rather complex marine biological source processes. The potential source regions for all types of new particle formation appear to be restricted to the marginal-ice and open-water areas between northeastern Greenland and eastern Svalbard. Depending on conditions, yet to be clarified new particle formation may become visible as short bursts of particles around 20 nm (PCT events), longer events involving condensation growth (DGR events), or extended events with elevated concentrations of particles at several sizes below 100 nm (MEV events). The seasonal distribution of NPF events peaks later than that of MSA and DGR, and in particular than that of MEV events, which reach into late summer and early fall with open, warm, and biologically active waters around Svalbard. Consequently, a simple model to describe the seasonal distribution of the total number of NPF events can be based on solar flux and sea surface temperature, representing environmental conditions for marine biological activity and condensation sink, controlling the balance between new particle nucleation and their condensational growth. Based on the sparse knowledge about the seasonal cycle of gel-forming marine microorganisms and their controlling factors, we hypothesize that the seasonal distribution of DGR and, more so, MEV events reflect the seasonal cycle of the gel-forming phytoplankton.

  1. Distribution of artificial radionuclides in particle-size fractions of soil on fallout plumes of nuclear explosions.

    PubMed

    Kabdyrakova, A M; Lukashenko, S N; Mendubaev, A T; Kunduzbayeva, A Ye; Panitskiy, A V; Larionova, N V

    2018-06-01

    In this paper are analyzed the artificial radionuclide distributions ( 137 Cs, 90 Sr, 241 Am, 239+240 Pu) in particle-size fractions of soils from two radioactive fallout plumes at the Semipalatinsk Test Site. These plumes were generated by a low-yield surface nuclear test and a surface non-nuclear experiment with insignificant nuclear energy release, respectively, and their lengths are approximately 3 and 0,65 km. In contrast with the great majority of similar studies performed in areas affected mainly by global fallout where adsorbing radionuclides such as Pu are mainly associated with the finest soil fractions, in this study it was observed that along both analyzed plumes the highest activity concentrations are concentrated in the coarse soil fractions. At the plume generated by the surface nuclear test, the radionuclides are concentrated mainly in the 1000-500 μm soil fraction (enrichment factor values ranging from 1.2 to 3.8), while at the plume corresponding to the surface non-nuclear test is the 500-250 μm soil fraction the enriched one by technogenic radionuclides (enrichment factor values ranging from 1.1 to 5.1). In addition, the activity concentration distributions among the different soil size fractions are similar for all radionuclides in both plumes. All the obtained data are in agreement with the hypothesis indicating that enrichment observed in the coarse fractions is caused by the presence of radioactive particles resulted from the indicated nuclear tests. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. High-performance size-exclusion chromatography studies on the formation and distribution of polar compounds in camellia seed oil during heating.

    PubMed

    Feng, Hong-Xia; Sam, Rokayya; Jiang, Lian-Zhou; Li, Yang; Cao, Wen-Ming

    Camellia seed oil (CSO) is rich in oleic acid and has a high number of active components, which give the oil high nutritional value and a variety of biological activity. The aim of the present study was to determine the changes in the content and distribution of total polar compounds (TPC) in CSO during heating. TPC were isolated by means of preparative flash chromatography and further analyzed by high-performance size-exclusion chromatography (HPSEC). The TPC content of CSO increased from 4.74% to 25.29%, showing a significantly lower formation rate as compared to that of extra virgin olive oil (EVOO) and soybean oil (SBO) during heating. Furthermore, heating also resulted in significant differences (P<0.05) in the distribution of TPC among these oils. Though the content of oxidized triacylglycerol dimers, oxidized triacylglycerol oligomers, and oxidized triacylglycerol monomers significantly increased in all these oils, their increased percentages were much less in CSO than those in EVOO, indicating that CSO has a greater ability to resist oxidation. This work may be useful for the food oil industry and consumers in helping to choose the correct oil and to decide on the useful lifetime of the oil.

  3. General herpetological collecting is size-based for five Pacific lizards

    USGS Publications Warehouse

    Rodda, Gordon H.; Yackel Adams, Amy A.; Campbell, Earl W.; Fritts, Thomas H.

    2015-01-01

    Accurate estimation of a species’ size distribution is a key component of characterizing its ecology, evolution, physiology, and demography. We compared the body size distributions of five Pacific lizards (Carlia ailanpalai, Emoia caeruleocauda, Gehyra mutilata, Hemidactylus frenatus, and Lepidodactylus lugubris) from general herpetological collecting (including visual surveys and glue boards) with those from complete censuses obtained by total removal. All species exhibited the same pattern: general herpetological collecting undersampled juveniles and oversampled mid-sized adults. The bias was greatest for the smallest juveniles and was not statistically evident for newly maturing and very large adults. All of the true size distributions of these continuously breeding species were skewed heavily toward juveniles, more so than the detections obtained from general collecting. A strongly skewed size distribution is not well characterized by the mean or maximum, though those are the statistics routinely reported for species’ sizes. We found body mass to be distributed more symmetrically than was snout–vent length, providing an additional rationale for collecting and reporting that size measure.

  4. Body size distributions signal a regime shift in a lake ecosystem

    USGS Publications Warehouse

    Spanbauer, Trisha; Allen, Craig R.; Angeler, David G.; Eason, Tarsha; Fritz, Sherilyn C.; Garmestani, Ahjond S.; Nash, Kirsty L.; Stone, Jeffery R.; Stow, Craig A.; Sundstrom, Shana M.

    2016-01-01

    Communities of organisms, from mammals to microorganisms, have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at multiple spatial and temporal scales. In this study, we assessed whether body size patterns serve as an indicator of a threshold between alternative regimes. Over the past 7000 years, the biological communities of Foy Lake (Montana, USA) have undergone a major regime shift owing to climate change. We used a palaeoecological record of diatom communities to estimate diatom sizes, and then analysed the discontinuous distribution of organism sizes over time. We used Bayesian classification and regression tree models to determine that all time intervals exhibited aggregations of sizes separated by gaps in the distribution and found a significant change in diatom body size distributions approximately 150 years before the identified ecosystem regime shift. We suggest that discontinuity analysis is a useful addition to the suite of tools for the detection of early warning signals of regime shifts.

  5. Particle size distributions and the vertical distribution of suspended matter in the upwelling region off Oregon

    NASA Technical Reports Server (NTRS)

    Kitchen, J. C.

    1977-01-01

    Various methods of presenting and mathematically describing particle size distribution are explained and evaluated. The hyperbolic distribution is found to be the most practical but the more complex characteristic vector analysis is the most sensitive to changes in the shape of the particle size distributions. A method for determining onshore-offshore flow patterns from the distribution of particulates was presented. A numerical model of the vertical structure of two size classes of particles was developed. The results show a close similarity to the observed distributions but overestimate the particle concentration by forty percent. This was attributed to ignoring grazing by zooplankton. Sensivity analyses showed the size preference was most responsive to the maximum specific growth rates and nutrient half saturation constants. The verical structure was highly dependent on the eddy diffusivity followed closely by the growth terms.

  6. Calibration correction of an active scattering spectrometer probe to account for refractive index of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Overbeck, V. R.; Snetsinger, K. G.; Russell, P. B.; Ferry, G. V.

    1990-01-01

    The use of the active scattering spectrometer probe (ASAS-X) to measure sulfuric acid aerosols on U-2 and ER-2 research aircraft has yielded results that are at times ambiguous due to the dependence of particles' optical signatures on refractive index as well as physical dimensions. The calibration correction of the ASAS-X optical spectrometer probe for stratospheric aerosol studies is validated through an independent and simultaneous sampling of the particles with impactors; sizing and counting of particles on SEM images yields total particle areas and volumes. Upon correction of calibration in light of these data, spectrometer results averaged over four size distributions are found to agree with similarly averaged impactor results to within a few percent: indicating that the optical properties or chemical composition of the sample aerosol must be known in order to achieve accurate optical aerosol spectrometer size analysis.

  7. Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects

    PubMed Central

    Zhang, Xiaojin; Li, Yan; Chen, Y. Eugene; Chen, Jihua; Ma, Peter X.

    2016-01-01

    MicroRNAs (miRNAs) are being developed to enhance tissue regeneration. Here we show that a hyperbranched polymer with high miRNA-binding affinity and negligible cytotoxicity can self-assemble into nano-sized polyplexes with a ‘double-shell' miRNA distribution and high transfection efficiency. These polyplexes are encapsulated in biodegradable microspheres to enable controllable two-stage (polyplexes and miRNA) delivery. The microspheres are attached to cell-free nanofibrous polymer scaffolds that spatially control the release of miR-26a. This technology is used to regenerate critical-sized bone defects in osteoporotic mice by targeting Gsk-3β to activate the osteoblastic activity of endogenous stem cells, thus addressing a critical challenge in regenerative medicine of achieving cell-free scaffold-based miRNA therapy for tissue engineering. PMID:26765931

  8. Rhizosphere size

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Yakov; Razavi, Bahar

    2017-04-01

    Estimation of the soil volume affected by roots - the rhizosphere - is crucial to assess the effects of plants on properties and processes in soils and dynamics of nutrients, water, microorganisms and soil organic matter. The challenges to assess the rhizosphere size are: 1) the continuum of properties between the root surface and root-free soil, 2) differences in the distributions of various properties (carbon, microorganisms and their activities, various nutrients, enzymes, etc.) along and across the roots, 3) temporal changes of properties and processes. Thus, to describe the rhizosphere size and root effects, a holistic approach is necessary. We collected literature and own data on the rhizosphere gradients of a broad range of physico-chemical and biological properties: pH, CO2, oxygen, redox potential, water uptake, various nutrients (C, N, P, K, Ca, Mg, Mn and Fe), organic compounds (glucose, carboxylic acids, amino acids), activities of enzymes of C, N, P and S cycles. The collected data were obtained based on the destructive approaches (thin layer slicing), rhizotron studies and in situ visualization techniques: optodes, zymography, sensitive gels, 14C and neutron imaging. The root effects were pronounced from less than 0.5 mm (nutrients with slow diffusion) up to more than 50 mm (for gases). However, the most common effects were between 1 - 10 mm. Sharp gradients (e.g. for P, carboxylic acids, enzyme activities) allowed to calculate clear rhizosphere boundaries and so, the soil volume affected by roots. The first analyses were done to assess the effects of soil texture and moisture as well as root system and age on these gradients. The most properties can be described by two curve types: exponential saturation and S curve, each with increasing and decreasing concentration profiles from the root surface. The gradient based distribution functions were calculated and used to extrapolate on the whole soil depending on the root density and rooting intensity. We conclude that despite the specific effects of plants and soil on the rhizosphere size, the most common distribution functions can be calculated for individual roots and extrapolated for the whole soil profile.

  9. Body Size Diversity and Frequency Distributions of Neotropical Cichlid Fishes (Cichliformes: Cichlidae: Cichlinae)

    PubMed Central

    Steele, Sarah E.; López-Fernández, Hernán

    2014-01-01

    Body size is an important correlate of life history, ecology and distribution of species. Despite this, very little is known about body size evolution in fishes, particularly freshwater fishes of the Neotropics where species and body size diversity are relatively high. Phylogenetic history and body size data were used to explore body size frequency distributions in Neotropical cichlids, a broadly distributed and ecologically diverse group of fishes that is highly representative of body size diversity in Neotropical freshwater fishes. We test for divergence, phylogenetic autocorrelation and among-clade partitioning of body size space. Neotropical cichlids show low phylogenetic autocorrelation and divergence within and among taxonomic levels. Three distinct regions of body size space were identified from body size frequency distributions at various taxonomic levels corresponding to subclades of the most diverse tribe, Geophagini. These regions suggest that lineages may be evolving towards particular size optima that may be tied to specific ecological roles. The diversification of Geophagini appears to constrain the evolution of body size among other Neotropical cichlid lineages; non-Geophagini clades show lower species-richness in body size regions shared with Geophagini. Neotropical cichlid genera show less divergence and extreme body size than expected within and among tribes. Body size divergence among species may instead be present or linked to ecology at the community assembly scale. PMID:25180970

  10. A fragmentation model of earthquake-like behavior in internet access activity

    NASA Astrophysics Data System (ADS)

    Paguirigan, Antonino A.; Angco, Marc Jordan G.; Bantang, Johnrob Y.

    We present a fragmentation model that generates almost any inverse power-law size distribution, including dual-scaled versions, consistent with the underlying dynamics of systems with earthquake-like behavior. We apply the model to explain the dual-scaled power-law statistics observed in an Internet access dataset that covers more than 32 million requests. The non-Poissonian statistics of the requested data sizes m and the amount of time τ needed for complete processing are consistent with the Gutenberg-Richter-law. Inter-event times δt between subsequent requests are also shown to exhibit power-law distributions consistent with the generalized Omori law. Thus, the dataset is similar to the earthquake data except that two power-law regimes are observed. Using the proposed model, we are able to identify underlying dynamics responsible in generating the observed dual power-law distributions. The model is universal enough for its applicability to any physical and human dynamics that is limited by finite resources such as space, energy, time or opportunity.

  11. Dynamics of protein aggregation and oligomer formation governed by secondary nucleation

    NASA Astrophysics Data System (ADS)

    Michaels, Thomas C. T.; Lazell, Hamish W.; Arosio, Paolo; Knowles, Tuomas P. J.

    2015-08-01

    The formation of aggregates in many protein systems can be significantly accelerated by secondary nucleation, a process where existing assemblies catalyse the nucleation of new species. In particular, secondary nucleation has emerged as a central process controlling the proliferation of many filamentous protein structures, including molecular species related to diseases such as sickle cell anemia and a range of neurodegenerative conditions. Increasing evidence suggests that the physical size of protein filaments plays a key role in determining their potential for deleterious interactions with living cells, with smaller aggregates of misfolded proteins, oligomers, being particularly toxic. It is thus crucial to progress towards an understanding of the factors that control the sizes of protein aggregates. However, the influence of secondary nucleation on the time evolution of aggregate size distributions has been challenging to quantify. This difficulty originates in large part from the fact that secondary nucleation couples the dynamics of species distant in size space. Here, we approach this problem by presenting an analytical treatment of the master equation describing the growth kinetics of linear protein structures proliferating through secondary nucleation and provide closed-form expressions for the temporal evolution of the resulting aggregate size distribution. We show how the availability of analytical solutions for the full filament distribution allows us to identify the key physical parameters that control the sizes of growing protein filaments. Furthermore, we use these results to probe the dynamics of the populations of small oligomeric species as they are formed through secondary nucleation and discuss the implications of our work for understanding the factors that promote or curtail the production of these species with a potentially high deleterious biological activity.

  12. Dynamics of protein aggregation and oligomer formation governed by secondary nucleation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaels, Thomas C. T., E-mail: tctm3@cam.ac.uk; Lazell, Hamish W.; Arosio, Paolo

    2015-08-07

    The formation of aggregates in many protein systems can be significantly accelerated by secondary nucleation, a process where existing assemblies catalyse the nucleation of new species. In particular, secondary nucleation has emerged as a central process controlling the proliferation of many filamentous protein structures, including molecular species related to diseases such as sickle cell anemia and a range of neurodegenerative conditions. Increasing evidence suggests that the physical size of protein filaments plays a key role in determining their potential for deleterious interactions with living cells, with smaller aggregates of misfolded proteins, oligomers, being particularly toxic. It is thus crucial tomore » progress towards an understanding of the factors that control the sizes of protein aggregates. However, the influence of secondary nucleation on the time evolution of aggregate size distributions has been challenging to quantify. This difficulty originates in large part from the fact that secondary nucleation couples the dynamics of species distant in size space. Here, we approach this problem by presenting an analytical treatment of the master equation describing the growth kinetics of linear protein structures proliferating through secondary nucleation and provide closed-form expressions for the temporal evolution of the resulting aggregate size distribution. We show how the availability of analytical solutions for the full filament distribution allows us to identify the key physical parameters that control the sizes of growing protein filaments. Furthermore, we use these results to probe the dynamics of the populations of small oligomeric species as they are formed through secondary nucleation and discuss the implications of our work for understanding the factors that promote or curtail the production of these species with a potentially high deleterious biological activity.« less

  13. Parallel Measurements of Light Scattering and Characterization of Marine Particles in Water: An Evaluation of Methodology

    DTIC Science & Technology

    2008-01-01

    A second objective is to characterize variability in the volume scattering function and particle size distribution for various optical water types...volume scattering function (VSF) and the particle size distribution (PSD) • Analysis of in situ optical measurements and particle size distributions ...SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY

  14. Dermally adhered soil: 2. Reconstruction of dry-sieve particle-size distributions from wet-sieve data.

    PubMed

    Choate, LaDonna M; Ranville, James F; Bunge, Annette L; Macalady, Donald L

    2006-10-01

    In the evaluation of soil particle-size effects on environmental processes, particle-size distributions are measured by either wet or dry sieving. Commonly, size distributions determined by wet and dry sieving differ because some particles disaggregate in water. Whereas the dry-sieve distributions are most relevant to the study of soil adherence to skin, soil can be recovered from skin only by washing with the potential for disaggregation whether or not it is subsequently wet or dry sieved. Thus, the possibility exists that wet-sieving measurements of the particle sizes that adhered to the skin could be skewed toward the smaller fractions. This paper provides a method by which dry-sieve particle-size distributions can be reconstructed from wet-sieve particle-size distributions for the same soil. The approach combines mass balances with a series of experiments in which wet sieving was applied to dry-sieve fractions from the original soil. Unless the soil moisture content is high (i.e., greater than or equal to the water content after equilibration with water-saturated air), only the soil particles of diameters less than about 63 microm adhere to the skin. Because of this, the adhering particle-size distribution calculated using the reconstruction method was not significantly different from the wet-sieving determinations.

  15. Sediment grain-size characteristics and relevant correlations to the aeolian environment in China's eastern desert region.

    PubMed

    Zhang, Chunlai; Shen, Yaping; Li, Qing; Jia, Wenru; Li, Jiao; Wang, Xuesong

    2018-06-15

    To identify characteristics of aeolian activity and the aeolian environment in China's eastern desert region, this study collected surface sediment samples from the main desert and sandy lands in this region: the Hobq Desert and the Mu Us, Otindag, Horqin, and Hulunbuir sandy lands. We analyzed the grain-size characteristics and their relationships to three key environmental indicators: drift potential, the dune mobility index, and vegetation cover. The main sediment components are fine to medium sands, with poor (Hulunbuir) to moderate (all other areas) sorting, of unimodal to bimodal distribution. This suggests that improved sorting is accomplished by the loss of both relatively coarser and finer grains. Since 2000, China's eastern desert region has generally experienced low wind energy environmental conditions, resulting in decreased dune activity. In the Hobq Desert, however, the dry climate and sparse vegetation, in conjunction with the most widely distributed mobile dune area in the eastern desert region, have led to frequent and intense aeolian activity, including wind erosion, sand transport, and deposition, resulting in conditions for good sediment sorting. In the Mu Us, Otindag, and Horqin sandy lands, mosaic distribution has resulted from wind erosion-dominated and deposition-dominated aeolian environments. In the Hulunbuir Sandy Land, high precipitation, low temperatures, and steppe vegetation have resulted in well-developed soils; however, strong winds and flat terrain have created an aeolian environment dominated by wind erosion. Copyright © 2018. Published by Elsevier B.V.

  16. New algorithm and system for measuring size distribution of blood cells

    NASA Astrophysics Data System (ADS)

    Yao, Cuiping; Li, Zheng; Zhang, Zhenxi

    2004-06-01

    In optical scattering particle sizing, a numerical transform is sought so that a particle size distribution can be determined from angular measurements of near forward scattering, which has been adopted in the measurement of blood cells. In this paper a new method of counting and classification of blood cell, laser light scattering method from stationary suspensions, is presented. The genetic algorithm combined with nonnegative least squared algorithm is employed to inverse the size distribution of blood cells. Numerical tests show that these techniques can be successfully applied to measuring size distribution of blood cell with high stability.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandage, Revati S.; McAteer, R. T. James, E-mail: mcateer@nmsu.edu

    A magnetic power spectral analysis is performed on 53 solar active regions, observed from 2011 August to 2012 July. Magnetic field data obtained from the Helioseismic and Magnetic Imager, inverted as Active Region Patches, are used to study the evolution of the magnetic power index as each region rotates across the solar disk. Active regions are classified based on the numbers and sizes of solar flares they produce in order to study the relationship between flare productivity and the magnetic power index. The choice of window size and inertial range plays a key role in determining the correct magnetic powermore » index. The overall distribution of magnetic power indices has a range of 1.0–2.5. Flare-quiet regions peak at a value of 1.6. However, flare-productive regions peak at a value of 2.2. Overall, the histogram of the distribution of power indices of flare-productive active regions is well separated from flare-quiet active regions. Only 12% of flare-quiet regions exhibit an index greater than 2, whereas 90% of flare-productive regions exhibit an index greater than 2. Flare-quiet regions exhibit a high temporal variance (i.e., the index fluctuates between high and low values), whereas flare-productive regions maintain an index greater than 2 for several days. This shows the importance of including the temporal evolution of active regions in flare prediction studies, and highlights the potential of a 2–3 day prediction window for space weather applications.« less

  18. Gas Bubble Migration and Trapping in Porous Media: Pore-Scale Simulation

    NASA Astrophysics Data System (ADS)

    Mahabadi, Nariman; Zheng, Xianglei; Yun, Tae Sup; van Paassen, Leon; Jang, Jaewon

    2018-02-01

    Gas bubbles can be naturally generated or intentionally introduced in sediments. Gas bubble migration and trapping affect the rate of gas emission into the atmosphere or modify the sediment properties such as hydraulic and mechanical properties. In this study, the migration and trapping of gas bubbles are simulated using the pore-network model extracted from the 3D X-ray image of in situ sediment. Two types of bubble size distribution (mono-sized and distributed-sized cases) are used in the simulation. The spatial and statistical bubble size distribution, residual gas saturation, and hydraulic conductivity reduction due to the bubble trapping are investigated. The results show that the bubble size distribution becomes wider during the gas bubble migration due to bubble coalescence for both mono-sized and distributed-sized cases. And the trapped bubble fraction and the residual gas saturation increase as the bubble size increases. The hydraulic conductivity is reduced as a result of the gas bubble trapping. The reduction in hydraulic conductivity is apparently observed as bubble size and the number of nucleation points increase.

  19. The clouds of Venus. II - An investigation of the influence of coagulation on the observed droplet size distribution

    NASA Technical Reports Server (NTRS)

    Rossow, W. B.

    1977-01-01

    An approximate numerical technique is used to investigate the influence of coagulation, sedimentation and turbulent motions on the observed droplet size distribution in the upper layers of the Venus clouds. If the cloud mass mixing ratio is less than 0.000001 at 250 K or the eddy diffusivity throughout the cloud is greater than 1,000,000 sq cm per sec, then coagulation is unimportant. In this case, the observed droplet size distribution is the initial size distribution produced by the condensation of the droplets. It is found that all cloud models with droplet formation near the cloud top (e.g., a photochemical model) must produce the observed droplet size distribution by condensation without subsequent modification by coagulation. However, neither meteoritic or surface dust can supply sufficient nucleating particles to account for the observed droplet number density. If the cloud droplets are formed near the cloud bottom, the observed droplet size distribution can be produced solely by the interaction of coagulation and dynamics; all information about the initial size distribution is lost. If droplet formation occurs near the cloud bottom, the lower atmosphere of Venus is oxidizing rather than reducing.

  20. Rapid measurement of sub-micrometer aerosol size distribution using a fast integrated mobility spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yang; Pinterich, Tamara; Wang, Jian

    We present rapid measurement of submicron particle size distributions enables the characterization of aerosols with fast changing properties, and is often necessary for measurements onboard mobile platforms (e.g., research aircraft). Aerosol mobility size distribution is commonly measured by a scanning mobility particle sizer (SMPS), which relies on voltage scanning or stepping to classify particles of different sizes, and may take up to several minutes to obtain a complete size spectrum of aerosol particles. The recently developed fast integrated mobility spectrometer (FIMS) with enhanced dynamic size range classifies and detects particles from 10 to ~600 nm simultaneously, allowing submicron aerosol mobilitymore » size distributions to be captured at a time resolution of 1 second. In this study, we present a detailed data inversion routine for deriving aerosol size distribution from FIMS measurements. The inversion routine takes into consideration the FIMS transfer function, particle penetration efficiency in the FIMS, and multiple charging of aerosols. The accuracy of the FIMS measurement is demonstrated by comparing parallel FIMS and SMPS measurements of stable aerosols with a wide range of size spectrum shapes, including ambient aerosols and aerosols classified by a differential mobility analyzer (DMA). The FIMS and SMPS-derived size distributions show excellent agreements for all aerosols tested. In addition, total number concentrations of ambient aerosols were integrated from 1 Hz FIMS size distributions, and compared with those directly measured by a condensation particle counter (CPC) operated in parallel. Finally, the integrated and measured total particle concentrations agree well within 5%.« less

  1. Rapid measurement of sub-micrometer aerosol size distribution using a fast integrated mobility spectrometer

    DOE PAGES

    Wang, Yang; Pinterich, Tamara; Wang, Jian

    2018-03-30

    We present rapid measurement of submicron particle size distributions enables the characterization of aerosols with fast changing properties, and is often necessary for measurements onboard mobile platforms (e.g., research aircraft). Aerosol mobility size distribution is commonly measured by a scanning mobility particle sizer (SMPS), which relies on voltage scanning or stepping to classify particles of different sizes, and may take up to several minutes to obtain a complete size spectrum of aerosol particles. The recently developed fast integrated mobility spectrometer (FIMS) with enhanced dynamic size range classifies and detects particles from 10 to ~600 nm simultaneously, allowing submicron aerosol mobilitymore » size distributions to be captured at a time resolution of 1 second. In this study, we present a detailed data inversion routine for deriving aerosol size distribution from FIMS measurements. The inversion routine takes into consideration the FIMS transfer function, particle penetration efficiency in the FIMS, and multiple charging of aerosols. The accuracy of the FIMS measurement is demonstrated by comparing parallel FIMS and SMPS measurements of stable aerosols with a wide range of size spectrum shapes, including ambient aerosols and aerosols classified by a differential mobility analyzer (DMA). The FIMS and SMPS-derived size distributions show excellent agreements for all aerosols tested. In addition, total number concentrations of ambient aerosols were integrated from 1 Hz FIMS size distributions, and compared with those directly measured by a condensation particle counter (CPC) operated in parallel. Finally, the integrated and measured total particle concentrations agree well within 5%.« less

  2. Size-isolation of ultrasound-mediated phase change perfluorocarbon droplets using differential centrifugation.

    PubMed

    Mercado, Karla P; Radhakrishnan, Kirthi; Stewart, Kyle; Snider, Lindsay; Ryan, Devin; Haworth, Kevin J

    2016-05-01

    Perfluorocarbon droplets that are capable of an ultrasound-mediated phase transition have applications in diagnostic and therapeutic ultrasound. Techniques to modify the droplet size distribution are of interest because of the size-dependent acoustic response of the droplets. Differential centrifugation has been used to isolate specific sizes of microbubbles. In this work, differential centrifugation was employed to isolate droplets with diameters between 1 and 3 μm and 2 and 5 μm from an initially polydisperse distribution. Further, an empirical model was developed for predicting the droplet size distribution following differential centrifugation and to facilitate the selection of centrifugation parameters for obtaining desired size distributions.

  3. Size-isolation of ultrasound-mediated phase change perfluorocarbon droplets using differential centrifugation

    PubMed Central

    Mercado, Karla P.; Radhakrishnan, Kirthi; Stewart, Kyle; Snider, Lindsay; Ryan, Devin; Haworth, Kevin J.

    2016-01-01

    Perfluorocarbon droplets that are capable of an ultrasound-mediated phase transition have applications in diagnostic and therapeutic ultrasound. Techniques to modify the droplet size distribution are of interest because of the size-dependent acoustic response of the droplets. Differential centrifugation has been used to isolate specific sizes of microbubbles. In this work, differential centrifugation was employed to isolate droplets with diameters between 1 and 3 μm and 2 and 5 μm from an initially polydisperse distribution. Further, an empirical model was developed for predicting the droplet size distribution following differential centrifugation and to facilitate the selection of centrifugation parameters for obtaining desired size distributions. PMID:27250199

  4. Optimizing Mississippi aggregates for concrete bridge decks.

    DOT National Transportation Integrated Search

    2012-12-01

    AASHTO M 43 Standard Specification for Sizes of Aggregate for Road and Bridge Construction : addresses particle size distribution of material included in various maximum nominal size aggregates. This : particle size distribution requires additi...

  5. Random Distribution Pattern and Non-adaptivity of Genome Size in a Highly Variable Population of Festuca pallens

    PubMed Central

    Šmarda, Petr; Bureš, Petr; Horová, Lucie

    2007-01-01

    Background and Aims The spatial and statistical distribution of genome sizes and the adaptivity of genome size to some types of habitat, vegetation or microclimatic conditions were investigated in a tetraploid population of Festuca pallens. The population was previously documented to vary highly in genome size and is assumed as a model for the study of the initial stages of genome size differentiation. Methods Using DAPI flow cytometry, samples were measured repeatedly with diploid Festuca pallens as the internal standard. Altogether 172 plants from 57 plots (2·25 m2), distributed in contrasting habitats over the whole locality in South Moravia, Czech Republic, were sampled. The differences in DNA content were confirmed by the double peaks of simultaneously measured samples. Key Results At maximum, a 1·115-fold difference in genome size was observed. The statistical distribution of genome sizes was found to be continuous and best fits the extreme (Gumbel) distribution with rare occurrences of extremely large genomes (positive-skewed), as it is similar for the log-normal distribution of the whole Angiosperms. Even plants from the same plot frequently varied considerably in genome size and the spatial distribution of genome sizes was generally random and unautocorrelated (P > 0·05). The observed spatial pattern and the overall lack of correlations of genome size with recognized vegetation types or microclimatic conditions indicate the absence of ecological adaptivity of genome size in the studied population. Conclusions These experimental data on intraspecific genome size variability in Festuca pallens argue for the absence of natural selection and the selective non-significance of genome size in the initial stages of genome size differentiation, and corroborate the current hypothetical model of genome size evolution in Angiosperms (Bennetzen et al., 2005, Annals of Botany 95: 127–132). PMID:17565968

  6. The 1845 Hekla eruption: Grain-size characteristics of a tephra layer

    NASA Astrophysics Data System (ADS)

    Gudnason, Jonas; Thordarson, Thor; Houghton, Bruce F.; Larsen, Gudrun

    2018-01-01

    The 1845 eruption is commonly viewed as a typical Hekla eruption. It is a key event in the eruptive history of the volcano, as it is one of the best documented Hekla eruptions, in terms of contemporary accounts and observations. The eruption started on 2 September 1845 with an intense, hour long explosive Plinian phase that passed into effusive activity, ending on the 16 March 1846. The amount of tephra produced in the opening phase was 0.13 km3/7.5 × 1010 kg. The total grain-size distribution of the deposit is bimodal with a dominant coarse mode at - 2.5 φ (5.6 mm) and a broad finer mode at 3 to 4.5 φ (0.125 to 0.045 mm). At individual sites, the grain-size distribution of the tephra from the Plinian opening phase is also commonly (not always) bimodal. Deconvolved grain-size distributions exhibit distinctly different sedimentation patterns of the coarse and fine subpopulations. The lapilli-dominated subpopulation fines rapidly with transport, while the ash-dominated subpopulation shows less changes with distance, indicating premature sedimentation of fines by aggregation from the 1845 volcanic plume. Tephra deposition was to the ESE of the volcano from a 19 km (a.s.l.) high eruption plume. The plume front travelled at speeds of 16-19 m s- 1. Reports of ash deposition onto ships near the Faroe and Shetland Islands, 700 to 1100 km away from Hekla, demonstrate that even moderate-sized Hekla eruptions can affect very large parts of European air-space.

  7. Constraining ejecta particle size distributions with light scattering

    NASA Astrophysics Data System (ADS)

    Schauer, Martin; Buttler, William; Frayer, Daniel; Grover, Michael; Lalone, Brandon; Monfared, Shabnam; Sorenson, Daniel; Stevens, Gerald; Turley, William

    2017-06-01

    The angular distribution of the intensity of light scattered from a particle is strongly dependent on the particle size and can be calculated using the Mie solution to Maxwell's equations. For a collection of particles with a range of sizes, the angular intensity distribution will be the sum of the contributions from each particle size weighted by the number of particles in that size bin. The set of equations describing this pattern is not uniquely invertible, i.e. a number of different distributions can lead to the same scattering pattern, but with reasonable assumptions about the distribution it is possible to constrain the problem and extract estimates of the particle sizes from a measured scattering pattern. We report here on experiments using particles ejected by shockwaves incident on strips of triangular perturbations machined into the surface of tin targets. These measurements indicate a bimodal distribution of ejected particle sizes with relatively large particles (median radius 2-4 μm) evolved from the edges of the perturbation strip and smaller particles (median radius 200-600 nm) from the perturbations. We will briefly discuss the implications of these results and outline future plans.

  8. Can airborne ultrasound monitor bubble size in chocolate?

    NASA Astrophysics Data System (ADS)

    Watson, N.; Hazlehurst, T.; Povey, M.; Vieira, J.; Sundara, R.; Sandoz, J.-P.

    2014-04-01

    Aerated chocolate products consist of solid chocolate with the inclusion of bubbles and are a popular consumer product in many countries. The volume fraction and size distribution of the bubbles has an effect on their sensory properties and manufacturing cost. For these reasons it is important to have an online real time process monitoring system capable of measuring their bubble size distribution. As these products are eaten by consumers it is desirable that the monitoring system is non contact to avoid food contaminations. In this work we assess the feasibility of using an airborne ultrasound system to monitor the bubble size distribution in aerated chocolate bars. The experimental results from the airborne acoustic experiments were compared with theoretical results for known bubble size distributions using COMSOL Multiphysics. This combined experimental and theoretical approach is used to develop a greater understanding of how ultrasound propagates through aerated chocolate and to assess the feasibility of using airborne ultrasound to monitor bubble size distribution in these systems. The results indicated that a smaller bubble size distribution would result in an increase in attenuation through the product.

  9. Copper Nanoparticles: Synthesis and Biological Activity

    NASA Astrophysics Data System (ADS)

    Satyvaldiev, A. S.; Zhasnakunov, Z. K.; Omurzak, E.; Doolotkeldieva, T. D.; Bobusheva, S. T.; Orozmatova, G. T.; Kelgenbaeva, Z.

    2018-01-01

    By means of XRD and FESEM analysis, it is established that copper nanoparticles with sizes less than 10 nm are formed during the chemical reduction, which form aggregates mainly with spherical shape. Presence of gelatin during the chemical reduction of copper induced formation of smaller size distribution nanoparticles than that of nanoparticles synthesized without gelatin and it can be related to formation of protective layer. Synthesized Cu nano-powders have sufficiently high activity against the Erwinia amylovora bacterium, and the bacterial growth inhibition depends on the Cu nanoparticles concentration. At a concentration of 5 mg / ml of Cu nanoparticles, the exciter growth inhibition zone reaches a maximum value within 72 hours and the lysis zone is 20 mm, and at a concentration of 1 mg / ml this value is 16 mm, which also indicates the significant antibacterial activity of this sample.

  10. Number size distribution of fine and ultrafine fume particles from various welding processes.

    PubMed

    Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas

    2013-04-01

    Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated.

  11. Cascades in the Threshold Model for varying system sizes

    NASA Astrophysics Data System (ADS)

    Karampourniotis, Panagiotis; Sreenivasan, Sameet; Szymanski, Boleslaw; Korniss, Gyorgy

    2015-03-01

    A classical model in opinion dynamics is the Threshold Model (TM) aiming to model the spread of a new opinion based on the social drive of peer pressure. Under the TM a node adopts a new opinion only when the fraction of its first neighbors possessing that opinion exceeds a pre-assigned threshold. Cascades in the TM depend on multiple parameters, such as the number and selection strategy of the initially active nodes (initiators), and the threshold distribution of the nodes. For a uniform threshold in the network there is a critical fraction of initiators for which a transition from small to large cascades occurs, which for ER graphs is largerly independent of the system size. Here, we study the spread contribution of each newly assigned initiator under the TM for different initiator selection strategies for synthetic graphs of various sizes. We observe that for ER graphs when large cascades occur, the spread contribution of the added initiator on the transition point is independent of the system size, while the contribution of the rest of the initiators converges to zero at infinite system size. This property is used for the identification of large transitions for various threshold distributions. Supported in part by ARL NS-CTA, ARO, ONR, and DARPA.

  12. Modeling East Asian Dust and Its Radiative Feedbacks in CAM4-BAM

    DOE PAGES

    Xie, Xiaoning; Liu, Xiaodong; Che, Huizheng; ...

    2018-01-18

    East Asian dust and its radiative feedbacks are analyzed by the use of the fourth version of the Community Atmosphere Model (CAM4) with a bulk aerosol model parameterization (BAM) for the dust size distribution (CAM4-BAM). Two numerical experiments are conducted and intercompared: one with (Active) and one without (Passive) the radiative effects of dust aerosols. This CAM4-BAM captures the main spatial distribution of the dust aerosol optical depth (AOD) and the dust surface concentrations over East Asia, with positive correlations with the local observational data on annual and seasonal means. A comparative analysis of the Active and Passive experiments revealsmore » that consideration of the dust-radiation interaction can significantly reduce dust emissions, loading, transport, and dry and wet depositions over East Asia, which is opposite to the enhanced dust cycle over North Africa. Further analysis of the contrasting dust-radiation feedbacks between North Africa and East Asia shows that over North Africa, the dust radiative forcing significantly increases the surface temperature and 10-m wind speed, whereas it decreases the surface temperature and the surface wind speeds over East Asia. These contrasting radiative effects, in turn, result in distinct dust cycle changes over these two regions. Thus, mechanistic analysis reveals that the radiative contrasts between East Asia and North Africa are mainly due to the differences in their regional surface albedo, dust vertical distribution and size distribution.« less

  13. Modeling East Asian Dust and Its Radiative Feedbacks in CAM4-BAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xiaoning; Liu, Xiaodong; Che, Huizheng

    East Asian dust and its radiative feedbacks are analyzed by the use of the fourth version of the Community Atmosphere Model (CAM4) with a bulk aerosol model parameterization (BAM) for the dust size distribution (CAM4-BAM). Two numerical experiments are conducted and intercompared: one with (Active) and one without (Passive) the radiative effects of dust aerosols. This CAM4-BAM captures the main spatial distribution of the dust aerosol optical depth (AOD) and the dust surface concentrations over East Asia, with positive correlations with the local observational data on annual and seasonal means. A comparative analysis of the Active and Passive experiments revealsmore » that consideration of the dust-radiation interaction can significantly reduce dust emissions, loading, transport, and dry and wet depositions over East Asia, which is opposite to the enhanced dust cycle over North Africa. Further analysis of the contrasting dust-radiation feedbacks between North Africa and East Asia shows that over North Africa, the dust radiative forcing significantly increases the surface temperature and 10-m wind speed, whereas it decreases the surface temperature and the surface wind speeds over East Asia. These contrasting radiative effects, in turn, result in distinct dust cycle changes over these two regions. Thus, mechanistic analysis reveals that the radiative contrasts between East Asia and North Africa are mainly due to the differences in their regional surface albedo, dust vertical distribution and size distribution.« less

  14. Poly (lactic-co-glycolic acid) particles prepared by microfluidics and conventional methods. Modulated particle size and rheology.

    PubMed

    Perez, Aurora; Hernández, Rebeca; Velasco, Diego; Voicu, Dan; Mijangos, Carmen

    2015-03-01

    Microfluidic techniques are expected to provide narrower particle size distribution than conventional methods for the preparation of poly (lactic-co-glycolic acid) (PLGA) microparticles. Besides, it is hypothesized that the particle size distribution of poly (lactic-co-glycolic acid) microparticles influences the settling behavior and rheological properties of its aqueous dispersions. For the preparation of PLGA particles, two different methods, microfluidic and conventional oil-in-water emulsification methods were employed. The particle size and particle size distribution of PLGA particles prepared by microfluidics were studied as a function of the flow rate of the organic phase while particles prepared by conventional methods were studied as a function of stirring rate. In order to study the stability and structural organization of colloidal dispersions, settling experiments and oscillatory rheological measurements were carried out on aqueous dispersions of PLGA particles with different particle size distributions. Microfluidics technique allowed the control of size and size distribution of the droplets formed in the process of emulsification. This resulted in a narrower particle size distribution for samples prepared by MF with respect to samples prepared by conventional methods. Polydisperse samples showed a larger tendency to aggregate, thus confirming the advantages of microfluidics over conventional methods, especially if biomedical applications are envisaged. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Size distribution and growth rate of crystal nuclei near critical undercooling in small volumes

    NASA Astrophysics Data System (ADS)

    Kožíšek, Z.; Demo, P.

    2017-11-01

    Kinetic equations are numerically solved within standard nucleation model to determine the size distribution of nuclei in small volumes near critical undercooling. Critical undercooling, when first nuclei are detected within the system, depends on the droplet volume. The size distribution of nuclei reaches the stationary value after some time delay and decreases with nucleus size. Only a certain maximum size of nuclei is reached in small volumes near critical undercooling. As a model system, we selected recently studied nucleation in Ni droplet [J. Bokeloh et al., Phys. Rev. Let. 107 (2011) 145701] due to available experimental and simulation data. However, using these data for sample masses from 23 μg up to 63 mg (corresponding to experiments) leads to the size distribution of nuclei, when no critical nuclei in Ni droplet are formed (the number of critical nuclei < 1). If one takes into account the size dependence of the interfacial energy, the size distribution of nuclei increases to reasonable values. In lower volumes (V ≤ 10-9 m3) nucleus size reaches some maximum extreme size, which quickly increases with undercooling. Supercritical clusters continue their growth only if the number of critical nuclei is sufficiently high.

  16. High-resolution, submicron particle size distribution analysis using gravitational-sweep sedimentation.

    PubMed Central

    Mächtle, W

    1999-01-01

    Sedimentation velocity is a powerful tool for the analysis of complex solutions of macromolecules. However, sample turbidity imposes an upper limit to the size of molecular complexes currently amenable to such analysis. Furthermore, the breadth of the particle size distribution, combined with possible variations in the density of different particles, makes it difficult to analyze extremely complex mixtures. These same problems are faced in the polymer industry, where dispersions of latices, pigments, lacquers, and emulsions must be characterized. There is a rich history of methods developed for the polymer industry finding use in the biochemical sciences. Two such methods are presented. These use analytical ultracentrifugation to determine the density and size distributions for submicron-sized particles. Both methods rely on Stokes' equations to estimate particle size and density, whereas turbidity, corrected using Mie's theory, provides the concentration measurement. The first method uses the sedimentation time in dispersion media of different densities to evaluate the particle density and size distribution. This method works provided the sample is chemically homogeneous. The second method splices together data gathered at different sample concentrations, thus permitting the high-resolution determination of the size distribution of particle diameters ranging from 10 to 3000 nm. By increasing the rotor speed exponentially from 0 to 40,000 rpm over a 1-h period, size distributions may be measured for extremely broadly distributed dispersions. Presented here is a short history of particle size distribution analysis using the ultracentrifuge, along with a description of the newest experimental methods. Several applications of the methods are provided that demonstrate the breadth of its utility, including extensions to samples containing nonspherical and chromophoric particles. PMID:9916040

  17. Morphology of clusters of attractive dry and wet self-propelled spherical particle suspensions.

    PubMed

    Alarcón, Francisco; Valeriani, Chantal; Pagonabarraga, Ignacio

    2017-01-25

    In order to assess the effect of hydrodynamics in the assembly of active attractive spheres, we simulate a semi-dilute suspension of attractive self-propelled spherical particles in a quasi-two dimensional geometry comparing the case with and without hydrodynamics interactions. To start with, independent of the presence of hydrodynamics, we observe that depending on the ratio between attraction and propulsion, particles either coarsen or aggregate forming finite-size clusters. Focusing on the clustering regime, we characterize two different cluster parameters, i.e. their morphology and orientational order, and compare the case when active particles behave either as pushers or pullers (always in the regime where inter-particle attractions compete with self-propulsion). Studying cluster phases for squirmers with respect to those obtained for active Brownian disks (indicated as ABPs), we have shown that hydrodynamics alone can sustain a cluster phase of active swimmers (pullers), while ABPs form cluster phases due to the competition between attraction and self-propulsion. The structural properties of the cluster phases of squirmers and ABPs are similar, although squirmers show sensitivity to active stresses. Active Brownian disks resemble weakly pusher squirmer suspensions in terms of cluster size distribution, structure of the radius of gyration on the cluster size and degree of cluster polarity.

  18. Simulating Bubble Plumes from Breaking Waves with a Forced-Air Venturi

    NASA Astrophysics Data System (ADS)

    Long, M. S.; Keene, W. C.; Maben, J. R.; Chang, R. Y. W.; Duplessis, P.; Kieber, D. J.; Beaupre, S. R.; Frossard, A. A.; Kinsey, J. D.; Zhu, Y.; Lu, X.; Bisgrove, J.

    2017-12-01

    It has been hypothesized that the size distribution of bubbles in subsurface seawater is a major factor that modulates the corresponding size distribution of primary marine aerosol (PMA) generated when those bubbles burst at the air-water interface. A primary physical control of the bubble size distribution produced by wave breaking is the associated turbulence that disintegrates larger bubbles into smaller ones. This leads to two characteristic features of bubble size distributions: (1) the Hinze scale which reflects a bubble size above which disintegration is possible based on turbulence intensity and (2) the slopes of log-linear regressions of the size distribution on either side of the Hinze scale that indicate the state of plume evolution or age. A Venturi with tunable seawater and forced air flow rates was designed and deployed in an artificial PMA generator to produce bubble plumes representative of breaking waves. This approach provides direct control of turbulence intensity and, thus, the resulting bubble size distribution characterizable by observations of the Hinze scale and the simulated plume age over a range of known air detrainment rates. Evaluation of performance in different seawater types over the western North Atlantic demonstrated that the Venturi produced bubble plumes with parameter values that bracket the range of those observed in laboratory and field experiments. Specifically, the seawater flow rate modulated the value of the Hinze scale while the forced-air flow rate modulated the plume age parameters. Results indicate that the size distribution of sub-surface bubbles within the generator did not significantly modulate the corresponding number size distribution of PMA produced via bubble bursting.

  19. Stimulating Positive Emotional Experiences in Mathematics Learning: Influence of Situational and Personal Factors

    ERIC Educational Resources Information Center

    Winberg, T. Mikael; Hellgren, Jenny M.; Palm, Torulf

    2014-01-01

    The study aims to assess the relative importance of a large number of variables for predicting students' positive-activating emotions during mathematics learning. Participants were 668 first-year upper secondary school students from 33 schools of different sizes and locations. Two questionnaires were distributed, one assessing students'…

  20. Photochemical potential of forest fire smoke

    Treesearch

    W. Henry Benner; Paul Urone; Charles K. McMahon; Paul Ryan

    1977-01-01

    A stainless steel laboratory chamber to hold the entire combustion products from a small scale pine needle fire was useful for measuring the photochemical activity of pine needle fire smoke. Particle size distributions indicated that the nucleation of small numbers of submicron particles was sufficient to increase the amount of light a plume would scatter. Artificial...

  1. Colony size-frequency distribution of pocilloporid juvenile corals along a natural environmental gradient in the Red Sea.

    PubMed

    Lozano-Cortés, Diego F; Berumen, Michael L

    2016-04-30

    Coral colony size-frequency distributions can be used to assess population responses to local environmental conditions and disturbances. In this study, we surveyed juvenile pocilloporids, herbivorous fish densities, and algal cover in the central and southern Saudi Arabian Red Sea. We sampled nine reefs with different disturbance histories along a north-south natural gradient of physicochemical conditions (higher salinity and wider temperature fluctuations in the north, and higher turbidity and productivity in the south). Since coral populations with negatively skewed size-frequency distributions have been associated with unfavorable environmental conditions, we expected to find more negative distributions in the southern Red Sea, where corals are potentially experiencing suboptimal conditions. Although juvenile coral and parrotfish densities differed significantly between the two regions, mean colony size and size-frequency distributions did not. Results suggest that pocilloporid colony size-frequency distribution may not be an accurate indicator of differences in biological or oceanographic conditions in the Red Sea. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Size distribution of magnetic iron oxide nanoparticles using Warren-Averbach XRD analysis

    NASA Astrophysics Data System (ADS)

    Mahadevan, S.; Behera, S. P.; Gnanaprakash, G.; Jayakumar, T.; Philip, J.; Rao, B. P. C.

    2012-07-01

    We use the Fourier transform based Warren-Averbach (WA) analysis to separate the contributions of X-ray diffraction (XRD) profile broadening due to crystallite size and microstrain for magnetic iron oxide nanoparticles. The profile shape of the column length distribution, obtained from WA analysis, is used to analyze the shape of the magnetic iron oxide nanoparticles. From the column length distribution, the crystallite size and its distribution are estimated for these nanoparticles which are compared with size distribution obtained from dynamic light scattering measurements. The crystallite size and size distribution of crystallites obtained from WA analysis are explained based on the experimental parameters employed in preparation of these magnetic iron oxide nanoparticles. The variation of volume weighted diameter (Dv, from WA analysis) with saturation magnetization (Ms) fits well to a core shell model wherein it is known that Ms=Mbulk(1-6g/Dv) with Mbulk as bulk magnetization of iron oxide and g as magnetic shell disorder thickness.

  3. Competition for popularity in bipartite networks.

    PubMed

    Díaz, Mariano Beguerisse; Porter, Mason A; Onnela, Jukka-Pekka

    2010-12-01

    We present a dynamical model for rewiring and attachment in bipartite networks. Edges are placed between nodes that belong to catalogs that can either be fixed in size or growing in size. The model is motivated by an empirical study of data from the video rental service Netflix, which invites its users to give ratings to the videos available in its catalog. We find that the distribution of the number of ratings given by users and that of the number of ratings received by videos both follow a power law with an exponential cutoff. We also examine the activity patterns of Netflix users and find bursts of intense video-rating activity followed by long periods of inactivity. We derive ordinary differential equations to model the acquisition of edges by the nodes over time and obtain the corresponding time-dependent degree distributions. We then compare our results with the Netflix data and find good agreement. We conclude with a discussion of how catalog models can be used to study systems in which agents are forced to choose, rate, or prioritize their interactions from a large set of options. © 2010 American Institute of Physics.

  4. Competition for popularity in bipartite networks

    NASA Astrophysics Data System (ADS)

    Beguerisse Díaz, Mariano; Porter, Mason A.; Onnela, Jukka-Pekka

    2010-12-01

    We present a dynamical model for rewiring and attachment in bipartite networks. Edges are placed between nodes that belong to catalogs that can either be fixed in size or growing in size. The model is motivated by an empirical study of data from the video rental service Netflix, which invites its users to give ratings to the videos available in its catalog. We find that the distribution of the number of ratings given by users and that of the number of ratings received by videos both follow a power law with an exponential cutoff. We also examine the activity patterns of Netflix users and find bursts of intense video-rating activity followed by long periods of inactivity. We derive ordinary differential equations to model the acquisition of edges by the nodes over time and obtain the corresponding time-dependent degree distributions. We then compare our results with the Netflix data and find good agreement. We conclude with a discussion of how catalog models can be used to study systems in which agents are forced to choose, rate, or prioritize their interactions from a large set of options.

  5. Identification and chemical characterization of particulate matter from wave soldering processes at a printed circuit board manufacturing company.

    PubMed

    Szoboszlai, Z; Kertész, Zs; Szikszai, Z; Angyal, A; Furu, E; Török, Zs; Daróczi, L; Kiss, A Z

    2012-02-15

    In this case study, the elemental composition and mass size distribution of indoor aerosol particles were determined in a working environment where soldering of printed circuit boards (PCB) took place. Single particle analysis using ion and electron microscopy was carried out to obtain more detailed and reliable data about the origin of these particles. As a result, outdoor and indoor aerosol sources such as wave soldering, fluxing processes, workers' activity, mineral dust, biomass burning, fertilizing and other anthropogenic sources could be separated. With the help of scanning electron microscopy, characteristic particle types were identified. On the basis of the mass size distribution data, a stochastic lung deposition model was used to calculate the total and regional deposition efficiencies of the different types of particles within the human respiratory system. The information presented in this study aims to give insights into the detailed characteristics and the health impact of aerosol particles in a working environment where different kinds of soldering activity take place. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Study on the properties of chromium residue-cement matrices (CRCM) and the influences of superplasticizers on chromium(VI)-immobilising capability of cement matrices.

    PubMed

    Shi, Hui-Sheng; Kan, Li-Li

    2009-03-15

    The study of cementitious activity of chromium residue (CR) was carried out to formulate the properties of chromium residue-cement matrices (CRCM) by blending CR with Ordinary Portland Cement (OPC). The particle size distribution, microstructures of CR were investigated by some apparatuses, and physical properties, leaching behavior of hexavalent chromium [Cr(VI)] of CRCM were also determined by some experiments. Three types of commonly used superplasticizers (sulphonated acetone formaldehyde superplasticizer (J1), polycarboxylate-based superplasticizer (J2) and naphthalene superplasticizer (J3)) were chosen to investigate their influences on the physical properties and the Cr(VI)-immobilisation in the leachate of the CRCM hardened pastes. The results show that the CR has a certain cementitious activity. The incorporation of CR improves the pore size distribution of CRCM. The Cr(VI) concentrations in the leachate of CRCM significantly decrease by incorporation of J2. Among three superplasticizers, J2 achieves lowest Cr(VI) leaching ratio. Based on this study, it is likely to develop CR as a potential new additive used in cement-based materials.

  7. Random versus maximum entropy models of neural population activity

    NASA Astrophysics Data System (ADS)

    Ferrari, Ulisse; Obuchi, Tomoyuki; Mora, Thierry

    2017-04-01

    The principle of maximum entropy provides a useful method for inferring statistical mechanics models from observations in correlated systems, and is widely used in a variety of fields where accurate data are available. While the assumptions underlying maximum entropy are intuitive and appealing, its adequacy for describing complex empirical data has been little studied in comparison to alternative approaches. Here, data from the collective spiking activity of retinal neurons is reanalyzed. The accuracy of the maximum entropy distribution constrained by mean firing rates and pairwise correlations is compared to a random ensemble of distributions constrained by the same observables. For most of the tested networks, maximum entropy approximates the true distribution better than the typical or mean distribution from that ensemble. This advantage improves with population size, with groups as small as eight being almost always better described by maximum entropy. Failure of maximum entropy to outperform random models is found to be associated with strong correlations in the population.

  8. Body size distributions signal a regime shift in a lake ...

    EPA Pesticide Factsheets

    Communities of organisms, from mammals to microorganisms, have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at multiple spatial and temporal scales. In this study, we assessed whether body size patterns serve as an indicator of a threshold between alternative regimes. Over the past 7000 years, the biological communities of Foy Lake (Montana,USA) have undergone a major regime shift owing to climate change. We used a palaeoecological record of diatom communities to estimate diatom sizes, and then analysed the discontinuous distribution of organism sizes over time. We used Bayesian classification and regression tree models to determine that all time intervals exhibited aggregations of sizes separated by gaps in the distribution and found a significant change in diatom body size distributions approximately 150 years before the identified ecosystem regime shift. We suggest that discontinuity analysis is a useful addition to the suite of tools for the detection of early warning signals of regime shifts. Communities of organisms from mammals to microorganisms have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at discrete spatial and temporal scales within ecosystems. Here, a paleoecological record of diatom community change is use

  9. Predictive modelling of grain-size distributions from marine electromagnetic profiling data using end-member analysis and a radial basis function network

    NASA Astrophysics Data System (ADS)

    Baasch, B.; Müller, H.; von Dobeneck, T.

    2018-07-01

    In this work, we present a new methodology to predict grain-size distributions from geophysical data. Specifically, electric conductivity and magnetic susceptibility of seafloor sediments recovered from electromagnetic profiling data are used to predict grain-size distributions along shelf-wide survey lines. Field data from the NW Iberian shelf are investigated and reveal a strong relation between the electromagnetic properties and grain-size distribution. The here presented workflow combines unsupervised and supervised machine-learning techniques. Non-negative matrix factorization is used to determine grain-size end-members from sediment surface samples. Four end-members were found, which well represent the variety of sediments in the study area. A radial basis function network modified for prediction of compositional data is then used to estimate the abundances of these end-members from the electromagnetic properties. The end-members together with their predicted abundances are finally back transformed to grain-size distributions. A minimum spatial variation constraint is implemented in the training of the network to avoid overfitting and to respect the spatial distribution of sediment patterns. The predicted models are tested via leave-one-out cross-validation revealing high prediction accuracy with coefficients of determination (R2) between 0.76 and 0.89. The predicted grain-size distributions represent the well-known sediment facies and patterns on the NW Iberian shelf and provide new insights into their distribution, transition and dynamics. This study suggests that electromagnetic benthic profiling in combination with machine learning techniques is a powerful tool to estimate grain-size distribution of marine sediments.

  10. Microstructure characterization of 316L deformed at high strain rates using EBSD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yvell, K., E-mail: kyv@du.se

    2016-12-15

    Specimens from split Hopkinson pressure bar experiments, at strain rates between ~ 1000–9000 s{sup −1} at room temperature and 500 °C, have been studied using electron backscatter diffraction. No significant differences in the microstructures were observed at different strain rates, but were observed for different strains and temperatures. Size distribution for subgrains with boundary misorientations > 2° can be described as a bimodal lognormal area distribution. The distributions were found to change due to deformation. Part of the distribution describing the large subgrains decreased while the distribution for the small subgrains increased. This is in accordance with deformation being heterogeneousmore » and successively spreading into the undeformed part of individual grains. The variation of the average size for the small subgrain distribution varies with strain but not with strain rate in the tested interval. The mean free distance for dislocation slip, interpreted here as the average size of the distribution of small subgrains, displays a variation with plastic strain which is in accordance with the different stages in the stress-strain curves. The rate of deformation hardening in the linear hardening range is accurately calculated using the variation of the small subgrain size with strain. - Highlights: •Only changes in strain, not strain rate, gave differences in the microstructure. •A bimodal lognormal size distribution was found to describe the size distribution. •Variation of the subgrain fraction sizes agrees with models for heterogeneous slip. •Variation of subgrain size with strain describes part of the stress strain curve.« less

  11. Predictive modelling of grain size distributions from marine electromagnetic profiling data using end-member analysis and a radial basis function network

    NASA Astrophysics Data System (ADS)

    Baasch, B.; M"uller, H.; von Dobeneck, T.

    2018-04-01

    In this work we present a new methodology to predict grain-size distributions from geophysical data. Specifically, electric conductivity and magnetic susceptibility of seafloor sediments recovered from electromagnetic profiling data are used to predict grain-size distributions along shelf-wide survey lines. Field data from the NW Iberian shelf are investigated and reveal a strong relation between the electromagnetic properties and grain-size distribution. The here presented workflow combines unsupervised and supervised machine learning techniques. Nonnegative matrix factorisation is used to determine grain-size end-members from sediment surface samples. Four end-members were found which well represent the variety of sediments in the study area. A radial-basis function network modified for prediction of compositional data is then used to estimate the abundances of these end-members from the electromagnetic properties. The end-members together with their predicted abundances are finally back transformed to grain-size distributions. A minimum spatial variation constraint is implemented in the training of the network to avoid overfitting and to respect the spatial distribution of sediment patterns. The predicted models are tested via leave-one-out cross-validation revealing high prediction accuracy with coefficients of determination (R2) between 0.76 and 0.89. The predicted grain-size distributions represent the well-known sediment facies and patterns on the NW Iberian shelf and provide new insights into their distribution, transition and dynamics. This study suggests that electromagnetic benthic profiling in combination with machine learning techniques is a powerful tool to estimate grain-size distribution of marine sediments.

  12. VOLTTRON™: Tech-to-Market Best-Practices Guide for Small- and Medium-Sized Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cort, Katherine A.; Haack, Jereme N.; Katipamula, Srinivas

    VOLTTRON™ is an open-source distributed control and sensing platform developed by Pacific Northwest National Laboratory for the U.S. Department of Energy. It was developed to be used by the Office of Energy Efficiency and Renewable Energy to support transactive controls research and deployment activities. VOLTTRON is designed to be an overarching integration platform that could be used to bring together vendors, users, and developers and enable rapid application development and testing. The platform is designed to support modern control strategies, including the use of agent- and transaction-based controls. It also is designed to support the management of a wide rangemore » of applications, including heating, ventilation, and air-conditioning systems; electric vehicles; and distributed-energy and whole-building loads. This report was completed as part of the Building Technologies Office’s Technology-to-Market Initiative for VOLTTRON’s Market Validation and Business Case Development efforts. The report provides technology-to-market guidance and best practices related to VOLTTRON platform deployments and commercialization activities for use by entities serving small- and medium-sized commercial buildings. The report characterizes the platform ecosystem within the small- and medium-sized commercial building market and articulates the value proposition of VOLTTRON for three core participants in this ecosystem: 1) platform owners/adopters, 2) app developers, and 3) end-users. The report also identifies key market drivers and opportunities for open platform deployments in the small- and medium-sized commercial building market. Possible pathways to the market are described—laboratory testing to market adoption to commercialization. We also identify and address various technical and market barriers that could hinder deployment of VOLTTRON. Finally, we provide “best practice” tech-to-market guidance for building energy-related deployment efforts serving small- and medium-sized commercial buildings.« less

  13. Solvothermal in situ synthesis of Fe{sub 3}O{sub 4}-multi-walled carbon nanotubes with enhanced heterogeneous Fenton-like activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Jingheng; Wen, Xianghua, E-mail: xhwen@tsinghua.edu.cn; Wang, Qinian

    Graphical abstract: After purification, the multi-wall carbon nanotubes (MWCNTs) act as seeds for Fe{sub 3}O{sub 4} nanoparticles heterogeneous nucleation. The Fe{sub 3}O{sub 4} nanoparticles with diameter range of 4.2–10.0 nm synthesized in situ on the MWCNTs under solvothermal condition. The formed nano Fe{sub 3}O{sub 4}-MWCNTs decolorized the Acid Orange II effectively via Fenton-like reaction. Highlights: ► The amount of water tunes size and size distribution of the Fe{sub 3}O{sub 4} nanoparticles (FNs). ► FNs are homogeneously coated on the multi-walled carbon nanotubes (MWCNTs). ► FNs have diameters in the range of 4.2–10.0 nm, average grain size of 7.4 nm. ►more » Fe{sub 3}O{sub 4}-MWCNTs are used as a Fenton-like catalyst to decompose Acid Orange II. ► Fe{sub 3}O{sub 4}-MWCNTs displayed a higher activity than nanometer-size Fe{sub 3}O{sub 4}. -- Abstract: Fe{sub 3}O{sub 4}-multi-walled carbon nanotubes (Fe{sub 3}O{sub 4}-MWCNTs) hybrid materials were synthesized by a solvothermal process using acid treated MWCNTs and iron acetylacetonate in a mixed solution of ethylene glycol and ultrapure water. The materials were characterized using X-ray powder diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. The results showed that a small amount of water in the synthesis system played a role in controlling crystal phase formation, size of Fe{sub 3}O{sub 4}, and the homogeneous distribution of the Fe{sub 3}O{sub 4} nanoparticles deposited on the MWCNTs. The Fe{sub 3}O{sub 4} nanoparticles had diameters in the range of 4.2–10.0 nm. They displayed good superparamagnetism at room temperature and their magnetization was influenced by the reaction conditions. They were used as a Fenton-like catalyst to decompose Acid Orange II and displayed a higher activity than nanometer-size Fe{sub 3}O{sub 4}.« less

  14. Growth models and the expected distribution of fluctuating asymmetry

    USGS Publications Warehouse

    Graham, John H.; Shimizu, Kunio; Emlen, John M.; Freeman, D. Carl; Merkel, John

    2003-01-01

    Multiplicative error accounts for much of the size-scaling and leptokurtosis in fluctuating asymmetry. It arises when growth involves the addition of tissue to that which is already present. Such errors are lognormally distributed. The distribution of the difference between two lognormal variates is leptokurtic. If those two variates are correlated, then the asymmetry variance will scale with size. Inert tissues typically exhibit additive error and have a gamma distribution. Although their asymmetry variance does not exhibit size-scaling, the distribution of the difference between two gamma variates is nevertheless leptokurtic. Measurement error is also additive, but has a normal distribution. Thus, the measurement of fluctuating asymmetry may involve the mixing of additive and multiplicative error. When errors are multiplicative, we recommend computing log E(l) − log E(r), the difference between the logarithms of the expected values of left and right sides, even when size-scaling is not obvious. If l and r are lognormally distributed, and measurement error is nil, the resulting distribution will be normal, and multiplicative error will not confound size-related changes in asymmetry. When errors are additive, such a transformation to remove size-scaling is unnecessary. Nevertheless, the distribution of l − r may still be leptokurtic.

  15. Inferred Lunar Boulder Distributions at Decimeter Scales

    NASA Technical Reports Server (NTRS)

    Baloga, S. M.; Glaze, L. S.; Spudis, P. D.

    2012-01-01

    Block size distributions of impact deposits on the Moon are diagnostic of the impact process and environmental effects, such as target lithology and weathering. Block size distributions are also important factors in trafficability, habitability, and possibly the identification of indigenous resources. Lunar block sizes have been investigated for many years for many purposes [e.g., 1-3]. An unresolved issue is the extent to which lunar block size distributions can be extrapolated to scales smaller than limits of resolution of direct measurement. This would seem to be a straightforward statistical application, but it is complicated by two issues. First, the cumulative size frequency distribution of observable boulders rolls over due to resolution limitations at the small end. Second, statistical regression provides the best fit only around the centroid of the data [4]. Confidence and prediction limits splay away from the best fit at the endpoints resulting in inferences in the boulder density at the CPR scale that can differ by many orders of magnitude [4]. These issues were originally investigated by Cintala and McBride [2] using Surveyor data. The objective of this study was to determine whether the measured block size distributions from Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC-NAC) images (m-scale resolution) can be used to infer the block size distribution at length scales comparable to Mini-RF Circular Polarization Ratio (CPR) scales, nominally taken as 10 cm. This would set the stage for assessing correlations of inferred block size distributions with CPR returns [6].

  16. Particle size distributions by transmission electron microscopy: an interlaboratory comparison case study

    PubMed Central

    Rice, Stephen B; Chan, Christopher; Brown, Scott C; Eschbach, Peter; Han, Li; Ensor, David S; Stefaniak, Aleksandr B; Bonevich, John; Vladár, András E; Hight Walker, Angela R; Zheng, Jiwen; Starnes, Catherine; Stromberg, Arnold; Ye, Jia; Grulke, Eric A

    2015-01-01

    This paper reports an interlaboratory comparison that evaluated a protocol for measuring and analysing the particle size distribution of discrete, metallic, spheroidal nanoparticles using transmission electron microscopy (TEM). The study was focused on automated image capture and automated particle analysis. NIST RM8012 gold nanoparticles (30 nm nominal diameter) were measured for area-equivalent diameter distributions by eight laboratories. Statistical analysis was used to (1) assess the data quality without using size distribution reference models, (2) determine reference model parameters for different size distribution reference models and non-linear regression fitting methods and (3) assess the measurement uncertainty of a size distribution parameter by using its coefficient of variation. The interlaboratory area-equivalent diameter mean, 27.6 nm ± 2.4 nm (computed based on a normal distribution), was quite similar to the area-equivalent diameter, 27.6 nm, assigned to NIST RM8012. The lognormal reference model was the preferred choice for these particle size distributions as, for all laboratories, its parameters had lower relative standard errors (RSEs) than the other size distribution reference models tested (normal, Weibull and Rosin–Rammler–Bennett). The RSEs for the fitted standard deviations were two orders of magnitude higher than those for the fitted means, suggesting that most of the parameter estimate errors were associated with estimating the breadth of the distributions. The coefficients of variation for the interlaboratory statistics also confirmed the lognormal reference model as the preferred choice. From quasi-linear plots, the typical range for good fits between the model and cumulative number-based distributions was 1.9 fitted standard deviations less than the mean to 2.3 fitted standard deviations above the mean. Automated image capture, automated particle analysis and statistical evaluation of the data and fitting coefficients provide a framework for assessing nanoparticle size distributions using TEM for image acquisition. PMID:26361398

  17. Bioaccessibility and Antioxidant Activity of Calendula officinalis Supercritical Extract as Affected by in Vitro Codigestion with Olive Oil.

    PubMed

    Martin, Diana; Navarro Del Hierro, Joaquín; Villanueva Bermejo, David; Fernández-Ruiz, Ramón; Fornari, Tiziana; Reglero, Guillermo

    2016-11-23

    Supercritical extracts of marigold (ME) were produced and characterized. The bioaccessibility of terpenes, especially that of pentacyclic triterpenes (PT), the particle-size distribution, and antioxidant activity after the in vitro codigestion of ME with olive oil (OO) were determined. ME produced without cosolvent was richer in taraxasterol, lupeol, α-amyrin, and β-amyrin than extracts with cosolvent. All terpenes showed high bioaccessibility without OO (>75%). Significant correlations were found between the molecular properties of compounds (logP and number of rotatable bonds) and their bioaccessibility. Codigestion with OO enhanced the bioaccessibility (around 100% for PT), which could be related to a higher abundance of low-size particles of the digestion medium. The antioxidant activity of the digested ME increased around 50%, regardless of OO. PT-rich extracts from marigold display high bioaccessibility and improved antioxidant activity after in vitro digestion, although complete bioaccessibility of PT can be reached by codigestion with oil, without affecting antioxidant activity.

  18. Regulation of Synaptic Structure by the Ubiquitin C-terminal Hydrolase UCH-L1

    PubMed Central

    Cartier, Anna E.; Djakovic, Stevan N.; Salehi, Afshin; Wilson, Scott M.; Masliah, Eliezer; Patrick, Gentry N.

    2009-01-01

    UCH-L1 is a de-ubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We have found that UCH-L1 activity is rapidly up-regulated by NMDA receptor activation which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of pre and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1 inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner. PMID:19535597

  19. Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1.

    PubMed

    Cartier, Anna E; Djakovic, Stevan N; Salehi, Afshin; Wilson, Scott M; Masliah, Eliezer; Patrick, Gentry N

    2009-06-17

    Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We found that UCH-L1 activity is rapidly upregulated by NMDA receptor activation, which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of presynaptic and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1-inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling, most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner.

  20. Correction to the plant canopy gap-size analysis theory used by the Tracing Radiation and Architecture of Canopies instrument

    NASA Astrophysics Data System (ADS)

    Leblanc, Sylvain G.

    2002-12-01

    A plant canopy gap-size analyzer, the Tracing Radiation and Architecture of Canopies (TRAC), developed by Chen and Cihlar [Appl. Opt. 34, 6211 (1995)] and commercialized by 3rd Wave Engineering (Nepean, Canada), has been used around the world to quantify the fraction of photosynthetically active radiation absorbed by plant canopies, the leaf area index (LAI), and canopy architectural parameters. The TRAC is walked under a canopy along transects to measure sunflecks that are converted into a gap-size distribution. A numerical gap-removal technique is performed to remove gaps that are not theoretically possible in a random canopy. The resulting reduced gap-size distribution is used to quantify the heterogeneity of the canopy and to improve LAI measurements. It is explicitly shown here that the original derivation of the clumping index was missing a normalization factor. For a very clumped canopy with a large gap fraction, the resulting LAI can be more than 100% smaller than previously estimated. A test case is used to demonstrate that the new clumping index derivation allows a more accurate change of LAI to be measured.

  1. Investigation of element distributions in Luna-16 regolith

    NASA Astrophysics Data System (ADS)

    Kuznetsov, R. A.; Lure, B. G.; Minevich, V. Ia.; Stiuf, V. I.; Pankratov, V. B.

    1981-03-01

    The concentrations of 32 elements in fractions of different grain sizes in the samples of the lunar regolith brought back by Luna-16 are determined by means of neutron activation analysis. Four groups of elements are distinguished on the basis of the variations of their concentration with grain size, and concentration variations of the various elements with sample depth are also noted. Chemical leaching of the samples combined with neutron activation also reveals differences in element concentrations in the water soluble, metallic, sulphide, phosphate, rare mineral and rock phases of the samples. In particular, the rare earth elements are observed to be depleted in the regolith with respect to chondritic values, and to be concentrated in the phase extracted with 14 M HNO3.

  2. Sizes and locations of coronal mass ejections - SMM observations from 1980 and 1984-1989

    NASA Technical Reports Server (NTRS)

    Hundhausen, A. J.

    1993-01-01

    A statistical description of the sizes and locations of 1209 mass ejections observed with the SMM coronagraph/polarimeter in 1980 and 1984-1989 is presented. The average width of the coronal mass ejections detected with this instrument was close to 40 deg in angle for the entire period of SMM observations. No evidence was found for a significant change in mass ejection widths as reported by Howard et al. (1986). There is clear evidence for changes in the latitude distribution of mass ejections over this epoch. Mass ejections occurred over a much wider range of latitudes at the times of high solar activity (1980 and 1989) than at times of low activity (1985-1986).

  3. Radon decay products in realistic living rooms and their activity distributions in human respiratory system.

    PubMed

    Mohery, M; Abdallah, A M; Baz, S S; Al-Amoudi, Z M

    2014-12-01

    In this study, the individual activity concentrations of attached short-lived radon decay products ((218)Po, (214)Pb and (214)Po) in aerosol particles were measured in ten poorly ventilated realistic living rooms. Using standard methodologies, the samples were collected using a filter holder technique connected with alpha-spectrometric. The mean value of air activity concentration of these radionuclides was found to be 5.3±0.8, 4.5±0.5 and 3.9±0.4 Bq m(-3), respectively. Based on the physical properties of the attached decay products and physiological parameters of light work activity for an adult human male recommended by ICRP 66 and considering the parameters of activity size distribution (AMD = 0.25 μm and σ(g) = 2.5) given by NRC, the total and regional deposition fractions in each airway generation could be evaluated. Moreover, the total and regional equivalent doses in the human respiratory tract could be estimated. In addition, the surface activity distribution per generation is calculated for the bronchial region (BB) and the bronchiolar region (bb) of the respiratory system. The maximum values of these activities were found in the upper bronchial airway generations. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Probing the stochastic property of endoreduplication in cell size determination of Arabidopsis thaliana leaf epidermal tissue

    PubMed Central

    2017-01-01

    Cell size distribution is highly reproducible, whereas the size of individual cells often varies greatly within a tissue. This is obvious in a population of Arabidopsis thaliana leaf epidermal cells, which ranged from 1,000 to 10,000 μm2 in size. Endoreduplication is a specialized cell cycle in which nuclear genome size (ploidy) is doubled in the absence of cell division. Although epidermal cells require endoreduplication to enhance cellular expansion, the issue of whether this mechanism is sufficient for explaining cell size distribution remains unclear due to a lack of quantitative understanding linking the occurrence of endoreduplication with cell size diversity. Here, we addressed this question by quantitatively summarizing ploidy profile and cell size distribution using a simple theoretical framework. We first found that endoreduplication dynamics is a Poisson process through cellular maturation. This finding allowed us to construct a mathematical model to predict the time evolution of a ploidy profile with a single rate constant for endoreduplication occurrence in a given time. We reproduced experimentally measured ploidy profile in both wild-type leaf tissue and endoreduplication-related mutants with this analytical solution, further demonstrating the probabilistic property of endoreduplication. We next extended the mathematical model by incorporating the element that cell size is determined according to ploidy level to examine cell size distribution. This analysis revealed that cell size is exponentially enlarged 1.5 times every endoreduplication round. Because this theoretical simulation successfully recapitulated experimentally observed cell size distributions, we concluded that Poissonian endoreduplication dynamics and exponential size-boosting are the sources of the broad cell size distribution in epidermal tissue. More generally, this study contributes to a quantitative understanding whereby stochastic dynamics generate steady-state biological heterogeneity. PMID:28926847

  5. Particles size distribution in diluted magnetic fluids

    NASA Astrophysics Data System (ADS)

    Yerin, Constantine V.

    2017-06-01

    Changes in particles and aggregates size distribution in diluted kerosene based magnetic fluids is studied by dynamic light scattering method. It has been found that immediately after dilution in magnetic fluids the system of aggregates with sizes ranging from 100 to 250-1000 nm is formed. In 50-100 h after dilution large aggregates are peptized and in the sample stationary particles and aggregates size distribution is fixed.

  6. Morphologically controlled synthesis of ferric oxide nano/micro particles and their catalytic application in dry and wet media: a new approach.

    PubMed

    Janjua, Muhammad Ramzan Saeed Ashraf; Jamil, Saba; Jahan, Nazish; Khan, Shanza Rauf; Mirza, Saima

    2017-05-31

    Morphologically controlled synthesis of ferric oxide nano/micro particles has been carried out by using solvothermal route. Structural characterization displays that the predominant morphologies are porous hollow spheres, microspheres, micro rectangular platelets, octahedral and irregular shaped particles. It is also observed that solvent has significant effect on morphology such as shape and size of the particles. All the morphologies obtained by using different solvents are nearly uniform with narrow size distribution range. The values of full width at half maxima (FWHM) of all the products were calculated to compare their size distribution. The FWHM value varies with size of the particles for example small size particles show polydispersity whereas large size particles have shown monodispersity. The size of particles increases with decrease in polarity of the solvent whereas their shape changes from spherical to rectangular/irregular with decrease in polarity of the solvent. The catalytic activities of all the products were investigated for both dry and wet processes such as thermal decomposition of ammonium per chlorate (AP) and reduction of 4-nitrophenol in aqueous media. The results indicate that each product has a tendency to act as a catalyst. The porous hollow spheres decrease the thermal decomposition temperature of AP by 140 °C and octahedral Fe 3 O 4 particles decrease the decomposition temperature by 30 °C. The value of apparent rate constant (k app ) of reduction of 4-NP has also been calculated.

  7. Determining Size Distribution at the Phoenix Landing Site

    NASA Astrophysics Data System (ADS)

    Mason, E. L.; Lemmon, M. T.

    2016-12-01

    Dust aerosols play a crucial role in determining atmospheric radiative heating on Mars through absorption and scattering of sunlight. How dust scatters and absorbs light is dependent on size, shape, composition, and quantity. Optical properties of the dust have been well constrained in the visible and near infrared wavelengths using various methods [Wolff et al. 2009, Lemmon et al. 2004]. In addition, the dust is nonspherical, and irregular shapes have shown to work well in determining effective particle size [Pollack et al. 1977]. Variance of the size distribution is less constrained but constitutes an important parameter in fully describing the dust. The Phoenix Lander's Surface Stereo Imager performed several cross-sky brightness surveys to determine the size distribution and scattering properties of dust in the wavelength range of 400 to 1000 nm. In combination with a single-layer radiative transfer model, these surveys can be used to help constrain variance of the size distribution. We will present a discussion of seasonal size distribution as it pertains to the Phoenix landing site.

  8. Interfacial nanodroplets guided construction of hierarchical Au, Au-Pt, and Au-Pd particles as excellent catalysts

    NASA Astrophysics Data System (ADS)

    Ma, Aijing; Xu, Jie; Zhang, Xuehua; Zhang, Bin; Wang, Dayang; Xu, Haolan

    2014-05-01

    Interfacial nanodroplets were grafted to the surfaces of self-sacrificed template particles in a galvanic reaction system to assist the construction of 3D Au porous structures. The interfacial nanodroplets were formed via direct adsorption of surfactant-free emulsions onto the particle surfaces. The interfacial nanodroplets discretely distributed at the template particle surfaces and served as soft templates to guide the formation of porous Au structures. The self-variation of footprint sizes of interfacial nanodroplets during Au growth gave rise to a hierarchical pore size distribution of the obtained Au porous particles. This strategy could be easily extended to synthesize bimetal porous particles such as Au-Pt and Au-Pd. The obtained porous Au, Au-Pt, and Au-Pd particles showed excellent catalytic activity in catalytic reduction of 4-nitrophenol.

  9. Methods for estimating 2D cloud size distributions from 1D observations

    DOE PAGES

    Romps, David M.; Vogelmann, Andrew M.

    2017-08-04

    The two-dimensional (2D) size distribution of clouds in the horizontal plane plays a central role in the calculation of cloud cover, cloud radiative forcing, convective entrainment rates, and the likelihood of precipitation. Here, a simple method is proposed for calculating the area-weighted mean cloud size and for approximating the 2D size distribution from the 1D cloud chord lengths measured by aircraft and vertically pointing lidar and radar. This simple method (which is exact for square clouds) compares favorably against the inverse Abel transform (which is exact for circular clouds) in the context of theoretical size distributions. Both methods also performmore » well when used to predict the size distribution of real clouds from a Landsat scene. When applied to a large number of Landsat scenes, the simple method is able to accurately estimate the mean cloud size. Finally, as a demonstration, the methods are applied to aircraft measurements of shallow cumuli during the RACORO campaign, which then allow for an estimate of the true area-weighted mean cloud size.« less

  10. Methods for estimating 2D cloud size distributions from 1D observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romps, David M.; Vogelmann, Andrew M.

    The two-dimensional (2D) size distribution of clouds in the horizontal plane plays a central role in the calculation of cloud cover, cloud radiative forcing, convective entrainment rates, and the likelihood of precipitation. Here, a simple method is proposed for calculating the area-weighted mean cloud size and for approximating the 2D size distribution from the 1D cloud chord lengths measured by aircraft and vertically pointing lidar and radar. This simple method (which is exact for square clouds) compares favorably against the inverse Abel transform (which is exact for circular clouds) in the context of theoretical size distributions. Both methods also performmore » well when used to predict the size distribution of real clouds from a Landsat scene. When applied to a large number of Landsat scenes, the simple method is able to accurately estimate the mean cloud size. Finally, as a demonstration, the methods are applied to aircraft measurements of shallow cumuli during the RACORO campaign, which then allow for an estimate of the true area-weighted mean cloud size.« less

  11. Effects of Macroporous Resin Size on Candida antarctica Lipase B Adsorption, Fraction of Active Molecules, and Catalytic Activity for Polyester Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen,B.; Miller, E.; Miller, L.

    2007-01-01

    Methyl methacrylate resins with identical average pore diameter (250 {angstrom}) and surface area (500 m{sup 2}/g) but with varied particle size (35 to 560-710 {mu}m) were employed to study how immobilization resin particle size influences Candida antarctica Lipase B (CALB) loading, fraction of active sites, and catalytic properties for polyester synthesis. CALB adsorbed more rapidly on smaller beads. Saturation occurred in less than 30 s and 48 h for beads with diameters 35 and 560-710 {mu}m, respectively. Linearization of adsorption isotherm data by the Scatchard analysis showed for the 35 {mu}m resin that: (1) CALB loading at saturation was wellmore » below that required to form a monolayer and fully cover the support surface and (2) CALB has a high affinity for this resin surface. Infrared microspectroscopy showed that CALB forms protein loading fronts for resins with particle sizes 560-710 and 120 {mu}m. In contrast, CALB appears evenly distributed throughout 35 {mu}m resins. By titration with p-nitrophenyl n-hexyl phosphate (MNPHP), the fraction of active CALB molecules adsorbed onto resins was <50% which was not influenced by particle size. The fraction of active CALB molecules on the 35 {mu}m support increased from 30 to 43% as enzyme loading was increased from 0.9 to 5.7% (w/w) leading to increased activity for {epsilon}-caprolactone ({epsilon}-CL) ring-opening polymerization. At about 5% w/w CALB loading, by decreasing the immobilization support diameter from 560-710 to 120, 75, and 35 {mu}m, conversion of {epsilon}-CL % to polyester increased (20 to 36, 42, and 61%, respectively, at 80 min). Similar trends were observed for condensation polymerizations between 1,8-octanediol and adipic acid.« less

  12. The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology.

    PubMed

    He, Jingfeng; Duan, Chenlong; Lei, Mingzhe; Zhu, Xuemei

    2016-01-01

    The secondary release of mercury from coal fly ash is a negative by-product from coal-fired power plants, and requires effective control to reduce environmental pollution. Analysing particle size distribution and composition of the coal fly ash produced by different mercury removing technologies indicates that the particles are generally less than 0.5 mm in size and are composed mainly of SiO2, Al2O3, and Fe2O3. The relationships between mercury concentration in the coal fly ash, its particle size, and loss of ignition were studied using different mercury removing approaches. The research indicates that the coal fly ash's mercury levels are significantly higher after injecting activated carbon or brominating activated carbon when compared to regular cooperating-pollution control technology. This is particularly true for particle size ranges of >0.125, 0.075-0.125, and 0.05-0.075 mm. Leaching experiments revealed the secondary release of mercury in discarded coal fly ash. The concentration of mercury in the coal fly ash increases as the quantity of injecting activated carbon or brominating activated carbon increases. The leached concentrations of mercury increase as the particle size of the coal fly ash increases. Therefore, the secondary release of mercury can be controlled by adding suitable activated carbon or brominating activated carbon when disposing of coal fly ash. Adding CaBr2 before coal combustion in the boiler also helps control the secondary release of mercury, by increasing the Hg(2+) concentration in the leachate. This work provides a theoretical foundation for controlling and removing mercury in coal fly ash disposal.

  13. Variability of the occurrence frequency of solar flares as a function of peak hard X-ray rate

    NASA Technical Reports Server (NTRS)

    Bai, T.

    1993-01-01

    We study the occurrence frequency of solar flares as a function of the hard X-ray peak count rate, using observations of the Solar Maximum Mission. The size distributions are well represented by power-law distributions with negative indices. As a better alternative to the conventional method, we devise a maximum likelihood method of determining the power-law index of the size distribution. We find that the power-law index of the size distribution changes with time and with the phase of the 154-day periodicity. The size distribution is steeper during the maximum years of solar cycle 21 (1980 and 1981) than during the declining phase (1982-1984). The size distribution, however, is flatter during the maximum phase of the 154-day periodicity than during the minimum phase. The implications of these findings are discussed.

  14. Influence of measurement frequency on the evaluation of short-term dose of sub-micrometric particles during indoor and outdoor generation events

    NASA Astrophysics Data System (ADS)

    Manigrasso, M.; Stabile, L.; Avino, P.; Buonanno, G.

    2013-03-01

    Aerosol generation events due to combustion processes are characterized by high particle emissions in the nucleation mode range. Such particles are characterized by very short atmospheric lifetimes, leading to rapid decay in time and space from the emission point. Therefore, the deposited fraction of inhaled particles (dose) also changes. In fact, close to the emission source, high short-term peak exposures occur. The related exposure estimates should therefore rely on measurements of aerosol number-size distributions able to track rapid aerosol dynamics. In order to study the influence of the time resolution on such estimates, simultaneous measurements were carried out via Scanning Mobility Particle Sizer (SMPS) and Fast Mobility Particle Sizer (FMPS) spectrometers during particle generation events in both indoor (cooking activities) and outdoor (airstrip and urban street canyons) microenvironments. Aerosol size distributions in the range 16-520 nm were measured by SMPS and FMPS at frequencies of 0.007 s-1 and 1 s-1, respectively. Based on the two datasets, respiratory dosimetry estimates were made on the basis of the deposition model of the International Commission on Radiological Protection. During cooking activities, SMPS measurements give an approximate representation of aerosol temporal evolution. Consequently, the related instant doses can be approximated to a fair degree. In the two outdoor microenvironments considered, aerosol size distributions change rapidly: the FMPS is able to follow such evolution, whereas the SMPS is not. The high short-term peak concentrations, and the consequent respiratory doses, evidenced by FMPS data are hardly described by SMPS, which is unable to track the fast aerosol changes. The health relevance of such short peak exposures has not been thoroughly investigated in scientific literature, therefore, in the present paper highly time-resolved and size-resolved dosimetry estimates were provided in order to deepen this aspect.

  15. Microwave-Assisted Synthesis of Perovskite SrSnO 3 Nanocrystals in Ionic Liquids for Photocatalytic Applications

    DOE PAGES

    Alammar, Tarek; Hamm, Ines; Grasmik, Viktoria; ...

    2017-06-05

    Nanosized SrSnO 3 photocatalysts have been successfully synthesized by microwave synthesis in various ionic liquids (ILs) followed by a heat treatment process to optimize the materials’ crystallinity. The influence of the ILs with various cations such as 1-butyl-3-methylimidazolium ([C 4mim] +), 6-bis(3-methylimidazolium-1-yl)hexane ([C 6(mim) 2] 2+), butylpyridinium ([C 4Py] +), and tetradecyltrihexylphosphonium ([P 66614] +) and bis(trifluoromethanesulfonyl)amide ([Tf 2N] -) as the anion on the structure, crystallization, and morphology of the products was investigated. The samples were characterized by X-ray diffraction (XRD), thermogravimetry (TG), scanning electron microscopy (SEM), surface area analysis by gas adsorption, X-ray photoelectron spectroscopy (XPS), diffuse reflectancemore » UV–vis spectroscopy, and Raman and IR spectroscopy. According to structure characterization by XRD and Raman spectroscopy all samples crystallized phase-pure in the orthorhombic GdFeO 3 perovskite structure type. SEM reveals that, on the basis of the IL, the obtained SrSnO 3 nanoparticles exhibit different morphologies and sizes. Rod-shaped particles are formed in [C 4mim][Tf 2N], [C 6(mim) 2][Tf 2N] 2, and [P 66614][Tf 2N]. However, the particle dimensions and size distribution vary depending on the IL and range from quite thin and long needlelike particles with a narrow size distribution obtained in [P 66614][Tf 2N] to relatively larger particles with a broader size distribution obtained in [C 6(mim) 2][Tf 2N] 2. In contrast, in [C 4Py][Tf 2N] nanospheres with a diameter of about 50 nm form. For these particles the highest photocatalytic activity was observed. Our investigations indicate that the improved photocatalytic activity of this material results from the synergistic effect of the relatively large surface area associated with nanosize and an appropriate energy band structure.« less

  16. The fate of calcium carbonate nanoparticles administered by oral route: absorption and their interaction with biological matrices

    PubMed Central

    Lee, Jeong-A; Kim, Mi-Kyung; Kim, Hyoung-Mi; Lee, Jong Kwon; Jeong, Jayoung; Kim, Young-Rok; Oh, Jae-Min; Choi, Soo-Jin

    2015-01-01

    Background Orally administered particles rapidly interact with biological fluids containing proteins, enzymes, electrolytes, and other biomolecules to eventually form particles covered by a corona, and this corona potentially affects particle uptake, fate, absorption, distribution, and elimination in vivo. This study explored relationships between the biological interactions of calcium carbonate particles and their biokinetics. Methods We examined the effects of food grade calcium carbonates of different particle size (nano [N-Cal] and bulk [B-Cal]: specific surface areas of 15.8 and 0.83 m2/g, respectively) on biological interactions in in vitro simulated physiological fluids, ex vivo biofluids, and in vivo in gastrointestinal fluid. Moreover, absorption and tissue distribution of calcium carbonates were evaluated following a single dose oral administration to rats. Results N-Cal interacted more with biomatrices than bulk materials in vitro and ex vivo, as evidenced by high fluorescence quenching ratios, but it did not interact more actively with biomatrices in vivo. Analysis of coronas revealed that immunoglobulin, apolipoprotein, thrombin, and fibrinogen, were the major corona proteins, regardless of particle size. A biokinetic study revealed that orally delivered N-Cal was more rapidly absorbed into the blood stream than B-Cal, but no significant differences were observed between the two in terms of absorption efficiencies or tissue distributions. Both calcium carbonates were primarily present as particulate forms in gastrointestinal fluids but enter the circulatory system in dissolved Ca2+, although both types showed partial phase transformation to dicalcium phosphate dihydrate. Relatively low dissolution (about 4%), no remarkable protein–particle interaction, and the major particulate fate of calcium carbonate in vivo gastrointestinal fluids can explain its low oral absorption (about 4%) regardless of particle size. Conclusion We conclude that calcium carbonate nanoparticles can act more actively with biological matrices in vitro and ex vivo, but that in vivo, their biological interactions and biokinetics are not affected by particle size. PMID:25848250

  17. The fate of calcium carbonate nanoparticles administered by oral route: absorption and their interaction with biological matrices.

    PubMed

    Lee, Jeong-A; Kim, Mi-Kyung; Kim, Hyoung-Mi; Lee, Jong Kwon; Jeong, Jayoung; Kim, Young-Rok; Oh, Jae-Min; Choi, Soo-Jin

    2015-01-01

    Orally administered particles rapidly interact with biological fluids containing proteins, enzymes, electrolytes, and other biomolecules to eventually form particles covered by a corona, and this corona potentially affects particle uptake, fate, absorption, distribution, and elimination in vivo. This study explored relationships between the biological interactions of calcium carbonate particles and their biokinetics. We examined the effects of food grade calcium carbonates of different particle size (nano [N-Cal] and bulk [B-Cal]: specific surface areas of 15.8 and 0.83 m(2)/g, respectively) on biological interactions in in vitro simulated physiological fluids, ex vivo biofluids, and in vivo in gastrointestinal fluid. Moreover, absorption and tissue distribution of calcium carbonates were evaluated following a single dose oral administration to rats. N-Cal interacted more with biomatrices than bulk materials in vitro and ex vivo, as evidenced by high fluorescence quenching ratios, but it did not interact more actively with biomatrices in vivo. Analysis of coronas revealed that immunoglobulin, apolipoprotein, thrombin, and fibrinogen, were the major corona proteins, regardless of particle size. A biokinetic study revealed that orally delivered N-Cal was more rapidly absorbed into the blood stream than B-Cal, but no significant differences were observed between the two in terms of absorption efficiencies or tissue distributions. Both calcium carbonates were primarily present as particulate forms in gastrointestinal fluids but enter the circulatory system in dissolved Ca(2+), although both types showed partial phase transformation to dicalcium phosphate dihydrate. Relatively low dissolution (about 4%), no remarkable protein-particle interaction, and the major particulate fate of calcium carbonate in vivo gastrointestinal fluids can explain its low oral absorption (about 4%) regardless of particle size. We conclude that calcium carbonate nanoparticles can act more actively with biological matrices in vitro and ex vivo, but that in vivo, their biological interactions and biokinetics are not affected by particle size.

  18. Spatial distribution of temporal dynamics in anthropogenic fires in miombo savanna woodlands of Tanzania.

    PubMed

    Tarimo, Beatrice; Dick, Øystein B; Gobakken, Terje; Totland, Ørjan

    2015-12-01

    Anthropogenic uses of fire play a key role in regulating fire regimes in African savannas. These fires contribute the highest proportion of the globally burned area, substantial biomass burning emissions and threaten maintenance and enhancement of carbon stocks. An understanding of fire regimes at local scales is required for the estimation and prediction of the contribution of these fires to the global carbon cycle and for fire management. We assessed the spatio-temporal distribution of fires in miombo woodlands of Tanzania, utilizing the MODIS active fire product and Landsat satellite images for the past ~40 years. Our results show that up to 50.6% of the woodland area is affected by fire each year. An early and a late dry season peak in wetter and drier miombo, respectively, characterize the annual fire season. Wetter miombo areas have higher fire activity within a shorter annual fire season and have shorter return intervals. The fire regime is characterized by small-sized fires, with a higher ratio of small than large burned areas in the frequency-size distribution (β = 2.16 ± 0.04). Large-sized fires are rare, and occur more frequently in drier than in wetter miombo. Both fire prevalence and burned extents have decreased in the past decade. At a large scale, more than half of the woodland area has less than 2 years of fire return intervals, which prevent the occurrence of large intense fires. The sizes of fires, season of burning and spatial extent of occurrence are generally consistent across time, at the scale of the current analysis. Where traditional use of fire is restricted, a reassessment of fire management strategies may be required, if sustainability of tree cover is a priority. In such cases, there is a need to combine traditional and contemporary fire management practices.

  19. 40 CFR Table F-3 to Subpart F of... - Critical Parameters of Idealized Ambient Particle Size Distributions

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ambient Particle Size Distributions F Table F-3 to Subpart F of Part 53 Protection of Environment... Ambient Particle Size Distributions Idealized Distribution Fine Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m3) Coarse Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m3) PM2.5/PM10 Ratio FRM Sampler...

  20. 40 CFR Table F-3 to Subpart F of... - Critical Parameters of Idealized Ambient Particle Size Distributions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Ambient Particle Size Distributions F Table F-3 to Subpart F of Part 53 Protection of Environment... Ambient Particle Size Distributions Idealized Distribution Fine Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m 3) Coarse Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m 3) PM 2.5/PM 10 Ratio FRM Sampler...

  1. 40 CFR Table F-3 to Subpart F of... - Critical Parameters of Idealized Ambient Particle Size Distributions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Ambient Particle Size Distributions F Table F-3 to Subpart F of Part 53 Protection of Environment... Ambient Particle Size Distributions Idealized Distribution Fine Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m3) Coarse Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m3) PM2.5/PM10 Ratio FRM Sampler...

  2. 40 CFR Table F-3 to Subpart F of... - Critical Parameters of Idealized Ambient Particle Size Distributions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Ambient Particle Size Distributions F Table F-3 to Subpart F of Part 53 Protection of Environment... Ambient Particle Size Distributions Idealized Distribution Fine Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m3) Coarse Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m3) PM2.5/PM10 Ratio FRM Sampler...

  3. 40 CFR Table F-3 to Subpart F of... - Critical Parameters of Idealized Ambient Particle Size Distributions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Ambient Particle Size Distributions F Table F-3 to Subpart F of Part 53 Protection of Environment... Ambient Particle Size Distributions Idealized Distribution Fine Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m3) Coarse Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m3) PM 2.5/PM 10 Ratio FRM Sampler...

  4. Three-phase boundary length in solid-oxide fuel cells: A mathematical model

    NASA Astrophysics Data System (ADS)

    Janardhanan, Vinod M.; Heuveline, Vincent; Deutschmann, Olaf

    A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution.

  5. In Situ Balloon-Borne Ice Particle Imaging in High-Latitude Cirrus

    NASA Astrophysics Data System (ADS)

    Kuhn, Thomas; Heymsfield, Andrew J.

    2016-09-01

    Cirrus clouds reflect incoming solar radiation, creating a cooling effect. At the same time, these clouds absorb the infrared radiation from the Earth, creating a greenhouse effect. The net effect, crucial for radiative transfer, depends on the cirrus microphysical properties, such as particle size distributions and particle shapes. Knowledge of these cloud properties is also needed for calibrating and validating passive and active remote sensors. Ice particles of sizes below 100 µm are inherently difficult to measure with aircraft-mounted probes due to issues with resolution, sizing, and size-dependent sampling volume. Furthermore, artefacts are produced by shattering of particles on the leading surfaces of the aircraft probes when particles several hundred microns or larger are present. Here, we report on a series of balloon-borne in situ measurements that were carried out at a high-latitude location, Kiruna in northern Sweden (68N 21E). The method used here avoids these issues experienced with the aircraft probes. Furthermore, with a balloon-borne instrument, data are collected as vertical profiles, more useful for calibrating or evaluating remote sensing measurements than data collected along horizontal traverses. Particles are collected on an oil-coated film at a sampling speed given directly by the ascending rate of the balloon, 4 m s-1. The collecting film is advanced uniformly inside the instrument so that an always unused section of the film is exposed to ice particles, which are measured by imaging shortly after sampling. The high optical resolution of about 4 µm together with a pixel resolution of 1.65 µm allows particle detection at sizes of 10 µm and larger. For particles that are 20 µm (12 pixel) in size or larger, the shape can be recognized. The sampling volume, 130 cm3 s-1, is well defined and independent of particle size. With the encountered number concentrations of between 4 and 400 L-1, this required about 90- to 4-s sampling times to determine particle size distributions of cloud layers. Depending on how ice particles vary through the cloud, several layers per cloud with relatively uniform properties have been analysed. Preliminary results of the balloon campaign, targeting upper tropospheric, cold cirrus clouds, are presented here. Ice particles in these clouds were predominantly very small, with a median size of measured particles of around 50 µm and about 80 % of all particles below 100 µm in size. The properties of the particle size distributions at temperatures between -36 and -67 °C have been studied, as well as particle areas, extinction coefficients, and their shapes (area ratios). Gamma and log-normal distribution functions could be fitted to all measured particle size distributions achieving very good correlation with coefficients R of up to 0.95. Each distribution features one distinct mode. With decreasing temperature, the mode diameter decreases exponentially, whereas the total number concentration increases by two orders of magnitude with decreasing temperature in the same range. The high concentrations at cold temperatures also caused larger extinction coefficients, directly determined from cross-sectional areas of single ice particles, than at warmer temperatures. The mass of particles has been estimated from area and size. Ice water content (IWC) and effective diameters are then determined from the data. IWC did vary only between 1 × 10-3 and 5 × 10-3 g m-3 at temperatures below -40 °C and did not show a clear temperature trend. These measurements are part of an ongoing study.

  6. Spatial Distribution of Bed Particles in Natural Boulder-Bed Streams

    NASA Astrophysics Data System (ADS)

    Clancy, K. F.; Prestegaard, K. L.

    2001-12-01

    The Wolman pebble count is used to obtain the size distribution of bed particles in natural streams. Statistics such as median particle size (D50) are used in resistance calculations. Additional information such as bed particle heterogeneity may also be obtained from the particle distribution, which is used to predict sediment transport rates (Hey, 1979), (Ferguson, Prestegaard, Ashworth, 1989). Boulder-bed streams have an extreme range of particles in the particle size distribution ranging from sand size particles to particles larger than 0.5-m. A study of a natural boulder-bed reach demonstrated that the spatial distribution of the particles is a significant factor in predicting sediment transport and stream bed and bank stability. Further experiments were performed to test the limits of the spatial distribution's effect on sediment transport. Three stream reaches 40-m in length were selected with similar hydrologic characteristics and spatial distributions but varying average size particles. We used a grid 0.5 by 0.5-m and measured four particles within each grid cell. Digital photographs of the streambed were taken in each grid cell. The photographs were examined using image analysis software to obtain particle size and position of the largest particles (D84) within the reach's particle distribution. Cross section, topography and stream depth were surveyed. Velocity and velocity profiles were measured and recorded. With these data and additional surveys of bankfull floods, we tested the significance of the spatial distributions as average particle size decreases. The spatial distribution of streambed particles may provide information about stream valley formation, bank stability, sediment transport, and the growth rate of riparian vegetation.

  7. Comparative studies on the properties of glycyrrhetinic acid-loaded PLGA microparticles prepared by emulsion and template methods.

    PubMed

    Wang, Hong; Zhang, Guangxing; Sui, Hong; Liu, Yanhua; Park, Kinam; Wang, Wenping

    2015-12-30

    The O/W emulsion method has been widely used for the production of poly (lactide-co-glycolide) (PLGA) microparticles. Recently, a template method has been used to make homogeneous microparticles with predefined size and shape, and shown to be useful in encapsulating different types of active compounds. However, differences between the template method and emulsion method have not been examined. In the current study, PLGA microparticles were prepared by the two methods using glycyrrhetinic acid (GA) as a model drug. The properties of obtained microparticles were characterized and compared on drug distribution, in vitro release, and degradation. An encapsulation efficiency of over 70% and a mean particle size of about 40μm were found for both methods. DSC thermograms and XRPD diffractograms indicated that GA was highly dispersed or in the amorphous state in the matrix of microparticles. The emulsion method produced microparticles of a broad size distribution with a core-shell type structure and many drug-rich domains inside each microparticle. Its drug release and matrix degradation was slow before Day 50 and then accelerated. In contrast, the template method formed microparticles with narrow size distribution and drug distribution without apparent drug-rich domains. The template microparticles with a loading efficiency of 85% exhibited a zero-order release profile for 3 months after the initial burst release of 26.7%, and a steady surface erosion process as well. The same microparticles made by two different methods showed two distinguished drug release profiles. The two different methods can be supplementary with each other in optimization of drug formulation for achieving predetermined drug release patterns. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Preparing rock powder specimens of controlled size distribution

    NASA Technical Reports Server (NTRS)

    Blum, P.

    1968-01-01

    Apparatus produces rock powder specimens of the size distribution needed in geological sampling. By cutting grooves in the surface of the rock sample and then by milling these shallow, parallel ridges, the powder specimen is produced. Particle size distribution is controlled by changing the height and width of ridges.

  9. Collective philanthropy: describing and modeling the ecology of giving.

    PubMed

    Gottesman, William L; Reagan, Andrew James; Dodds, Peter Sheridan

    2014-01-01

    Reflective of income and wealth distributions, philanthropic gifting appears to follow an approximate power-law size distribution as measured by the size of gifts received by individual institutions. We explore the ecology of gifting by analysing data sets of individual gifts for a diverse group of institutions dedicated to education, medicine, art, public support, and religion. We find that the detailed forms of gift-size distributions differ across but are relatively constant within charity categories. We construct a model for how a donor's income affects their giving preferences in different charity categories, offering a mechanistic explanation for variations in institutional gift-size distributions. We discuss how knowledge of gift-sized distributions may be used to assess an institution's gift-giving profile, to help set fundraising goals, and to design an institution-specific giving pyramid.

  10. How Cells Can Control Their Size by Pumping Ions.

    PubMed

    Kay, Alan R

    2017-01-01

    The ability of all cells to set and regulate their size is a fundamental aspect of cellular physiology. It has been known for sometime but not widely so, that size stability in animal cells is dependent upon the operation of the sodium pump, through the so-called pump-leak mechanism (Tosteson and Hoffman, 1960). Impermeant molecules in cells establish an unstable osmotic condition, the Donnan effect, which is counteracted by the operation of the sodium pump, creating an asymmetry in the distribution of Na + and K + staving off water inundation. In this paper, which is in part a tutorial, I show how to model quantitatively the ion and water fluxes in a cell that determine the cell volume and membrane potential. The movement of water and ions is constrained by both osmotic and charge balance, and is driven by ion and voltage gradients and active ion transport. Transforming these constraints and forces into a set of coupled differential equations allows us to model how the ion distributions, volume and voltage change with time. I introduce an analytical solution to these equations that clarifies the influence of ion conductances, pump rates and water permeability in this multidimensional system. I show that the number of impermeant ions ( x ) and their average charge have a powerful influence on the distribution of ions and voltage in a cell. Moreover, I demonstrate that in a cell where the operation of active ion transport eliminates an osmotic gradient, the size of the cell is directly proportional to x . In addition, I use graphics to reveal how the physico-chemical constraints and chemical forces interact with one another in apportioning ions inside the cell. The form of model used here is applicable to all membrane systems, including mitochondria and bacteria, and I show how pumps other than the sodium pump can be used to stabilize cells. Cell biologists may think of electrophysiology as the exclusive domain of neuroscience, however the electrical effects of ion fluxes need to become an intimate part of cell biology if we are to understand a fundamental process like cell size regulation.

  11. Population Size, Growth, and Environmental Justice Near Oil and Gas Wells in Colorado.

    PubMed

    McKenzie, Lisa M; Allshouse, William B; Burke, Troy; Blair, Benjamin D; Adgate, John L

    2016-11-01

    We evaluated population size and factors influencing environmental justice near oil and gas (O&G) wells. We mapped nearest O&G well to residential properties to evaluate population size, temporal relationships between housing and O&G development, and 2012 housing market value distributions in three major Colorado O&G basins. We reviewed land use, building, real estate, and state O&G regulations to evaluate distributive and participatory justice. We found that by 2012 at least 378,000 Coloradans lived within 1 mile of an active O&G well, and this population was growing at a faster rate than the overall population. In the Denver Julesburg and San Juan basins, which experienced substantial O&G development prior to 2000, we observed a larger proportion of lower value homes within 500 feet of an O&G well and that most O&G wells predated houses. In the Piceance Basin, which had not experienced substantial prior O&G development, we observed a larger proportion of high value homes within 500 feet of an O&G well and that most houses predated O&G wells. We observed economic, rural, participatory, and/or distributive injustices that could contribute to health risk vulnerabilities in populations near O&G wells. We encourage policy makers to consider measures to reduce these injustices.

  12. Diurnal variations of aerosol characteristics at a rural measuring site close to the Ruhr-Area, Germany

    NASA Astrophysics Data System (ADS)

    Kuhlbusch, T. A. J.; John, A. C.; Fissan, H.

    PM10, PM2.5, and Black Carbon (BC) mass concentrations as well as number size distributions were measured quasi-online at a rural sampling site from 18 September to 17 October 1997. Average PM10, PM2.5, and BC mass concentrations were 37 ± 25, 25 ± 23, and 2 ± 1 μgm -3, respectively. All determined aerosol characteristics showed significant diurnal variations with generally higher concentrations during daytime compared to nights. Maxima in mass concentrations were around 11 AM and 8 PM during weekdays, most likely caused by commuter traffic. Decreased mass concentrations, changes in chemical composition and size distribution have been observed for the time from 12 to 5 PM. Diurnal variations of the BC/PM2.5 mass ratio revealed a minimum between 12 and 4 PM. The ratio of particle volume (0.5-2.5 μm) to particle mass (PM2.5) called 'potential density' also showed significant diurnal changes. These changes could be attributed to increasing in mixing height and windspeed. The determined diurnal variations in particle mass, composition, and size distribution may be relevant for epidemiological studies. We propose that diurnally weighted averages of relevant aerosol characteristics, which take diurnal patterns of human activities into account, should be used in epidemiological studies.

  13. The role of beaded activated carbon's pore size distribution on heel formation during cyclic adsorption/desorption of organic vapors.

    PubMed

    Jahandar Lashaki, Masoud; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2016-09-05

    The effect of activated carbon's pore size distribution (PSD) on heel formation during adsorption of organic vapors was investigated. Five commercially available beaded activated carbons (BAC) with varying PSDs (30-88% microporous) were investigated. Virgin samples had similar elemental compositions but different PSDs, which allowed for isolating the contribution of carbon's microporosity to heel formation. Heel formation was linearly correlated (R(2)=0.91) with BAC micropore volume; heel for the BAC with the lowest micropore volume was 20% lower than the BAC with the highest micropore volume. Meanwhile, first cycle adsorption capacities and breakthrough times correlated linearly (R(2)=0.87 and 0.93, respectively) with BAC total pore volume. Micropore volume reduction for all BACs confirmed that heel accumulation takes place in the highest energy pores. Overall, these results show that a greater portion of adsorbed species are converted into heel on highly microporous adsorbents due to higher share of high energy adsorption sites in their structure. This differs from mesoporous adsorbents (low microporosity) in which large pores contribute to adsorption but not to heel formation, resulting in longer adsorbent lifetime. Thus, activated carbon with high adsorption capacity and high mesopore fraction is particularly desirable for organic vapor application involving extended adsorption/regeneration cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Combination of Cation Exchange and Quantized Ostwald Ripening for Controlling Size Distribution of Lead Chalcogenide Quantum Dots

    DOE PAGES

    Zhang, Changwang; Xia, Yong; Zhang, Zhiming; ...

    2017-03-22

    A new strategy for narrowing the size distribution of colloidal quantum dots (QDs) was developed by combining cation exchange and quantized Ostwald ripening. Medium-sized reactant CdS(e) QDs were subjected to cation exchange to form the target PbS(e) QDs, and then small reactant CdS(e) QDs were added which were converted to small PbS(e) dots via cation exchange. The small-sized ensemble of PbS(e) QDs dissolved completely rapidly and released a large amount of monomers, promoting the growth and size-focusing of the medium-sized ensemble of PbS(e) QDs. The addition of small reactant QDs can be repeated to continuously reduce the size distribution. Themore » new method was applied to synthesize PbSe and PbS QDs with extremely narrow size distributions and as a bonus they have hybrid surface passivation. In conclusion, the size distribution of prepared PbSe and PbS QDs are as low as 3.6% and 4.3%, respectively, leading to hexagonal close packing in monolayer and highly ordered three-dimensional superlattice.« less

  15. Synthesis of MSnO{sub 3} (M = Ba, Sr) nanoparticles by reverse micelle method and particle size distribution analysis by whole powder pattern modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Jahangeer; Blakely, Colin K.; Bruno, Shaun R.

    2012-09-15

    Highlights: ► BaSnO{sub 3} and SrSnO{sub 3} nanoparticles synthesized using the reverse micelle method. ► Particle size and size distribution studied by whole powder pattern modeling. ► Nanoparticles are of optimal size for investigation in dye-sensitized solar cells. -- Abstract: Light-to-electricity conversion efficiency in dye-sensitized solar cells critically depends not only on the dye molecule, semiconducting material and redox shuttle selection but also on the particle size and particle size distribution of the semiconducting photoanode. In this study, nanocrystalline BaSnO{sub 3} and SrSnO{sub 3} particles have been synthesized using the microemulsion method. Particle size distribution was studied by whole powdermore » pattern modeling which confirmed narrow particle size distribution with an average size of 18.4 ± 8.3 nm for SrSnO{sub 3} and 15.8 ± 4.2 nm for BaSnO{sub 3}. These values are in close agreement with results of transmission electron microscopy. The prepared materials have optimal microstructure for successive investigation in dye-sensitized solar cells.« less

  16. Combination of Cation Exchange and Quantized Ostwald Ripening for Controlling Size Distribution of Lead Chalcogenide Quantum Dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Changwang; Xia, Yong; Zhang, Zhiming

    A new strategy for narrowing the size distribution of colloidal quantum dots (QDs) was developed by combining cation exchange and quantized Ostwald ripening. Medium-sized reactant CdS(e) QDs were subjected to cation exchange to form the target PbS(e) QDs, and then small reactant CdS(e) QDs were added which were converted to small PbS(e) dots via cation exchange. The small-sized ensemble of PbS(e) QDs dissolved completely rapidly and released a large amount of monomers, promoting the growth and size-focusing of the medium-sized ensemble of PbS(e) QDs. The addition of small reactant QDs can be repeated to continuously reduce the size distribution. Themore » new method was applied to synthesize PbSe and PbS QDs with extremely narrow size distributions and as a bonus they have hybrid surface passivation. In conclusion, the size distribution of prepared PbSe and PbS QDs are as low as 3.6% and 4.3%, respectively, leading to hexagonal close packing in monolayer and highly ordered three-dimensional superlattice.« less

  17. Strategic Positioning and Biased Activity of the Mitochondrial Calcium Uniporter in Cardiac Muscle*

    PubMed Central

    De La Fuente, Sergio; Fernandez-Sanz, Celia; Vail, Caitlin; Agra, Elorm J.; Holmstrom, Kira; Sun, Junhui; Mishra, Jyotsna; Williams, Dewight; Finkel, Toren; Murphy, Elizabeth; Joseph, Suresh K.; Sheu, Shey-Shing; Csordás, György

    2016-01-01

    Control of myocardial energetics by Ca2+ signal propagation to the mitochondrial matrix includes local Ca2+ delivery from sarcoplasmic reticulum (SR) ryanodine receptors (RyR2) to the inner mitochondrial membrane (IMM) Ca2+ uniporter (mtCU). mtCU activity in cardiac mitochondria is relatively low, whereas the IMM surface is large, due to extensive cristae folding. Hence, stochastically distributed mtCU may not suffice to support local Ca2+ transfer. We hypothesized that mtCU concentrated at mitochondria-SR associations would promote the effective Ca2+ transfer. mtCU distribution was determined by tracking MCU and EMRE, the proteins essential for channel formation. Both proteins were enriched in the IMM-outer mitochondrial membrane (OMM) contact point submitochondrial fraction and, as super-resolution microscopy revealed, located more to the mitochondrial periphery (inner boundary membrane) than inside the cristae, indicating high accessibility to cytosol-derived Ca2+ inputs. Furthermore, MCU immunofluorescence distribution was biased toward the mitochondria-SR interface (RyR2), and this bias was promoted by Ca2+ signaling activity in intact cardiomyocytes. The SR fraction of heart homogenate contains mitochondria with extensive SR associations, and these mitochondria are highly enriched in EMRE. Size exclusion chromatography suggested for EMRE- and MCU-containing complexes a wide size range and also revealed MCU-containing complexes devoid of EMRE (thus disabled) in the mitochondrial but not the SR fraction. Functional measurements suggested more effective mtCU-mediated Ca2+ uptake activity by the mitochondria of the SR than of the mitochondrial fraction. Thus, mtCU “hot spots” can be formed at the cardiac muscle mitochondria-SR associations via localization and assembly bias, serving local Ca2+ signaling and the excitation-energetics coupling. PMID:27637331

  18. The Dependence of Tropical Cyclone Count and Size on Rotation Rate

    NASA Astrophysics Data System (ADS)

    Chavas, D. R.; Reed, K. A.

    2017-12-01

    Both theory and idealized equilibrium modeling studies indicate that tropical cyclone size decreases with background rotation rate. In contrast, in real-world observations size tends to increase with latitude. Here we seek to resolve this apparent contradiction via a set of reduced-complexity global aquaplanet simulations with varying planetary rotation rates using the NCAR Community Atmosphere Model 5. The latitudinal distribution of both storm count and size are found to vary markedly with rotation rate, yielding insight into the dynamical constraints on tropical cyclone activity on a rotating planet. Moreover, storm size is found to vary non-monotonically with latitude, indicating that non-equilibrium effects are crucial to the life-cycle evolution of size in nature. Results are then compared to experiments in idealized, time-dependent limited-area modeling simulations using CM1 in axisymmetric and three-dimensional geometry. Taken together, this hierarchy of models is used to quantify the role of equilibrium versus transient controls on storm size and the relevance of each to real storms in nature.

  19. Active fluids at circular boundaries: swim pressure and anomalous droplet ripening.

    PubMed

    Jamali, Tayeb; Naji, Ali

    2018-06-13

    We investigate the swim pressure exerted by non-chiral and chiral active particles on convex or concave circular boundaries. Active particles are modeled as non-interacting and non-aligning self-propelled Brownian particles. The convex and concave circular boundaries are used to model a fixed inclusion immersed in an active bath and a cavity (or container) enclosing the active particles, respectively. We first present a detailed analysis of the role of convex versus concave boundary curvature and of the chirality of active particles in their spatial distribution, chirality-induced currents, and the swim pressure they exert on the bounding surfaces. The results will then be used to predict the mechanical equilibria of suspended fluid enclosures (generically referred to as 'droplets') in a bulk with active particles being present either inside the bulk fluid or within the suspended droplets. We show that, while droplets containing active particles behave in accordance with standard capillary paradigms when suspended in a normal bulk, those containing a normal fluid exhibit anomalous behaviors when suspended in an active bulk. In the latter case, the excess swim pressure results in non-monotonic dependence of the inside droplet pressure on the droplet radius; hence, revealing an anomalous regime of behavior beyond a threshold radius, in which the inside droplet pressure increases upon increasing the droplet size. Furthermore, for two interconnected droplets, mechanical equilibrium can occur also when the droplets have different sizes. We thus identify a regime of anomalous droplet ripening, where two unequal-sized droplets can reach a final state of equal size upon interconnection, in stark contrast with the standard Ostwald ripening phenomenon, implying shrinkage of the smaller droplet in favor of the larger one.

  20. Fabrication of Activated Rice Husk Charcoal by Slip Casting as a Hybrid Material for Water Filter Aid

    NASA Astrophysics Data System (ADS)

    Tuaprakone, T.; Wongphaet, N.; Wasanapiarnpong, T.

    2011-04-01

    Activated charcoal has been widely used as an odor absorbent in household and water purification industry. Filtration equipment for drinking water generally consists of four parts, which are microporous membrane (porous alumina ceramic or diatomite, or porous polymer), odor absorbent (activated carbon), hard water treatment (ion exchange resin), and UV irradiation. Ceramic filter aid is usually prepared by slip casting of alumina or diatomite. The membrane offers high flux, high porosity and maximum pore size does not exceed 0.3 μm. This study investigated the fabrication of hybrid activated charcoal tube for water filtration and odor absorption by slip casting. The suitable rice husk charcoal and water ratio was 48 to 52 wt% by weight with 1.5wt% (by dry basis) of CMC binder. The green rice husk charcoal bodies were dried and fired between 700-900 °C in reduction atmosphere. The resulting prepared slip in high speed porcelain pot for 60 min and sintered at 700 °C for 1 h showed the highest specific surface area as 174.95 m2/g. The characterizations of microstructure and pore size distribution as a function of particle size were investigated.

  1. Is the permeability of naturally fractured rocks scale dependent?

    NASA Astrophysics Data System (ADS)

    Azizmohammadi, Siroos; Matthäi, Stephan K.

    2017-09-01

    The equivalent permeability, keq of stratified fractured porous rocks and its anisotropy is important for hydrocarbon reservoir engineering, groundwater hydrology, and subsurface contaminant transport. However, it is difficult to constrain this tensor property as it is strongly influenced by infrequent large fractures. Boreholes miss them and their directional sampling bias affects the collected geostatistical data. Samples taken at any scale smaller than that of interest truncate distributions and this bias leads to an incorrect characterization and property upscaling. To better understand this sampling problem, we have investigated a collection of outcrop-data-based Discrete Fracture and Matrix (DFM) models with mechanically constrained fracture aperture distributions, trying to establish a useful Representative Elementary Volume (REV). Finite-element analysis and flow-based upscaling have been used to determine keq eigenvalues and anisotropy. While our results indicate a convergence toward a scale-invariant keq REV with increasing sample size, keq magnitude can have multi-modal distributions. REV size relates to the length of dilated fracture segments as opposed to overall fracture length. Tensor orientation and degree of anisotropy also converge with sample size. However, the REV for keq anisotropy is larger than that for keq magnitude. Across scales, tensor orientation varies spatially, reflecting inhomogeneity of the fracture patterns. Inhomogeneity is particularly pronounced where the ambient stress selectively activates late- as opposed to early (through-going) fractures. While we cannot detect any increase of keq with sample size as postulated in some earlier studies, our results highlight a strong keq anisotropy that influences scale dependence.

  2. Interpretations of family size distributions: The Datura example

    NASA Astrophysics Data System (ADS)

    Henych, Tomáš; Holsapple, Keith A.

    2018-04-01

    Young asteroid families are unique sources of information about fragmentation physics and the structure of their parent bodies, since their physical properties have not changed much since their birth. Families have different properties such as age, size, taxonomy, collision severity and others, and understanding the effect of those properties on our observations of the size-frequency distribution (SFD) of family fragments can give us important insights into the hypervelocity collision processes at scales we cannot achieve in our laboratories. Here we take as an example the very young Datura family, with a small 8-km parent body, and compare its size distribution to other families, with both large and small parent bodies, and created by both catastrophic and cratering formation events. We conclude that most likely explanation for the shallower size distribution compared to larger families is a more pronounced observational bias because of its small size. Its size distribution is perfectly normal when its parent body size is taken into account. We also discuss some other possibilities. In addition, we study another common feature: an offset or "bump" in the distribution occurring for a few of the larger elements. We hypothesize that it can be explained by a newly described regime of cratering, "spall cratering", which controls the majority of impact craters on the surface of small asteroids like Datura.

  3. Sound absorption by suspensions of nonspherical particles: Measurements compared with predictions using various particle sizing techniques

    NASA Astrophysics Data System (ADS)

    Richards, Simon D.; Leighton, Timothy G.; Brown, Niven R.

    2003-10-01

    Knowledge of the particle size distribution is required in order to predict ultrasonic absorption in polydisperse particulate suspensions. This paper shows that the method used to measure the particle size distribution can lead to important differences in the predicted absorption. A reverberation technique developed for measuring ultrasonic absorption by suspended particles is used to measure the absorption in suspensions of nonspherical particles. Two types of particulates are studied: (i) kaolin (china clay) particles which are platelike in form; and (ii) calcium carbonate particles which are more granular. Results are compared to theoretical predictions of visco-inertial absorption by suspensions of spherical particles. The particle size distributions, which are required for these predictions, are measured by laser diffraction, gravitational sedimentation and centrifugal sedimentation, all of which assume spherical particles. For a given sample, each sizing technique yields a different size distribution, leading to differences in the predicted absorption. The particle size distributions obtained by gravitational and centrifugal sedimentation are reinterpreted to yield a representative size distribution of oblate spheroids, and predictions for absorption by these spheroids are compared with the measurements. Good agreement between theory and measurement for the flat kaolin particles is obtained, demonstrating that these particles can be adequately represented by oblate spheroids.

  4. Evaluation of anti-cholinesterase, antibacterial and cytotoxic activities of green synthesized silver nanoparticles using from Millettia pinnata flower extract.

    PubMed

    Rajakumar, Govindasamy; Gomathi, Thandapani; Thiruvengadam, Muthu; Devi Rajeswari, V; Kalpana, V N; Chung, Ill-Min

    2017-02-01

    The aim of this study is to develop an easy and eco-friendly method for the synthesis of Ag-NPs using extracts from the medicinal plant, Millettia pinnata flower extract and investigate the effects of Ag-NPs on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), antibacterial and cytotoxicity activity. UV-Vis peak at 438 nm confirmed the Ag-NPs absorbance. The SEM analysis results confirmed the presence of spherical shaped Ag-NPs by a huge disparity in the particle size distribution with an average size of 49 ± 0.9 nm. TEM images revealed the formation of Ag-NPs with spherical shape and sizes in the range between 16 and 38 nm. The Ag-NPs showed an excellent inhibitory efficacy against AChE and BChE. The highest antibacterial activity was found against Escherichia coli (20.25 ± 0.91 mm). These nanoparticles showed the cytotoxic effects against brine shrimp (artemia saliana) nauplii with a LD 50 value of 33.92. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, S.N.; Patwardhan, S.R.; Vijayalakshmi, S.

    Adsorption on carbon molecular sieves (CMS) prepared by coke deposition has become an interesting area of adsorption due to its microporous nature and favorable separation factor on size and shape selectivity basis for many gaseous systems. In the present work CMS was synthesized from coconut shell through three major steps, namely, carbonization, activation, and coke deposition by hydrocarbon cracking. The crushed, washed, and sieved granules of coconut shell (particle size 2--3 mm) were pretreated with sodium silicate solution and oven-dried at 150 C to create the inorganic sites necessary for coke deposition. Carbonization and activation of the dried granules weremore » carried out at 800 C, for 30 min each. The activated char thus produced was subjected to hydrocarbon cracking at 600 C for periods varying from 30 to 180 min. The product samples were characterized in terms of adsorption isotherm, kinetic adsorption curve, surface area, pore volume, pore size distribution, and characteristic energy for adsorption by using O[sub 2], N[sub 2], C[sub 2]H[sub 2], CO[sub 2], C[sub 3]H[sub 6], and CH[sub 4].« less

  6. Determination of degradation rates of organic substances in the unsaturated soil zone depending on the grain size fractions of various soil types

    NASA Astrophysics Data System (ADS)

    Fichtner, Thomas; Stefan, Catalin; Goersmeyer, Nora

    2015-04-01

    Rate and extent of the biological degradation of organic substances during transport through the unsaturated soil zone is decisively influenced by the chemical and physical properties of the pollutants such as water solubility, toxicity and molecular structure. Furthermore microbial degradation processes are also influenced by soil-specific properties. An important parameter is the soil grain size distribution on which the pore volume and the pore size depends. Changes lead to changes in air and water circulation as well as preferred flow paths. Transport capacity of water inclusive nutrients is lower in existing bad-drainable fine pores in soils with small grain size fractions than in well-drainable coarse pores in a soil with bigger grain size fractions. Because fine pores are saturated with water for a longer time than the coarse pores and oxygen diffusion in water is ten thousand times slower than in air, oxygen is replenished much slower in soils with small grain size fractions. As a result life and growth conditions of the microorganisms are negatively affected. This leads to less biological activity, restricted degradation/mineralization of pollutants or altered microbial processes. The aim of conducted laboratory column experiments was to study the correlation between the grain size fractions respectively pore sizes, the oxygen content and the biodegradation rate of infiltrated organic substances. Therefore two columns (active + sterile control) were filled with different grain size fractions (0,063-0,125 mm, 0,2-0,63 mm and 1-2 mm) of soils. The sterile soil was inoculated with a defined amount of a special bacteria culture (sphingobium yanoikuae). A solution with organic substances glucose, oxalic acid, sinaphylic alcohol and nutrients was infiltrated from the top in intervals. The degradation of organic substances was controlled by the measurement of dissolved organic carbon in the in- and outflow of the column. The control of different pore volumes respectively pore sizes in the soil samples occurred by air pycnometer measurement and determination of soil moisture characteristic by evaporation method according to Wind/Schindler. The present study results can be useful to find a correlation between various soil types with different grain size distributions and the suitability of these soils for example for the infiltration of treated wastewater in the context of managed aquifer recharge (MAR) measures.

  7. Geoscientific Mapping of Vesta by the Dawn Mission

    NASA Technical Reports Server (NTRS)

    Jaumann, R.; Pieters, C. M.; Neukum, G.; Mottola, S.; DeSanctis, M. C.; Russell, C. T.; Raymond, C. A.; McSween, H. Y.; Roatsch, T.; Nathues, A.; hide

    2011-01-01

    The geologic objectives of the Dawn Mission are to derive Vesta's shape, map the surface geology, understand the geological context and contribute to the determination of the asteroids' origin and evolution. Geomorphology and distribution of surface features will provide evidence for impact cratering, tectonic activity, volcanism, and regolith processes. Spectral measurements of the surface will provide evidence of the compositional characteristics of geological units. Age information, as derived from crater size-frequency distributions, provides the stratigraphic context for the structural and compositional mapping results into the stratigraphic context and thusrevealing the geologic history of Vesta.

  8. Twin-domain size and bulk oxygen in-diffusion kinetics of YBa 2Cu 3O 6+x studied by neutron powder diffraction and gas volumetry

    NASA Astrophysics Data System (ADS)

    Poulsen, H. F.; Andersen, N. H.; Lebech, B.

    1991-02-01

    We report experimental results of twin-domain size and bulk oxygen in-diffusion kinetics of YBa 2Cu 3O 6+ x, which supplement a previous and simultaneous study of the structural phase diagram and oxygen equilibrium partial pressure. Analysis of neutron powder diffraction peak broadening show features which are identified to result from temperature independent twin-domain formation in to different orthorhombic phases with domain sizes and 250 and 350Å, respectively. The oxygen in-diffusion flow shows simple relaxation type behaviour J=J 0 exp( {-t}/{τ}) despite a rather broad particle size distribution. At higher temperatures, τ is activated with activation energies 0.55 and 0.25 eV in the tetragonal and orthorhombic phases, respectively. Comparison between twin-domain sizes and bulk oxygen in-diffusion time constants indicates that the twin-domain boundaries may contribute to the effective bulk oxygen in-diffusion. All our results may be interpreted in terms of the 2D ASYNNNI model description of the oxygen basal plane ordering, and they suggest that recent first principles interaction parameters should be modified.

  9. Size distribution of submarine landslides along the U.S. Atlantic margin

    USGS Publications Warehouse

    Chaytor, J.D.; ten Brink, Uri S.; Solow, A.R.; Andrews, B.D.

    2009-01-01

    Assessment of the probability for destructive landslide-generated tsunamis depends on the knowledge of the number, size, and frequency of large submarine landslides. This paper investigates the size distribution of submarine landslides along the U.S. Atlantic continental slope and rise using the size of the landslide source regions (landslide failure scars). Landslide scars along the margin identified in a detailed bathymetric Digital Elevation Model (DEM) have areas that range between 0.89??km2 and 2410??km2 and volumes between 0.002??km3 and 179??km3. The area to volume relationship of these failure scars is almost linear (inverse power-law exponent close to 1), suggesting a fairly uniform failure thickness of a few 10s of meters in each event, with only rare, deep excavating landslides. The cumulative volume distribution of the failure scars is very well described by a log-normal distribution rather than by an inverse power-law, the most commonly used distribution for both subaerial and submarine landslides. A log-normal distribution centered on a volume of 0.86??km3 may indicate that landslides preferentially mobilize a moderate amount of material (on the order of 1??km3), rather than large landslides or very small ones. Alternatively, the log-normal distribution may reflect an inverse power law distribution modified by a size-dependent probability of observing landslide scars in the bathymetry data. If the latter is the case, an inverse power-law distribution with an exponent of 1.3 ?? 0.3, modified by a size-dependent conditional probability of identifying more failure scars with increasing landslide size, fits the observed size distribution. This exponent value is similar to the predicted exponent of 1.2 ?? 0.3 for subaerial landslides in unconsolidated material. Both the log-normal and modified inverse power-law distributions of the observed failure scar volumes suggest that large landslides, which have the greatest potential to generate damaging tsunamis, occur infrequently along the margin. ?? 2008 Elsevier B.V.

  10. Quantification of the evolution of firm size distributions due to mergers and acquisitions.

    PubMed

    Lera, Sandro Claudio; Sornette, Didier

    2017-01-01

    The distribution of firm sizes is known to be heavy tailed. In order to account for this stylized fact, previous economic models have focused mainly on growth through investments in a company's own operations (internal growth). Thereby, the impact of mergers and acquisitions (M&A) on the firm size (external growth) is often not taken into consideration, notwithstanding its potential large impact. In this article, we make a first step into accounting for M&A. Specifically, we describe the effect of mergers and acquisitions on the firm size distribution in terms of an integro-differential equation. This equation is subsequently solved both analytically and numerically for various initial conditions, which allows us to account for different observations of previous empirical studies. In particular, it rationalises shortcomings of past work by quantifying that mergers and acquisitions develop a significant influence on the firm size distribution only over time scales much longer than a few decades. This explains why M&A has apparently little impact on the firm size distributions in existing data sets. Our approach is very flexible and can be extended to account for other sources of external growth, thus contributing towards a holistic understanding of the distribution of firm sizes.

  11. Properties and Fluxes of Primary Marine Aerosol Generated Via Detrainment of Turbulence-Modulated Bubble Plumes from Fresh North Atlantic Seawater

    NASA Astrophysics Data System (ADS)

    Keene, W. C.; Long, M. S.; Duplessis, P.; Kieber, D. J.; Maben, J. R.; Frossard, A. A.; Kinsey, J. D.; Beaupre, S. R.; Lu, X.; Chang, R.; Zhu, Y.; Bisgrove, J.

    2017-12-01

    During a September-October 2016 cruise of the R/V Endeavor in the western North Atlantic Ocean, primary marine aerosol (PMA) was produced in a high capacity generator during day and night via detrainment of bubbles from biologically productive and oligotrophic seawater. The turbulent mixing of clean air and seawater in a Venturi nozzle produced bubble plumes with tunable size distributions. Physicochemical characteristics of size-resolved PMA and seawater were measured. PMA number production efficiencies per unit air detrained (PEnum) increased with increasing detainment rate. For given conditions, PEnum values summed over size distributions were roughly ten times greater than those for frits whereas normalized size distributions were similar. Results show that bubble size distributions significantly modulated number production fluxes but not relative shapes of corresponding size distributions. In contrast, mass production efficiencies (PEmass) decreased with increasing air detrainment and were similar to those for frits, consistent with the hypothesis that bubble rafts on the seawater surface modulate emissions of larger jet droplets that dominate PMA mass production. Production efficiencies of organic matter were about three times greater than those for frits whereas organic enrichment factors integrated over size distributions were similar.

  12. Effect of Bimodal Grain Size Distribution on Scatter in Toughness

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Debalay; Strangwood, Martin; Davis, Claire

    2009-04-01

    Blunt-notch tests were performed at -160 °C to investigate the effect of a bimodal ferrite grain size distribution in steel on cleavage fracture toughness, by comparing local fracture stress values for heat-treated microstructures with uniformly fine, uniformly coarse, and bimodal grain structures. An analysis of fracture stress values indicates that bimodality can have a significant effect on toughness by generating high scatter in the fracture test results. Local cleavage fracture values were related to grain size distributions and it was shown that the largest grains in the microstructure, with an area percent greater than approximately 4 pct, gave rise to cleavage initiation. In the case of the bimodal grain size distribution, the large grains from both the “fine grain” and “coarse grain” population initiate cleavage; this spread in grain size values resulted in higher scatter in the fracture stress than in the unimodal distributions. The notch-bend test results have been used to explain the difference in scatter in the Charpy energies for the unimodal and bimodal ferrite grain size distributions of thermomechanically controlled rolled (TMCR) steel, in which the bimodal distribution showed higher scatter in the Charpy impact transition (IT) region.

  13. Sensitivity of bacteria to diamond nanoparticles of various size differs in gram-positive and gram-negative cells.

    PubMed

    Beranová, Jana; Seydlová, Gabriela; Kozak, Halyna; Benada, Oldřich; Fišer, Radovan; Artemenko, Anna; Konopásek, Ivo; Kromka, Alexander

    2014-02-01

    In this study, the influence of the size and surface termination of diamond nanoparticles (DNPs) on their antibacterial activity against Escherichia coli and Bacillus subtilis was assessed. The average size and distribution of DNPs were determined by dynamic light scattering and X-ray diffraction techniques. The chemical composition of the DNPs studied by X-ray photoelectron spectroscopy showed that DNPs > 5 nm and oxidized particles have a higher oxygen content. The antibacterial potential of DNPs was assessed by the viable count method. In general, E. coli exhibited a higher sensitivity to DNPs than B. subtilis. However, in the presence of all the DNPs tested, the B. subtilis colonies exhibited altered size and morphology. Antibacterial activity was influenced not only by DNP concentration but also by DNP size and form. Whereas untreated 5-nm DNPs were the most effective against E. coli, the antibacterial activity of 18-50-nm DNPs was higher against B. subtilis. Transmission electron microscopy showed that DNPs interact with the bacterial surface, probably affecting vital cell functions. We propose that DNPs interfere with the permeability of the bacterial cell wall and/or membrane and hinder B. subtilis colony spreading. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. SEISMIC PREDICTION USING UNATTACHED RADON DECAY PRODUCTS.

    PubMed

    Harley, Naomi H; Chittaporn, Passaporn; Fisenne, Isabel M

    2017-11-01

    Long-term measurements of the 222Rn concentration, 222Rn decay product activity, particle size distribution, and unattached, and attached 222Rn decay products, were made at two locations using the 22 y radon decay product 210Pb as their tracer. The particle size sampler collects both short lived 222Rn decay products that ultimately decay to 210Pb on the filters, and also airborne 210Pb. The measurements were made outdoors, at a suburban home and at Fernald, OH, a former uranium processing facility, on top of one of the two 226Ra storage silos containing 150 TBq 226Ra. The size distributions showed the unattached fractions, i.e. particle diameter 2-4 nm, to be 1.5% at the home and 14% at the silos. The unattached fraction of 218Po can be shown to be an immediate measure of the 222Rn concentration. The data indicates detection of the pressure driven 222Rn flow at the silo and with the enhanced measurement capability of a filtered air source versus the usual 222Rn gas measurement. It is proposed that real time measurements of unattached 218Po may be used to identify rapidly changing 222Rn concentrations associated with pressure driven soil air flow associated with seismic activity. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Analysis of geometric and electrochemical characteristics of lithium cobalt oxide electrode with different packing densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Cheolwoong; Yan, Bo; Kang, Huixiao

    2016-08-06

    In order to investigate geometric and electrochemical characteristics of Li ion battery electrode with different packing densities, lithium cobalt oxide (LiCoO 2) cathode electrodes were fabricated from a 94:3:3 (wt%) mixture of LiCoO 2, polymeric binder, and super-P carbon black and calendered to different densities. A synchrotron X-ray nano-computed tomography system with a spatial resolution of 58.2 nm at the Advanced Photon Source of the Argonne National Laboratory was employed to obtain three dimensional morphology data of the electrodes. The morphology data were then quantitatively analyzed to characterize their geometric properties, such as porosity, tortuosity, specific surface area, and poremore » size distribution. The geometric and electrochemical analysis reveal that high packing density electrodes have smaller average pore size and narrower pore size distribution, which improves the electrical contact between carbon-binder matrix and LiCoO 2 particles. The better contact improves the capacity and rate capability by reducing the possibility of electrically isolated LiCoO 2 particles and increasing the electrochemically active area. The results show that increase of packing density results in higher tortuosity, but electrochemically active area is more crucial to cell performance than tortuosity at up to 3.6 g/cm 3 packing density and 4 C rate.« less

  16. Estimates of the location of L-type Ca2+ channels in motoneurons of different sizes: a computational study.

    PubMed

    Grande, Giovanbattista; Bui, Tuan V; Rose, P Ken

    2007-06-01

    In the presence of monoamines, L-type Ca(2+) channels on the dendrites of motoneurons contribute to persistent inward currents (PICs) that can amplify synaptic inputs two- to sixfold. However, the exact location of the L-type Ca(2+) channels is controversial, and the importance of the location as a means of regulating the input-output properties of motoneurons is unknown. In this study, we used a computational strategy developed previously to estimate the dendritic location of the L-type Ca(2+) channels and test the hypothesis that the location of L-type Ca(2+) channels varies as a function of motoneuron size. Compartmental models were constructed based on dendritic trees of five motoneurons that ranged in size from small to large. These models were constrained by known differences in PIC activation reported for low- and high-conductance motoneurons and the relationship between somatic PIC threshold and the presence or absence of tonic excitatory or inhibitory synaptic activity. Our simulations suggest that L-type Ca(2+) channels are concentrated in hotspots whose distance from the soma increases with the size of the dendritic tree. Moving the hotspots away from these sites (e.g., using the hotspot locations from large motoneurons on intermediate-sized motoneurons) fails to replicate the shifts in PIC threshold that occur experimentally during tonic excitatory or inhibitory synaptic activity. In models equipped with a size-dependent distribution of L-type Ca(2+) channels, the amplification of synaptic current by PICs depends on motoneuron size and the location of the synaptic input on the dendritic tree.

  17. Continuous preparation of carbon-nanotube-supported platinum catalysts in a flow reactor directly heated by electric current

    PubMed Central

    dos Santos, Antonio Rodolfo; Kunz, Ulrich; Turek, Thomas

    2011-01-01

    Summary In this contribution we present for the first time a continuous process for the production of highly active Pt catalysts supported by carbon nanotubes by use of an electrically heated tubular reactor. The synthesized catalysts show a high degree of dispersion and narrow distributions of cluster sizes. In comparison to catalysts synthesized by the conventional oil-bath method a significantly higher electrocatalytic activity was reached, which can be attributed to the higher metal loading and smaller and more uniformly distributed Pt particles on the carbon support. Our approach introduces a simple, time-saving and cost-efficient method for fuel cell catalyst preparation in a flow reactor which could be used at a large scale. PMID:22043252

  18. The Interannual Stability of Cumulative Frequency Distributions for Convective System Size and Intensity

    NASA Technical Reports Server (NTRS)

    Mohr, Karen I.; Molinari, John; Thorncroft, Chris D,

    2010-01-01

    The characteristics of convective system populations in West Africa and the western Pacific tropical cyclone basin were analyzed to investigate whether interannual variability in convective activity in tropical continental and oceanic environments is driven by variations in the number of events during the wet season or by favoring large and/or intense convective systems. Convective systems were defined from TRMM data as a cluster of pixels with an 85 GHz polarization-corrected brightness temperature below 255 K and with an area at least 64 km 2. The study database consisted of convective systems in West Africa from May Sep for 1998-2007 and in the western Pacific from May Nov 1998-2007. Annual cumulative frequency distributions for system minimum brightness temperature and system area were constructed for both regions. For both regions, there were no statistically significant differences among the annual curves for system minimum brightness temperature. There were two groups of system area curves, split by the TRMM altitude boost in 2001. Within each set, there was no statistically significant interannual variability. Sub-setting the database revealed some sensitivity in distribution shape to the size of the sampling area, length of sample period, and climate zone. From a regional perspective, the stability of the cumulative frequency distributions implied that the probability that a convective system would attain a particular size or intensity does not change interannually. Variability in the number of convective events appeared to be more important in determining whether a year is wetter or drier than normal.

  19. Thermodynamics of firms' growth

    PubMed Central

    Zambrano, Eduardo; Hernando, Alberto; Hernando, Ricardo; Plastino, Angelo

    2015-01-01

    The distribution of firms' growth and firms' sizes is a topic under intense scrutiny. In this paper, we show that a thermodynamic model based on the maximum entropy principle, with dynamical prior information, can be constructed that adequately describes the dynamics and distribution of firms' growth. Our theoretical framework is tested against a comprehensive database of Spanish firms, which covers, to a very large extent, Spain's economic activity, with a total of 1 155 142 firms evolving along a full decade. We show that the empirical exponent of Pareto's law, a rule often observed in the rank distribution of large-size firms, is explained by the capacity of economic system for creating/destroying firms, and that can be used to measure the health of a capitalist-based economy. Indeed, our model predicts that when the exponent is larger than 1, creation of firms is favoured; when it is smaller than 1, destruction of firms is favoured instead; and when it equals 1 (matching Zipf's law), the system is in a full macroeconomic equilibrium, entailing ‘free’ creation and/or destruction of firms. For medium and smaller firm sizes, the dynamical regime changes, the whole distribution can no longer be fitted to a single simple analytical form and numerical prediction is required. Our model constitutes the basis for a full predictive framework regarding the economic evolution of an ensemble of firms. Such a structure can be potentially used to develop simulations and test hypothetical scenarios, such as economic crisis or the response to specific policy measures. PMID:26510828

  20. Mechanics-based statistics of failure risk of quasibrittle structures and size effect on safety factors.

    PubMed

    Bazant, Zdenĕk P; Pang, Sze-Dai

    2006-06-20

    In mechanical design as well as protection from various natural hazards, one must ensure an extremely low failure probability such as 10(-6). How to achieve that goal is adequately understood only for the limiting cases of brittle or ductile structures. Here we present a theory to do that for the transitional class of quasibrittle structures, having brittle constituents and characterized by nonnegligible size of material inhomogeneities. We show that the probability distribution of strength of the representative volume element of material is governed by the Maxwell-Boltzmann distribution of atomic energies and the stress dependence of activation energy barriers; that it is statistically modeled by a hierarchy of series and parallel couplings; and that it consists of a broad Gaussian core having a grafted far-left power-law tail with zero threshold and amplitude depending on temperature and load duration. With increasing structure size, the Gaussian core shrinks and Weibull tail expands according to the weakest-link model for a finite chain of representative volume elements. The model captures experimentally observed deviations of the strength distribution from Weibull distribution and of the mean strength scaling law from a power law. These deviations can be exploited for verification and calibration. The proposed theory will increase the safety of concrete structures, composite parts of aircraft or ships, microelectronic components, microelectromechanical systems, prosthetic devices, etc. It also will improve protection against hazards such as landslides, avalanches, ice breaks, and rock or soil failures.

  1. Thermodynamics of firms' growth.

    PubMed

    Zambrano, Eduardo; Hernando, Alberto; Fernández Bariviera, Aurelio; Hernando, Ricardo; Plastino, Angelo

    2015-11-06

    The distribution of firms' growth and firms' sizes is a topic under intense scrutiny. In this paper, we show that a thermodynamic model based on the maximum entropy principle, with dynamical prior information, can be constructed that adequately describes the dynamics and distribution of firms' growth. Our theoretical framework is tested against a comprehensive database of Spanish firms, which covers, to a very large extent, Spain's economic activity, with a total of 1,155,142 firms evolving along a full decade. We show that the empirical exponent of Pareto's law, a rule often observed in the rank distribution of large-size firms, is explained by the capacity of economic system for creating/destroying firms, and that can be used to measure the health of a capitalist-based economy. Indeed, our model predicts that when the exponent is larger than 1, creation of firms is favoured; when it is smaller than 1, destruction of firms is favoured instead; and when it equals 1 (matching Zipf's law), the system is in a full macroeconomic equilibrium, entailing 'free' creation and/or destruction of firms. For medium and smaller firm sizes, the dynamical regime changes, the whole distribution can no longer be fitted to a single simple analytical form and numerical prediction is required. Our model constitutes the basis for a full predictive framework regarding the economic evolution of an ensemble of firms. Such a structure can be potentially used to develop simulations and test hypothetical scenarios, such as economic crisis or the response to specific policy measures. © 2015 The Authors.

  2. The effect of particle size on the toxic action of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Sosenkova, L. S.; Egorova, E. M.

    2011-04-01

    Silver nanoparticles in AOT reverse micelles were obtained by means of the biochemical synthesis. Synthesis of nanoparticles was carried out with variation of the three parameters of reverse-micellar systems: concentration of silver ions, concentration of the stabilizer (AOT) and hydration extent w = [H2O]/[AOT]. The combinations of varied parameters have been found, allowing to prepare micellar solutions of spherical silver nanoparticles with average sizes 4.6 and 9.5 nm and narrow size distribution. From micellar solution the nanoparticles were transferred into the water phase; water solutions of the nanoparticles were used for testing their biological activity. Our assay is based on negative chemotaxis, a motile reaction of cells to an unfavorable chemical environment. Plasmodium of the slime mold Physarum polycephalum used as an object is a multinuclear amoeboid cell with unlimited growth and the auto-oscillatory mode of locomotion. In researches of chemotaxis on plasmodium it is learned that silver nanoparticles of smaller size exhibit a higher biological activity (behave as stronger repellent) and this correlates with the literary data obtained in studies of silver nanoparticles interaction with other biological objects.

  3. In-situ and self-distributed: A new understanding on catalyzed thermal decomposition process of ammonium perchlorate over Nd{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Min, E-mail: zoumin3362765@163.com; Wang, Xin, E-mail: wangx@mail.njust.edu.cn; Jiang, Xiaohong, E-mail: jxh0668@sina.com

    2014-05-01

    Catalyzed thermal decomposition process of ammonium perchlorate (AP) over neodymium oxide (Nd{sub 2}O{sub 3}) was investigated. Catalytic performances of nanometer-sized Nd{sub 2}O{sub 3} and micrometer-sized Nd{sub 2}O{sub 3} were evaluated by differential scanning calorimetry (DSC). In contrast to universal concepts, catalysts in different sizes have nearly similar catalytic activities. Based on structural and morphological variation of the catalysts during the reaction, combined with mass spectrum analyses and studies of unmixed style, a new understanding of this catalytic process was proposed. We believed that the newly formed chloride neodymium oxide (NdOCl) was the real catalytic species in the overall thermal decompositionmore » of AP over Nd{sub 2}O{sub 3}. Meanwhile, it was the “self-distributed” procedure which occurred within the reaction that also worked for the improvement of overall catalytic activities. This work is of great value in understanding the roles of micrometer-sized catalysts used in heterogeneous reactions, especially the solid–solid reactions which could generate a large quantity of gaseous species. - Graphical abstract: In-situ and self-distributed reaction process in thermal decomposition of AP catalyzed by Nd{sub 2}O{sub 3}. - Highlights: • Micro- and nano-Nd{sub 2}O{sub 3} for catalytic thermal decomposition of AP. • No essential differences on their catalytic performances. • Structural and morphological variation of catalysts digs out catalytic mechanism. • This catalytic process is “in-situ and self-distributed” one.« less

  4. Geostatistical analysis of the power-law exponents of the size distribution of earthquakes, Quaternary faults and monogenetic volcanoes in the Central Trans-Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Mendoza-Ponce, A.; Perez Lopez, R.; Guardiola-Albert, C.; Garduño-Monroy, V. H.; Figueroa-Soto, Á.

    2017-12-01

    The Trans Mexican Volcanic Belt (TMVB) is related to the convergence between the Cocos and Rivera plates beneath the North American plate by the Middle America Trench (MAT). Moreover, there is also intraplate faulting within the TMVB, which is responsible of important earthquakes like the Acambay in 1912 (Mw 7.0) and Maravatío in 1979 (Mb 5.3). In this tectonic scheme, monogenetic volcanoes, active faulting and earthquakes configure a complex tectonic frame where different spatial anisotropy featured this activity. This complexity can be characterized by the power-law of the frequency-size distribution of the monogenetic volcanoes, the faults and the earthquakes. This power-law is determined by the b-value of the Gutenberg-Richter law in case of the earthquakes. The novelty of this work is the application of geostatistics techniques (variograms) for the analysis of spatial distribution of the b-values obtained from the size distribution of the basal diameter for monogenetic volcanoes in the Michoacán-Guanajuato Volcanic Field (bmv), surface area for faults in the Morelia-Acambay fault system (bf) and the seismicity in the Central TMVB (beq). Therefore, the anisotropy in each case was compared and a geometric tectonic model was proposed. The evaluation of the spatial distribution of the b-value maps gives us a general interpretation of the tectonic stress field and the seismic hazard in the zone. Hence, the beq-value map for the seismic catalog shows anomalously low and high values, reveling two different processes, one related to a typical tectonic rupture (low b-values) and the other one related to hydraulic fracturing (high b-values). The resulting bmv-map for the diameter basal cones indicates us the locations of the ages of the monogenetic volcanoes, giving important information about the volcanic hazard. High bmv-values are correlated with the presence of young cinder cones and an increasing probability of a new volcano. For the Morelia-Acambay fault system, the bf-map shows the strongest locations along the system where tectonic stress accumulates.

  5. Indoor/outdoor relationships of quasi-ultrafine, accumulation and coarse mode particles in school environments in Barcelona: chemical composition and sources

    NASA Astrophysics Data System (ADS)

    Viana, M.; Rivas, I.; Querol, X.; Alastuey, A.; Sunyer, J.; Álvarez-Pedrerol, M.; Bouso, L.; Sioutas, C.

    2013-12-01

    The mass concentration, chemical composition and sources of quasi-ultrafine (quasi-UFP, PM0.25), accumulation (PM0.25-2.5) and coarse mode (PM2.5-10) particles were determined in indoor and outdoor air at 39 schools in Barcelona (Spain). Quasi-UFP mass concentrations measured (25.6 μg m-3 outdoors, 23.4 μg m-3 indoors) are significantly higher than those reported in other studies, and characterised by higher carbonaceous and mineral matter contents and a lower proportion of secondary inorganic ions. Results suggest that quasi-UFPs in Barcelona are affected by local sources in the schools, mainly human activity (e.g. organic material from textiles, etc.; contributing 23-46% to total quasi-UFP mass) and playgrounds (in the form of mineral matter, contributing about 9% to the quasi-UFP mass). The particle size distribution of toxicologically relevant metals and major aerosol components was characterised, displaying bimodal size distributions for most elements and components, and a unimodal distribution for inorganic salts (ammonium nitrate and sulphate) and elemental carbon (EC). Regarding metals, Ni and Cr were partitioned mainly in quasi-UFPs and could thus be of interest for epidemiological studies, given their high redox properties. Children exposure to quasi-UFP mass and chemical species was assessed by comparing the concentrations measured at urban background and traffic areas schools. Finally, three main indoor sources across all size fractions were identified by assessing indoor/outdoor ratios (I/O) of PM species used as their tracers: human activity (organic material), cleaning products, paints and plastics (Cl- source), and a metallic mixed source (comprising combinations of Cu, Zn, Co, Cd, Pb, As, V and Cr).

  6. High Resolution Electro-Optical Aerosol Phase Function Database PFNDAT2006

    DTIC Science & Technology

    2006-08-01

    snow models use the gamma distribution (equation 12) with m = 0. 3.4.1 Rain Model The most widely used analytical parameterization for raindrop size ...Uijlenhoet and Stricker (22), as the result of an analytical derivation based on a theoretical parameterization for the raindrop size distribution ...6 2.2 Particle Size Distribution Models

  7. 3D-HST + CANDELS: the Evolution of the Galaxy Size-mass Distribution Since Z=3

    NASA Technical Reports Server (NTRS)

    VanDerWel, A.; Franx, M.; vanDokkum, P. G.; Skelton, R. E.; Momcheva, I. G.; Whitaker, K. E.; Brammer, G. B.; Bell, E. F.; Rix, H.-W.; Wuyts, S.; hide

    2014-01-01

    Spectroscopic and photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift (z) range 0 < z < 3. Separating early- and late-type galaxies on the basis of star-formation activity, we confirm that early-type galaxies are on average smaller than late-type galaxies at all redshifts, and find a significantly different rate of average size evolution at fixed galaxy mass, with fast evolution for the early-type population, effective radius is in proportion to (1 + z) (sup -1.48), and moderate evolution for the late-type population, effective radius is in proportion to (1 + z) (sup -0.75). The large sample size and dynamic range in both galaxy mass and redshift, in combination with the high fidelity of our measurements due to the extensive use of spectroscopic data, not only fortify previous results, but also enable us to probe beyond simple average galaxy size measurements. At all redshifts the slope of the size-mass relation is shallow, effective radius in proportion to mass of a black hole (sup 0.22), for late-type galaxies with stellar mass > 3 x 10 (sup 9) solar masses, and steep, effective radius in proportion to mass of a black hole (sup 0.75), for early-type galaxies with stellar mass > 2 x 10 (sup 10) solar masses. The intrinsic scatter is approximately or less than 0.2 decimal exponents for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric, but skewed toward small sizes: at all redshifts and masses a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (approximately 10 (sup 11) solar masses), compact (effective radius less than 2 kiloparsecs) early-type galaxies increases from z = 3 to z = 1.5 - 2 and then strongly decreases at later cosmic times.

  8. Influences of aerosol physiochemical properties and new particle formation on CCN activity from observation at a suburban site of China

    NASA Astrophysics Data System (ADS)

    Li, Yanan; Zhang, Fang; Li, Zhanqing; Sun, Li; Wang, Zhenzhu; Li, Ping; Sun, Yele; Ren, Jingye; Wang, Yuying; Cribb, Maureen; Yuan, Cheng

    2017-05-01

    With the aim of understanding the impact of aerosol particle size and chemical composition on CCN activity, the size-resolved cloud condensation nuclei (CCN) number concentration (NCCN), particle number size distribution (PSD) (10-600 nm), and bulk chemical composition of particles with a diameter < 1.0 μm (PM1) were measured simultaneously at Xinzhou, a suburban site in northern China, from 22 July to 26 August 2014. The NCCN was measured at five different supersaturations (SS) ranging from 0.075%-0.76%. Diurnal variations in the aerosol number concentration (NCN), NCCN, the bulk aerosol activation ratio (AR), the hygroscopicity parameter (κchem), and the ratio of 44 mass to charge ration (m/z 44) to total organic signal in the component spectrum (f44), and the PSD were examined integrally to study the influence of particle size and chemical composition on CCN activation. We found that particle size was more related to the CCN activation ratios in the morning, whereas in the afternoon ( 1400 LST), κchem and f44 were more closely associated with the bulk AR. Assuming the internal mixing of aerosol particles, NCCN was estimated using the bulk chemical composition and real-time PSD. We found that the predicted CCN number concentrations were underestimated by 20-30% at SS < 0.2% probably due to the measurement uncertainties. Estimates were more accurate at higher SS levels, suggesting that the hygroscopicity parameter based on bulk chemical composition information can provide a good estimate of CCN number concentrations. We studied the impacts of new particle formation (NPF) events on size-resolved CCN activity at the ;growth; stage and ;leveling-off; stage during a typical NPF event by comparing with the case during non-NPF event. It has been found that CCN activation was restrained at the ;growth; stage during which larger particle diameters were needed to reach an activation diameter(Da), and the bulk AR decreased as well. However, during the ;leveling-off; stage, a lower Da was observed and CCN activation was greatly enhanced.

  9. Influence of pore size distributions on decomposition of maize leaf residue: evidence from X-ray computed micro-tomography

    NASA Astrophysics Data System (ADS)

    Negassa, Wakene; Guber, Andrey; Kravchenko, Alexandra; Rivers, Mark

    2014-05-01

    Soil's potential to sequester carbon (C) depends not only on quality and quantity of organic inputs to soil but also on the residence time of the applied organic inputs within the soil. Soil pore structure is one of the main factors that influence residence time of soil organic matter by controlling gas exchange, soil moisture and microbial activities, thereby soil C sequestration capacity. Previous attempts to investigate the fate of organic inputs added to soil did not allow examining their decomposition in situ; the drawback that can now be remediated by application of X-ray computed micro-tomography (µ-CT). The non-destructive and non-invasive nature of µ-CT gives an opportunity to investigate the effect of soil pore size distributions on decomposition of plant residues at a new quantitative level. The objective of this study is to examine the influence of pore size distributions on the decomposition of plant residue added to soil. Samples with contrasting pore size distributions were created using aggregate fractions of five different sizes (<0.05, 0.05-0.1, 0.10-05, 0.5-1.0 and 1.0-2.0 mm). Weighted average pore diameters ranged from 10 µm (<0.05 mm fraction) to 104 µm (1-2 mm fraction), while maximum pore diameter were in a range from 29 µm (<0.05 mm fraction) to 568 µm (1-2 mm fraction) in the created soil samples. Dried pieces of maize leaves 2.5 mg in size (equivalent to 1.71 mg C g-1 soil) were added to half of the studied samples. Samples with and without maize leaves were incubated for 120 days. CO2 emission from the samples was measured at regular time intervals. In order to ensure that the observed differences are due to differences in pore structure and not due to differences in inherent properties of the studied aggregate fractions, we repeated the whole experiment using soil from the same aggregate size fractions but ground to <0.05 mm size. Five to six replicated samples were used for intact and ground samples of all sizes with and without leaves. Two replications of the intact aggregate fractions of all sizes with leaves were subjected to µ-CT scanning before and after incubation, whereas all the remaining replications of both intact and ground aggregate fractions of <0.05, 0.05-0.1, and 1.0-2.0 mm sizes with leaves were scanned with µ-CT after the incubation. The µ-CT image showed that approximately 80% of the leaves in the intact samples of large aggregate fractions (0.5-1.0 and 1.0-2.0 mm) was decomposed during the incubation, while only 50-60% of the leaves were decomposed in the intact samples of smaller sized fractions. Even lower percent of leaves (40-50%) was decomposed in the ground samples, with very similar leaf decomposition observed in all ground samples regardless of the aggregate fraction size. Consistent with µ-CT results, the proportion of decomposed leaf estimated with the conventional mass loss method was 48% and 60% for the <0.05 mm and 1.0-2.0 mm soil size fractions of intact aggregates, and 40-50% in ground samples, respectively. The results of the incubation experiment demonstrated that, while greater C mineralization was observed in samples of all size fractions amended with leaf, the effect of leaf presence was most pronounced in the smaller aggregate fractions (0.05-0.1 mm and 0.05 mm) of intact aggregates. The results of the present study unequivocally demonstrate that differences in pore size distributions have a major effect on the decomposition of plant residues added to soil. Moreover, in presence of plant residues, differences in pore size distributions appear to also influence the rates of decomposition of the intrinsic soil organic material.

  10. 3-D Simulations of the Inner Dust Comae for Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Marschall, Raphael; Liao, Ying; Su, Cheng-Chin; Wu, Jong-Shinn; Thomas, Nicolas; Rubin, Martin; Lai, Ian Lin; Ip, Wing-Huen; Keller, Horst Uwe; Knollenberg, Jörg; Kührt, Ekkehard; Skorov, Yuri; Altwegg, Kathrin; Vincent, Jean-Baptiste; Gicquel, Adeline; Shi, Xian; Sierks, Holger; Naletto, Giampiero

    2015-04-01

    The aims of this study are to (1) model the gas flow-field in the innermost coma for a plausible activity distributions of ROSETTA's target comet 67P/Churyumov-Gerasimenko (67P) using the SHAP2 model, (2) compare this with the ROSINA/COPS gas density (3) investigate the acceleration of dust by gas drag and the resulting dust distribution, (4) produce artificial images of the dust coma brightness as seen from different viewing geometries for a range of heliocentric distances and (5) compare the artificial images quantitatively with observations by the OSIRIS imaging system. We calculate the dust distribution in the coma within the first ten kilometers of the nucleus by assuming the dust to be spherical test particles in the gas field without any back coupling. The motion of the dust is driven by the drag force resulting from the gas flow. We assume a quadratic drag force with a velocity and temperature-dependent drag coefficient. The gravitational force of a point nucleus on the dust is also taken into account which will e.g. determine the maximal liftable size of the dust. Surface cohesion is not included. 40 dust sizes in the range between 8 nm and 0.3 mm are considered. For every dust size the dust densities and velocities are calculated by tracking around one million simulation particles in the gas field. We assume the distribution of dust according to size follows a power law, specifically the number of particles n or a particular radius r is specified by n ~ r-β with usual values of 3 ≤ β ≤ 4 where β = 3 corresponds to the case of equal mass per size and β = 4 to a shift of the mass towards the small particles. For the comparison with images of the high resolution camera OSIRIS on board ESAs ROSETTA spacecraft the viewing geometry of the camera can be specified and a line of sight integration through the dust density is performed. By means of Mie scattering on the particles the dust brightness can be determined. A variety of dust size distributions, gas to dust mass ratios, wavelengths and optical properties can thus be studied and compared with the data.

  11. Collective Philanthropy: Describing and Modeling the Ecology of Giving

    PubMed Central

    Gottesman, William L.; Reagan, Andrew James; Dodds, Peter Sheridan

    2014-01-01

    Reflective of income and wealth distributions, philanthropic gifting appears to follow an approximate power-law size distribution as measured by the size of gifts received by individual institutions. We explore the ecology of gifting by analysing data sets of individual gifts for a diverse group of institutions dedicated to education, medicine, art, public support, and religion. We find that the detailed forms of gift-size distributions differ across but are relatively constant within charity categories. We construct a model for how a donor's income affects their giving preferences in different charity categories, offering a mechanistic explanation for variations in institutional gift-size distributions. We discuss how knowledge of gift-sized distributions may be used to assess an institution's gift-giving profile, to help set fundraising goals, and to design an institution-specific giving pyramid. PMID:24983864

  12. Development of a simplified optical technique for the simultaneous measurement of particle size distribution and velocity

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1983-01-01

    Existing techniques were surveyed, an experimental procedure was developed, a laboratory test model was fabricated, limited data were recovered for proof of principle, and the relationship between particle size distribution and amplitude measurements was illustrated in an effort to develop a low cost, simplified optical technique for measuring particle size distributions and velocities in fluidized bed combustors and gasifiers. A He-Ne laser illuminated Rochi Rulings (range 10 to 500 lines per inch). Various samples of known particle size distributions were passed through the fringe pattern produced by the rulings. A photomultiplier tube converted light from the fringe volume to an electrical signal which was recorded using an oscilloscope and camera. The signal amplitudes were correlated against the known particle size distributions. The correlation holds true for various samples.

  13. Re-inventing Willis

    NASA Astrophysics Data System (ADS)

    Simkin, M. V.; Roychowdhury, V. P.

    2011-05-01

    Scientists often re-invent things that were long known. Here we review these activities as related to the mechanism of producing power law distributions, originally proposed in 1922 by Yule to explain experimental data on the sizes of biological genera, collected by Willis. We also review the history of re-invention of closely related branching processes, random graphs and coagulation models.

  14. A Fifth Grade Self-Report Study: Race and Gender Issues.

    ERIC Educational Resources Information Center

    Morgan, Harry

    In order to assess preteen activities in a moderate sized community in Georgia, selected group of classroom teachers conducted a pilot study. A questionnaire was developed and distributed to approximately 1,000 fifth-grade children and the results are presented here. It was discovered that Blacks, more than Whites, and boys, more than girls,…

  15. Herbaceous versus forested riparian vegetation: narrow and simple versus wide, woody and diverse stream habitat

    Treesearch

    C.R. Jackson; D.S. Leigh; S.L. Scarbrough; J.F. Chamblee

    2014-01-01

    We investigated interactions of riparian vegetative conditions upon a suite of channel morphological variables: active channel width, variability of width within a reach, large wood frequency, mesoscale habitat distributions, mesoscale habitat diversity, median particle size and per cent fines. We surveyed 49 wadeable streams, 45 with low levels of development,...

  16. Effects of tree size and spatial distribution on growth of ponderosa pine forests under alternative management scenarios

    Treesearch

    C.W. Woodall; C.E. Fiedler; R.E. McRoberts

    2009-01-01

    Forest ecosystems may be actively managed toward heterogeneous stand structures to provide both economic (e.g., wood production and carbon credits) and environmental benefits (e.g., invasive pest resistance). In order to facilitate wider adoption of possibly more sustainable forest stand structures, defining growth expectations among alternative management scenarios is...

  17. The problem of predicting the size distribution of sediment supplied by hillslopes to rivers

    NASA Astrophysics Data System (ADS)

    Sklar, Leonard S.; Riebe, Clifford S.; Marshall, Jill A.; Genetti, Jennifer; Leclere, Shirin; Lukens, Claire L.; Merces, Viviane

    2017-01-01

    Sediments link hillslopes to river channels. The size of sediments entering channels is a key control on river morphodynamics across a range of scales, from channel response to human land use to landscape response to changes in tectonic and climatic forcing. However, very little is known about what controls the size distribution of particles eroded from bedrock on hillslopes, and how particle sizes evolve before sediments are delivered to channels. Here we take the first steps toward building a geomorphic transport law to predict the size distribution of particles produced on hillslopes and supplied to channels. We begin by identifying independent variables that can be used to quantify the influence of five key boundary conditions: lithology, climate, life, erosion rate, and topography, which together determine the suite of geomorphic processes that produce and transport sediments on hillslopes. We then consider the physical and chemical mechanisms that determine the initial size distribution of rock fragments supplied to the hillslope weathering system, and the duration and intensity of weathering experienced by particles on their journey from bedrock to the channel. We propose a simple modeling framework with two components. First, the initial rock fragment sizes are set by the distribution of spacing between fractures in unweathered rock, which is influenced by stresses encountered by rock during exhumation and by rock resistance to fracture propagation. That initial size distribution is then transformed by a weathering function that captures the influence of climate and mineralogy on chemical weathering potential, and the influence of erosion rate and soil depth on residence time and the extent of particle size reduction. Model applications illustrate how spatial variation in weathering regime can lead to bimodal size distributions and downstream fining of channel sediment by down-valley fining of hillslope sediment supply, two examples of hillslope control on river sediment size. Overall, this work highlights the rich opportunities for future research into the controls on the size of sediments produced on hillslopes and delivered to channels.

  18. Ag/AgO Nanoparticles Grown via Time Dependent Double Mechanism in a 2D Layered Ni-PCP and Their Antibacterial Efficacy

    NASA Astrophysics Data System (ADS)

    Agarwal, Rashmi A.; Gupta, Neeraj K.; Singh, Rajan; Nigam, Shivansh; Ateeq, Bushra

    2017-03-01

    A simple synthesis route for growth of Ag/AgO nanoparticles (NPs) in large quantitative yields with narrow size distribution from a functional, non-activated, Ni (II) based highly flexible porous coordination polymer (PCP) as a template has been demonstrated. This template is a stable storage media for the NPs larger than the pore diameters of the PCP. From EPR study it was concluded that NPs were synthesized via two mechanisms i.e. acid formation and the redox activity of the framework. Size range of Ag/AgO NPs is sensitive to choice of solvent and reaction time. Direct use of Ag/AgO@Ni-PCP shows influential growth inhibition towards Escherichia coli and the pathogen Salmonella typhimurium at extremely low concentrations. The pristine template shows no cytotoxic activity, even though it contains Ni nodes in the framework.

  19. Particle size distribution properties in mixed-phase monsoon clouds from in situ measurements during CAIPEEX

    NASA Astrophysics Data System (ADS)

    Patade, Sachin; Prabha, T. V.; Axisa, D.; Gayatri, K.; Heymsfield, A.

    2015-10-01

    A comprehensive analysis of particle size distributions measured in situ with airborne instrumentation during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) is presented. In situ airborne observations in the developing stage of continental convective clouds during premonsoon (PRE), transition, and monsoon (MON) period at temperatures from 25 to -22°C are used in the study. The PRE clouds have narrow drop size and particle size distributions compared to monsoon clouds and showed less development of size spectra with decrease in temperature. Overall, the PRE cases had much lower values of particle number concentrations and ice water content compared to MON cases, indicating large differences in the ice initiation and growth processes between these cloud regimes. This study provided compelling evidence that in addition to dynamics, aerosol and moisture are important for modulating ice microphysical processes in PRE and MON clouds through impacts on cloud drop size distribution. Significant differences are observed in the relationship of the slope and intercept parameters of the fitted particle size distributions (PSDs) with temperature in PRE and MON clouds. The intercept values are higher in MON clouds than PRE for exponential distribution which can be attributed to higher cloud particle number concentrations and ice water content in MON clouds. The PRE clouds tend to have larger values of dispersion of gamma size distributions than MON clouds, signifying narrower spectra. The relationships between PSDs parameters are presented and compared with previous observations.

  20. Size-segregated emissions and metal content of vehicle-emitted particles as a function of mileage: Implications to population exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golokhvast, Kirill S.; Chernyshev, Valery V.; Chaika, Vladimir V.

    2015-10-15

    The study aims at investigating the characteristics (size distribution, active surface and metal content) of particles emitted by cars as a function of mileage using a novel methodology for characterizing particulate emissions captured by Exhaust Gas Suspension (EGS). EGS was obtained by passing the exhaust gases through a container of deionized water. EGS analysis was performed using laser granulometry, electron scanning microscopy, and high resolution mass spectrometry. Implications of the differences in key features of the emitted particles on population exposure were investigated using numerical simulation for estimating size-segregated PM deposition across human respiratory tract (HRT). It was found thatmore » vehicle mileage, age and the respective emissions class have almost no effect on the size distribution of the exhaust gas particulate released into the environment; about half of the examined vehicles with low mileage were found to release particles of aerodynamic diameter above 10 μm. The exhaust gas particulate detected in the EGS of all cars can be classified into three major size classes: (1) 0.1–5 µm – soot and ash particles, metals (Au, Pt, Pd, Ir); (2) 10–30 µm – metal (Cr, Fe, Cu, Zr, Ni) and ash particles; (3) 400–1,000 µm – metal (Fe, Cr, Pb) and ash particles. Newer vehicles with low mileage are substantial sources of soot and metal particles with median diameter of 200 nm with a higher surface area (up to 89,871.16 cm{sup 2}/cm{sup 3}). These tend to deposit in the lower part of the human respiratory tract. - Highlights: • Car mileage has virtually no effect on the size of the solid particles released. • Newer diesel vehicles emit particles of lower aerodynamic diameter. • Particle active surface emitted by newer vehicles is on average 3 times higher. • Real-life emissions were translated into actual internal PM exposure.« less

Top