Sample records for activity spatial learning

  1. Active and Passive Spatial Learning in Human Navigation: Acquisition of Graph Knowledge

    ERIC Educational Resources Information Center

    Chrastil, Elizabeth R.; Warren, William H.

    2015-01-01

    It is known that active exploration of a new environment leads to better spatial learning than does passive visual exposure. We ask whether specific components of active learning differentially contribute to particular forms of spatial knowledge--the "exploration-specific learning hypothesis". Previously, we found that idiothetic…

  2. Active and Passive Spatial Learning in Human Navigation: Acquisition of Survey Knowledge

    ERIC Educational Resources Information Center

    Chrastil, Elizabeth R.; Warren, William H.

    2013-01-01

    It seems intuitively obvious that active exploration of a new environment would lead to better spatial learning than would passive visual exposure. It is unclear, however, which components of active learning contribute to spatial knowledge, and previous literature is decidedly mixed. This experiment tests the contributions of 4 components to…

  3. Effects of a cognitive training on spatial learning and associated functional brain activations

    PubMed Central

    2013-01-01

    Background Both cognitive and physical exercise have been discussed as promising interventions for healthy cognitive aging. The present study assessed the effects of cognitive training (spatial vs. perceptual training) and physical training (endurance training vs. non-endurance training) on spatial learning and associated brain activation in 33 adults (40–55 years). Spatial learning was assessed with a virtual maze task, and at the same time neural correlates were measured with functional magnetic resonance imaging (fMRI). Results Only the spatial training improved performance in the maze task. These behavioral gains were accompanied by a decrease in frontal and temporal lobe activity. At posttest, participants of the spatial training group showed lower activity than participants of the perceptual training group in a network of brain regions associated with spatial learning, including the hippocampus and parahippocampal gyrus. No significant differences were observed between the two physical intervention groups. Conclusions Functional changes in neural systems associated with spatial navigation can be induced by cognitive interventions and seem to be stronger than effects of physical exercise in middle-aged adults. PMID:23870447

  4. Hilar GABAergic Interneuron Activity Controls Spatial Learning and Memory Retrieval

    PubMed Central

    Andrews-Zwilling, Yaisa; Gillespie, Anna K.; Kravitz, Alexxai V.; Nelson, Alexandra B.; Devidze, Nino; Lo, Iris; Yoon, Seo Yeon; Bien-Ly, Nga; Ring, Karen; Zwilling, Daniel; Potter, Gregory B.; Rubenstein, John L. R.; Kreitzer, Anatol C.; Huang, Yadong

    2012-01-01

    Background Although extensive research has demonstrated the importance of excitatory granule neurons in the dentate gyrus of the hippocampus in normal learning and memory and in the pathogenesis of amnesia in Alzheimer's disease (AD), the role of hilar GABAergic inhibitory interneurons, which control the granule neuron activity, remains unclear. Methodology and Principal Findings We explored the function of hilar GABAergic interneurons in spatial learning and memory by inhibiting their activity through Cre-dependent viral expression of enhanced halorhodopsin (eNpHR3.0)—a light-driven chloride pump. Hilar GABAergic interneuron-specific expression of eNpHR3.0 was achieved by bilaterally injecting adeno-associated virus containing a double-floxed inverted open-reading frame encoding eNpHR3.0 into the hilus of the dentate gyrus of mice expressing Cre recombinase under the control of an enhancer specific for GABAergic interneurons. In vitro and in vivo illumination with a yellow laser elicited inhibition of hilar GABAergic interneurons and consequent activation of dentate granule neurons, without affecting pyramidal neurons in the CA3 and CA1 regions of the hippocampus. We found that optogenetic inhibition of hilar GABAergic interneuron activity impaired spatial learning and memory retrieval, without affecting memory retention, as determined in the Morris water maze test. Importantly, optogenetic inhibition of hilar GABAergic interneuron activity did not alter short-term working memory, motor coordination, or exploratory activity. Conclusions and Significance Our findings establish a critical role for hilar GABAergic interneuron activity in controlling spatial learning and memory retrieval and provide evidence for the potential contribution of GABAergic interneuron impairment to the pathogenesis of amnesia in AD. PMID:22792368

  5. Active and passive spatial learning in human navigation: acquisition of graph knowledge.

    PubMed

    Chrastil, Elizabeth R; Warren, William H

    2015-07-01

    It is known that active exploration of a new environment leads to better spatial learning than does passive visual exposure. We ask whether specific components of active learning differentially contribute to particular forms of spatial knowledge-the exploration-specific learning hypothesis. Previously, we found that idiothetic information during walking is the primary active contributor to metric survey knowledge (Chrastil & Warren, 2013). In this study, we test the contributions of 3 components to topological graph and route knowledge: visual information, idiothetic information, and cognitive decision making. Four groups of participants learned the locations of 8 objects in a virtual hedge maze by (a) walking or (b) watching a video, crossed with (1) either making decisions about their path or (2) being guided through the maze. Route and graph knowledge were assessed by walking in the maze corridors from a starting object to the remembered location of a test object, with frequent detours. Decision making during exploration significantly contributed to subsequent route finding in the walking condition, whereas idiothetic information did not. Participants took novel routes and the metrically shortest routes on the majority of both direct and barrier trials, indicating that labeled graph knowledge-not merely route knowledge-was acquired. We conclude that, consistent with the exploration-specific learning hypothesis, decision making is the primary component of active learning for the acquisition of topological graph knowledge, whereas idiothetic information is the primary component for metric survey knowledge. (c) 2015 APA, all rights reserved.

  6. Photography activities for developing students’ spatial orientation and spatial visualization

    NASA Astrophysics Data System (ADS)

    Hendroanto, Aan; van Galen, Frans; van Eerde, D.; Prahmana, R. C. I.; Setyawan, F.; Istiandaru, A.

    2017-12-01

    Spatial orientation and spatial visualization are the foundation of students’ spatial ability. They assist students’ performance in learning mathematics, especially geometry. Considering its importance, the present study aims to design activities to help young learners developing their spatial orientation and spatial visualization ability. Photography activity was chosen as the context of the activity to guide and support the students. This is a design research study consisting of three phases: 1) preparation and designing 2) teaching experiment, and 3) retrospective analysis. The data is collected by tests and interview and qualitatively analyzed. We developed two photography activities to be tested. In the teaching experiments, 30 students of SD Laboratorium UNESA, Surabaya were involved. The results showed that the activities supported the development of students’ spatial orientation and spatial visualization indicated by students’ learning progresses, answers, and strategies when they solved the problems in the activities.

  7. Hyperammonemia induces glial activation, neuroinflammation and alters neurotransmitter receptors in hippocampus, impairing spatial learning: reversal by sulforaphane.

    PubMed

    Hernández-Rabaza, Vicente; Cabrera-Pastor, Andrea; Taoro-González, Lucas; Malaguarnera, Michele; Agustí, Ana; Llansola, Marta; Felipo, Vicente

    2016-02-16

    Patients with liver cirrhosis and minimal hepatic encephalopathy (MHE) show mild cognitive impairment and spatial learning dysfunction. Hyperammonemia acts synergistically with inflammation to induce cognitive impairment in MHE. Hyperammonemia-induced neuroinflammation in hippocampus could contribute to spatial learning impairment in MHE. Two main aims of this work were: (1) to assess whether chronic hyperammonemia increases inflammatory factors in the hippocampus and if this is associated with microglia and/or astrocytes activation and (2) to assess whether hyperammonemia-induced neuroinflammation in the hippocampus is associated with altered membrane expression of glutamate and GABA receptors and spatial learning impairment. There are no specific treatments for cognitive alterations in patients with MHE. A third aim was to assess whether treatment with sulforaphane enhances endogenous the anti-inflammatory system, reduces neuroinflammation in the hippocampus of hyperammonemic rats, and restores spatial learning and if normalization of receptor membrane expression is associated with learning improvement. We analyzed the following in control and hyperammonemic rats, treated or not with sulforaphane: (1) microglia and astrocytes activation by immunohistochemistry, (2) markers of pro-inflammatory (M1) (IL-1β, IL-6) and anti-inflammatory (M2) microglia (Arg1, YM-1) by Western blot, (3) membrane expression of GABA, AMPA, and NMDA receptors using the BS3 cross-linker, and (4) spatial learning using the radial maze. The results reported show that hyperammonemia induces astrocytes and microglia activation in the hippocampus, increasing pro-inflammatory cytokines IL-1β and IL-6. This is associated with altered membrane expression of AMPA, NMDA, and GABA receptors which would be responsible for altered neurotransmission and impairment of spatial learning in the radial maze. Treatment with sulforaphane promotes microglia differentiation from pro-inflammatory M1 to anti

  8. Active sensing associated with spatial learning reveals memory-based attention in an electric fish

    PubMed Central

    Longtin, André; Maler, Leonard

    2016-01-01

    Active sensing behaviors reveal what an animal is attending to and how it changes with learning. Gymnotus sp., a gymnotiform weakly electric fish, generates an electric organ discharge (EOD) as discrete pulses to actively sense its surroundings. We monitored freely behaving gymnotid fish in a large dark “maze” and extracted their trajectories and EOD pulse pattern and rate while they learned to find food with electrically detectable landmarks as cues. After training, they more rapidly found food using shorter, more stereotyped trajectories and spent more time near the food location. We observed three forms of active sensing: sustained high EOD rates per unit distance (sampling density), transient large increases in EOD rate (E-scans) and stereotyped scanning movements (B-scans) were initially strong at landmarks and food, but, after learning, intensified only at the food location. During probe (no food) trials, after learning, the fish's search area and intense active sampling was still centered on the missing food location, but now also increased near landmarks. We hypothesize that active sensing is a behavioral manifestation of attention and essential for spatial learning; the fish use spatial memory of landmarks and path integration to reach the expected food location and confine their attention to this region. PMID:26961107

  9. Active sensing associated with spatial learning reveals memory-based attention in an electric fish.

    PubMed

    Jun, James J; Longtin, André; Maler, Leonard

    2016-05-01

    Active sensing behaviors reveal what an animal is attending to and how it changes with learning. Gymnotus sp, a gymnotiform weakly electric fish, generates an electric organ discharge (EOD) as discrete pulses to actively sense its surroundings. We monitored freely behaving gymnotid fish in a large dark "maze" and extracted their trajectories and EOD pulse pattern and rate while they learned to find food with electrically detectable landmarks as cues. After training, they more rapidly found food using shorter, more stereotyped trajectories and spent more time near the food location. We observed three forms of active sensing: sustained high EOD rates per unit distance (sampling density), transient large increases in EOD rate (E-scans) and stereotyped scanning movements (B-scans) were initially strong at landmarks and food, but, after learning, intensified only at the food location. During probe (no food) trials, after learning, the fish's search area and intense active sampling was still centered on the missing food location, but now also increased near landmarks. We hypothesize that active sensing is a behavioral manifestation of attention and essential for spatial learning; the fish use spatial memory of landmarks and path integration to reach the expected food location and confine their attention to this region. Copyright © 2016 the American Physiological Society.

  10. Active and passive spatial learning in human navigation: acquisition of survey knowledge.

    PubMed

    Chrastil, Elizabeth R; Warren, William H

    2013-09-01

    It seems intuitively obvious that active exploration of a new environment would lead to better spatial learning than would passive visual exposure. It is unclear, however, which components of active learning contribute to spatial knowledge, and previous literature is decidedly mixed. This experiment tests the contributions of 4 components to metric survey knowledge: visual, vestibular, and podokinetic information and cognitive decision making. In the learning phase, 6 groups of participants learned the locations of 8 objects in a virtual hedge maze by (a) walking, (b) being pushed in a wheelchair, or (c) watching a video, crossed with (1) making decisions about their path or (2) being guided through the maze. In the test phase, survey knowledge was assessed by having participants walk a novel shortcut from a starting object to the remembered location of a test object, with the maze removed. Performance was slightly better than chance in the passive video condition. The addition of vestibular information did not improve performance in the wheelchair condition, but the addition of podokinetic information significantly improved angular accuracy in the walking condition. In contrast, there was no effect of decision making in any condition. The results indicate that visual and podokinetic information significantly contribute to survey knowledge, whereas vestibular information and decision making do not. We conclude that podokinetic information is the primary component of active learning for the acquisition of metric survey knowledge. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  11. Active Learning Environments with Robotic Tangibles: Children's Physical and Virtual Spatial Programming Experiences

    ERIC Educational Resources Information Center

    Burleson, Winslow S.; Harlow, Danielle B.; Nilsen, Katherine J.; Perlin, Ken; Freed, Natalie; Jensen, Camilla Nørgaard; Lahey, Byron; Lu, Patrick; Muldner, Kasia

    2018-01-01

    As computational thinking becomes increasingly important for children to learn, we must develop interfaces that leverage the ways that young children learn to provide opportunities for them to develop these skills. Active Learning Environments with Robotic Tangibles (ALERT) and Robopad, an analogous on-screen virtual spatial programming…

  12. Comparison of automated home-cage monitoring systems: emphasis on feeding behaviour, activity and spatial learning following pharmacological interventions.

    PubMed

    Robinson, Lianne; Riedel, Gernot

    2014-08-30

    Different automated systems have been developed to facilitate long-term and continuous assessment of behaviours including locomotor activity, feeding behaviour and circadian activity. This study assessed the effectiveness of three different observation systems as methods for determining strain and pharmacological induced differences in locomotor activity, feeding behaviour and spatial learning. The effect of the CB1 antagonist AM251 on feeding behaviour was determined in the PhenoMaster and PhenoTyper. Next, effects of cholinergic (scopolamine) and glutamatergic (Phenylcyclidine, PCP) receptor antagonism and dopaminergic agonism (apomorphine) on activity were assessed in the PhenoTyper and IntelliCage. Finally, the IntelliCage was utilised to determine differences in activity and spatial learning of C57BL/6 and DBA/2 mouse strains following pharmacological intervention. AM251 induced a suppression of food intake, feeding behaviour and a reduction in body weight in both the PhenoTyper and PhenoMaster. Apomorphine reduced activity in both the PhenoTyper and IntelliCage. Whereas, decreased activity was evident with PCP in the PhenoTyper, but not IntelliCage and Scopolamine induced a trend towards elevated levels of activity in the IntelliCage but not PhenoTyper. Strain differences in activity and spatial learning were also evident, with increased corner visits and drug induced impairments only observed with C57BL/6 mice. The automated home cage observation systems determined similar drug and strain effects on behaviour to those observed using traditional methods. All three observation systems reported drug-induced changes in behaviour however, they differ in their application of spatial learning tasks and utilisation of single versus group housed recordings. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Altering spatial priority maps via reward-based learning.

    PubMed

    Chelazzi, Leonardo; Eštočinová, Jana; Calletti, Riccardo; Lo Gerfo, Emanuele; Sani, Ilaria; Della Libera, Chiara; Santandrea, Elisa

    2014-06-18

    Spatial priority maps are real-time representations of the behavioral salience of locations in the visual field, resulting from the combined influence of stimulus driven activity and top-down signals related to the current goals of the individual. They arbitrate which of a number of (potential) targets in the visual scene will win the competition for attentional resources. As a result, deployment of visual attention to a specific spatial location is determined by the current peak of activation (corresponding to the highest behavioral salience) across the map. Here we report a behavioral study performed on healthy human volunteers, where we demonstrate that spatial priority maps can be shaped via reward-based learning, reflecting long-lasting alterations (biases) in the behavioral salience of specific spatial locations. These biases exert an especially strong influence on performance under conditions where multiple potential targets compete for selection, conferring competitive advantage to targets presented in spatial locations associated with greater reward during learning relative to targets presented in locations associated with lesser reward. Such acquired biases of spatial attention are persistent, are nonstrategic in nature, and generalize across stimuli and task contexts. These results suggest that reward-based attentional learning can induce plastic changes in spatial priority maps, endowing these representations with the "intelligent" capacity to learn from experience. Copyright © 2014 the authors 0270-6474/14/348594-11$15.00/0.

  14. The effect of cerebellar transplantation and enforced physical activity on motor skills and spatial learning in adult Lurcher mutant mice.

    PubMed

    Cendelín, Jan; Korelusová, Ivana; Vozeh, Frantisek

    2009-03-01

    Lurcher mutant mice represent a model of olivocerebellar degeneration. They are used to investigate cerebellar functions, consequences of cerebellar degeneration and methods of therapy influencing them. The aim of the work was to assess the effect of foetal cerebellar graft transplantation, repeated enforced physical activity and the combination of both these types of treatment on motor skills, spontaneous motor activity and spatial learning ability in adult B6CBA Lurcher mice. Foetal cerebellar grafts were applied into the cerebellum of Lurchers in the form of solid tissue pieces. Enforced motor activity was realised through rotarod training. Motor functions were examined using bar, ladder and rotarod tests. Spatial learning was tested in the Morris water maze. Spontaneous motor activity in the open field was observed. The presence of the graft was examined histologically. Enforced physical activity led to moderate improvement of some motor skills and to a significant amelioration of spatial learning ability in Lurchers. The transplantation of cerebellar tissue did not influence motor functions significantly but led to an improvement of spatial learning ability. Mutual advancement of the effects of both types of treatment was not observed. Spontaneous motor activity was influenced neither by physical activity nor by the transplantation. Physical activity did not influence the graft survival and development. Because nerve sprouting and cell migration from the graft to the host cerebellum was poor, the functional effects of the graft should be explained with regard to its trophic influence rather than with any involvement of the grafted cells into neural circuitries.

  15. Sharp wave ripples during learning stabilize hippocampal spatial map

    PubMed Central

    Roux, Lisa; Hu, Bo; Eichler, Ronny; Stark, Eran; Buzsáki, György

    2017-01-01

    Cognitive representation of the environment requires a stable hippocampal map but the mechanisms maintaining map representation are unknown. Because sharp wave-ripples (SPW-R) orchestrate both retrospective and prospective spatial information, we hypothesized that disrupting neuronal activity during SPW-Rs affects spatial representation. Mice learned daily a new set of three goal locations on a multi-well maze. We used closed-loop SPW-R detection at goal locations to trigger optogenetic silencing of a subset of CA1 pyramidal neurons. Control place cells (non-silenced or silenced outside SPW-Rs) largely maintained the location of their place fields after learning and showed increased spatial information content. In contrast, the place fields of SPW-R-silenced place cells remapped, and their spatial information remained unaltered. SPW-R silencing did not impact the firing rates or the proportions of place cells. These results suggest that interference with SPW-R-associated activity during learning prevents the stabilization and refinement of the hippocampal map. PMID:28394323

  16. The Association Between Effective Dose of Magnesium and Mild Compulsive Exercise on Spatial Learning, Memory, and Motor Activity of Adult Male Rats.

    PubMed

    Hajizade Ghonsulakandi, Shahnaz; Sheikh, Mahmuod; Dehghan Shasaltaneh, Marzieh; Chopani, Samira; Naghdi, Nasser

    2017-08-01

    One of the most important survival mechanisms is learning and memory processes. To emphasize the role of physical exercises and magnesium (Mg) in improvement of cognitive performance, we planned to investigate the effect of Mg and mild compulsive exercise on spatial learning and memory of adult male rats. Accordingly, we divided male Wistar rats into four groups: (I) control, (II) Mg treatment, (III) exercise, and (IV) Mg-exercise in the different dosages of Mg (0.5, 1, 1.5, and 2 mmol/kbw) were injected in the form of gavage during 1 week. Also, 1-week mild running on treadmill was used for exercise treatment. The Morris water maze (MWM) test and open field tool were used to evaluate spatial learning, memory, and motor activity, respectively. Our results clearly showed that 1 mmol/kbw Mg was applied as an effective dosage. Strikingly, 1-week mild exercise on treadmill had no significant effect on spatial motor activity, learning, and memory. Feeding 1 mmol/kbw Mg for a week showed a significant difference in learning and exploration stages. Compared to control animals, these results reveal exercise and Mg simultaneously had effect on learning and reminding. As a consequence, although mild exercise had no effect on motor activity and memory, Mg intake improved spatial learning, memory, and locomotor activity. The Mg feeding could be a promising supplemental treatment in the neurodegenerative disease. It is worthwhile to mention consumption of Mg leads to enhancement of memory, so animals find the hidden platform with the highest velocity.

  17. Reward-Based Spatial Learning in Teens With Bulimia Nervosa.

    PubMed

    Cyr, Marilyn; Wang, Zhishun; Tau, Gregory Z; Zhao, Guihu; Friedl, Eve; Stefan, Mihaela; Terranova, Kate; Marsh, Rachel

    2016-11-01

    To assess the functioning of mesolimbic and fronto-striatal areas involved in reward-based spatial learning in teenaged girls with bulimia nervosa (BN) that might be involved in the development and maintenance of maladaptive behaviors characteristic of the disorder. We compared functional magnetic resonance imaging blood oxygen level-dependent response in 27 adolescent girls with BN to that of 27 healthy, age-matched control participants during a reward-based learning task that required learning to use extra-maze cues to navigate a virtual 8-arm radial maze to find hidden rewards. We compared groups in their patterns of brain activation associated with reward-based spatial learning versus a control condition in which rewards were unexpected because they were allotted pseudo-randomly to experimentally prevent learning. Both groups learned to navigate the maze to find hidden rewards, but group differences in brain activity associated with maze navigation and reward processing were detected in the fronto-striatal regions and right anterior hippocampus. Unlike healthy adolescents, those with BN did not engage the right inferior frontal gyrus during maze navigation, activated the right anterior hippocampus during the receipt of unexpected rewards (control condition), and deactivated the left superior frontal gyrus and right anterior hippocampus during expected reward receipt (learning condition). These patterns of hippocampal activation in the control condition were significantly associated with the frequency of binge-eating episodes. Adolescents with BN displayed abnormal functioning of the anterior hippocampus and fronto-striatal regions during reward-based spatial learning. These findings suggest that an imbalance in control and reward circuits may arise early in the course of BN. Clinical trial registration information-An fMRI Study of Self-Regulation in Adolescents With Bulimia Nervosa; https://clinicaltrials.gov/; NCT00345943. Copyright © 2016 American Academy

  18. Reward-Based Spatial Learning in Teens With Bulimia Nervosa

    PubMed Central

    Cyr, Marilyn; Wang, Zhishun; Tau, Gregory Z.; Zhao, Guihu; Friedl, Eve; Stefan, Mihaela; Terranova, Kate; Marsh, Rachel

    2016-01-01

    Objective To assess the functioning of mesolimbic and fronto-striatal areas involved in reward-based spatial learning in teenaged girls with bulimia nervosa (BN) that might be involved in the development and maintenance of maladaptive behaviors characteristic of the disorder. Method We compared functional magnetic resonance imaging blood oxygen level dependent response in 27 adolescent girls with BN to that of 27 healthy, age-matched control participants during a reward-based learning task that required learning to use extra-maze cues to navigate a virtual 8-arm radial maze to find hidden rewards. We compared groups in their patterns of brain activation associated with reward-based spatial learning versus a control condition in which rewards were unexpected because they were allotted pseudo-randomly to experimentally prevent learning. Results Both groups learned to navigate the maze to find hidden rewards, but group differences in brain activity associated with maze navigation and reward processing were detected in fronto-striatal regions and right anterior hippocampus. Unlike healthy adolescents, those with BN did not engage right inferior frontal gyrus during maze navigation, activated right anterior hippocampus during the receipt of unexpected rewards (control condition), and deactivated left superior frontal gyrus and right anterior hippocampus during expected reward receipt (learning condition). These patterns of hippocampal activation in the control condition were significantly associated with the frequency of binge-eating episodes. Conclusion Adolescents with BN displayed abnormal functioning of anterior hippocampus and fronto-striatal regions during reward-based spatial learning. These findings suggest that an imbalance in control and reward circuits may arise early in the course of BN. Clinical trial registration information An fMRI Study of Self-regulation in Adolescents With Bulimia Nervosa; https://clinicaltrials.gov/ct2/show/NCT00345943; NCT00345943

  19. Neurobiological and Endocrine Correlates of Individual Differences in Spatial Learning Ability

    PubMed Central

    Sandi, Carmen; Cordero, M. Isabel; Merino, José J.; Kruyt, Nyika D.; Regan, Ciaran M.; Murphy, Keith J.

    2004-01-01

    The polysialylated neural cell adhesion molecule (PSA-NCAM) has been implicated in activity-dependent synaptic remodeling and memory formation. Here, we questioned whether training-induced modulation of PSA-NCAM expression might be related to individual differences in spatial learning abilities. At 12 h posttraining, immunohistochemical analyses revealed a learning-induced up-regulation of PSA-NCAM in the hippocampal dentate gyrus that was related to the spatial learning abilities displayed by rats during training. Specifically, a positive correlation was found between latency to find the platform and subsequent activated PSA levels, indicating that greater induction of polysialylation was observed in rats with the slower acquisition curve. At posttraining times when no learning-associated activation of PSA was observed, no such correlation was found. Further experiments revealed that performance in the massed water maze training is related to a pattern of spatial learning and memory abilities, and to learning-related glucocorticoid responsiveness. Taken together, our findings suggest that the learning-related neural circuits of fast learners are better suited to solving the water maze task than those of slow learners, the latter relying more on structural reorganization to form memory, rather than the relatively economic mechanism of altering synaptic efficacy that is likely used by the former. PMID:15169853

  20. Neurobiological and endocrine correlates of individual differences in spatial learning ability.

    PubMed

    Sandi, Carmen; Cordero, M Isabel; Merino, José J; Kruyt, Nyika D; Regan, Ciaran M; Murphy, Keith J

    2004-01-01

    The polysialylated neural cell adhesion molecule (PSA-NCAM) has been implicated in activity-dependent synaptic remodeling and memory formation. Here, we questioned whether training-induced modulation of PSA-NCAM expression might be related to individual differences in spatial learning abilities. At 12 h posttraining, immunohistochemical analyses revealed a learning-induced up-regulation of PSA-NCAM in the hippocampal dentate gyrus that was related to the spatial learning abilities displayed by rats during training. Specifically, a positive correlation was found between latency to find the platform and subsequent activated PSA levels, indicating that greater induction of polysialylation was observed in rats with the slower acquisition curve. At posttraining times when no learning-associated activation of PSA was observed, no such correlation was found. Further experiments revealed that performance in the massed water maze training is related to a pattern of spatial learning and memory abilities, and to learning-related glucocorticoid responsiveness. Taken together, our findings suggest that the learning-related neural circuits of fast learners are better suited to solving the water maze task than those of slow learners, the latter relying more on structural reorganization to form memory, rather than the relatively economic mechanism of altering synaptic efficacy that is likely used by the former.

  1. Reward-based spatial learning in unmedicated adults with obsessive-compulsive disorder.

    PubMed

    Marsh, Rachel; Tau, Gregory Z; Wang, Zhishun; Huo, Yuankai; Liu, Ge; Hao, Xuejun; Packard, Mark G; Peterson, Bradley S; Simpson, H Blair

    2015-04-01

    The authors assessed the functioning of mesolimbic and striatal areas involved in reward-based spatial learning in unmedicated adults with obsessive-compulsive disorder (OCD). Functional MRI blood-oxygen-level-dependent response was compared in 33 unmedicated adults with OCD and 33 healthy, age-matched comparison subjects during a reward-based learning task that required learning to use extramaze cues to navigate a virtual eight-arm radial maze to find hidden rewards. The groups were compared in their patterns of brain activation associated with reward-based spatial learning versus a control condition in which rewards were unexpected because they were allotted pseudorandomly to experimentally prevent learning. Both groups learned to navigate the maze to find hidden rewards, but group differences in neural activity during navigation and reward processing were detected in mesolimbic and striatal areas. During navigation, the OCD group, unlike the healthy comparison group, exhibited activation in the left posterior hippocampus. Unlike healthy subjects, participants in the OCD group did not show activation in the left ventral putamen and amygdala when anticipating rewards or in the left hippocampus, amygdala, and ventral putamen when receiving unexpected rewards (control condition). Signal in these regions decreased relative to baseline during unexpected reward receipt among those in the OCD group, and the degree of activation was inversely associated with doubt/checking symptoms. Participants in the OCD group displayed abnormal recruitment of mesolimbic and ventral striatal circuitry during reward-based spatial learning. Whereas healthy comparison subjects exhibited activation in this circuitry in response to the violation of reward expectations, unmedicated OCD participants did not and instead over-relied on the posterior hippocampus during learning. Thus, dopaminergic innervation of reward circuitry may be altered, and future study of anterior/posterior hippocampal

  2. Sex effects on spatial learning but not on spatial memory retrieval in healthy young adults.

    PubMed

    Piber, Dominique; Nowacki, Jan; Mueller, Sven C; Wingenfeld, Katja; Otte, Christian

    2018-01-15

    Sex differences have been found in spatial learning and spatial memory, with several studies indicating that males outperform females. We tested in the virtual Morris Water Maze (vMWM) task, whether sex differences in spatial cognitive processes are attributable to differences in spatial learning or spatial memory retrieval in a large student sample. We tested 90 healthy students (45 women and 45 men) with a mean age of 23.5 years (SD=3.5). Spatial learning and spatial memory retrieval were measured by using the vMWM task, during which participants had to search a virtual pool for a hidden platform, facilitated by visual cues surrounding the pool. Several learning trials assessed spatial learning, while a separate probe trial assessed spatial memory retrieval. We found a significant sex effect during spatial learning, with males showing shorter latency and shorter path length, as compared to females (all p<0.001). Yet, there was no significant sex effect in spatial memory retrieval (p=0.615). Furthermore, post-hoc analyses revealed significant sex differences in spatial search strategies (p<0.05), but no difference in the number of platform crossings (p=0.375). Our results indicate that in healthy young adults, males show faster spatial learning in a virtual environment, as compared to females. Interestingly, we found no significant sex differences during spatial memory retrieval. Our study raises the question, whether men and women use different learning strategies, which nevertheless result in equal performances of spatial memory retrieval. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Connecting mathematics learning through spatial reasoning

    NASA Astrophysics Data System (ADS)

    Mulligan, Joanne; Woolcott, Geoffrey; Mitchelmore, Michael; Davis, Brent

    2018-03-01

    Spatial reasoning, an emerging transdisciplinary area of interest to mathematics education research, is proving integral to all human learning. It is particularly critical to science, technology, engineering and mathematics (STEM) fields. This project will create an innovative knowledge framework based on spatial reasoning that identifies new pathways for mathematics learning, pedagogy and curriculum. Novel analytical tools will map the unknown complex systems linking spatial and mathematical concepts. It will involve the design, implementation and evaluation of a Spatial Reasoning Mathematics Program (SRMP) in Grades 3 to 5. Benefits will be seen through development of critical spatial skills for students, increased teacher capability and informed policy and curriculum across STEM education.

  4. Spatial Learning and Action Planning in a Prefrontal Cortical Network Model

    PubMed Central

    Martinet, Louis-Emmanuel; Sheynikhovich, Denis; Benchenane, Karim; Arleo, Angelo

    2011-01-01

    The interplay between hippocampus and prefrontal cortex (PFC) is fundamental to spatial cognition. Complementing hippocampal place coding, prefrontal representations provide more abstract and hierarchically organized memories suitable for decision making. We model a prefrontal network mediating distributed information processing for spatial learning and action planning. Specific connectivity and synaptic adaptation principles shape the recurrent dynamics of the network arranged in cortical minicolumns. We show how the PFC columnar organization is suitable for learning sparse topological-metrical representations from redundant hippocampal inputs. The recurrent nature of the network supports multilevel spatial processing, allowing structural features of the environment to be encoded. An activation diffusion mechanism spreads the neural activity through the column population leading to trajectory planning. The model provides a functional framework for interpreting the activity of PFC neurons recorded during navigation tasks. We illustrate the link from single unit activity to behavioral responses. The results suggest plausible neural mechanisms subserving the cognitive “insight” capability originally attributed to rodents by Tolman & Honzik. Our time course analysis of neural responses shows how the interaction between hippocampus and PFC can yield the encoding of manifold information pertinent to spatial planning, including prospective coding and distance-to-goal correlates. PMID:21625569

  5. Showercap Mindmap: A Spatial Activity for Learning Physiology Terminology and Location

    ERIC Educational Resources Information Center

    Vanags, Thea; Budimlic, Mira; Herbert, Elissa; Montgomery, Melena M.; Vickers, Tracy

    2012-01-01

    Students struggle with the volume and complexity of physiology terminology. We compared first-year undergraduate psychology students' learning of physiological terms using two teaching methods: one verbal (control group; n = 16) and one spatial and multisensory (experimental group; n = 19). The experimental group used clear plastic shower caps to…

  6. Spatial short-term memory in children with nonverbal learning disabilities: impairment in encoding spatial configuration.

    PubMed

    Narimoto, Tadamasa; Matsuura, Naomi; Takezawa, Tomohiro; Mitsuhashi, Yoshinori; Hiratani, Michio

    2013-01-01

    The authors investigated whether impaired spatial short-term memory exhibited by children with nonverbal learning disabilities is due to a problem in the encoding process. Children with or without nonverbal learning disabilities performed a simple spatial test that required them to remember 3, 5, or 7 spatial items presented simultaneously in random positions (i.e., spatial configuration) and to decide if a target item was changed or all items including the target were in the same position. The results showed that, even when the spatial positions in the encoding and probe phases were similar, the mean proportion correct of children with nonverbal learning disabilities was 0.58 while that of children without nonverbal learning disabilities was 0.84. The authors argue with the results that children with nonverbal learning disabilities have difficulty encoding relational information between spatial items, and that this difficulty is responsible for their impaired spatial short-term memory.

  7. Cabri 3D - assisted collaborative learning to enhance junior high school students’ spatial ability

    NASA Astrophysics Data System (ADS)

    Muntazhimah; Miatun, A.

    2018-01-01

    The main purpose of this quasi-experimental study was to determine the enhancement of spatial ability of junior high school students who learned through Cabri-3D assisted collaborative learning. The methodology of this study was the nonequivalent group that was conducted to students of the eighth grade in a junior high school as a population. Samples consisted one class of the experimental group who studied with Cabri-3D assisted collaborative learning and one class as a control group who got regular learning activity. The instrument used in this study was a spatial ability test. Analyzing normalized gain of students’ spatial ability based on mathemathical prior knowledge (MPK) and its interactions was tested by two-way ANOVA at a significance level of 5% then continued with using Post Hoc Scheffe test. The research results showed that there was significant difference in enhancement of the spatial ability between students who learnt with Cabri 3D assisted collaborative learning and students who got regular learning, there was significant difference in enhancement of the spatial ability between students who learnt with cabri 3D assisted collaborative learning and students who got regular learning in terms of MPK and there is no significant interaction between learning (Cabri-3D assisted collaborative learning and regular learning) with students’ MPK (high, medium, and low) toward the enhancement of students’ spatial abilities. From the above findings, it can be seen that cabri-3D assisted collaborative learning could enhance spatial ability of junior high school students.

  8. Learning outdoors: male lizards show flexible spatial learning under semi-natural conditions

    PubMed Central

    Noble, Daniel W. A.; Carazo, Pau; Whiting, Martin J.

    2012-01-01

    Spatial cognition is predicted to be a fundamental component of fitness in many lizard species, and yet some studies suggest that it is relatively slow and inflexible. However, such claims are based on work conducted using experimental designs or in artificial contexts that may underestimate their cognitive abilities. We used a biologically realistic experimental procedure (using simulated predatory attacks) to study spatial learning and its flexibility in the lizard Eulamprus quoyii in semi-natural outdoor enclosures under similar conditions to those experienced by lizards in the wild. To evaluate the flexibility of spatial learning, we conducted a reversal spatial-learning task in which positive and negative reinforcements of learnt spatial stimuli were switched. Nineteen (32%) male lizards learnt both tasks within 10 days (spatial task mean: 8.16 ± 0.69 (s.e.) and reversal spatial task mean: 10.74 ± 0.98 (s.e.) trials). We demonstrate that E. quoyii are capable of flexible spatial learning and suggest that future studies focus on a range of lizard species which differ in phylogeny and/or ecology, using biologically relevant cognitive tasks, in an effort to bridge the cognitive divide between ecto- and endotherms. PMID:23075525

  9. Effects of testosterone on spatial learning and memory in adult male rats

    PubMed Central

    Spritzer, Mark D.; Daviau, Emily D.; Coneeny, Meagan K.; Engelman, Shannon M.; Prince, W. Tyler; Rodriguez-Wisdom, Karlye N.

    2011-01-01

    A male advantage over females for spatial tasks has been well documented in both humans and rodents, but it remains unclear how the activational effects of testosterone influence spatial ability in males. In a series of experiments, we tested how injections of testosterone influenced the spatial working and reference memory of castrated male rats. In the eight-arm radial maze, testosterone injections (0.500 mg/rat) reduced the number of working memory errors during the early blocks of testing but had no effect on the number of reference memory errors relative to the castrated control group. In a reference memory version of the Morris water maze, injections of a wide range of testosterone doses (0.0625-1.000 mg/rat) reduced path lengths to the hidden platform, indicative of improved spatial learning. This improved learning was independent of testosterone dose, with all treatment groups showing better performance than the castrated control males. Furthermore, this effect was only observed when rats were given testosterone injections starting seven days prior to water maze testing and not when injections were given only on the testing days. We also observed that certain doses of testosterone (0.250 and 1.000 mg/rat) increased perseverative behavior in a reversal-learning task. Finally, testosterone did not have a clear effect on spatial working memory in the Morris water maze, although intermediate doses seemed to optimize performance. Overall, the results indicate that testosterone can have positive activational effects on spatial learning and memory, but the duration of testosterone replacement and the nature of the spatial task modify these effects. PMID:21295035

  10. Omega 3 polyunsaturated fatty acid improves spatial learning and hippocampal Peroxisome Proliferator Activated Receptors (PPARα and PPARγ) gene expression in rats

    PubMed Central

    2012-01-01

    Background This study examined the effects of dietary polyunsaturated fatty acids (PUFA) as different n-6: n-3 ratios on spatial learning and gene expression of peroxisome- proliferator-activated receptors (PPARs) in the hippocampus of rats. Thirty male Sprague–Dawley rats were randomly allotted into 3 groups of ten animals each and received experimental diets with different n-6: n-3 PUFA ratios of either 65:1, 22:1 or 4.5:1. After 10 weeks, the spatial memory of the animals was assessed using the Morris Water Maze test. The expression of PPARα and PPARγ genes were determined using real-time PCR. Results Decreasing dietary n-6: n-3 PUFA ratios improved the cognitive performance of animals in the Morris water maze test along with the upregulation of PPARα and PPARγ gene expression. The animals with the lowest dietary n-6: n-3 PUFA ratio presented the highest spatial learning improvement and PPAR gene expression. Conclusion It can be concluded that modulation of n-6: n-3 PUFA ratios in the diet may lead to increased hippocampal PPAR gene expression and consequently improved spatial learning and memory in rats. PMID:22989138

  11. The Effects of Theta Precession on Spatial Learning and Simplicial Complex Dynamics in a Topological Model of the Hippocampal Spatial Map

    PubMed Central

    Arai, Mamiko; Brandt, Vicky; Dabaghian, Yuri

    2014-01-01

    Learning arises through the activity of large ensembles of cells, yet most of the data neuroscientists accumulate is at the level of individual neurons; we need models that can bridge this gap. We have taken spatial learning as our starting point, computationally modeling the activity of place cells using methods derived from algebraic topology, especially persistent homology. We previously showed that ensembles of hundreds of place cells could accurately encode topological information about different environments (“learn” the space) within certain values of place cell firing rate, place field size, and cell population; we called this parameter space the learning region. Here we advance the model both technically and conceptually. To make the model more physiological, we explored the effects of theta precession on spatial learning in our virtual ensembles. Theta precession, which is believed to influence learning and memory, did in fact enhance learning in our model, increasing both speed and the size of the learning region. Interestingly, theta precession also increased the number of spurious loops during simplicial complex formation. We next explored how downstream readout neurons might define co-firing by grouping together cells within different windows of time and thereby capturing different degrees of temporal overlap between spike trains. Our model's optimum coactivity window correlates well with experimental data, ranging from ∼150–200 msec. We further studied the relationship between learning time, window width, and theta precession. Our results validate our topological model for spatial learning and open new avenues for connecting data at the level of individual neurons to behavioral outcomes at the neuronal ensemble level. Finally, we analyzed the dynamics of simplicial complex formation and loop transience to propose that the simplicial complex provides a useful working description of the spatial learning process. PMID:24945927

  12. Protocol for Short- and Longer-term Spatial Learning and Memory in Mice

    PubMed Central

    Willis, Emily F.; Bartlett, Perry F.; Vukovic, Jana

    2017-01-01

    Studies on the role of the hippocampus in higher cognitive functions such as spatial learning and memory in rodents are reliant upon robust and objective behavioral tests. This protocol describes one such test—the active place avoidance (APA) task. This behavioral task involves the mouse continuously integrating visual cues to orientate itself within a rotating arena in order to actively avoid a shock zone, the location of which remains constant relative to the room. This protocol details the step-by-step procedures for a novel paradigm of the hippocampal-dependent APA task, measuring acquisition of spatial learning during a single 20-min trial (i.e., short-term memory), with spatial memory encoding and retrieval (i.e., long-term memory) assessed by trials conducted over consecutive days. Using the APA task, cognitive flexibility can be assessed using the reversal learning paradigm, as this increases the cognitive load required for efficient performance in the task. In addition to a detailed experimental protocol, this paper also describes the range of its possible applications, the expected key results, as well as the analytical methods to assess the data, and the pitfalls/troubleshooting measures. The protocol described herein is highly robust and produces replicable results, thus presenting an important paradigm that enables the assessment of subtle short-term changes in spatial learning and memory, such as those observed for many experimental interventions. PMID:29089878

  13. Topological Schemas of Cognitive Maps and Spatial Learning.

    PubMed

    Babichev, Andrey; Cheng, Sen; Dabaghian, Yuri A

    2016-01-01

    Spatial navigation in mammals is based on building a mental representation of their environment-a cognitive map. However, both the nature of this cognitive map and its underpinning in neural structures and activity remains vague. A key difficulty is that these maps are collective, emergent phenomena that cannot be reduced to a simple combination of inputs provided by individual neurons. In this paper we suggest computational frameworks for integrating the spiking signals of individual cells into a spatial map, which we call schemas. We provide examples of four schemas defined by different types of topological relations that may be neurophysiologically encoded in the brain and demonstrate that each schema provides its own large-scale characteristics of the environment-the schema integrals. Moreover, we find that, in all cases, these integrals are learned at a rate which is faster than the rate of complete training of neural networks. Thus, the proposed schema framework differentiates between the cognitive aspect of spatial learning and the physiological aspect at the neural network level.

  14. Spatial Contiguity and Incidental Learning in Multimedia Environments

    ERIC Educational Resources Information Center

    Paek, Seungoh; Hoffman, Daniel L.; Saravanos, Antonios

    2017-01-01

    Drawing on dual-process theories of cognitive function, the degree to which spatial contiguity influences incidental learning outcomes was examined. It was hypothesized that spatial contiguity would mediate what was learned even in the absence of an explicit learning goal. To test this hypothesis, 149 adults completed a multimedia-related task…

  15. Exposure to activity-based anorexia impairs contextual learning in weight-restored rats without affecting spatial learning, taste, anxiety, or dietary-fat preference.

    PubMed

    Boersma, Gretha J; Treesukosol, Yada; Cordner, Zachary A; Kastelein, Anneke; Choi, Pique; Moran, Timothy H; Tamashiro, Kellie L

    2016-02-01

    Relapse rates are high amongst cases of anorexia nervosa (AN) suggesting that some alterations induced by AN may remain after weight restoration. To study the consequences of AN without confounds of environmental variability, a rodent model of activity-based anorexia (ABA) can be employed. We hypothesized that exposure to ABA during adolescence may have long-term consequences in taste function, cognition, and anxiety-like behavior after weight restoration. To test this hypothesis, we exposed adolescent female rats to ABA (1.5 h food access, combined with voluntary running wheel access) and compared their behavior to that of control rats after weight restoration was achieved. The rats were tested for learning/memory, anxiety, food preference, and taste in a set of behavioral tests performed during the light period. Our data show that ABA exposure leads to reduced performance during the novel object recognition task, a test for contextual learning, without altering performance in the novel place recognition task or the Barnes maze, both tasks that test spatial learning. Furthermore, we do not observe alterations in unconditioned lick responses to sucrose nor quinine (described by humans as "sweet" and "bitter," respectively). Nor Do we find alterations in anxiety-like behavior during an elevated plus maze or an open field test. Finally, preference for a diet high in fat is not altered. Overall, our data suggest that ABA exposure during adolescence impairs contextual learning in adulthood without altering spatial leaning, taste, anxiety, or fat preference. © 2015 Wiley Periodicals, Inc.

  16. Hippocampal 5-HT1A Receptor and Spatial Learning and Memory

    PubMed Central

    Glikmann-Johnston, Yifat; Saling, Michael M.; Reutens, David C.; Stout, Julie C.

    2015-01-01

    Spatial cognition is fundamental for survival in the topographically complex environments inhabited by humans and other animals. The hippocampus, which has a central role in spatial cognition, is characterized by high concentration of serotonin (5-hydroxytryptamine; 5-HT) receptor binding sites, particularly of the 1A receptor (5-HT1A) subtype. This review highlights converging evidence for the role of hippocampal 5-HT1A receptors in spatial learning and memory. We consider studies showing that activation or blockade of the 5-HT1A receptors using agonists or antagonists, respectively, lead to changes in spatial learning and memory. For example, pharmacological manipulation to induce 5-HT release, or to block 5-HT uptake, have indicated that increased extracellular 5-HT concentrations maintain or improve memory performance. In contrast, reduced levels of 5-HT have been shown to impair spatial memory. Furthermore, the lack of 5-HT1A receptor subtype in single gene knockout mice is specifically associated with spatial memory impairments. These findings, along with evidence from recent cognitive imaging studies using positron emission tomography (PET) with 5-HT1A receptor ligands, and studies of individual genetic variance in 5-HT1A receptor availability, strongly suggests that 5-HT, mediated by the 5-HT1A receptor subtype, plays a key role in spatial learning and memory. PMID:26696889

  17. Modified Navigation Instructions for Spatial Navigation Assistance Systems Lead to Incidental Spatial Learning

    PubMed Central

    Gramann, Klaus; Hoepner, Paul; Karrer-Gauss, Katja

    2017-01-01

    Spatial cognitive skills deteriorate with the increasing use of automated GPS navigation and a general decrease in the ability to orient in space might have further impact on independence, autonomy, and quality of life. In the present study we investigate whether modified navigation instructions support incidental spatial knowledge acquisition. A virtual driving environment was used to examine the impact of modified navigation instructions on spatial learning while using a GPS navigation assistance system. Participants navigated through a simulated urban and suburban environment, using navigation support to reach their destination. Driving performance as well as spatial learning was thereby assessed. Three navigation instruction conditions were tested: (i) a control group that was provided with classical navigation instructions at decision points, and two other groups that received navigation instructions at decision points including either (ii) additional irrelevant information about landmarks or (iii) additional personally relevant information (i.e., individual preferences regarding food, hobbies, etc.), associated with landmarks. Driving performance revealed no differences between navigation instructions. Significant improvements were observed in both modified navigation instruction conditions on three different measures of spatial learning and memory: subsequent navigation of the initial route without navigation assistance, landmark recognition, and sketch map drawing. Future navigation assistance systems could incorporate modified instructions to promote incidental spatial learning and to foster more general spatial cognitive abilities. Such systems might extend mobility across the lifespan. PMID:28243219

  18. Learning Anatomy Enhances Spatial Ability

    ERIC Educational Resources Information Center

    Vorstenbosch, Marc A. T. M.; Klaassen, Tim P. F. M.; Donders, A. R. T.; Kooloos, Jan G. M.; Bolhuis, Sanneke M.; Laan, Roland F. J. M.

    2013-01-01

    Spatial ability is an important factor in learning anatomy. Students with high scores on a mental rotation test (MRT) systematically score higher on anatomy examinations. This study aims to investigate if learning anatomy also oppositely improves the MRT-score. Five hundred first year students of medicine ("n" = 242, intervention) and…

  19. Stills, Not Full Motion, for Interactive Spatial Training: American, Turkish and Taiwanese Female Pre-Service Teachers Learn Spatial Visualization

    ERIC Educational Resources Information Center

    Smith, Glenn Gordon; Gerretson, Helen; Olkun, Sinan; Yuan, Yuan; Dogbey, James; Erdem, Aliye

    2009-01-01

    This study investigated how female elementary education pre-service teachers in the United States, Turkey and Taiwan learned spatial skills from structured activities involving discrete, as opposed to continuous, transformations in interactive computer programs, and how these activities transferred to non-related standardized tests of spatial…

  20. Early handling effect on female rat spatial and non-spatial learning and memory.

    PubMed

    Plescia, Fulvio; Marino, Rosa A M; Navarra, Michele; Gambino, Giuditta; Brancato, Anna; Sardo, Pierangelo; Cannizzaro, Carla

    2014-03-01

    This study aims at providing an insight into early handling procedures on learning and memory performance in adult female rats. Early handling procedures were started on post-natal day 2 until 21, and consisted in 15 min, daily separations of the dams from their litters. Assessment of declarative memory was carried out in the novel-object recognition task; spatial learning, reference- and working memory were evaluated in the Morris water maze (MWM). Our results indicate that early handling induced an enhancement in: (1) declarative memory, in the object recognition task, both at 1h and 24h intervals; (2) reference memory in the probe test and working memory and behavioral flexibility in the "single-trial and four-trial place learning paradigm" of the MWM. Short-term separation by increasing maternal care causes a dampening in HPA axis response in the pups. A modulated activation of the stress response may help to protect brain structures, involved in cognitive function. In conclusion, this study shows the long-term effects of a brief maternal separation in enhancing object recognition-, spatial reference- and working memory in female rats, remarking the impact of early environmental experiences and the consequent maternal care on the behavioral adaptive mechanisms in adulthood. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Dorsal Hippocampus Function in Learning and Expressing a Spatial Discrimination

    ERIC Educational Resources Information Center

    White, Norman M.; Gaskin, Stephane

    2006-01-01

    Learning to discriminate between spatial locations defined by two adjacent arms of a radial maze in the conditioned cue preference paradigm requires two kinds of information: latent spatial learning when the rats explore the maze with no food available, and learning about food availability in two spatial locations when the rats are then confined…

  2. LTP saturation and spatial learning disruption: effects of task variables and saturation levels.

    PubMed

    Barnes, C A; Jung, M W; McNaughton, B L; Korol, D L; Andreasson, K; Worley, P F

    1994-10-01

    The prediction that "saturation" of LTP/LTE at hippocampal synapses should impair spatial learning was reinvestigated in the light of a more specific consideration of the theory of Hebbian associative networks, which predicts a nonlinear relationship between LTP "saturation" and memory impairment. This nonlinearity may explain the variable results of studies that have addressed the effects of LTP "saturation" on behavior. The extent of LTP "saturation" in fascia dentata produced by the standard chronic LTP stimulation protocol was assessed both electrophysiologically and through the use of an anatomical marker (activation of the immediate-early gene zif268). Both methods point to the conclusion that the standard protocols used to induce LTP do not "saturate" the process at any dorsoventral level, and leave the ventral half of the hippocampus virtually unaffected. LTP-inducing, bilateral perforant path stimulation led to a significant deficit in the reversal of a well-learned spatial response on the Barnes circular platform task as reported previously, yet in the same animals produced no deficit in learning the Morris water task (for which previous results have been conflicting). The behavioral deficit was not a consequence of any after-discharge in the hippocampal EEG. In contrast, administration of maximal electroconvulsive shock led to robust zif268 activation throughout the hippocampus, enhancement of synaptic responses, occlusion of LTP produced by discrete high-frequency stimulation, and spatial learning deficits in the water task. These data provide further support for the involvement of LTP-like synaptic enhancement in spatial learning.

  3. Connecting Mathematics Learning through Spatial Reasoning

    ERIC Educational Resources Information Center

    Mulligan, Joanne; Woolcott, Geoffrey; Mitchelmore, Michael; Davis, Brent

    2018-01-01

    Spatial reasoning, an emerging transdisciplinary area of interest to mathematics education research, is proving integral to all human learning. It is particularly critical to science, technology, engineering and mathematics (STEM) fields. This project will create an innovative knowledge framework based on spatial reasoning that identifies new…

  4. Active Learning Strategies and Assessment in World Geography Classes

    ERIC Educational Resources Information Center

    Klein, Phil

    2003-01-01

    Active learning strategies include a variety of methods, such as inquiry and discovery, in which students are actively engaged in the learning process. This article describes several strategies that can be used in secondary-or college-level world geography courses. The goal of these activities is to foster development of a spatial perspective in…

  5. The effect of retrosplenial cortex lesions in rats on incidental and active spatial learning

    PubMed Central

    Nelson, A. J. D.; Hindley, E. L.; Pearce, J. M.; Vann, S. D.; Aggleton, J. P.

    2015-01-01

    The study examined the importance of the retrosplenial cortex for the incidental learning of the spatial arrangement of distinctive features within a scene. In a modified Morris water-maze, rats spontaneously learnt the location of an escape platform prior to swimming to that location. For this, rats were repeatedly placed on a submerged platform in one corner of either a rectangular (Experiment 1) or square (Experiments 2, 3) pool with walls of different appearance. The rats were then released in the center of the pool for their first test trial. In Experiment 1, the correct corner and its diagonally opposite partner (also correct) were specified by the geometric properties of the pool. Rats with retrosplenial lesions took longer to first reach a correct corner, subsequently showing an attenuated preference for the correct corners. A reduced preference for the correct corner was also found in Experiment 2, when platform location was determined by the juxtaposition of highly salient visual cues (black vs. white walls). In Experiment 3, less salient visual cues (striped vs. white walls) led to a robust lesion impairment, as the retrosplenial lesioned rats showed no preference for the correct corner. When subsequently trained actively to swim to the correct corner over successive trials, retrosplenial lesions spared performance on all three discriminations. The findings not only reveal the importance of the retrosplenial cortex for processing various classes of visuospatial information but also highlight a broader role in the incidental learning of the features of a spatial array, consistent with the translation of scene information. PMID:25705182

  6. Caloric restriction and spatial learning in old mice.

    PubMed

    Bellush, L L; Wright, A M; Walker, J P; Kopchick, J; Colvin, R A

    1996-08-01

    Spatial learning in old mice (19 or 24 months old), some of which had been calorically restricted beginning at 14 weeks of age, was compared to that of young mice, in two separate experiments using a Morris water maze. In the first experiment, only old mice reaching criterion performance on a cued learning task were tested in a subsequent spatial task. Thus, all old mice tested for spatial learning had achieved escape latencies equivalent to those of young controls. Despite equivalent swimming speeds, only about half the old mice in each diet group achieved criterion performance in the spatial task. In the second experiment, old and young mice all received the same number of training trials in a cued task and then in a spatial task. Immediately following spatial training, they were given a 60-s probe trial, with no platform in the pool. Both groups of old mice spent significantly less time in the quadrant where the platform had been and made significantly fewer direct crosses over the previous platform location than did the young control group. As in Experiment 1, calorie restriction failed to provide protection against aging-related deficits. However, in both experiments, some individual old mice evidenced performance in spatial learning indistinguishable from that of young controls. Separate comparisons of "age-impaired" and "age-unimpaired" old mice with young controls may facilitate the identification of neurobiological mechanisms underlying age-related cognitive decline.

  7. Cognitive Control Structures in the Imitation Learning of Spatial Sequences and Rhythms-An fMRI Study.

    PubMed

    Sakreida, Katrin; Higuchi, Satomi; Di Dio, Cinzia; Ziessler, Michael; Turgeon, Martine; Roberts, Neil; Vogt, Stefan

    2018-03-01

    Imitation learning involves the acquisition of novel motor patterns based on action observation (AO). We used event-related functional magnetic resonance imaging to study the imitation learning of spatial sequences and rhythms during AO, motor imagery (MI), and imitative execution in nonmusicians and musicians. While both tasks engaged the fronto-parietal mirror circuit, the spatial sequence task recruited posterior parietal and dorsal premotor regions more strongly. The rhythm task involved an additional network for auditory working memory. This partial dissociation supports the concept of task-specific mirror mechanisms. Two regions of cognitive control were identified: 1) dorsolateral prefrontal cortex (DLPFC) was found to be more strongly activated during MI of novel spatial sequences, which allowed us to extend the 2-level model of imitation learning by Buccino et al. (2004) to spatial sequences. 2) During imitative execution of both tasks, the posterior medial frontal cortex was robustly activated, along with the DLPFC, which suggests that both regions are involved in the cognitive control of imitation learning. The musicians' selective behavioral advantage for rhythm imitation was reflected cortically in enhanced sensory-motor processing during AO and by the absence of practice-related activation differences in DLPFC during rhythm execution. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Neurobiological and Endocrine Correlates of Individual Differences in Spatial Learning Ability

    ERIC Educational Resources Information Center

    Sandi, Carmen; Cordero, M. Isabel; Merino, Jose J.; Kruyt, Nyika D.; Regan, Ciaran M.; Murphy, Keith J.

    2004-01-01

    The polysialylated neural cell adhesion molecule (PSA-NCAM) has been implicated in activity-dependent synaptic remodeling and memory formation. Here, we questioned whether training-induced modulation of PSA-NCAM expression might be related to individual differences in spatial learning abilities. At 12 h posttraining, immunohistochemical analyses…

  9. Contributions of Medial Temporal Lobe and Striatal Memory Systems to Learning and Retrieving Overlapping Spatial Memories

    PubMed Central

    Brown, Thackery I.; Stern, Chantal E.

    2014-01-01

    Many life experiences share information with other memories. In order to make decisions based on overlapping memories, we need to distinguish between experiences to determine the appropriate behavior for the current situation. Previous work suggests that the medial temporal lobe (MTL) and medial caudate interact to support the retrieval of overlapping navigational memories in different contexts. The present study used functional magnetic resonance imaging (fMRI) in humans to test the prediction that the MTL and medial caudate play complementary roles in learning novel mazes that cross paths with, and must be distinguished from, previously learned routes. During fMRI scanning, participants navigated virtual routes that were well learned from prior training while also learning new mazes. Critically, some routes learned during scanning shared hallways with those learned during pre-scan training. Overlap between mazes required participants to use contextual cues to select between alternative behaviors. Results demonstrated parahippocampal cortex activity specific for novel spatial cues that distinguish between overlapping routes. The hippocampus and medial caudate were active for learning overlapping spatial memories, and increased their activity for previously learned routes when they became context dependent. Our findings provide novel evidence that the MTL and medial caudate play complementary roles in the learning, updating, and execution of context-dependent navigational behaviors. PMID:23448868

  10. A preliminary study of sex differences in brain activation during a spatial navigation task in healthy adults.

    PubMed

    Sneider, Jennifer Tropp; Sava, Simona; Rogowska, Jadwiga; Yurgelun-Todd, Deborah A

    2011-10-01

    The hippocampus plays a significant role in spatial memory processing, with sex differences being prominent on various spatial tasks. This study examined sex differences in healthy adults, using functional magnetic resonance imaging (fMRI) in areas implicated in spatial processing during navigation of a virtual analogue of the Morris water-maze. There were three conditions: learning, hidden, and visible control. There were no significant differences in performance measures. However, sex differences were found in regional brain activation during learning in the right hippocampus, right parahippocampal gyrus, and the cingulate cortex. During the hidden condition, the hippocampus, parahippocampal gyrus, and cingulate cortex were activated in both men and women. Additional brain areas involved in spatial processing may be recruited in women when learning information about the environment, by utilizing external cues (landmarks) more than do men, contributing to the observed sex differences in brain activation.

  11. Postnatal TLR2 activation impairs learning and memory in adulthood.

    PubMed

    Madar, Ravit; Rotter, Aviva; Waldman Ben-Asher, Hiba; Mughal, Mohamed R; Arumugam, Thiruma V; Wood, W H; Becker, K G; Mattson, Mark P; Okun, Eitan

    2015-08-01

    Neuroinflammation in the central nervous system is detrimental for learning and memory, as evident form epidemiological studies linking developmental defects and maternal exposure to harmful pathogens. Postnatal infections can also induce neuroinflammatory responses with long-term consequences. These inflammatory responses can lead to motor deficits and/or behavioral disabilities. Toll like receptors (TLRs) are a family of innate immune receptors best known as sensors of microbial-associated molecular patterns, and are the first responders to infection. TLR2 forms heterodimers with either TLR1 or TLR6, is activated in response to gram-positive bacterial infections, and is expressed in the brain during embryonic development. We hypothesized that early postnatal TLR2-mediated neuroinflammation would adversely affect cognitive behavior in the adult. Our data indicate that postnatal TLR2 activation affects learning and memory in adult mice in a heterodimer-dependent manner. TLR2/6 activation improved motor function and fear learning, while TLR2/1 activation impaired spatial learning and enhanced fear learning. Moreover, developmental TLR2 deficiency significantly impairs spatial learning and enhances fear learning, stressing the involvement of the TLR2 pathway in learning and memory. Analysis of the transcriptional effects of TLR2 activation reveals both common and unique transcriptional programs following heterodimer-specific TLR2 activation. These results imply that adult cognitive behavior could be influenced in part, by activation or alterations in the TLR2 pathway at birth. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Containment and Support: Core and Complexity in Spatial Language Learning.

    PubMed

    Landau, Barbara; Johannes, Kristen; Skordos, Dimitrios; Papafragou, Anna

    2017-04-01

    Containment and support have traditionally been assumed to represent universal conceptual foundations for spatial terms. This assumption can be challenged, however: English in and on are applied across a surprisingly broad range of exemplars, and comparable terms in other languages show significant variation in their application. We propose that the broad domains of both containment and support have internal structure that reflects different subtypes, that this structure is reflected in basic spatial term usage across languages, and that it constrains children's spatial term learning. Using a newly developed battery, we asked how adults and 4-year-old children speaking English or Greek distribute basic spatial terms across subtypes of containment and support. We found that containment showed similar distributions of basic terms across subtypes among all groups while support showed such similarity only among adults, with striking differences between children learning English versus Greek. We conclude that the two domains differ considerably in the learning problems they present, and that learning in and on is remarkably complex. Together, our results point to the need for a more nuanced view of spatial term learning. Copyright © 2016 Cognitive Science Society, Inc.

  13. Development of Critical Spatial Thinking through GIS Learning

    ERIC Educational Resources Information Center

    Kim, Minsung; Bednarz, Robert

    2013-01-01

    This study developed an interview-based critical spatial thinking oral test and used the test to investigate the effects of Geographic Information System (GIS) learning on three components of critical spatial thinking: evaluating data reliability, exercising spatial reasoning, and assessing problem-solving validity. Thirty-two students at a large…

  14. Adult-onset hyperthyroidism impairs spatial learning: possible involvement of mitogen-activated protein kinase signaling pathways.

    PubMed

    Bitiktaş, Soner; Kandemir, Başak; Tan, Burak; Kavraal, Şehrazat; Liman, Narin; Dursun, Nurcan; Dönmez-Altuntaş, Hamiyet; Aksan-Kurnaz, Işil; Suer, Cem

    2016-08-03

    Given evidence that mitogen-activated protein kinase (MAPK) activation is part of the nongenomic actions of thyroid hormones, we investigated the possible consequences of hyperthyroidism for the cognitive functioning of adult rats. Young adult rats were treated with L-thyroxine or saline. Twenty rats in each group were exposed to Morris water maze testing, measuring their performance in a hidden-platform spatial task. In a separate set of rats not exposed to Morris water maze testing (untrained rats), the expression and phosphorylated levels of p38-MAPK and of its two downstream effectors, Elk-1 and cAMP response element-binding protein, were evaluated using quantitative reverse transcriptase-PCR and western blotting. Rats with hyperthyroidism showed delayed acquisition of learning compared with their wild-type counterparts, as shown by increased escape latencies and distance moved on the last two trials of daily training in the water maze. The hyperthyroid rats, however, showed no difference during probe trials. Western blot analyses of the hippocampus showed that hyperthyroidism increased phosphorylated p38-MAPK levels in untrained rats. Although our study is correlative in nature and does not exclude the contribution of other molecular targets, our findings suggest that the observed impairments in acquisition during actual learning in rats with hyperthyroidism may result from the increased phosphorylation of p38-MAPK.

  15. Spatial Learning and Computer Simulations in Science

    ERIC Educational Resources Information Center

    Lindgren, Robb; Schwartz, Daniel L.

    2009-01-01

    Interactive simulations are entering mainstream science education. Their effects on cognition and learning are often framed by the legacy of information processing, which emphasized amodal problem solving and conceptual organization. In contrast, this paper reviews simulations from the vantage of research on perception and spatial learning,…

  16. Cardiovascular Fitness and Cognitive Spatial Learning in Rodents and in Humans.

    PubMed

    Barak, Boaz; Feldman, Noa; Okun, Eitan

    2015-09-01

    The association between cardiovascular fitness and cognitive functions in both animals and humans is intensely studied. Research in rodents shows that a higher cardiovascular fitness has beneficial effects on hippocampus-dependent spatial abilities, and the underlying mechanisms were largely teased out. Research into the impact of cardiovascular fitness on spatial learning in humans, however, is more limited, and involves mostly behavioral and imaging studies. Herein, we point out the state of the art in the field of spatial learning and cardiovascular fitness. The differences between the methodologies utilized to study spatial learning in humans and rodents are emphasized along with the neuronal basis of these tasks. Critical gaps in the study of spatial learning in the context of cardiovascular fitness between the two species are discussed. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America.

  17. 4SPPIces: A Case Study of Factors in a Scripted Collaborative-Learning Blended Course across Spatial Locations

    ERIC Educational Resources Information Center

    Perez-Sanagustin, Mar; Santos, Patricia; Hernandez-Leo, Davinia; Blat, Josep

    2012-01-01

    Computer-Supported Collaborative Blended Learning (CSCBL) scripts are complex learning situations in which formal and informal activities conducted at different spatial locations are coordinated and integrated into one unique learning setting through the use of technology. We define a conceptual model identifying four factors to be considered when…

  18. How to enhance route learning and visuo-spatial working memory in aging: a training for residential care home residents.

    PubMed

    Mitolo, Micaela; Borella, Erika; Meneghetti, Chiara; Carbone, Elena; Pazzaglia, Francesca

    2017-05-01

    This study aimed to assess the efficacy of a route-learning training in a group of older adults living in a residential care home. We verified the presence of training-specific effects in tasks similar to those trained - route-learning tasks - as well as transfer effects on related cognitive processes - visuo-spatial short-term memory (VSSTM; Corsi Blocks Test (CBT), forward version), visuo-spatial working memory (VSWM; CBT, backward version; Pathway Span Tasks; Jigsaw Puzzle Test) - and in self-report measures. The maintenance of training benefits was examined after 3 months. Thirty 70-90-year-old residential care home residents were randomly assigned to the route-learning training group or to an active control group (involved in non-visuo-spatial activities). The trained group performed better than the control group in the route-learning tasks, retaining this benefit 3 months later. Immediate transfer effects were also seen in visuo-spatial span tasks (i.e., CBT forward and backward version and Pathway Span Task); these benefits had been substantially maintained at the 3-month follow-up. These findings suggest that a training on route learning is a promising approach to sustain older adults' environmental learning and some related abilities (e.g., VSSTM and VSWM), even in residential care home residents.

  19. Modulation of spatial attention by goals, statistical learning, and monetary reward.

    PubMed

    Jiang, Yuhong V; Sha, Li Z; Remington, Roger W

    2015-10-01

    This study documented the relative strength of task goals, visual statistical learning, and monetary reward in guiding spatial attention. Using a difficult T-among-L search task, we cued spatial attention to one visual quadrant by (i) instructing people to prioritize it (goal-driven attention), (ii) placing the target frequently there (location probability learning), or (iii) associating that quadrant with greater monetary gain (reward-based attention). Results showed that successful goal-driven attention exerted the strongest influence on search RT. Incidental location probability learning yielded a smaller though still robust effect. Incidental reward learning produced negligible guidance for spatial attention. The 95 % confidence intervals of the three effects were largely nonoverlapping. To understand these results, we simulated the role of location repetition priming in probability cuing and reward learning. Repetition priming underestimated the strength of location probability cuing, suggesting that probability cuing involved long-term statistical learning of how to shift attention. Repetition priming provided a reasonable account for the negligible effect of reward on spatial attention. We propose a multiple-systems view of spatial attention that includes task goals, search habit, and priming as primary drivers of top-down attention.

  20. Modulation of spatial attention by goals, statistical learning, and monetary reward

    PubMed Central

    Sha, Li Z.; Remington, Roger W.

    2015-01-01

    This study documented the relative strength of task goals, visual statistical learning, and monetary reward in guiding spatial attention. Using a difficult T-among-L search task, we cued spatial attention to one visual quadrant by (i) instructing people to prioritize it (goal-driven attention), (ii) placing the target frequently there (location probability learning), or (iii) associating that quadrant with greater monetary gain (reward-based attention). Results showed that successful goal-driven attention exerted the strongest influence on search RT. Incidental location probability learning yielded a smaller though still robust effect. Incidental reward learning produced negligible guidance for spatial attention. The 95 % confidence intervals of the three effects were largely nonoverlapping. To understand these results, we simulated the role of location repetition priming in probability cuing and reward learning. Repetition priming underestimated the strength of location probability cuing, suggesting that probability cuing involved long-term statistical learning of how to shift attention. Repetition priming provided a reasonable account for the negligible effect of reward on spatial attention. We propose a multiple-systems view of spatial attention that includes task goals, search habit, and priming as primary drivers of top-down attention. PMID:26105657

  1. View-invariant object category learning, recognition, and search: how spatial and object attention are coordinated using surface-based attentional shrouds.

    PubMed

    Fazl, Arash; Grossberg, Stephen; Mingolla, Ennio

    2009-02-01

    How does the brain learn to recognize an object from multiple viewpoints while scanning a scene with eye movements? How does the brain avoid the problem of erroneously classifying parts of different objects together? How are attention and eye movements intelligently coordinated to facilitate object learning? A neural model provides a unified mechanistic explanation of how spatial and object attention work together to search a scene and learn what is in it. The ARTSCAN model predicts how an object's surface representation generates a form-fitting distribution of spatial attention, or "attentional shroud". All surface representations dynamically compete for spatial attention to form a shroud. The winning shroud persists during active scanning of the object. The shroud maintains sustained activity of an emerging view-invariant category representation while multiple view-specific category representations are learned and are linked through associative learning to the view-invariant object category. The shroud also helps to restrict scanning eye movements to salient features on the attended object. Object attention plays a role in controlling and stabilizing the learning of view-specific object categories. Spatial attention hereby coordinates the deployment of object attention during object category learning. Shroud collapse releases a reset signal that inhibits the active view-invariant category in the What cortical processing stream. Then a new shroud, corresponding to a different object, forms in the Where cortical processing stream, and search using attention shifts and eye movements continues to learn new objects throughout a scene. The model mechanistically clarifies basic properties of attention shifts (engage, move, disengage) and inhibition of return. It simulates human reaction time data about object-based spatial attention shifts, and learns with 98.1% accuracy and a compression of 430 on a letter database whose letters vary in size, position, and orientation

  2. Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Beck, J. M.; Bridges, S.; Collins, C.; Rushing, J.; Graves, S. J.

    2017-12-01

    Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are using Deep Learning with Convolutional Neural Networks (CNNs) to develop a method for enhancing the spatial resolutions of moderate resolution (10-60m) multispectral satellite imagery. This enhancement will effectively match the resolutions of imagery from multiple sensors to provide increased global temporal-spatial coverage for a variety of Earth science products. Our research is centered on using Deep Learning for automatically generating transformations for increasing the spatial resolution of remotely sensed images with different spatial, spectral, and temporal resolutions. One of the most important steps in using images from multiple sensors is to transform the different image layers into the same spatial resolution, preferably the highest spatial resolution, without compromising the spectral information. Recent advances in Deep Learning have shown that CNNs can be used to effectively and efficiently upscale or enhance the spatial resolution of multispectral images with the use of an auxiliary data source such as a high spatial resolution panchromatic image. In contrast, we are using both the spatial and spectral details inherent in low spatial resolution multispectral images for image enhancement without the use of a panchromatic image. This presentation will discuss how this technology will benefit many Earth Science applications that use remotely sensed images with moderate spatial resolutions.

  3. Neural correlates of reward-based spatial learning in persons with cocaine dependence.

    PubMed

    Tau, Gregory Z; Marsh, Rachel; Wang, Zhishun; Torres-Sanchez, Tania; Graniello, Barbara; Hao, Xuejun; Xu, Dongrong; Packard, Mark G; Duan, Yunsuo; Kangarlu, Alayar; Martinez, Diana; Peterson, Bradley S

    2014-02-01

    Dysfunctional learning systems are thought to be central to the pathogenesis of and impair recovery from addictions. The functioning of the brain circuits for episodic memory or learning that support goal-directed behavior has not been studied previously in persons with cocaine dependence (CD). Thirteen abstinent CD and 13 healthy participants underwent MRI scanning while performing a task that requires the use of spatial cues to navigate a virtual-reality environment and find monetary rewards, allowing the functional assessment of the brain systems for spatial learning, a form of episodic memory. Whereas both groups performed similarly on the reward-based spatial learning task, we identified disturbances in brain regions involved in learning and reward in CD participants. In particular, CD was associated with impaired functioning of medial temporal lobe (MTL), a brain region that is crucial for spatial learning (and episodic memory) with concomitant recruitment of striatum (which normally participates in stimulus-response, or habit, learning), and prefrontal cortex. CD was also associated with enhanced sensitivity of the ventral striatum to unexpected rewards but not to expected rewards earned during spatial learning. We provide evidence that spatial learning in CD is characterized by disturbances in functioning of an MTL-based system for episodic memory and a striatum-based system for stimulus-response learning and reward. We have found additional abnormalities in distributed cortical regions. Consistent with findings from animal studies, we provide the first evidence in humans describing the disruptive effects of cocaine on the coordinated functioning of multiple neural systems for learning and memory.

  4. Spatial parameters at the basis of social transfer of learning.

    PubMed

    Lugli, Luisa; Iani, Cristina; Milanese, Nadia; Sebanz, Natalie; Rubichi, Sandro

    2015-06-01

    Recent research indicates that practicing on a joint spatial compatibility task with an incompatible stimulus-response mapping affects subsequent joint Simon task performance, eliminating the social Simon effect. It has been well established that in individual contexts, for transfer of learning to occur, participants need to practice an incompatible association between stimulus and response positions. The mechanisms underlying transfer of learning in joint task performance are, however, less well understood. The present study was aimed at assessing the relative contribution of 3 different spatial relations characterizing the joint practice context: stimulus-response, stimulus-participant, and participant-response relations. In 3 experiments, the authors manipulated the stimulus-response, stimulus-participant, and response-participant associations. We found that learning from the practice task did not transfer to the subsequent task when during practice stimulus-response associations were spatially incompatible and stimulus-participant associations were compatible (Experiment 1). However, a transfer of learning was evident when stimulus-participant associations were spatially incompatible. This occurred both when response-participant associations were incompatible (Experiment 2) and when they were compatible (Experiment 3). These results seem to support an agent corepresentation account of correspondence effects emerging in joint settings since they suggest that, in social contexts, critical to obtain transfer-of-learning effects is the spatial relation between stimulus and participant positions while the spatial relation between stimulus and response positions is irrelevant. (c) 2015 APA, all rights reserved).

  5. Mechanisms of value-learning in the guidance of spatial attention.

    PubMed

    Anderson, Brian A; Kim, Haena

    2018-05-11

    The role of associative reward learning in the guidance of feature-based attention is well established. The extent to which reward learning can modulate spatial attention has been much more controversial. At least one demonstration of a persistent spatial attention bias following space-based associative reward learning has been reported. At the same time, multiple other experiments have been published failing to demonstrate enduring attentional biases towards locations at which a target, if found, yields high reward. This is in spite of evidence that participants use reward structures to inform their decisions where to search, leading some to suggest that, unlike feature-based attention, spatial attention may be impervious to the influence of learning from reward structures. Here, we demonstrate a robust bias towards regions of a scene that participants were previously rewarded for selecting. This spatial bias relies on representations that are anchored to the configuration of objects within a scene. The observed bias appears to be driven specifically by reinforcement learning, and can be observed with equal strength following non-reward corrective feedback. The time course of the bias is consistent with a transient shift of attention, rather than a strategic search pattern, and is evident in eye movement patterns during free viewing. Taken together, our findings reconcile previously conflicting reports and offer an integrative account of how learning from feedback shapes the spatial attention system. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Implicit learning of non-spatial sequences in schizophrenia

    PubMed Central

    MARVEL, CHERIE L.; SCHWARTZ, BARBARA L.; HOWARD, DARLENE V.; HOWARD, JAMES H.

    2006-01-01

    Recent studies have reported abnormal implicit learning of sequential patterns in patients with schizophrenia. Because these studies were based on visuospatial cues, the question remained whether patients were impaired simply due to the demands of spatial processing. This study examined implicit sequence learning in 24 patients with schizophrenia and 24 healthy controls using a non-spatial variation of the serial reaction time test (SRT) in which pattern stimuli alternated with random stimuli on every other trial. Both groups showed learning by responding faster and more accurately to pattern trials than to random trials. Patients, however, showed a smaller magnitude of sequence learning. Both groups were unable to demonstrate explicit knowledge of the nature of the pattern, confirming that learning occurred without awareness. Clinical variables were not correlated with the patients' learning deficits. Patients with schizophrenia have a decreased ability to develop sensitivity to regularly occurring sequences of events within their environment. This type of deficit may affect an array of cognitive and motor functions that rely on the perception of event regularity. PMID:16248901

  7. [Impairment of spatial learning and memory and changes of oxidative stress in hippocampus from Type 1 diabetic mice].

    PubMed

    Wang, Chun; Lü, Gaoyou; Li, Yan; Zhao, Shidi; Huang, Li

    2018-05-28

    To investigate the relevance between spatial learning and memory impairment and the changes of inducible nitric oxide synthase (iNOS) activity, superoxide dismutase (SOD) activity and malondiadehyde (MDA) content in hippocampus from Type 1 diabetic mice.
 Methods: Sixty male mice were randomly assigned into a control group (NC group, 20 mice) and a Type 1 diabetic group (DM group, 40 mice). Type 1 diabetic mouse models were established by a large dose intraperitoneal injection of streptozotocin (100 mg/kg). The spatial learning and memory abilities of mice were assessed by Morris water maze (MWM) test. After MWM test, we chose 20 mice (diabetic encephalopathy mice) with the worst spatial learning and memory abilities from diabetic model group, and detected the iNOS activity, SOD activity and MDA content in hippocampus in both groups.
 Results: Compared with the NC group, the escape latency was significantly extended and platform crossings were significantly declined in diabetic mice (P<0.01). Furthermore, the activity of iNOS and the content of MDA were markedly increased, and the activity of SOD was significantly decreased in hippocampus of diabetic encephalopathy mice (P<0.01).
 Conclusion: The established Type 1 diabetic mice show symptoms of cognitive dysfunction, which might be related to the increase of oxidative stress in hippocampus.

  8. Guidance of Spatial Attention by Incidental Learning and Endogenous Cuing

    ERIC Educational Resources Information Center

    Jiang, Yuhong V.; Swallow, Khena M.; Rosenbaum, Gail M.

    2013-01-01

    Our visual system is highly sensitive to regularities in the environment. Locations that were important in one's previous experience are often prioritized during search, even though observers may not be aware of the learning. In this study we characterized the guidance of spatial attention by incidental learning of a target's spatial probability,…

  9. Spatial frequency discrimination learning in normal and developmentally impaired human vision

    PubMed Central

    Astle, Andrew T.; Webb, Ben S.; McGraw, Paul V.

    2010-01-01

    Perceptual learning effects demonstrate that the adult visual system retains neural plasticity. If perceptual learning holds any value as a treatment tool for amblyopia, trained improvements in performance must generalise. Here we investigate whether spatial frequency discrimination learning generalises within task to other spatial frequencies, and across task to contrast sensitivity. Before and after training, we measured contrast sensitivity and spatial frequency discrimination (at a range of reference frequencies 1, 2, 4, 8, 16 c/deg). During training, normal and amblyopic observers were divided into three groups. Each group trained on a spatial frequency discrimination task at one reference frequency (2, 4, or 8 c/deg). Normal and amblyopic observers who trained at lower frequencies showed a greater rate of within task learning (at their reference frequency) compared to those trained at higher frequencies. Compared to normals, amblyopic observers showed greater within task learning, at the trained reference frequency. Normal and amblyopic observers showed asymmetrical transfer of learning from high to low spatial frequencies. Both normal and amblyopic subjects showed transfer to contrast sensitivity. The direction of transfer for contrast sensitivity measurements was from the trained spatial frequency to higher frequencies, with the bandwidth and magnitude of transfer greater in the amblyopic observers compared to normals. The findings provide further support for the therapeutic efficacy of this approach and establish general principles that may help develop more effective protocols for the treatment of developmental visual deficits. PMID:20832416

  10. The Role of Motor Learning in Spatial Adaptation near a Tool

    PubMed Central

    Brown, Liana E.; Doole, Robert; Malfait, Nicole

    2011-01-01

    Some visual-tactile (bimodal) cells have visual receptive fields (vRFs) that overlap and extend moderately beyond the skin of the hand. Neurophysiological evidence suggests, however, that a vRF will grow to encompass a hand-held tool following active tool use but not after passive holding. Why does active tool use, and not passive holding, lead to spatial adaptation near a tool? We asked whether spatial adaptation could be the result of motor or visual experience with the tool, and we distinguished between these alternatives by isolating motor from visual experience with the tool. Participants learned to use a novel, weighted tool. The active training group received both motor and visual experience with the tool, the passive training group received visual experience with the tool, but no motor experience, and finally, a no-training control group received neither visual nor motor experience using the tool. After training, we used a cueing paradigm to measure how quickly participants detected targets, varying whether the tool was placed near or far from the target display. Only the active training group detected targets more quickly when the tool was placed near, rather than far, from the target display. This effect of tool location was not present for either the passive-training or control groups. These results suggest that motor learning influences how visual space around the tool is represented. PMID:22174944

  11. Probing the Relationship between Process of Spatial Problems Solving and Science Learning: An Eye Tracking Approach

    ERIC Educational Resources Information Center

    Chen, Yi-Chun; Yang, Fang-Ying

    2014-01-01

    There were two purposes in the study. One was to explore the cognitive activities during spatial problem solving and the other to probe the relationship between spatial ability and science concept learning. Twenty university students participated in the study. The Purdue Visualization of Rotations Test (PVRT) was used to assess the spatial…

  12. Implicit transfer of spatial structure in visuomotor sequence learning.

    PubMed

    Tanaka, Kanji; Watanabe, Katsumi

    2014-11-01

    Implicit learning and transfer in sequence learning are essential in daily life. Here, we investigated the implicit transfer of visuomotor sequences following a spatial transformation. In the two experiments, participants used trial and error to learn a sequence consisting of several button presses, known as the m×n task (Hikosaka et al., 1995). After this learning session, participants learned another sequence in which the button configuration was spatially transformed in one of the following ways: mirrored, rotated, and random arrangement. Our results showed that even when participants were unaware of the transformation rules, accuracy of transfer session in the mirrored and rotated groups was higher than that in the random group (i.e., implicit transfer occurred). Both those who noticed the transformation rules and those who did not (i.e., explicit and implicit transfer instances, respectively) showed faster performance in the mirrored sequences than in the rotated sequences. Taken together, the present results suggest that people can use their implicit visuomotor knowledge to spatially transform sequences and that implicit transfers are modulated by a transformation cost, similar to that in explicit transfer. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Reduced spatial learning in mice infected with the nematode, Heligmosomoides polygyrus.

    PubMed

    Kavaliers, M; Colwell, D D

    1995-06-01

    Parasite modification of host behaviour influences a number of critical responses, but little is known about the effects on host spatial abilities. This study examined the effects of infection with the intestinal trichostrongylid nematode, Heligmosomoides polygyrus, on spatial water maze learning by male laboratory mice, Mus musculus. In this task individual mice had to learn the spatial location of a submerged hidden platform using extramaze visual cues. Determinations of spatial performance were made on day 19 post-infection with mice that had been administered either 50 or 200 infective larvae of H. polygyrus. The infected mice displayed over 1 day of testing (6 blocks of 4 trials) significantly poorer acquisition and retention of the water maze task than either sham-infected or control mice, with mice that had received 200 infective larvae displaying significantly poorer spatial performance than individuals receiving 50 larvae. The decrease in spatial learning occurred in the absence of either any symptoms of illness and malaise, or any evident motor, visual and motivational impairments. It is suggested that in this single host system the parasitic infection-induced decrease in spatial learning arises as a side-effect of the host's immunological and neuromodulatory responses and represents a fitness cost of response to infection.

  14. Implicit Learning of Viewpoint-Independent Spatial Layouts

    PubMed Central

    Tsuchiai, Taiga; Matsumiya, Kazumichi; Kuriki, Ichiro; Shioiri, Satoshi

    2012-01-01

    We usually perceive things in our surroundings as unchanged despite viewpoint changes caused by self-motion. The visual system therefore must have a function to process objects independently of viewpoint. In this study, we examined whether viewpoint-independent spatial layout can be obtained implicitly. For this purpose, we used a contextual cueing effect, a learning effect of spatial layout in visual search displays known to be an implicit effect. We investigated the transfer of the contextual cueing effect to images from a different viewpoint by using visual search displays of 3D objects. For images from a different viewpoint, the contextual cueing effect was maintained with self-motion but disappeared when the display changed without self-motion. This indicates that there is an implicit learning effect in environment-centered coordinates and suggests that the spatial representation of object layouts can be obtained and updated implicitly. We also showed that binocular disparity plays an important role in the layout representations. PMID:22740837

  15. Sulforaphane attenuates postnatal proteasome inhibition and improves spatial learning in adult mice.

    PubMed

    Sunkaria, Aditya; Bhardwaj, Supriya; Yadav, Aarti; Halder, Avishek; Sandhir, Rajat

    2018-01-01

    Proteasomes are known to degrade proteins involved in various processes like metabolism, signal transduction, cell-cycle regulation, inflammation, and apoptosis. Evidence showed that protein degradation has a strong influence on developing neurons as well as synaptic plasticity. Here, we have shown that sulforaphane (SFN) could prevent the deleterious effects of postnatal proteasomal inhibition on spatial reference and working memory of adult mice. One day old Balb/c mice received intracerebroventricular injections of MG132 and SFN. Sham received an equal volume of aCSF. We observed that SFN pre-administration could attenuate MG132 mediated decrease in proteasome and calpain activities. In vitro findings revealed that SFN could induce proteasomal activity by enhancing the expression of catalytic subunit-β5. SFN pre-administration prevented the hippocampus based spatial memory impairments during adulthood, mediated by postnatal MG132 exposure. Histological examination showed deleterious effects of MG132 on pyramidal neurons and granule cell neurons in DG and CA3 sub-regions respectively. Furthermore, SFN pre-administration has shown to attenuate the effect of MG132 on proteasome subunit-β5 expression and also induce the Nrf2 nuclear translocation. In addition, SFN pre-administered mice have also shown to induce expression of pCaMKII, pCreb, and mature/pro-Bdnf, molecules which play a crucial role in spatial learning and memory consolidation. Our findings have shown that proteasomes play an important role in hippocampal synaptic plasticity during the early postnatal period and SFN pre-administration could enhance the proteasomal activity as well as improve spatial learning and memory consolidation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Differential spatial activity patterns of acupuncture by a machine learning based analysis

    NASA Astrophysics Data System (ADS)

    You, Youbo; Bai, Lijun; Xue, Ting; Zhong, Chongguang; Liu, Zhenyu; Tian, Jie

    2011-03-01

    Acupoint specificity, lying at the core of the Traditional Chinese Medicine, underlies the theoretical basis of acupuncture application. However, recent studies have reported that acupuncture stimulation at nonacupoint and acupoint can both evoke similar signal intensity decreases in multiple regions. And these regions were spatially overlapped. We used a machine learning based Support Vector Machine (SVM) approach to elucidate the specific neural response pattern induced by acupuncture stimulation. Group analysis demonstrated that stimulation at two different acupoints (belong to the same nerve segment but different meridians) could elicit distinct neural response patterns. Our findings may provide evidence for acupoint specificity.

  17. Coordinated prefrontal-hippocampal activity and navigation strategy-related prefrontal firing during spatial memory formation.

    PubMed

    Negrón-Oyarzo, Ignacio; Espinosa, Nelson; Aguilar, Marcelo; Fuenzalida, Marco; Aboitiz, Francisco; Fuentealba, Pablo

    2018-06-18

    Learning the location of relevant places in the environment is crucial for survival. Such capacity is supported by a distributed network comprising the prefrontal cortex and hippocampus, yet it is not fully understood how these structures cooperate during spatial reference memory formation. Hence, we examined neural activity in the prefrontal-hippocampal circuit in mice during acquisition of spatial reference memory. We found that interregional oscillatory coupling increased with learning, specifically in the slow-gamma frequency (20 to 40 Hz) band during spatial navigation. In addition, mice used both spatial and nonspatial strategies to navigate and solve the task, yet prefrontal neuronal spiking and oscillatory phase coupling were selectively enhanced in the spatial navigation strategy. Lastly, a representation of the behavioral goal emerged in prefrontal spiking patterns exclusively in the spatial navigation strategy. These results suggest that reference memory formation is supported by enhanced cortical connectivity and evolving prefrontal spiking representations of behavioral goals.

  18. Finding faults: analogical comparison supports spatial concept learning in geoscience.

    PubMed

    Jee, Benjamin D; Uttal, David H; Gentner, Dedre; Manduca, Cathy; Shipley, Thomas F; Sageman, Bradley

    2013-05-01

    A central issue in education is how to support the spatial thinking involved in learning science, technology, engineering, and mathematics (STEM). We investigated whether and how the cognitive process of analogical comparison supports learning of a basic spatial concept in geoscience, fault. Because of the high variability in the appearance of faults, it may be difficult for students to learn the category-relevant spatial structure. There is abundant evidence that comparing analogous examples can help students gain insight into important category-defining features (Gentner in Cogn Sci 34(5):752-775, 2010). Further, comparing high-similarity pairs can be especially effective at revealing key differences (Sagi et al. 2012). Across three experiments, we tested whether comparison of visually similar contrasting examples would help students learn the fault concept. Our main findings were that participants performed better at identifying faults when they (1) compared contrasting (fault/no fault) cases versus viewing each case separately (Experiment 1), (2) compared similar as opposed to dissimilar contrasting cases early in learning (Experiment 2), and (3) viewed a contrasting pair of schematic block diagrams as opposed to a single block diagram of a fault as part of an instructional text (Experiment 3). These results suggest that comparison of visually similar contrasting cases helped distinguish category-relevant from category-irrelevant features for participants. When such comparisons occurred early in learning, participants were more likely to form an accurate conceptual representation. Thus, analogical comparison of images may provide one powerful way to enhance spatial learning in geoscience and other STEM disciplines.

  19. Acute stress differentially affects spatial configuration learning in high and low cortisol-responding healthy adults

    PubMed Central

    Meyer, Thomas; Smeets, Tom; Giesbrecht, Timo; Quaedflieg, Conny W. E. M.; Merckelbach, Harald

    2013-01-01

    Background Stress and stress hormones modulate memory formation in various ways that are relevant to our understanding of stress-related psychopathology, such as posttraumatic stress disorder (PTSD). Particular relevance is attributed to efficient memory formation sustained by the hippocampus and parahippocampus. This process is thought to reduce the occurrence of intrusions and flashbacks following trauma, but may be negatively affected by acute stress. Moreover, recent evidence suggests that the efficiency of visuo-spatial processing and learning based on the hippocampal area is related to PTSD symptoms. Objective The current study investigated the effect of acute stress on spatial configuration learning using a spatial contextual cueing task (SCCT) known to heavily rely on structures in the parahippocampus. Method Acute stress was induced by subjecting participants (N = 34) to the Maastricht Acute Stress Test (MAST). Following a counterbalanced within-subject approach, the effects of stress and the ensuing hormonal (i.e., cortisol) activity on subsequent SCCT performance were compared to SCCT performance following a no-stress control condition. Results Acute stress did not impact SCCT learning overall, but opposing effects emerged for high versus low cortisol responders to the MAST. Learning scores following stress were reduced in low cortisol responders, while high cortisol-responding participants showed improved learning. Conclusions The effects of stress on spatial configuration learning were moderated by the magnitude of endogenous cortisol secretion. These findings suggest a possible mechanism by which cortisol responses serve an adaptive function during stress and trauma, and this may prove to be a promising route for future research in this area. PMID:23671762

  20. Evaluation of Deep Learning Representations of Spatial Storm Data

    NASA Astrophysics Data System (ADS)

    Gagne, D. J., II; Haupt, S. E.; Nychka, D. W.

    2017-12-01

    The spatial structure of a severe thunderstorm and its surrounding environment provide useful information about the potential for severe weather hazards, including tornadoes, hail, and high winds. Statistics computed over the area of a storm or from the pre-storm environment can provide descriptive information but fail to capture structural information. Because the storm environment is a complex, high-dimensional space, identifying methods to encode important spatial storm information in a low-dimensional form should aid analysis and prediction of storms by statistical and machine learning models. Principal component analysis (PCA), a more traditional approach, transforms high-dimensional data into a set of linearly uncorrelated, orthogonal components ordered by the amount of variance explained by each component. The burgeoning field of deep learning offers two potential approaches to this problem. Convolutional Neural Networks are a supervised learning method for transforming spatial data into a hierarchical set of feature maps that correspond with relevant combinations of spatial structures in the data. Generative Adversarial Networks (GANs) are an unsupervised deep learning model that uses two neural networks trained against each other to produce encoded representations of spatial data. These different spatial encoding methods were evaluated on the prediction of severe hail for a large set of storm patches extracted from the NCAR convection-allowing ensemble. Each storm patch contains information about storm structure and the near-storm environment. Logistic regression and random forest models were trained using the PCA and GAN encodings of the storm data and were compared against the predictions from a convolutional neural network. All methods showed skill over climatology at predicting the probability of severe hail. However, the verification scores among the methods were very similar and the predictions were highly correlated. Further evaluations are being

  1. Teachers' Spatial Anxiety Relates to 1st-and 2nd-Graders' Spatial Learning

    ERIC Educational Resources Information Center

    Gunderson, Elizabeth A.; Ramirez, Gerardo; Beilock, Sian L.; Levine, Susan C.

    2013-01-01

    Teachers' anxiety about an academic domain, such as math, can impact students' learning in that domain. We asked whether this relation held in the domain of spatial skill, given the importance of spatial skill for success in math and science and its malleability at a young age. We measured 1st-and 2nd-grade teachers' spatial anxiety…

  2. Spatial working memory in Wistar rats: brain sex differences in metabolic activity.

    PubMed

    Méndez-López, Magdalena; Méndez, Marta; López, Laudino; Arias, Jorge L

    2009-05-29

    Several works have shown that males and females differ in the ability to learn spatial locations in mazes. In this study, we used the Morris water maze to assess the acquisition of a spatial working memory (WM) task in adult male and female Wistar rats. The task consisted of a paired sample procedure made up of two daily identical trials, sample and retention. To study the oxidative metabolic activity of some brain limbic system regions after the WM task, we applied the cytochrome oxidase (COx) histochemistry. In addition to the experimental groups, free swimming control groups and untrained naïve groups were added to explore the COx changes not specific to the learning process. Similar spatial performances were found between sexes as only one more sample and retention trials were needed in males to reduce the escape latencies significantly. Males showed decreased COx activity as compared to control groups in the medial prefrontal cortex (prelimbic and infralimbic regions) as well as in the lateral septum and dentate gyrus. Regarding females, an increase in COx activity was found in nucleus accumbens, ventral tegmental area and supramammillary region in relation to control groups. Overall, these findings suggest that the acquisition of the spatial WM task is mediated by different subsystems in a sex-dependent manner that points to the hippocampus as the central structure in males whereas other structures would be central in females.

  3. Ageing and spatial reversal learning in humans: findings from a virtual water maze.

    PubMed

    Schoenfeld, R; Foreman, N; Leplow, B

    2014-08-15

    Deterioration in spatial memory with normal ageing is well accepted. Animal research has shown spatial reversal learning to be most vulnerable to pathological changes in the brain, but this has never been tested in humans. We studied ninety participants (52% females, 20-80 yrs) in a virtual water maze with a reversal learning procedure. Neuropsychological functioning, mood and personality were assessed to control moderator effects. For data analysis, participants were subdivided post hoc into groups aged 20-24, 25-34, 35-44, 45-64 and 65-80 yrs. Initial spatial learning occurred in all age groups but 65-80-yrs-olds never reached the level of younger participants. When tested for delayed recall of spatial memory, younger people frequented the target area but those over 65 yrs did not. In spatial reversal learning, age groups over 45 yrs were deficient and the 65-80-yrs-olds showed no evidence of reversal. Spatial measures were associated with neuropsychological functioning. Extraversion and measures of depression moderated the age effect on the learning index with older introverted and non-depressed individuals showing better results. Measures of anxiety moderated the age effect on reversal learning with older people having higher anxiety scores showing a preserved reversal learning capability. Results confirmed age to be a major factor in spatial tasks but further showed neuropsychological functioning, psycho-affective determinants and personality traits to be significant predictors of individual differences. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. An Active Learning Framework for Hyperspectral Image Classification Using Hierarchical Segmentation

    NASA Technical Reports Server (NTRS)

    Zhang, Zhou; Pasolli, Edoardo; Crawford, Melba M.; Tilton, James C.

    2015-01-01

    Augmenting spectral data with spatial information for image classification has recently gained significant attention, as classification accuracy can often be improved by extracting spatial information from neighboring pixels. In this paper, we propose a new framework in which active learning (AL) and hierarchical segmentation (HSeg) are combined for spectral-spatial classification of hyperspectral images. The spatial information is extracted from a best segmentation obtained by pruning the HSeg tree using a new supervised strategy. The best segmentation is updated at each iteration of the AL process, thus taking advantage of informative labeled samples provided by the user. The proposed strategy incorporates spatial information in two ways: 1) concatenating the extracted spatial features and the original spectral features into a stacked vector and 2) extending the training set using a self-learning-based semi-supervised learning (SSL) approach. Finally, the two strategies are combined within an AL framework. The proposed framework is validated with two benchmark hyperspectral datasets. Higher classification accuracies are obtained by the proposed framework with respect to five other state-of-the-art spectral-spatial classification approaches. Moreover, the effectiveness of the proposed pruning strategy is also demonstrated relative to the approaches based on a fixed segmentation.

  5. JIP1-Mediated JNK Activation Negatively Regulates Synaptic Plasticity and Spatial Memory.

    PubMed

    Morel, Caroline; Sherrin, Tessi; Kennedy, Norman J; Forest, Kelly H; Avcioglu Barutcu, Seda; Robles, Michael; Carpenter-Hyland, Ezekiel; Alfulaij, Naghum; Standen, Claire L; Nichols, Robert A; Benveniste, Morris; Davis, Roger J; Todorovic, Cedomir

    2018-04-11

    The c-Jun N-terminal kinase (JNK) signal transduction pathway is implicated in learning and memory. Here, we examined the role of JNK activation mediated by the JNK-interacting protein 1 (JIP1) scaffold protein. We compared male wild-type mice with a mouse model harboring a point mutation in the Jip1 gene that selectively blocks JIP1-mediated JNK activation. These male mutant mice exhibited increased NMDAR currents, increased NMDAR-mediated gene expression, and a lower threshold for induction of hippocampal long-term potentiation. The JIP1 mutant mice also displayed improved hippocampus-dependent spatial memory and enhanced associative fear conditioning. These results were confirmed using a second JIP1 mutant mouse model that suppresses JNK activity. Together, these observations establish that JIP1-mediated JNK activation contributes to the regulation of hippocampus-dependent, NMDAR-mediated synaptic plasticity and learning. SIGNIFICANCE STATEMENT The results of this study demonstrate that c-Jun N-terminal kinase (JNK) activation induced by the JNK-interacting protein 1 (JIP1) scaffold protein negatively regulates the threshold for induction of long-term synaptic plasticity through the NMDA-type glutamate receptor. This change in plasticity threshold influences learning. Indeed, mice with defects in JIP1-mediated JNK activation display enhanced memory in hippocampus-dependent tasks, such as contextual fear conditioning and Morris water maze, indicating that JIP1-JNK constrains spatial memory. This study identifies JIP1-mediated JNK activation as a novel molecular pathway that negatively regulates NMDAR-dependent synaptic plasticity and memory. Copyright © 2018 the authors 0270-6474/18/383708-21$15.00/0.

  6. Differentiation of Forebrain and Hippocampal Dopamine 1-Class Receptors, D1R and D5R, in Spatial Learning and Memory

    PubMed Central

    Sariñana, Joshua; Tonegawa, Susumu

    2017-01-01

    Activation of prefrontal cortical (PFC), striatal, and hippocampal dopamine 1-class receptors (D1R and D5R) is necessary for normal spatial information processing. Yet the precise role of the D1R versus the D5R in the aforementioned structures, and their specific contribution to the water-maze spatial learning task remains unknown. D1R- and D5R- specific in situ hybridization probes showed that forebrain restricted D1R and D5R KO mice (F-D1R/D5R KO) displayed D1R mRNA deletion in the medial (m)PFC, dorsal and ventral striatum, and the dentate gyrus (DG) of the hippocampus. D5R mRNA deletion was limited to the mPFC, the CA1 and DG hippocampal subregions. F-D1R/D5R KO mice were given water-maze training and displayed subtle spatial latency differences between genotypes and spatial memory deficits during both regular and reversal training. To differentiate forebrain D1R from D5R activation, forebrain restricted D1R KO (F-D1R KO) and D5R KO (F-D5R KO) mice were trained on the water-maze task. F-D1R KO animals exhibited escape latency deficits throughout regular and reversal training as well as spatial memory deficits during reversal training. F-D1R KO mice also showed perseverative behavior during the reversal spatial memory probe test. In contrast, F-D5R KO animals did not present observable deficits on the water-maze task. Because F-D1R KO mice showed water-maze deficits we tested the necessity of hippocampal D1R activation for spatial learning and memory. We trained DG restricted D1R KO (DG-D1R KO) mice on the water-maze task. DG-D1R KO mice did not present detectable spatial memory deficit, but did show subtle deficits during specific days of training. Our data provides evidence that forebrain D5R activation plays a unique role in spatial learning and memory in conjunction with D1R activation. Moreover, these data suggest that mPFC and striatal, but not DG D1R activation are essential for spatial learning and memory. PMID:26174222

  7. Think3d!: Improving Mathematics Learning through Embodied Spatial Training

    ERIC Educational Resources Information Center

    Burte, Heather; Gardony, Aaron L.; Hutton, Allyson; Taylor, Holly A.

    2017-01-01

    Spatial thinking skills positively relate to Science, Technology, Engineering, and Math (STEM) outcomes, but spatial training is largely absent in elementary school. Elementary school is a time when children develop foundational cognitive skills that will support STEM learning throughout their education. Spatial thinking should be considered a…

  8. Respiratory Viral Infection in Neonatal Piglets Causes Marked Microglia Activation in the Hippocampus and Deficits in Spatial Learning

    PubMed Central

    Elmore, Monica R. P.; Burton, Michael D.; Conrad, Matthew S.; Rytych, Jennifer L.; Van Alstine, William G.

    2014-01-01

    Environmental insults during sensitive periods can affect hippocampal development and function, but little is known about peripheral infection, especially in humans and other animals whose brain is gyrencephalic and experiences major perinatal growth. Using a piglet model, the present study showed that inoculation on postnatal day 7 with the porcine reproductive and respiratory syndrome virus (PRRSV) caused microglial activation within the hippocampus with 82% and 43% of isolated microglia being MHC II+ 13 and 20 d after inoculation, respectively. In control piglets, <5% of microglia isolated from the hippocampus were MHC II+. PRRSV piglets were febrile (p < 0.0001), anorectic (p < 0.0001), and weighed less at the end of the study (p = 0.002) compared with control piglets. Increased inflammatory gene expression (e.g., IL-1β, IL-6, TNF-α, and IFN-γ) was seen across multiple brain regions, including the hippocampus, whereas reductions in CD200, NGF, and MBP were evident. In a test of spatial learning, PRRSV piglets took longer to acquire the task, had a longer latency to choice, and had a higher total distance moved. Overall, these data demonstrate that viral respiratory infection is associated with a marked increase in activated microglia in the hippocampus, neuroinflammation, and impaired performance in a spatial cognitive task. As respiratory infections are common in human neonates and infants, approaches to regulate microglial cell activity are likely to be important. PMID:24501353

  9. Structural and functional neuroplasticity in human learning of spatial routes.

    PubMed

    Keller, Timothy A; Just, Marcel Adam

    2016-01-15

    Recent findings with both animals and humans suggest that decreases in microscopic movements of water in the hippocampus reflect short-term neuroplasticity resulting from learning. Here we examine whether such neuroplastic structural changes concurrently alter the functional connectivity between hippocampus and other regions involved in learning. We collected both diffusion-weighted images and fMRI data before and after humans performed a 45min spatial route-learning task. Relative to a control group with equal practice time, there was decreased diffusivity in the posterior-dorsal dentate gyrus of the left hippocampus in the route-learning group accompanied by increased synchronization of fMRI-measured BOLD signal between this region and cortical areas, and by changes in behavioral performance. These concurrent changes characterize the multidimensionality of neuroplasticity as it enables human spatial learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Focal adhesion kinase regulates neuronal growth, synaptic plasticity and hippocampus-dependent spatial learning and memory.

    PubMed

    Monje, Francisco J; Kim, Eun-Jung; Pollak, Daniela D; Cabatic, Maureen; Li, Lin; Baston, Arthur; Lubec, Gert

    2012-01-01

    The focal adhesion kinase (FAK) is a non-receptor tyrosine kinase abundantly expressed in the mammalian brain and highly enriched in neuronal growth cones. Inhibitory and facilitatory activities of FAK on neuronal growth have been reported and its role in neuritic outgrowth remains controversial. Unlike other tyrosine kinases, such as the neurotrophin receptors regulating neuronal growth and plasticity, the relevance of FAK for learning and memory in vivo has not been clearly defined yet. A comprehensive study aimed at determining the role of FAK in neuronal growth, neurotransmitter release and synaptic plasticity in hippocampal neurons and in hippocampus-dependent learning and memory was therefore undertaken using the mouse model. Gain- and loss-of-function experiments indicated that FAK is a critical regulator of hippocampal cell morphology. FAK mediated neurotrophin-induced neuritic outgrowth and FAK inhibition affected both miniature excitatory postsynaptic potentials and activity-dependent hippocampal long-term potentiation prompting us to explore the possible role of FAK in spatial learning and memory in vivo. Our data indicate that FAK has a growth-promoting effect, is importantly involved in the regulation of the synaptic function and mediates in vivo hippocampus-dependent spatial learning and memory. Copyright © 2011 S. Karger AG, Basel.

  11. Spatial features of synaptic adaptation affecting learning performance.

    PubMed

    Berger, Damian L; de Arcangelis, Lucilla; Herrmann, Hans J

    2017-09-08

    Recent studies have proposed that the diffusion of messenger molecules, such as monoamines, can mediate the plastic adaptation of synapses in supervised learning of neural networks. Based on these findings we developed a model for neural learning, where the signal for plastic adaptation is assumed to propagate through the extracellular space. We investigate the conditions allowing learning of Boolean rules in a neural network. Even fully excitatory networks show very good learning performances. Moreover, the investigation of the plastic adaptation features optimizing the performance suggests that learning is very sensitive to the extent of the plastic adaptation and the spatial range of synaptic connections.

  12. CA1 cell activity sequences emerge after reorganization of network correlation structure during associative learning

    PubMed Central

    Modi, Mehrab N; Dhawale, Ashesh K; Bhalla, Upinder S

    2014-01-01

    Animals can learn causal relationships between pairs of stimuli separated in time and this ability depends on the hippocampus. Such learning is believed to emerge from alterations in network connectivity, but large-scale connectivity is difficult to measure directly, especially during learning. Here, we show that area CA1 cells converge to time-locked firing sequences that bridge the two stimuli paired during training, and this phenomenon is coupled to a reorganization of network correlations. Using two-photon calcium imaging of mouse hippocampal neurons we find that co-time-tuned neurons exhibit enhanced spontaneous activity correlations that increase just prior to learning. While time-tuned cells are not spatially organized, spontaneously correlated cells do fall into distinct spatial clusters that change as a result of learning. We propose that the spatial re-organization of correlation clusters reflects global network connectivity changes that are responsible for the emergence of the sequentially-timed activity of cell-groups underlying the learned behavior. DOI: http://dx.doi.org/10.7554/eLife.01982.001 PMID:24668171

  13. Learning of Temporal and Spatial Movement Aspects: A Comparison of Four Types of Haptic Control and Concurrent Visual Feedback.

    PubMed

    Rauter, Georg; Sigrist, Roland; Riener, Robert; Wolf, Peter

    2015-01-01

    In literature, the effectiveness of haptics for motor learning is controversially discussed. Haptics is believed to be effective for motor learning in general; however, different types of haptic control enhance different movement aspects. Thus, in dependence on the movement aspects of interest, one type of haptic control may be effective whereas another one is not. Therefore, in the current work, it was investigated if and how different types of haptic controllers affect learning of spatial and temporal movement aspects. In particular, haptic controllers that enforce active participation of the participants were expected to improve spatial aspects. Only haptic controllers that provide feedback about the task's velocity profile were expected to improve temporal aspects. In a study on learning a complex trunk-arm rowing task, the effect of training with four different types of haptic control was investigated: position control, path control, adaptive path control, and reactive path control. A fifth group (control) trained with visual concurrent augmented feedback. As hypothesized, the position controller was most effective for learning of temporal movement aspects, while the path controller was most effective in teaching spatial movement aspects of the rowing task. Visual feedback was also effective for learning temporal and spatial movement aspects.

  14. Spatial context learning survives interference from working memory load

    PubMed Central

    Vickery, Timothy J.; Sussman, Rachel S.; Jiang, Yuhong V.

    2010-01-01

    The human visual system is constantly confronted with an overwhelming amount of information, only a subset of which can be processed in complete detail. Attention and implicit learning are two important mechanisms that optimize vision. This study addresses the relationship between these two mechanisms. Specifically we ask: Is implicit learning of spatial context affected by the amount of working memory load devoted to an irrelevant task? We tested observers in visual search tasks where search displays occasionally repeated. Observers became faster searching repeated displays than unrepeated ones, showing contextual cueing. We found that the size of contextual cueing was unaffected by whether observers learned repeated displays under unitary attention or when their attention was divided using working memory manipulations. These results held when working memory was loaded by colors, dot patterns, individual dot locations, or multiple potential targets. We conclude that spatial context learning is robust to interference from manipulations that limit the availability of attention and working memory. PMID:20853996

  15. Sex and boldness explain individual differences in spatial learning in a lizard.

    PubMed

    Carazo, Pau; Noble, Daniel W A; Chandrasoma, Dani; Whiting, Martin J

    2014-05-07

    Understanding individual differences in cognitive performance is a major challenge to animal behaviour and cognition studies. We used the Eastern water skink (Eulamprus quoyii) to examine associations between exploration, boldness and individual variability in spatial learning, a dimension of lizard cognition with important bearing on fitness. We show that males perform better than females in a biologically relevant spatial learning task. This is the first evidence for sex differences in learning in a reptile, and we argue that it is probably owing to sex-specific selective pressures that may be widespread in lizards. Across the sexes, we found a clear association between boldness after a simulated predatory attack and the probability of learning the spatial task. In contrast to previous studies, we found a nonlinear association between boldness and learning: both 'bold' and 'shy' behavioural types were more successful learners than intermediate males. Our results do not fit with recent predictions suggesting that individual differences in learning may be linked with behavioural types via high-low-risk/reward trade-offs. We suggest the possibility that differences in spatial cognitive performance may arise in lizards as a consequence of the distinct environmental variability and complexity experienced by individuals as a result of their sex and social tactics.

  16. A Cognitive Component Analysis Approach for Developing Game-Based Spatial Learning Tools

    ERIC Educational Resources Information Center

    Hung, Pi-Hsia; Hwang, Gwo-Jen; Lee, Yueh-Hsun; Su, I-Hsiang

    2012-01-01

    Spatial ability has been recognized as one of the most important factors affecting the mathematical performance of students. Previous studies on spatial learning have mainly focused on developing strategies to shorten the problem-solving time of learners for very specific learning tasks. Such an approach usually has limited effects on improving…

  17. Virtual/real transfer of spatial knowledge: benefit from visual fidelity provided in a virtual environment and impact of active navigation.

    PubMed

    Wallet, Grégory; Sauzéon, Hélène; Pala, Prashant Arvind; Larrue, Florian; Zheng, Xia; N'Kaoua, Bernard

    2011-01-01

    The purpose of this study was to evaluate the effect the visual fidelity of a virtual environment (VE) (undetailed vs. detailed) has on the transfer of spatial knowledge based on the navigation mode (passive vs. active) for three different spatial recall tasks (wayfinding, sketch mapping, and picture sorting). Sixty-four subjects (32 men and 32 women) participated in the experiment. Spatial learning was evaluated by these three tasks in the context of the Bordeaux district. In the wayfinding task, the results indicated that the detailed VE helped subjects to transfer their spatial knowledge from the VE to the real world, irrespective of the navigation mode. In the sketch-mapping task, the detailed VE increased performances compared to the undetailed VE condition, and allowed subjects to benefit from the active navigation. In the sorting task, performances were better in the detailed VE; however, in the undetailed version of the VE, active learning either did not help the subjects or it even deteriorated their performances. These results are discussed in terms of appropriate perceptive-motor and/or spatial representations for each spatial recall task.

  18. Mice lacking hippocampal left-right asymmetry show non-spatial learning deficits.

    PubMed

    Shimbo, Akihiro; Kosaki, Yutaka; Ito, Isao; Watanabe, Shigeru

    2018-01-15

    Left-right asymmetry is known to exist at several anatomical levels in the brain and recent studies have provided further evidence to show that it also exists at a molecular level in the hippocampal CA3-CA1 circuit. The distribution of N-methyl-d-aspartate (NMDA) receptor NR2B subunits in the apical and basal synapses of CA1 pyramidal neurons is asymmetrical if the input arrives from the left or right CA3 pyramidal neurons. In the present study, we examined the role of hippocampal asymmetry in cognitive function using β2-microglobulin knock-out (β2m KO) mice, which lack hippocampal asymmetry. We tested β2m KO mice in a series of spatial and non-spatial learning tasks and compared the performances of β2m KO and C57BL6/J wild-type (WT) mice. The β2m KO mice appeared normal in both spatial reference memory and spatial working memory tasks but they took more time than WT mice in learning the two non-spatial learning tasks (i.e., a differential reinforcement of lower rates of behavior (DRL) task and a straight runway task). The β2m KO mice also showed less precision in their response timing in the DRL task and showed weaker spontaneous recovery during extinction in the straight runway task. These results indicate that hippocampal asymmetry is important for certain characteristics of non-spatial learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Guidance of spatial attention by incidental learning and endogenous cuing

    PubMed Central

    Jiang, Yuhong V.; Swallow, Khena M.; Rosenbaum, Gail M.

    2012-01-01

    Our visual system is highly sensitive to regularities in the environment. Locations that were important in one’s previous experience are often prioritized during search, even though observers may not be aware of the learning. In this study we characterized the guidance of spatial attention by incidental learning of a target’s spatial probability, and examined the interaction between endogenous cuing and probability cuing. Participants searched for a target (T) among distractors (L’s). The target was more often located in one region of the screen than in others. We found that search RT was faster when the target appeared in the high-frequency region rather than the low-frequency regions. This difference increased when there were more items on the display, suggesting that probability cuing guides spatial attention. Additional data indicated that on their own, probability cuing and endogenous cuing (e.g., a central arrow that predicted a target’s location) were similarly effective at guiding attention. However, when both cues were presented at once, probability cuing was largely eliminated. Thus, although both incidental learning and endogenous cuing can effectively guide attention, endogenous cuing takes precedence over incidental learning. PMID:22506784

  20. Contextual cueing: implicit learning and memory of visual context guides spatial attention.

    PubMed

    Chun, M M; Jiang, Y

    1998-06-01

    Global context plays an important, but poorly understood, role in visual tasks. This study demonstrates that a robust memory for visual context exists to guide spatial attention. Global context was operationalized as the spatial layout of objects in visual search displays. Half of the configurations were repeated across blocks throughout the entire session, and targets appeared within consistent locations in these arrays. Targets appearing in learned configurations were detected more quickly. This newly discovered form of search facilitation is termed contextual cueing. Contextual cueing is driven by incidentally learned associations between spatial configurations (context) and target locations. This benefit was obtained despite chance performance for recognizing the configurations, suggesting that the memory for context was implicit. The results show how implicit learning and memory of visual context can guide spatial attention towards task-relevant aspects of a scene.

  1. Possible Signaling Pathways Mediating Neuronal Calcium Sensor-1-Dependent Spatial Learning and Memory in Mice.

    PubMed

    Nakamura, Tomoe Y; Nakao, Shu; Nakajo, Yukako; Takahashi, Jun C; Wakabayashi, Shigeo; Yanamoto, Hiroji

    2017-01-01

    Intracellular Ca2+ signaling regulates diverse functions of the nervous system. Many of these neuronal functions, including learning and memory, are regulated by neuronal calcium sensor-1 (NCS-1). However, the pathways by which NCS-1 regulates these functions remain poorly understood. Consistent with the findings of previous reports, we revealed that NCS-1 deficient (Ncs1-/-) mice exhibit impaired spatial learning and memory function in the Morris water maze test, although there was little change in their exercise activity, as determined via treadmill-analysis. Expression of brain-derived neurotrophic factor (BDNF; a key regulator of memory function) and dopamine was significantly reduced in the Ncs1-/- mouse brain, without changes in the levels of glial cell-line derived neurotrophic factor or nerve growth factor. Although there were no gross structural abnormalities in the hippocampi of Ncs1-/- mice, electron microscopy analysis revealed that the density of large dense core vesicles in CA1 presynaptic neurons, which release BDNF and dopamine, was decreased. Phosphorylation of Ca2+/calmodulin-dependent protein kinase II-α (CaMKII-α, which is known to trigger long-term potentiation and increase BDNF levels, was significantly reduced in the Ncs1-/- mouse brain. Furthermore, high voltage electric potential stimulation, which increases the levels of BDNF and promotes spatial learning, significantly increased the levels of NCS-1 concomitant with phosphorylated CaMKII-α in the hippocampus; suggesting a close relationship between NCS-1 and CaMKII-α. Our findings indicate that NCS-1 may regulate spatial learning and memory function at least in part through activation of CaMKII-α signaling, which may directly or indirectly increase BDNF production.

  2. Caloric restriction in young rats disturbs hippocampal neurogenesis and spatial learning.

    PubMed

    Cardoso, Armando; Marrana, Francisco; Andrade, José P

    2016-09-01

    It is widely known that caloric restriction (CR) has benefits on several organic systems, including the central nervous system. However, the majority of the CR studies was performed in adult animals and the information about the consequences on young populations is limited. In this study, we analyzed the effects of young-onset CR, started at 4weeks of age, in the number of neuropeptide Y (NPY)-containing neurons and in neurogenesis of the hippocampal formation, using doublecortin (DCX) and Ki67 as markers. Knowing that CR treatment could interfere with exploratory activity, anxiety, learning and memory we have analyzed the performance of the rats in the open-field, elevated plus-maze and Morris water maze tests. Animals aged 4weeks were randomly assigned to control or CR groups. Controls were maintained in the ad libitum regimen during 2months. The adolescent CR rats were fed, during 2months, with 60% of the amount of food consumed by controls. We have found that young-onset CR treatment did not affect the total number of NPY-immunopositive neurons in dentate hilus, CA3 and CA1 hippocampal subfields and did not change the exploratory activity and anxiety levels. Interestingly, we have found that young-onset CR might affect spatial learning process since those animals showed worse performance during the acquisition phase of Morris water maze. Furthermore, young-onset CR induced alterations of neurogenesis in the dentate subgranular layer that seems to underlie the impairment of spatial learning. Our data suggest that adolescent animals are vulnerable to CR treatment and that this diet is not suitable to be applied in this age phase. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The Solar System Ballet: A Kinesthetic Spatial Astronomy Activity

    NASA Astrophysics Data System (ADS)

    Heyer, Inge; Slater, T. F.; Slater, S. J.; Astronomy, Center; Education ResearchCAPER, Physics

    2011-05-01

    The Solar System Ballet was developed in order for students of all ages to learn about the planets, their motions, their distances, and their individual characteristics. To teach people about the structure of our Solar System can be revealing and rewarding, for students and teachers. Little ones (and some bigger ones, too) often cannot yet grasp theoretical and spatial ideas purely with their minds. Showing a video is better, but being able to learn with their bodies, essentially being what they learn about, will help them understand and remember difficult concepts much more easily. There are three segments to this activity, which can be done together or separately, depending on time limits and age of the students. Part one involves a short introductory discussion about what students know about the planets. Then students will act out the orbital motions of the planets (and also moons for the older ones) while holding a physical model. During the second phase we look at the structure of the Solar System as well as the relative distances of the planets from the Sun, first by sketching it on paper, then by recreating a scaled version in the class room. Again the students act out the parts of the Solar System bodies with their models. The third segment concentrates on recreating historical measurements of Earth-Moon-Sun system. The Solar System Ballet activity is suitable for grades K-12+ as well as general public informal learning activities.

  4. Attenuation of brain edema and spatial learning deficits by the inhibition of NADPH oxidase activity using apocynin following diffuse traumatic brain injury in rats.

    PubMed

    Song, Si-Xin; Gao, Jun-Ling; Wang, Kai-Jie; Li, Ran; Tian, Yan-Xia; Wei, Jian-Qiang; Cui, Jian-Zhong

    2013-01-01

    Diffuse brain injury (DBI) is a leading cause of mortality and disability among young individuals and adults worldwide. In specific cases, DBI is associated with permanent spatial learning dysfunction and motor deficits due to primary and secondary brain damage. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) is a major complex that produces reactive oxygen species (ROS) during the ischemic period. The complex aggravates brain damage and cell death following ischemia/reperfusion injury; however, its role in DBI remains unclear. The present study aimed to investigate the hypothesis that levels of NOX2 (a catalytic subunit of NOX) protein expression and the activation of NOX are enhanced following DBI induction in rats and are involved in aggravating secondary brain damage. A rat model of DBI was created using a modified weight-drop device. Our results demonstrated that NOX2 protein expression and NOX activity were enhanced in the CA1 subfield of the hippocampus at 48 and 72 h following DBI induction. Treatment with apocynin (50 mg/kg body weight), a specific inhibitor of NOX, injected intraperitoneally 30 min prior to DBI significantly attenuated NOX2 protein expression and NOX activation. Moreover, treatment with apocynin reduced brain edema and improved spatial learning function assessed using the Morris water maze. These results reveal that treatment with apocynin may provide a new neuroprotective therapeutic strategy against DBI by diminishing the upregulation of NOX2 protein and NOX activity.

  5. Repeated Sleep Restriction in Adolescent Rats Altered Sleep Patterns and Impaired Spatial Learning/Memory Ability

    PubMed Central

    Yang, Su-Rong; Sun, Hui; Huang, Zhi-Li; Yao, Ming-Hui; Qu, Wei-Min

    2012-01-01

    Study Objectives: To investigate possible differences in the effect of repeated sleep restriction (RSR) during adolescence and adulthood on sleep homeostasis and spatial learning and memory ability. Design: The authors examined electroencephalograms of rats as they were subjected to 4-h daily sleep deprivation that continued for 7 consecutive days and assessed the spatial learning and memory by Morris water maze test (WMT). Participants: Adolescent and adult rats. Measurements and Results: Adolescent rats exhibited a similar amount of rapid eye movement (REM) and nonrapid eye movement (NREM) sleep with higher slow wave activity (SWA, 0.5-4 Hz) and fewer episodes and conversions with prolonged durations, indicating they have better sleep quality than adult rats. After RSR, adult rats showed strong rebound of REM sleep by 31% on sleep deprivation day 1; this value was 37% on sleep deprivation day 7 in adolescents compared with 20-h baseline level. On sleep deprivation day 7, SWA in adult and adolescent rats increased by 47% and 33%, and such elevation lasted for 5 h and 7 h, respectively. Furthermore, the authors investigated the effects of 4-h daily sleep deprivation immediately after the water maze training sessions on spatial cognitive performance. Adolescent rats sleep-restricted for 7 days traveled a longer distance to find the hidden platform during the acquisition training and had fewer numbers of platform crossings in the probe trial than those in the control group, something that did not occur in the sleep-deprived adult rats. Conclusions: Repeated sleep restriction (RSR) altered sleep profiles and mildly impaired spatial learning and memory capability in adolescent rats. Citation: Yang SR; Sun H; Huang ZL; Yao MH; Qu WM. Repeated sleep restriction in adolescent rats altered sleep patterns and impaired spatial learning/memory ability. SLEEP 2012;35(6):849-859. PMID:22654204

  6. How Does Technology-Enabled Active Learning Affect Undergraduate Students' Understanding of Electromagnetism Concepts?

    ERIC Educational Resources Information Center

    Dori, Yehudit Judy; Belcher, John

    2005-01-01

    Educational technology supports meaningful learning and enables the presentation of spatial and dynamic images, which portray relationships among complex concepts. The Technology-Enabled Active Learning (TEAL) Project at the Massachusetts Institute of Technology (MIT) involves media-rich software for simulation and visualization in freshman…

  7. Learning Low-Rank Decomposition for Pan-Sharpening With Spatial-Spectral Offsets.

    PubMed

    Yang, Shuyuan; Zhang, Kai; Wang, Min

    2017-08-25

    Finding accurate injection components is the key issue in pan-sharpening methods. In this paper, a low-rank pan-sharpening (LRP) model is developed from a new perspective of offset learning. Two offsets are defined to represent the spatial and spectral differences between low-resolution multispectral and high-resolution multispectral (HRMS) images, respectively. In order to reduce spatial and spectral distortions, spatial equalization and spectral proportion constraints are designed and cast on the offsets, to develop a spatial and spectral constrained stable low-rank decomposition algorithm via augmented Lagrange multiplier. By fine modeling and heuristic learning, our method can simultaneously reduce spatial and spectral distortions in the fused HRMS images. Moreover, our method can efficiently deal with noises and outliers in source images, for exploring low-rank and sparse characteristics of data. Extensive experiments are taken on several image data sets, and the results demonstrate the efficiency of the proposed LRP.

  8. Inducible Knockout of the Cyclin-Dependent Kinase 5 Activator p35 Alters Hippocampal Spatial Coding and Neuronal Excitability

    PubMed Central

    Kamiki, Eriko; Boehringer, Roman; Polygalov, Denis; Ohshima, Toshio; McHugh, Thomas J.

    2018-01-01

    p35 is an activating co-factor of Cyclin-dependent kinase 5 (Cdk5), a protein whose dysfunction has been implicated in a wide-range of neurological disorders including cognitive impairment and disease. Inducible deletion of the p35 gene in adult mice results in profound deficits in hippocampal-dependent spatial learning and synaptic physiology, however the impact of the loss of p35 function on hippocampal in vivo physiology and spatial coding remains unknown. Here, we recorded CA1 pyramidal cell activity in freely behaving p35 cKO and control mice and found that place cells in the mutant mice have elevated firing rates and impaired spatial coding, accompanied by changes in the temporal organization of spiking both during exploration and rest. These data shed light on the role of p35 in maintaining cellular and network excitability and provide a physiological correlate of the spatial learning deficits in these mice. PMID:29867369

  9. A Deep Similarity Metric Learning Model for Matching Text Chunks to Spatial Entities

    NASA Astrophysics Data System (ADS)

    Ma, K.; Wu, L.; Tao, L.; Li, W.; Xie, Z.

    2017-12-01

    The matching of spatial entities with related text is a long-standing research topic that has received considerable attention over the years. This task aims at enrich the contents of spatial entity, and attach the spatial location information to the text chunk. In the data fusion field, matching spatial entities with the corresponding describing text chunks has a big range of significance. However, the most traditional matching methods often rely fully on manually designed, task-specific linguistic features. This work proposes a Deep Similarity Metric Learning Model (DSMLM) based on Siamese Neural Network to learn similarity metric directly from the textural attributes of spatial entity and text chunk. The low-dimensional feature representation of the space entity and the text chunk can be learned separately. By employing the Cosine distance to measure the matching degree between the vectors, the model can make the matching pair vectors as close as possible. Mearnwhile, it makes the mismatching as far apart as possible through supervised learning. In addition, extensive experiments and analysis on geological survey data sets show that our DSMLM model can effectively capture the matching characteristics between the text chunk and the spatial entity, and achieve state-of-the-art performance.

  10. Spatial attention enhances the selective integration of activity from area MT.

    PubMed

    Masse, Nicolas Y; Herrington, Todd M; Cook, Erik P

    2012-09-01

    Distinguishing which of the many proposed neural mechanisms of spatial attention actually underlies behavioral improvements in visually guided tasks has been difficult. One attractive hypothesis is that attention allows downstream neural circuits to selectively integrate responses from the most informative sensory neurons. This would allow behavioral performance to be based on the highest-quality signals available in visual cortex. We examined this hypothesis by asking how spatial attention affects both the stimulus sensitivity of middle temporal (MT) neurons and their corresponding correlation with behavior. Analyzing a data set pooled from two experiments involving four monkeys, we found that spatial attention did not appreciably affect either the stimulus sensitivity of the neurons or the correlation between their activity and behavior. However, for those sessions in which there was a robust behavioral effect of attention, focusing attention inside the neuron's receptive field significantly increased the correlation between these two metrics, an indication of selective integration. These results suggest that, similar to mechanisms proposed for the neural basis of perceptual learning, the behavioral benefits of focusing spatial attention are attributable to selective integration of neural activity from visual cortical areas by their downstream targets.

  11. Interprofessional learning at work: what spatial theory can tell us about workplace learning in an acute care ward.

    PubMed

    Gregory, Linda Rosemary; Hopwood, Nick; Boud, David

    2014-05-01

    It is widely recognized that every workplace potentially provides a rich source of learning. Studies focusing on health care contexts have shown that social interaction within and between professions is crucial in enabling professionals to learn through work, address problems and cope with challenges of clinical practice. While hospital environments are beginning to be understood in spatial terms, the links between space and interprofessional learning at work have not been explored. This paper draws on Lefebvre's tri-partite theoretical framework of perceived, conceived and lived space to enrich understandings of interprofessional learning on an acute care ward in an Australian teaching hospital. Qualitative analysis was undertaken using data from observations of Registered Nurses at work and semi-structured interviews linked to observed events. The paper focuses on a ward round, the medical workroom and the Registrar's room, comparing and contrasting the intended (conceived), practiced (perceived) and pedagogically experienced (lived) spatial dimensions. The paper concludes that spatial theory has much to offer understandings of interprofessional learning in work, and the features of work environments and daily practices that produce spaces that enable or constrain learning.

  12. Temporal and Region-Specific Requirements of αCaMKII in Spatial and Contextual Learning

    PubMed Central

    Achterberg, Katharina G.; Buitendijk, Gabriëlle H.S.; Kool, Martijn J.; Goorden, Susanna M.I.; Post, Laura; Slump, Denise E.; Silva, Alcino J.; van Woerden, Geeske M.

    2014-01-01

    The α isoform of the calcium/calmodulin-dependent protein kinase II (αCaMKII) has been implicated extensively in molecular and cellular mechanisms underlying spatial and contextual learning in a wide variety of species. Germline deletion of Camk2a leads to severe deficits in spatial and contextual learning in mice. However, the temporal and region-specific requirements for αCaMKII have remained largely unexplored. Here, we generated conditional Camk2a mutants to examine the influence of spatially restricted and temporally controlled expression of αCaMKII. Forebrain-specific deletion of the Camk2a gene resulted in severe deficits in water maze and contextual fear learning, whereas mice with deletion restricted to the cerebellum learned normally. Furthermore, we found that temporally controlled deletion of the Camk2a gene in adult mice is as detrimental as germline deletion for learning and synaptic plasticity. Together, we confirm the requirement for αCaMKII in the forebrain, but not the cerebellum, in spatial and contextual learning. Moreover, we highlight the absolute requirement for intact αCaMKII expression at the time of learning. PMID:25143599

  13. Using Mobile Devices to Enhance the Interactive Learning for Spatial Geometry

    ERIC Educational Resources Information Center

    Chang, Kuo-En; Wu, Lin-Jung; Lai, Shing-Chuang; Sung, Yao-Ting

    2016-01-01

    The purpose of this research is to develop a hands-on spatial geometry learning system to facilitate the learning of geometry. The development of this system was based on Duval's four critical elements of geometric learning: perceptual apprehension, sequential apprehension, operative apprehension, and discursive apprehension. The system offers…

  14. Hippocampus-dependent place learning enables spatial flexibility in C57BL6/N mice

    PubMed Central

    Kleinknecht, Karl R.; Bedenk, Benedikt T.; Kaltwasser, Sebastian F.; Grünecker, Barbara; Yen, Yi-Chun; Czisch, Michael; Wotjak, Carsten T.

    2012-01-01

    Spatial navigation is a fundamental capability necessary in everyday life to locate food, social partners, and shelter. It results from two very different strategies: (1) place learning which enables for flexible way finding and (2) response learning that leads to a more rigid “route following.” Despite the importance of knockout techniques that are only available in mice, little is known about mice' flexibility in spatial navigation tasks. Here we demonstrate for C57BL6/N mice in a water-cross maze (WCM) that only place learning enables spatial flexibility and relearning of a platform position, whereas response learning does not. This capability depends on an intact hippocampal formation, since hippocampus lesions by ibotenic acid (IA) disrupted relearning. In vivo manganese-enhanced magnetic resonance imaging revealed a volume loss of ≥60% of the hippocampus as a critical threshold for relearning impairments. In particular the changes in the left ventral hippocampus were indicative of relearning deficits. In summary, our findings establish the importance of hippocampus-dependent place learning for spatial flexibility and provide a first systematic analysis on spatial flexibility in mice. PMID:23293591

  15. Learning Efficient Spatial-Temporal Gait Features with Deep Learning for Human Identification.

    PubMed

    Liu, Wu; Zhang, Cheng; Ma, Huadong; Li, Shuangqun

    2018-02-06

    The integration of the latest breakthroughs in bioinformatics technology from one side and artificial intelligence from another side, enables remarkable advances in the fields of intelligent security guard computational biology, healthcare, and so on. Among them, biometrics based automatic human identification is one of the most fundamental and significant research topic. Human gait, which is a biometric features with the unique capability, has gained significant attentions as the remarkable characteristics of remote accessed, robust and security in the biometrics based human identification. However, the existed methods cannot well handle the indistinctive inter-class differences and large intra-class variations of human gait in real-world situation. In this paper, we have developed an efficient spatial-temporal gait features with deep learning for human identification. First of all, we proposed a gait energy image (GEI) based Siamese neural network to automatically extract robust and discriminative spatial gait features for human identification. Furthermore, we exploit the deep 3-dimensional convolutional networks to learn the human gait convolutional 3D (C3D) as the temporal gait features. Finally, the GEI and C3D gait features are embedded into the null space by the Null Foley-Sammon Transform (NFST). In the new space, the spatial-temporal features are sufficiently combined with distance metric learning to drive the similarity metric to be small for pairs of gait from the same person, and large for pairs from different persons. Consequently, the experiments on the world's largest gait database show our framework impressively outperforms state-of-the-art methods.

  16. Improved spatial accuracy of functional maps in the rat olfactory bulb using supervised machine learning approach.

    PubMed

    Murphy, Matthew C; Poplawsky, Alexander J; Vazquez, Alberto L; Chan, Kevin C; Kim, Seong-Gi; Fukuda, Mitsuhiro

    2016-08-15

    Functional MRI (fMRI) is a popular and important tool for noninvasive mapping of neural activity. As fMRI measures the hemodynamic response, the resulting activation maps do not perfectly reflect the underlying neural activity. The purpose of this work was to design a data-driven model to improve the spatial accuracy of fMRI maps in the rat olfactory bulb. This system is an ideal choice for this investigation since the bulb circuit is well characterized, allowing for an accurate definition of activity patterns in order to train the model. We generated models for both cerebral blood volume weighted (CBVw) and blood oxygen level dependent (BOLD) fMRI data. The results indicate that the spatial accuracy of the activation maps is either significantly improved or at worst not significantly different when using the learned models compared to a conventional general linear model approach, particularly for BOLD images and activity patterns involving deep layers of the bulb. Furthermore, the activation maps computed by CBVw and BOLD data show increased agreement when using the learned models, lending more confidence to their accuracy. The models presented here could have an immediate impact on studies of the olfactory bulb, but perhaps more importantly, demonstrate the potential for similar flexible, data-driven models to improve the quality of activation maps calculated using fMRI data. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Auditory cortical activity after intracortical microstimulation and its role for sensory processing and learning.

    PubMed

    Deliano, Matthias; Scheich, Henning; Ohl, Frank W

    2009-12-16

    Several studies have shown that animals can learn to make specific use of intracortical microstimulation (ICMS) of sensory cortex within behavioral tasks. Here, we investigate how the focal, artificial activation by ICMS leads to a meaningful, behaviorally interpretable signal. In natural learning, this involves large-scale activity patterns in widespread brain-networks. We therefore trained gerbils to discriminate closely neighboring ICMS sites within primary auditory cortex producing evoked responses largely overlapping in space. In parallel, during training, we recorded electrocorticograms (ECoGs) at high spatial resolution. Applying a multivariate classification procedure, we identified late spatial patterns that emerged with discrimination learning from the ongoing poststimulus ECoG. These patterns contained information about the preceding conditioned stimulus, and were associated with a subsequent correct behavioral response by the animal. Thereby, relevant pattern information was mainly carried by neuron populations outside the range of the lateral spatial spread of ICMS-evoked cortical activation (approximately 1.2 mm). This demonstrates that the stimulated cortical area not only encoded information about the stimulation sites by its focal, stimulus-driven activation, but also provided meaningful signals in its ongoing activity related to the interpretation of ICMS learned by the animal. This involved the stimulated area as a whole, and apparently required large-scale integration in the brain. However, ICMS locally interfered with the ongoing cortical dynamics by suppressing pattern formation near the stimulation sites. The interaction between ICMS and ongoing cortical activity has several implications for the design of ICMS protocols and cortical neuroprostheses, since the meaningful interpretation of ICMS depends on this interaction.

  18. Hyperspectral imagery super-resolution by compressive sensing inspired dictionary learning and spatial-spectral regularization.

    PubMed

    Huang, Wei; Xiao, Liang; Liu, Hongyi; Wei, Zhihui

    2015-01-19

    Due to the instrumental and imaging optics limitations, it is difficult to acquire high spatial resolution hyperspectral imagery (HSI). Super-resolution (SR) imagery aims at inferring high quality images of a given scene from degraded versions of the same scene. This paper proposes a novel hyperspectral imagery super-resolution (HSI-SR) method via dictionary learning and spatial-spectral regularization. The main contributions of this paper are twofold. First, inspired by the compressive sensing (CS) framework, for learning the high resolution dictionary, we encourage stronger sparsity on image patches and promote smaller coherence between the learned dictionary and sensing matrix. Thus, a sparsity and incoherence restricted dictionary learning method is proposed to achieve higher efficiency sparse representation. Second, a variational regularization model combing a spatial sparsity regularization term and a new local spectral similarity preserving term is proposed to integrate the spectral and spatial-contextual information of the HSI. Experimental results show that the proposed method can effectively recover spatial information and better preserve spectral information. The high spatial resolution HSI reconstructed by the proposed method outperforms reconstructed results by other well-known methods in terms of both objective measurements and visual evaluation.

  19. Spatial Learning and Wayfinding in an Immersive Environment: The Digital Fulldome.

    PubMed

    Hedge, Craig; Weaver, Ruth; Schnall, Simone

    2017-05-01

    Previous work has examined whether immersive technologies can benefit learning in virtual environments, but the potential benefits of technology in this context are confounded by individual differences such as spatial ability. We assessed spatial knowledge acquisition in male and female participants using a technology not previously examined empirically: the digital fulldome. Our primary aim was to examine whether performance on a test of survey knowledge was better in a fulldome (N = 28, 12 males) relative to a large, flat screen display (N = 27, 13 males). Regression analysis showed that, compared to a flat screen display, males showed higher levels of performance on a test of survey knowledge after learning in the fulldome, but no benefit occurred for females. Furthermore, performance correlated with spatial visualization ability in male participants, but not in female participants. Thus, the digital fulldome is a potentially useful learning aid, capable of accommodating multiple users, but individual differences and use of strategy need to be considered.

  20. Experimental Analysis of Spatial Learning in Goldfish

    ERIC Educational Resources Information Center

    Saito, Kotaro; Watanabe, Shigeru

    2005-01-01

    The present study examined spatial learning in goldfish using a new apparatus that was an open-field circular pool with latticed holes. The subjects were motivated to reach the baited hole. We examined gustatory cues, intramaze cues, the possibility that the subject could see the food, etc. In Experiment 1, the position of the baited hole was…

  1. Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI

    PubMed Central

    Devlaminck, Dieter; Wyns, Bart; Grosse-Wentrup, Moritz; Otte, Georges; Santens, Patrick

    2011-01-01

    Motor-imagery-based brain-computer interfaces (BCIs) commonly use the common spatial pattern filter (CSP) as preprocessing step before feature extraction and classification. The CSP method is a supervised algorithm and therefore needs subject-specific training data for calibration, which is very time consuming to collect. In order to reduce the amount of calibration data that is needed for a new subject, one can apply multitask (from now on called multisubject) machine learning techniques to the preprocessing phase. Here, the goal of multisubject learning is to learn a spatial filter for a new subject based on its own data and that of other subjects. This paper outlines the details of the multitask CSP algorithm and shows results on two data sets. In certain subjects a clear improvement can be seen, especially when the number of training trials is relatively low. PMID:22007194

  2. Rectangular Array Model Supporting Students' Spatial Structuring in Learning Multiplication

    ERIC Educational Resources Information Center

    Shanty, Nenden Octavarulia; Wijaya, Surya

    2012-01-01

    We examine how rectangular array model can support students' spatial structuring in learning multiplication. To begin, we define what we mean by spatial structuring as the mental operation of constructing an organization or form for an object or set of objects. For that reason, the eggs problem was chosen as the starting point in which the…

  3. Sex-dependent effects of developmental exposure to different pesticides on spatial learning. The role of induced neuroinflammation in the hippocampus.

    PubMed

    Gómez-Giménez, Belén; Llansola, Marta; Hernández-Rabaza, Vicente; Cabrera-Pastor, Andrea; Malaguarnera, Michele; Agusti, Ana; Felipo, Vicente

    2017-01-01

    The use of pesticides has been associated with impaired neurodevelopment in children. The aims of this work were to assess: 1) the effects on spatial learning of developmental exposure to pesticides 2) if the effects are sex-dependent and 3) if hippocampal neuroinflammation is associated with the impairment of spatial learning. We analyzed the effects of developmental exposure to four pesticides: chlorpyrifos, carbaryl, endosulfan and cypermethrin. Exposure was from gestational day 7 to post-natal day 21 and spatial learning and memory was assessed when the rats were young adults. The effects of pesticides on spatial learning were pesticide and gender-dependent. Carbaryl did not affect spatial learning in males or females. Endosulfan and chlorpyrifos impaired learning in males but not in females. Cypermethrin improved spatial learning in the Morris water maze both in males and females while impaired learning in the radial maze only in males. Spatial learning ability was lower in control female rats than in males. All pesticides induced neuroinflammation, increasing IL-1b content in the hippocampus and there is a negative correlation between IL-1b levels in the hippocampus and spatial learning. Neuroinflammation would contribute to the effects of pesticides on spatial learning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Spatially Regularized Machine Learning for Task and Resting-state fMRI

    PubMed Central

    Song, Xiaomu; Panych, Lawrence P.; Chen, Nan-kuei

    2015-01-01

    Background Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades. New Method A spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space. Results The method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level. Comparison with Existing Methods A comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level. Conclusions The proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies. PMID:26470627

  5. Spatial affect learning restricted in major depression relative to anxiety disorders and healthy controls.

    PubMed

    Gollan, Jackie K; Norris, Catherine J; Hoxha, Denada; Irick, John Stockton; Hawkley, Louise C; Cacioppo, John T

    2014-01-01

    Detecting and learning the location of unpleasant or pleasant scenarios, or spatial affect learning, is an essential skill that safeguards well-being (Crawford & Cacioppo, 2002). Potentially altered by psychiatric illness, this skill has yet to be measured in adults with and without major depressive disorder (MDD) and anxiety disorders (AD). This study enrolled 199 adults diagnosed with MDD and AD (n=53), MDD (n=47), AD (n=54), and no disorders (n=45). Measures included clinical interviews, self-reports, and a validated spatial affect task using affective pictures (IAPS; Lang, Bradley, & Cuthbert, 2005). Participants with MDD showed impaired spatial affect learning of negative stimuli and irrelevant learning of pleasant pictures compared with non-depressed adults. Adults with MDD may use a "GOOD is UP" heuristic reflected by their impaired learning of the opposite correlation (i.e., "BAD is UP") and performance in the pleasant version of the task.

  6. MICROINJECTION OF DYNORPHIN INTO THE HIPPOCAMPUS IMPAIRS SPATIAL LEARNING IN RATS

    EPA Science Inventory

    The effect of hippocampal dynorphin administration on learning and memory was examined in spatial and nonspatial tasks. ilateral infusion of dynorphin A(1-8)(DYN; 10 or 20 ug in one ul) into the dorsal hippocampus resulted in dose-related impairment of spatial working memory in a...

  7. Sharpening coarse-to-fine stereo vision by perceptual learning: asymmetric transfer across the spatial frequency spectrum

    PubMed Central

    Tran, Truyet T.; Craven, Ashley P.; Leung, Tsz-Wing; Chat, Sandy W.; Levi, Dennis M.

    2016-01-01

    Neurons in the early visual cortex are finely tuned to different low-level visual features, forming a multi-channel system analysing the visual image formed on the retina in a parallel manner. However, little is known about the potential ‘cross-talk’ among these channels. Here, we systematically investigated whether stereoacuity, over a large range of target spatial frequencies, can be enhanced by perceptual learning. Using narrow-band visual stimuli, we found that practice with coarse (low spatial frequency) targets substantially improves performance, and that the improvement spreads from coarse to fine (high spatial frequency) three-dimensional perception, generalizing broadly across untrained spatial frequencies and orientations. Notably, we observed an asymmetric transfer of learning across the spatial frequency spectrum. The bandwidth of transfer was broader when training was at a high spatial frequency than at a low spatial frequency. Stereoacuity training is most beneficial when trained with fine targets. This broad transfer of stereoacuity learning contrasts with the highly specific learning reported for other basic visual functions. We also revealed strategies to boost learning outcomes ‘beyond-the-plateau’. Our investigations contribute to understanding the functional properties of the network subserving stereovision. The ability to generalize may provide a key principle for restoring impaired binocular vision in clinical situations. PMID:26909178

  8. The spatial learning and memory performance in methamphetamine–sensitized and withdrawn rats

    PubMed Central

    Bigdeli, Imanollah; Asia, Masomeh Nikfarjam- Haft; Miladi-Gorji, Hossein; Fadaei, Atefeh

    2015-01-01

    Objective(s): There is controversial evidence about the effect of methamphetamine (METH) on spatial memory. We tested the time- dependent effects of METH on spatial short-term (working) and long-term (reference) memory in METH –sensitized and withdrawn rats in the Morris water maze. Materials and Methods: Rats were sensitized to METH (2 mg/kg, daily/5 days, SC). Rats were trained in water maze (4 trials/day/for 5 days). Probe test was performed 24 hr after training. Two days after probe test, working memory training (2 trials/day/for 5 days) was conducted. Acquisition–retention interval was 75 min. The treatment was continued per day 30 and 120 min before the test. Two groups of METH –sensitized rats were trained in reference memory after a longer period of withdrawal (30 days). Results: Sensitized rats exhibited significantly longer escape latencies on the training, spent significantly less time in the target zone (all, P<0.05), and their working memory impaired 30 min after injection. While, METH has no effect on the spatial learning process 120 min after injection, and rats spent significantly less time in the target zone (P<0.05), as well it has no effect on working memory. Also, impairment of reference memory persisted after prolonged abstinence. Conclusion: Our findings indicated that METH impaired spatial learning and memory 30 min after injection, but spared spatial learning, either acquisition or retention of spatial working, but partially impaired retention of spatial reference memory following 120 min after injection in sensitized rats, which persisted even after prolonged abstinence. PMID:25945235

  9. Women match men when learning a spatial skill.

    PubMed

    Spence, Ian; Yu, Jingjie Jessica; Feng, Jing; Marshman, Jeff

    2009-07-01

    Meta-analytic studies have concluded that although training improves spatial cognition in both sexes, the male advantage generally persists. However, because some studies run counter to this pattern, a closer examination of the anomaly is warranted. The authors investigated the acquisition of a basic skill (spatial selective attention) using a matched-pair two-wave longitudinal design. Participants were screened with the use of an attentional visual field task, with the objective of selecting and matching 10 male-female pairs, over a wide range (30% to 57% correct). Subsequently, 20 participants 17-23 years of age (selected from 43 screened) were trained for 10 hr (distributed over several sessions) by playing a first-person shooter video game. This genre is known to be highly effective in enhancing spatial skills. All 20 participants improved, with matched members of the male-female pairs achieving very similar gains, independent of starting level. This is consistent with the hypothesis that the learning trajectory of women is not inferior to that of men when acquiring a basic spatial skill. Training methods that develop basic spatial skills may be essential to achieve gender parity in both basic and complex spatial tasks.

  10. Effect of pregabalin on fear-based conditioned avoidance learning and spatial learning in a mouse model of scopolamine-induced amnesia.

    PubMed

    Sałat, Kinga; Podkowa, Adrian; Malikowska, Natalia; Trajer, Jędrzej

    2017-03-01

    Cognitive deficits are one of the frequent symptoms accompanying epilepsy or its treatment. In this study, the effect on cognition of intraperitoneally administered antiepileptic drug, pregabalin (10 mg/kg), was investigated in scopolamine-induced memory-impaired mice in the passive avoidance task and Morris water maze task. The effect of scopolamine and pregabalin on animals' locomotor activity was also studied. In the retention phase of the passive avoidance task, pregabalin reversed memory deficits induced by scopolamine (p < 0.05). During the acquisition phase of the Morris water maze pregabalin-treated memory-impaired mice performed the test with longer escape latencies than the vehicle-treated mice (significant at p < 0.05 on Day 5, and at p < 0.001 on Day 6). There were no differences in this parameter between the scopolamine-treated control group and pregabalin-treated memory-impaired mice, which indicated that pregabalin had no influence on spatial learning in this task. During the probe trial a significant difference (p < 0.05) was observed in terms of the mean number of target crossings between vehicle-treated mice and pregabalin-treated memory-impaired mice but there was no difference between the scopolamine-treated control group and mice treated with pregabalin + scopolamine. Pregabalin did not influence locomotor activity increased by scopolamine. In passive avoidance task, pregabalin reversed learning deficits induced by scopolamine. In the Morris water maze, pregabalin did not influence spatial learning deficits induced by scopolamine. These results are relevant for epileptic patients treated with pregabalin and those who use it for other therapeutic indications (anxiety, pain).

  11. Emotional Multiagent Reinforcement Learning in Spatial Social Dilemmas.

    PubMed

    Yu, Chao; Zhang, Minjie; Ren, Fenghui; Tan, Guozhen

    2015-12-01

    Social dilemmas have attracted extensive interest in the research of multiagent systems in order to study the emergence of cooperative behaviors among selfish agents. Understanding how agents can achieve cooperation in social dilemmas through learning from local experience is a critical problem that has motivated researchers for decades. This paper investigates the possibility of exploiting emotions in agent learning in order to facilitate the emergence of cooperation in social dilemmas. In particular, the spatial version of social dilemmas is considered to study the impact of local interactions on the emergence of cooperation in the whole system. A double-layered emotional multiagent reinforcement learning framework is proposed to endow agents with internal cognitive and emotional capabilities that can drive these agents to learn cooperative behaviors. Experimental results reveal that various network topologies and agent heterogeneities have significant impacts on agent learning behaviors in the proposed framework, and under certain circumstances, high levels of cooperation can be achieved among the agents.

  12. Arginine vasopressin prevents against Abeta(25-35)-induced impairment of spatial learning and memory in rats.

    PubMed

    Pan, Yan-Fang; Chen, Xiao-Rong; Wu, Mei-Na; Ma, Cun-Gen; Qi, Jin-Shun

    2010-04-01

    Amyloid beta protein (Abeta) is thought to be responsible for loss of memory in Alzheimer's disease (AD). A significant decrease in [Arg(8)]-vasopressin (AVP) has been found in the AD brain and in plasma; however, it is unclear whether this decrease in AVP is involved in Abeta-induced impairment of spatial cognition and whether AVP can protect against Abeta-induced deficits in cognitive function. The present study examined the effects of intracerebroventricular (i.c.v.) injection of AVP on spatial learning and memory in the Morris water maze test and investigated the potential protective function of AVP against Abeta-induced impairment in spatial cognition. The results were as follows: (1) i.c.v. injection of 25 nmol Abeta(25-35) resulted in a significant decline in spatial learning and memory; (2) 1 nmol and 10 nmol, but not 0.1 nmol, AVP injections markedly improved learning and memory; (3) pretreatment with 1 nmol or 10 nmol, but not 0.1 nmol, AVP effectively reversed the impairment in spatial learning and memory induced by Abeta(25-35); and (4) none of the drugs, including Abeta(25-35) and different concentrations of AVP, affected the vision or swimming speed of the rats. These results indicate that Abeta(25-35) could significantly impair spatial learning and memory in rats, and pretreatment with AVP centrally can enhance spatial learning and effectively prevent the behavioral impairment induced by neurotoxic Abeta(25-35). Thus, the present study provides further insight into the mechanisms by which Abeta impairs spatial learning and memory, suggesting that up-regulation of central AVP might be beneficial in the prevention and treatment of AD. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Cartographical Imaginations: Spatiality, Adult Education and Lifelong Learning.

    ERIC Educational Resources Information Center

    Edwards, Richard; Cervero, Ron; Clarke, Julia; Morgan-Klein, Brenda; Usher, Robin; Wilson, Arthur

    Recent empirical and theoretical literature in cultural geography, feminist and postcolonial philosophy, cultural studies, and political economy, was explored in an examination of the significance of spatiality to the changes taking place in the policy, practice, and study of adult education and lifelong learning. The following were among the key…

  14. How spatial abilities and dynamic visualizations interplay when learning functional anatomy with 3D anatomical models.

    PubMed

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material presentation formats, spatial abilities, and anatomical tasks. First, to understand the cognitive challenges a novice learner would be faced with when first exposed to 3D anatomical content, a six-step cognitive task analysis was developed. Following this, an experimental study was conducted to explore how presentation formats (dynamic vs. static visualizations) support learning of functional anatomy, and affect subsequent anatomical tasks derived from the cognitive task analysis. A second aim was to investigate the interplay between spatial abilities (spatial visualization and spatial relation) and presentation formats when the functional anatomy of a 3D scapula and the associated shoulder flexion movement are learned. Findings showed no main effect of the presentation formats on performances, but revealed the predictive influence of spatial visualization and spatial relation abilities on performance. However, an interesting interaction between presentation formats and spatial relation ability for a specific anatomical task was found. This result highlighted the influence of presentation formats when spatial abilities are involved as well as the differentiated influence of spatial abilities on anatomical tasks. © 2015 American Association of Anatomists.

  15. Adaptive social learning strategies in temporally and spatially varying environments : how temporal vs. spatial variation, number of cultural traits, and costs of learning influence the evolution of conformist-biased transmission, payoff-biased transmission, and individual learning.

    PubMed

    Nakahashi, Wataru; Wakano, Joe Yuichiro; Henrich, Joseph

    2012-12-01

    Long before the origins of agriculture human ancestors had expanded across the globe into an immense variety of environments, from Australian deserts to Siberian tundra. Survival in these environments did not principally depend on genetic adaptations, but instead on evolved learning strategies that permitted the assembly of locally adaptive behavioral repertoires. To develop hypotheses about these learning strategies, we have modeled the evolution of learning strategies to assess what conditions and constraints favor which kinds of strategies. To build on prior work, we focus on clarifying how spatial variability, temporal variability, and the number of cultural traits influence the evolution of four types of strategies: (1) individual learning, (2) unbiased social learning, (3) payoff-biased social learning, and (4) conformist transmission. Using a combination of analytic and simulation methods, we show that spatial-but not temporal-variation strongly favors the emergence of conformist transmission. This effect intensifies when migration rates are relatively high and individual learning is costly. We also show that increasing the number of cultural traits above two favors the evolution of conformist transmission, which suggests that the assumption of only two traits in many models has been conservative. We close by discussing how (1) spatial variability represents only one way of introducing the low-level, nonadaptive phenotypic trait variation that so favors conformist transmission, the other obvious way being learning errors, and (2) our findings apply to the evolution of conformist transmission in social interactions. Throughout we emphasize how our models generate empirical predictions suitable for laboratory testing.

  16. Effective Teaching Strategies for Gifted/Learning-Disabled Students with Spatial Strengths

    ERIC Educational Resources Information Center

    Mann, Rebecca L.

    2006-01-01

    This study sought to determine effective teaching strategies for use with high-ability students who have spatial strengths and sequential weaknesses. Gifted students with spatial strengths and weak verbal skills often struggle in the traditional classroom. Their learning style enables them to grasp complex systems and excel at higher levels of…

  17. Formation of spatial and nonspatial memory in different condensed versions of short-term learning in Morris water maze.

    PubMed

    Zots, M A; Ivashkina, O I; Ivanova, A A; Anokhin, K V

    2014-03-01

    We studied the formation of spatial and nonspatial memory in mice during learning in three different condensed versions of Morris water maze task. Learning in combined version caused the formation of both spatial and nonspatial memory, whereas learning in condensed versions (spatial and nonspatial) led to memory formation specific for the version.

  18. Spatial Visualization Learning in Engineering: Traditional Methods vs. a Web-Based Tool

    ERIC Educational Resources Information Center

    Pedrosa, Carlos Melgosa; Barbero, Basilio Ramos; Miguel, Arturo Román

    2014-01-01

    This study compares an interactive learning manager for graphic engineering to develop spatial vision (ILMAGE_SV) to traditional methods. ILMAGE_SV is an asynchronous web-based learning tool that allows the manipulation of objects with a 3D viewer, self-evaluation, and continuous assessment. In addition, student learning may be monitored, which…

  19. Supramammillary serotonin reduction alters place learning and concomitant hippocampal, septal, and supramammillar theta activity in a Morris water maze

    PubMed Central

    Hernández-Pérez, J. Jesús; Gutiérrez-Guzmán, Blanca E.; López-Vázquez, Miguel Á.; Olvera-Cortés, María E.

    2015-01-01

    Hippocampal theta activity is related to spatial information processing, and high-frequency theta activity, in particular, has been linked to efficient spatial memory performance. Theta activity is regulated by the synchronizing ascending system (SAS), which includes mesencephalic and diencephalic relays. The supramamillary nucleus (SUMn) is located between the reticularis pontis oralis and the medial septum (MS), in close relation with the posterior hypothalamic nucleus (PHn), all of which are part of this ascending system. It has been proposed that the SUMn plays a role in the modulation of hippocampal theta-frequency; this could occur through direct connections between the SUMn and the hippocampus or through the influence of the SUMn on the MS. Serotonergic raphe neurons prominently innervate the hippocampus and several components of the SAS, including the SUMn. Serotonin desynchronizes hippocampal theta activity, and it has been proposed that serotonin may regulate learning through the modulation of hippocampal synchrony. In agreement with this hypothesis, serotonin depletion in the SUMn/PHn results in deficient spatial learning and alterations in CA1 theta activity-related learning in a Morris water maze. Because it has been reported that SUMn inactivation with lidocaine impairs the consolidation of reference memory, we asked whether changes in hippocampal theta activity related to learning would occur through serotonin depletion in the SUMn, together with deficiencies in memory. We infused 5,7-DHT bilaterally into the SUMn in rats and evaluated place learning in the standard Morris water maze task. Hippocampal (CA1 and dentate gyrus), septal and SUMn EEG were recorded during training of the test. The EEG power in each region and the coherence between the different regions were evaluated. Serotonin depletion in the SUMn induced deficient spatial learning and altered the expression of hippocampal high-frequency theta activity. These results provide evidence in

  20. Supramammillary serotonin reduction alters place learning and concomitant hippocampal, septal, and supramammillar theta activity in a Morris water maze.

    PubMed

    Hernández-Pérez, J Jesús; Gutiérrez-Guzmán, Blanca E; López-Vázquez, Miguel Á; Olvera-Cortés, María E

    2015-01-01

    Hippocampal theta activity is related to spatial information processing, and high-frequency theta activity, in particular, has been linked to efficient spatial memory performance. Theta activity is regulated by the synchronizing ascending system (SAS), which includes mesencephalic and diencephalic relays. The supramamillary nucleus (SUMn) is located between the reticularis pontis oralis and the medial septum (MS), in close relation with the posterior hypothalamic nucleus (PHn), all of which are part of this ascending system. It has been proposed that the SUMn plays a role in the modulation of hippocampal theta-frequency; this could occur through direct connections between the SUMn and the hippocampus or through the influence of the SUMn on the MS. Serotonergic raphe neurons prominently innervate the hippocampus and several components of the SAS, including the SUMn. Serotonin desynchronizes hippocampal theta activity, and it has been proposed that serotonin may regulate learning through the modulation of hippocampal synchrony. In agreement with this hypothesis, serotonin depletion in the SUMn/PHn results in deficient spatial learning and alterations in CA1 theta activity-related learning in a Morris water maze. Because it has been reported that SUMn inactivation with lidocaine impairs the consolidation of reference memory, we asked whether changes in hippocampal theta activity related to learning would occur through serotonin depletion in the SUMn, together with deficiencies in memory. We infused 5,7-DHT bilaterally into the SUMn in rats and evaluated place learning in the standard Morris water maze task. Hippocampal (CA1 and dentate gyrus), septal and SUMn EEG were recorded during training of the test. The EEG power in each region and the coherence between the different regions were evaluated. Serotonin depletion in the SUMn induced deficient spatial learning and altered the expression of hippocampal high-frequency theta activity. These results provide evidence in

  1. Developmental changes in spatial learning in the Morris water-maze in young meadow voles, Microtus pennsylvanicus.

    PubMed

    Galea, L A; Ossenkopp, K P; Kavaliers, M

    1994-01-31

    Spatial learning in pre- and postweaning meadow voles, (Microtus pennsylvanicus) was examined in a Morris water-maze task. The learning performance of 10-day-old (preweaning) and 15-, 20- and 25-day-old (postweaning) male and female voles was assessed by measuring the latency to reach a hidden platform by each animal twice a day for 5 days. Voles of all age groups were able to learn the spatial task with Day 10 and Day 15 voles acquiring the task more slowly than did Day 20 and Day 25 voles. There were no significant sex differences in task acquisition in any of the four age groups. In addition, although swimming speed was related to age, with older animals swimming faster than younger ones, differences in swim speed did not account for the faster acquisition by the older animals. These results show that both preweaning and postweaning voles can successfully learn a spatial task. This is in contrast to preweaning laboratory rats which cannot successfully acquire a similar spatial task. These findings indicate that there are species differences in the ontogeny of spatial learning, which are likely related to the ecological and behavioural developmental characteristics of the species. Furthermore, in contrast to the sex difference in water-maze performance obtained in adult, breeding meadow voles who demonstrate a sex difference, there were no significant sex differences in the spatial performance of the juvenile voles. This suggests that sex differences in spatial learning in the meadow vole do not appear until voles reach reproductive adulthood.

  2. Similarities and differences between the brain networks underlying allocentric and egocentric spatial learning in rat revealed by cytochrome oxidase histochemistry.

    PubMed

    Rubio, S; Begega, A; Méndez, M; Méndez-López, M; Arias, J L

    2012-10-25

    The involvement of different brain regions in place- and response-learning was examined using a water cross-maze. Rats were trained to find the goal from the initial arm by turning left at the choice point (egocentric strategy) or by using environmental cues (allocentric strategy). Although different strategies were required, the same maze and learning conditions were used. Using cytochrome oxidase histochemistry as a marker of cellular activity, the function of the 13 diverse cortical and subcortical regions was assessed in rats performing these two tasks. Our results show that allocentric learning depends on the recruitment of a large functional network, which includes the hippocampal CA3, dentate gyrus, medial mammillary nucleus and supramammillary nucleus. Along with the striatum, these last three structures are also related to egocentric spatial learning. The present study provides evidence for the contribution of these regions to spatial navigation and supports a possible functional interaction between the two memory systems, as their structural convergence may facilitate functional cooperation in the behaviours guided by more than one strategy. In summary, it can be argued that spatial learning is based on dynamic functional systems in which the interaction of brain regions is modulated by task requirements. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Individual differences in spatial configuration learning predict the occurrence of intrusive memories.

    PubMed

    Meyer, Thomas; Smeets, Tom; Giesbrecht, Timo; Quaedflieg, Conny W E M; Girardelli, Marta M; Mackay, Georgina R N; Merckelbach, Harald

    2013-03-01

    The dual-representation model of posttraumatic stress disorder (PTSD; Brewin, Gregory, Lipton, & Burgess, Psychological Review, 117, 210-232 2010) argues that intrusions occur when people fail to construct context-based representations during adverse experiences. The present study tested a specific prediction flowing from this model. In particular, we investigated whether the efficiency of temporal-lobe-based spatial configuration learning would account for individual differences in intrusive experiences and physiological reactivity in the laboratory. Participants (N = 82) completed the contextual cuing paradigm, which assesses spatial configuration learning that is believed to depend on associative encoding in the parahippocampus. They were then shown a trauma film. Afterward, startle responses were quantified during presentation of trauma reminder pictures versus unrelated neutral and emotional pictures. PTSD symptoms were recorded in the week following participation. Better configuration learning performance was associated with fewer perceptual intrusions, r = -.33, p < .01, but was unrelated to physiological responses to trauma reminder images (ps > .46) and had no direct effect on intrusion-related distress and overall PTSD symptoms, rs > -.12, ps > .29. However, configuration learning performance tended to be associated with reduced physiological responses to unrelated negative images, r = -.20, p = .07. Thus, while spatial configuration learning appears to be unrelated to affective responding to trauma reminders, our overall findings support the idea that the context-based memory system helps to reduce intrusions.

  4. Reconstructing spatial organizations of chromosomes through manifold learning.

    PubMed

    Zhu, Guangxiang; Deng, Wenxuan; Hu, Hailin; Ma, Rui; Zhang, Sai; Yang, Jinglin; Peng, Jian; Kaplan, Tommy; Zeng, Jianyang

    2018-05-04

    Decoding the spatial organizations of chromosomes has crucial implications for studying eukaryotic gene regulation. Recently, chromosomal conformation capture based technologies, such as Hi-C, have been widely used to uncover the interaction frequencies of genomic loci in a high-throughput and genome-wide manner and provide new insights into the folding of three-dimensional (3D) genome structure. In this paper, we develop a novel manifold learning based framework, called GEM (Genomic organization reconstructor based on conformational Energy and Manifold learning), to reconstruct the three-dimensional organizations of chromosomes by integrating Hi-C data with biophysical feasibility. Unlike previous methods, which explicitly assume specific relationships between Hi-C interaction frequencies and spatial distances, our model directly embeds the neighboring affinities from Hi-C space into 3D Euclidean space. Extensive validations demonstrated that GEM not only greatly outperformed other state-of-art modeling methods but also provided a physically and physiologically valid 3D representations of the organizations of chromosomes. Furthermore, we for the first time apply the modeled chromatin structures to recover long-range genomic interactions missing from original Hi-C data.

  5. Biased Feedback in Spatial Recall Yields a Violation of Delta Rule Learning

    PubMed Central

    Lipinski, John; Spencer, John P.; Samuelson, Larissa K.

    2010-01-01

    This study investigates whether inductive processes influencing spatial memory performance generalize to supervised learning scenarios with differential feedback. After providing a location memory response in a spatial recall task, participants received visual feedback showing the target location. In critical blocks, feedback was systematically biased either 4° towards the vertical axis (Towards condition) or 4° further away from the vertical axis (Away condition). Results showed that the weaker teaching signal (i.e., a smaller difference between the remembered location and the feedback location) in the Away condition produced a stronger experience-dependent change over blocks than in the Towards condition. This violates delta rule learning. Subsequent simulations of the Dynamic Field Theory of spatial cognition provide a theoretically unified account of these results. PMID:20702881

  6. Biased feedback in spatial recall yields a violation of delta rule learning.

    PubMed

    Lipinski, John; Spencer, John P; Samuelson, Larissa K

    2010-08-01

    This study investigates whether inductive processes influencing spatial memory performance generalize to supervised learning scenarios with differential feedback. After providing a location memory response in a spatial recall task, participants received visual feedback showing the target location. In critical blocks, feedback was systematically biased either 4 degrees toward the vertical axis (toward condition) or 4 degrees farther away from the vertical axis (away condition). Results showed that the weaker teaching signal (i.e., a smaller difference between the remembered location and the feedback location) produced a stronger experience-dependent change over blocks in the away condition than in the toward condition. This violates delta rule learning. Subsequent simulations of the dynamic field theory of spatial cognition provide a theoretically unified account of these results.

  7. Learning spatially coherent properties of the visual world in connectionist networks

    NASA Astrophysics Data System (ADS)

    Becker, Suzanna; Hinton, Geoffrey E.

    1991-10-01

    In the unsupervised learning paradigm, a network of neuron-like units is presented with an ensemble of input patterns from a structured environment, such as the visual world, and learns to represent the regularities in that input. The major goal in developing unsupervised learning algorithms is to find objective functions that characterize the quality of the network's representation without explicitly specifying the desired outputs of any of the units. The sort of objective functions considered cause a unit to become tuned to spatially coherent features of visual images (such as texture, depth, shading, and surface orientation), by learning to predict the outputs of other units which have spatially adjacent receptive fields. Simulations show that using an information-theoretic algorithm called IMAX, a network can be trained to represent depth by observing random dot stereograms of surfaces with continuously varying disparities. Once a layer of depth-tuned units has developed, subsequent layers are trained to perform surface interpolation of curved surfaces, by learning to predict the depth of one image region based on depth measurements in surrounding regions. An extension of the basic model allows a population of competing neurons to learn a distributed code for disparity, which naturally gives rise to a representation of discontinuities.

  8. Search strategy selection in the Morris water maze indicates allocentric map formation during learning that underpins spatial memory formation.

    PubMed

    Rogers, Jake; Churilov, Leonid; Hannan, Anthony J; Renoir, Thibault

    2017-03-01

    Using a Matlab classification algorithm, we demonstrate that a highly salient distal cue array is required for significantly increased likelihoods of spatial search strategy selection during Morris water maze spatial learning. We hypothesized that increased spatial search strategy selection during spatial learning would be the key measure demonstrating the formation of an allocentric map to the escape location. Spatial memory, as indicated by quadrant preference for the area of the pool formally containing the hidden platform, was assessed as the main measure that this allocentric map had formed during spatial learning. Our C57BL/6J wild-type (WT) mice exhibit quadrant preference in the highly salient cue paradigm but not the low, corresponding with a 120% increase in the odds of a spatial search strategy selection during learning. In contrast, quadrant preference remains absent in serotonin 1A receptor (5-HT 1A R) knockout (KO) mice, who exhibit impaired search strategy selection during spatial learning. Additionally, we also aimed to assess the impact of the quality of the distal cue array on the spatial learning curves of both latency to platform and path length using mixed-effect regression models and found no significant associations or interactions. In contrast, we demonstrated that the spatial learning curve for search strategy selection was absent during training in the low saliency paradigm. Therefore, we propose that allocentric search strategy selection during spatial learning is the learning parameter in mice that robustly indicates the formation of a cognitive map for the escape goal location. These results also suggest that both latency to platform and path length spatial learning curves do not discriminate between allocentric and egocentric spatial learning and do not reliably predict spatial memory formation. We also show that spatial memory, as indicated by the absolute time in the quadrant formerly containing the hidden platform alone (without

  9. Machine learning spatial geometry from entanglement features

    NASA Astrophysics Data System (ADS)

    You, Yi-Zhuang; Yang, Zhao; Qi, Xiao-Liang

    2018-02-01

    Motivated by the close relations of the renormalization group with both the holography duality and the deep learning, we propose that the holographic geometry can emerge from deep learning the entanglement feature of a quantum many-body state. We develop a concrete algorithm, call the entanglement feature learning (EFL), based on the random tensor network (RTN) model for the tensor network holography. We show that each RTN can be mapped to a Boltzmann machine, trained by the entanglement entropies over all subregions of a given quantum many-body state. The goal is to construct the optimal RTN that best reproduce the entanglement feature. The RTN geometry can then be interpreted as the emergent holographic geometry. We demonstrate the EFL algorithm on a 1D free fermion system and observe the emergence of the hyperbolic geometry (AdS3 spatial geometry) as we tune the fermion system towards the gapless critical point (CFT2 point).

  10. Effect of intranasal manganese administration on neurotransmission and spatial learning in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blecharz-Klin, Kamilla; Piechal, Agnieszka; Joniec-Maciejak, Ilona

    2012-11-15

    The effect of intranasal manganese chloride (MnCl{sub 2}·4H{sub 2}O) exposure on spatial learning, memory and motor activity was estimated in Morris water maze task in adult rats. Three-month-old male Wistar rats received for 2 weeks MnCl{sub 2}·4H{sub 2}O at two doses the following: 0.2 mg/kg b.w. (Mn0.2) or 0.8 mg/kg b.w. (Mn0.8) per day. Control (Con) and manganese-exposed groups were observed for behavioral performance and learning in water maze. ANOVA for repeated measurements did not show any significant differences in acquisition in the water maze between the groups. However, the results of the probe trial on day 5, exhibited spatialmore » memory deficits following manganese treatment. After completion of the behavioral experiment, the regional brain concentrations of neurotransmitters and their metabolites were determined via HPLC in selected brain regions, i.e. prefrontal cortex, hippocampus and striatum. ANOVA demonstrated significant differences in the content of monoamines and metabolites between the treatment groups compared to the controls. Negative correlations between platform crossings on the previous platform position in Southeast (SE) quadrant during the probe trial and neurotransmitter turnover suggest that impairment of spatial memory and cognitive performance after manganese (Mn) treatment is associated with modulation of the serotonergic, noradrenergic and dopaminergic neurotransmission in the brain. These findings show that intranasally applied Mn can impair spatial memory with significant changes in the tissue level and metabolism of monoamines in several brain regions. -- Highlights: ► Intranasal exposure to manganese in rats impairs spatial memory in the water maze. ► Regional changes in levels of neurotransmitters in the brain have been identified. ► Cognitive disorder correlates with modulation of 5-HT, NA and DA neurotransmission.« less

  11. Contextual Cueing: Implicit Learning and Memory of Visual Context Guides Spatial Attention.

    ERIC Educational Resources Information Center

    Chun, Marvin M.; Jiang, Yuhong

    1998-01-01

    Six experiments involving a total of 112 college students demonstrate that a robust memory for visual context exists to guide spatial attention. Results show how implicit learning and memory of visual context can guide spatial attention toward task-relevant aspects of a scene. (SLD)

  12. Learning Spatially-Smooth Mappings in Non-Rigid Structure from Motion

    PubMed Central

    Hamsici, Onur C.; Gotardo, Paulo F.U.; Martinez, Aleix M.

    2013-01-01

    Non-rigid structure from motion (NRSFM) is a classical underconstrained problem in computer vision. A common approach to make NRSFM more tractable is to constrain 3D shape deformation to be smooth over time. This constraint has been used to compress the deformation model and reduce the number of unknowns that are estimated. However, temporal smoothness cannot be enforced when the data lacks temporal ordering and its benefits are less evident when objects undergo abrupt deformations. This paper proposes a new NRSFM method that addresses these problems by considering deformations as spatial variations in shape space and then enforcing spatial, rather than temporal, smoothness. This is done by modeling each 3D shape coefficient as a function of its input 2D shape. This mapping is learned in the feature space of a rotation invariant kernel, where spatial smoothness is intrinsically defined by the mapping function. As a result, our model represents shape variations compactly using custom-built coefficient bases learned from the input data, rather than a pre-specified set such as the Discrete Cosine Transform. The resulting kernel-based mapping is a by-product of the NRSFM solution and leads to another fundamental advantage of our approach: for a newly observed 2D shape, its 3D shape is recovered by simply evaluating the learned function. PMID:23946937

  13. Learning Spatially-Smooth Mappings in Non-Rigid Structure from Motion.

    PubMed

    Hamsici, Onur C; Gotardo, Paulo F U; Martinez, Aleix M

    2012-01-01

    Non-rigid structure from motion (NRSFM) is a classical underconstrained problem in computer vision. A common approach to make NRSFM more tractable is to constrain 3D shape deformation to be smooth over time. This constraint has been used to compress the deformation model and reduce the number of unknowns that are estimated. However, temporal smoothness cannot be enforced when the data lacks temporal ordering and its benefits are less evident when objects undergo abrupt deformations. This paper proposes a new NRSFM method that addresses these problems by considering deformations as spatial variations in shape space and then enforcing spatial, rather than temporal, smoothness. This is done by modeling each 3D shape coefficient as a function of its input 2D shape. This mapping is learned in the feature space of a rotation invariant kernel, where spatial smoothness is intrinsically defined by the mapping function. As a result, our model represents shape variations compactly using custom-built coefficient bases learned from the input data, rather than a pre-specified set such as the Discrete Cosine Transform. The resulting kernel-based mapping is a by-product of the NRSFM solution and leads to another fundamental advantage of our approach: for a newly observed 2D shape, its 3D shape is recovered by simply evaluating the learned function.

  14. Engineering genders: A spatial analysis of engineering, gender, and learning

    NASA Astrophysics Data System (ADS)

    Weidler-Lewis, Joanna R.

    This three article dissertation is an investigation into the ontology of learning insofar as learning is a process of becoming. In each article I explore the general questions of who is learning, in what ways, and with what consequences. The context for this research is undergraduate engineering education with particular attention to the construction of gender in this context. The first article is an examination of the organization of freshman engineering design. The second article draws on Lefebvre's spatial triad as both a theory and method for studying learning. The third article is an interview study of LGBTQA students creating their futures as engineers.

  15. Acute social stress increases biochemical and self report markers of stress without altering spatial learning in humans.

    PubMed

    Klopp, Christine; Garcia, Carlos; Schulman, Allan H; Ward, Christopher P; Tartar, Jaime L

    2012-01-01

    Spatial learning is shown to be influenced by acute stress in both human and other animals. However, the intricacies of this relationship are unclear. Based on prior findings we hypothesized that compared to a control condition, a social stress condition would not affect spatial learning performance despite elevated biochemical markers of stress. The present study tested the effects of social stress in human males and females on a subsequent spatial learning task. Social stress induction consisted of evaluative stress (the Trier Social Stress Test, TSST) compared to a placebo social stress. Compared to the placebo condition, the TSST resulted in significantly elevated cortisol and alpha amylase levels at multiple time points following stress induction. In accord, cognitive appraisal measures also showed that participants in the TSST group experienced greater perceived stress compared to the placebo group. However, there were no group differences in performance on a spatial learning task. Our findings suggest that unlike physiological stress, social stress does not result in alterations in spatial learning in humans. It is possible that moderate social evaluative stress in humans works to prevent acute stress-mediated alterations in hippocampal learning processes..

  16. Spatial and reversal learning in the Morris water maze are largely resistant to six hours of REM sleep deprivation following training

    PubMed Central

    Walsh, Christine M.; Booth, Victoria; Poe, Gina R.

    2011-01-01

    This first test of the role of REM (rapid eye movement) sleep in reversal spatial learning is also the first attempt to replicate a much cited pair of papers reporting that REM sleep deprivation impairs the consolidation of initial spatial learning in the Morris water maze. We hypothesized that REM sleep deprivation following training would impair both hippocampus-dependent spatial learning and learning a new target location within a familiar environment: reversal learning. A 6-d protocol was divided into the initial spatial learning phase (3.5 d) immediately followed by the reversal phase (2.5 d). During the 6 h following four or 12 training trials/day of initial or reversal learning phases, REM sleep was eliminated and non-REM sleep left intact using the multiple inverted flowerpot method. Contrary to our hypotheses, REM sleep deprivation during four or 12 trials/day of initial spatial or reversal learning did not affect training performance. However, some probe trial measures indicated REM sleep-deprivation–associated impairment in initial spatial learning with four trials/day and enhancement of subsequent reversal learning. In naive animals, REM sleep deprivation during normal initial spatial learning was followed by a lack of preference for the subsequent reversal platform location during the probe. Our findings contradict reports that REM sleep is essential for spatial learning in the Morris water maze and newly reveal that short periods of REM sleep deprivation do not impair concurrent reversal learning. Effects on subsequent reversal learning are consistent with the idea that REM sleep serves the consolidation of incompletely learned items. PMID:21677190

  17. Near or far: The effect of spatial distance and vocabulary knowledge on word learning.

    PubMed

    Axelsson, Emma L; Perry, Lynn K; Scott, Emilly J; Horst, Jessica S

    2016-01-01

    The current study investigated the role of spatial distance in word learning. Two-year-old children saw three novel objects named while the objects were either in close proximity to each other or spatially separated. Children were then tested on their retention for the name-object associations. Keeping the objects spatially separated from each other during naming was associated with increased retention for children with larger vocabularies. Children with a lower vocabulary size demonstrated better retention if they saw objects in close proximity to each other during naming. This demonstrates that keeping a clear view of objects during naming improves word learning for children who have already learned many words, but keeping objects within close proximal range is better for children at earlier stages of vocabulary acquisition. The effect of distance is therefore not equal across varying vocabulary sizes. The influences of visual crowding, cognitive load, and vocabulary size on word learning are discussed. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. [Learning to solve a spatial task in a water maze in aggressive and submissive mice].

    PubMed

    Dubrovina, N I; Tomilenko, R A

    2007-01-01

    Learning and retention of the spatial memory were studied in mice with alternative under conditions of various experimental protocols. Visible and hidden platform acquisition in a simple model of the water maze was similarly fast both in aggressive and submissive mice, but extinction differed. Retention of the platform location preference persisted in aggressive mice in four testing trials. In submissive mice, extiction of the spatial memory was accompanied with a prolongation of search with parallel production of episodes of "passive drift". Differences in spatial learning between aggressive and submissive mice were revealed in a water maze complicated with partitions. In this case, aggressors were able to learn the position of a hidden platform (in contrast to submissive mice with the dominant response of "passive drift"). During testing the response, aggressive mice longer retained the spatial preference without extinction.

  19. The impact of fornix lesions in rats on spatial learning tasks sensitive to anterior thalamic and hippocampal damage

    PubMed Central

    Dumont, Julie R.; Amin, Eman; Wright, Nicholas F.; Dillingham, Christopher M.; Aggleton, John P.

    2015-01-01

    The present study sought to understand how the hippocampus and anterior thalamic nuclei are conjointly required for spatial learning by examining the impact of cutting a major tract (the fornix) that interconnects these two sites. The initial experiments examined the consequences of fornix lesions in rats on spatial biconditional discrimination learning. The rationale arose from previous findings showing that fornix lesions spare the learning of spatial biconditional tasks, despite the same task being highly sensitive to both hippocampal and anterior thalamic nuclei lesions. In the present study, fornix lesions only delayed acquisition of the spatial biconditional task, pointing to additional contributions from non-fornical routes linking the hippocampus with the anterior thalamic nuclei. The same fornix lesions spared the learning of an analogous nonspatial biconditional task that used local contextual cues. Subsequent tests, including T-maze place alternation, place learning in a cross-maze, and a go/no-go place discrimination, highlighted the impact of fornix lesions when distal spatial information is used flexibly to guide behaviour. The final experiment examined the ability to learn incidentally the spatial features of a square water-maze that had differently patterned walls. Fornix lesions disrupted performance but did not stop the rats from distinguishing the various corners of the maze. Overall, the results indicate that interconnections between the hippocampus and anterior thalamus, via the fornix, help to resolve problems with flexible spatial and temporal cues, but the results also signal the importance of additional, non-fornical contributions to hippocampal-anterior thalamic spatial processing, particularly for problems with more stable spatial solutions. PMID:25453745

  20. Students’ Spatial Ability through Open-Ended Approach Aided by Cabri 3D

    NASA Astrophysics Data System (ADS)

    Priatna, N.

    2017-09-01

    The use of computer software such as Cabri 3D for learning activities is very unlimited. Students can adjust their learning speed according to their level of ability. Open-ended approach strongly supports the use of computer software in learning, because the goal of open-ended learning is to help developing creative activities and mathematical mindset of students through problem solving simultaneously. In other words, creative activities and mathematical mindset of students should be developed as much as possible in accordance with the ability of spatial ability of each student. Spatial ability is the ability of students in constructing and representing geometry models. This study aims to determine the improvement of spatial ability of junior high school students who obtained learning with open-ended approach aided by Cabri 3D. It adopted a quasi-experimental method with the non-randomized control group pretest-posttest design and the 2×3 factorial model. The instrument of the study is spatial ability test. Based on analysis of the data, it is found that the improvement of spatial ability of students who received open-ended learning aided by Cabri 3D was greater than students who received expository learning, both as a whole and based on the categories of students’ initial mathematical ability.

  1. Spatial reversal learning in preclinical scrapie-inoculated mice.

    PubMed

    Lysons, A M; Woollard, S J

    1996-04-10

    Acquisition and reversal of a two-choice spatial discrimination were tested in scrapie-inoculated mice. Both acquisition and reversal were normal in mice tested 138 and 103 days prior to the onset of clinical symptoms. At 65 days before onset of clinical symptoms, scrapie-inoculated mice required more trails to criterion in reversal learning, but this effect was not significant in a second experiment (68 days preclinical) and was transient: no effect was seen 33 days before symptoms. However, the course of reversal learning was abnormal in all three late preclinical groups (68, 65 and 33 days before symptoms). Reversal learning in these three groups was characterized by a rapid extinction of the original discrimination, followed by a period, absent in controls, during which performance showed no further improvement. This effect corresponds in time of onset to the appearance of characteristic neuropathological features.

  2. Learning to Think Spatially: What Do Students "See" in Numeracy Test Items?

    ERIC Educational Resources Information Center

    Diezmann, Carmel M.; Lowrie, Tom

    2012-01-01

    Learning to think spatially in mathematics involves developing proficiency with graphics. This paper reports on 2 investigations of spatial thinking and graphics. The first investigation explored the importance of graphics as 1 of 3 communication systems (i.e. text, symbols, graphics) used to provide information in numeracy test items. The results…

  3. Wild genius - domestic fool? Spatial learning abilities of wild and domestic guinea pigs.

    PubMed

    Lewejohann, Lars; Pickel, Thorsten; Sachser, Norbert; Kaiser, Sylvia

    2010-03-25

    Domestic animals and their wild relatives differ in a wide variety of aspects. The process of domestication of the domestic guinea pig (Cavia aperea f. porcellus), starting at least 4500 years ago, led to changes in the anatomy, physiology, and behaviour compared with their wild relative, the wild cavy, Cavia aperea. Although domestic guinea pigs are widely used as a laboratory animal, learning and memory capabilities are often disregarded as being very scarce. Even less is known about learning and memory of wild cavies. In this regard, one striking domestic trait is a reduction in relative brain size, which in the domesticated form of the guinea pig amounts to 13%. However, the common belief, that such a reduction of brain size in the course of domestication of different species is accomplished by less learning capabilities is not at all very well established in the literature. Indeed, domestic animals might also even outperform their wild conspecifics taking advantage of their adaptation to a man-made environment.In our study we compared the spatial learning abilities of wild and domestic guinea pigs. We expected that the two forms are different regarding their learning performance possibly related to the process of domestication. Therefore wild cavies as well as domestic guinea pigs of both sexes, aged 35 to 45 days, were tested in the Morris water maze to investigate their ability of spatial learning. Both, wild cavies and domestic guinea pigs were able to learn the task, proving the water maze to be a suitable test also for wild cavies. Regarding the speed of learning, male as well as female domestic guinea pigs outperformed their wild conspecifics significantly. Interestingly, only domestic guinea pigs showed a significant spatial association of the platform position, while other effective search strategies were used by wild cavies. The results demonstrate that domestic guinea pigs do not at all perform worse than their wild relatives in tests of spatial

  4. Wild genius - domestic fool? Spatial learning abilities of wild and domestic guinea pigs

    PubMed Central

    2010-01-01

    Background Domestic animals and their wild relatives differ in a wide variety of aspects. The process of domestication of the domestic guinea pig (Cavia aperea f. porcellus), starting at least 4500 years ago, led to changes in the anatomy, physiology, and behaviour compared with their wild relative, the wild cavy, Cavia aperea. Although domestic guinea pigs are widely used as a laboratory animal, learning and memory capabilities are often disregarded as being very scarce. Even less is known about learning and memory of wild cavies. In this regard, one striking domestic trait is a reduction in relative brain size, which in the domesticated form of the guinea pig amounts to 13%. However, the common belief, that such a reduction of brain size in the course of domestication of different species is accomplished by less learning capabilities is not at all very well established in the literature. Indeed, domestic animals might also even outperform their wild conspecifics taking advantage of their adaptation to a man-made environment. In our study we compared the spatial learning abilities of wild and domestic guinea pigs. We expected that the two forms are different regarding their learning performance possibly related to the process of domestication. Therefore wild cavies as well as domestic guinea pigs of both sexes, aged 35 to 45 days, were tested in the Morris water maze to investigate their ability of spatial learning. Results Both, wild cavies and domestic guinea pigs were able to learn the task, proving the water maze to be a suitable test also for wild cavies. Regarding the speed of learning, male as well as female domestic guinea pigs outperformed their wild conspecifics significantly. Interestingly, only domestic guinea pigs showed a significant spatial association of the platform position, while other effective search strategies were used by wild cavies. Conclusion The results demonstrate that domestic guinea pigs do not at all perform worse than their wild

  5. Spatial learning while navigating with severely degraded viewing: The role of attention and mobility monitoring

    PubMed Central

    Rand, Kristina M.; Creem-Regehr, Sarah H.; Thompson, William B.

    2015-01-01

    The ability to navigate without getting lost is an important aspect of quality of life. In five studies, we evaluated how spatial learning is affected by the increased demands of keeping oneself safe while walking with degraded vision (mobility monitoring). We proposed that safe low-vision mobility requires attentional resources, providing competition for those needed to learn a new environment. In Experiments 1 and 2 participants navigated along paths in a real-world indoor environment with simulated degraded vision or normal vision. Memory for object locations seen along the paths was better with normal compared to degraded vision. With degraded vision, memory was better when participants were guided by an experimenter (low monitoring demands) versus unguided (high monitoring demands). In Experiments 3 and 4, participants walked while performing an auditory task. Auditory task performance was superior with normal compared to degraded vision. With degraded vision, auditory task performance was better when guided compared to unguided. In Experiment 5, participants performed both the spatial learning and auditory tasks under degraded vision. Results showed that attention mediates the relationship between mobility-monitoring demands and spatial learning. These studies suggest that more attention is required and spatial learning is impaired when navigating with degraded viewing. PMID:25706766

  6. Reconstructing spatial organizations of chromosomes through manifold learning

    PubMed Central

    Deng, Wenxuan; Hu, Hailin; Ma, Rui; Zhang, Sai; Yang, Jinglin; Peng, Jian; Kaplan, Tommy; Zeng, Jianyang

    2018-01-01

    Abstract Decoding the spatial organizations of chromosomes has crucial implications for studying eukaryotic gene regulation. Recently, chromosomal conformation capture based technologies, such as Hi-C, have been widely used to uncover the interaction frequencies of genomic loci in a high-throughput and genome-wide manner and provide new insights into the folding of three-dimensional (3D) genome structure. In this paper, we develop a novel manifold learning based framework, called GEM (Genomic organization reconstructor based on conformational Energy and Manifold learning), to reconstruct the three-dimensional organizations of chromosomes by integrating Hi-C data with biophysical feasibility. Unlike previous methods, which explicitly assume specific relationships between Hi-C interaction frequencies and spatial distances, our model directly embeds the neighboring affinities from Hi-C space into 3D Euclidean space. Extensive validations demonstrated that GEM not only greatly outperformed other state-of-art modeling methods but also provided a physically and physiologically valid 3D representations of the organizations of chromosomes. Furthermore, we for the first time apply the modeled chromatin structures to recover long-range genomic interactions missing from original Hi-C data. PMID:29408992

  7. Spatial learning in the genetically heterogeneous NIH-HS rat stock and RLA-I/RHA-I rats: revisiting the relationship with unconditioned and conditioned anxiety.

    PubMed

    Martínez-Membrives, Esther; López-Aumatell, Regina; Blázquez, Gloria; Cañete, Toni; Tobeña, Adolf; Fernández-Teruel, Alberto

    2015-05-15

    To characterize learning/memory profiles for the first time in the genetically heterogeneous NIH-HS rat stock, and to examine whether these are associated with anxiety, we evaluated NIH-HS rats for spatial learning/memory in the Morris water maze (MWM) and in the following anxiety/fear tests: the elevated zero-maze (ZM; unconditioned anxiety), a context-conditioned fear test and the acquisition of two-way active avoidance (conditioned anxiety). NIH-HS rats were compared with the Roman High- (RHA-I) and Low-Avoidance (RLA-I) rat strains, given the well-known differences between the Roman strains/lines in anxiety-related behavior and in spatial learning/memory. The results show that: (i) As expected, RLA-I rats were more anxious in the ZM test, displayed more frequent context-conditioned freezing episodes and fewer avoidances than RHA-I rats. (ii) Scores of NIH-HS rats in these tests/tasks mostly fell in between those of the Roman rat strains, and were usually closer to the values of the RLA-I strain. (iii) Pigmented NIH-HS (only a small part of NIH-HS rats were albino) rats were the best spatial learners and displayed better spatial memory than the other three (RHA-I, RLA-I and NIH-HS albino) groups. (iv) Albino NIH-HS and RLA-I rats also showed better learning/memory than the RHA-I strain. (v) Within the NIH-HS stock, the most anxious rats in the ZM test presented the best learning and/or memory efficiency (regardless of pigmentation). In summary, NIH-HS rats display a high performance in spatial learning/memory tasks and a passive coping strategy when facing conditioned conflict situations. In addition, unconditioned anxiety in NIH-HS rats predicts better spatial learning/memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Spatial learning and memory is preserved in rats after early development in a microgravity environment.

    PubMed

    Temple, Meredith D; Kosik, Kenneth S; Steward, Oswald

    2002-09-01

    This study evaluated the cognitive mapping abilities of rats that spent part of their early development in a microgravity environment. Litters of male and female Sprague-Dawley rat pups were launched into space aboard the National Aeronautics and Space Administration space shuttle Columbia on postnatal day 8 or 14 and remained in space for 16 days. These animals were designated as FLT groups. Two age-matched control groups remained on Earth: those in standard vivarium housing (VIV) and those in housing identical to that aboard the shuttle (AGC). On return to Earth, animals were tested in three different tasks that measure spatial learning ability, the Morris water maze (MWM), and a modified version of the radial arm maze (RAM). Animals were also tested in an open field apparatus to measure general activity and exploratory activity. Performance and search strategies were evaluated in each of these tasks using an automated tracking system. Despite the dramatic differences in early experience, there were remarkably few differences between the FLT groups and their Earth-bound controls in these tasks. FLT animals learned the MWM and RAM as quickly as did controls. Evaluation of search patterns suggested subtle differences in patterns of exploration and in the strategies used to solve the tasks during the first few days of testing, but these differences normalized rapidly. Together, these data suggest that development in an environment without gravity has minimal long-term impact on spatial learning and memory abilities. Any differences due to development in microgravity are quickly reversed after return to earth normal gravity.

  9. Spatial learning and memory is preserved in rats after early development in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Temple, Meredith D.; Kosik, Kenneth S.; Steward, Oswald

    2002-01-01

    This study evaluated the cognitive mapping abilities of rats that spent part of their early development in a microgravity environment. Litters of male and female Sprague-Dawley rat pups were launched into space aboard the National Aeronautics and Space Administration space shuttle Columbia on postnatal day 8 or 14 and remained in space for 16 days. These animals were designated as FLT groups. Two age-matched control groups remained on Earth: those in standard vivarium housing (VIV) and those in housing identical to that aboard the shuttle (AGC). On return to Earth, animals were tested in three different tasks that measure spatial learning ability, the Morris water maze (MWM), and a modified version of the radial arm maze (RAM). Animals were also tested in an open field apparatus to measure general activity and exploratory activity. Performance and search strategies were evaluated in each of these tasks using an automated tracking system. Despite the dramatic differences in early experience, there were remarkably few differences between the FLT groups and their Earth-bound controls in these tasks. FLT animals learned the MWM and RAM as quickly as did controls. Evaluation of search patterns suggested subtle differences in patterns of exploration and in the strategies used to solve the tasks during the first few days of testing, but these differences normalized rapidly. Together, these data suggest that development in an environment without gravity has minimal long-term impact on spatial learning and memory abilities. Any differences due to development in microgravity are quickly reversed after return to earth normal gravity.

  10. Perinatal exposure to genistein, a soy phytoestrogen, improves spatial learning and memory but impairs passive avoidance learning and memory in offspring.

    PubMed

    Kohara, Yumi; Kuwahara, Rika; Kawaguchi, Shinichiro; Jojima, Takeshi; Yamashita, Kimihiro

    2014-05-10

    This study investigated the effects of perinatal genistein (GEN) exposure on the central nervous system of rat offspring. Pregnant dams orally received GEN (1 or 10 mg/kg/day) or vehicle (1 ml/kg/day) from gestation day 10 to postnatal day 14. In order to assess the effects of GEN on rat offspring, we used a battery of behavioral tests, including the open-field, elevated plus-maze, MAZE and step-through passive avoidance tests. MAZE test is an appetite-motivation test, and we used this mainly for assessing spatial learning and memory. In the MAZE test, GEN groups exhibited shorter latency from start to goal than the vehicle-treated group in both sexes. On the other hand, performances in the step-through passive avoidance test were non-monotonically inhibited by GEN in both sexes, and a significant difference was observed in low dose of the GEN-treated group compared to the vehicle-treated group in female rats. Furthermore, we found that perinatal exposure to GEN did not significantly alter locomotor activity or emotionality as assessed by the open-field and elevated-plus maze tests. These results suggest that perinatal exposure to GEN improved spatial learning and memory of rat offspring, but impaired their passive avoidance learning and memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Mobile Devices and Spatial Enactments of Learning: iPads in Lower Secondary Schools

    ERIC Educational Resources Information Center

    Meyer, Bente

    2016-01-01

    Based on ethnographic studies of students' learning, this paper investigates how new spatial enactments of learning that include mobile technologies engage students in specific ways that enable them to learn. Data used in the paper have been collected in three lower secondary schools (7-9th form, ages 13-15) where students and teachers have been…

  12. Cholinergic parameters and the retrieval of learned and re-learned spatial information: a study using a model of Wernicke-Korsakoff Syndrome.

    PubMed

    Pires, Rita G W; Pereira, Silvia R C; Oliveira-Silva, Ieda F; Franco, Glaura C; Ribeiro, Angela M

    2005-07-01

    This is a factorial (2 x 2 x 2) spatial memory and cholinergic parameters study in which the factors are chronic ethanol, thiamine deficiency and naivety in Morris water maze task. Both learning and retention of the spatial version of the water maze were assessed. To assess retrograde retention of spatial information, half of the rats were pre-trained on the maze before the treatment manipulations of pyrithiamine (PT)-induced thiamine deficiency and post-tested after treatment (pre-trained group). The other half of the animals was only trained after treatment to assess anterograde amnesia (post-trained group). Thiamine deficiency, associated to chronic ethanol treatment, had a significant deleterious effect on spatial memory performance of post-trained animals. The biochemical data revealed that chronic ethanol treatment reduced acetylcholinesterase (AChE) activity in the hippocampus while leaving the neocortex unchanged, whereas thiamine deficiency reduced both cortical and hippocampal AChE activity. Regarding basal and stimulated cortical acetylcholine (ACh) release, both chronic ethanol and thiamine deficiency treatments had significant main effects. Significant correlations were found between both cortical and hippocampal AChE activity and behaviour parameters for pre-trained but not for post-trained animals. Also for ACh release, the correlation found was significant only for pre-trained animals. These biochemical parameters were decreased by thiamine deficiency and chronic ethanol treatment, both in pre-trained and post-trained animals. But the correlation with the behavioural parameters was observed only for pre-trained animals, that is, those that were retrained and assessed for retrograde retention.

  13. Age Differences in Recall and Information Processing in Verbal and Spatial Learning.

    ERIC Educational Resources Information Center

    Mungas, Dan; And Others

    1991-01-01

    Three age groups of 24 people each completed verbal word list tasks and spatial learning tasks 5 times each. Significant age differences were found for total recall and type of task. Younger subjects showed increased levels of clustering--organizing information according to semantic or spatial clusters. Age was not related to temporal order of…

  14. Sublayer-Specific Coding Dynamics during Spatial Navigation and Learning in Hippocampal Area CA1.

    PubMed

    Danielson, Nathan B; Zaremba, Jeffrey D; Kaifosh, Patrick; Bowler, John; Ladow, Max; Losonczy, Attila

    2016-08-03

    The mammalian hippocampus is critical for spatial information processing and episodic memory. Its primary output cells, CA1 pyramidal cells (CA1 PCs), vary in genetics, morphology, connectivity, and electrophysiological properties. It is therefore possible that distinct CA1 PC subpopulations encode different features of the environment and differentially contribute to learning. To test this hypothesis, we optically monitored activity in deep and superficial CA1 PCs segregated along the radial axis of the mouse hippocampus and assessed the relationship between sublayer dynamics and learning. Superficial place maps were more stable than deep during head-fixed exploration. Deep maps, however, were preferentially stabilized during goal-oriented learning, and representation of the reward zone by deep cells predicted task performance. These findings demonstrate that superficial CA1 PCs provide a more stable map of an environment, while their counterparts in the deep sublayer provide a more flexible representation that is shaped by learning about salient features in the environment. VIDEO ABSTRACT. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Finite Element Learning Modules as Active Learning Tools

    ERIC Educational Resources Information Center

    Brown, Ashland O.; Jensen, Daniel; Rencis, Joseph; Wood, Kristin; Wood, John; White, Christina; Raaberg, Kristen Kaufman; Coffman, Josh

    2012-01-01

    The purpose of active learning is to solicit participation by students beyond the passive mode of traditional classroom lectures. Reading, writing, participating in discussions, hands-on activities, engaging in active problem solving, and collaborative learning can all be involved. The skills acquired during active learning tend to go above and…

  16. Associative-memory representations emerge as shared spatial patterns of theta activity spanning the primate temporal cortex

    PubMed Central

    Nakahara, Kiyoshi; Adachi, Ken; Kawasaki, Keisuke; Matsuo, Takeshi; Sawahata, Hirohito; Majima, Kei; Takeda, Masaki; Sugiyama, Sayaka; Nakata, Ryota; Iijima, Atsuhiko; Tanigawa, Hisashi; Suzuki, Takafumi; Kamitani, Yukiyasu; Hasegawa, Isao

    2016-01-01

    Highly localized neuronal spikes in primate temporal cortex can encode associative memory; however, whether memory formation involves area-wide reorganization of ensemble activity, which often accompanies rhythmicity, or just local microcircuit-level plasticity, remains elusive. Using high-density electrocorticography, we capture local-field potentials spanning the monkey temporal lobes, and show that the visual pair-association (PA) memory is encoded in spatial patterns of theta activity in areas TE, 36, and, partially, in the parahippocampal cortex, but not in the entorhinal cortex. The theta patterns elicited by learned paired associates are distinct between pairs, but similar within pairs. This pattern similarity, emerging through novel PA learning, allows a machine-learning decoder trained on theta patterns elicited by a particular visual item to correctly predict the identity of those elicited by its paired associate. Our results suggest that the formation and sharing of widespread cortical theta patterns via learning-induced reorganization are involved in the mechanisms of associative memory representation. PMID:27282247

  17. Brownian systems with spatially inhomogeneous activity

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Brader, J. M.

    2017-09-01

    We generalize the Green-Kubo approach, previously applied to bulk systems of spherically symmetric active particles [J. Chem. Phys. 145, 161101 (2016), 10.1063/1.4966153], to include spatially inhomogeneous activity. The method is applied to predict the spatial dependence of the average orientation per particle and the density. The average orientation is given by an integral over the self part of the Van Hove function and a simple Gaussian approximation to this quantity yields an accurate analytical expression. Taking this analytical result as input to a dynamic density functional theory approximates the spatial dependence of the density in good agreement with simulation data. All theoretical predictions are validated using Brownian dynamics simulations.

  18. Spatial Generalization in Operant Learning: Lessons from Professional Basketball

    PubMed Central

    Neiman, Tal; Loewenstein, Yonatan

    2014-01-01

    In operant learning, behaviors are reinforced or inhibited in response to the consequences of similar actions taken in the past. However, because in natural environments the “same” situation never recurs, it is essential for the learner to decide what “similar” is so that he can generalize from experience in one state of the world to future actions in different states of the world. The computational principles underlying this generalization are poorly understood, in particular because natural environments are typically too complex to study quantitatively. In this paper we study the principles underlying generalization in operant learning of professional basketball players. In particular, we utilize detailed information about the spatial organization of shot locations to study how players adapt their attacking strategy in real time according to recent events in the game. To quantify this learning, we study how a make \\ miss from one location in the court affects the probabilities of shooting from different locations. We show that generalization is not a spatially-local process, nor is governed by the difficulty of the shot. Rather, to a first approximation, players use a simplified binary representation of the court into 2 pt and 3 pt zones. This result indicates that rather than using low-level features, generalization is determined by high-level cognitive processes that incorporate the abstract rules of the game. PMID:24853373

  19. Sex-specific effects of Cacna1c haploinsufficiency on object recognition, spatial memory, and reversal learning capabilities in rats.

    PubMed

    Braun, Moria D; Kisko, Theresa M; Vecchia, Débora Dalla; Andreatini, Roberto; Schwarting, Rainer K W; Wöhr, Markus

    2018-05-23

    The CACNA1C gene is strongly implicated in the etiology of multiple major neuropsychiatric disorders, such as bipolar disorder, major depression, and schizophrenia, with cognitive deficits being a common feature. It is unclear, however, by which mechanisms CACNA1C variants advance the risk of developing neuropsychiatric disorders. This study set out to investigate cognitive functioning in a newly developed genetic Cacna1c rat model. Specifically, spatial and reversal learning, as well as object recognition memory were assessed in heterozygous Cacna1c +/- rats and compared to wildtype Cacna1c +/+ littermate controls in both sexes. Our results show that both Cacna1c +/+ and Cacna1c +/- animals were able to learn the rewarded arm configuration of a radial maze over the course of seven days. Both groups also showed reversal learning patterns indicative of intact abilities. In females, genotype differences were evident in the initial spatial learning phase, with Cacna1c +/- females showing hypo-activity and fewer mixed errors. In males, a difference was found during probe trials for both learning phases, with Cacna1c +/- rats displaying better distinction between previously baited and non-baited arms; and regarding cognitive flexibility in favor of the Cacna1c +/+ animals. All experimental groups proved to be sensitive to reward magnitude and fully able to distinguish between novel and familiar objects in the novel object recognition task. Taken together, these results indicate that Cacna1c haploinsufficiency has a minor, but positive impact on (spatial) memory functions in rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Pituitary adenylate cyclase-activating polypeptide (PACAP) signaling in the prefrontal cortex modulates cued fear learning, but not spatial working memory, in female rats.

    PubMed

    Kirry, Adam J; Herbst, Matthew R; Poirier, Sarah E; Maskeri, Michelle M; Rothwell, Amy C; Twining, Robert C; Gilmartin, Marieke R

    2018-05-01

    A genetic polymorphism within the gene encoding the pituitary adenylate cyclase- activating polypeptide (PACAP) receptor type I (PAC1R) has recently been associated with hyper-reactivity to threat-related cues in women, but not men, with post-traumatic stress disorder (PTSD). PACAP is a highly conserved peptide, whose role in mediating adaptive physiological stress responses is well established. Far less is understood about the contribution of PACAP signaling in emotional learning and memory, particularly the encoding of fear to discrete cues. Moreover, a neurobiological substrate that may account for the observed link between PAC1R and PTSD in women, but not men, has yet to be identified. Sex differences in PACAP signaling during emotional learning could provide novel targets for the treatment of PTSD. Here we investigated the contribution of PAC1R signaling within the prefrontal cortex to the acquisition of cued fear in female and male rats. We used a variant of fear conditioning called trace fear conditioning, which requires sustained attention to fear cues and depends on working-memory like neuronal activity within the prefrontal cortex. We found that cued fear learning, but not spatial working memory, was impaired by administration of a PAC1R antagonist directly into the prelimbic area of the prefrontal cortex. This effect was specific to females. We also found that levels of mRNA for the PAC1R receptor in the prelimbic cortex were greater in females compared with males, and were highest during and immediately following the proestrus stage of the estrous cycle. Together, these results demonstrate a sex-specific role of PAC1R signaling in learning about threat-related cues. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Nucleus incertus inactivation impairs spatial learning and memory in rats.

    PubMed

    Nategh, Mohsen; Nikseresht, Sara; Khodagholi, Fariba; Motamedi, Fereshteh

    2015-02-01

    Nucleus incertus (NI) is a pontine nucleus which releases mainly GABA and relaxin-3 in rats. Its suggested functions include response to stress, arousal, and modulation of hippocampal theta rhythm. Since the role of NI in learning and memory has not been well characterized, therefore the involvement of this nucleus in spatial learning and memory and the aftermath hippocampal levels of c-fos and pCREB were evaluated. NI was targeted by implanting cannula in male rats. For reference memory, NI was inactivated by lidocaine (0.4 μl, 4%) at three stages of acquisition, consolidation and retrieval in Morris water maze paradigm. For working memory, NI was inactivated in acquisition and retrieval phases. Injection of lidocaine prior to the first training session of reference memory significantly increased the distance moved, suggesting that inactivation of NI delays acquisition in this spatial task. Inactivation also interfered with the retrieval phase of spatial reference memory, as the time in target quadrant for lidocaine group was less, and the escape latency was higher compared to the control group. However, no difference was observed in the consolidation phase. In the working memory task, with inter-trial intervals of 75 min, the escape latency was higher when NI was inactivated in the retrieval phase. In addition, c-fos and pCREB/CREB levels decreased in NI-inhibited rats. This study suggests that nucleus incertus might participate in acquisition of spatial reference, and retrieval of both spatial reference and working memory. Further studies should investigate possible roles of NI in the hippocampal plasticity. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Exploring prediction uncertainty of spatial data in geostatistical and machine learning Approaches

    NASA Astrophysics Data System (ADS)

    Klump, J. F.; Fouedjio, F.

    2017-12-01

    Geostatistical methods such as kriging with external drift as well as machine learning techniques such as quantile regression forest have been intensively used for modelling spatial data. In addition to providing predictions for target variables, both approaches are able to deliver a quantification of the uncertainty associated with the prediction at a target location. Geostatistical approaches are, by essence, adequate for providing such prediction uncertainties and their behaviour is well understood. However, they often require significant data pre-processing and rely on assumptions that are rarely met in practice. Machine learning algorithms such as random forest regression, on the other hand, require less data pre-processing and are non-parametric. This makes the application of machine learning algorithms to geostatistical problems an attractive proposition. The objective of this study is to compare kriging with external drift and quantile regression forest with respect to their ability to deliver reliable prediction uncertainties of spatial data. In our comparison we use both simulated and real world datasets. Apart from classical performance indicators, comparisons make use of accuracy plots, probability interval width plots, and the visual examinations of the uncertainty maps provided by the two approaches. By comparing random forest regression to kriging we found that both methods produced comparable maps of estimated values for our variables of interest. However, the measure of uncertainty provided by random forest seems to be quite different to the measure of uncertainty provided by kriging. In particular, the lack of spatial context can give misleading results in areas without ground truth data. These preliminary results raise questions about assessing the risks associated with decisions based on the predictions from geostatistical and machine learning algorithms in a spatial context, e.g. mineral exploration.

  3. The selective serotonin reuptake inhibitor, escitalopram, enhances inhibition of prepotent responding and spatial reversal learning

    PubMed Central

    Brown, Holden D.; Amodeo, Dionisio A.; Sweeney, John A.; Ragozzino, Michael E.

    2011-01-01

    Previous findings indicate treatment with a selective serotonin reuptake inhibitor (SSRI) facilitates behavioral flexibility when conditions require inhibition of a learned response pattern. The present experiment investigated whether acute treatment with the SSRI, escitalopram, affects behavioral flexibility when conditions require inhibition of a naturally-biased response pattern (elevated conflict test) and/or reversal of a learned response pattern (spatial reversal learning). An additional experiment was carried out to determine whether escitalopram, at doses that affected behavioral flexibility, also reduced anxiety as tested in the elevated plus-maze. In each experiment, Long-Evans rats received an intraperitoneal injection of either saline or escitalopram (0.03, 0.3 or 1.0 mg/kg) 30 minutes prior to behavioral testing. Escitalopram, at all doses tested, enhanced acquisition in the elevated conflict test, but did not affect performance in the elevated plus-maze. Escitalopram (0.3 and 1.0 mg/kg) did not alter acquisition of the spatial discrimination, but facilitated reversal learning. In the elevated conflict and spatial reversal learning test, escitalopram enhanced the ability to maintain the relevant strategy after being initially selected. The present findings suggest that enhancing serotonin transmission with a SSRI facilitates inhibitory processes when conditions require a shift away from either a naturally-biased response pattern or a learned choice pattern. PMID:22219222

  4. The Brain and Learning: Examining the Connection between Brain Activity, Spatial Intelligence, and Learning Outcomes in Online Visual Instruction

    ERIC Educational Resources Information Center

    Lee, Hyangsook

    2013-01-01

    The purpose of the study was to compare 2D and 3D visual presentation styles, both still frame and animation, on subjects' brain activity measured by the amplitude of EEG alpha wave and on their recall to see if alpha power and recall differ significantly by depth and movement of visual presentation style and by spatial intelligence. In addition,…

  5. Biphasic effect of citral, a flavoring and scenting agent, on spatial learning and memory in rats.

    PubMed

    Yang, Zheqiong; Xi, Jinlei; Li, Jihong; Qu, Wen

    2009-10-01

    Although some central effects of citral have been reported, cognitive effects on spatial memory have not been investigated. The evidence showed that citral can regulate the synthesis of retinoic acid (RA), which exerts a vital function in the development and maintenance of spatial memory. In this study, we applied Morris water maze to test the effect of citral on animals' spatial learning and memory. To elucidate the mechanism of this effect, we also measured the retinoic acid concentration in rats' hippocampus by high performance liquid chromatography (HPLC). Our data implied biphasic effects of citral. The low dose (0.1 mg/kg) of citral improved the spatial learning capability, and enhanced the spatial reference memory of rats, whereas the high dose (1.0 mg/kg) was like to produce the opposite effects. Meanwhile, the low dose of citral increased the hippocampal retinoic acid concentration, while the high dose decreased it. Due to the quick elimination and non-bioaccumulation in the body, effects of citral on spatial memory in this study seemed to be indirect actions. The change in hippocampal retinoic acid concentration induced by different doses of citral might be responsible for the biphasic effect of citral on spatial learning and memory.

  6. Active Learning Using Hint Information.

    PubMed

    Li, Chun-Liang; Ferng, Chun-Sung; Lin, Hsuan-Tien

    2015-08-01

    The abundance of real-world data and limited labeling budget calls for active learning, an important learning paradigm for reducing human labeling efforts. Many recently developed active learning algorithms consider both uncertainty and representativeness when making querying decisions. However, exploiting representativeness with uncertainty concurrently usually requires tackling sophisticated and challenging learning tasks, such as clustering. In this letter, we propose a new active learning framework, called hinted sampling, which takes both uncertainty and representativeness into account in a simpler way. We design a novel active learning algorithm within the hinted sampling framework with an extended support vector machine. Experimental results validate that the novel active learning algorithm can result in a better and more stable performance than that achieved by state-of-the-art algorithms. We also show that the hinted sampling framework allows improving another active learning algorithm designed from the transductive support vector machine.

  7. Effects of Housing on Methamphetamine-Induced Neurotoxicity and Spatial Learning and Memory.

    PubMed

    Gutierrez, Arnold; Jablonski, Sarah A; Amos-Kroohs, Robyn M; Barnes, Anna C; Williams, Michael T; Vorhees, Charles V

    2017-07-19

    Severe stress potentiates methamphetamine (MA) neurotoxicity. However, whether moderate stress increases or decreases the neurotoxic effects of MA is unknown. We assessed the effects of MA (4 × 10 mg/kg at 2 h intervals) in combination with prior barren-cage housing in adult male Sprague-Dawley rats on monoamines and glial fibrillary acid protein (GFAP) in one cohort and spatial learning and memory in the Morris water maze in another cohort. MA reduced dopamine (DA) and serotonin (5-HT) in the neostriatum and nucleus accumbens, 5-HT in the hippocampus, and increased GFAP in neostriatum and nucleus accumbens compared with saline controls. In neostriatum, barren-cage housing protected against MA-induced increases in GFAP, but it did not prevent DA and 5-HT reductions, although it did increase hippocampal norepinephrine. MA impaired spatial learning during acquisition, reversal, and shift phases and impaired reference memory on reversal and shift probe trials. Barren-cage housing enhanced performance during acquisition but not during reversal or shift or on probe trials. The data indicate that prior barren-cage housing moderates MA-induced neostriatal astrogliosis and initial spatial learning, but has no protective effect when the platform is smaller and relocated and therefore requires cognitive flexibility in relearning.

  8. A Bridge to Active Learning: A Summer Bridge Program Helps Students Maximize Their Active-Learning Experiences and the Active-Learning Experiences of Others

    PubMed Central

    Cooper, Katelyn M.; Ashley, Michael; Brownell, Sara E.

    2017-01-01

    National calls to improve student academic success in college have sparked the development of bridge programs designed to help students transition from high school to college. We designed a 2-week Summer Bridge program that taught introductory biology content in an active-learning way. Through a set of exploratory interviews, we unexpectedly identified that Bridge students had developed sophisticated views of active learning, even though this was not an explicit goal of the program. We conducted an additional set of semistructured interviews that focused on active learning and compared the interviews of Bridge students with those from non-Bridge students who had been eligible for but did not participate in the program. We used the constant comparative method to identify themes from the interviews. We found that Bridge students perceived that, because they knew how to approach active learning and viewed it as important, they benefited more from active learning in introductory biology than non-Bridge students. Specifically, Bridge students seemed to be more aware of their own learning gains from participating in active learning. Compared with the majority of non-Bridge students, the majority of Bridge students described using a greater variety of strategies to maximize their experiences in active learning. Finally, in contrast to non-Bridge students, Bridge students indicated that they take an equitable approach to group work. These findings suggest that we may be able to prime students to maximize their own and other’s experiences in active learning. PMID:28232588

  9. Spatial Language Learning

    ERIC Educational Resources Information Center

    Fu, Zhengling

    2016-01-01

    Spatial language constitutes part of the basic fabric of language. Although languages may have the same number of terms to cover a set of spatial relations, they do not always do so in the same way. Spatial languages differ across languages quite radically, thus providing a real semantic challenge for second language learners. The essay first…

  10. The importance of spatial ability and mental models in learning anatomy

    NASA Astrophysics Data System (ADS)

    Chatterjee, Allison K.

    As a foundational course in medical education, gross anatomy serves to orient medical and veterinary students to the complex three-dimensional nature of the structures within the body. Understanding such spatial relationships is both fundamental and crucial for achievement in gross anatomy courses, and is essential for success as a practicing professional. Many things contribute to learning spatial relationships; this project focuses on a few key elements: (1) the type of multimedia resources, particularly computer-aided instructional (CAI) resources, medical students used to study and learn; (2) the influence of spatial ability on medical and veterinary students' gross anatomy grades and their mental models; and (3) how medical and veterinary students think about anatomy and describe the features of their mental models to represent what they know about anatomical structures. The use of computer-aided instruction (CAI) by gross anatomy students at Indiana University School of Medicine (IUSM) was assessed through a questionnaire distributed to the regional centers of the IUSM. Students reported using internet browsing, PowerPoint presentation software, and email on a daily bases to study gross anatomy. This study reveals that first-year medical students at the IUSM make limited use of CAI to study gross anatomy. Such studies emphasize the importance of examining students' use of CAI to study gross anatomy prior to development and integration of electronic media into the curriculum and they may be important in future decisions regarding the development of alternative learning resources. In order to determine how students think about anatomical relationships and describe the features of their mental models, personal interviews were conducted with select students based on students' ROT scores. Five typologies of the characteristics of students' mental models were identified and described: spatial thinking, kinesthetic approach, identification of anatomical structures

  11. Is Order the Defining Feature of Magnitude Representation? An ERP Study on Learning Numerical Magnitude and Spatial Order of Artificial Symbols

    PubMed Central

    Zhao, Hui; Chen, Chuansheng; Zhang, Hongchuan; Zhou, Xinlin; Mei, Leilei; Chen, Chunhui; Chen, Lan; Cao, Zhongyu; Dong, Qi

    2012-01-01

    Using an artificial-number learning paradigm and the ERP technique, the present study investigated neural mechanisms involved in the learning of magnitude and spatial order. 54 college students were divided into 2 groups matched in age, gender, and school major. One group was asked to learn the associations between magnitude (dot patterns) and the meaningless Gibson symbols, and the other group learned the associations between spatial order (horizontal positions on the screen) and the same set of symbols. Results revealed differentiated neural mechanisms underlying the learning processes of symbolic magnitude and spatial order. Compared to magnitude learning, spatial-order learning showed a later and reversed distance effect. Furthermore, an analysis of the order-priming effect showed that order was not inherent to the learning of magnitude. Results of this study showed a dissociation between magnitude and order, which supports the numerosity code hypothesis of mental representations of magnitude. PMID:23185363

  12. Learning in Authentic Contexts: Projects Integrating Spatial Technologies and Fieldwork

    ERIC Educational Resources Information Center

    Huang, Kuo-Hung

    2011-01-01

    In recent years, professional practice has been an issue of concern in higher education. The purpose of this study is to design students' projects to facilitate collaborative learning in authentic contexts. Ten students majoring in Management Information Systems conducted fieldwork with spatial technologies to collect data and provided information…

  13. Endogenous hippocampal LTD that is enabled by spatial object recognition requires activation of NMDA receptors and the metabotropic glutamate receptor, mGlu5.

    PubMed

    Goh, Jinzhong Jeremy; Manahan-Vaughan, Denise

    2013-02-01

    Learning-facilitated synaptic plasticity describes the ability of hippocampal synapses to respond with persistent plasticity to afferent stimulation when coupled with a spatial learning event, whereby the afferent stimulation normally produces short-term plasticity or no change in synaptic strength if given in the absence of novel learning. Recently, it was reported that in the mouse hippocampus intrinsic long-term depression (LTD > 24 h) occurs when test-pulse afferent stimulation is coupled with a novel spatial learning. It is not known to what extent this phenomenon shares molecular properties with synaptic plasticity that is typically induced by means of patterned electrical afferent stimulation. In previous work, we showed that a novel spatial object recognition task facilitates LTD at the Schaffer collateral-CA1 synapse of freely behaving adult mice, whereas reexposure to the familiar spatial configuration ∼24 h later elicited no such facilitation. Here we report that treatment with the NMDA receptor antagonist, (±)-3-(2-Carboxypiperazin-4-yl)-propanephosphonic acid (CPP), or antagonism of metabotropic glutamate (mGlu) receptor, mGlu5, using 2-methyl-6-(phenylethynyl) pyridine (MPEP), completely prevented LTD under the novel learning conditions. Behavioral assessment during re-exposure after application of the antagonists revealed that the animals did not remember the object during novel exposure and treated them as if they were novel. Under these circumstances, where the acquisition of novel spatial information was involved, LTD was facilitated. Our data support that the endogenous LTD that is enabled through novel spatial learning in adult mice is critically dependent on the activation of both the NMDA receptors and mGlu5. Copyright © 2012 Wiley Periodicals, Inc.

  14. Virtual reality in neurologic rehabilitation of spatial disorientation

    PubMed Central

    2013-01-01

    Background Topographical disorientation (TD) is a severe and persistent impairment of spatial orientation and navigation in familiar as well as new environments and a common consequence of brain damage. Virtual reality (VR) provides a new tool for the assessment and rehabilitation of TD. In VR training programs different degrees of active motor control over navigation may be implemented (i.e. more passive spatial navigation vs. more active). Increasing demands of active motor control may overload those visuo-spatial resources necessary for learning spatial orientation and navigation. In the present study we used a VR-based verbally-guided passive navigation training program to improve general spatial abilities in neurologic patients with spatial disorientation. Methods Eleven neurologic patients with focal brain lesions, which showed deficits in spatial orientation, as well as 11 neurologic healthy controls performed a route finding training in a virtual environment. Participants learned and recalled different routes for navigation in a virtual city over five training sessions. Before and after VR training, general spatial abilities were assessed with standardized neuropsychological tests. Results Route finding ability in the VR task increased over the five training sessions. Moreover, both groups improved different aspects of spatial abilities after VR training in comparison to the spatial performance before VR training. Conclusions Verbally-guided passive navigation training in VR enhances general spatial cognition in neurologic patients with spatial disorientation as well as in healthy controls and can therefore be useful in the rehabilitation of spatial deficits associated with TD. PMID:23394289

  15. Electrophysiological evidence for right frontal lobe dominance in spatial visuomotor learning.

    PubMed

    Lang, W; Lang, M; Kornhuber, A; Kornhuber, H H

    1986-02-01

    Slow negative potential shifts were recorded together with the error made in motor performance when two different groups of 14 students tracked visual stimuli with their right hand. Various visuomotor tasks were compared. A tracking task (T) in which subjects had to track the stimulus directly, showed no decrease of error in motor performance during the experiment. In a distorted tracking task (DT) a continuous horizontal distortion of the visual feedback had to be compensated. The additional demands of this task required visuomotor learning. Another learning condition was a mirrored-tracking task (horizontally inverted tracking, hIT), i.e. an elementary function, such as the concept of changing left and right was interposed between perception and action. In addition, subjects performed a no-tracking control task (NT) in which they started the visual stimulus without tracking it. A slow negative potential shift was associated with the visuomotor performance (TP: tracking potential). In the learning tasks (DT and hIT) this negativity was significantly enhanced over the anterior midline and in hIT frontally and precentrally over both hemispheres. Comparing hIT and T for every subject, the enhancement of the tracking potential in hIT was correlated with the success in motor learning in frontomedial and bilaterally in frontolateral recordings (r = 0.81-0.88). However, comparing DT and T, such a correlation was only found in frontomedial and right frontolateral electrodes (r = 0.5-0.61), but not at the left frontolateral electrode. These experiments are consistent with previous findings and give further neurophysiological evidence for frontal lobe activity in visuomotor learning. The hemispherical asymmetry is discussed in respect to hemispherical specialization (right frontal lobe dominance in spatial visuomotor learning).

  16. Anomaly detection driven active learning for identifying suspicious tracks and events in WAMI video

    NASA Astrophysics Data System (ADS)

    Miller, David J.; Natraj, Aditya; Hockenbury, Ryler; Dunn, Katherine; Sheffler, Michael; Sullivan, Kevin

    2012-06-01

    We describe a comprehensive system for learning to identify suspicious vehicle tracks from wide-area motion (WAMI) video. First, since the road network for the scene of interest is assumed unknown, agglomerative hierarchical clustering is applied to all spatial vehicle measurements, resulting in spatial cells that largely capture individual road segments. Next, for each track, both at the cell (speed, acceleration, azimuth) and track (range, total distance, duration) levels, extreme value feature statistics are both computed and aggregated, to form summary (p-value based) anomaly statistics for each track. Here, to fairly evaluate tracks that travel across different numbers of spatial cells, for each cell-level feature type, a single (most extreme) statistic is chosen, over all cells traveled. Finally, a novel active learning paradigm, applied to a (logistic regression) track classifier, is invoked to learn to distinguish suspicious from merely anomalous tracks, starting from anomaly-ranked track prioritization, with ground-truth labeling by a human operator. This system has been applied to WAMI video data (ARGUS), with the tracks automatically extracted by a system developed in-house at Toyon Research Corporation. Our system gives promising preliminary results in highly ranking as suspicious aerial vehicles, dismounts, and traffic violators, and in learning which features are most indicative of suspicious tracks.

  17. Active Learning Methods

    ERIC Educational Resources Information Center

    Zayapragassarazan, Z.; Kumar, Santosh

    2012-01-01

    Present generation students are primarily active learners with varied learning experiences and lecture courses may not suit all their learning needs. Effective learning involves providing students with a sense of progress and control over their own learning. This requires creating a situation where learners have a chance to try out or test their…

  18. Spatial cues more salient than color cues in cotton-top tamarins (Saguinus oedipus) reversal learning.

    PubMed

    Gaudio, Jennifer L; Snowdon, Charles T

    2008-11-01

    Animals living in stable home ranges have many potential cues to locate food. Spatial and color cues are important for wild Callitrichids (marmosets and tamarins). Field studies have assigned the highest priority to distal spatial cues for determining the location of food resources with color cues serving as a secondary cue to assess relative ripeness, once a food source is located. We tested two hypotheses with captive cotton-top tamarins: (a) Tamarins will demonstrate higher rates of initial learning when rewarded for attending to spatial cues versus color cues. (b) Tamarins will show higher rates of correct responses when transferred from color cues to spatial cues than from spatial cues to color cues. The results supported both hypotheses. Tamarins rewarded based on spatial location made significantly more correct choices and fewer errors than tamarins rewarded based on color cues during initial learning. Furthermore, tamarins trained on color cues showed significantly increased correct responses and decreased errors when cues were reversed to reward spatial cues. Subsequent reversal to color cues induced a regression in performance. For tamarins spatial cues appear more salient than color cues in a foraging task. (PsycINFO Database Record (c) 2008 APA, all rights reserved).

  19. Nogo-A regulates spatial learning as well as memory formation and modulates structural plasticity in the adult mouse hippocampus.

    PubMed

    Zagrebelsky, Marta; Lonnemann, Niklas; Fricke, Steffen; Kellner, Yves; Preuß, Eike; Michaelsen-Preusse, Kristin; Korte, Martin

    2017-02-01

    Behavioral learning has been shown to involve changes in the function and structure of synaptic connections of the central nervous system (CNS). On the other hand, the neuronal circuitry in the mature brain is characterized by a high degree of stability possibly providing a correlate for long-term storage of information. This observation indicates the requirement for a set of molecules inhibiting plasticity and promoting stability thereby providing temporal and spatial specificity to plastic processes. Indeed, signaling of Nogo-A via its receptors has been shown to play a crucial role in restricting activity-dependent functional and structural plasticity in the adult CNS. However, whether Nogo-A controls learning and memory formation and what are the cellular and molecular mechanisms underlying this function is still unclear. Here we show that Nogo-A signaling controls spatial learning and reference memory formation upon training in the Morris water maze and negatively modulates structural changes at spines in the mouse hippocampus. Learning processes and the correlated structural plasticity have been shown to involve changes in excitatory as well as in inhibitory neuronal connections. We show here that Nogo-A is highly expressed not only in excitatory, but also in inhibitory, Parvalbumin positive neurons in the adult hippocampus. By this means our current and previous data indicate that Nogo-A loss-of-function positively influences spatial learning by priming the neuronal structure to a higher plasticity level. Taken together our results link the role of Nogo-A in negatively regulating plastic processes to a physiological function in controlling learning and memory processes in the mature hippocampus and open the interesting possibility that it might mainly act by controlling the function of the hippocampal inhibitory circuitry. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The Effects of Restricted Peripheral Field-of-View on Spatial Learning while Navigating.

    PubMed

    Barhorst-Cates, Erica M; Rand, Kristina M; Creem-Regehr, Sarah H

    2016-01-01

    Recent work with simulated reductions in visual acuity and contrast sensitivity has found decrements in survey spatial learning as well as increased attentional demands when navigating, compared to performance with normal vision. Given these findings, and previous work showing that peripheral field loss has been associated with impaired mobility and spatial memory for room-sized spaces, we investigated the role of peripheral vision during navigation using a large-scale spatial learning paradigm. First, we aimed to establish the magnitude of spatial memory errors at different levels of field restriction. Second, we tested the hypothesis that navigation under these different levels of restriction would use additional attentional resources. Normally sighted participants walked on novel real-world paths wearing goggles that restricted the field-of-view (FOV) to severe (15°, 10°, 4°, or 0°) or mild angles (60°) and then pointed to remembered target locations using a verbal reporting measure. They completed a concurrent auditory reaction time task throughout each path to measure cognitive load. Only the most severe restrictions (4° and blindfolded) showed impairment in pointing error compared to the mild restriction (within-subjects). The 10° and 4° conditions also showed an increase in reaction time on the secondary attention task, suggesting that navigating with these extreme peripheral field restrictions demands the use of limited cognitive resources. This comparison of different levels of field restriction suggests that although peripheral field loss requires the actor to use more attentional resources while navigating starting at a less extreme level (10°), spatial memory is not negatively affected until the restriction is very severe (4°). These results have implications for understanding of the mechanisms underlying spatial learning during navigation and the approaches that may be taken to develop assistance for navigation with visual impairment.

  1. Can Active Navigation Be as Good as Driving? A Comparison of Spatial Memory in Drivers and Backseat Drivers

    ERIC Educational Resources Information Center

    von Stulpnagel, Rul; Steffens, Melanie C.

    2012-01-01

    When driving a vehicle, either the driver or a passenger (henceforth: backseat driver) may be responsible for navigation. Research on active navigation, primarily addressed in virtual environments, suggests that controlling navigation is more central for spatial learning than controlling movement. To test this assumption in a real-world scenario,…

  2. Fast automated segmentation of multiple objects via spatially weighted shape learning

    NASA Astrophysics Data System (ADS)

    Chandra, Shekhar S.; Dowling, Jason A.; Greer, Peter B.; Martin, Jarad; Wratten, Chris; Pichler, Peter; Fripp, Jurgen; Crozier, Stuart

    2016-11-01

    Active shape models (ASMs) have proved successful in automatic segmentation by using shape and appearance priors in a number of areas such as prostate segmentation, where accurate contouring is important in treatment planning for prostate cancer. The ASM approach however, is heavily reliant on a good initialisation for achieving high segmentation quality. This initialisation often requires algorithms with high computational complexity, such as three dimensional (3D) image registration. In this work, we present a fast, self-initialised ASM approach that simultaneously fits multiple objects hierarchically controlled by spatially weighted shape learning. Prominent objects are targeted initially and spatial weights are progressively adjusted so that the next (more difficult, less visible) object is simultaneously initialised using a series of weighted shape models. The scheme was validated and compared to a multi-atlas approach on 3D magnetic resonance (MR) images of 38 cancer patients and had the same (mean, median, inter-rater) Dice’s similarity coefficients of (0.79, 0.81, 0.85), while having no registration error and a computational time of 12-15 min, nearly an order of magnitude faster than the multi-atlas approach.

  3. Fast automated segmentation of multiple objects via spatially weighted shape learning.

    PubMed

    Chandra, Shekhar S; Dowling, Jason A; Greer, Peter B; Martin, Jarad; Wratten, Chris; Pichler, Peter; Fripp, Jurgen; Crozier, Stuart

    2016-11-21

    Active shape models (ASMs) have proved successful in automatic segmentation by using shape and appearance priors in a number of areas such as prostate segmentation, where accurate contouring is important in treatment planning for prostate cancer. The ASM approach however, is heavily reliant on a good initialisation for achieving high segmentation quality. This initialisation often requires algorithms with high computational complexity, such as three dimensional (3D) image registration. In this work, we present a fast, self-initialised ASM approach that simultaneously fits multiple objects hierarchically controlled by spatially weighted shape learning. Prominent objects are targeted initially and spatial weights are progressively adjusted so that the next (more difficult, less visible) object is simultaneously initialised using a series of weighted shape models. The scheme was validated and compared to a multi-atlas approach on 3D magnetic resonance (MR) images of 38 cancer patients and had the same (mean, median, inter-rater) Dice's similarity coefficients of (0.79, 0.81, 0.85), while having no registration error and a computational time of 12-15 min, nearly an order of magnitude faster than the multi-atlas approach.

  4. Rhesus Monkeys (Macaca Mulatta) Maintain Learning Set Despite Second-Order Stimulus-Response Spatial Discontiguity

    ERIC Educational Resources Information Center

    Beran, Michael J.; Washburn, David A.; Rumbaugh, Duane M.

    2007-01-01

    In many discrimination-learning tests, spatial separation between stimuli and response loci disrupts performance in rhesus macaques. However, monkeys are unaffected by such stimulus-response spatial discontiguity when responses occur through joystick-based computerized movement of a cursor. To examine this discrepancy, five monkeys were tested on…

  5. Spatial water maze learning using celestial cues by the meadow vole, Microtus pennsylvanicus.

    PubMed

    Kavaliers, M; Galea, L A

    1994-03-31

    The Morris water maze is widely used to evaluate to evaluate the spatial learning ability of rodents under laboratory settings. The present study demonstrates that reproductive male meadow voles, Microtus pennsylvanicus, are able to acquire and retain a spatial water maze task using celestial cues. Voles were able to acquire a modified outdoor Morris water maze task over 4 trials per day, whereby they had to learn and remember the location of a submerged hidden platform, using the position of the sun and associated celestial cues. Their proficiency on this task was related to the availability of the celestial cues, with voles displaying significantly poorer spatial navigation on overcast than clear days and when the testing time (and position of the sun and associated celestial cues) was shifted from morning to afternoon. These findings with meadow voles support the ecological relevance of the water maze task.

  6. Hippocampal SWR Activity Predicts Correct Decisions during the Initial Learning of an Alternation Task

    PubMed Central

    Singer, Annabelle C.; Carr, Margaret F.; Karlsson, Mattias P.; Frank, Loren M.

    2013-01-01

    SUMMARY The hippocampus frequently replays memories of past experiences during sharp-wave ripple (SWR) events. These events can represent spatial trajectories extending from the animal’s current location to distant locations, suggesting a role in the evaluation of upcoming choices. While SWRs have been linked to learning and memory, the specific role of awake replay remains unclear. Here we show that there is greater coordinated neural activity during SWRs preceding correct, as compared to incorrect, trials in a spatial alternation task. As a result, the proportion of cell pairs coactive during SWRs was predictive of subsequent correct or incorrect responses on a trial-by-trial basis. This effect was seen specifically during early learning, when the hippocampus is essential for task performance. SWR activity preceding correct trials represented multiple trajectories that included both correct and incorrect options. These results suggest that reactivation during awake SWRs contributes to the evaluation of possible choices during memory-guided decision making. PMID:23522050

  7. Lesions of the fornix and anterior thalamic nuclei dissociate different aspects of hippocampal-dependent spatial learning: implications for the neural basis of scene learning.

    PubMed

    Aggleton, John P; Poirier, Guillaume L; Aggleton, Hugh S; Vann, Seralynne D; Pearce, John M

    2009-06-01

    The present study used 2 different discrimination tasks designed to isolate distinct components of visuospatial learning: structural learning and geometric learning. Structural learning refers to the ability to learn the precise combination of stimulus identity with stimulus location. Rats with anterior thalamic lesions and fornix lesions were unimpaired on a configural learning task in which the rats learned 3 concurrent mirror-image discriminations (structural learning). Indeed, both lesions led to facilitated learning. In contrast, anterior thalamic lesions impaired the geometric discrimination (e.g., swim to the corner with the short wall to the right of the long wall). Finally, both the fornix and anterior thalamic lesions severely impaired T-maze alternation, a task that taxes an array of spatial strategies including allocentric learning. This pattern of dissociations and double dissociations highlights how distinct classes of spatial learning rely on different systems, even though they may converge on the hippocampus. Consequently, the findings suggest that structural learning is heavily dependent on cortico-hippocampal interactions. In contrast, subcortical inputs (such as those from the anterior thalamus) contribute to geometric learning. Copyright (c) 2009 APA, all rights reserved.

  8. A Bridge to Active Learning: A Summer Bridge Program Helps Students Maximize Their Active-Learning Experiences and the Active-Learning Experiences of Others.

    PubMed

    Cooper, Katelyn M; Ashley, Michael; Brownell, Sara E

    2017-01-01

    National calls to improve student academic success in college have sparked the development of bridge programs designed to help students transition from high school to college. We designed a 2-week Summer Bridge program that taught introductory biology content in an active-learning way. Through a set of exploratory interviews, we unexpectedly identified that Bridge students had developed sophisticated views of active learning, even though this was not an explicit goal of the program. We conducted an additional set of semistructured interviews that focused on active learning and compared the interviews of Bridge students with those from non-Bridge students who had been eligible for but did not participate in the program. We used the constant comparative method to identify themes from the interviews. We found that Bridge students perceived that, because they knew how to approach active learning and viewed it as important, they benefited more from active learning in introductory biology than non-Bridge students. Specifically, Bridge students seemed to be more aware of their own learning gains from participating in active learning. Compared with the majority of non-Bridge students, the majority of Bridge students described using a greater variety of strategies to maximize their experiences in active learning. Finally, in contrast to non-Bridge students, Bridge students indicated that they take an equitable approach to group work. These findings suggest that we may be able to prime students to maximize their own and other's experiences in active learning. © 2017 K. M. Cooper et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Place and direction learning in a spatial T-maze task by neonatal piglets

    PubMed Central

    Elmore, Monica R. P.; Dilger, Ryan N.; Johnson, Rodney W.

    2013-01-01

    Pigs are a valuable animal model for studying neurodevelopment in humans due to similarities in brain structure and growth. The development and validation of behavioral tests to assess learning and memory in neonatal piglets are needed. The present study evaluated the capability of 2-wk old piglets to acquire a novel place and direction learning spatial T-maze task. Validity of the task was assessed by the administration of scopolamine, an anti-cholinergic drug that acts on the hippocampus and other related structures, to impair spatial memory. During acquisition, piglets were trained to locate a milk reward in a constant place in space, as well as direction (east or west), in a plus-shaped maze using extra-maze visual cues. Following acquisition, reward location was reversed and piglets were re-tested to assess learning and working memory. The performance of control piglets in the maze improved over time (P < 0.0001), reaching performance criterion (80% correct) on day 5 of acquisition. Correct choices decreased in the reversal phase (P < 0.0001), but improved over time. In a separate study, piglets were injected daily with either phosphate buffered saline (PBS; control) or scopolamine prior to testing. Piglets administered scopolamine showed impaired performance in the maze compared to controls (P = 0.03), failing to reach performance criterion after 6 days of acquisition testing. Collectively, these data demonstrate that neonatal piglets can be tested in a spatial T-maze task to assess hippocampal-dependent learning and memory. PMID:22526690

  10. The contribution of the androgen receptor (AR) in human spatial learning and memory: A study in women with complete androgen insensitivity syndrome (CAIS).

    PubMed

    Mueller, S C; Verwilst, T; Van Branteghem, A; T'Sjoen, G; Cools, M

    2016-02-01

    Few studies have examined the impact of androgen insensitivity on human spatial learning and memory. In the present study, we tested 11 women with complete androgen insensitivity syndrome (CAIS), a rare genetic disorder characterized by complete absence of AR activity, and compared their performance against 20 comparison males and 19 comparison females on a virtual analog of the Morris Water Maze task. The results replicated a main sex effect showing that men relative to women were faster in finding the hidden platform and had reduced heading error. Furthermore, findings indicated that mean performance of women with CAIS was between control women and control men, though the differences were not statistically significant. Effect size estimates (and corresponding confidence intervals) of spatial learning trials showed little difference between women with CAIS and control women but CAIS women differed from men, but not women, on two variables, latency to find the platform and first-move latency. No differences between groups were present during visible platform trials or the probe trial, a measure of spatial memory. Moreover, groups also did not differ on estimates of IQ and variability of performance. The findings are discussed in relation to androgen insensitivity in human spatial learning and memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Active Learning with Statistical Models.

    DTIC Science & Technology

    1995-01-01

    Active Learning with Statistical Models ASC-9217041, NSF CDA-9309300 6. AUTHOR(S) David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan 7. PERFORMING...TERMS 15. NUMBER OF PAGES Al, MIT, Artificial Intelligence, active learning , queries, locally weighted 6 regression, LOESS, mixtures of gaussians...COMPUTATIONAL LEARNING DEPARTMENT OF BRAIN AND COGNITIVE SCIENCES A.I. Memo No. 1522 January 9. 1995 C.B.C.L. Paper No. 110 Active Learning with

  12. Coordinated learning of grid cell and place cell spatial and temporal properties: multiple scales, attention and oscillations.

    PubMed

    Grossberg, Stephen; Pilly, Praveen K

    2014-02-05

    A neural model proposes how entorhinal grid cells and hippocampal place cells may develop as spatial categories in a hierarchy of self-organizing maps (SOMs). The model responds to realistic rat navigational trajectories by learning both grid cells with hexagonal grid firing fields of multiple spatial scales, and place cells with one or more firing fields, that match neurophysiological data about their development in juvenile rats. Both grid and place cells can develop by detecting, learning and remembering the most frequent and energetic co-occurrences of their inputs. The model's parsimonious properties include: similar ring attractor mechanisms process linear and angular path integration inputs that drive map learning; the same SOM mechanisms can learn grid cell and place cell receptive fields; and the learning of the dorsoventral organization of multiple spatial scale modules through medial entorhinal cortex to hippocampus (HC) may use mechanisms homologous to those for temporal learning through lateral entorhinal cortex to HC ('neural relativity'). The model clarifies how top-down HC-to-entorhinal attentional mechanisms may stabilize map learning, simulates how hippocampal inactivation may disrupt grid cells, and explains data about theta, beta and gamma oscillations. The article also compares the three main types of grid cell models in the light of recent data.

  13. Time course influences transfer of visual perceptual learning across spatial location.

    PubMed

    Larcombe, S J; Kennard, C; Bridge, H

    2017-06-01

    Visual perceptual learning describes the improvement of visual perception with repeated practice. Previous research has established that the learning effects of perceptual training may be transferable to untrained stimulus attributes such as spatial location under certain circumstances. However, the mechanisms involved in transfer have not yet been fully elucidated. Here, we investigated the effect of altering training time course on the transferability of learning effects. Participants were trained on a motion direction discrimination task or a sinusoidal grating orientation discrimination task in a single visual hemifield. The 4000 training trials were either condensed into one day, or spread evenly across five training days. When participants were trained over a five-day period, there was transfer of learning to both the untrained visual hemifield and the untrained task. In contrast, when the same amount of training was condensed into a single day, participants did not show any transfer of learning. Thus, learning time course may influence the transferability of perceptual learning effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. On Developing Students' Spatial Visualisation Ability

    ERIC Educational Resources Information Center

    Risma, Dwi Afrini; Putri, Ratu Ilma Indra; Hartono, Yusuf

    2013-01-01

    This research aims at studying on how students develop their spatial visualisation abilities. In this paper, one of five activities in an ongoing classroom activity is discussed. This paper documents students' learning activity in exploring the building blocks. The goal of teaching experiment is to support the development of students' spatial…

  15. Can 28-Month-Old Children Learn Spatial Prepositions Robustly from Pictures? Yes, When Narrative Input Is Provided

    PubMed Central

    Rohlfing, Katharina J.; Nachtigäller, Kerstin

    2016-01-01

    The learning of spatial prepositions is assumed to be based on experience in space. In a slow mapping study, we investigated whether 31 German 28-month-old children could robustly learn the German spatial prepositions hinter [behind] and neben [next to] from pictures, and whether a narrative input can compensate for a lack of immediate experience in space. One group of children received pictures with a narrative input as a training to understand spatial prepositions. In two further groups, we controlled (a) for the narrative input by providing unconnected speech during the training and (b) for the learning material by training the children on toys rather than pictures. We assessed children’s understanding of spatial prepositions at three different time points: pretest, immediate test, and delayed posttest. Results showed improved word retention in children from the narrative but not the control group receiving unconnected speech. Neither of the trained groups succeeded in generalization to novel referents. Finally, all groups were instructed to deal with untrained material in the test to investigate the robustness of learning across tasks. None of the groups succeeded in this task transfer. PMID:27471479

  16. Tracking Active Learning in the Medical School Curriculum: A Learning-Centered Approach.

    PubMed

    McCoy, Lise; Pettit, Robin K; Kellar, Charlyn; Morgan, Christine

    2018-01-01

    Medical education is moving toward active learning during large group lecture sessions. This study investigated the saturation and breadth of active learning techniques implemented in first year medical school large group sessions. Data collection involved retrospective curriculum review and semistructured interviews with 20 faculty. The authors piloted a taxonomy of active learning techniques and mapped learning techniques to attributes of learning-centered instruction. Faculty implemented 25 different active learning techniques over the course of 9 first year courses. Of 646 hours of large group instruction, 476 (74%) involved at least 1 active learning component. The frequency and variety of active learning components integrated throughout the year 1 curriculum reflect faculty familiarity with active learning methods and their support of an active learning culture. This project has sparked reflection on teaching practices and facilitated an evolution from teacher-centered to learning-centered instruction.

  17. Effects of peptides from Phascolosoma esculenta on spatial learning and memory via anti-oxidative character in mice.

    PubMed

    Liu, Lianliang; Cao, Jinxuan; Chen, Jiong; Zhang, Xin; Wu, Zufang; Xiang, Huan

    2016-09-19

    This study was aimed to evaluate effects of peptides from Phascolosoma esculenta and its ferrous-chelating peptides on spatial learning and memory in mice by Morris water maze test. 100mg/kg peptide on spatial learning and memory function about quadrant time and passing times through the platform better than 50 and 150mg/kg group during exploration period (P<0.05), without body weight between the weight and visual ability. 100mg/kg ferrous-chelating peptide group performed better ability of spatial learning and memory than 100mg/kg peptide group (P<0.05). qRT-PCR results showed that 50 and 100mg/kg administration peptide and 100mg/kg ferrous-chelating peptide can significantly improve mRNA expression of NR2A, NR2B and BDNF with oxidative stress status (GSH-Px, SOD, TAC and MDA), which explained mechanism for improving learning and memory ability in mice via anti-oxidative character. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Tracking Active Learning in the Medical School Curriculum: A Learning-Centered Approach

    PubMed Central

    McCoy, Lise; Pettit, Robin K; Kellar, Charlyn; Morgan, Christine

    2018-01-01

    Background: Medical education is moving toward active learning during large group lecture sessions. This study investigated the saturation and breadth of active learning techniques implemented in first year medical school large group sessions. Methods: Data collection involved retrospective curriculum review and semistructured interviews with 20 faculty. The authors piloted a taxonomy of active learning techniques and mapped learning techniques to attributes of learning-centered instruction. Results: Faculty implemented 25 different active learning techniques over the course of 9 first year courses. Of 646 hours of large group instruction, 476 (74%) involved at least 1 active learning component. Conclusions: The frequency and variety of active learning components integrated throughout the year 1 curriculum reflect faculty familiarity with active learning methods and their support of an active learning culture. This project has sparked reflection on teaching practices and facilitated an evolution from teacher-centered to learning-centered instruction. PMID:29707649

  19. The Relation between Childhood Spatial Activities and Spatial Abilities in Adulthood

    ERIC Educational Resources Information Center

    Doyle, Randi A.; Voyer, Daniel; Cherney, Isabelle D.

    2012-01-01

    This study investigated the relation between childhood spatial activities and cognitive gender differences in adults through the validation of the Childhood Activities Questionnaire developed by Cherney and Voyer (2010). A sample of 403 (133 males, 270 females) undergraduates in Introductory Psychology courses at University of New Brunswick, NB,…

  20. Active Learning Using Arbitrary Binary Valued Queries

    DTIC Science & Technology

    1990-10-01

    active learning in the sense that the learner has complete choice in the information received. Specifically, we allow the learner to ask arbitrary yes...no questions. We consider both active learning under a fixed distribution and distribution-free active learning . In the case of active learning , the...a concept class is actively learnable iff it is finite, so that active learning is in fact less powerful than the usual passive learning model. We

  1. Move to learn: Integrating spatial information from multiple viewpoints.

    PubMed

    Holmes, Corinne A; Newcombe, Nora S; Shipley, Thomas F

    2018-05-11

    Recalling a spatial layout from multiple orientations - spatial flexibility - is challenging, even when the global configuration can be viewed from a single vantage point, but more so when it must be viewed piecemeal. In the current study, we examined whether experiencing the transition between multiple viewpoints enhances spatial memory and flexible recall for a spatial configuration viewed simultaneously (Exp. 1) and sequentially (Exp. 2), whether the type of transition matters, and whether action provides an additional advantage over passive experience. In Experiment 1, participants viewed an array of dollhouse furniture from four viewpoints, but with all furniture simultaneously visible. In Experiment 2, participants viewed the same array piecemeal, from four partitioned viewpoints that allowed for viewing only a segment at a time. The transition between viewpoints involved rotation of the array or participant movement around it. Rotation and participant movement were passively experienced or actively generated. The control condition presented the dollhouse as a series of static views. Across both experiments, participant movement significantly enhanced spatial memory relative to array rotation or static views. However, in Exp. 2, there was a further advantage for actively walking around the array compared to being passively pushed. These findings suggest that movement around a stable environment is key to spatial memory and flexible recall, with action providing an additional boost to the integration of temporally segmented spatial events. Thus, spatial memory may be more flexible than prior data indicate, when studied under more natural acquisition conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. The perirhinal cortex of the rat is necessary for spatial memory retention long after but not soon after learning.

    PubMed

    Ramos, Juan M J; Vaquero, Joaquín M M

    2005-09-15

    Many observations in humans and experimental animals support the view that the hippocampus is critical immediately after learning in order for long-term memory formation to take place. However, exactly when the medial temporal cortices adjacent to the hippocampus are necessary for this process to occur normally is not yet well known. Using a spatial task, we studied whether the perirhinal cortex of rats is necessary to establish representations in long-term memory. Results showed that, in a spatial task sensitive to hippocampal lesions, control and perirhinal lesioned rats can both learn at the same rate (Experiment 1). Interestingly, a differential involvement of the perirhinal cortex in memory retention was observed as time passes after learning. Thus, 24 days following the end of learning, lesioned and control rats remembered the task perfectly as measured by a retraining test. In contrast, 74 days after the learning the perirhinal animals showed a profound impairment in the retention of the spatial information (Experiment 2). Taken together, these results suggest that the perirhinal region is critical for the formation of long-term spatial memory. However, its contribution to memory formation and retention is time-dependent, it being necessary only long after learning takes place and not during the phase immediately following acquisition.

  3. Hypermedia in Vocational Learning: A Hypermedia Learning Environment for Training Management Skills

    ERIC Educational Resources Information Center

    Konradt, Udo

    2004-01-01

    A learning environment is defined as an arrangement of issues, methods, techniques, and media in a given domain. Besides temporal and spatial features a learning environment considers the social situation in which learning takes place. In (hypermedia) learning environments the concept of exploration and the active role of the learner is…

  4. Age-dependent effects of neonatal methamphetamine exposure on spatial learning

    PubMed Central

    Vorhees, Charles V.; Skelton, Matthew R.; Williams, Michael T.

    2009-01-01

    Neonatal rats exposed to (+)-methamphetamine (MA) display spatial learning and reference memory deficits in the Morris water maze. In separate experiments the emergence and permanence of these effects were determined. Twenty litters were used in each experiment, and two male/female pairs/litter received saline or MA (5 mg/kg four times a day) on postnatal days (P) 11–20. In experiment 1, one MA and one saline pair from each litter began testing on either P30 or P40, whereas in experiment 2, testing began on P180 or P360. Animals received trials in a straight swimming channel and then in the Morris maze (acquisition, reversal, and reduced platform phases). In both experiments, MA-treated groups showed impaired learning in the platform trials and impaired reference memory in the probe trials, which were largely independent of age. The P30 and P40 MA impairments were seen on acquisition and reduced platform trials but not on reversal. In the probe trials, MA effects were seen during all phases. The P180 and P360 MA-induced deficits were seen in all phases of the platform trials. In probe trials, deficits were only seen during the reversal and reduced platform phases. The results demonstrate that neonatal MA treatment induces spatial learning and reference memory deficits that emerge early and persist until at least 1 year of age, suggesting permanence. PMID:17762523

  5. Autism-related neuroligin-3 mutation alters social behavior and spatial learning.

    PubMed

    Jaramillo, Thomas C; Liu, Shunan; Pettersen, Ami; Birnbaum, Shari G; Powell, Craig M

    2014-04-01

    Multiple candidate genes have been identified for autism spectrum disorders. While some of these genes reach genome-wide significance, others, such as the R451C point mutation in the synaptic cell adhesion molecule neuroligin-3, appear to be rare. Interestingly, two brothers with the same R451C point mutation in neuroligin-3 present clinically on seemingly disparate sides of the autism spectrum. These clinical findings suggest genetic background may play a role in modifying the penetrance of a particular autism-associated mutation. Animal models may contribute additional support for such mutations as functionally relevant and can provide mechanistic insights. Previously, in collaboration with the Südhof laboratory, we reported that mice with an R451C substitution in neuroligin-3 displayed social deficits and enhanced spatial learning. While some of these behavioral abnormalities have since been replicated independently in the Südhof laboratory, observations from the Crawley laboratory failed to replicate these findings in a similar neuroligin-3 mutant mouse model and suggested that genetic background may contribute to variation in observations across laboratories. Therefore, we sought to replicate our findings in the neuroligin-3 R451C point mutant knock-in mouse model (NL3R451C) in a different genetic background. We backcrossed our NL3R451C mouse line onto a 129S2/SvPasCrl genetic background and repeated a subset of our previous behavioral testing. NL3R451C mice on a 129S2/SvPasCrl displayed social deficits, enhanced spatial learning, and increased locomotor activity. These data extend our previous findings that NL3R451C mice exhibit autism-relevant behavioral abnormalities and further suggest that different genetic backgrounds can modify this behavioral phenotype through epistatic genetic interactions. © 2014 International Society for Autism Research, Wiley Periodicals, Inc.

  6. Active Learning with Irrelevant Examples

    NASA Technical Reports Server (NTRS)

    Mazzoni, Dominic; Wagstaff, Kiri L.; Burl, Michael

    2006-01-01

    Active learning algorithms attempt to accelerate the learning process by requesting labels for the most informative items first. In real-world problems, however, there may exist unlabeled items that are irrelevant to the user's classification goals. Queries about these points slow down learning because they provide no information about the problem of interest. We have observed that when irrelevant items are present, active learning can perform worse than random selection, requiring more time (queries) to achieve the same level of accuracy. Therefore, we propose a novel approach, Relevance Bias, in which the active learner combines its default selection heuristic with the output of a simultaneously trained relevance classifier to favor items that are likely to be both informative and relevant. In our experiments on a real-world problem and two benchmark datasets, the Relevance Bias approach significantly improved the learning rate of three different active learning approaches.

  7. Genistein improves spatial learning and memory in male rats with elevated glucose level during memory consolidation.

    PubMed

    Kohara, Yumi; Kawaguchi, Shinichiro; Kuwahara, Rika; Uchida, Yutaro; Oku, Yushi; Yamashita, Kimihiro

    2015-03-01

    Cognitive dysfunction due to higher blood glucose level has been reported previously. Genistein (GEN) is a phytoestrogen that we hypothesized might lead to improved memory, despite elevated blood glucose levels at the time of memory consolidation. To investigate this hypothesis, we compared the effects of orally administered GEN on the central nervous system in normal versus glucose-loaded adult male rats. A battery of behavioral assessments was carried out. In the MAZE test, which measured spatial learning and memory, the time of normal rats was shortened by GEN treatment compared to the vehicle group, but only in the early stages of testing. In the glucose-loaded group, GEN treatment improved performance as mazes were advanced. In the open-field test, GEN treatment delayed habituation to the new environment in normal rats, and increased the exploratory behaviors of glucose-loaded rats. There were no significant differences observed for emotionality or fear-motivated learning and memory. Together, these results indicate that GEN treatment improved spatial learning and memory only in the early stages of testing in the normal state, but improved spatial learning and memory when glucose levels increased during memory consolidation. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Robotic guidance benefits the learning of dynamic, but not of spatial movement characteristics.

    PubMed

    Lüttgen, Jenna; Heuer, Herbert

    2012-10-01

    Robotic guidance is an engineered form of haptic-guidance training and intended to enhance motor learning in rehabilitation, surgery, and sports. However, its benefits (and pitfalls) are still debated. Here, we investigate the effects of different presentation modes on the reproduction of a spatiotemporal movement pattern. In three different groups of participants, the movement was demonstrated in three different modalities, namely visual, haptic, and visuo-haptic. After demonstration, participants had to reproduce the movement in two alternating recall conditions: haptic and visuo-haptic. Performance of the three groups during recall was compared with regard to spatial and dynamic movement characteristics. After haptic presentation, participants showed superior dynamic accuracy, whereas after visual presentation, participants performed better with regard to spatial accuracy. Added visual feedback during recall always led to enhanced performance, independent of the movement characteristic and the presentation modality. These findings substantiate the different benefits of different presentation modes for different movement characteristics. In particular, robotic guidance is beneficial for the learning of dynamic, but not of spatial movement characteristics.

  9. The Predictive Power of Fifth Graders' Learning Styles on Their Mathematical Reasoning and Spatial Ability

    ERIC Educational Resources Information Center

    Danisman, Sahin; Erginer, Ergin

    2017-01-01

    The purpose of this study was to examine fifth graders' mathematical reasoning and spatial ability, to identify a correlation with their learning styles, and to determine the predictive power of their learning styles on their mathematical learning profiles. This causal study was conducted with 97 fifth graders (60 females, 61.9% and 37 males,…

  10. Comparison of Visual-Spatial Performance Strategy Training in Children with Turner Syndrome and Learning Disabilities.

    ERIC Educational Resources Information Center

    Williams, Janet K.; And Others

    1992-01-01

    Thirteen females with Turner syndrome, 13 females with nonverbal learning disabilities, and 14 males with nonverbal learning disabilities, ages 7-14, were taught via a cognitive behavioral modification approach to verbally mediate a spatial matching task. All three groups showed significant task improvement after the training, with no significant…

  11. The Topography Tub Learning Activity

    NASA Astrophysics Data System (ADS)

    Glesener, G. B.

    2014-12-01

    Understanding the basic elements of a topographic map (i.e. contour lines and intervals) is just a small part of learning how to use this abstract representational system as a resource in geologic mapping. Interpretation of a topographic map and matching its features with real-world structures requires that the system is utilized for visualizing the shapes of these structures and their spatial orientation. To enrich students' skills in visualizing topography from topographic maps a spatial training activity has been developed that uses 3D objects of various shapes and sizes, a sighting tool, a plastic basin, water, and transparencies. In the first part of the activity, the student is asked to draw a topographic map of one of the 3D objects. Next, the student places the object into a plastic tub in which water is added to specified intervals of height. The shoreline at each interval is used to reference the location of the contour line the student draws on a plastic inkjet transparency directly above the object. A key part of this activity is the use of a sighting tool by the student to assist in keeping the pencil mark directly above the shoreline. It (1) ensures the accurate positioning of the contour line and (2) gives the learner experience with using a sight before going out into the field. Finally, after the student finishes drawing the contour lines onto the transparency, the student can compare and contrast the two maps in order to discover where improvements in their visualization of the contours can be made. The teacher and/or peers can also make suggestions on ways to improve. A number of objects with various shapes and sizes are used in this exercise to produce contour lines representing the different types of topography the student may encounter while field mapping. The intended outcome from using this visualization training activity is improvement in performance of visualizing topography as the student moves between the topographic representation and

  12. Training memory without aversion: Appetitive hole-board spatial learning increases adult hippocampal neurogenesis.

    PubMed

    Sampedro-Piquero, Patricia; Moreno-Fernández, Román D; Carmen Mañas-Padilla, M; Gil-Rodríguez, Sara; Gavito, Ana Luisa; Pavón, Francisco J; Pedraza, Carmen; García-Fernández, María; Ladrón de Guevara-Miranda, David; Santín, Luis J; Castilla-Ortega, Estela

    2018-05-01

    Learning experiences are potent modulators of adult hippocampal neurogenesis (AHN). However, the vast majority of findings on the learning-induced regulation of AHN derive from aversively-motivated tasks, mainly the water maze paradigm, in which stress is a confounding factor that affects the AHN outcome. Currently, little is known regarding the effect of appetitively-motivated training on AHN. Hence we studied how spatial learning to find food rewards in a hole-board maze modulates AHN (cell proliferation and immature neurons) and AHN-related hippocampal neuroplasticity markers (BDNF, IGF-II and CREB phosphorylation) in mice. The 'Trained' mice were tested for both spatial reference and working memory and compared to 'Pseudotrained' mice (exposed to different baited holes in each session, thus avoiding the reference memory component of the task) and 'Control' mice (exposed to the maze without rewards). In contrast to Pseudotrained and Control mice, the number of proliferating hippocampal cells were reduced in Trained mice, but they notably increased their population of immature neurons assessed by immunohistochemistry. This evidence shows that hole-board spatial reference learning diminishes cell proliferation in favor of enhancing young neurons' survival. Interestingly, the enhanced AHN in the Trained mice (specifically in the suprapyramidal blade) positively correlated with their reference memory performance, but not with their working memory. Furthermore, the Trained animals increased the hippocampal protein expression of all the neuroplasticity markers analyzed by western blot. Results show that the appetitively-motivated hole-board task is a useful paradigm to potentiate and/or investigate AHN and hippocampal plasticity minimizing aversive variables such as fear or stress. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Magnetic resonance image restoration via dictionary learning under spatially adaptive constraints.

    PubMed

    Wang, Shanshan; Xia, Yong; Dong, Pei; Feng, David Dagan; Luo, Jianhua; Huang, Qiu

    2013-01-01

    This paper proposes a spatially adaptive constrained dictionary learning (SAC-DL) algorithm for Rician noise removal in magnitude magnetic resonance (MR) images. This algorithm explores both the strength of dictionary learning to preserve image structures and the robustness of local variance estimation to remove signal-dependent Rician noise. The magnitude image is first separated into a number of partly overlapping image patches. The statistics of each patch are collected and analyzed to obtain a local noise variance. To better adapt to Rician noise, a correction factor is formulated with the local signal-to-noise ratio (SNR). Finally, the trained dictionary is used to denoise each image patch under spatially adaptive constraints. The proposed algorithm has been compared to the popular nonlocal means (NLM) filtering and unbiased NLM (UNLM) algorithm on simulated T1-weighted, T2-weighted and PD-weighted MR images. Our results suggest that the SAC-DL algorithm preserves more image structures while effectively removing the noise than NLM and it is also superior to UNLM at low noise levels.

  14. Sex-specific effects of prenatal chronic mild stress on adult spatial learning capacity and regional glutamate receptor expression profiles.

    PubMed

    Wang, Yan; Ma, Yuchao; Hu, Jingmin; Zhang, Xinxin; Cheng, Wenwen; Jiang, Han; Li, Min; Ren, Jintao; Zhang, Xiaosong; Liu, Mengxi; Sun, Anji; Wang, Qi; Li, Xiaobai

    2016-07-01

    Both animal experiments and clinical studies have demonstrated that prenatal stress can cause cognitive disorders in offspring. To explore the scope of these deficits and identify potential underlying mechanisms, we examined the spatial learning and memory performance and glutamate receptor (GluR) expression patterns of adult rats exposed to prenatal chronic mild stress (PCMS). Principal component analysis (PCA) was employed to reveal the interrelationships among spatial learning indices and GluR expression changes. Female PCMS-exposed offspring exhibited markedly impaired spatial learning and memory in the Morris water maze (MWM) task compared to control females, while PCMS-exposed males showed better initial spatial learning in the MWM compared to control males. PCMS also altered basal and post-MWM glutamate receptor expression patterns, but these effects differed markedly between sexes. Male PCMS-exposed offspring exhibited elevated basal expression of NR1, mGluR5, and mGluR2/3 in the prefrontal cortex (PFC), whereas females showed no basal expression changes. Following MWM training, PCMS-exposed males expressed higher NR1 in the PFC and mammillary body (MB), higher mGluR2/3 in PFC, and lower NR2B in the hippocampus (HIP), PFC, and MB compared to unstressed MWM-trained males. Female PCMS-exposed offspring showed strongly reduced NR1 in MB and NR2B in the HIP, PFC, and MB, and increased mGluR2/3 in PFC compared to unstressed MWM-trained females. This is the first report suggesting that NMDA subunits in the MB are involved in spatial learning. Additionally, PCA further suggests that the NR1-NR2B form is the most important for spatial memory formation. These results reveal long-term sex-specific effects of PCMS on spatial learning and memory performance in adulthood and implicate GluR expression changes within HIP, PFC, and MB as possible molecular mechanisms underlying cognitive dysfunction in offspring exposed to prenatal stress. Copyright © 2016 Elsevier Inc

  15. Explaining sex differences in mental rotation: role of spatial activity experience.

    PubMed

    Nazareth, Alina; Herrera, Asiel; Pruden, Shannon M

    2013-05-01

    Males consistently outperform females on mental rotation tasks, such as the Vandenberg and Kuse (1978) Perceptual and Motor Skills, 47(2), 599-604, mental rotation test (MRT; e.g. Voyer et al. 1995) in Psychological Bulletin, 117, 250-265. The present study investigates whether these sex differences in MRT scores can be explained in part by early spatial activity experience, particularly those spatial activities that have been sex-typed as masculine/male-oriented. Utilizing an online survey, 571 ethnically diverse adult university students completed a brief demographic survey, an 81-item spatial activity survey, and the MRT. Results suggest that the significant relation between sex of the participant and MRT score is partially mediated by the number of masculine spatial activities participants had engaged in as youth. Closing the gap between males and females in spatial ability, a skill linked to science, technology, engineering, and mathematics success, may be accomplished in part by encouraging female youth to engage in more particular kinds of spatial activities.

  16. Assessing Spatial Learning and Memory in Rodents

    PubMed Central

    Vorhees, Charles V.; Williams, Michael T.

    2014-01-01

    Maneuvering safely through the environment is central to survival of almost all species. The ability to do this depends on learning and remembering locations. This capacity is encoded in the brain by two systems: one using cues outside the organism (distal cues), allocentric navigation, and one using self-movement, internal cues and nearby proximal cues, egocentric navigation. Allocentric navigation involves the hippocampus, entorhinal cortex, and surrounding structures; in humans this system encodes allocentric, semantic, and episodic memory. This form of memory is assessed in laboratory animals in many ways, but the dominant form of assessment is the Morris water maze (MWM). Egocentric navigation involves the dorsal striatum and connected structures; in humans this system encodes routes and integrated paths and, when overlearned, becomes procedural memory. In this article, several allocentric assessment methods for rodents are reviewed and compared with the MWM. MWM advantages (little training required, no food deprivation, ease of testing, rapid and reliable learning, insensitivity to differences in body weight and appetite, absence of nonperformers, control methods for proximal cue learning, and performance effects) and disadvantages (concern about stress, perhaps not as sensitive for working memory) are discussed. Evidence-based design improvements and testing methods are reviewed for both rats and mice. Experimental factors that apply generally to spatial navigation and to MWM specifically are considered. It is concluded that, on balance, the MWM has more advantages than disadvantages and compares favorably with other allocentric navigation tasks. PMID:25225309

  17. STEM learning activity among home-educating families

    NASA Astrophysics Data System (ADS)

    Bachman, Jennifer

    2011-12-01

    Science, technology, engineering, and mathematics (STEM) learning was studied among families in a group of home-educators in the Pacific Northwest. Ethnographic methods recorded learning activity (video, audio, fieldnotes, and artifacts) which was analyzed using a unique combination of Cultural-Historical Activity Theory (CHAT) and Mediated Action (MA), enabling analysis of activity at multiple levels. Findings indicate that STEM learning activity is family-led, guided by parents' values and goals for learning, and negotiated with children to account for learner interests and differences, and available resources. Families' STEM education practice is dynamic, evolves, and influenced by larger societal STEM learning activity. Parents actively seek support and resources for STEM learning within their home-school community, working individually and collectively to share their funds of knowledge. Home-schoolers also access a wide variety of free-choice learning resources: web-based materials, museums, libraries, and community education opportunities (e.g. afterschool, weekend and summer programs, science clubs and classes, etc.). A lesson-heuristic, grounded in Mediated Action, represents and analyzes home STEM learning activity in terms of tensions between parental goals, roles, and lesson structure. One tension observed was between 'academic' goals or school-like activity and 'lifelong' goals or everyday learning activity. Theoretical and experiential learning was found in both activity, though parents with academic goals tended to focus more on theoretical learning and those with lifelong learning goals tended to be more experiential. Examples of the National Research Council's science learning strands (NRC, 2009) were observed in the STEM practices of all these families. Findings contribute to the small but growing body of empirical CHAT research in science education, specifically to the empirical base of family STEM learning practices at home. It also fills a

  18. Are Distal and Proximal Visual Cues Equally Important during Spatial Learning in Mice? A Pilot Study of Overshadowing in the Spatial Domain

    PubMed Central

    Hébert, Marie; Bulla, Jan; Vivien, Denis; Agin, Véronique

    2017-01-01

    Animals use distal and proximal visual cues to accurately navigate in their environment, with the possibility of the occurrence of associative mechanisms such as cue competition as previously reported in honey-bees, rats, birds and humans. In this pilot study, we investigated one of the most common forms of cue competition, namely the overshadowing effect, between visual landmarks during spatial learning in mice. To this end, C57BL/6J × Sv129 mice were given a two-trial place recognition task in a T-maze, based on a novelty free-choice exploration paradigm previously developed to study spatial memory in rodents. As this procedure implies the use of different aspects of the environment to navigate (i.e., mice can perceive from each arm of the maze), we manipulated the distal and proximal visual landmarks during both the acquisition and retrieval phases. Our prospective findings provide a first set of clues in favor of the occurrence of an overshadowing between visual cues during a spatial learning task in mice when both types of cues are of the same modality but at varying distances from the goal. In addition, the observed overshadowing seems to be non-reciprocal, as distal visual cues tend to overshadow the proximal ones when competition occurs, but not vice versa. The results of the present study offer a first insight about the occurrence of associative mechanisms during spatial learning in mice, and may open the way to promising new investigations in this area of research. Furthermore, the methodology used in this study brings a new, useful and easy-to-use tool for the investigation of perceptive, cognitive and/or attentional deficits in rodents. PMID:28634446

  19. From brain synapses to systems for learning and memory: Object recognition, spatial navigation, timed conditioning, and movement control.

    PubMed

    Grossberg, Stephen

    2015-09-24

    This article provides an overview of neural models of synaptic learning and memory whose expression in adaptive behavior depends critically on the circuits and systems in which the synapses are embedded. It reviews Adaptive Resonance Theory, or ART, models that use excitatory matching and match-based learning to achieve fast category learning and whose learned memories are dynamically stabilized by top-down expectations, attentional focusing, and memory search. ART clarifies mechanistic relationships between consciousness, learning, expectation, attention, resonance, and synchrony. ART models are embedded in ARTSCAN architectures that unify processes of invariant object category learning, recognition, spatial and object attention, predictive remapping, and eye movement search, and that clarify how conscious object vision and recognition may fail during perceptual crowding and parietal neglect. The generality of learned categories depends upon a vigilance process that is regulated by acetylcholine via the nucleus basalis. Vigilance can get stuck at too high or too low values, thereby causing learning problems in autism and medial temporal amnesia. Similar synaptic learning laws support qualitatively different behaviors: Invariant object category learning in the inferotemporal cortex; learning of grid cells and place cells in the entorhinal and hippocampal cortices during spatial navigation; and learning of time cells in the entorhinal-hippocampal system during adaptively timed conditioning, including trace conditioning. Spatial and temporal processes through the medial and lateral entorhinal-hippocampal system seem to be carried out with homologous circuit designs. Variations of a shared laminar neocortical circuit design have modeled 3D vision, speech perception, and cognitive working memory and learning. A complementary kind of inhibitory matching and mismatch learning controls movement. This article is part of a Special Issue entitled SI: Brain and Memory

  20. Spatial Abilities in an Elective Course of Applied Anatomy after a Problem-Based Learning Curriculum

    ERIC Educational Resources Information Center

    Langlois, Jean; Wells, George A.; Lecourtois, Marc; Bergeron, Germain; Yetisir, Elizabeth; Martin, Marcel

    2009-01-01

    A concern on the level of anatomy knowledge reached after a problem-based learning curriculum has been documented in the literature. Spatial anatomy, arguably the highest level in anatomy knowledge, has been related to spatial abilities. Our first objective was to test the hypothesis that residents are interested in a course of applied anatomy…

  1. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory

    PubMed Central

    Kempadoo, Kimberly A.; Mosharov, Eugene V.; Choi, Se Joon; Sulzer, David; Kandel, Eric R.

    2016-01-01

    Dopamine neurotransmission in the dorsal hippocampus is critical for a range of functions from spatial learning and synaptic plasticity to the deficits underlying psychiatric disorders such as attention-deficit hyperactivity disorder. The ventral tegmental area (VTA) is the presumed source of dopamine in the dorsal hippocampus. However, there is a surprising scarcity of VTA dopamine axons in the dorsal hippocampus despite the dense network of dopamine receptors. We have explored this apparent paradox using optogenetic, biochemical, and behavioral approaches and found that dopaminergic axons and subsequent dopamine release in the dorsal hippocampus originate from neurons of the locus coeruleus (LC). Photostimulation of LC axons produced an increase in dopamine release in the dorsal hippocampus as revealed by high-performance liquid chromatography. Furthermore, optogenetically induced release of dopamine from the LC into the dorsal hippocampus enhanced selective attention and spatial object recognition via the dopamine D1/D5 receptor. These results suggest that spatial learning and memory are energized by the release of dopamine in the dorsal hippocampus from noradrenergic neurons of the LC. The present findings are critical for identifying the neural circuits that enable proper attention selection and successful learning and memory. PMID:27930324

  2. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory.

    PubMed

    Kempadoo, Kimberly A; Mosharov, Eugene V; Choi, Se Joon; Sulzer, David; Kandel, Eric R

    2016-12-20

    Dopamine neurotransmission in the dorsal hippocampus is critical for a range of functions from spatial learning and synaptic plasticity to the deficits underlying psychiatric disorders such as attention-deficit hyperactivity disorder. The ventral tegmental area (VTA) is the presumed source of dopamine in the dorsal hippocampus. However, there is a surprising scarcity of VTA dopamine axons in the dorsal hippocampus despite the dense network of dopamine receptors. We have explored this apparent paradox using optogenetic, biochemical, and behavioral approaches and found that dopaminergic axons and subsequent dopamine release in the dorsal hippocampus originate from neurons of the locus coeruleus (LC). Photostimulation of LC axons produced an increase in dopamine release in the dorsal hippocampus as revealed by high-performance liquid chromatography. Furthermore, optogenetically induced release of dopamine from the LC into the dorsal hippocampus enhanced selective attention and spatial object recognition via the dopamine D1/D5 receptor. These results suggest that spatial learning and memory are energized by the release of dopamine in the dorsal hippocampus from noradrenergic neurons of the LC. The present findings are critical for identifying the neural circuits that enable proper attention selection and successful learning and memory.

  3. N-methyl-d-aspartate receptors, learning and memory: chronic intraventricular infusion of the NMDA receptor antagonist d-AP5 interacts directly with the neural mechanisms of spatial learning.

    PubMed

    Morris, R G M; Steele, R J; Bell, J E; Martin, S J

    2013-03-01

    Three experiments were conducted to contrast the hypothesis that hippocampal N-methyl-d-aspartate (NMDA) receptors participate directly in the mechanisms of hippocampus-dependent learning with an alternative view that apparent impairments of learning induced by NMDA receptor antagonists arise because of drug-induced neuropathological and/or sensorimotor disturbances. In experiment 1, rats given a chronic i.c.v. infusion of d-AP5 (30 mm) at 0.5 μL/h were selectively impaired, relative to aCSF-infused animals, in place but not cued navigation learning when they were trained during the 14-day drug infusion period, but were unimpaired on both tasks if trained 11 days after the minipumps were exhausted. d-AP5 caused sensorimotor disturbances in the spatial task, but these gradually worsened as the animals failed to learn. Histological assessment of potential neuropathological changes revealed no abnormalities in d-AP5-treated rats whether killed during or after chronic drug infusion. In experiment 2, a deficit in spatial learning was also apparent in d-AP5-treated rats trained on a spatial reference memory task involving two identical but visible platforms, a task chosen and shown to minimise sensorimotor disturbances. HPLC was used to identify the presence of d-AP5 in selected brain areas. In Experiment 3, rats treated with d-AP5 showed a delay-dependent deficit in spatial memory in the delayed matching-to-place protocol for the water maze. These data are discussed with respect to the learning mechanism and sensorimotor accounts of the impact of NMDA receptor antagonists on brain function. We argue that NMDA receptor mechanisms participate directly in spatial learning. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  4. Incorporating active learning in psychiatry education.

    PubMed

    Kumar, Sonia; McLean, Loyola; Nash, Louise; Trigwell, Keith

    2017-06-01

    We aim to summarise the active learning literature in higher education and consider its relevance for postgraduate psychiatry trainees, to inform the development of a new Formal Education Course (FEC): the Master of Medicine (Psychiatry) at the University of Sydney. We undertook a literature search on 'active learning', 'flipped classroom', 'problem-based learning' and 'psychiatry education'. The effectiveness of active learning pedagogy in higher education is well supported by evidence; however, there have been few psychiatry-specific studies. A new 'flipped classroom' format was developed for the Master of Medicine (Psychiatry). Postgraduate psychiatry training is an active learning environment; the pedagogical approach to FECs requires further evaluation.

  5. Instructional Utility and Learning Efficacy of Common Active Learning Strategies

    ERIC Educational Resources Information Center

    McConell, David A.; Chapman, LeeAnna; Czaijka, C. Douglas; Jones, Jason P.; Ryker, Katherine D.; Wiggen, Jennifer

    2017-01-01

    The adoption of active learning instructional practices in college science, technology, engineering, and mathematics (STEM) courses has been shown to result in improvements in student learning, contribute to increased retention rates, and reduce the achievement gap among different student populations. Descriptions of active learning strategies…

  6. Dizocilpine (MK-801) impairs learning in the active place avoidance task but has no effect on the performance during task/context alternation.

    PubMed

    Vojtechova, Iveta; Petrasek, Tomas; Hatalova, Hana; Pistikova, Adela; Vales, Karel; Stuchlik, Ales

    2016-05-15

    The prevention of engram interference, pattern separation, flexibility, cognitive coordination and spatial navigation are usually studied separately at the behavioral level. Impairment in executive functions is often observed in patients suffering from schizophrenia. We have designed a protocol for assessing these functions all together as behavioral separation. This protocol is based on alternated or sequential training in two tasks testing different hippocampal functions (the Morris water maze and active place avoidance), and alternated or sequential training in two similar environments of the active place avoidance task. In Experiment 1, we tested, in adult rats, whether the performance in two different spatial tasks was affected by their order in sequential learning, or by their day-to-day alternation. In Experiment 2, rats learned to solve the active place avoidance task in two environments either alternately or sequentially. We found that rats are able to acquire both tasks and to discriminate both similar contexts without obvious problems regardless of the order or the alternation. We used two groups of rats, controls and a rat model of psychosis induced by a subchronic intraperitoneal application of 0.08mg/kg of dizocilpine (MK-801), a non-competitive antagonist of NMDA receptors. Dizocilpine had no selective effect on parallel/sequential learning of tasks/contexts. However, it caused hyperlocomotion and a significant deficit in learning in the active place avoidance task regardless of the task alternation. Cognitive coordination tested by this task is probably more sensitive to dizocilpine than spatial orientation because no hyperactivity or learning impairment was observed in the Morris water maze. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. [Co-administration of RJR-2403 with low dose of 17beta-estradiol on spatial learning in ovariectomized rats].

    PubMed

    Fedotova, Yu O

    2013-01-01

    The aim of this work was to study the influence of stimulation or blockade Nalpha7-cholinoreceptors on dynamics of spatial learning in water Morris maze and on behavior in the "open field" test in adult ovariectomized (OVX) females given with a low dose of 17beta-estradiol. Agonist of Nalpha7-cholinoreceptors - RJR-2403 (1.0 mg/kg, i.p.) or antagonist of Nalpha7-cholinoreceptors - mecamylamine (1.0 mg/kg, i.p.) treated chronically (14 days) alone and in a combination with low dose of 17beta-estradiol (0.5 micro/rat, s.c.) to OVX rats. Co-administration of RJR-2403 with low dose of 17beta-estradiol completely restored impaired spatial learning in water Morris maze in OVX females. Moreover, OVX rats treated with RJR-2403 and low dose of 17beta-estradiol demonstrated increased exploratory and grooming behavior in the "open field" test. Both mecamylamine alone and in combination with low dose of 17beta-estradiol failed to influence on spatial learning and failed to modify behavior in the "open field" test in OVX rats. The results of the present study suggest a positive effect of RJR-2403 in combination with low dose of 17beta-estradiol on spatial learning at estrogen deficiency.

  8. Barnes Maze Procedure for Spatial Learning and Memory in Mice.

    PubMed

    Pitts, Matthew W

    2018-03-05

    The Barnes maze is a dry-land based rodent behavioral paradigm for assessing spatial learning and memory that was originally developed by its namesake, Carol Barnes. It represents a well-established alternative to the more popular Morris Water maze and offers the advantage of being free from the potentially confounding influence of swimming behavior. Herein, the Barnes maze experimental setup and corresponding procedures for testing and analysis in mice are described in detail.

  9. Teachers' Everyday Professional Development: Mapping Informal Learning Activities, Antecedents, and Learning Outcomes

    ERIC Educational Resources Information Center

    Kyndt, Eva; Gijbels, David; Grosemans, Ilke; Donche, Vincent

    2016-01-01

    Although a lot is known about teacher development by means of formal learning activities, research on teachers' everyday learning is limited. In the current systematic review, we analyzed 74 studies focusing on teachers' informal learning to identify teachers' learning activities, antecedents for informal learning, and learning outcomes. In…

  10. Different Perspectives: Spatial Ability Influences Where Individuals Look on a Timed Spatial Test

    ERIC Educational Resources Information Center

    Roach, Victoria A.; Fraser, Graham M.; Kryklywy, James H.; Mitchell, Derek G. V.; Wilson, Timothy D.

    2017-01-01

    Learning in anatomy can be both spatially and visually complex. Pedagogical investigations have begun exploration as to how spatial ability may mitigate learning. Emerging hypotheses suggests individuals with higher spatial reasoning may attend to images differently than those who are lacking. To elucidate attentional patterns associated with…

  11. How Spatial Abilities and Dynamic Visualizations Interplay When Learning Functional Anatomy with 3D Anatomical Models

    ERIC Educational Resources Information Center

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material…

  12. Synaptic connectivity and spatial memory: a topological approach

    NASA Astrophysics Data System (ADS)

    Milton, Russell; Babichev, Andrey; Dabaghian, Yuri

    2015-03-01

    In the hippocampus, a network of place cells generates a cognitive map of space, in which each cell is responsive to a particular area of the environment - its place field. The peak response of each cell and the size of each place field have considerable variability. Experimental evidence suggests that place cells encode a topological map of space that serves as a basis of spatial memory and spatial awareness. Using a computational model based on Persistent Homology Theory we demonstrate that if the parameters of the place cells spiking activity fall inside of the physiological range, the network correctly encodes the topological features of the environment. We next introduce parameters of synaptic connectivity into the model and demonstrate that failures in synapses that detect coincident neuronal activity lead to spatial learning deficiencies similar to the ones that are observed in rodent models of neurodegenerative diseases. Moreover, we show that these learning deficiencies may be mitigated by increasing the number of active cells and/or by increasing their firing rate, suggesting the existence of a compensatory mechanism inherent to the cognitive map.

  13. Design and Development Computer-Based E-Learning Teaching Material for Improving Mathematical Understanding Ability and Spatial Sense of Junior High School Students

    NASA Astrophysics Data System (ADS)

    Nurjanah; Dahlan, J. A.; Wibisono, Y.

    2017-02-01

    This paper aims to make a design and development computer-based e-learning teaching material for improving mathematical understanding ability and spatial sense of junior high school students. Furthermore, the particular aims are (1) getting teaching material design, evaluation model, and intrument to measure mathematical understanding ability and spatial sense of junior high school students; (2) conducting trials computer-based e-learning teaching material model, asessment, and instrument to develop mathematical understanding ability and spatial sense of junior high school students; (3) completing teaching material models of computer-based e-learning, assessment, and develop mathematical understanding ability and spatial sense of junior high school students; (4) resulting research product is teaching materials of computer-based e-learning. Furthermore, the product is an interactive learning disc. The research method is used of this study is developmental research which is conducted by thought experiment and instruction experiment. The result showed that teaching materials could be used very well. This is based on the validation of computer-based e-learning teaching materials, which is validated by 5 multimedia experts. The judgement result of face and content validity of 5 validator shows that the same judgement result to the face and content validity of each item test of mathematical understanding ability and spatial sense. The reliability test of mathematical understanding ability and spatial sense are 0,929 and 0,939. This reliability test is very high. While the validity of both tests have a high and very high criteria.

  14. Influence of chewing behaviour on memory and spatial learning in albino BALB/c mice.

    PubMed

    Aguirre Siancas, E E

    2017-05-01

    Since the relationship between chewing and cognitive functions has not been fully elucidated, this study aimed to determine the impact of chewing behaviour on spatial learning and memory in albino male BALB/c mice. Twenty mice aged 8 weeks were divided into 2 equal groups. The regular chewing group was fed with uncrushed grains (the same diet given to all 20 mice since they were weaned) and the limited chewing group was fed with crushed grains. At 16 weeks of age, the mice were evaluated over 5 days, including a 4-day acquisition phase prior to a probe test of spatial learning and memory in the Morris water maze on the fifth day. A comparison of the regular chewing group and the limited chewing group found no significant differences in either the acquisition phase or the probe test. However, there were significant differences in the acquisition phase for just the regular chewing group when comparing results from the first day to those from the other 3 days. The results suggest that regular chewing affects spatial learning and memory since mice in the regular chewing group decreased their times to find the hidden platform during the acquisition phase. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Connecting Family Learning and Active Citizenship

    ERIC Educational Resources Information Center

    Flanagan, Mary

    2009-01-01

    In Ireland family learning and active citizenship has not been linked together until 2006. It was while the Clare Family Learning Project was involved in a family learning EU learning network project, that a suggestion to create a new partnership project linking both areas was made and FACE IT! was born (Families and Active Citizenship…

  16. Create a good learning environment and motivate active learning enthusiasm

    NASA Astrophysics Data System (ADS)

    Bi, Weihong; Fu, Guangwei; Fu, Xinghu; Zhang, Baojun; Liu, Qiang; Jin, Wa

    2017-08-01

    In view of the current poor learning initiative of undergraduates, the idea of creating a good learning environment and motivating active learning enthusiasm is proposed. In practice, the professional tutor is allocated and professional introduction course is opened for college freshman. It can promote communication between the professional teachers and students as early as possible, and guide students to know and devote the professional knowledge by the preconceived form. Practice results show that these solutions can improve the students interest in learning initiative, so that the active learning and self-learning has become a habit in the classroom.

  17. Navigating the Active Learning Swamp: Creating an Inviting Environment for Learning.

    ERIC Educational Resources Information Center

    Johnson, Marie C.; Malinowski, Jon C.

    2001-01-01

    Reports on a survey of faculty members (n=29) asking them to define active learning, to rate how effectively different teaching techniques contribute to active learning, and to list the three teaching techniques they use most frequently. Concludes that active learning requires establishing an environment rather than employing a specific teaching…

  18. Reading a Story: Different Degrees of Learning in Different Learning Environments.

    PubMed

    Giannini, Anna Maria; Cordellieri, Pierluigi; Piccardi, Laura

    2017-01-01

    The learning environment in which material is acquired may produce differences in delayed recall and in the elements that individuals focus on. These differences may appear even during development. In the present study, we compared three different learning environments in 450 normally developing 7-year-old children subdivided into three groups according to the type of learning environment. Specifically, children were asked to learn the same material shown in three different learning environments: reading illustrated books (TB); interacting with the same text displayed on a PC monitor and enriched with interactive activities (PC-IA); reading the same text on a PC monitor but not enriched with interactive narratives (PC-NoIA). Our results demonstrated that TB and PC-NoIA elicited better verbal memory recall. In contrast, PC-IA and PC-NoIA produced higher scores for visuo-spatial memory, enhancing memory for spatial relations, positions and colors with respect to TB. Interestingly, only TB seemed to produce a deeper comprehension of the story's moral. Our results indicated that PC-IA offered a different type of learning that favored visual details. In this sense, interactive activities demonstrate certain limitations, probably due to information overabundance, emotional mobilization, emphasis on images and effort exerted in interactive activities. Thus, interactive activities, although entertaining, act as disruptive elements which interfere with verbal memory and deep moral comprehension.

  19. Reading a Story: Different Degrees of Learning in Different Learning Environments

    PubMed Central

    Giannini, Anna Maria; Cordellieri, Pierluigi; Piccardi, Laura

    2017-01-01

    The learning environment in which material is acquired may produce differences in delayed recall and in the elements that individuals focus on. These differences may appear even during development. In the present study, we compared three different learning environments in 450 normally developing 7-year-old children subdivided into three groups according to the type of learning environment. Specifically, children were asked to learn the same material shown in three different learning environments: reading illustrated books (TB); interacting with the same text displayed on a PC monitor and enriched with interactive activities (PC-IA); reading the same text on a PC monitor but not enriched with interactive narratives (PC-NoIA). Our results demonstrated that TB and PC-NoIA elicited better verbal memory recall. In contrast, PC-IA and PC-NoIA produced higher scores for visuo-spatial memory, enhancing memory for spatial relations, positions and colors with respect to TB. Interestingly, only TB seemed to produce a deeper comprehension of the story’s moral. Our results indicated that PC-IA offered a different type of learning that favored visual details. In this sense, interactive activities demonstrate certain limitations, probably due to information overabundance, emotional mobilization, emphasis on images and effort exerted in interactive activities. Thus, interactive activities, although entertaining, act as disruptive elements which interfere with verbal memory and deep moral comprehension. PMID:29085296

  20. User Control and Task Authenticity for Spatial Learning in 3D Environments

    ERIC Educational Resources Information Center

    Dalgarno, Barney; Harper, Barry

    2004-01-01

    This paper describes two empirical studies which investigated the importance for spatial learning of view control and object manipulation within 3D environments. A 3D virtual chemistry laboratory was used as the research instrument. Subjects, who were university undergraduate students (34 in the first study and 80 in the second study), undertook…

  1. "Bringing Life to Learning": A Study of Active Learning in Hospitality Education

    ERIC Educational Resources Information Center

    Chau, Salott; Cheung, Catherine

    2017-01-01

    Active learning connects students to the real life situations they will encounter in their future jobs. In hospitality education, active learning implements various lively, fun activities to introduce practical scenarios students may experience in their hospitality careers. This study identifies 18 essential active-learning items of hospitality…

  2. Spatial Memory in the Morris Water Maze and Activation of Cyclic AMP Response Element-Binding (CREB) Protein within the Mouse Hippocampus

    ERIC Educational Resources Information Center

    Porte, Yves; Buhot, Marie Christine; Mons, Nicole E.

    2008-01-01

    We investigated the spatio-temporal dynamics of learning-induced cAMP response element-binding protein activation/phosphorylation (pCREB) in mice trained in a spatial reference memory task in the water maze. Using immunohistochemistry, we examined pCREB immunoreactivity (pCREB-ir) in hippocampal CA1 and CA3 and related brain structures. During the…

  3. Prenatal complex rhythmic music sound stimulation facilitates postnatal spatial learning but transiently impairs memory in the domestic chick.

    PubMed

    Kauser, H; Roy, S; Pal, A; Sreenivas, V; Mathur, R; Wadhwa, S; Jain, S

    2011-01-01

    Early experience has a profound influence on brain development, and the modulation of prenatal perceptual learning by external environmental stimuli has been shown in birds, rodents and mammals. In the present study, the effect of prenatal complex rhythmic music sound stimulation on postnatal spatial learning, memory and isolation stress was observed. Auditory stimulation with either music or species-specific sounds or no stimulation (control) was provided to separate sets of fertilized eggs from day 10 of incubation. Following hatching, the chicks at age 24, 72 and 120 h were tested on a T-maze for spatial learning and the memory of the learnt task was assessed 24 h after training. In the posthatch chicks at all ages, the plasma corticosterone levels were estimated following 10 min of isolation. The chicks of all ages in the three groups took less (p < 0.001) time to navigate the maze over the three trials thereby showing an improvement with training. In both sound-stimulated groups, the total time taken to reach the target decreased significantly (p < 0.01) in comparison to the unstimulated control group, indicating the facilitation of spatial learning. However, this decline was more at 24 h than at later posthatch ages. When tested for memory after 24 h of training, only the music-stimulated chicks at posthatch age 24 h took a significantly longer (p < 0.001) time to traverse the maze, suggesting a temporary impairment in their retention of the learnt task. In both sound-stimulated groups at 24 h, the plasma corticosterone levels were significantly decreased (p < 0.001) and increased thereafter at 72 h (p < 0.001) and 120 h which may contribute to the differential response in spatial learning. Thus, prenatal auditory stimulation with either species-specific or complex rhythmic music sounds facilitates spatial learning, though the music stimulation transiently impairs postnatal memory. 2011 S. Karger AG, Basel.

  4. Altering spatial priority maps via statistical learning of target selection and distractor filtering.

    PubMed

    Ferrante, Oscar; Patacca, Alessia; Di Caro, Valeria; Della Libera, Chiara; Santandrea, Elisa; Chelazzi, Leonardo

    2018-05-01

    The cognitive system has the capacity to learn and make use of environmental regularities - known as statistical learning (SL), including for the implicit guidance of attention. For instance, it is known that attentional selection is biased according to the spatial probability of targets; similarly, changes in distractor filtering can be triggered by the unequal spatial distribution of distractors. Open questions remain regarding the cognitive/neuronal mechanisms underlying SL of target selection and distractor filtering. Crucially, it is unclear whether the two processes rely on shared neuronal machinery, with unavoidable cross-talk, or they are fully independent, an issue that we directly addressed here. In a series of visual search experiments, participants had to discriminate a target stimulus, while ignoring a task-irrelevant salient distractor (when present). We systematically manipulated spatial probabilities of either one or the other stimulus, or both. We then measured performance to evaluate the direct effects of the applied contingent probability distribution (e.g., effects on target selection of the spatial imbalance in target occurrence across locations) as well as its indirect or "transfer" effects (e.g., effects of the same spatial imbalance on distractor filtering across locations). By this approach, we confirmed that SL of both target and distractor location implicitly bias attention. Most importantly, we described substantial indirect effects, with the unequal spatial probability of the target affecting filtering efficiency and, vice versa, the unequal spatial probability of the distractor affecting target selection efficiency across locations. The observed cross-talk demonstrates that SL of target selection and distractor filtering are instantiated via (at least partly) shared neuronal machinery, as further corroborated by strong correlations between direct and indirect effects at the level of individual participants. Our findings are compatible

  5. Exposure to radiation accelerates normal brain aging and produces deficits in spatial learning and memory

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, B.; Casadesus, G.; Carey, A.; Rabin, B. M.; Joseph, J. A.

    Previous studies have shown that radiation exposure, particularly to particles of high energy and charge (HZE particles), produces deficits in spatial learning and memory. These adverse behavioral effects are similar to those seen in aged animals. It is possible that these shared effects may be produced by the same mechanism; oxidative stress damage to the central nervous system caused by an increased release of reactive oxygen species is likely responsible for the deficits seen in aging and following irradiation. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. These rats have decrements in the ability to build spatial representations of the environment and they utilize non-spatial strategies to solve tasks. Furthermore, they show a lack of spatial preference, due to a decline in the ability to process or retain place (position of a goal with reference to a "map" provided by the configuration of numerous cues in the environment) information. These declines in spatial memory occur in measures dependent on both reference and working memory, and in the flexibility to reset mental images. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Supported by NASA Grants NAG9-1190 and NAG9-1529

  6. Acquisition of an instrumental activity of daily living in patients with Korsakoff's syndrome: a comparison of trial and error and errorless learning.

    PubMed

    Oudman, Erik; Nijboer, Tanja C W; Postma, Albert; Wijnia, Jan W; Kerklaan, Sandra; Lindsen, Karen; Van der Stigchel, Stefan

    2013-01-01

    Patients with Korsakoff's syndrome show devastating amnesia and executive deficits. Consequently, the ability to perform instrumental activities such as making coffee is frequently diminished. It is currently unknown whether patients with Korsakoff's syndrome are able to (re)learn instrumental activities. A good candidate for an effective teaching technique in Korsakoff's syndrome is errorless learning as it is based on intact implicit memory functioning. Therefore, the aim of the current study was two-fold: to investigate whether patients with Korsakoff's syndrome are able to (re)learn instrumental activities, and to compare the effectiveness of errorless learning with trial and error learning in the acquisition and maintenance of an instrumental activity, namely using a washing machine to do the laundry. Whereas initial learning performance in the errorless learning condition was superior, both intervention techniques resulted in similar improvement over eight learning sessions. Moreover, performance in a different spatial layout showed a comparable improvement. Notably, in follow-up sessions starting after four weeks without practice, performance was still elevated in the errorless learning condition, but not in the trial and error condition. The current study demonstrates that (re)learning and maintenance of an instrumental activity is possible in patients with Korsakoff's syndrome.

  7. Multiple Views of Space: Continuous Visual Flow Enhances Small-Scale Spatial Learning

    ERIC Educational Resources Information Center

    Holmes, Corinne A.; Marchette, Steven A.; Newcombe, Nora S.

    2017-01-01

    In the real word, we perceive our environment as a series of static and dynamic views, with viewpoint transitions providing a natural link from one static view to the next. The current research examined if experiencing such transitions is fundamental to learning the spatial layout of small-scale displays. In Experiment 1, participants viewed a…

  8. Incidental Learning of Links during Navigation: The Role of Visuo-Spatial Capacity

    ERIC Educational Resources Information Center

    Rouet, Jean-Francois; Voros, Zsofia; Pleh, Csaba

    2012-01-01

    We investigated the impact of readers' visuo-spatial (VS) capacity on their incidental learning of page links during the exploration of simple hierarchical hypertextual documents. Forty-three university students were asked to explore a series of hypertexts for a limited period of time. Then the participants were asked to recall the layout and the…

  9. Distinct discrimination learning strategies and their relation with spatial memory and attentional control in 4- to 14-year-olds.

    PubMed

    Schmittmann, Verena D; van der Maas, Han L J; Raijmakers, Maartje E J

    2012-04-01

    Behavioral, psychophysiological, and neuropsychological studies have revealed large developmental differences in various learning paradigms where learning from positive and negative feedback is essential. The differences are possibly due to the use of distinct strategies that may be related to spatial working memory and attentional control. In this study, strategies in performing a discrimination learning task were distinguished in a cross-sectional sample of 302 children from 4 to 14 years of age. The trial-by-trial accuracy data were analyzed with mathematical learning models. The best-fitting model revealed three learning strategies: hypothesis testing, slow abrupt learning, and nonlearning. The proportion of hypothesis-testing children increased with age. Nonlearners were present only in the youngest age group. Feature preferences for the irrelevant dimension had a detrimental effect on performance in the youngest age group. The executive functions spatial working memory and attentional control significantly predicted posterior learning strategy probabilities after controlling for age. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Brain Oscillatory Activity during Spatial Navigation: Theta and Gamma Activity Link Medial Temporal and Parietal Regions

    ERIC Educational Resources Information Center

    White, David J.; Congedo, Marco; Ciorciari, Joseph; Silberstein, Richard B.

    2012-01-01

    Brain oscillatory correlates of spatial navigation were investigated using blind source separation (BSS) and standardized low resolution electromagnetic tomography (sLORETA) analyses of 62-channel EEG recordings. Twenty-five participants were instructed to navigate to distinct landmark buildings in a previously learned virtual reality town…

  11. Effects of organic selenium on lead-induced impairments of spatial learning and memory as well as synaptic structural plasticity in rats.

    PubMed

    Han, Xiao-jie; Xiao, Yong-mei; Ai, Bao-min; Hu, Xiao-xia; Wei, Qing; Hu, Qian-sheng

    2014-01-01

    To study the effect of organic Se on spatial learning and memory deficits induced by Pb exposure at different developmental stages, and its relationship with alterations of synaptic structural plasticity, postnatal rat pups were randomly divided into five groups: Control; Pb (Weaned pups were exposed to Pb at postnatal day (PND) 21-42); Pb-Se (Weaned pups were exposed to Se at PND 43-63 after Pb exposure); maternal Pb (mPb) (Parents were exposed to Pb from 3 weeks before mating to the weaning of pups); mPb-Se (Parents were exposed to Pb and weaned pups were exposed to Se at PND 43-63). The spatial learning and memory of rat pups was measured by Morris water maze (MWM) on PND 63. We found that rat pups in Pb-Se group performed significantly better than those in Pb group (p<0.05). However, there was no significant difference in the ability of spatial learning and memory between the groups of mPb and mPb-Se (p>0.05). We also found that, before MWM, the numbers of neurons and synapses significantly decreased in mPb group, but not in Pb group. After MWM, the number of synapses, the thickness of postsynaptic density (PSD), the length of synaptic active zone and the synaptic curvature increased significantly in Pb-Se and mPb-Se group; while the width of synaptic cleft decreased significantly (p<0.05), compared to Pb group and mPb group, respectively. However, the number of synapses in mPb-Se group was still significantly lower than that in the control group (p<0.05). Our data demonstrated that organic Se had protective effects on the impairments of spatial learning and memory as well as synaptic structural plasticity induced by Pb exposure in rats after weaning, but not by the maternal Pb exposure which reduced the numbers of neurons and synapses in the early neural development.

  12. Prenatal Stress Impairs Spatial Learning and Memory Associated with Lower mRNA Level of the CAMKII and CREB in the Adult Female Rat Hippocampus.

    PubMed

    Sun, Hongli; Wu, Haibin; Liu, Jianping; Wen, Jun; Zhu, Zhongliang; Li, Hui

    2017-05-01

    Prenatal stress (PS) results in various behavioral and emotional alterations observed in later life. In particular, PS impairs spatial learning and memory processes but the underlying mechanism involved in this pathogenesis still remains unknown. Here, we reported that PS lowered the body weight in offspring rats, particularly in female rats, and impaired spatial learning and memory of female offspring rats in the Morris water maze. Correspondingly, the decreased CaMKII and CREB mRNA in the hippocampus were detected in prenatally stressed female offspring, which partially explained the effect of PS on the spatial learning and memory. Our findings suggested that CaMKII and CREB may be involved in spatial learning and memory processes in the prenatally stressed adult female offspring.

  13. The Impact of Participation in Music on Learning Mathematics

    ERIC Educational Resources Information Center

    Holmes, Sylwia; Hallam, Susan

    2017-01-01

    Music psychologists have established that some forms of musical activity improve intellectual performance, spatial-temporal reasoning and other skills advantageous for learning. In this research, the potential of active music-making for improving pupils' achievement in spatial- temporal reasoning was investigated. As spatial-temporal skills are…

  14. Evolution of learning strategies in temporally and spatially variable environments: A review of theory

    PubMed Central

    Aoki, Kenichi; Feldman, Marcus W.

    2013-01-01

    The theoretical literature from 1985 to the present on the evolution of learning strategies in variable environments is reviewed, with the focus on deterministic dynamical models that are amenable to local stability analysis, and on deterministic models yielding evolutionarily stable strategies. Individual learning, unbiased and biased social learning, mixed learning, and learning schedules are considered. A rapidly changing environment or frequent migration in a spatially heterogeneous environment favors individual learning over unbiased social learning. However, results are not so straightforward in the context of learning schedules or when biases in social learning are introduced. The three major methods of modeling temporal environmental change – coevolutionary, two-timescale, and information decay – are compared and shown to sometimes yield contradictory results. The so-called Rogers’ paradox is inherent in the two-timescale method as originally applied to the evolution of pure strategies, but is often eliminated when the other methods are used. Moreover, Rogers’ paradox is not observed for the mixed learning strategies and learning schedules that we review. We believe that further theoretical work is necessary on learning schedules and biased social learning, based on models that are logically consistent and empirically pertinent. PMID:24211681

  15. Evolution of learning strategies in temporally and spatially variable environments: a review of theory.

    PubMed

    Aoki, Kenichi; Feldman, Marcus W

    2014-02-01

    The theoretical literature from 1985 to the present on the evolution of learning strategies in variable environments is reviewed, with the focus on deterministic dynamical models that are amenable to local stability analysis, and on deterministic models yielding evolutionarily stable strategies. Individual learning, unbiased and biased social learning, mixed learning, and learning schedules are considered. A rapidly changing environment or frequent migration in a spatially heterogeneous environment favors individual learning over unbiased social learning. However, results are not so straightforward in the context of learning schedules or when biases in social learning are introduced. The three major methods of modeling temporal environmental change--coevolutionary, two-timescale, and information decay--are compared and shown to sometimes yield contradictory results. The so-called Rogers' paradox is inherent in the two-timescale method as originally applied to the evolution of pure strategies, but is often eliminated when the other methods are used. Moreover, Rogers' paradox is not observed for the mixed learning strategies and learning schedules that we review. We believe that further theoretical work is necessary on learning schedules and biased social learning, based on models that are logically consistent and empirically pertinent. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Developing Interactive E-Learning Activities

    ERIC Educational Resources Information Center

    Watkins, Ryan

    2005-01-01

    Although e-learning can offer interactive and engaging learning experiences, the creative ideas that are necessary to create such environments are not always easy to come up with when designing, developing, or teaching e-learning courses. E-learning activities use online technologies such as chat rooms, discussion boards, or email to facilitate…

  17. Use of spatial information and search strategies in a water maze analog in Drosophila melanogaster.

    PubMed

    Foucaud, Julien; Burns, James G; Mery, Frederic

    2010-12-03

    Learning the spatial organization of the environment is crucial to fitness in most animal species. Understanding proximate and ultimate factors underpinning spatial memory is thus a major goal in the study of animal behavior. Despite considerable interest in various aspects of its behavior and biology, the model species Drosophila melanogaster lacks a standardized apparatus to investigate spatial learning and memory. We propose here a novel apparatus, the heat maze, conceptually based on the Morris water maze used in rodents. Using the heat maze, we demonstrate that D. melanogaster flies are able to use either proximal or distal visual cues to increase their performance in navigating to a safe zone. We also show that flies are actively using the orientation of distal visual cues when relevant in targeting the safe zone, i.e., Drosophila display spatial learning. Parameter-based classification of search strategies demonstrated the progressive use of spatially precise search strategies during learning. We discuss the opportunity to unravel the mechanistic and evolutionary bases of spatial learning in Drosophila using the heat maze.

  18. An Innovative Teaching Method To Promote Active Learning: Team-Based Learning

    NASA Astrophysics Data System (ADS)

    Balasubramanian, R.

    2007-12-01

    Traditional teaching practice based on the textbook-whiteboard- lecture-homework-test paradigm is not very effective in helping students with diverse academic backgrounds achieve higher-order critical thinking skills such as analysis, synthesis, and evaluation. Consequently, there is a critical need for developing a new pedagogical approach to create a collaborative and interactive learning environment in which students with complementary academic backgrounds and learning skills can work together to enhance their learning outcomes. In this presentation, I will discuss an innovative teaching method ('Team-Based Learning (TBL)") which I recently developed at National University of Singapore to promote active learning among students in the environmental engineering program with learning abilities. I implemented this new educational activity in a graduate course. Student feedback indicates that this pedagogical approach is appealing to most students, and promotes active & interactive learning in class. Data will be presented to show that the innovative teaching method has contributed to improved student learning and achievement.

  19. Is Peer Interaction Necessary for Optimal Active Learning?

    ERIC Educational Resources Information Center

    Linton, Debra L.; Farmer, Jan Keith; Peterson, Ernie

    2014-01-01

    Meta-analyses of active-learning research consistently show that active-learning techniques result in greater student performance than traditional lecture-based courses. However, some individual studies show no effect of active-learning interventions. This may be due to inexperienced implementation of active learning. To minimize the effect of…

  20. Who Benefits from Learning with 3D Models?: The Case of Spatial Ability

    ERIC Educational Resources Information Center

    Huk, T.

    2006-01-01

    Empirical studies that focus on the impact of three-dimensional (3D) visualizations on learning are to date rare and inconsistent. According to the ability-as-enhancer hypothesis, high spatial ability learners should benefit particularly as they have enough cognitive capacity left for mental model construction. In contrast, the…

  1. Fluoxetine Restores Spatial Learning but Not Accelerated Forgetting in Mesial Temporal Lobe Epilepsy

    ERIC Educational Resources Information Center

    Barkas, Lisa; Redhead, Edward; Taylor, Matthew; Shtaya, Anan; Hamilton, Derek A.; Gray, William P.

    2012-01-01

    Learning and memory dysfunction is the most common neuropsychological effect of mesial temporal lobe epilepsy, and because the underlying neurobiology is poorly understood, there are no pharmacological strategies to help restore memory function in these patients. We have demonstrated impairments in the acquisition of an allocentric spatial task,…

  2. The experiment of cooperative learning model type team assisted individualization (TAI) on three-dimensional space subject viewed from spatial intelligence

    NASA Astrophysics Data System (ADS)

    Manapa, I. Y. H.; Budiyono; Subanti, S.

    2018-03-01

    The aim of this research is to determine the effect of TAI or direct learning (DL) on student’s mathematics achievement viewed from spatial intelligence. This research was quasi experiment. The population was 10th grade senior high school students in Alor Regency on academic year of 2015/2016 chosen by stratified cluster random sampling. The data were collected through achievement and spatial intelligence test. The data were analyzed by two ways, ANOVA with unequal cell and scheffe test. This research showed that student’s mathematics achievement used in TAI had better results than DL models one. In spatial intelligence category, student’s mathematics achievement with high spatial intelligence has better result than the other spatial intelligence category and students with high spatial intelligence have better results than those with middle spatial intelligence category. At TAI, student’s mathematics achievement with high spatial intelligence has better result than those with the other spatial intelligence category and students with middle spatial intelligence have better results than students with low spatial intelligence. In DL model, student’s mathematics achievement with high and middle spatial intelligence has better result than those with low spatial intelligence, but students with high spatial intelligence and middle spatial intelligence have no significant difference. In each category of spatial intelligence and learning model, mathematics achievement has no significant difference.

  3. Spatial and Reversal Learning in the Morris Water Maze Are Largely Resistant to Six Hours of REM Sleep Deprivation Following Training

    ERIC Educational Resources Information Center

    Walsh, Christine M.; Booth, Victoria; Poe, Gina R.

    2011-01-01

    This first test of the role of REM (rapid eye movement) sleep in reversal spatial learning is also the first attempt to replicate a much cited pair of papers reporting that REM sleep deprivation impairs the consolidation of initial spatial learning in the Morris water maze. We hypothesized that REM sleep deprivation following training would impair…

  4. Student Perceptions of Active Learning

    ERIC Educational Resources Information Center

    Lumpkin, Angela; Achen, Rebecca M.; Dodd, Regan K.

    2015-01-01

    A paradigm shift from lecture-based courses to interactive classes punctuated with engaging, student-centered learning activities has begun to characterize the work of some teachers in higher education. Convinced through the literature of the values of using active learning strategies, we assessed through an action research project in five college…

  5. Hippocampal Insulin Resistance Impairs Spatial Learning and Synaptic Plasticity

    PubMed Central

    Piroli, Gerardo G.; Lawrence, Robert C.; Wrighten, Shayna A.; Green, Adrienne J.; Wilson, Steven P.; Sakai, Randall R.; Kelly, Sandra J.; Wilson, Marlene A.; Mott, David D.; Reagan, Lawrence P.

    2015-01-01

    Insulin receptors (IRs) are expressed in discrete neuronal populations in the central nervous system, including the hippocampus. To elucidate the functional role of hippocampal IRs independent of metabolic function, we generated a model of hippocampal-specific insulin resistance using a lentiviral vector expressing an IR antisense sequence (LV-IRAS). LV-IRAS effectively downregulates IR expression in the rat hippocampus without affecting body weight, adiposity, or peripheral glucose homeostasis. Nevertheless, hippocampal neuroplasticity was impaired in LV-IRAS–treated rats. High-frequency stimulation, which evoked robust long-term potentiation (LTP) in brain slices from LV control rats, failed to evoke LTP in LV-IRAS–treated rats. GluN2B subunit levels, as well as the basal level of phosphorylation of GluA1, were reduced in the hippocampus of LV-IRAS rats. Moreover, these deficits in synaptic transmission were associated with impairments in spatial learning. We suggest that alterations in the expression and phosphorylation of glutamate receptor subunits underlie the alterations in LTP and that these changes are responsible for the impairment in hippocampal-dependent learning. Importantly, these learning deficits are strikingly similar to the impairments in complex task performance observed in patients with diabetes, which strengthens the hypothesis that hippocampal insulin resistance is a key mediator of cognitive deficits independent of glycemic control. PMID:26216852

  6. Active-Learning versus Teacher-Centered Instruction for Learning Acids and Bases

    ERIC Educational Resources Information Center

    Sesen, Burcin Acar; Tarhan, Leman

    2011-01-01

    Background and purpose: Active-learning as a student-centered learning process has begun to take more interest in constructing scientific knowledge. For this reason, this study aimed to investigate the effectiveness of active-learning implementation on high-school students' understanding of "acids and bases". Sample: The sample of this…

  7. Universal effect of dynamical reinforcement learning mechanism in spatial evolutionary games

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Feng; Wu, Zhi-Xi; Wang, Bing-Hong

    2012-06-01

    One of the prototypical mechanisms in understanding the ubiquitous cooperation in social dilemma situations is the win-stay, lose-shift rule. In this work, a generalized win-stay, lose-shift learning model—a reinforcement learning model with dynamic aspiration level—is proposed to describe how humans adapt their social behaviors based on their social experiences. In the model, the players incorporate the information of the outcomes in previous rounds with time-dependent aspiration payoffs to regulate the probability of choosing cooperation. By investigating such a reinforcement learning rule in the spatial prisoner's dilemma game and public goods game, a most noteworthy viewpoint is that moderate greediness (i.e. moderate aspiration level) favors best the development and organization of collective cooperation. The generality of this observation is tested against different regulation strengths and different types of network of interaction as well. We also make comparisons with two recently proposed models to highlight the importance of the mechanism of adaptive aspiration level in supporting cooperation in structured populations.

  8. Dissociation of spatial memory systems in Williams syndrome.

    PubMed

    Bostelmann, Mathilde; Fragnière, Emilie; Costanzo, Floriana; Di Vara, Silvia; Menghini, Deny; Vicari, Stefano; Lavenex, Pierre; Lavenex, Pamela Banta

    2017-11-01

    Williams syndrome (WS), a genetic deletion syndrome, is characterized by severe visuospatial deficits affecting performance on both tabletop spatial tasks and on tasks which assess orientation and navigation. Nevertheless, previous studies of WS spatial capacities have ignored the fact that two different spatial memory systems are believed to contribute parallel spatial representations supporting navigation. The place learning system depends on the hippocampal formation and creates flexible relational representations of the environment, also known as cognitive maps. The spatial response learning system depends on the striatum and creates fixed stimulus-response representations, also known as habits. Indeed, no study assessing WS spatial competence has used tasks which selectively target these two spatial memory systems. Here, we report that individuals with WS exhibit a dissociation in their spatial abilities subserved by these two memory systems. As compared to typically developing (TD) children in the same mental age range, place learning performance was impaired in individuals with WS. In contrast, their spatial response learning performance was facilitated. Our findings in individuals with WS and TD children suggest that place learning and response learning interact competitively to control the behavioral strategies normally used to support human spatial navigation. Our findings further suggest that the neural pathways supporting place learning may be affected by the genetic deletion that characterizes WS, whereas those supporting response learning may be relatively preserved. The dissociation observed between these two spatial memory systems provides a coherent theoretical framework to characterize the spatial abilities of individuals with WS, and may lead to the development of new learning strategies based on their facilitated response learning abilities. © 2017 Wiley Periodicals, Inc.

  9. A Tool for Measuring Active Learning in the Classroom

    PubMed Central

    Devlin, John W.; Kirwin, Jennifer L.; Qualters, Donna M.

    2007-01-01

    Objectives To develop a valid and reliable active-learning inventory tool for use in large classrooms and compare faculty perceptions of active-learning using the Active-Learning Inventory Tool. Methods The Active-Learning Inventory Tool was developed using published literature and validated by national experts in educational research. Reliability was established by trained faculty members who used the Active-Learning Inventory Tool to observe 9 pharmacy lectures. Instructors were then interviewed to elicit perceptions regarding active learning and asked to share their perceptions. Results Per lecture, 13 (range: 4-34) episodes of active learning encompassing 3 (range: 2-5) different types of active learning occurred over 2.2 minutes (0.6-16) per episode. Both interobserver (≥87%) and observer-instructor agreement (≥68%) were high for these outcomes. Conclusions The Active-Learning Inventory Tool is a valid and reliable tool to measure active learning in the classroom. Future studies are needed to determine the impact of the Active-Learning Inventory Tool on teaching and its usefulness in other disciplines. PMID:17998982

  10. Oculomotor and Manual Indexes of Incidental and Intentional Spatial Sequence Learning during Middle Childhood and Adolescence

    ERIC Educational Resources Information Center

    Karatekin, Canan; Marcus, David J.; White, Tonya

    2007-01-01

    The goal of this study was to examine incidental and intentional spatial sequence learning during middle childhood and adolescence. We tested four age groups (8-10 years, 11-13 years, 14-17 years, and young adults [18+ years]) on a serial reaction time task and used manual and oculomotor measures to examine incidental sequence learning.…

  11. Are students' impressions of improved learning through active learning methods reflected by improved test scores?

    PubMed

    Everly, Marcee C

    2013-02-01

    To report the transformation from lecture to more active learning methods in a maternity nursing course and to evaluate whether student perception of improved learning through active-learning methods is supported by improved test scores. The process of transforming a course into an active-learning model of teaching is described. A voluntary mid-semester survey for student acceptance of the new teaching method was conducted. Course examination results, from both a standardized exam and a cumulative final exam, among students who received lecture in the classroom and students who had active learning activities in the classroom were compared. Active learning activities were very acceptable to students. The majority of students reported learning more from having active-learning activities in the classroom rather than lecture-only and this belief was supported by improved test scores. Students who had active learning activities in the classroom scored significantly higher on a standardized assessment test than students who received lecture only. The findings support the use of student reflection to evaluate the effectiveness of active-learning methods and help validate the use of student reflection of improved learning in other research projects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Linking Mission to Learning Activities for Assurance of Learning

    ERIC Educational Resources Information Center

    Yeung, Shirley Mo-ching

    2011-01-01

    Can accreditation-related requirements and mission statements measure learning outcomes? This study focuses on triangulating accreditation-related requirements with mission statements and learning activities to learning outcomes. This topic has not been comprehensively explored in the past. After looking into the requirements of AACSB, ISO, and…

  13. Active Learning in Engineering Education: a (re)introduction

    NASA Astrophysics Data System (ADS)

    Lima, Rui M.; Andersson, Pernille Hammar; Saalman, Elisabeth

    2017-01-01

    The informal network 'Active Learning in Engineering Education' (ALE) has been promoting Active Learning since 2001. ALE creates opportunity for practitioners and researchers of engineering education to collaboratively learn how to foster learning of engineering students. The activities in ALE are centred on the vision that learners construct their knowledge based on meaningful activities and knowledge. In 2014, the steering committee of the ALE network reinforced the need to discuss the meaning of Active Learning and that was the base for this proposal for a special issue. More than 40 submissions were reviewed by the European Journal of Engineering Education community and this theme issue ended up with eight contributions, which are different both in their research and Active Learning approaches. These different Active Learning approaches are aligned with the different approaches that can be increasingly found in indexed journals.

  14. Active Learning in the Middle Grades

    ERIC Educational Resources Information Center

    Edwards, Susan

    2015-01-01

    What is active learning and what does it look like in the classroom? If students are participating in active learning, they are playing a more engaged role in the learning process and are not overly reliant on the teacher (Bransford, Brown, & Cocking, 2003; Petress, 2008). The purpose of this article is to propose a framework to describe and…

  15. Extract from Fructus cannabis activating calcineurin improved learning and memory in mice with chemical drug-induced dysmnesia.

    PubMed

    Luo, Jing; Yin, Jiang-Hua; Wu, He-Zhen; Wei, Qun

    2003-11-01

    To investigate the effects of extract from Fructus cannabis (EFC) that can activate calcineurin on learning and memory impairment induced by chemical drugs in mice. Bovine brain calcineurin and calmodulin were isolated from frozen tissues. The activity of calcineurin was assayed using p-nitrophenyl phosphate (PNPP) as the substrate. Step-down type passive avoidance test and water maze were used together to determine the effects of EFC on learning and memory dysfunction. EFC activated calcineurin activity at a concentration range of 0.01-100 g/L. The maximal value of EFC on calcineurin activity (35 %+/-5 %) appeared at a concentration of 10 g/L. The chemical drugs such as scopolamine, sodium nitrite, and 45 % ethanol, and sodium pentobarbital induced learning and memory dysfunction. EFC administration (0.2, 0.4, and 0.8 g/kg, igx7 d) prolonged the latency and decreased the number of errors in the step-down test. EFC, given for 7 d, enhanced the spatial resolution of amnesic mice in water maze test. EFC overcome amnesia of three stages of memory process at the dose of 0.2 g/kg. EFC with an activation role of calcineurin can improve the impaired learning and memory induced by chemical drugs in mice.

  16. Contributions of dorsal striatal subregions to spatial alternation behavior.

    PubMed

    Moussa, Roula; Poucet, Bruno; Amalric, Marianne; Sargolini, Francesca

    2011-07-01

    Considerable evidence has shown a clear dissociation between the dorsomedial (DMS) and the dorsolateral (DLS) striatum in instrumental conditioning. In particular, DMS activity is necessary to form action-outcome associations, whereas the DLS is required for developing habitual behavior. However, few studies have investigated whether a similar dissociation exists in more complex goal-directed learning processes. The present study examined the role of the two structures in such complex learning by analyzing the effects of excitotoxic DMS and DLS lesions during the acquisition and extinction of spatial alternation behavior, in a continuous alternation T-maze task. We demonstrate that DMS and DLS lesions have opposite effects, the former impairing and the latter improving animal performance during learning and extinction. DMS lesions may impair the acquisition of spatial alternation behavior by disrupting the signal necessary to link a goal with a specific spatial sequence. In contrast, DLS lesions may accelerate goal-driven strategies by minimizing the influence of external stimuli on the response, thus increasing the impact of action-reward contingencies. Taken together, these results suggest that DMS- and DLS-mediated learning strategies develop in parallel and compete for the control of the behavioral response early in learning.

  17. Active Learning Not Associated with Student Learning in a Random Sample of College Biology Courses

    PubMed Central

    Andrews, T. M.; Leonard, M. J.; Colgrove, C. A.; Kalinowski, S. T.

    2011-01-01

    Previous research has suggested that adding active learning to traditional college science lectures substantially improves student learning. However, this research predominantly studied courses taught by science education researchers, who are likely to have exceptional teaching expertise. The present study investigated introductory biology courses randomly selected from a list of prominent colleges and universities to include instructors representing a broader population. We examined the relationship between active learning and student learning in the subject area of natural selection. We found no association between student learning gains and the use of active-learning instruction. Although active learning has the potential to substantially improve student learning, this research suggests that active learning, as used by typical college biology instructors, is not associated with greater learning gains. We contend that most instructors lack the rich and nuanced understanding of teaching and learning that science education researchers have developed. Therefore, active learning as designed and implemented by typical college biology instructors may superficially resemble active learning used by education researchers, but lacks the constructivist elements necessary for improving learning. PMID:22135373

  18. In Defense of Active Learning

    ERIC Educational Resources Information Center

    Pica, Rae

    2008-01-01

    Effective early childhood teachers use what they know about and have observed in young children to design programs to meet children's developmental needs. Play and active learning are key tools to address those needs and facilitate children's early education. In this article, the author discusses the benefits of active learning in the education of…

  19. Six Myths About Spatial Thinking

    NASA Astrophysics Data System (ADS)

    Newcombe, Nora S.; Stieff, Mike

    2012-04-01

    Visualizations are an increasingly important part of scientific education and discovery. However, users often do not gain knowledge from them in a complete or efficient way. This article aims to direct research on visualizations in science education in productive directions by reviewing the evidence for widespread assumptions that learning styles, sex differences, developmental stages, and spatial language determine the impact of visualizations on science learning. First, we examine the assumption that people differ in their verbal versus visual learning style. Due to the lack of rigorous evaluation, there is no current support for this distinction. Future research should distinguish between two different kinds of visual learning style. Second, we consider the belief that there are large and intractable sex differences in spatial ability resultant from immutable biological reasons. Although there are some spatial sex differences (in some types of spatial tests although not all), there is actually only very mixed support for biological causation. Most important, there is conclusive evidence that spatial skills can be improved through training and education. Third, we explore educators' use of Piaget's ideas about spatial development to draw conclusions about 'developmental appropriateness'. However, recent research on spatial development has focused on identifying sequences that begin with early starting points of skill, and spatial education is possible in some form at all ages. Fourth, although spatial language does not determine spatial thought, it does frame attention in a way that can have impact on learning and understanding. We examine the empirical support for each assumption and its relevance to future research on visualizations in science education.

  20. Active learning methods for interactive image retrieval.

    PubMed

    Gosselin, Philippe Henri; Cord, Matthieu

    2008-07-01

    Active learning methods have been considered with increased interest in the statistical learning community. Initially developed within a classification framework, a lot of extensions are now being proposed to handle multimedia applications. This paper provides algorithms within a statistical framework to extend active learning for online content-based image retrieval (CBIR). The classification framework is presented with experiments to compare several powerful classification techniques in this information retrieval context. Focusing on interactive methods, active learning strategy is then described. The limitations of this approach for CBIR are emphasized before presenting our new active selection process RETIN. First, as any active method is sensitive to the boundary estimation between classes, the RETIN strategy carries out a boundary correction to make the retrieval process more robust. Second, the criterion of generalization error to optimize the active learning selection is modified to better represent the CBIR objective of database ranking. Third, a batch processing of images is proposed. Our strategy leads to a fast and efficient active learning scheme to retrieve sets of online images (query concept). Experiments on large databases show that the RETIN method performs well in comparison to several other active strategies.

  1. An augmented reality tool for learning spatial anatomy on mobile devices.

    PubMed

    Jain, Nishant; Youngblood, Patricia; Hasel, Matthew; Srivastava, Sakti

    2017-09-01

    Augmented Realty (AR) offers a novel method of blending virtual and real anatomy for intuitive spatial learning. Our first aim in the study was to create a prototype AR tool for mobile devices. Our second aim was to complete a technical evaluation of our prototype AR tool focused on measuring the system's ability to accurately render digital content in the real world. We imported Computed Tomography (CT) data derived virtual surface models into a 3D Unity engine environment and implemented an AR algorithm to display these on mobile devices. We investigated the accuracy of the virtual renderings by comparing a physical cube with an identical virtual cube for dimensional accuracy. Our comparative study confirms that our AR tool renders 3D virtual objects with a high level of accuracy as evidenced by the degree of similarity between measurements of the dimensions of a virtual object (a cube) and the corresponding physical object. We developed an inexpensive and user-friendly prototype AR tool for mobile devices that creates highly accurate renderings. This prototype demonstrates an intuitive, portable, and integrated interface for spatial interaction with virtual anatomical specimens. Integrating this AR tool with a library of CT derived surface models provides a platform for spatial learning in the anatomy curriculum. The segmentation methodology implemented to optimize human CT data for mobile viewing can be extended to include anatomical variations and pathologies. The ability of this inexpensive educational platform to deliver a library of interactive, 3D models to students worldwide demonstrates its utility as a supplemental teaching tool that could greatly benefit anatomical instruction. Clin. Anat. 30:736-741, 2017. © 2017Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. BENZODIAZEPINE-INDUCED SPATIAL LEARNING DEFICITS IN RATS ARE REGULATED BY THE DEGREE OF MODULATION OF α1 GABAA RECEPTORS

    PubMed Central

    Joksimović, Srđan; Divljaković, Jovana; Van Linn, Michael L.; Varagic, Zdravko; Brajković, Gordana; Milinković, Marija M.; Yin, Wenyuan; Timić, Tamara; Sieghart, Werner; Cook, James M.; Savić, Miroslav M.

    2012-01-01

    Despite significant advances in understanding the role of benzodiazepine (BZ)-sensitive populations of GABAA receptors, containing the α1, α2, α3 or α5 subunit, factual substrates of BZ-induced learning and memory deficits are not yet fully elucidated. It was shown that α1-subunit affinity-selective antagonist β-CCt almost completely abolished spatial learning deficits induced by diazepam (DZP) in the Morris water maze. We examined a novel, highly (105 fold) α1-subunit selective ligand - WYS8 (0.2, 1 and 10 mg/kg), on its own and in combination with the non-selective agonist DZP (2 mg/kg) or β-CCt (5 mg/kg) in the water maze in rats. The in vitro efficacy study revealed that WYS8 acts as α1-subtype selective weak partial positive modulator (40% potentiation at 100 nM). Measurement of concentrations of WYS8 and DZP in rat serum and brain tissues suggested that they did not substantially cross-influence the respective disposition. In the water maze, DZP impaired spatial learning (acquisition trials) and memory (probe trial). WYS8 caused no effect per se, did not affect the overall influence of DZP on the water-maze performance and was devoid of any activity in this task when combined with β-CCt. Nonetheless, an additional analysis of the latency to reach the platform and the total distance swam suggested that WYS8 addition attenuated the run-down of the spatial impairment induced by DZP at the end of acquisition trials. These results demonstrate a clear difference in the influence of an α1 subtype-selective antagonist and a partial agonist on the effects of DZP on the water-maze acquisition. PMID:22633616

  3. Exploration, anxiety, and spatial memory in transgenic anophthalmic mice.

    PubMed

    Buhot, M C; Dubayle, D; Malleret, G; Javerzat, S; Segu, L

    2001-04-01

    Contradictory results are found in the literature concerning the role of vision in the perception of space or in spatial navigation, in part because of the lack of murine models of total blindness used so far. The authors evaluated the spatial abilities of anophthalmic transgenic mice. These mice did not differ qualitatively from their wild-type littermates in general locomotor activity, spontaneous alternation, object exploration, or anxiety, but their level of exploratory activity was generally lower. In the spatial version of the water maze, they displayed persistent thigmotaxic behavior and showed severe spatial learning impairments. However, their performances improved with training, suggesting that they may have acquired a rough representation of the platform position. These results suggest that modalities other than vision enable some degree of spatial processing in proximal and structured spaces but that vision is critical for accurate spatial navigation.

  4. The ampakine, Org 26576, bolsters early spatial reference learning and retrieval in the Morris water maze: a subchronic, dose-ranging study in rats.

    PubMed

    Hamlyn, Eugene; Brand, Linda; Shahid, Mohammed; Harvey, Brian H

    2009-10-01

    Ampakines have shown beneficial effects on cognition in selected animal models of learning. However, their ability to modify long-term spatial memory tasks has not been studied yet. This would lend credence to their possible value in treating disorders of cognition. We evaluated the actions of subchronic Org 26576 administration on spatial reference memory performance in the 5-day Morris water maze task in male Sprague-Dawley rats, at doses of 1, 3 and 10 mg/kg twice daily through intraperitoneal injection over 12 days. Org 26576 exerted a dose and time-dependent effect on spatial learning, with dosages of 3 and 10 mg/kg significantly enhancing acquisition on day 1. Globally, escape latency decreased significantly as the training days progressed in the saline and Org 26576-treated groups, indicating that significant and equal learning had taken place over the learning period. However, at the end of the learning period, all doses of Org 26576 significantly improved spatial memory storage/retrieval without confounding effects in the cued version of the task. Org 26576 offers early phase spatial memory benefits in rats, but particularly enhances search accuracy during reference memory retrieval. These results support its possible utility in treating disorders characterized by deficits in cognitive performance.

  5. Active Learning in Engineering Education: A (Re)Introduction

    ERIC Educational Resources Information Center

    Lima, Rui M.; Andersson, Pernille Hammar; Saalman, Elisabeth

    2017-01-01

    The informal network "Active Learning in Engineering Education" (ALE) has been promoting Active Learning since 2001. ALE creates opportunity for practitioners and researchers of engineering education to collaboratively learn how to foster learning of engineering students. The activities in ALE are centred on the vision that learners…

  6. Postnatal high-protein diet improves learning and memory in premature rats via activation of mTOR signaling.

    PubMed

    Su, Zhi-Wen; Liao, Jia-Yi; Zhang, Hui; Zhang, Tao; Wu, Fan; Tian, Xiao-Hua; Zhang, Fei-Tong; Sun, Wei-Wen; Cui, Qi-Liang

    2015-06-22

    The present study investigated whether a high-protein diet affects spatial learning and memory in premature rats via modulation of mammalian target of rapamycin (mTOR) signaling. Pre- and full-term Sprague-Dawley pups were fed a normal (18% protein) or high-protein (30% protein) diet (HPD) for 6 or 8 weeks after weaning. Spatial learning and memory were tested in the Morris water maze at week 6 and 8. The activation of mTOR signaling pathway components was evaluated by western blotting. Spatial memory performance of premature rats consuming a normal and HPD was lower than that of full-term rats on the same diet at 6 weeks, and was associated with lower levels of ribosomal protein S6 kinase p70 subtype (p70S6K) and initiation factor 4E-binding protein 1 (4EBP1) phosphorylation in the hippocampus. Spatial memory was improved in 8-week-old premature rats on an HPD as compared to those on a normal diet. Premature rats on an HPD had p70S6K and 4EBP1 phosphorylation levels in the hippocampus that were comparable to those of full-term rats on an HPD. Long-term consumption of a protein-rich diet can restore the impairment in learning and memory in pre-term rats via upregulation of mTOR/p70S6K signaling. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Learning Style Differences in the Perceived Effectiveness of Learning Activities

    ERIC Educational Resources Information Center

    Karns, Gary L.

    2006-01-01

    The learning style individual difference factor has long been a basis for understanding student preferences for various learning activities. Marketing educators have been advised to heavily invest in tailoring course design based on the learning style groups in their classes. A further exploration of the effects of learning style differences on…

  8. "Wherever You Go, You Will Be a Polis": Spatial Practices and Political Education in Computer-Supported Collaborative Learning Discussions

    ERIC Educational Resources Information Center

    Slakmon, Benzi; Schwarz, Baruch B.

    2017-01-01

    The aim of this article is to increase understanding of the development of spatial practices in virtual learning environments. The spatial change and development in 38 small-group e-discussions taken from a data set of a yearlong 8th-grade humanities course are described and analyzed. We show that the focus on spatial changes in computer-supported…

  9. Incorporation of Socio-scientific Content into Active Learning Activities

    NASA Astrophysics Data System (ADS)

    King, D. B.; Lewis, J. E.; Anderson, K.; Latch, D.; Sutheimer, S.; Webster, G.; Moog, R.

    2014-12-01

    Active learning has gained increasing support as an effective pedagogical technique to improve student learning. One way to promote active learning in the classroom is the use of in-class activities in place of lecturing. As part of an NSF-funded project, a set of in-class activities have been created that use climate change topics to teach chemistry content. These activities use the Process Oriented Guided Inquiry Learning (POGIL) methodology. In this pedagogical approach a set of models and a series of critical thinking questions are used to guide students through the introduction to or application of course content. Students complete the activities in their groups, with the faculty member as a facilitator of learning. Through assigned group roles and intentionally designed activity structure, process skills, such as teamwork, communication, and information processing, are developed during completion of the activity. Each of these climate change activities contains a socio-scientific component, e.g., social, ethical and economic data. In one activity, greenhouse gases are used to explain the concept of dipole moment. Data about natural and anthropogenic production rates, global warming potential and atmospheric lifetimes for a list of greenhouse gases are presented. The students are asked to identify which greenhouse gas they would regulate, with a corresponding explanation for their choice. They are also asked to identify the disadvantages of regulating the gas they chose in the previous question. In another activity, where carbon sequestration is used to demonstrate the utility of a phase diagram, students use economic and environmental data to choose the best location for sequestration. Too often discussions about climate change (both in and outside the classroom) consist of purely emotional responses. These activities force students to use data to support their arguments and hypothesize about what other data could be used in the corresponding discussion to

  10. Active learning in capstone design courses.

    PubMed

    Goldberg, Jay R

    2012-01-01

    There is a growing trend to encourage students to take a more active role in their own education. Many schools are moving away from the sage on the stage to the guide on the side model where the instructor is a facilitator of learning. In this model, the emphasis is more on learning and less on teaching, and it requires instructors to incorporate more active and student-centered learning methods into their courses. These methods include collaborative, cooperative, problem-based, and project-based learning.

  11. Automatic Earthquake Detection by Active Learning

    NASA Astrophysics Data System (ADS)

    Bergen, K.; Beroza, G. C.

    2017-12-01

    In recent years, advances in machine learning have transformed fields such as image recognition, natural language processing and recommender systems. Many of these performance gains have relied on the availability of large, labeled data sets to train high-accuracy models; labeled data sets are those for which each sample includes a target class label, such as waveforms tagged as either earthquakes or noise. Earthquake seismologists are increasingly leveraging machine learning and data mining techniques to detect and analyze weak earthquake signals in large seismic data sets. One of the challenges in applying machine learning to seismic data sets is the limited labeled data problem; learning algorithms need to be given examples of earthquake waveforms, but the number of known events, taken from earthquake catalogs, may be insufficient to build an accurate detector. Furthermore, earthquake catalogs are known to be incomplete, resulting in training data that may be biased towards larger events and contain inaccurate labels. This challenge is compounded by the class imbalance problem; the events of interest, earthquakes, are infrequent relative to noise in continuous data sets, and many learning algorithms perform poorly on rare classes. In this work, we investigate the use of active learning for automatic earthquake detection. Active learning is a type of semi-supervised machine learning that uses a human-in-the-loop approach to strategically supplement a small initial training set. The learning algorithm incorporates domain expertise through interaction between a human expert and the algorithm, with the algorithm actively posing queries to the user to improve detection performance. We demonstrate the potential of active machine learning to improve earthquake detection performance with limited available training data.

  12. Strategies for active learning in online continuing education.

    PubMed

    Phillips, Janet M

    2005-01-01

    Online continuing education and staff development is on the rise as the benefits of access, convenience, and quality learning are continuing to take shape. Strategies to enhance learning call for learner participation that is self-directed and independent, thus changing the educator's role from expert to coach and facilitator. Good planning of active learning strategies promotes optimal learning whether the learning content is presented in a course or a just-in-time short module. Active learning strategies can be used to enhance online learning during all phases of the teaching-learning process and can accommodate a variety of learning styles. Feedback from peers, educators, and technology greatly influences learner satisfaction and must be harnessed to provide effective learning experiences. Outcomes of active learning can be assessed online and implemented conveniently and successfully from the initiation of the course or module planning to the end of the evaluation process. Online learning has become accessible and convenient and allows the educator to track learner participation. The future of online education will continue to grow, and using active learning strategies will ensure that quality learning will occur, appealing to a wide variety of learning needs.

  13. Technology Learning Activities I.

    ERIC Educational Resources Information Center

    International Technology Education Association, Reston, VA.

    This guide contains 30 technology learning activities. Activities may contain all or some of the following: an introduction, objectives, materials and equipment, challenges, limitations, notes and investigations, resources and references used, and evaluation ideas. Activity titles are: (1) Occupations in Construction Technology; (2) Designing a…

  14. Students' Satisfaction on Their Learning Process in Active Learning and Traditional Classrooms

    ERIC Educational Resources Information Center

    Hyun, Jung; Ediger, Ruth; Lee, Donghun

    2017-01-01

    Studies have shown Active Learning Classrooms [ALCs] help increase student engagement and improve student performance. However, remodeling all traditional classrooms to ALCs entails substantial financial burdens. Thus, an imperative question for institutions of higher education is whether active learning pedagogies can improve learning outcomes…

  15. Environmental impoverishment and aging alter object recognition, spatial learning, and dentate gyrus astrocytes.

    PubMed

    Diniz, Daniel G; Foro, César A R; Rego, Carla M D; Gloria, David A; de Oliveira, Fabio R R; Paes, Juliana M P; de Sousa, Aline A; Tokuhashi, Tatyana P; Trindade, Lucas S; Turiel, Maíra C P; Vasconcelos, Erick G R; Torres, João B; Cunnigham, Colm; Perry, Victor H; Vasconcelos, Pedro F da Costa; Diniz, Cristovam W P

    2010-08-01

    Environmental and age-related effects on learning and memory were analysed and compared with changes observed in astrocyte laminar distribution in the dentate gyrus. Aged (20 months) and young (6 months) adult female albino Swiss mice were housed from weaning either in impoverished conditions or in enriched conditions, and tested for episodic-like and water maze spatial memories. After these behavioral tests, brain hippocampal sections were immunolabeled for glial fibrillary acid protein to identify astrocytes. The effects of environmental enrichment on episodic-like memory were not dependent on age, and may protect water maze spatial learning and memory from declines induced by aging or impoverished environment. In the dentate gyrus, the number of astrocytes increased with both aging and enriched environment in the molecular layer, increased only with aging in the polymorphic layer, and was unchanged in the granular layer. We suggest that long-term experience-induced glial plasticity by enriched environment may represent at least part of the circuitry groundwork for improvements in behavioral performance in the aged mice brain.

  16. GeoSpatial Workforce Development: enhancing the traditional learning environment in geospatial information technology

    NASA Astrophysics Data System (ADS)

    Lawhead, Pamela B.; Aten, Michelle L.

    2003-04-01

    The Center for GeoSpatial Workforce Development is embarking on a new era in education by developing a repository of dynamic online courseware authored by the foremost industry experts within the remote sensing and GIS industries. Virtual classrooms equipped with the most advanced instructions, computations, communications, course evaluation, and management facilities amplify these courses to enhance the learning environment and provide rapid feedback between instructors and students. The launch of this program included the objective development of the Model Curriculum by an independent consortium of remote sensing industry leaders. The Center's research and development focus on recruiting additional industry experts to develop the technical content of the courseware and then utilize state-of-the-art technology to enhance their material with visually stimulating animations, compelling audio clips and entertaining, interactive exercises intended to reach the broadest audience possible by targeting various learning styles. The courseware will be delivered via various media: Internet, CD-ROM, DVD, and compressed video, that translates into anywhere, anytime delivery of GeoSpatial Information Technology education.

  17. Modelling Typical Online Language Learning Activity

    ERIC Educational Resources Information Center

    Montoro, Carlos; Hampel, Regine; Stickler, Ursula

    2014-01-01

    This article presents the methods and results of a four-year-long research project focusing on the language learning activity of individual learners using online tasks conducted at the University of Guanajuato (Mexico) in 2009-2013. An activity-theoretical model (Blin, 2010; Engeström, 1987) of the typical language learning activity was used to…

  18. Combining Distance and Face-To Teaching and Learning in Spatial Computations

    NASA Astrophysics Data System (ADS)

    Gulland, E.-K.; Schut, A. G. T.; Veenendaal, B.

    2011-09-01

    Retention and passing rates as well as student engagement in computer programming and problem solving units are a major concern in tertiary spatial science courses. A number of initiatives were implemented to improve this. A pilot study reviews the changes made to the teaching and learning environment, including the addition of new resources and modifications to assessments, and investigates their effectiveness. In particular, the study focuses on the differences between students studying in traditional, oncampus mode and distance, e-learning mode. Student results and retention rates from 2009-2011, data from in-lecture clicker response units and two anonymous surveys collected in 2011 were analysed. Early results indicate that grades improved for engaged students but pass rates or grades of the struggling cohort of students did not improve significantly.

  19. Kinaesthetic Learning Activities and Learning about Solar Cells

    ERIC Educational Resources Information Center

    Richards, A. J.; Etkina, Eugenia

    2013-01-01

    Kinaesthetic learning activities (KLAs) can be a valuable pedagogical tool for physics instructors. They have been shown to increase engagement, encourage participation and improve learning outcomes. This paper details several KLAs developed at Rutgers University for inclusion in an instructional unit about semiconductors, p-n junctions and solar…

  20. Group-Based Active Learning of Classification Models.

    PubMed

    Luo, Zhipeng; Hauskrecht, Milos

    2017-05-01

    Learning of classification models from real-world data often requires additional human expert effort to annotate the data. However, this process can be rather costly and finding ways of reducing the human annotation effort is critical for this task. The objective of this paper is to develop and study new ways of providing human feedback for efficient learning of classification models by labeling groups of examples. Briefly, unlike traditional active learning methods that seek feedback on individual examples, we develop a new group-based active learning framework that solicits label information on groups of multiple examples. In order to describe groups in a user-friendly way, conjunctive patterns are used to compactly represent groups. Our empirical study on 12 UCI data sets demonstrates the advantages and superiority of our approach over both classic instance-based active learning work, as well as existing group-based active-learning methods.

  1. Scene recognition based on integrating active learning with dictionary learning

    NASA Astrophysics Data System (ADS)

    Wang, Chengxi; Yin, Xueyan; Yang, Lin; Gong, Chengrong; Zheng, Caixia; Yi, Yugen

    2018-04-01

    Scene recognition is a significant topic in the field of computer vision. Most of the existing scene recognition models require a large amount of labeled training samples to achieve a good performance. However, labeling image manually is a time consuming task and often unrealistic in practice. In order to gain satisfying recognition results when labeled samples are insufficient, this paper proposed a scene recognition algorithm named Integrating Active Learning and Dictionary Leaning (IALDL). IALDL adopts projective dictionary pair learning (DPL) as classifier and introduces active learning mechanism into DPL for improving its performance. When constructing sampling criterion in active learning, IALDL considers both the uncertainty and representativeness as the sampling criteria to effectively select the useful unlabeled samples from a given sample set for expanding the training dataset. Experiment results on three standard databases demonstrate the feasibility and validity of the proposed IALDL.

  2. Active Learning Crosses Generations.

    ERIC Educational Resources Information Center

    Woodard, Diane K.

    2002-01-01

    Describes the benefits of intergenerational programs, highlighting a child care program that offers age-appropriate and mutually beneficial activities for children and elders within a nearby retirement community. The program has adopted High/Scope's active learning approach to planning and implementing activities that involve both generations. The…

  3. Active Learning: The Way Children Construct Knowledge.

    ERIC Educational Resources Information Center

    Hohmann, Mary; Weikart, David P.

    2002-01-01

    The High/Scope approach to early childhood education promotes the belief that active learning is fundamental to the development of human potential and occurs most effectively in settings that provide developmentally appropriate learning opportunities. Describes five ingredients of active learning (materials, manipulation, choice, language from…

  4. Does Spatial Ability Help the Learning of Anatomy in a Biomedical Science Course?

    ERIC Educational Resources Information Center

    Sweeney, Kevin; Hayes, Jennifer A.; Chiavaroli, Neville

    2014-01-01

    A three-dimensional appreciation of the human body is the cornerstone of clinical anatomy. Spatial ability has previously been found to be associated with students' ability to learn anatomy and their examination performance. The teaching of anatomy has been the subject of major change over the last two decades with the reduction in time spent…

  5. Active-learning processes used in US pharmacy education.

    PubMed

    Stewart, David W; Brown, Stacy D; Clavier, Cheri W; Wyatt, Jarrett

    2011-05-10

    To document the type and extent of active-learning techniques used in US colleges and schools of pharmacy as well as factors associated with use of these techniques. A survey instrument was developed to assess whether and to what extent active learning was used by faculty members of US colleges and schools of pharmacy. This survey instrument was distributed via the American Association of Colleges of Pharmacy (AACP) mailing list. Ninety-five percent (114) of all US colleges and schools of pharmacy were represented with at least 1 survey among the 1179 responses received. Eighty-seven percent of respondents used active-learning techniques in their classroom activities. The heavier the teaching workload the more active-learning strategies were used. Other factors correlated with higher use of active-learning strategies included younger faculty member age (inverse relationship), lower faculty member rank (inverse relationship), and departments that focused on practice, clinical and social, behavioral, and/or administrative sciences. Active learning has been embraced by pharmacy educators and is used to some extent by the majority of US colleges and schools of pharmacy. Future research should focus on how active-learning methods can be used most effectively within pharmacy education, how it can gain even broader acceptance throughout the academy, and how the effect of active learning on programmatic outcomes can be better documented.

  6. Active-Learning Processes Used in US Pharmacy Education

    PubMed Central

    Brown, Stacy D.; Clavier, Cheri W.; Wyatt, Jarrett

    2011-01-01

    Objective To document the type and extent of active-learning techniques used in US colleges and schools of pharmacy as well as factors associated with use of these techniques. Methods A survey instrument was developed to assess whether and to what extent active learning was used by faculty members of US colleges and schools of pharmacy. This survey instrument was distributed via the American Association of Colleges of Pharmacy (AACP) mailing list. Results Ninety-five percent (114) of all US colleges and schools of pharmacy were represented with at least 1 survey among the 1179 responses received. Eighty-seven percent of respondents used active-learning techniques in their classroom activities. The heavier the teaching workload the more active-learning strategies were used. Other factors correlated with higher use of active-learning strategies included younger faculty member age (inverse relationship), lower faculty member rank (inverse relationship), and departments that focused on practice, clinical and social, behavioral, and/or administrative sciences. Conclusions Active learning has been embraced by pharmacy educators and is used to some extent by the majority of US colleges and schools of pharmacy. Future research should focus on how active-learning methods can be used most effectively within pharmacy education, how it can gain even broader acceptance throughout the academy, and how the effect of active learning on programmatic outcomes can be better documented. PMID:21769144

  7. Learning Outcomes between Socioscientific Issues-Based Learning and Conventional Learning Activities

    ERIC Educational Resources Information Center

    Wongsri, Piyaluk; Nuangchalerm, Prasart

    2010-01-01

    Problem statement: Socioscientific issues-based learning activity is essential for scientific reasoning skills and it could be used for analyzing problems be applied to each situation for more successful and suitable. The purposes of this research aimed to compare learning achievement, analytical thinking and moral reasoning of seventh grade…

  8. Is Peer Interaction Necessary for Optimal Active Learning?

    PubMed

    Linton, Debra L; Farmer, Jan Keith; Peterson, Ernie

    2014-01-01

    Meta-analyses of active-learning research consistently show that active-learning techniques result in greater student performance than traditional lecture-based courses. However, some individual studies show no effect of active-learning interventions. This may be due to inexperienced implementation of active learning. To minimize the effect of inexperience, we should try to provide more explicit implementation recommendations based on research into the key components of effective active learning. We investigated the optimal implementation of active-learning exercises within a "lecture" course. Two sections of nonmajors biology were taught by the same instructor, in the same semester, using the same instructional materials and assessments. Students in one section completed in-class active-learning exercises in cooperative groups, while students in the other section completed the same activities individually. Performance on low-level, multiple-choice assessments was not significantly different between sections. However, students who worked in cooperative groups on the in-class activities significantly outperformed students who completed the activities individually on the higher-level, extended-response questions. Our results provide additional evidence that group processing of activities should be the recommended mode of implementation for in-class active-learning exercises. © 2014 D. L. Linton et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Spatial/Temporal Variations of Crime: A Routine Activity Theory Perspective.

    PubMed

    de Melo, Silas Nogueira; Pereira, Débora V S; Andresen, Martin A; Matias, Lindon Fonseca

    2018-05-01

    Temporal and spatial patterns of crime in Campinas, Brazil, are analyzed considering the relevance of routine activity theory in a Latin American context. We use geo-referenced criminal event data, 2010-2013, analyzing spatial patterns using census tracts and temporal patterns considering seasons, months, days, and hours. Our analyses include difference in means tests, count-based regression models, and Kulldorff's scan test. We find that crime in Campinas, Brazil, exhibits both temporal and spatial-temporal patterns. However, the presence of these patterns at the different temporal scales varies by crime type. Specifically, not all crime types have statistically significant temporal patterns at all scales of analysis. As such, routine activity theory works well to explain temporal and spatial-temporal patterns of crime in Campinas, Brazil. However, local knowledge of Brazilian culture is necessary for understanding a portion of these crime patterns.

  10. Individual variations in dose response for spatial memory learning among outbred wistar rats exposed from 5 to 20 cGy of (56) Fe particles.

    PubMed

    Wyrobek, Andrew J; Britten, Richard A

    2016-06-01

    Exposures of brain tissue to ionizing radiation can lead to persistent deficits in cognitive functions and behaviors. However, little is known about the quantitative relationships between exposure dose and neurological risks, especially for lower doses and among genetically diverse individuals. We investigated the dose relationship for spatial memory learning among genetically outbred male Wistar rats exposed to graded doses of (56) Fe particles (sham, 5, 10, 15, and 20 cGy; 1 GeV/n). Spatial memory learning was assessed on a Barnes maze using REL3 ratios measured at three months after exposure. Irradiated animals showed dose-dependent declines in spatial memory learning that were fit by a linear regression (P for slope <0.0002). The irradiated animals showed significantly impaired learning at 10 cGy exposures, no detectable learning between 10 and 15 cGy, and worsened performances between 15 and 20 cGy. The proportions of poor learners and the magnitude of their impairment were fit by linear regressions with doubling doses of ∼10 cGy. In contrast, there were no detectable deficits in learning among the good learners in this dose range. Our findings suggest that genetically diverse individuals can vary substantially in their spatial memory learning, and that exposures at low doses appear to preferentially impact poor learners. This hypothesis invites future investigations of the genetic and physiological mechanisms of inter-individual variations in brain function related to spatial memory learning after low-dose HZE radiation exposures and to determine whether it also applies to physical trauma to brain tissue and exposures to chemical neurotoxicants. Environ. Mol. Mutagen. 57:331-340, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Research on Mobile Learning Activities Applying Tablets

    ERIC Educational Resources Information Center

    Kurilovas, Eugenijus; Juskeviciene, Anita; Bireniene, Virginija

    2015-01-01

    The paper aims to present current research on mobile learning activities in Lithuania while implementing flagship EU-funded CCL project on application of tablet computers in education. In the paper, the quality of modern mobile learning activities based on learning personalisation, problem solving, collaboration, and flipped class methods is…

  12. Network analysis of exploratory behaviors of mice in a spatial learning and memory task

    PubMed Central

    Suzuki, Yusuke

    2017-01-01

    The Barnes maze is one of the main behavioral tasks used to study spatial learning and memory. The Barnes maze is a task conducted on “dry land” in which animals try to escape from a brightly lit exposed circular open arena to a small dark escape box located under one of several holes at the periphery of the arena. In comparison with another classical spatial learning and memory task, the Morris water maze, the negative reinforcements that motivate animals in the Barnes maze are less severe and less stressful. Furthermore, the Barnes maze is more compatible with recently developed cutting-edge techniques in neural circuit research, such as the miniature brain endoscope or optogenetics. For this study, we developed a lift-type task start system and equipped the Barnes maze with it. The subject mouse is raised up by the lift and released into the maze automatically so that it can start navigating the maze smoothly from exactly the same start position across repeated trials. We believe that a Barnes maze test with a lift-type task start system may be useful for behavioral experiments when combined with head-mounted or wire-connected devices for online imaging and intervention in neural circuits. Furthermore, we introduced a network analysis method for the analysis of the Barnes maze data. Each animal’s exploratory behavior in the maze was visualized as a network of nodes and their links, and spatial learning in the maze is described by systematic changes in network structures of search behavior. Network analysis was capable of visualizing and quantitatively analyzing subtle but significant differences in an animal’s exploratory behavior in the maze. PMID:28700627

  13. Spaces in between Us: A Qualitative Study into the Impact of Spatial Practice when Learning in "Second Life"

    ERIC Educational Resources Information Center

    Savin-Baden, Maggi

    2013-01-01

    This paper will present a study that explored the perceived impact of spatial practice in "Second Life" (SL) on teaching and learning from the point of view of participants in higher education (lecturers, developers and researchers). Narrative inquiry was used to access stories and experiences of space and spatial practice from staff…

  14. Active Learning with Irrelevant Examples

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri; Mazzoni, Dominic

    2009-01-01

    An improved active learning method has been devised for training data classifiers. One example of a data classifier is the algorithm used by the United States Postal Service since the 1960s to recognize scans of handwritten digits for processing zip codes. Active learning algorithms enable rapid training with minimal investment of time on the part of human experts to provide training examples consisting of correctly classified (labeled) input data. They function by identifying which examples would be most profitable for a human expert to label. The goal is to maximize classifier accuracy while minimizing the number of examples the expert must label. Although there are several well-established methods for active learning, they may not operate well when irrelevant examples are present in the data set. That is, they may select an item for labeling that the expert simply cannot assign to any of the valid classes. In the context of classifying handwritten digits, the irrelevant items may include stray marks, smudges, and mis-scans. Querying the expert about these items results in wasted time or erroneous labels, if the expert is forced to assign the item to one of the valid classes. In contrast, the new algorithm provides a specific mechanism for avoiding querying the irrelevant items. This algorithm has two components: an active learner (which could be a conventional active learning algorithm) and a relevance classifier. The combination of these components yields a method, denoted Relevance Bias, that enables the active learner to avoid querying irrelevant data so as to increase its learning rate and efficiency when irrelevant items are present. The algorithm collects irrelevant data in a set of rejected examples, then trains the relevance classifier to distinguish between labeled (relevant) training examples and the rejected ones. The active learner combines its ranking of the items with the probability that they are relevant to yield a final decision about which item

  15. Animal-Centered Learning Activities in Pharmacy Education

    PubMed Central

    Lust, Elaine

    2006-01-01

    Objectives To assess the contribution of animal-centered activities to students achieving learning outcomes in a veterinary therapeutics course. Design Qualitative methods were used to assess the outcome of using “hands-on” animal interactions as tools of engagement in the course. Reflective commentary on animal-centered activities was collected and analyzed. Assessment Animal-centered learning activities are effective tools for engaging students and facilitating their understanding and application of veterinary therapeutic knowledge, skills, and attitudes. Analysis of qualitative data revealed themes of professional caring and caring behaviors as a direct result of animal-centered activities. Elements of empathy, caring, compassion, and self-awareness were strong undercurrents in student's comments. Conclusions Animal-centered learning activities provide an innovative learning environment for the application of veterinary pharmacy knowledge, skills, and attitudes directly to animal patients. The use of animals in the course is a successful active-learning technique to engage pharmacy students and assist them in developing caring attitudes and behaviors beneficial to future health care providers. PMID:17149415

  16. Faculty motivations to use active learning among pharmacy educators.

    PubMed

    Rockich-Winston, Nicole; Train, Brian C; Rudolph, Michael J; Gillette, Chris

    2018-03-01

    Faculty motivations to use active learning have been limited to surveys evaluating faculty perceptions within active learning studies. Our objective in this study was to evaluate the relationship between faculty intrinsic motivation, extrinsic motivation, and demographic variables and the extent of active learning use in the classroom. An online survey was administered to individual faculty members at 137 colleges and schools of pharmacy across the United States. The survey assessed intrinsic and extrinsic motivations, active learning strategies, classroom time dedicated to active learning, and faculty development resources. Bivariate associations and multivariable stepwise linear regression were used to analyze the results. In total, 979 faculty members completed the questionnaire (23.6% response rate). All motivation variables were significantly correlated with percent active learning use (p < 0.001). Intrinsic motivation demonstrated the highest correlation (r = 0.447) followed by current extrinsic motivations (r = 0.245) and ideal extrinsic motivations (r = 0.291). Variables associated with higher intrinsic motivation included the number of resources used (r = 0.233, p < 0.001) and the number of active learning methods used in the last year (r = 0.259, p < 0.001). Years of teaching experience was negatively associated with intrinsic motivation (r = -0.177, p < 0.001). Regression analyses confirmed the importance of intrinsic and extrinsic motivations in predicting active learning use. Our results suggest that faculty members who are intrinsically motivated to use active learning are more likely to dedicate additional class time to active learning. Furthermore, intrinsic motivation may be positively associated with encouraging faculty members to attend active learning workshops and supporting faculty to use various active learning strategies in the classroom. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Active machine learning for rapid landslide inventory mapping with VHR satellite images (Invited)

    NASA Astrophysics Data System (ADS)

    Stumpf, A.; Lachiche, N.; Malet, J.; Kerle, N.; Puissant, A.

    2013-12-01

    VHR satellite images have become a primary source for landslide inventory mapping after major triggering events such as earthquakes and heavy rainfalls. Visual image interpretation is still the prevailing standard method for operational purposes but is time-consuming and not well suited to fully exploit the increasingly better supply of remote sensing data. Recent studies have addressed the development of more automated image analysis workflows for landslide inventory mapping. In particular object-oriented approaches that account for spatial and textural image information have been demonstrated to be more adequate than pixel-based classification but manually elaborated rule-based classifiers are difficult to adapt under changing scene characteristics. Machine learning algorithm allow learning classification rules for complex image patterns from labelled examples and can be adapted straightforwardly with available training data. In order to reduce the amount of costly training data active learning (AL) has evolved as a key concept to guide the sampling for many applications. The underlying idea of AL is to initialize a machine learning model with a small training set, and to subsequently exploit the model state and data structure to iteratively select the most valuable samples that should be labelled by the user. With relatively few queries and labelled samples, an AL strategy yields higher accuracies than an equivalent classifier trained with many randomly selected samples. This study addressed the development of an AL method for landslide mapping from VHR remote sensing images with special consideration of the spatial distribution of the samples. Our approach [1] is based on the Random Forest algorithm and considers the classifier uncertainty as well as the variance of potential sampling regions to guide the user towards the most valuable sampling areas. The algorithm explicitly searches for compact regions and thereby avoids a spatially disperse sampling pattern

  18. Assessing the Effectiveness of Learning Solid Geometry by Using an Augmented Reality-Assisted Learning System

    ERIC Educational Resources Information Center

    Lin, Hao-Chiang Koong; Chen, Mei-Chi; Chang, Chih-Kai

    2015-01-01

    This study integrates augmented reality (AR) technology into teaching activities to design a learning system that assists junior high-school students in learning solid geometry. The following issues are addressed: (1) the relationship between achievements in mathematics and performance in spatial perception; (2) whether system-assisted learning…

  19. Creating Stimulating Learning and Thinking Using New Models of Activity-Based Learning and Metacognitive-Based Activities

    ERIC Educational Resources Information Center

    Pang, Katherine

    2010-01-01

    The purpose of this paper is to present a novel way to stimulate learning, creativity, and thinking based on a new understanding of activity-based learning (ABL) and two methods for developing metacognitive-based activities for the classroom. ABL, in this model, is based on the premise that teachers are distillers and facilitators of information…

  20. Active Learning by Querying Informative and Representative Examples.

    PubMed

    Huang, Sheng-Jun; Jin, Rong; Zhou, Zhi-Hua

    2014-10-01

    Active learning reduces the labeling cost by iteratively selecting the most valuable data to query their labels. It has attracted a lot of interests given the abundance of unlabeled data and the high cost of labeling. Most active learning approaches select either informative or representative unlabeled instances to query their labels, which could significantly limit their performance. Although several active learning algorithms were proposed to combine the two query selection criteria, they are usually ad hoc in finding unlabeled instances that are both informative and representative. We address this limitation by developing a principled approach, termed QUIRE, based on the min-max view of active learning. The proposed approach provides a systematic way for measuring and combining the informativeness and representativeness of an unlabeled instance. Further, by incorporating the correlation among labels, we extend the QUIRE approach to multi-label learning by actively querying instance-label pairs. Extensive experimental results show that the proposed QUIRE approach outperforms several state-of-the-art active learning approaches in both single-label and multi-label learning.

  1. Learning Activities for the Young Handicapped Child.

    ERIC Educational Resources Information Center

    Bailey, Don; And Others

    Presented is a collection of learning activities for the young handicapped child covering 295 individual learning objectives in six areas of development: gross motor skills, fine motor skills, social skills, self help skills, cognitive skills, and language skills. Provided for each learning activity are the teaching objective, teaching procedures,…

  2. Effects of prenatal stress and neonatal handling on anxiety, spatial learning and serotonergic system of male offspring mice.

    PubMed

    Akatsu, Shigemi; Ishikawa, Chihiro; Takemura, Kaori; Ohtani, Akiko; Shiga, Takashi

    2015-12-01

    Environmental factors during perinatal period have various effects on behavior. The present study examined the effects of prenatal stress and neonatal handling on anxiety and spatial learning of offspring. Prenatal stress increased anxiety-related behavior of adult offspring, whereas neonatal handling had no effect. In contrast, spatial learning was not affected by prenatal stress, but improved by neonatal handling in both prenatally stressed and non-stressed mice. Next, to elucidate possible brain mechanisms mediating effects of environmental factors on behavior, we focused on serotonin (5-HT) system in the frontal cortex and hippocampus which is involved in anxiety and learning. We examined effects of environmental factors on the mRNA expression of 5-HT1A, 5-HT2A and 5-HT2C receptors in the frontal cortex and hippocampus during postnatal period and adulthood. Both prenatal stress and neonatal handling altered the mRNA expression of 5-HT receptors. These effects were dependent on environmental factors, brain regions and developmental stages. In summary, the present study revealed that prenatal stress and neonatal handling had differential effects on anxiety and spatial learning of offspring, and concomitantly the expression of 5-HT receptors. It was also shown that the effects of prenatal stress on 5-HT system were recovered partially by neonatal handling. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  3. Ensemble learning for spatial interpolation of soil potassium content based on environmental information.

    PubMed

    Liu, Wei; Du, Peijun; Wang, Dongchen

    2015-01-01

    One important method to obtain the continuous surfaces of soil properties from point samples is spatial interpolation. In this paper, we propose a method that combines ensemble learning with ancillary environmental information for improved interpolation of soil properties (hereafter, EL-SP). First, we calculated the trend value for soil potassium contents at the Qinghai Lake region in China based on measured values. Then, based on soil types, geology types, land use types, and slope data, the remaining residual was simulated with the ensemble learning model. Next, the EL-SP method was applied to interpolate soil potassium contents at the study site. To evaluate the utility of the EL-SP method, we compared its performance with other interpolation methods including universal kriging, inverse distance weighting, ordinary kriging, and ordinary kriging combined geographic information. Results show that EL-SP had a lower mean absolute error and root mean square error than the data produced by the other models tested in this paper. Notably, the EL-SP maps can describe more locally detailed information and more accurate spatial patterns for soil potassium content than the other methods because of the combined use of different types of environmental information; these maps are capable of showing abrupt boundary information for soil potassium content. Furthermore, the EL-SP method not only reduces prediction errors, but it also compliments other environmental information, which makes the spatial interpolation of soil potassium content more reasonable and useful.

  4. Assessing Student Behaviors and Motivation for Actively Learning Biology

    NASA Astrophysics Data System (ADS)

    Moore, Michael Edward

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is why active learning is such an effective instructional tool and the limits of this instructional method’s ability to influence performance. This dissertation builds a case in three steps for why active learning is an effective instructional tool. In step one, I assessed the influence of different types of active learning (clickers, group activities, and whole class discussions) on student engagement behavior in one semester of two different introductory biology courses and found that active learning positively influenced student engagement behavior significantly more than lecture. For step two, I examined over four semesters whether student engagement behavior was a predictor of performance and found participation (engagement behavior) in the online (video watching) and in-class course activities (clicker participation) that I measure were significant predictors of performance. In the third, I assessed whether certain active learning satisfied the psychological needs that lead to students’ intrinsic motivation to participate in those activities when compared over two semesters and across two different institutions of higher learning. Findings from this last step show us that student’s perceptions of autonomy, competency, and relatedness in doing various types of active learning are significantly higher than lecture and consistent across two institutions of higher learning. Lastly, I tie everything together, discuss implications of the research, and address future directions for research on biology student motivation and behavior.

  5. Participation of hippocampal agmatine in spatial learning: an in vivo microdialysis study.

    PubMed

    Rushaidhi, Madihah; Jing, Yu; Zhang, Hu; Liu, Ping

    2013-02-01

    Agmatine, decarboxylated arginine, is widely distributed in mammalian brains and is considered as a novel putative neurotransmitter. Recent research demonstrates spatial learning-induced increases in agmatine in memory-related structures at the tissue and presynaptic terminal levels. By using the in vivo microdialysis technique coupled with highly sensitive liquid chromatography/mass spectrometry assay, we investigated dynamic changes of extracellular agmatine in the rat dorsal hippocampus before, during and after water maze training to find a fixed hidden platform on the first and forth day of testing. It was firstly noted that the basal level of extracellular agmatine was significantly elevated on day 4. While swimming per se had no effect, a rapid rise (2-6 folds) in extracellular agmatine was observed during water maze training regardless of testing day. Such learning-induced rise was found to successively lessen across the multiple blocks of training on day 1. However, this pattern was reversed on day 4 when the platform was removed during the final training trial. The present study, for the first time, demonstrates water maze training-induced increase of extracellular agmatine in the dorsal hippocampus. The results suggest a role of endogenous agmatine in the encoding and retrieval of spatial information. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Spatial and Activities Models of Airport Based on GIS and Dynamic Model

    NASA Astrophysics Data System (ADS)

    Masri, R. M.; Purwaamijaya, I. M.

    2017-02-01

    The purpose of research were (1) a conceptual, functional model designed and implementation for spatial airports, (2) a causal, flow diagrams and mathematical equations made for airport activity, (3) obtained information on the conditions of space and activities at airports assessment, (4) the space and activities evaluation at airports based on national and international airport services standards, (5) options provided to improve the spatial and airport activities performance become the international standards airport. Descriptive method is used for the research. Husein Sastranegara Airport in Bandung, West Java, Indonesia was study location. The research was conducted on September 2015 to April 2016. A spatial analysis is used to obtain runway, taxiway and building airport geometric information. A system analysis is used to obtain the relationship between components in airports, dynamic simulation activity at airports and information on the results tables and graphs of dynamic model. Airport national and international standard could not be fulfilled by spatial and activity existing condition of Husein Sastranegara. Idea of re-location program is proposed as problem solving for constructing new airport which could be serving international air transportation.

  7. The Synergetic Effect of Learning Styles on the Interaction between Virtual Environments and the Enhancement of Spatial Thinking

    ERIC Educational Resources Information Center

    Hauptman, Hanoch; Cohen, Arie

    2011-01-01

    Students have difficulty learning 3D geometry; spatial thinking is an important aspect of the learning processes in this academic area. In light of the unique features of virtual environments and the influence of metacognitive processes (e.g., self-regulating questions) on the teaching of mathematics, we assumed that a combination of…

  8. History and Evolution of Active Learning Spaces

    ERIC Educational Resources Information Center

    Beichner, Robert J.

    2014-01-01

    This chapter examines active learning spaces as they have developed over the years. Consistently well-designed classrooms can facilitate active learning even though the details of implementing pedagogies may differ.

  9. GeoMapApp Learning Activities: Enabling the democratisation of geoscience learning

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.; Kluge, S.

    2011-12-01

    GeoMapApp Learning Activities (http://serc.carleton.edu/geomapapp) are step-by-step guided inquiry geoscience education activities that enable students to dictate the pace of learning. They can be used in the classroom or out of class, and their guided nature means that the requirement for teacher intervention is minimised which allows students to spend increased time analysing and understanding a broad range of geoscience data, content and concepts. Based upon GeoMapApp (http://www.geomapapp.org), a free, easy-to-use map-based data exploration and visualisation tool, each activity furnishes the educator with an efficient package of downloadable documents. This includes step-by-step student instructions and answer sheet; a teacher's edition annotated worksheet containing teaching tips, additional content and suggestions for further work; quizzes for use before and after the activity to assess learning; and a multimedia tutorial. The activities can be used by anyone at any time in any place with an internet connection. In essence, GeoMapApp Learning Activities provide students with cutting-edge technology, research-quality geoscience data sets, and inquiry-based learning in a virtual lab-like environment. Examples of activities so far created are student calculation and analysis of the rate of seafloor spreading, and present-day evidence on the seafloor for huge ancient landslides around the Hawaiian islands. The activities are designed primarily for students at the community college, high school and introductory undergraduate levels, exposing students to content and concepts typically found in those settings.

  10. Spatial and temporal adaptations that accompany increasing catching performance during learning.

    PubMed

    Mazyn, Liesbeth I N; Lenoir, Matthieu; Montagne, Gilles; Savelsbergh, Geert J P

    2007-11-01

    The authors studied changes in performance and kinematics during the acquisition of a 1-handed catch. Participants were 8 women who took an intensive 2-week training program during which they evolved from poor catchers to subexpert catchers. An increased temporal consistency, shift in spatial location of ball-hand contact away from the body, and higher peak velocity of the transport of the hand toward the ball accompanied their improvement in catching performance. Moreover, novice catchers first adjusted spatial characteristics of the catch to the task constraints and fine-tuned temporal features only later during learning. A principal components analysis on a large set of kinematic variables indicated that a successful catch depends on (a) forward displacement of the hand and (b) the dynamics of the hand closure, thereby providing a kinematic underpinning for the traditional transport-manipulation dissociation in the grasping and catching literature.

  11. Sex Differences in Using Spatial and Verbal Abilities Influence Route Learning Performance in a Virtual Environment: A Comparison of 6- to 12-Year Old Boys and Girls

    PubMed Central

    Merrill, Edward C.; Yang, Yingying; Roskos, Beverly; Steele, Sara

    2016-01-01

    Previous studies have reported sex differences in wayfinding performance among adults. Men are typically better at using Euclidean information and survey strategies while women are better at using landmark information and route strategies. However, relatively few studies have examined sex differences in wayfinding in children. This research investigated relationships between route learning performance and two general abilities: spatial ability and verbal memory in 153 boys and girls between 6- to 12-years-old. Children completed a battery of spatial ability tasks (a two-dimension mental rotation task, a paper folding task, a visuo-spatial working memory task, and a Piagetian water level task) and a verbal memory task. In the route learning task, they had to learn a route through a series of hallways presented via computer. Boys had better overall route learning performance than did girls. In fact, the difference between boys and girls was constant across the age range tested. Structural equation modeling of the children’s performance revealed that spatial abilities and verbal memory were significant contributors to route learning performance. However, there were different patterns of correlates for boys and girls. For boys, spatial abilities contributed to route learning while verbal memory did not. In contrast, for girls both spatial abilities and verbal memory contributed to their route learning performance. This difference may reflect the precursor of a strategic difference between boys and girls in wayfinding that is commonly observed in adults. PMID:26941701

  12. Sex Differences in Using Spatial and Verbal Abilities Influence Route Learning Performance in a Virtual Environment: A Comparison of 6- to 12-Year Old Boys and Girls.

    PubMed

    Merrill, Edward C; Yang, Yingying; Roskos, Beverly; Steele, Sara

    2016-01-01

    Previous studies have reported sex differences in wayfinding performance among adults. Men are typically better at using Euclidean information and survey strategies while women are better at using landmark information and route strategies. However, relatively few studies have examined sex differences in wayfinding in children. This research investigated relationships between route learning performance and two general abilities: spatial ability and verbal memory in 153 boys and girls between 6- to 12-years-old. Children completed a battery of spatial ability tasks (a two-dimension mental rotation task, a paper folding task, a visuo-spatial working memory task, and a Piagetian water level task) and a verbal memory task. In the route learning task, they had to learn a route through a series of hallways presented via computer. Boys had better overall route learning performance than did girls. In fact, the difference between boys and girls was constant across the age range tested. Structural equation modeling of the children's performance revealed that spatial abilities and verbal memory were significant contributors to route learning performance. However, there were different patterns of correlates for boys and girls. For boys, spatial abilities contributed to route learning while verbal memory did not. In contrast, for girls both spatial abilities and verbal memory contributed to their route learning performance. This difference may reflect the precursor of a strategic difference between boys and girls in wayfinding that is commonly observed in adults.

  13. Hippocampal Insulin Resistance Impairs Spatial Learning and Synaptic Plasticity.

    PubMed

    Grillo, Claudia A; Piroli, Gerardo G; Lawrence, Robert C; Wrighten, Shayna A; Green, Adrienne J; Wilson, Steven P; Sakai, Randall R; Kelly, Sandra J; Wilson, Marlene A; Mott, David D; Reagan, Lawrence P

    2015-11-01

    Insulin receptors (IRs) are expressed in discrete neuronal populations in the central nervous system, including the hippocampus. To elucidate the functional role of hippocampal IRs independent of metabolic function, we generated a model of hippocampal-specific insulin resistance using a lentiviral vector expressing an IR antisense sequence (LV-IRAS). LV-IRAS effectively downregulates IR expression in the rat hippocampus without affecting body weight, adiposity, or peripheral glucose homeostasis. Nevertheless, hippocampal neuroplasticity was impaired in LV-IRAS-treated rats. High-frequency stimulation, which evoked robust long-term potentiation (LTP) in brain slices from LV control rats, failed to evoke LTP in LV-IRAS-treated rats. GluN2B subunit levels, as well as the basal level of phosphorylation of GluA1, were reduced in the hippocampus of LV-IRAS rats. Moreover, these deficits in synaptic transmission were associated with impairments in spatial learning. We suggest that alterations in the expression and phosphorylation of glutamate receptor subunits underlie the alterations in LTP and that these changes are responsible for the impairment in hippocampal-dependent learning. Importantly, these learning deficits are strikingly similar to the impairments in complex task performance observed in patients with diabetes, which strengthens the hypothesis that hippocampal insulin resistance is a key mediator of cognitive deficits independent of glycemic control. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  14. Learning from Heterogeneous Data Sources: An Application in Spatial Proteomics

    PubMed Central

    Breckels, Lisa M.; Holden, Sean B.; Wojnar, David; Mulvey, Claire M.; Christoforou, Andy; Groen, Arnoud; Trotter, Matthew W. B.; Kohlbacher, Oliver; Lilley, Kathryn S.; Gatto, Laurent

    2016-01-01

    Sub-cellular localisation of proteins is an essential post-translational regulatory mechanism that can be assayed using high-throughput mass spectrometry (MS). These MS-based spatial proteomics experiments enable us to pinpoint the sub-cellular distribution of thousands of proteins in a specific system under controlled conditions. Recent advances in high-throughput MS methods have yielded a plethora of experimental spatial proteomics data for the cell biology community. Yet, there are many third-party data sources, such as immunofluorescence microscopy or protein annotations and sequences, which represent a rich and vast source of complementary information. We present a unique transfer learning classification framework that utilises a nearest-neighbour or support vector machine system, to integrate heterogeneous data sources to considerably improve on the quantity and quality of sub-cellular protein assignment. We demonstrate the utility of our algorithms through evaluation of five experimental datasets, from four different species in conjunction with four different auxiliary data sources to classify proteins to tens of sub-cellular compartments with high generalisation accuracy. We further apply the method to an experiment on pluripotent mouse embryonic stem cells to classify a set of previously unknown proteins, and validate our findings against a recent high resolution map of the mouse stem cell proteome. The methodology is distributed as part of the open-source Bioconductor pRoloc suite for spatial proteomics data analysis. PMID:27175778

  15. Active Learning Environment with Lenses in Geometric Optics

    ERIC Educational Resources Information Center

    Tural, Güner

    2015-01-01

    Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…

  16. Learning Style Activities for Computer Applications. Field Review.

    ERIC Educational Resources Information Center

    Patton, Jan

    This document contains a composite of learning activities for use in a secondary-level course in business computer applications. The collection is unique in that the individual learning activities constituting it have each been tailored to one or more of the diverse learning styles possessed by individual students. The activities are grouped into…

  17. Spatial organization of hominin activities at Gesher Benot Ya'aqov, Israel.

    PubMed

    Alperson-Afil, Nira; Sharon, Gonen; Kislev, Mordechai; Melamed, Yoel; Zohar, Irit; Ashkenazi, Shosh; Rabinovich, Rivka; Biton, Rebecca; Werker, Ella; Hartman, Gideon; Feibel, Craig; Goren-Inbar, Naama

    2009-12-18

    The spatial designation of discrete areas for different activities reflects formalized conceptualization of a living space. The results of spatial analyses of a Middle Pleistocene Acheulian archaeological horizon (about 750,000 years ago) at Gesher Benot Ya'aqov, Israel, indicate that hominins differentiated their activities (stone knapping, tool use, floral and faunal processing and consumption) across space. These were organized in two main areas, including multiple activities around a hearth. The diversity of human activities and the distinctive patterning with which they are organized implies advanced organizational skills of the Gesher Benot Ya'aqov hominins.

  18. Collegewide Promotion of E-Learning/Active Learning and Faculty Development

    ERIC Educational Resources Information Center

    Ogawa, Nobuyuki; Shimizu, Akira

    2016-01-01

    Japanese National Institutes of Technology have revealed a plan to strongly promote e-Learning and active learning under the common schematization of education in over 50 campuses nationwide. Our e-Learning and ICT-driven education practiced for more than fifteen years were highly evaluated, and is playing a leading role in promoting e-Learning…

  19. Learning from number board games: you learn what you encode.

    PubMed

    Laski, Elida V; Siegler, Robert S

    2014-03-01

    We tested the hypothesis that encoding the numerical-spatial relations in a number board game is a key process in promoting learning from playing such games. Experiment 1 used a microgenetic design to examine the effects on learning of the type of counting procedure that children use. As predicted, having kindergartners count-on from their current number on the board while playing a 0-100 number board game facilitated their encoding of the numerical-spatial relations on the game board and improved their number line estimates, numeral identification, and count-on skill. Playing the same game using the standard count-from-1 procedure led to considerably less learning. Experiment 2 demonstrated that comparable improvement in number line estimation does not occur with practice encoding the numerals 1-100 outside of the context of a number board game. The general importance of aligning learning activities and physical materials with desired mental representations is discussed. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  20. Pedagogical Distance: Explaining Misalignment in Student-Driven Online Learning Activities Using Activity Theory

    ERIC Educational Resources Information Center

    Westberry, Nicola; Franken, Margaret

    2015-01-01

    This paper provides an Activity Theory analysis of two online student-driven interactive learning activities to interrogate assumptions that such groups can effectively learn in the absence of the teacher. Such an analysis conceptualises learning tasks as constructed objects that drive pedagogical activity. The analysis shows a disconnect between…

  1. Learning strategy preference of 5XFAD transgenic mice depends on the sequence of place/spatial and cued training in the water maze task.

    PubMed

    Cho, Woo-Hyun; Park, Jung-Cheol; Chung, ChiHye; Jeon, Won Kyung; Han, Jung-Soo

    2014-10-15

    Learning strategy preference was assessed in 5XFAD mice, which carry 5 familial Alzheimer's disease (AD) mutations. Mice were sequentially trained in cued and place/spatial versions of the water maze task. After training, a strategy preference test was conducted in which mice were required to choose between the spatial location where the platform had previously been during the place/spatial training, and a visible platform in a new location. 5XFAD and non-transgenic control mice showed equivalent escape performance in both training tasks. However, in the strategy preference test, 5XFAD mice preferred a cued strategy relative to control mice. When the training sequence was presented in the reverse order (i.e., place/spatial training before cued training), 5XFAD mice showed impairments in place/spatial training, but no differences in cued training or in the strategy preference test comparing to control. Analysis of regional Aβ42 deposition in brains of 5XFAD mice showed that the hippocampus, which is involved in the place/spatial learning strategy, had the highest levels of Aβ42 and the dorsal striatum, which is involved in cued learning strategy, showed a small increase in Aβ42 levels. The effect of training protocol order on performance, and regional differences in Aβ42 deposition observed in 5XFAD mice, suggest differential functional recruitment of brain structures related to learning in healthy and AD individuals. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Manifold Regularized Experimental Design for Active Learning.

    PubMed

    Zhang, Lining; Shum, Hubert P H; Shao, Ling

    2016-12-02

    Various machine learning and data mining tasks in classification require abundant data samples to be labeled for training. Conventional active learning methods aim at labeling the most informative samples for alleviating the labor of the user. Many previous studies in active learning select one sample after another in a greedy manner. However, this is not very effective because the classification models has to be retrained for each newly labeled sample. Moreover, many popular active learning approaches utilize the most uncertain samples by leveraging the classification hyperplane of the classifier, which is not appropriate since the classification hyperplane is inaccurate when the training data are small-sized. The problem of insufficient training data in real-world systems limits the potential applications of these approaches. This paper presents a novel method of active learning called manifold regularized experimental design (MRED), which can label multiple informative samples at one time for training. In addition, MRED gives an explicit geometric explanation for the selected samples to be labeled by the user. Different from existing active learning methods, our method avoids the intrinsic problems caused by insufficiently labeled samples in real-world applications. Various experiments on synthetic datasets, the Yale face database and the Corel image database have been carried out to show how MRED outperforms existing methods.

  3. Active learning: a step towards automating medical concept extraction.

    PubMed

    Kholghi, Mahnoosh; Sitbon, Laurianne; Zuccon, Guido; Nguyen, Anthony

    2016-03-01

    This paper presents an automatic, active learning-based system for the extraction of medical concepts from clinical free-text reports. Specifically, (1) the contribution of active learning in reducing the annotation effort and (2) the robustness of incremental active learning framework across different selection criteria and data sets are determined. The comparative performance of an active learning framework and a fully supervised approach were investigated to study how active learning reduces the annotation effort while achieving the same effectiveness as a supervised approach. Conditional random fields as the supervised method, and least confidence and information density as 2 selection criteria for active learning framework were used. The effect of incremental learning vs standard learning on the robustness of the models within the active learning framework with different selection criteria was also investigated. The following 2 clinical data sets were used for evaluation: the Informatics for Integrating Biology and the Bedside/Veteran Affairs (i2b2/VA) 2010 natural language processing challenge and the Shared Annotated Resources/Conference and Labs of the Evaluation Forum (ShARe/CLEF) 2013 eHealth Evaluation Lab. The annotation effort saved by active learning to achieve the same effectiveness as supervised learning is up to 77%, 57%, and 46% of the total number of sequences, tokens, and concepts, respectively. Compared with the random sampling baseline, the saving is at least doubled. Incremental active learning is a promising approach for building effective and robust medical concept extraction models while significantly reducing the burden of manual annotation. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. A Novel Teaching Tool Combined With Active-Learning to Teach Antimicrobial Spectrum Activity.

    PubMed

    MacDougall, Conan

    2017-03-25

    Objective. To design instructional methods that would promote long-term retention of knowledge of antimicrobial pharmacology, particularly the spectrum of activity for antimicrobial agents, in pharmacy students. Design. An active-learning approach was used to teach selected sessions in a required antimicrobial pharmacology course. Students were expected to review key concepts from the course reader prior to the in-class sessions. During class, brief concept reviews were followed by active-learning exercises, including a novel schematic method for learning antimicrobial spectrum of activity ("flower diagrams"). Assessment. At the beginning of the next quarter (approximately 10 weeks after the in-class sessions), 360 students (three yearly cohorts) completed a low-stakes multiple-choice examination on the concepts in antimicrobial spectrum of activity. When data for students was pooled across years, the mean number of correct items was 75.3% for the items that tested content delivered with the active-learning method vs 70.4% for items that tested content delivered via traditional lecture (mean difference 4.9%). Instructor ratings on student evaluations of the active-learning approach were high (mean scores 4.5-4.8 on a 5-point scale) and student comments were positive about the active-learning approach and flower diagrams. Conclusion. An active-learning approach led to modestly higher scores in a test of long-term retention of pharmacology knowledge and was well-received by students.

  5. A Novel Teaching Tool Combined With Active-Learning to Teach Antimicrobial Spectrum Activity

    PubMed Central

    2017-01-01

    Objective. To design instructional methods that would promote long-term retention of knowledge of antimicrobial pharmacology, particularly the spectrum of activity for antimicrobial agents, in pharmacy students. Design. An active-learning approach was used to teach selected sessions in a required antimicrobial pharmacology course. Students were expected to review key concepts from the course reader prior to the in-class sessions. During class, brief concept reviews were followed by active-learning exercises, including a novel schematic method for learning antimicrobial spectrum of activity (“flower diagrams”). Assessment. At the beginning of the next quarter (approximately 10 weeks after the in-class sessions), 360 students (three yearly cohorts) completed a low-stakes multiple-choice examination on the concepts in antimicrobial spectrum of activity. When data for students was pooled across years, the mean number of correct items was 75.3% for the items that tested content delivered with the active-learning method vs 70.4% for items that tested content delivered via traditional lecture (mean difference 4.9%). Instructor ratings on student evaluations of the active-learning approach were high (mean scores 4.5-4.8 on a 5-point scale) and student comments were positive about the active-learning approach and flower diagrams. Conclusion. An active-learning approach led to modestly higher scores in a test of long-term retention of pharmacology knowledge and was well-received by students. PMID:28381885

  6. Sex differences in retention after a visual or a spatial discrimination learning task in brood parasitic shiny cowbirds.

    PubMed

    Astié, Andrea A; Scardamaglia, Romina C; Muzio, Rubén N; Reboreda, Juan C

    2015-10-01

    Females of avian brood parasites, like the shiny cowbird (Molothrus bonariensis), locate host nests and on subsequent days return to parasitize them. This ecological pressure for remembering the precise location of multiple host nests may have selected for superior spatial memory abilities. We tested the hypothesis that shiny cowbirds show sex differences in spatial memory abilities associated with sex differences in host nest searching behavior and relative hippocampus volume. We evaluated sex differences during acquisition, reversal and retention after extinction in a visual and a spatial discrimination learning task. Contrary to our prediction, females did not outperform males in the spatial task in either the acquisition or the reversal phases. Similarly, there were no sex differences in either phase in the visual task. During extinction, in both tasks the retention of females was significantly higher than expected by chance up to 50 days after the last rewarded session (∼85-90% of the trials with correct responses), but the performance of males at that time did not differ than that expected by chance. This last result shows a long-term memory capacity of female shiny cowbirds, which were able to remember information learned using either spatial or visual cues after a long retention interval. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. THE EFFECT OF SELECTED SPATIAL DESIGN FACTORS IN EDUCATIONAL DISPLAYS ON LEARNING AND RETENTION.

    ERIC Educational Resources Information Center

    ROCKETT, AGNES M.; SAUL, EZRA V.

    CRITERIA WERE DEVELOPED FOR THE DESIGN OF LABELS IN VERBAL-PICTORIAL EDUCATIONAL DISPLAYS. THE INFLUENCE OF SPATIAL DISTRIBUTION OF LABELS ON EASE OF LEARNING AND DEGREE OF RETENTION WAS INVESTIGATED. THIRTY ANATOMICAL PARTS OF THE HUMAN DIGESTIVE TRACT WERE LABELED ON 10 CHARTS SHOWING THE SAME DIAGRAM OF THE HUMAN BODY, BUT WITH DIFFERENT…

  8. Using assistive technology adaptations to include students with learning disabilities in cooperative learning activities.

    PubMed

    Bryant, D P; Bryant, B R

    1998-01-01

    Cooperative learning (CL) is a common instructional arrangement that is used by classroom teachers to foster academic achievement and social acceptance of students with and without learning disabilities. Cooperative learning is appealing to classroom teachers because it can provide an opportunity for more instruction and feedback by peers than can be provided by teachers to individual students who require extra assistance. Recent studies suggest that students with LD may need adaptations during cooperative learning activities. The use of assistive technology adaptations may be necessary to help some students with LD compensate for their specific learning difficulties so that they can engage more readily in cooperative learning activities. A process for integrating technology adaptations into cooperative learning activities is discussed in terms of three components: selecting adaptations, monitoring the use of the adaptations during cooperative learning activities, and evaluating the adaptations' effectiveness. The article concludes with comments regarding barriers to and support systems for technology integration, technology and effective instructional practices, and the need to consider technology adaptations for students who have learning disabilities.

  9. Long-lasting spatial learning and memory impairments caused by chronic cerebral hypoperfusion associate with a dynamic change of HCN1/HCN2 expression in hippocampal CA1 region.

    PubMed

    Luo, Pan; Lu, Yun; Li, Changjun; Zhou, Mei; Chen, Cheng; Lu, Qing; Xu, Xulin; He, Zhi; Guo, Lianjun

    2015-09-01

    Chronic cerebral hypoperfusion (CCH) causes learning and memory impairments and increases the risk of Alzheimer disease (AD) and vascular dementia (VD) through several biologically plausible pathways, yet the mechanisms underlying the disease process remained unclear particularly in a temporal manner. We performed permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO) to induce CCH. To determine whether hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are altered at different stages of cognitive impairment caused by CCH, adult male SD rats were randomly distributed into sham-operated 4, 8 and 12weeks group, 2VO 4, 8 and 12weeks group. Learning and memory performance were evaluated with Morris water maze (MWM) and long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. Expression of NeuN, HCN1 and HCN2 in hippocampal CA1, DG and CA3 areas was quantified by immunohistochemistry and western blotting. Our data showed that CCH induced a remarkable spatial learning and memory deficits in rats of 2VO 4, 8, and 12weeks group although neuronal loss only occurred after 4weeks of 2VO surgery in CA1. In addition, a significant reduction of HCN1 surface expression in CA1 was observed in the group that suffered 4weeks ischemia but neither 8 nor 12weeks. However, HCN2 surface expression in CA1 increased throughout the ischemia time-scales (4, 8 and 12w). Our findings indicate spatial learning and memory deficits in the CCH model are associated with disturbed HCN1 and HCN2 surface expression in hippocampal CA1. The altered patterns of both HCN1 and HCN2 surface expression may be implicated in the early stage (4w) of spatial learning and memory impairments; and the stable and long-lasting impairments of spatial learning and memory may partially attribute to the up-regulated HCN2 surface expression. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Adaptive Batch Mode Active Learning.

    PubMed

    Chakraborty, Shayok; Balasubramanian, Vineeth; Panchanathan, Sethuraman

    2015-08-01

    Active learning techniques have gained popularity to reduce human effort in labeling data instances for inducing a classifier. When faced with large amounts of unlabeled data, such algorithms automatically identify the exemplar and representative instances to be selected for manual annotation. More recently, there have been attempts toward a batch mode form of active learning, where a batch of data points is simultaneously selected from an unlabeled set. Real-world applications require adaptive approaches for batch selection in active learning, depending on the complexity of the data stream in question. However, the existing work in this field has primarily focused on static or heuristic batch size selection. In this paper, we propose two novel optimization-based frameworks for adaptive batch mode active learning (BMAL), where the batch size as well as the selection criteria are combined in a single formulation. We exploit gradient-descent-based optimization strategies as well as properties of submodular functions to derive the adaptive BMAL algorithms. The solution procedures have the same computational complexity as existing state-of-the-art static BMAL techniques. Our empirical results on the widely used VidTIMIT and the mobile biometric (MOBIO) data sets portray the efficacy of the proposed frameworks and also certify the potential of these approaches in being used for real-world biometric recognition applications.

  11. Using Oceanography to Support Active Learning

    NASA Astrophysics Data System (ADS)

    Byfield, V.

    2012-04-01

    Teachers are always on the lookout for material to give their brightest students, in order to keep them occupied, stimulated and challenged, while the teacher gets on with helping the rest. They are also looking for material that can inspire and enthuse those who think that school is 'just boring!' Oceanography, well presented, has the capacity to do both. As a relatively young science, oceanography is not a core curriculum subject (possibly an advantage), but it draws on the traditional sciences of biology, chemistry, physic and geology, and can provide wonderful examples for teaching concepts in school sciences. It can also give good reasons for learning science, maths and technology. Exciting expeditions (research cruises) to far-flung places; opportunities to explore new worlds, a different angle on topical debates such as climate change, pollution, or conservation can bring a new life to old subjects. Access to 'real' data from satellites or Argo floats can be used to develop analytical and problem solving skills. The challenge is to make all this available in a form that can easily be used by teachers and students to enhance the learning experience. We learn by doing. Active teaching methods require students to develop their own concepts of what they are learning. This stimulates new neural connections in the brain - the physical manifestation of learning. There is a large body of evidence to show that active learning is much better remembered and understood. Active learning develops thinking skills through analysis, problem solving, and evaluation. It helps learners to use their knowledge in realistic and useful ways, and see its importance and relevance. Most importantly, properly used, active learning is fun. This paper presents experiences from a number of education outreach projects that have involved the National Oceanography Centre in Southampton, UK. All contain some element of active learning - from quizzes and puzzles to analysis of real data from

  12. Blue light filtered white light induces depression-like responses and temporary spatial learning deficits in rats.

    PubMed

    Meng, Qinghe; Lian, Yuzheng; Jiang, Jianjun; Wang, Wei; Hou, Xiaohong; Pan, Yao; Chu, Hongqian; Shang, Lanqin; Wei, Xuetao; Hao, Weidong

    2018-04-18

    Ambient light has a vital impact on mood and cognitive functions. Blue light has been previously reported to play a salient role in the antidepressant effect via melanopsin. Whether blue light filtered white light (BFW) affects mood and cognitive functions remains unclear. The present study aimed to investigate whether BFW led to depression-like symptoms and cognitive deficits including spatial learning and memory abilities in rats, and whether they were associated with the light-responsive function in retinal explants. Male Sprague-Dawley albino rats were randomly divided into 2 groups (n = 10) and treated with a white light-emitting diode (LED) light source and BFW light source, respectively, under a standard 12 : 12 h L/D condition over 30 days. The sucrose consumption test, forced swim test (FST) and the level of plasma corticosterone (CORT) were employed to evaluate depression-like symptoms in rats. Cognitive functions were assessed by the Morris water maze (MWM) test. A multi-electrode array (MEA) system was utilized to measure electro-retinogram (ERG) responses induced by white or BFW flashes. The effect of BFW over 30 days on depression-like responses in rats was indicated by decreased sucrose consumption in the sucrose consumption test, an increased immobility time in the FST and an elevated level of plasma CORT. BFW led to temporary spatial learning deficits in rats, which was evidenced by prolonged escape latency and swimming distances in the spatial navigation test. However, no changes were observed in the short memory ability of rats treated with BFW. The micro-ERG results showed a delayed implicit time and reduced amplitudes evoked by BFW flashes compared to the white flash group. BFW induces depression-like symptoms and temporary spatial learning deficits in rats, which might be closely related to the impairment of light-evoked output signals in the retina.

  13. Introduction of active learning method in learning physiology by MBBS students.

    PubMed

    Gilkar, Suhail Ahmad; Lone, Shabiruddin; Lone, Riyaz Ahmad

    2016-01-01

    Active learning has received considerable attention over the past several years, often presented or perceived as a radical change from traditional instruction methods. Current research on learning indicates that using a variety of teaching strategies in the classroom increases student participation and learning. To introduce active learning methodology, i.e., "jigsaw technique" in undergraduate medical education and assess the student and faculty response to it. This study was carried out in the Department of Physiology in a Medical College of North India. A topic was chosen and taught using one of the active learning methods (ALMs), i.e., jigsaw technique. An instrument (questionnaire) was developed in English through an extensive review of literature and was properly validated. The students were asked to give their response on a five-point Likert scale. The feedback was kept anonymous. Faculty also provided their feedback in a separately provided feedback proforma. The data were collected, compiled, and analyzed. Of 150 students of MBBS-first year batch 2014, 142 participated in this study along with 14 faculty members of the Physiology Department. The majority of the students (>90%) did welcome the introduction of ALM and strongly recommended the use of such methods in teaching many more topics in future. 100% faculty members were of the opinion that many more topics shall be taken up using ALMs. This study establishes the fact that both the medical students and faculty want a change from the traditional way of passive, teacher-centric learning, to the more active teaching-learning techniques.

  14. Using higher-level inquiry to improve spatial ability in an introductory geology course

    NASA Astrophysics Data System (ADS)

    Stevens, Lacey A.

    Visuo-spatial skills, the ability to visually take in information and create a mental image are crucial for success in fields involving science, technology, engineering, and math (STEM) as well as fine arts. Unfortunately, due to a lack of curriculum focused on developing spatial skills, students enrolled in introductory college-level science courses tend to have difficulty with spatially-related activities. One of the best ways to engage students in science activities is through a learning and teaching strategy called inquiry. There are lower levels of inquiry wherein learning and problem-solving are guided by instructions and higher levels of inquiry wherein students have a greater degree of autonomy in learning and creating their own problem-solving strategy. A study involving 112 participants was conducted during the fall semester in 2014 at Bowling Green State University (BGSU) in an 1040 Introductory Geology Lab to determine if a new, high-level, inquiry-based lab would increase participants' spatial skills more than the traditional, low-level inquiry lab. The study also evaluated whether a higher level of inquiry differentially affected low versus high spatial ability participants. Participants were evaluated using a spatial ability assessment, and pre- and post-tests. The results of this study show that for 3-D to 2-D visualization, the higher-level inquiry lab increased participants' spatial ability more than the lower-level inquiry lab. For spatial rotational skills, all participants' spatial ability scores improved, regardless of the level of inquiry to which they were exposed. Low and high spatial ability participants were not differentially affected. This study demonstrates that a lab designed with a higher level of inquiry can increase students' spatial ability more than a lab with a low level of inquiry. A lab with a higher level of inquiry helped all participants, regardless of their initial spatial ability level. These findings show that curriculum

  15. Active Learning Is Not Enough

    ERIC Educational Resources Information Center

    Casem, Merri Lynn

    2006-01-01

    I have examined how frequency of assessment impacts learning in an undergraduate biology course employing a student-centered, active-learning pedagogy. Frequent assessment was associated with better student performance and greater retention of course concepts. Improvement of higher-order thinking skills may require more classroom practice.…

  16. Thrombin-induced microglial activation impairs hippocampal neurogenesis and spatial memory ability in mice.

    PubMed

    Yang, Yuan; Zhang, Meikui; Kang, Xiaoni; Jiang, Chen; Zhang, Huan; Wang, Pei; Li, Jingjing

    2015-09-26

    To investigate the effects of microglia/macrophages activation induced by intrastriatal thrombin injection on dentate gyrus neurogenesis and spatial memory ability in mice. The male C57BL/6 mice were divided into 4 groups of 10: sham, intracerebral hemorrhage (ICH), ICH + hirudin (thrombin inhibitor), and ICH + indometacin (Indo, an anti-inflammation drug). ICH model was created by intrastriatal thrombin (1U) injection. BrdU (50 mg/kg) was administrated on the same day after surgery for 6 consecutive days. Motor functions were evaluated with rotarod and beam walking tests. The spatial memory deficit was measured with Morris water maze (MWM). Cell quantification was performed for doublecortin (DCX, immature neuron), BrdU (S-phase proliferating cell population) and CD68 (activated microglia/macrophage) immune-reactive cells. Microglia/macrophages activation induced by intrastriatal thrombin injection reduced hippocampal neurogenesis and impaired spatial memory ability, but did not affect the motor function at 3 and 5 days post-injury. Both hirudin and indometacin reduced microglia/macrophages activation, enhanced hippocampal neurogenesis, and improved spatial memory ability in mice. Microglia/macrophages activation induced by intrastriatal thrombin injection might be responsible for the spatial memory deficit. Targeting both thrombin and inflammation systems in acute phase of ICH might be important in alleviating the significant spatial memory deficits.

  17. Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail; Volpi, Michele; Copa, Loris

    2010-05-01

    The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of

  18. [Combined effects of benzene and chromium on navigation learning and long-term spatial memory in rats].

    PubMed

    Tikhonov, V V; Ermolina, E V; Miroshnichenko, I V

    2009-01-01

    The impact of long-term intake of drinking water containing the high level of chromium and benzene or their mixture on navigation learning and long-term spatial memory was studied in a Morris water maze. The chronic neurotoxic effect of benzene was characterized by worse long-term memory, which upon its exposure in combination with chromium remained unchanged and failed to block the realization of a positive effect of chromium on the mechanism of navigation learning.

  19. Activity in Human Auditory Cortex Represents Spatial Separation Between Concurrent Sounds.

    PubMed

    Shiell, Martha M; Hausfeld, Lars; Formisano, Elia

    2018-05-23

    The primary and posterior auditory cortex (AC) are known for their sensitivity to spatial information, but how this information is processed is not yet understood. AC that is sensitive to spatial manipulations is also modulated by the number of auditory streams present in a scene (Smith et al., 2010), suggesting that spatial and nonspatial cues are integrated for stream segregation. We reasoned that, if this is the case, then it is the distance between sounds rather than their absolute positions that is essential. To test this hypothesis, we measured human brain activity in response to spatially separated concurrent sounds with fMRI at 7 tesla in five men and five women. Stimuli were spatialized amplitude-modulated broadband noises recorded for each participant via in-ear microphones before scanning. Using a linear support vector machine classifier, we investigated whether sound location and/or location plus spatial separation between sounds could be decoded from the activity in Heschl's gyrus and the planum temporale. The classifier was successful only when comparing patterns associated with the conditions that had the largest difference in perceptual spatial separation. Our pattern of results suggests that the representation of spatial separation is not merely the combination of single locations, but rather is an independent feature of the auditory scene. SIGNIFICANCE STATEMENT Often, when we think of auditory spatial information, we think of where sounds are coming from-that is, the process of localization. However, this information can also be used in scene analysis, the process of grouping and segregating features of a soundwave into objects. Essentially, when sounds are further apart, they are more likely to be segregated into separate streams. Here, we provide evidence that activity in the human auditory cortex represents the spatial separation between sounds rather than their absolute locations, indicating that scene analysis and localization processes may

  20. Weekly active-learning activities in a drug information and literature evaluation course.

    PubMed

    Timpe, Erin M; Motl, Susannah E; Eichner, Samantha F

    2006-06-15

    To incorporate learning activities into the weekly 2-hour Drug Information and Literature Evaluation class sessions to improve student ability and confidence in performing course objectives, as well as to assess student perception of the value of these activities. In-class activities that emphasized content and skills taught within class periods were created and implemented. Three different surveys assessing student ability and confidence in completing drug information and literature retrieval and evaluation tasks were administered prior to and following the appropriate class sessions. At the completion of the course, an additional evaluation was administered to assess the students' impressions of the value of the learning activities. Students reported increased ability and confidence in all course objectives. The teaching activities were also stated to be useful in students' learning of the material. Incorporation of weekly learning activities resulted in an improvement in student ability and confidence to perform course objectives. Students considered these activities to be beneficial and to contribute to the completion of course objectives.

  1. The Effect of Old Age on Supra-Span Learning of Visuo-Spatial Sequences under Incidental and Intentional Encoding Instructions

    ERIC Educational Resources Information Center

    Gagnon, Sylvain; Bedard, Marie-Josee; Turcotte, Josee

    2005-01-01

    Recent findings [Turcotte, Gagnon, & Poirier, 2005. The effect of old age on the learning of supra-span sequences. "Psychology and Aging," 20, 251-260.] indicate that incidental learning of visuo-spatial supra-span sequences through immediate serial recall declines with old age (Hebb's paradigm). In this study, we examined whether…

  2. Enhanced learning of proportional math through music training and spatial-temporal training.

    PubMed

    Graziano, A B; Peterson, M; Shaw, G L

    1999-03-01

    It was predicted, based on a mathematical model of the cortex, that early music training would enhance spatial-temporal reasoning. We have demonstrated that preschool children given six months of piano keyboard lessons improved dramatically on spatial-temporal reasoning while children in appropriate control groups did not improve. It was then predicted that the enhanced spatial-temporal reasoning from piano keyboard training could lead to enhanced learning of specific math concepts, in particular proportional math, which is notoriously difficult to teach using the usual language-analytic methods. We report here the development of Spatial-Temporal Math Video Game software designed to teach fractions and proportional math, and its strikingly successful use in a study involving 237 second-grade children (age range six years eight months-eight years five months). Furthermore, as predicted, children given piano keyboard training along with the Math Video Game training scored significantly higher on proportional math and fractions than children given a control training along with the Math Video Game. These results were readily measured using the companion Math Video Game Evaluation Program. The training time necessary for children on the Math Video Game is very short, and they rapidly reach a high level of performance. This suggests that, as predicted, we are tapping into fundamental cortical processes of spatial-temporal reasoning. This spatial-temporal approach is easily generalized to teach other math and science concepts in a complementary manner to traditional language-analytic methods, and at a younger age. The neural mechanisms involved in thinking through fractions and proportional math during training with the Math Video Game might be investigated in EEG coherence studies along with priming by specific music.

  3. Active Ageing, Active Learning: Policy and Provision in Hong Kong

    ERIC Educational Resources Information Center

    Tam, M.

    2011-01-01

    This paper discusses the relationship between ageing and learning, previous literature having confirmed that participation in continued learning in old age contributes to good health, satisfaction with life, independence and self-esteem. Realizing that learning is vital to active ageing, the Hong Kong government has implemented policies and…

  4. Experiential Learning and Learning Environments: The Case of Active Listening Skills

    ERIC Educational Resources Information Center

    Huerta-Wong, Juan Enrique; Schoech, Richard

    2010-01-01

    Social work education research frequently has suggested an interaction between teaching techniques and learning environments. However, this interaction has never been tested. This study compared virtual and face-to-face learning environments and included active listening concepts to test whether the effectiveness of learning environments depends…

  5. An interpolated activity during the knowledge-of-results delay interval eliminates the learning advantages of self-controlled feedback schedules.

    PubMed

    Carter, Michael J; Ste-Marie, Diane M

    2017-03-01

    The learning advantages of self-controlled knowledge-of-results (KR) schedules compared to yoked schedules have been linked to the optimization of the informational value of the KR received for the enhancement of one's error-detection capabilities. This suggests that information-processing activities that occur after motor execution, but prior to receiving KR (i.e., the KR-delay interval) may underlie self-controlled KR learning advantages. The present experiment investigated whether self-controlled KR learning benefits would be eliminated if an interpolated activity was performed during the KR-delay interval. Participants practiced a waveform matching task that required two rapid elbow extension-flexion reversals in one of four groups using a factorial combination of choice (self-controlled, yoked) and KR-delay interval (empty, interpolated). The waveform had specific spatial and temporal constraints, and an overall movement time goal. The results indicated that the self-controlled + empty group had superior retention and transfer scores compared to all other groups. Moreover, the self-controlled + interpolated and yoked + interpolated groups did not differ significantly in retention and transfer; thus, the interpolated activity eliminated the typically found learning benefits of self-controlled KR. No significant differences were found between the two yoked groups. We suggest the interpolated activity interfered with information-processing activities specific to self-controlled KR conditions that occur during the KR-delay interval and that these activities are vital for reaping the associated learning benefits. These findings add to the growing evidence that challenge the motivational account of self-controlled KR learning advantages and instead highlights informational factors associated with the KR-delay interval as an important variable for motor learning under self-controlled KR schedules.

  6. A lateralized avian hippocampus: preferential role of the left hippocampal formation in homing pigeon sun compass-based spatial learning.

    PubMed

    Gagliardo, Anna; Vallortigara, Giorgio; Nardi, Daniele; Bingman, Verner P

    2005-11-01

    The hippocampal formation (HF) plays a crucial role in amniote spatial cognition. There are also indications of functional lateralization in the contribution of the left and right HF in processes that enable birds to navigate space. The experiments described in this study were designed to examine left and right HF differences in a task of sun compass-based spatial learning in homing pigeons (Columba livia). Control, left (HFL) and right (HFR) HF lesioned pigeons were trained in an outdoor arena to locate a food reward using their sun compass in the presence or absence of alternative feature cues. Subsequent to training, the pigeons were subjected to test sessions to determine if they learned to represent the goal location with their sun compass and the relative importance of the sun compass vs. feature cues. Under all test conditions, the control pigeons demonstrated preferential use of the sun compass in locating the goal. By contrast, the HFL pigeons demonstrated no ability to locate the goal by the sun compass but an ability to use the feature cues. The behaviour of the HFR pigeons demonstrated that an intact left HF is sufficient to support sun compass-based learning, but in conflict situations and in contrast to controls, they often relied on feature cues. In conclusion, only the left HF is capable of supporting sun compass-based learning. However, preferential use of the sun compass for learning requires an intact right HF. The data support the hypothesis that the left and right HF make different but complementary contributions toward avian spatial cognition.

  7. Resveratrol ameliorates spatial learning memory impairment induced by Aβ1-42 in rats.

    PubMed

    Wang, Rui; Zhang, Yu; Li, Jianguo; Zhang, Ce

    2017-03-06

    β-amyloid (Aβ) deposition is considered partially responsible for cognitive dysfunction in Alzheimer's disease (AD). Recently, resveratrol has been reported to play a potential role as a neuroprotective biofactor by modulating Aβ pathomechanisms, including through anti-neuronal apoptotic, anti-oxidative stress, and anti-neuroinflammatory effects. In addition, SIRT1 has been demonstrated to modulate learning and memory function by regulating the expression of cAMP response binding protein (CREB), which involves in modulating the expression of SIRT1. However, whether resveratrol can alleviate Aβ-induced cognitive dysfunction, whether SIRT1 expression and CREB phosphorylation in the hippocampus are affected by Aβ, and whether resveratrol influences these effects remain unknown. In the present study, we used a hippocampal injection model in rats to investigate the effects of resveratrol on Aβ 1-42 -induced impairment of spatial learning, memory and synaptic plasticity as well as on alterations of SIRT1 expression and CREB phosphorylation. We found that resveratrol significantly reversed the water maze behavioral impairment and the attenuation of long-term potentiation (LTP) in area CA1 that were induced by hippocampal injection of Aβ 1-42 . Interestingly, resveratrol also prevented the Aβ 1-42 -induced reductions in SIRT1 expression and CREB phosphorylation in rat hippocampus. In conclusion, in rats, resveratrol protects neurons against Aβ 1-42 -induced disruption of spatial learning, memory and hippocampal LTP. The mechanisms underlying the neuroprotective effects may involve rescue of SIRT1 expression and CREB phosphorylation. Copyright © 2016. Published by Elsevier Ltd.

  8. Effect of short- and long-term administration of baclofen on spatial learning and memory in rats.

    PubMed

    Holajova, M; Franek, M

    2018-03-16

    Baclofen is the only clinically available metabotropic GABA(B) receptor agonist. In our experiment, we tested the hypothesis that long-term baclofen administration can impair learning and memory in rats. The experiment consisted of three parts. In the first part of the study the drug was administered simultaneously with the beginning of the behavioral tests. In the second and third part of the experiment baclofen was administered daily for 14 days and for one month before the tests. In each part of the experiment, adult rats were randomly divided into four treatment groups. Three groups were given an injection of baclofen at doses of 1 mg/kg, 5 mg/kg, 10 mg/kg, while the fourth group was injected with saline. The injections were given after each session. Spatial learning and memory were tested using the Morris water maze, involving three types of tests: Acquisition, Probe, and Re-acquisition. This work reveals that baclofen did not affect spatial learning at any of the tested doses and regardless of the length of administration. Memory was observed to be affected, but only at the highest dose of baclofen and only temporarily. This conclusion is in line with previously published clinical cases.

  9. Brain oscillatory activity during spatial navigation: theta and gamma activity link medial temporal and parietal regions.

    PubMed

    White, David J; Congedo, Marco; Ciorciari, Joseph; Silberstein, Richard B

    2012-03-01

    Brain oscillatory correlates of spatial navigation were investigated using blind source separation (BSS) and standardized low resolution electromagnetic tomography (sLORETA) analyses of 62-channel EEG recordings. Twenty-five participants were instructed to navigate to distinct landmark buildings in a previously learned virtual reality town environment. Data from periods of navigation between landmarks were subject to BSS analyses to obtain source components. Two of these cortical sources were found to exhibit significant spectral power differences during navigation with respect to a resting eyes open condition and were subject to source localization using sLORETA. These two sources were localized as a right parietal component with gamma activation and a right medial-temporal-parietal component with activation in theta and gamma bandwidths. The parietal gamma activity was thought to reflect visuospatial processing associated with the task. The medial-temporal-parietal activity was thought to be more specific to the navigational processing, representing the integration of ego- and allo-centric representations of space required for successful navigation, suggesting theta and gamma oscillations may have a role in integrating information from parietal and medial-temporal regions. Theta activity on this medial-temporal-parietal source was positively correlated with more efficient navigation performance. Results are discussed in light of the depth and proposed closed field structure of the hippocampus and potential implications for scalp EEG data. The findings of the present study suggest that appropriate BSS methods are ideally suited to minimizing the effects of volume conduction in noninvasive recordings, allowing more accurate exploration of deep brain processes.

  10. Designing for Inquiry-Based Learning with the Learning Activity Management System

    ERIC Educational Resources Information Center

    Levy, P.; Aiyegbayo, O.; Little, S.

    2009-01-01

    This paper explores the relationship between practitioners' pedagogical purposes, values and practices in designing for inquiry-based learning in higher education, and the affordances of the Learning Activity Management System (LAMS) as a tool for creating learning designs in this context. Using a qualitative research methodology, variation was…

  11. Age-related spatial learning impairment is unrelated to spinophilin immunoreactive spine number and protein levels in rat hippocampus.

    PubMed

    Calhoun, Michael E; Fletcher, Bonnie R; Yi, Stella; Zentko, Diana C; Gallagher, Michela; Rapp, Peter R

    2008-08-01

    Age-related impairments in hippocampus-dependent learning and memory tasks are not associated with a loss of hippocampal neurons, but may be related to alterations in synaptic integrity. Here we used stereological techniques to estimate spine number in hippocampal subfields using immunostaining for the spine-associated protein, spinophilin, as a marker. Quantification of the immunoreactive profiles was performed using the optical disector/fractionator technique. Aging was associated with a modest increase in spine number in the molecular layer of the dentate gyrus and CA1 stratum lacunosum-moleculare. By comparison, spinophilin protein levels in the hippocampus, measured by Western blot analysis, failed to differ as a function of age. Neither the morphological nor the protein level data were correlated with spatial learning ability across individual aged rats. The results extend current evidence on synaptic integrity in the aged brain, indicating that a substantial loss of dendritic spines and spinophilin protein in the hippocampus are unlikely to contribute to age-related impairment in spatial learning.

  12. Creating Dynamic Learning Environment to Enhance Students’ Engagement in Learning Geometry

    NASA Astrophysics Data System (ADS)

    Sariyasa

    2017-04-01

    Learning geometry gives many benefits to students. It strengthens the development of deductive thinking and reasoning; it also provides an opportunity to improve visualisation and spatial ability. Some studies, however, have pointed out the difficulties that students encountered when learning geometry. A preliminary study by the author in Bali revealed that one of the main problems was teachers’ difficulties in delivering geometry instruction. It was partly due to the lack of appropriate instructional media. Coupling with dynamic geometry software, dynamic learning environments is a promising solution to this problem. Employing GeoGebra software supported by the well-designed instructional process may result in more meaningful learning, and consequently, students are motivated to engage in the learning process more deeply and actively. In this paper, we provide some examples of GeoGebra-aided learning activities that allow students to interactively explore and investigate geometry concepts and the properties of geometry objects. Thus, it is expected that such learning environment will enhance students’ internalisation process of geometry concepts.

  13. Active learning reduces annotation time for clinical concept extraction.

    PubMed

    Kholghi, Mahnoosh; Sitbon, Laurianne; Zuccon, Guido; Nguyen, Anthony

    2017-10-01

    To investigate: (1) the annotation time savings by various active learning query strategies compared to supervised learning and a random sampling baseline, and (2) the benefits of active learning-assisted pre-annotations in accelerating the manual annotation process compared to de novo annotation. There are 73 and 120 discharge summary reports provided by Beth Israel institute in the train and test sets of the concept extraction task in the i2b2/VA 2010 challenge, respectively. The 73 reports were used in user study experiments for manual annotation. First, all sequences within the 73 reports were manually annotated from scratch. Next, active learning models were built to generate pre-annotations for the sequences selected by a query strategy. The annotation/reviewing time per sequence was recorded. The 120 test reports were used to measure the effectiveness of the active learning models. When annotating from scratch, active learning reduced the annotation time up to 35% and 28% compared to a fully supervised approach and a random sampling baseline, respectively. Reviewing active learning-assisted pre-annotations resulted in 20% further reduction of the annotation time when compared to de novo annotation. The number of concepts that require manual annotation is a good indicator of the annotation time for various active learning approaches as demonstrated by high correlation between time rate and concept annotation rate. Active learning has a key role in reducing the time required to manually annotate domain concepts from clinical free text, either when annotating from scratch or reviewing active learning-assisted pre-annotations. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Spatial analysis of muscular activations in stroke survivors.

    PubMed

    Rasool, Ghulam; Afsharipour, Babak; Suresh, Nina L; Xiaogang Hu; Rymer, William Zev

    2015-01-01

    We investigated the spatial patterns of electrical activity in stroke-affected muscles using the high density surface electromyogram (sEMG) grids. We acquired 128-channel sEMG signals from the impaired as well as contralateral Biceps Brachii (BB) muscles of stroke survivors and from healthy participants at various force levels from 20 to 60% of maximum voluntary contraction in an isometric non-fatiguing recording protocol. We found the spatial sEMG pattern to be consistent across force levels in healthy and stroke subjects. However, once compared across sides (left vs right in healthy and impaired vs. contralateral in stroke) we found stroke-affected sides to be significantly different in distribution pattern of sEMG from the contralateral side. The sEMG activity areas were significantly shrunk on the affected sides indicating muscle atrophy due to stroke.

  15. Combining Active Learning with Service Learning: A Student-Driven Demonstration Project.

    ERIC Educational Resources Information Center

    Hatcher-Skeers, Mary; Aragon, Ellen

    2002-01-01

    Describes a project that integrates active learning into service learning targeting both college students and middle schools students wherein college students perform chemical demonstrations for middle school students. (YDS)

  16. Sexual Orientation-Related Differences in Virtual Spatial Navigation and Spatial Search Strategies.

    PubMed

    Rahman, Qazi; Sharp, Jonathan; McVeigh, Meadhbh; Ho, Man-Ling

    2017-07-01

    Spatial abilities are generally hypothesized to differ between men and women, and people with different sexual orientations. According to the cross-sex shift hypothesis, gay men are hypothesized to perform in the direction of heterosexual women and lesbian women in the direction of heterosexual men on cognitive tests. This study investigated sexual orientation differences in spatial navigation and strategy during a virtual Morris water maze task (VMWM). Forty-four heterosexual men, 43 heterosexual women, 39 gay men, and 34 lesbian/bisexual women (aged 18-54 years) navigated a desktop VMWM and completed measures of intelligence, handedness, and childhood gender nonconformity (CGN). We quantified spatial learning (hidden platform trials), probe trial performance, and cued navigation (visible platform trials). Spatial strategies during hidden and probe trials were classified into visual scanning, landmark use, thigmotaxis/circling, and enfilading. In general, heterosexual men scored better than women and gay men on some spatial learning and probe trial measures and used more visual scan strategies. However, some differences disappeared after controlling for age and estimated IQ (e.g., in visual scanning heterosexual men differed from women but not gay men). Heterosexual women did not differ from lesbian/bisexual women. For both sexes, visual scanning predicted probe trial performance. More feminine CGN scores were associated with lower performance among men and greater performance among women on specific spatial learning or probe trial measures. These results provide mixed evidence for the cross-sex shift hypothesis of sexual orientation-related differences in spatial cognition.

  17. The effect of Scutellaria baicalensis stem-leaf flavonoids on spatial learning and memory in chronic cerebral ischemia-induced vascular dementia of rats.

    PubMed

    Cao, Yanjing; Liang, Lizhen; Xu, Jian; Wu, Jiali; Yan, Yongxing; Lin, Ping; Chen, Qiang; Zheng, Fengming; Wang, Qin; Ren, Qian; Gou, Zengmei; Du, Yifeng

    2016-05-01

    Flavonoids have been shown to improve cognitive function and delay the dementia progression. However, the underlying mechanisms remain elusive. In the present study, we examined the effect of Scutellaria baicalensis stem-leaf total flavonoids (SSTFs) extracted from S. baicalensis Georgi on spatial learning and memory in a vascular dementia (VaD) rat model and explored its molecular mechanisms. The VaD rats were developed by permanent bilateral occlusion of the common carotid artery. Seven days after recovery, the VaD rats were treated with either 50 or 100 mg/kg of SSTF for 60 days. The spatial learning and memory was evaluated in the Morris water maze (MWM) test. The tau hyperphosphorylation and the levels of the related protein kinases or phosphatases were examined by western blot analysis. In VaD rats, SSTF treatment at 100 mg/kg significantly reduced the escape latency in training trial in MWM test. In the probe trial, SSTF treatment increased the searching time and travel distance in the target quadrant. SSTF treatment inhibited the tau phosphorylation in both cortex and hippocampus in VaD rats. Meanwhile, SSTF reduced the activity of glycogen synthase kinase 3β and cyclin-dependent kinase 5 in VaD rats. In contrast, SSTF treatment increased the level of the protein phosphatase 2A subunit B in VaD rats. SSTF treatment significantly improved the spatial cognition in VaD rats. Our results suggest that SSTF may alleviate tau-hyperphosphorylation-induced neurotoxicity through coordinating the activity of kinases and phosphatase after a stroke. SSTF may be developed into promising novel therapeutics for VaD. © The Author 2016. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  18. Attitudes of Face-to-Face and E-Learning Instructors toward "Active Learning"

    ERIC Educational Resources Information Center

    Pundak, David; Herscovitz, Orit; Shacham, Miri

    2010-01-01

    Instruction in higher education has developed significantly over the past two decades, influenced by two trends: promotion of active learning methods and integration of web technology in e-Learning. Many studies found that active teaching improves students' success, involvement and thinking skills. Nevertheless, internationally, most instructors…

  19. Mitochondrial impairments contribute to spatial learning and memory dysfunction induced by chronic tramadol administration in rat: Protective effect of physical exercise.

    PubMed

    Mehdizadeh, Hajar; Pourahmad, Jalal; Taghizadeh, Ghorban; Vousooghi, Nasim; Yoonessi, Ali; Naserzadeh, Parvaneh; Behzadfar, Ladan; Rouini, Mohammad Reza; Sharifzadeh, Mohammad

    2017-10-03

    Despite the worldwide use of tramadol, few studies have been conducted about its effects on memory and mitochondrial function, and controversial results have been reported. Recently, there has been an increasing interest in physical exercise as a protective approach to neuronal and cognitive impairments. Therefore, the aim of this study was to investigate the effects of physical exercise on spatial learning and memory and brain mitochondrial function in tramadol-treated rats. After completion of 2-week (short-term) and 4-week (long-term) treadmill exercise regimens, male Wistar rats received tramadol (20, 40, 80mg/kg/day) intraperitoneally for 30days. Then spatial learning and memory was assessed by Morris water maze test (MWM). Moreover, brain mitochondrial function was evaluated by determination of mitochondrial reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), mitochondrial swelling and cytochrome c release from mitochondria. Chronic administration of tramadol impaired spatial learning and memory as well as brain mitochondrial function as indicated by increased ROS level, MMP collapse, increased mitochondrial swelling and cytochrome c release from mitochondria. Conversely, treadmill exercise significantly attenuated the impairments of spatial learning and memory and brain mitochondrial dysfunction induced by tramadol. The results revealed that chronic tramadol treatment caused memory impairments through induction of brain mitochondrial dysfunction. Furthermore, pre-exposure to physical exercise markedly mitigated these impairments through its positive effects on brain mitochondrial function. Copyright © 2017. Published by Elsevier Inc.

  20. Identifying clusters of active transportation using spatial scan statistics.

    PubMed

    Huang, Lan; Stinchcomb, David G; Pickle, Linda W; Dill, Jennifer; Berrigan, David

    2009-08-01

    There is an intense interest in the possibility that neighborhood characteristics influence active transportation such as walking or biking. The purpose of this paper is to illustrate how a spatial cluster identification method can evaluate the geographic variation of active transportation and identify neighborhoods with unusually high/low levels of active transportation. Self-reported walking/biking prevalence, demographic characteristics, street connectivity variables, and neighborhood socioeconomic data were collected from respondents to the 2001 California Health Interview Survey (CHIS; N=10,688) in Los Angeles County (LAC) and San Diego County (SDC). Spatial scan statistics were used to identify clusters of high or low prevalence (with and without age-adjustment) and the quantity of time spent walking and biking. The data, a subset from the 2001 CHIS, were analyzed in 2007-2008. Geographic clusters of significantly high or low prevalence of walking and biking were detected in LAC and SDC. Structural variables such as street connectivity and shorter block lengths are consistently associated with higher levels of active transportation, but associations between active transportation and socioeconomic variables at the individual and neighborhood levels are mixed. Only one cluster with less time spent walking and biking among walkers/bikers was detected in LAC, and this was of borderline significance. Age-adjustment affects the clustering pattern of walking/biking prevalence in LAC, but not in SDC. The use of spatial scan statistics to identify significant clustering of health behaviors such as active transportation adds to the more traditional regression analysis that examines associations between behavior and environmental factors by identifying specific geographic areas with unusual levels of the behavior independent of predefined administrative units.

  1. Identifying Clusters of Active Transportation Using Spatial Scan Statistics

    PubMed Central

    Huang, Lan; Stinchcomb, David G.; Pickle, Linda W.; Dill, Jennifer; Berrigan, David

    2009-01-01

    Background There is an intense interest in the possibility that neighborhood characteristics influence active transportation such as walking or biking. The purpose of this paper is to illustrate how a spatial cluster identification method can evaluate the geographic variation of active transportation and identify neighborhoods with unusually high/low levels of active transportation. Methods Self-reported walking/biking prevalence, demographic characteristics, street connectivity variables, and neighborhood socioeconomic data were collected from respondents to the 2001 California Health Interview Survey (CHIS; N=10,688) in Los Angeles County (LAC) and San Diego County (SDC). Spatial scan statistics were used to identify clusters of high or low prevalence (with and without age-adjustment) and the quantity of time spent walking and biking. The data, a subset from the 2001 CHIS, were analyzed in 2007–2008. Results Geographic clusters of significantly high or low prevalence of walking and biking were detected in LAC and SDC. Structural variables such as street connectivity and shorter block lengths are consistently associated with higher levels of active transportation, but associations between active transportation and socioeconomic variables at the individual and neighborhood levels are mixed. Only one cluster with less time spent walking and biking among walkers/bikers was detected in LAC, and this was of borderline significance. Age-adjustment affects the clustering pattern of walking/biking prevalence in LAC, but not in SDC. Conclusions The use of spatial scan statistics to identify significant clustering of health behaviors such as active transportation adds to the more traditional regression analysis that examines associations between behavior and environmental factors by identifying specific geographic areas with unusual levels of the behavior independent of predefined administrative units. PMID:19589451

  2. Active Learning and Cooperative Learning in the Organic Chemistry Lecture Class

    NASA Astrophysics Data System (ADS)

    Paulson, Donald R.

    1999-08-01

    Faculty in the physical sciences are one of the academic groups least receptive to the use of active learning strategies and cooperative learning in their classrooms. This is particularly so in traditional lecture classes. It is the objective of this paper to show how effective these techniques can be in improving student performance in classes. The use of active learning strategies and cooperative learning groups in my organic chemistry lecture classes has increased the overall pass rate in my classes by an astounding 20-30% over the traditional lecture mode. This has been accomplished without any reduction in "standards". The actual methods employed are presented as well as a discussion of how I came to radically change the way I teach my classes.

  3. Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships.

    PubMed

    Hatipoglu, Nuh; Bilgin, Gokhan

    2017-10-01

    In many computerized methods for cell detection, segmentation, and classification in digital histopathology that have recently emerged, the task of cell segmentation remains a chief problem for image processing in designing computer-aided diagnosis (CAD) systems. In research and diagnostic studies on cancer, pathologists can use CAD systems as second readers to analyze high-resolution histopathological images. Since cell detection and segmentation are critical for cancer grade assessments, cellular and extracellular structures should primarily be extracted from histopathological images. In response, we sought to identify a useful cell segmentation approach with histopathological images that uses not only prominent deep learning algorithms (i.e., convolutional neural networks, stacked autoencoders, and deep belief networks), but also spatial relationships, information of which is critical for achieving better cell segmentation results. To that end, we collected cellular and extracellular samples from histopathological images by windowing in small patches with various sizes. In experiments, the segmentation accuracies of the methods used improved as the window sizes increased due to the addition of local spatial and contextual information. Once we compared the effects of training sample size and influence of window size, results revealed that the deep learning algorithms, especially convolutional neural networks and partly stacked autoencoders, performed better than conventional methods in cell segmentation.

  4. E-Learning in Photogrammetry, Remote Sensing and Spatial Information Science

    NASA Astrophysics Data System (ADS)

    Vyas, Anjana; König, Gerhard

    2016-06-01

    Science and technology are evolving leaps and bounds. The advancements in GI-Science for natural and built environment helps in improving the quality of life. Learning through education and training needs to be at par with those advancements, which plays a vital role in utilization of technology. New technologies that creates new opportunities have enabled Geomatics to broaden the horizon (skills and competencies). Government policies and decisions support the use of geospatial science in various sectors of governance. Mapping, Land management, Urban planning, Environmental planning, Industrialization are some of the areas where the geomatics has become a baseline for decision making at national level. There is a need to bridge the gap between developments in geospatial science and its utilization and implementation. To prepare a framework for standardisation it is important to understand the theories of education and prevailing practices, with articulate goals exploring variety of teaching techniques. E-Learning is an erudition practice shaped for facilitating learning and improving performance by creating, using and managing appropriate technological processes and resources through digital and network-enabled technology. It is a shift from traditional education or training to ICT-based flexible and collaborative learning based on the community of learners, academia, professionals, experts and facilitators. Developments in e-learning is focussed on computer assisted learning which has become popular because of its potential for providing more flexible access to content and instruction at any time, from any place (Means et al, 2009). With the advent of the geo-spatial technology, fast development in the software and hardware, the demand for skilled manpower is increasing and the need is for training, education, research and dissemination. It suggests inter-organisational cooperation between academia, industry, government and international collaboration. There is a

  5. Exposure to 56Fe irradiation accelerates normal brain aging and produces deficits in spatial learning and memory

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, Barbara; Casadesus, Gemma; Carey, Amanda N.; Rabin, Bernard M.; Joseph, James A.

    Previous studies have shown that radiation exposure, particularly to particles of high energy and charge (HZE particles) such as 56Fe, produces deficits in spatial learning and memory. These adverse behavioral effects are similar to those seen in aged animals. It is possible that these shared effects may be produced by the same mechanism. For example, an increased release of reactive oxygen species, and the subsequent oxidative stress and inflammatory damage caused to the central nervous system, is likely responsible for the deficits seen in aging and following irradiation. Therefore, dietary antioxidants, such as those found in fruits and vegetables, could be used as countermeasures to prevent the behavioral changes seen in these conditions. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. These rats have decrements in the ability to build spatial representations of the environment, and they utilize non-spatial strategies to solve tasks. Furthermore, they show a lack of spatial preference, due to a decline in the ability to process or retain place (position of a goal with reference to a “map” provided by the configuration of numerous cues in the environment) information. These declines in spatial memory occur in measures dependent on both reference and working memory, and in the flexibility to reset mental images. These results show that irradiation with 56Fe high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts, particularly middle-aged ones, to perform critical tasks during long-term space travel beyond the magnetosphere.

  6. Active Learning and Teaching: Improving Postsecondary Library Instruction.

    ERIC Educational Resources Information Center

    Allen, Eileen E.

    1995-01-01

    Discusses ways to improve postsecondary library instruction based on theories of active learning. Topics include a historical background of active learning; student achievement and attitudes; cognitive development; risks; active teaching; and instructional techniques, including modified lectures, brainstorming, small group work, cooperative…

  7. Activation of G-protein-coupled receptor 30 is sufficient to enhance spatial recognition memory in ovariectomized rats.

    PubMed

    Hawley, Wayne R; Grissom, Elin M; Moody, Nicole M; Dohanich, Gary P; Vasudevan, Nandini

    2014-04-01

    In ovariectomized rats, administration of estradiol, or selective estrogen receptor agonists that activate either the α or β isoforms, have been shown to enhance spatial cognition on a variety of learning and memory tasks, including those that capitalize on the preference of rats to seek out novelty. Although the effects of the putative estrogen G-protein-coupled receptor 30 (GPR30) on hippocampus-based tasks have been reported using food-motivated tasks, the effects of activation of GPR30 receptors on tasks that depend on the preference of rats to seek out spatial novelty remain to be determined. Therefore, the aim of the current study was to determine if short-term treatment of ovariectomized rats with G-1, an agonist for GPR30, would mimic the effects on spatial recognition memory observed following short-term estradiol treatment. In Experiment 1, ovariectomized rats treated with a low dose (1 μg) of estradiol 48 h and 24 h prior to the information trial of a Y-maze task exhibited a preference for the arm associated with the novel environment on the retention trial conducted 48 h later. In Experiment 2, treatment of ovariectomized rats with G-1 (25 μg) 48 h and 24 h prior to the information trial of a Y-maze task resulted in a greater preference for the arm associated with the novel environment on the retention trial. Collectively, the results indicated that short-term treatment of ovariectomized rats with a GPR30 agonist was sufficient to enhance spatial recognition memory, an effect that also occurred following short-term treatment with a low dose of estradiol. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Resource Letter ALIP-1: Active-Learning Instruction in Physics

    NASA Astrophysics Data System (ADS)

    Meltzer, David E.; Thornton, Ronald K.

    2012-06-01

    This Resource Letter provides a guide to the literature on research-based active-learning instruction in physics. These are instructional methods that are based on, assessed by, and validated through research on the teaching and learning of physics. They involve students in their own learning more deeply and more intensely than does traditional instruction, particularly during class time. The instructional methods and supporting body of research reviewed here offer potential for significantly improved learning in comparison to traditional lecture-based methods of college and university physics instruction. We begin with an introduction to the history of active learning in physics in the United States, and then discuss some methods for and outcomes of assessing pedagogical effectiveness. We enumerate and describe common characteristics of successful active-learning instructional strategies in physics. We then discuss a range of methods for introducing active-learning instruction in physics and provide references to those methods for which there is published documentation of student learning gains.

  9. E-Collaboration Technologies in Teaching/Learning Activity

    ERIC Educational Resources Information Center

    Zascerinska, Jelena; Ahrens, Andreas

    2009-01-01

    A proper use of e-collaboration technologies in the teaching/learning process is provided by varied cooperative networks, which penetrate teachers' and students' activity more thoroughly with the availability of broadband services. However, the successful use of e-collaboration technologies in teaching/learning activity within a multicultural…

  10. Active learning: learning a motor skill without a coach.

    PubMed

    Huang, Vincent S; Shadmehr, Reza; Diedrichsen, Jörn

    2008-08-01

    When we learn a new skill (e.g., golf) without a coach, we are "active learners": we have to choose the specific components of the task on which to train (e.g., iron, driver, putter, etc.). What guides our selection of the training sequence? How do choices that people make compare with choices made by machine learning algorithms that attempt to optimize performance? We asked subjects to learn the novel dynamics of a robotic tool while moving it in four directions. They were instructed to choose their practice directions to maximize their performance in subsequent tests. We found that their choices were strongly influenced by motor errors: subjects tended to immediately repeat an action if that action had produced a large error. This strategy was correlated with better performance on test trials. However, even when participants performed perfectly on a movement, they did not avoid repeating that movement. The probability of repeating an action did not drop below chance even when no errors were observed. This behavior led to suboptimal performance. It also violated a strong prediction of current machine learning algorithms, which solve the active learning problem by choosing a training sequence that will maximally reduce the learner's uncertainty about the task. While we show that these algorithms do not provide an adequate description of human behavior, our results suggest ways to improve human motor learning by helping people choose an optimal training sequence.

  11. Local Use-Dependent Sleep in Wakefulness Links Performance Errors to Learning

    PubMed Central

    Quercia, Angelica; Zappasodi, Filippo; Committeri, Giorgia; Ferrara, Michele

    2018-01-01

    Sleep and wakefulness are no longer to be considered as discrete states. During wakefulness brain regions can enter a sleep-like state (off-periods) in response to a prolonged period of activity (local use-dependent sleep). Similarly, during nonREM sleep the slow-wave activity, the hallmark of sleep plasticity, increases locally in brain regions previously involved in a learning task. Recent studies have demonstrated that behavioral performance may be impaired by off-periods in wake in task-related regions. However, the relation between off-periods in wake, related performance errors and learning is still untested in humans. Here, by employing high density electroencephalographic (hd-EEG) recordings, we investigated local use-dependent sleep in wake, asking participants to repeat continuously two intensive spatial navigation tasks. Critically, one task relied on previous map learning (Wayfinding) while the other did not (Control). Behaviorally awake participants, who were not sleep deprived, showed progressive increments of delta activity only during the learning-based spatial navigation task. As shown by source localization, delta activity was mainly localized in the left parietal and bilateral frontal cortices, all regions known to be engaged in spatial navigation tasks. Moreover, during the Wayfinding task, these increments of delta power were specifically associated with errors, whose probability of occurrence was significantly higher compared to the Control task. Unlike the Wayfinding task, during the Control task neither delta activity nor the number of errors increased progressively. Furthermore, during the Wayfinding task, both the number and the amplitude of individual delta waves, as indexes of neuronal silence in wake (off-periods), were significantly higher during errors than hits. Finally, a path analysis linked the use of the spatial navigation circuits undergone to learning plasticity to off periods in wake. In conclusion, local sleep regulation in

  12. Empathy and feedback processing in active and observational learning.

    PubMed

    Rak, Natalia; Bellebaum, Christian; Thoma, Patrizia

    2013-12-01

    The feedback-related negativity (FRN) and the P300 have been related to the processing of one's own and other individuals' feedback during both active and observational learning. The aim of the present study was to elucidate the role of trait-empathic responding with regard to the modulation of the neural correlates of observational learning in particular. Thirty-four healthy participants completed an active and an observational learning task. On both tasks, the participants' aim was to maximize their monetary gain by choosing from two stimuli the one that showed the higher probability of reward. Participants gained insight into the stimulus-reward contingencies according to monetary feedback presented after they had made an active choice or by observing the choices of a virtual partner. Participants showed a general improvement in learning performance on both learning tasks. P200, FRN, and P300 amplitudes were larger during active, as compared with observational, learning. Furthermore, nonreward elicited a significantly more negative FRN than did reward in the active learning task, while only a trend was observed for observational learning. Distinct subcomponents of trait cognitive empathy were related to poorer performance and smaller P300 amplitudes for observational learning only. Taken together, both the learning performance and event-related potentials during observational learning are affected by different aspects of trait cognitive empathy, and certain types of observational learning may actually be disrupted by a higher tendency to understand and adopt other people's perspectives.

  13. Developing Metacognition: A Basis for Active Learning

    ERIC Educational Resources Information Center

    Vos, Henk; de Graaff, E.

    2004-01-01

    The reasons to introduce formats of active learning in engineering (ALE) such as project work, problem-based learning, use of cases, etc. are mostly based on practical experience, and sometimes from applied research on teaching and learning. Such research shows that students learn more and different abilities than in traditional formats of…

  14. DNA methylation regulates neurophysiological spatial representation in memory formation

    PubMed Central

    Roth, Eric D.; Roth, Tania L.; Money, Kelli M.; SenGupta, Sonda; Eason, Dawn E.; Sweatt, J. David

    2015-01-01

    Epigenetic mechanisms including altered DNA methylation are critical for altered gene transcription subserving synaptic plasticity and the retention of learned behavior. Here we tested the idea that one role for activity-dependent altered DNA methylation is stabilization of cognition-associated hippocampal place cell firing in response to novel place learning. We observed that a behavioral protocol (spatial exploration of a novel environment) known to induce hippocampal place cell remapping resulted in alterations of hippocampal Bdnf DNA methylation. Further studies using neurophysiological in vivo single unit recordings revealed that pharmacological manipulations of DNA methylation decreased long-term but not short-term place field stability. Together our data highlight a role for DNA methylation in regulating neurophysiological spatial representation and memory formation. PMID:25960947

  15. Captivate: Building Blocks for Implementing Active Learning

    ERIC Educational Resources Information Center

    Kitchens, Brent; Means, Tawnya; Tan, Yinliang

    2018-01-01

    In this study, the authors propose a set of key elements that impact the success of an active learning implementation: content delivery, active learning methods, physical environment, technology enhancement, incentive alignment, and educator investment. Through a range of metrics the authors present preliminary evidence that students in courses…

  16. Tractor Mechanics: Learning Activity Packages 1-19.

    ERIC Educational Resources Information Center

    Clemson Univ., SC. Vocational Education Media Center.

    Learning activity packages are presented for teaching tractor mechanics. The first of two sections deals with miscellaneous tasks and contains learning activity packages on cleaning the tractor and receiving new tractor parts. Section 2 is concerned with maintaining and servicing the electrical system, and it includes the following learning…

  17. Active Learning and Engagement with the Wireless Indoor Location Device (WILD) Learning System

    NASA Astrophysics Data System (ADS)

    Moldwin, M.; Samson, P. J.; Ojeda, L.; Miller, T.; Yu, J.

    2016-12-01

    The Wireless Indoor Location Device (WILD) Learning System being developed at the University of Michigan and the Education Technology company A2 Motus LLC provides a unique platform for social learning by allowing students to become active participants in live simulations of complex systems, like hurricane formation. The WILD Learning System enables teachers to engage students in kinesthetic activities that explore complex models from a wide variety of STEAM (Science, Technology, Engineering, Art and Math) disciplines. The system provides students' location, orientation and motion within the classroom and assigns each student different parameters depending on the activity. For example, students learning about hurricanes could be assigned atmospheric pressure levels and asked to arrange themselves around the room to simulate a hurricane. The Wild Learning System software then takes the students' pressure readings and locations and projects their locations overlaid onto a real-time generated simulated pressure weather map enabling the observation of how their arrangement influences the pressure structure. The teacher then could have the students orient themselves in the direction they think the resulting wind field will be based on the pressure contours as the system can show an arrow originating from each of the students position in the direction that they are facing. The system also could incorporate a student response-type system for the instructor to then directly question students about other concepts and record their response to both the kinesthetic activity and other formative assessment questions. The WILD Learning System consists of a sensor package for each student in the class, beacons to enable precise localization of the students, software to calculate student location information, and educational software for a variety of activities. In addition, a software development kit (SDK) is under development that would allow others to create additional learning

  18. Spatial Visualization as Mediating between Mathematics Learning Strategy and Mathematics Achievement among 8th Grade Students

    ERIC Educational Resources Information Center

    Rabab'h, Belal; Veloo, Arsaythamby

    2015-01-01

    Jordanian 8th grade students revealed low achievement in mathematics through four periods (1999, 2003, 2007 & 2011) of Trends in International Mathematics and Science Study (TIMSS). This study aimed to determine whether spatial visualization mediates the affect of Mathematics Learning Strategies (MLS) factors namely mathematics attitude,…

  19. Psychological and Pedagogic Conditions of Activating Creative Activity in Students for Successful Learning

    ERIC Educational Resources Information Center

    Abykanova, Bakytgul; Bilyalova, Zhupar; Makhatova, Valentina; Idrissov, Salamat; Nugumanov, Samal

    2016-01-01

    Creative activity of a pedagogic process subject depends on the pedagogue's position, on his faith in the abilities to learn successfully, on encouragement of achievements, stimulating the initiative and activity. Successful learning by activating creative activity is possible with the presence of respectful attitude towards the pedagogic process…

  20. Learning to echolocate in sighted people: a correlational study on attention, working memory and spatial abilities.

    PubMed

    Ekkel, M R; van Lier, R; Steenbergen, B

    2017-03-01

    Echolocation can be beneficial for the orientation and mobility of visually impaired people. Research has shown considerable individual differences for acquiring this skill. However, individual characteristics that affect the learning of echolocation are largely unknown. In the present study, we examined individual factors that are likely to affect learning to echolocate: sustained and divided attention, working memory, and spatial abilities. To that aim, sighted participants with normal hearing performed an echolocation task that was adapted from a previously reported size-discrimination task. In line with existing studies, we found large individual differences in echolocation ability. We also found indications that participants were able to improve their echolocation ability. Furthermore, we found a significant positive correlation between improvement in echolocation and sustained and divided attention, as measured in the PASAT. No significant correlations were found with our tests regarding working memory and spatial abilities. These findings may have implications for the development of guidelines for training echolocation that are tailored to the individual with a visual impairment.

  1. Incorporating Active Learning Techniques into a Genetics Class

    ERIC Educational Resources Information Center

    Lee, W. Theodore; Jabot, Michael E.

    2011-01-01

    We revised a sophomore-level genetics class to more actively engage the students in their learning. The students worked in groups on quizzes using the Immediate Feedback Assessment Technique (IF-AT) and active-learning projects. The IF-AT quizzes allowed students to discuss key concepts in small groups and learn the correct answers in class. The…

  2. Faculty Perceptions about Barriers to Active Learning

    ERIC Educational Resources Information Center

    Michael, Joel

    2007-01-01

    Faculty may perceive many barriers to active learning in their classrooms. Four groups of participants in a faculty development workshop were asked to list their perceived barriers to active learning. Many of the problems identified were present on more than one list. The barriers fall into three categories: student characteristics, issues…

  3. Thinking Egyptian: Active Models for Understanding Spatial Representation.

    ERIC Educational Resources Information Center

    Schiferl, Ellen

    This paper highlights how introductory textbooks on Egyptian art inhibit understanding by reinforcing student preconceptions, and demonstrates another approach to discussing space with a classroom exercise and software. The alternative approach, an active model for spatial representation, introduced here was developed by adapting classroom…

  4. Vesicular glutamate transporter VGLUT1 has a role in hippocampal long-term potentiation and spatial reversal learning.

    PubMed

    Balschun, Detlef; Moechars, Diederik; Callaerts-Vegh, Zsuzsanna; Vermaercke, Ben; Van Acker, Nathalie; Andries, Luc; D'Hooge, Rudi

    2010-03-01

    Vesicular glutamate transporters 1 and 2 (VGLUT1, VGLUT2) show largely complementary distribution in the mature rodent brain and tend to segregate to synapses with different physiological properties. In the hippocampus, VGLUT1 is the dominate subtype in adult animals, whereas VGLUT2 is transiently expressed during early postnatal development. We generated and characterized VGLUT1 knockout mice in order to examine the functional contribution of this transporter to hippocampal synaptic plasticity and hippocampus-dependent spatial learning. Because complete deletion of VGLUT1 resulted in postnatal lethality, we used heterozygous animals for analysis. Here, we report that deletion of VGLUT1 resulted in impaired hippocampal long-term potentiation (LTP) in the CA1 region in vitro. In contrast, heterozygous VGLUT2 mice that were investigated for comparison did not show any changes in LTP. The reduced ability of VGLUT1-deficient mice to express LTP was accompanied by a specific deficit in spatial reversal learning in the water maze. Our data suggest a functional role of VGLUT1 in forms of hippocampal synaptic plasticity that are required to adapt and modify acquired spatial maps to external stimuli and changes.

  5. The Development of Spatial Skills through Interventions Involving Block Building Activities

    ERIC Educational Resources Information Center

    Casey, Beth M.; Andrews, Nicole; Schindler, Holly; Kersh, Joanne E.; Samper, Alexandra; Copley, Juanita

    2008-01-01

    This study investigated the use of block-building interventions to develop spatial-reasoning skills in kindergartners. Two intervention conditions and a control condition were included to determine, first, whether the block building activities themselves benefited children's spatial skills, and secondly, whether a story context further improved…

  6. Active Learning: The Importance of Developing a Comprehensive Measure

    ERIC Educational Resources Information Center

    Carr, Rodney; Palmer, Stuart; Hagel, Pauline

    2015-01-01

    This article reports on an investigation into the validity of a widely used scale for measuring the extent to which higher education students employ active learning strategies. The scale is the active learning scale in the Australasian Survey of Student Engagement. This scale is based on the Active and Collaborative Learning scale of the National…

  7. Age-related impairments in active learning and strategic visual exploration.

    PubMed

    Brandstatt, Kelly L; Voss, Joel L

    2014-01-01

    Old age could impair memory by disrupting learning strategies used by younger individuals. We tested this possibility by manipulating the ability to use visual-exploration strategies during learning. Subjects controlled visual exploration during active learning, thus permitting the use of strategies, whereas strategies were limited during passive learning via predetermined exploration patterns. Performance on tests of object recognition and object-location recall was matched for younger and older subjects for objects studied passively, when learning strategies were restricted. Active learning improved object recognition similarly for younger and older subjects. However, active learning improved object-location recall for younger subjects, but not older subjects. Exploration patterns were used to identify a learning strategy involving repeat viewing. Older subjects used this strategy less frequently and it provided less memory benefit compared to younger subjects. In previous experiments, we linked hippocampal-prefrontal co-activation to improvements in object-location recall from active learning and to the exploration strategy. Collectively, these findings suggest that age-related memory problems result partly from impaired strategies during learning, potentially due to reduced hippocampal-prefrontal co-engagement.

  8. Route learning in Korsakoff's syndrome: Residual acquisition of spatial memory despite profound amnesia.

    PubMed

    Oudman, Erik; Van der Stigchel, Stefan; Nijboer, Tanja C W; Wijnia, Jan W; Seekles, Maaike L; Postma, Albert

    2016-03-01

    Korsakoff's syndrome (KS) is characterized by explicit amnesia, but relatively spared implicit memory. The aim of this study was to assess to what extent KS patients can acquire spatial information while performing a spatial navigation task. Furthermore, we examined whether residual spatial acquisition in KS was based on automatic or effortful coding processes. Therefore, 20 KS patients and 20 matched healthy controls performed six tasks on spatial navigation after they navigated through a residential area. Ten participants per group were instructed to pay close attention (intentional condition), while 10 received mock instructions (incidental condition). KS patients showed hampered performance on a majority of tasks, yet their performance was superior to chance level on a route time and distance estimation tasks, a map drawing task and a route walking task. Performance was relatively spared on the route distance estimation task, but there were large variations between participants. Acquisition in KS was automatic rather than effortful, since no significant differences were obtained between the intentional and incidental condition on any task, whereas for the healthy controls, the intention to learn was beneficial for the map drawing task and the route walking task. The results of this study suggest that KS patients are still able to acquire spatial information during navigation on multiple domains despite the presence of the explicit amnesia. Residual acquisition is most likely based on automatic coding processes. © 2014 The British Psychological Society.

  9. Assessing Student Behaviors and Motivation for Actively Learning Biology

    ERIC Educational Resources Information Center

    Moore, Michael Edward

    2017-01-01

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is…

  10. Active Radiation Detectors for Use in Space Beyond Low Earth Orbit: Spatial and Energy Resolution Requirements and Methods for Heavy Ion Charge Classification

    NASA Astrophysics Data System (ADS)

    McBeth, Rafe A.

    Space radiation exposure to astronauts will need to be carefully monitored on future missions beyond low earth orbit. NASA has proposed an updated radiation risk framework that takes into account a significant amount of radiobiological and heavy ion track structure information. These models require active radiation detection systems to measure the energy and ion charge Z. However, current radiation detection systems cannot meet these demands. The aim of this study was to investigate several topics that will help next generation detection systems meet the NASA objectives. Specifically, this work investigates the required spatial resolution to avoid coincident events in a detector, the effects of energy straggling and conversion of dose from silicon to water, and methods for ion identification (Z) using machine learning. The main results of this dissertation are as follows: 1. Spatial resolution on the order of 0.1 cm is required for active space radiation detectors to have high confidence in identifying individual particles, i.e., to eliminate coincident events. 2. Energy resolution of a detector system will be limited by energy straggling effects and the conversion of dose in silicon to dose in biological tissue (water). 3. Machine learning methods show strong promise for identification of ion charge (Z) with simple detector designs.

  11. Collegial Activity Learning between Heterogeneous Sensors.

    PubMed

    Feuz, Kyle D; Cook, Diane J

    2017-11-01

    Activity recognition algorithms have matured and become more ubiquitous in recent years. However, these algorithms are typically customized for a particular sensor platform. In this paper we introduce PECO, a Personalized activity ECOsystem, that transfers learned activity information seamlessly between sensor platforms in real time so that any available sensor can continue to track activities without requiring its own extensive labeled training data. We introduce a multi-view transfer learning algorithm that facilitates this information handoff between sensor platforms and provide theoretical performance bounds for the algorithm. In addition, we empirically evaluate PECO using datasets that utilize heterogeneous sensor platforms to perform activity recognition. These results indicate that not only can activity recognition algorithms transfer important information to new sensor platforms, but any number of platforms can work together as colleagues to boost performance.

  12. Learning efficient visual search for stimuli containing diagnostic spatial configurations and color-shape conjunctions.

    PubMed

    Reavis, Eric A; Frank, Sebastian M; Tse, Peter U

    2018-04-12

    Visual search is often slow and difficult for complex stimuli such as feature conjunctions. Search efficiency, however, can improve with training. Search for stimuli that can be identified by the spatial configuration of two elements (e.g., the relative position of two colored shapes) improves dramatically within a few hundred trials of practice. Several recent imaging studies have identified neural correlates of this learning, but it remains unclear what stimulus properties participants learn to use to search efficiently. Influential models, such as reverse hierarchy theory, propose two major possibilities: learning to use information contained in low-level image statistics (e.g., single features at particular retinotopic locations) or in high-level characteristics (e.g., feature conjunctions) of the task-relevant stimuli. In a series of experiments, we tested these two hypotheses, which make different predictions about the effect of various stimulus manipulations after training. We find relatively small effects of manipulating low-level properties of the stimuli (e.g., changing their retinotopic location) and some conjunctive properties (e.g., color-position), whereas the effects of manipulating other conjunctive properties (e.g., color-shape) are larger. Overall, the findings suggest conjunction learning involving such stimuli might be an emergent phenomenon that reflects multiple different learning processes, each of which capitalizes on different types of information contained in the stimuli. We also show that both targets and distractors are learned, and that reversing learned target and distractor identities impairs performance. This suggests that participants do not merely learn to discriminate target and distractor stimuli, they also learn stimulus identity mappings that contribute to performance improvements.

  13. Feasibility of Active Machine Learning for Multiclass Compound Classification.

    PubMed

    Lang, Tobias; Flachsenberg, Florian; von Luxburg, Ulrike; Rarey, Matthias

    2016-01-25

    A common task in the hit-to-lead process is classifying sets of compounds into multiple, usually structural classes, which build the groundwork for subsequent SAR studies. Machine learning techniques can be used to automate this process by learning classification models from training compounds of each class. Gathering class information for compounds can be cost-intensive as the required data needs to be provided by human experts or experiments. This paper studies whether active machine learning can be used to reduce the required number of training compounds. Active learning is a machine learning method which processes class label data in an iterative fashion. It has gained much attention in a broad range of application areas. In this paper, an active learning method for multiclass compound classification is proposed. This method selects informative training compounds so as to optimally support the learning progress. The combination with human feedback leads to a semiautomated interactive multiclass classification procedure. This method was investigated empirically on 15 compound classification tasks containing 86-2870 compounds in 3-38 classes. The empirical results show that active learning can solve these classification tasks using 10-80% of the data which would be necessary for standard learning techniques.

  14. One Spatial Map or Many? Spatial Coding of Connected Environments

    ERIC Educational Resources Information Center

    Han, Xue; Becker, Suzanna

    2014-01-01

    We investigated how humans encode large-scale spatial environments using a virtual taxi game. We hypothesized that if 2 connected neighborhoods are explored jointly, people will form a single integrated spatial representation of the town. However, if the neighborhoods are first learned separately and later observed to be connected, people will…

  15. Active learning for noisy oracle via density power divergence.

    PubMed

    Sogawa, Yasuhiro; Ueno, Tsuyoshi; Kawahara, Yoshinobu; Washio, Takashi

    2013-10-01

    The accuracy of active learning is critically influenced by the existence of noisy labels given by a noisy oracle. In this paper, we propose a novel pool-based active learning framework through robust measures based on density power divergence. By minimizing density power divergence, such as β-divergence and γ-divergence, one can estimate the model accurately even under the existence of noisy labels within data. Accordingly, we develop query selecting measures for pool-based active learning using these divergences. In addition, we propose an evaluation scheme for these measures based on asymptotic statistical analyses, which enables us to perform active learning by evaluating an estimation error directly. Experiments with benchmark datasets and real-world image datasets show that our active learning scheme performs better than several baseline methods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Calcium sensor regulation of the CaV2.1 Ca2+ channel contributes to long-term potentiation and spatial learning.

    PubMed

    Nanou, Evanthia; Scheuer, Todd; Catterall, William A

    2016-11-15

    Many forms of short-term synaptic plasticity rely on regulation of presynaptic voltage-gated Ca 2+ type 2.1 (Ca V 2.1) channels. However, the contribution of regulation of Ca V 2.1 channels to other forms of neuroplasticity and to learning and memory are not known. Here we have studied mice with a mutation (IM-AA) that disrupts regulation of Ca V 2.1 channels by calmodulin and related calcium sensor proteins. Surprisingly, we find that long-term potentiation (LTP) of synaptic transmission at the Schaffer collateral-CA1 synapse in the hippocampus is substantially weakened, even though this form of synaptic plasticity is thought to be primarily generated postsynaptically. LTP in response to θ-burst stimulation and to 100-Hz tetanic stimulation is much reduced. However, a normal level of LTP can be generated by repetitive 100-Hz stimulation or by depolarization of the postsynaptic cell to prevent block of NMDA-specific glutamate receptors by Mg 2+ The ratio of postsynaptic responses of NMDA-specific glutamate receptors to those of AMPA-specific glutamate receptors is decreased, but the postsynaptic current from activation of NMDA-specific glutamate receptors is progressively increased during trains of stimuli and exceeds WT by the end of 1-s trains. Strikingly, these impairments in long-term synaptic plasticity and the previously documented impairments in short-term synaptic plasticity in IM-AA mice are associated with pronounced deficits in spatial learning and memory in context-dependent fear conditioning and in the Barnes circular maze. Thus, regulation of Ca V 2.1 channels by calcium sensor proteins is required for normal short-term synaptic plasticity, LTP, and spatial learning and memory in mice.

  17. Effect of Royal Jelly on spatial learning and memory in rat model of streptozotocin-induced sporadic Alzheimer's disease

    PubMed Central

    Zamani, Zohre; Reisi, Parham; Alaei, Hojjatallah; Pilehvarian, Ali Asghar

    2012-01-01

    Background: It has been recently demonstrated that Royal jelly (RJ) has a beneficial role on neural functions. Alzheimer's disease (AD) is associated with impairments of learning and memory. Therefore, the present study was designed to examine the effect of RJ on spatial learning and memory in rats after intracerebroventricular injection of streptozotocin (icv-STZ). Materials and Methods: Rats were infused bilaterally with an icv injection of STZ, while sham rats received vehicle only. The rats were feed with RJ-contained food (3% w/w) (lyophilized RJ mixed with powdered regular food) or regular food for 10 days. Then spatial learning and memory was tested in the rats by Morris water maze test. Results: Results showed that in icv-STZ group latency and path length were increased as compared to sham group, also icv-STZ rats less remembered the target quadrant that previously the platform was located; however, these were protected significantly in STZ group that received RJ-containing food. Conclusions: Our findings support the potential neuroprotective role of RJ and its helpful effects in AD. PMID:23210085

  18. Opposite monosynaptic scaling of BLP–vCA1 inputs governs hopefulness- and helplessness-modulated spatial learning and memory

    PubMed Central

    Yang, Ying; Wang, Zhi-Hao; Jin, Sen; Gao, Di; Liu, Nan; Chen, Shan-Ping; Zhang, Sinan; Liu, Qing; Liu, Enjie; Wang, Xin; Liang, Xiao; Wei, Pengfei; Li, Xiaoguang; Li, Yin; Yue, Chenyu; Li, Hong-lian; Wang, Ya-Li; Wang, Qun; Ke, Dan; Xie, Qingguo; Xu, Fuqiang; Wang, Liping; Wang, Jian-Zhi

    2016-01-01

    Different emotional states lead to distinct behavioural consequences even when faced with the same challenging events. Emotions affect learning and memory capacities, but the underlying neurobiological mechanisms remain elusive. Here we establish models of learned helplessness (LHL) and learned hopefulness (LHF) by exposing animals to inescapable foot shocks or with anticipated avoidance trainings. The LHF animals show spatial memory potentiation with excitatory monosynaptic upscaling between posterior basolateral amygdale (BLP) and ventral hippocampal CA1 (vCA1), whereas the LHL show memory deficits with an attenuated BLP–vCA1 connection. Optogenetic disruption of BLP–vCA1 inputs abolishes the effects of LHF and impairs synaptic plasticity. By contrast, targeted BLP–vCA1 stimulation rescues the LHL-induced memory deficits and mimics the effects of LHF. BLP–vCA1 stimulation increases synaptic transmission and dendritic plasticity with the upregulation of CREB and intrasynaptic AMPA receptors in CA1. These findings indicate that opposite excitatory monosynaptic scaling of BLP–vCA1 controls LHF- and LHL-modulated spatial memory, revealing circuit-specific mechanisms linking emotions to memory. PMID:27411738

  19. Opposite monosynaptic scaling of BLP-vCA1 inputs governs hopefulness- and helplessness-modulated spatial learning and memory.

    PubMed

    Yang, Ying; Wang, Zhi-Hao; Jin, Sen; Gao, Di; Liu, Nan; Chen, Shan-Ping; Zhang, Sinan; Liu, Qing; Liu, Enjie; Wang, Xin; Liang, Xiao; Wei, Pengfei; Li, Xiaoguang; Li, Yin; Yue, Chenyu; Li, Hong-Lian; Wang, Ya-Li; Wang, Qun; Ke, Dan; Xie, Qingguo; Xu, Fuqiang; Wang, Liping; Wang, Jian-Zhi

    2016-07-14

    Different emotional states lead to distinct behavioural consequences even when faced with the same challenging events. Emotions affect learning and memory capacities, but the underlying neurobiological mechanisms remain elusive. Here we establish models of learned helplessness (LHL) and learned hopefulness (LHF) by exposing animals to inescapable foot shocks or with anticipated avoidance trainings. The LHF animals show spatial memory potentiation with excitatory monosynaptic upscaling between posterior basolateral amygdale (BLP) and ventral hippocampal CA1 (vCA1), whereas the LHL show memory deficits with an attenuated BLP-vCA1 connection. Optogenetic disruption of BLP-vCA1 inputs abolishes the effects of LHF and impairs synaptic plasticity. By contrast, targeted BLP-vCA1 stimulation rescues the LHL-induced memory deficits and mimics the effects of LHF. BLP-vCA1 stimulation increases synaptic transmission and dendritic plasticity with the upregulation of CREB and intrasynaptic AMPA receptors in CA1. These findings indicate that opposite excitatory monosynaptic scaling of BLP-vCA1 controls LHF- and LHL-modulated spatial memory, revealing circuit-specific mechanisms linking emotions to memory.

  20. An integrative review of in-class activities that enable active learning in college science classroom settings

    NASA Astrophysics Data System (ADS)

    Arthurs, Leilani A.; Kreager, Bailey Zo

    2017-10-01

    Engaging students in active learning is linked to positive learning outcomes. This study aims to synthesise the peer-reviewed literature about 'active learning' in college science classroom settings. Using the methodology of an integrative literature review, 337 articles archived in the Educational Resources Information Center (ERIC) are examined. Four categories of in-class activities emerge: (i) individual non-polling activities, (ii) in-class polling activities, (iii) whole-class discussion or activities, and (iv) in-class group activities. Examining the collection of identified in-class activities through the lens of a theoretical framework informed by constructivism and social interdependence theory, we synthesise the reviewed literature to propose the active learning strategies (ALSs) model and the instructional decisions to enable active learning (IDEAL) theory. The ALS model characterises in-class activities in terms of the degrees to which they are designed to promote (i) peer interaction and (ii) social interdependence. The IDEAL theory includes the ALS model and provides a framework for conceptualising different levels of the general concept 'active learning' and how these levels connect to instructional decision-making about using in-class activities. The proposed ALS model and IDEAL theory can be utilised to inform instructional decision-making and future research about active learning in college science courses.

  1. Rats with ventral hippocampal damage are impaired at various forms of learning including conditioned inhibition, spatial navigation, and discriminative fear conditioning to similar contexts.

    PubMed

    McDonald, Robert J; Balog, R J; Lee, Justin Q; Stuart, Emily E; Carrels, Brianna B; Hong, Nancy S

    2018-10-01

    The ventral hippocampus (vHPC) has been implicated in learning and memory functions that seem to differ from its dorsal counterpart. The goal of this series of experiments was to provide further insight into the functional contributions of the vHPC. Our previous work implicated the vHPC in spatial learning, inhibitory learning, and fear conditioning to context. However, the specific role of vHPC on these different forms of learning are not clear. Accordingly, we assessed the effects of neurotoxic lesions of the ventral hippocampus on retention of a conditioned inhibitory association, early versus late spatial navigation in the water task, and discriminative fear conditioning to context under high ambiguity conditions. The results showed that the vHPC was necessary for the expression of conditioned inhibition, early spatial learning, and discriminative fear conditioning to context when the paired and unpaired contexts have high cue overlap. We argue that this pattern of effects, combined with previous work, suggests a key role for vHPC in the utilization of broad contextual representations for inhibition and discriminative memory in high ambiguity conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Egocentric spatial learning in schizophrenia investigated with functional magnetic resonance imaging☆

    PubMed Central

    Siemerkus, Jakob; Irle, Eva; Schmidt-Samoa, Carsten; Dechent, Peter; Weniger, Godehard

    2012-01-01

    Psychotic symptoms in schizophrenia are related to disturbed self-recognition and to disturbed experience of agency. Possibly, these impairments contribute to first-person large-scale egocentric learning deficits. Sixteen inpatients with schizophrenia and 16 matched healthy comparison subjects underwent functional magnetic resonance imaging (fMRI) while finding their way in a virtual maze. The virtual maze presented a first-person view, lacked any topographical landmarks and afforded egocentric navigation strategies. The participants with schizophrenia showed impaired performance in the virtual maze when compared with controls, and showed a similar but weaker pattern of activity changes during egocentric learning when compared with controls. Especially the activity of task-relevant brain regions (precuneus and posterior cingulate and retrosplenial cortex) differed from that of controls across all trials of the task. Activity increase within the right-sided precuneus was related to worse virtual maze performance and to stronger positive symptoms in participants with schizophrenia. We suggest that psychotic symptoms in schizophrenia are related to aberrant neural activity within the precuneus. Possibly, first-person large-scale egocentric navigation and learning designs may be a feasible tool for the assessment and treatment of cognitive deficits related to self-recognition in patients with schizophrenia. PMID:24179748

  3. Exploring the Structure of Spatial Representations

    PubMed Central

    Madl, Tamas; Franklin, Stan; Chen, Ke; Trappl, Robert; Montaldi, Daniela

    2016-01-01

    It has been suggested that the map-like representations that support human spatial memory are fragmented into sub-maps with local reference frames, rather than being unitary and global. However, the principles underlying the structure of these ‘cognitive maps’ are not well understood. We propose that the structure of the representations of navigation space arises from clustering within individual psychological spaces, i.e. from a process that groups together objects that are close in these spaces. Building on the ideas of representational geometry and similarity-based representations in cognitive science, we formulate methods for learning dissimilarity functions (metrics) characterizing participants’ psychological spaces. We show that these learned metrics, together with a probabilistic model of clustering based on the Bayesian cognition paradigm, allow prediction of participants’ cognitive map structures in advance. Apart from insights into spatial representation learning in human cognition, these methods could facilitate novel computational tools capable of using human-like spatial concepts. We also compare several features influencing spatial memory structure, including spatial distance, visual similarity and functional similarity, and report strong correlations between these dimensions and the grouping probability in participants’ spatial representations, providing further support for clustering in spatial memory. PMID:27347681

  4. Simulated systemic recurrent Mycoplasma infection in rats induces recurrent sickness responses without residual impairment in spatial learning and memory.

    PubMed

    Swanepoel, Tanya; Harvey, Brian H; Harden, Lois M; Laburn, Helen P; Mitchell, Duncan

    2012-02-01

    In spite of their prevalence and importance, recurrent acute infections seldom have been investigated in the laboratory. We set out to measure fever and sickness behaviour in simulated recurrent Mycoplasma infection; Mycoplasma is a common clinical cause of recurrent acute infection. Male Sprague-Dawley rats had radiotransponders implanted to measure abdominal temperature and cage activity. After recovery, rats received three intraperitoneal (I.P.) injections, 10 days apart, of either fibroblast-stimulating lipopeptide-1 (FLS-1), a pyrogenic moiety of Mycoplasma salivarium, at a dose of 500 μg.kg(-1) in 1 ml.kg(-1) phosphate-buffered saline (PBS), or vehicle (PBS, 1 ml.kg(-1)). Body mass and food intake were measured daily. For measurement of learning and memory, training in a Morris Water Maze commenced 10 days after the last of the three successive injections and continued daily for 4 days. Spatial memory was assessed on the following day. Hippocampal tissue of rats was collected on the day of the last exposure to the maze. Recurrent FSL-1 administration induced recurrent fevers (~1°C) for about 9h, recurrent lethargy (~40-60%) for 1 day, recurrent anorexia (~16-30%) for 1 day, and recurrent reductions in the rate of mass gain (~112%) for 1 day, but did not induce persistent stunting. Recurrent FSL-1 administration did not result in tolerance to fever, lethargy or anorexia. There was no residual histological damage to the hippocampus and no residual detrimental effect in learning or memory in rats. Though we cannot extrapolate our results directly to humans, clinical recurrent acute Mycoplasma infection may not impose a high risk of stunting or impaired spatial learning and memory. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Effect of Learning Activity on Students' Motivation, Physical Activity Levels and Effort/Persistence

    ERIC Educational Resources Information Center

    Gao, Zan; Lee, Amelia M.; Xiang, Ping; Kosma, Maria

    2011-01-01

    The type of learning activity offered in physical education may influence students' motivational beliefs, physical activity participation and effort/persistence in class. However, most empirical studies have focused on the individual level rather than on the learner-content interactions. Accordingly, the potential effects of learning activities on…

  6. Spatial Encounters: Exercises in Spatial Awareness.

    ERIC Educational Resources Information Center

    New Mexico Univ., Albuquerque.

    This series of activities on spatial relationships was designed to help users acquire the skills of spatial visualization and orientation and to improve their effectiveness in applying those skills. The series contains an introduction to spatial orientation with several self-directed activities to help improve that skill. It also contains seven…

  7. Gene Network Construction from Microarray Data Identifies a Key Network Module and Several Candidate Hub Genes in Age-Associated Spatial Learning Impairment

    PubMed Central

    Uddin, Raihan; Singh, Shiva M.

    2017-01-01

    As humans age many suffer from a decrease in normal brain functions including spatial learning impairments. This study aimed to better understand the molecular mechanisms in age-associated spatial learning impairment (ASLI). We used a mathematical modeling approach implemented in Weighted Gene Co-expression Network Analysis (WGCNA) to create and compare gene network models of young (learning unimpaired) and aged (predominantly learning impaired) brains from a set of exploratory datasets in rats in the context of ASLI. The major goal was to overcome some of the limitations previously observed in the traditional meta- and pathway analysis using these data, and identify novel ASLI related genes and their networks based on co-expression relationship of genes. This analysis identified a set of network modules in the young, each of which is highly enriched with genes functioning in broad but distinct GO functional categories or biological pathways. Interestingly, the analysis pointed to a single module that was highly enriched with genes functioning in “learning and memory” related functions and pathways. Subsequent differential network analysis of this “learning and memory” module in the aged (predominantly learning impaired) rats compared to the young learning unimpaired rats allowed us to identify a set of novel ASLI candidate hub genes. Some of these genes show significant repeatability in networks generated from independent young and aged validation datasets. These hub genes are highly co-expressed with other genes in the network, which not only show differential expression but also differential co-expression and differential connectivity across age and learning impairment. The known function of these hub genes indicate that they play key roles in critical pathways, including kinase and phosphatase signaling, in functions related to various ion channels, and in maintaining neuronal integrity relating to synaptic plasticity and memory formation. Taken

  8. Gene Network Construction from Microarray Data Identifies a Key Network Module and Several Candidate Hub Genes in Age-Associated Spatial Learning Impairment.

    PubMed

    Uddin, Raihan; Singh, Shiva M

    2017-01-01

    As humans age many suffer from a decrease in normal brain functions including spatial learning impairments. This study aimed to better understand the molecular mechanisms in age-associated spatial learning impairment (ASLI). We used a mathematical modeling approach implemented in Weighted Gene Co-expression Network Analysis (WGCNA) to create and compare gene network models of young (learning unimpaired) and aged (predominantly learning impaired) brains from a set of exploratory datasets in rats in the context of ASLI. The major goal was to overcome some of the limitations previously observed in the traditional meta- and pathway analysis using these data, and identify novel ASLI related genes and their networks based on co-expression relationship of genes. This analysis identified a set of network modules in the young, each of which is highly enriched with genes functioning in broad but distinct GO functional categories or biological pathways. Interestingly, the analysis pointed to a single module that was highly enriched with genes functioning in "learning and memory" related functions and pathways. Subsequent differential network analysis of this "learning and memory" module in the aged (predominantly learning impaired) rats compared to the young learning unimpaired rats allowed us to identify a set of novel ASLI candidate hub genes. Some of these genes show significant repeatability in networks generated from independent young and aged validation datasets. These hub genes are highly co-expressed with other genes in the network, which not only show differential expression but also differential co-expression and differential connectivity across age and learning impairment. The known function of these hub genes indicate that they play key roles in critical pathways, including kinase and phosphatase signaling, in functions related to various ion channels, and in maintaining neuronal integrity relating to synaptic plasticity and memory formation. Taken together, they

  9. Superior cognitive mapping through single landmark-related learning than through boundary-related learning.

    PubMed

    Zhou, Ruojing; Mou, Weimin

    2016-08-01

    Cognitive mapping is assumed to be through hippocampus-dependent place learning rather than striatum-dependent response learning. However, we proposed that either type of spatial learning, as long as it involves encoding metric relations between locations and reference points, could lead to a cognitive map. Furthermore, the fewer reference points to specify individual locations, the more accurate a cognitive map of these locations will be. We demonstrated that participants have more accurate representations of vectors between 2 locations and of configurations among 3 locations when locations are individually encoded in terms of a single landmark than when locations are encoded in terms of a boundary. Previous findings have shown that learning locations relative to a boundary involve stronger place learning and higher hippocampal activation whereas learning relative to a single landmark involves stronger response learning and higher striatal activation. Recognizing this, we have provided evidence challenging the cognitive map theory but favoring our proposal. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Design and Implementation of an Object Oriented Learning Activity System

    ERIC Educational Resources Information Center

    Lin, Huan-Yu; Tseng, Shian-Shyong; Weng, Jui-Feng; Su, Jun-Ming

    2009-01-01

    With the development of e-learning technology, many specifications of instructional design have been proposed to make learning activity sharable and reusable. With the specifications and sufficient learning resources, the researches further focus on how to provide learners more appropriate learning activities to improve their learning performance.…

  11. Student Buy-In to Active Learning in a College Science Course

    PubMed Central

    Cavanagh, Andrew J.; Aragón, Oriana R.; Chen, Xinnian; Couch, Brian; Durham, Mary; Bobrownicki, Aiyana; Hanauer, David I.; Graham, Mark J.

    2016-01-01

    The benefits of introducing active learning in college science courses are well established, yet more needs to be understood about student buy-in to active learning and how that process of buy-in might relate to student outcomes. We test the exposure–persuasion–identification–commitment (EPIC) process model of buy-in, here applied to student (n = 245) engagement in an undergraduate science course featuring active learning. Student buy-in to active learning was positively associated with engagement in self-regulated learning and students’ course performance. The positive associations among buy-in, self-regulated learning, and course performance suggest buy-in as a potentially important factor leading to student engagement and other student outcomes. These findings are particularly salient in course contexts featuring active learning, which encourage active student participation in the learning process. PMID:27909026

  12. Exploratory spatial data analysis of global MODIS active fire data

    NASA Astrophysics Data System (ADS)

    Oom, D.; Pereira, J. M. C.

    2013-04-01

    We performed an exploratory spatial data analysis (ESDA) of autocorrelation patterns in the NASA MODIS MCD14ML Collection 5 active fire dataset, for the period 2001-2009, at the global scale. The dataset was screened, resulting in an annual rate of false alarms and non-vegetation fires ranging from a minimum of 3.1% in 2003 to a maximum of 4.4% in 2001. Hot bare soils and gas flares were the major sources of false alarms and non-vegetation fires. The data were aggregated at 0.5° resolution for the global and local spatial autocorrelation Fire counts were found to be positively correlated up to distances of around 200 km, and negatively for larger distances. A value of 0.80 (p = 0.001, α = 0.05) for Moran's I indicates strong spatial autocorrelation between fires at global scale, with 60% of all cells displaying significant positive or negative spatial correlation. Different types of spatial autocorrelation were mapped and regression diagnostics allowed for the identification of spatial outlier cells, with fire counts much higher or lower than expected, considering their spatial context.

  13. Exploring Characteristics of Fine-Grained Behaviors of Learning Mathematics in Tablet-Based E-Learning Activities

    ERIC Educational Resources Information Center

    Yeung, Cheuk Yu; Shum, Kam Hong; Hui, Lucas Chi Kwong; Chu, Samuel Kai Wah; Chan, Tsing Yun; Kuo, Yung Nin; Ng, Yee Ling

    2017-01-01

    Attributes of teaching and learning contexts provide rich information about how students participate in learning activities. By tracking and analyzing snapshots of these attributes captured continuously throughout the duration of the learning activities, teachers can identify individual students who need special attention and apply different…

  14. Semantic Features, Perceptual Expectations, and Frequency as Factors in the Learning of Polar Spatial Adjective Concepts.

    ERIC Educational Resources Information Center

    Dunckley, Candida J. Lutes; Radtke, Robert C.

    Two semantic theories of word learning, a perceptual complexity hypothesis (H. Clark, 1970) and a quantitative complexity hypothesis (E. Clark, 1972) were tested by teaching 24 preschoolers and 16 college students CVC labels for five polar spatial adjective concepts having single word representations in English, and for three having no direct…

  15. Active Learning in the Physics Classroom

    NASA Astrophysics Data System (ADS)

    Naron, Carol

    Many students enter physics classes filled with misconceptions about physics concepts. Students tend to retain these misconceptions into their adult lives, even after physics instruction. Constructivist researchers have found that students gain understanding through their experiences. Researchers have also found that active learning practices increase conceptual understanding of introductory physics students. This project study sought to examine whether incorporating active learning practices in an advanced placement physics classroom increased conceptual understanding as measured by the force concept inventory (FCI). Physics students at the study site were given the FCI as both a pre- and posttest. Test data were analyzed using two different methods---a repeated-measures t test and the Hake gain method. The results of this research project showed that test score gains were statistically significant, as measured by the t test. The Hake gain results indicated a low (22.5%) gain for the class. The resulting project was a curriculum plan for teaching the mechanics portion of Advanced Placement (AP) physics B as well as several active learning classroom practices supported by the research. This project will allow AP physics teachers an opportunity to improve their curricular practices. Locally, the results of this project study showed that research participants gained understanding of physics concepts. Social change may occur as teachers implement active learning strategies, thus creating improved student understanding of physics concepts.

  16. Reference frames in allocentric representations are invariant across static and active encoding

    PubMed Central

    Chan, Edgar; Baumann, Oliver; Bellgrove, Mark A.; Mattingley, Jason B.

    2013-01-01

    An influential model of spatial memory—the so-called reference systems account—proposes that relationships between objects are biased by salient axes (“frames of reference”) provided by environmental cues, such as the geometry of a room. In this study, we sought to examine the extent to which a salient environmental feature influences the formation of spatial memories when learning occurs via a single, static viewpoint and via active navigation, where information has to be integrated across multiple viewpoints. In our study, participants learned the spatial layout of an object array that was arranged with respect to a prominent environmental feature within a virtual arena. Location memory was tested using judgments of relative direction. Experiment 1A employed a design similar to previous studies whereby learning of object-location information occurred from a single, static viewpoint. Consistent with previous studies, spatial judgments were significantly more accurate when made from an orientation that was aligned, as opposed to misaligned, with the salient environmental feature. In Experiment 1B, a fresh group of participants learned the same object-location information through active exploration, which required integration of spatial information over time from a ground-level perspective. As in Experiment 1A, object-location information was organized around the salient environmental cue. Taken together, the findings suggest that the learning condition (static vs. active) does not affect the reference system employed to encode object-location information. Spatial reference systems appear to be a ubiquitous property of spatial representations, and might serve to reduce the cognitive demands of spatial processing. PMID:24009595

  17. Active-learning versus teacher-centered instruction for learning acids and bases

    NASA Astrophysics Data System (ADS)

    Acar Sesen, Burcin; Tarhan, Leman

    2011-07-01

    Background and purpose: Active-learning as a student-centered learning process has begun to take more interest in constructing scientific knowledge. For this reason, this study aimed to investigate the effectiveness of active-learning implementation on high-school students' understanding of 'acids and bases'. Sample The sample of this study was 45 high-school students (average age 17 years) from two different classes, which were randomly assigned to the experimental (n = 21) and control groups (n = 25), in a high school in Turkey. Design and methods A pre-test consisting of 25 items was applied to both experimental and control groups before the treatment in order to identify student prerequisite knowledge about their proficiency for learning 'acids and bases'. A one-way analysis of variance (ANOVA) was conducted to compare the pre-test scores for groups and no significant difference was found between experimental (ME = 40.14) and control groups (MC = 41.92) in terms of mean scores (F 1,43 = 2.66, p > 0.05). The experimental group was taught using an active-learning curriculum developed by the authors and the control group was taught using traditional course content based on teacher-centered instruction. After the implementation, 'Acids and Bases Achievement Test' scores were collected for both groups. Results ANOVA results showed that students' 'Acids and Bases Achievement Test' post-test scores differed significantly in terms of groups (F 1,43 = 102.53; p < 0.05). Additionally, in this study 54 misconceptions, 14 of them not reported in the literature before, were observed in the following terms: 'acid and base theories'; 'metal and non-metal oxides'; 'acid and base strengths'; 'neutralization'; 'pH and pOH'; 'hydrolysis'; 'acid-base equilibrium'; 'buffers'; 'indicators'; and 'titration'. Based on the achievement test and individual interview results, it was found that high-school students in the experimental group had fewer misconceptions and understood the

  18. Diverse expected gradient active learning for relative attributes.

    PubMed

    You, Xinge; Wang, Ruxin; Tao, Dacheng

    2014-07-01

    The use of relative attributes for semantic understanding of images and videos is a promising way to improve communication between humans and machines. However, it is extremely labor- and time-consuming to define multiple attributes for each instance in large amount of data. One option is to incorporate active learning, so that the informative samples can be actively discovered and then labeled. However, most existing active-learning methods select samples one at a time (serial mode), and may therefore lose efficiency when learning multiple attributes. In this paper, we propose a batch-mode active-learning method, called diverse expected gradient active learning. This method integrates an informativeness analysis and a diversity analysis to form a diverse batch of queries. Specifically, the informativeness analysis employs the expected pairwise gradient length as a measure of informativeness, while the diversity analysis forces a constraint on the proposed diverse gradient angle. Since simultaneous optimization of these two parts is intractable, we utilize a two-step procedure to obtain the diverse batch of queries. A heuristic method is also introduced to suppress imbalanced multiclass distributions. Empirical evaluations of three different databases demonstrate the effectiveness and efficiency of the proposed approach.

  19. Diverse Expected Gradient Active Learning for Relative Attributes.

    PubMed

    You, Xinge; Wang, Ruxin; Tao, Dacheng

    2014-06-02

    The use of relative attributes for semantic understanding of images and videos is a promising way to improve communication between humans and machines. However, it is extremely labor- and time-consuming to define multiple attributes for each instance in large amount of data. One option is to incorporate active learning, so that the informative samples can be actively discovered and then labeled. However, most existing active-learning methods select samples one at a time (serial mode), and may therefore lose efficiency when learning multiple attributes. In this paper, we propose a batch-mode active-learning method, called Diverse Expected Gradient Active Learning (DEGAL). This method integrates an informativeness analysis and a diversity analysis to form a diverse batch of queries. Specifically, the informativeness analysis employs the expected pairwise gradient length as a measure of informativeness, while the diversity analysis forces a constraint on the proposed diverse gradient angle. Since simultaneous optimization of these two parts is intractable, we utilize a two-step procedure to obtain the diverse batch of queries. A heuristic method is also introduced to suppress imbalanced multi-class distributions. Empirical evaluations of three different databases demonstrate the effectiveness and efficiency of the proposed approach.

  20. Ginsenoside Rb1 improves spatial learning and memory by regulation of cell genesis in the hippocampal subregions of rats.

    PubMed

    Liu, Lei; Hoang-Gia, Trinh; Wu, Hui; Lee, Mi-Ra; Gu, Lijuan; Wang, Chunyan; Yun, Beom-Sik; Wang, Qijun; Ye, Shengquan; Sung, Chang-Keun

    2011-03-25

    Ginsenoside Rb1 (Rb1) is known to improve learning and memory in hippocampus-dependent tasks. However, the cellular mechanism remains unknown. Cell genesis in hippocampus is involved in spatial learning and memory. In the present study, Rb1 was orally administrated to adult rats for 30days. The behavioral training tests indicated that Rb1 improved spatial cognitive performance of rats in Morris water maze (MWM). Furthermore, we investigated the effects of Rb1 on cell genesis in adult rats' hippocampus, using thymidine analog bromodeoxyuridine (BrdU) as a marker for dividing cells. It has been shown that hippocampal cell genesis can be influenced by several factors such as learning and exercise. In order to avoid the effects of the interfering factors, only the rats treated with Rb1 without training in MWM were used to investigate cell genesis in hippocampus. When BrdU was given to the rats 30days prior to being killed, it was shown that oral administration of Rb1 significantly increased cell survival in dentate gyrus and hippocampal subregion CA3. However, when BrdU was injected 2h prior to sacrifice, the results indicated that Rb1 had no significant influence on cell proliferation in the hippocampal subregions. Thus, an increase of cell survival in hippocampus stimulated by Rb1 may be one of the mechanisms by which ginseng facilitates spatial learning and memory. Our study also indicates that Rb1 may be developed as a therapeutic agent for patients with memory impairment. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Active-learning strategies: the use of a game to reinforce learning in nursing education. A case study.

    PubMed

    Boctor, Lisa

    2013-03-01

    The majority of nursing students are kinesthetic learners, preferring a hands-on, active approach to education. Research shows that active-learning strategies can increase student learning and satisfaction. This study looks at the use of one active-learning strategy, a Jeopardy-style game, 'Nursopardy', to reinforce Fundamentals of Nursing material, aiding in students' preparation for a standardized final exam. The game was created keeping students varied learning styles and the NCLEX blueprint in mind. The blueprint was used to create 5 categories, with 26 total questions. Student survey results, using a five-point Likert scale showed that they did find this learning method enjoyable and beneficial to learning. More research is recommended regarding learning outcomes, when using active-learning strategies, such as games. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Telling Active Learning Pedagogies Apart: From Theory to Practice

    ERIC Educational Resources Information Center

    Cattaneo, Kelsey Hood

    2017-01-01

    Designing learning environments to incorporate active learning pedagogies is difficult as definitions are often contested and intertwined. This article seeks to determine whether classification of active learning pedagogies (i.e., project-based, problem-based, inquiry-based, case-based, and discovery-based), through theoretical and practical…

  3. Active-learning implementation in an advanced elective course on infectious diseases.

    PubMed

    Hidayat, Levita; Patel, Shreya; Veltri, Keith

    2012-06-18

    To describe the development, implementation, and assessment of an advanced elective course on infectious diseases using active-learning strategies. Pedagogy for active learning was incorporated by means of mini-lecture, journal club, and debate with follow-up discussion. Forty-eight students were enrolled in this 4-week elective course, in which 30% of course time was allocated for active-learning exercises. All activities were fundamentally designed as a stepwise approach in complementing each active-learning exercise. Achievement of the course learning objectives was assessed using a 5-point Likert scale survey instrument. Students' awareness of the significance of antimicrobial resistance was improved (p ≤ 0.05). Students' ability to critically evaluate the infectious-disease literature and its application in informed clinical judgments was also enhanced through these active-learning exercises (p ≤ 0.05). Students agreed that active learning should be part of the pharmacy curriculum and that active-learning exercises improved their critical-thinking, literature-evaluation, and self-learning skills. An elective course using active-learning strategies allowed students to combine information gained from the evaluation of infectious-disease literature, critical thinking, and informed clinical judgment. This blended approach ultimately resulted in an increased knowledge and awareness of infectious diseases.

  4. Active-Learning Implementation in an Advanced Elective Course on Infectious Diseases

    PubMed Central

    Patel, Shreya; Veltri, Keith

    2012-01-01

    Objectives. To describe the development, implementation, and assessment of an advanced elective course on infectious diseases using active-learning strategies. Design. Pedagogy for active learning was incorporated by means of mini-lecture, journal club, and debate with follow-up discussion. Forty-eight students were enrolled in this 4-week elective course, in which 30% of course time was allocated for active-learning exercises. All activities were fundamentally designed as a stepwise approach in complementing each active-learning exercise. Assessment. Achievement of the course learning objectives was assessed using a 5-point Likert scale survey instrument. Students’ awareness of the significance of antimicrobial resistance was improved (p ≤ 0.05). Students’ ability to critically evaluate the infectious-disease literature and its application in informed clinical judgments was also enhanced through these active-learning exercises (p ≤ 0.05). Students agreed that active learning should be part of the pharmacy curriculum and that active-learning exercises improved their critical-thinking, literature-evaluation, and self-learning skills. Conclusion. An elective course using active-learning strategies allowed students to combine information gained from the evaluation of infectious-disease literature, critical thinking, and informed clinical judgment. This blended approach ultimately resulted in an increased knowledge and awareness of infectious diseases. PMID:22761528

  5. Student Activity and Learning Outcomes in a Virtual Learning Environment

    ERIC Educational Resources Information Center

    Romanov, Kalle; Nevgi, Anne

    2008-01-01

    The aim of the study was to explore the relationship between degree of participation and learning outcomes in an e-learning course on medical informatics. Overall activity in using course materials and degree of participation in the discussion forums of an online course were studied among 39 medical students. Students were able to utilise the…

  6. Active inference and learning.

    PubMed

    Friston, Karl; FitzGerald, Thomas; Rigoli, Francesco; Schwartenbeck, Philipp; O Doherty, John; Pezzulo, Giovanni

    2016-09-01

    This paper offers an active inference account of choice behaviour and learning. It focuses on the distinction between goal-directed and habitual behaviour and how they contextualise each other. We show that habits emerge naturally (and autodidactically) from sequential policy optimisation when agents are equipped with state-action policies. In active inference, behaviour has explorative (epistemic) and exploitative (pragmatic) aspects that are sensitive to ambiguity and risk respectively, where epistemic (ambiguity-resolving) behaviour enables pragmatic (reward-seeking) behaviour and the subsequent emergence of habits. Although goal-directed and habitual policies are usually associated with model-based and model-free schemes, we find the more important distinction is between belief-free and belief-based schemes. The underlying (variational) belief updating provides a comprehensive (if metaphorical) process theory for several phenomena, including the transfer of dopamine responses, reversal learning, habit formation and devaluation. Finally, we show that active inference reduces to a classical (Bellman) scheme, in the absence of ambiguity. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Improving Student Engagement in Learning Activities.

    ERIC Educational Resources Information Center

    Adams, Nancy; And Others

    Engaging students seriously in their own academic learning is a persistent difficulty for teachers. The goal of this action research project was to actively involve elementary school students in their learning. The program was implemented at three elementary schools in northern Illinois serving multicultural populations; special education…

  8. The R package "sperrorest" : Parallelized spatial error estimation and variable importance assessment for geospatial machine learning

    NASA Astrophysics Data System (ADS)

    Schratz, Patrick; Herrmann, Tobias; Brenning, Alexander

    2017-04-01

    Computational and statistical prediction methods such as the support vector machine have gained popularity in remote-sensing applications in recent years and are often compared to more traditional approaches like maximum-likelihood classification. However, the accuracy assessment of such predictive models in a spatial context needs to account for the presence of spatial autocorrelation in geospatial data by using spatial cross-validation and bootstrap strategies instead of their now more widely used non-spatial equivalent. The R package sperrorest by A. Brenning [IEEE International Geoscience and Remote Sensing Symposium, 1, 374 (2012)] provides a generic interface for performing (spatial) cross-validation of any statistical or machine-learning technique available in R. Since spatial statistical models as well as flexible machine-learning algorithms can be computationally expensive, parallel computing strategies are required to perform cross-validation efficiently. The most recent major release of sperrorest therefore comes with two new features (aside from improved documentation): The first one is the parallelized version of sperrorest(), parsperrorest(). This function features two parallel modes to greatly speed up cross-validation runs. Both parallel modes are platform independent and provide progress information. par.mode = 1 relies on the pbapply package and calls interactively (depending on the platform) parallel::mclapply() or parallel::parApply() in the background. While forking is used on Unix-Systems, Windows systems use a cluster approach for parallel execution. par.mode = 2 uses the foreach package to perform parallelization. This method uses a different way of cluster parallelization than the parallel package does. In summary, the robustness of parsperrorest() is increased with the implementation of two independent parallel modes. A new way of partitioning the data in sperrorest is provided by partition.factor.cv(). This function gives the user the

  9. DASL-Data and Activities for Solar Learning

    NASA Technical Reports Server (NTRS)

    Jones, Harrison P.; Henney, Carl; Hill, Frank; Gearen, Michael; Pompca, Stephen; Stagg, Travis; Stefaniak, Linda; Walker, Connie

    2004-01-01

    DASL-Data and Activities for Solar Learning Data and Activities for Solar Learning (DASL) provides a classroom learning environment based on a twenty-five year record of solar magnetograms from the National Solar Observatory (NSO) at Kitt Peak, AZ. The data, together with image processing software for Macs or PCs, can be used to learn basic facts about the Sun and astronomy at the middle school level. At the high school level, students can study properties of the Sun's magnetic cycle with classroom exercises emphasizing data and error analysis and can participate in a new scientific study, Research in Active Solar Longitudes (RASL), in collaboration with classrooms throughout the country and scientists at NSO and NASA. We present a half-day course to train teachers in the scientific content of the project and its classroom use. We will provide a compact disc with the data and software and will demonstrate software installation and use, classroom exercises, and participation in RASL with computer projection.

  10. Moments of movement: active learning and practice development.

    PubMed

    Dewing, Jan

    2010-01-01

    As our understanding of practice development becomes more sophisticated, we enhance our understanding of how the facilitation of learning in and from practice, can be more effectively achieved. This paper outlines an approach for enabling and maximizing learning within practice development known as 'Active Learning'. It considers how, given establishing a learning culture is a prerequisite for the sustainability of PD within organisations, practice developers can do more to maximize learning for practitioners and other stakeholders. Active Learning requires that more attention be given by organisations committed to PD, at a corporate and strategic level for how learning strategies are developed in the workplace. Specifically, a move away from a heavy reliance on training may be required. Practice development facilitators also need to review: how they organise and offer learning, so that learning strategies are consistent with the vision, aims and processes of PD; have skills in the planning, delivery and evaluation of learning as part of their role and influence others who provide more traditional methods of training and education.

  11. Semantic-gap-oriented active learning for multilabel image annotation.

    PubMed

    Tang, Jinhui; Zha, Zheng-Jun; Tao, Dacheng; Chua, Tat-Seng

    2012-04-01

    User interaction is an effective way to handle the semantic gap problem in image annotation. To minimize user effort in the interactions, many active learning methods were proposed. These methods treat the semantic concepts individually or correlatively. However, they still neglect the key motivation of user feedback: to tackle the semantic gap. The size of the semantic gap of each concept is an important factor that affects the performance of user feedback. User should pay more efforts to the concepts with large semantic gaps, and vice versa. In this paper, we propose a semantic-gap-oriented active learning method, which incorporates the semantic gap measure into the information-minimization-based sample selection strategy. The basic learning model used in the active learning framework is an extended multilabel version of the sparse-graph-based semisupervised learning method that incorporates the semantic correlation. Extensive experiments conducted on two benchmark image data sets demonstrated the importance of bringing the semantic gap measure into the active learning process.

  12. Spatial Thinking: Precept for Understanding Operational Environments

    DTIC Science & Technology

    2016-06-10

    A Computer Movie Simulating Urban Growth in the Detroit Region,” 236. 29 U.S. National Research Council, Learning to Think Spatially: GIS as a... children and spatial language, the article focuses on the use of geospatial information systems (GIS) as a support mechanism for learning to think...Thinking, Cognition, Learning , Geospatial, Operating Environment, Space Perception 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18

  13. It takes biking to learn: Physical activity improves learning a second language.

    PubMed

    Liu, Fengqin; Sulpizio, Simone; Kornpetpanee, Suchada; Job, Remo

    2017-01-01

    Recent studies have shown that concurrent physical activity enhances learning a completely unfamiliar L2 vocabulary as compared to learning it in a static condition. In this paper we report a study whose aim is twofold: to test for possible positive effects of physical activity when L2 learning has already reached some level of proficiency, and to test whether the assumed better performance when engaged in physical activity is limited to the linguistic level probed at training (i.e. L2 vocabulary tested by means of a Word-Picture Verification task), or whether it extends also to the sentence level (which was tested by means of a Sentence Semantic Judgment Task). The results show that Chinese speakers with basic knowledge of English benefited from physical activity while learning a set of new words. Furthermore, their better performance emerged also at the sentential level, as shown by their performance in a Semantic Judgment task. Finally, an interesting temporal asymmetry between the lexical and the sentential level emerges, with the difference between the experimental and control group emerging from the 1st testing session at the lexical level but after several weeks at the sentential level.

  14. It takes biking to learn: Physical activity improves learning a second language.

    PubMed Central

    Liu, Fengqin; Sulpizio, Simone; Kornpetpanee, Suchada; Job, Remo

    2017-01-01

    Recent studies have shown that concurrent physical activity enhances learning a completely unfamiliar L2 vocabulary as compared to learning it in a static condition. In this paper we report a study whose aim is twofold: to test for possible positive effects of physical activity when L2 learning has already reached some level of proficiency, and to test whether the assumed better performance when engaged in physical activity is limited to the linguistic level probed at training (i.e. L2 vocabulary tested by means of a Word-Picture Verification task), or whether it extends also to the sentence level (which was tested by means of a Sentence Semantic Judgment Task). The results show that Chinese speakers with basic knowledge of English benefited from physical activity while learning a set of new words. Furthermore, their better performance emerged also at the sentential level, as shown by their performance in a Semantic Judgment task. Finally, an interesting temporal asymmetry between the lexical and the sentential level emerges, with the difference between the experimental and control group emerging from the 1st testing session at the lexical level but after several weeks at the sentential level. PMID:28542333

  15. Medical Student Perspectives of Active Learning: A Focus Group Study.

    PubMed

    Walling, Anne; Istas, Kathryn; Bonaminio, Giulia A; Paolo, Anthony M; Fontes, Joseph D; Davis, Nancy; Berardo, Benito A

    2017-01-01

    Phenomenon: Medical student perspectives were sought about active learning, including concerns, challenges, perceived advantages and disadvantages, and appropriate role in the educational process. Focus groups were conducted with students from all years and campuses of a large U.S. state medical school. Students had considerable experience with active learning prior to medical school and conveyed accurate understanding of the concept and its major strategies. They appreciated the potential of active learning to deepen and broaden learning and its value for long-term professional development but had significant concerns about the efficiency of the process, the clarity of expectations provided, and the importance of receiving preparatory materials. Most significantly, active learning experiences were perceived as disconnected from grading and even as impeding preparation for school and national examinations. Insights: Medical students understand the concepts of active learning and have considerable experience in several formats prior to medical school. They are generally supportive of active learning concepts but frustrated by perceived inefficiencies and lack of contribution to the urgencies of achieving optimal grades and passing United States Medical Licensing Examinations, especially Step 1.

  16. Teacher feedback during active learning: current practices in primary schools.

    PubMed

    van den Bergh, Linda; Ros, Anje; Beijaard, Douwe

    2013-06-01

    Feedback is one of the most powerful tools, which teachers can use to enhance student learning. It appears difficult for teachers to give qualitatively good feedback, especially during active learning. In this context, teachers should provide facilitative feedback that is focused on the development of meta-cognition and social learning. The purpose of the present study is to contribute to the existing knowledge about feedback and to give directions to improve teacher feedback in the context of active learning. The participants comprised 32 teachers who practiced active learning in the domain of environmental studies in the sixth, seventh, or eighth grade of 13 Dutch primary schools. A total of 1,465 teacher-student interactions were examined. Video observations were made of active learning lessons in the domain of environmental studies. A category system was developed based on the literature and empirical data. Teacher-student interactions were assessed using this system. Results. About half of the teacher-student interactions contained feedback. This feedback was usually focused on the tasks that were being performed by the students and on the ways in which these tasks were processed. Only 5% of the feedback was explicitly related to a learning goal. In their feedback, the teachers were directing (rather than facilitating) the learning processes. During active learning, feedback on meta-cognition and social learning is important. Feedback should be explicitly related to learning goals. In practice, these kinds of feedback appear to be scarce. Therefore, giving feedback during active learning seems to be an important topic for teachers' professional development. © 2012 The British Psychological Society.

  17. County-scale spatial distribution of soil enzyme activities and enzyme activity indices in agricultural land: implications for soil quality assessment.

    PubMed

    Tan, Xiangping; Xie, Baoni; Wang, Junxing; He, Wenxiang; Wang, Xudong; Wei, Gehong

    2014-01-01

    Here the spatial distribution of soil enzymatic properties in agricultural land was evaluated on a county-wide (567 km(2)) scale in Changwu, Shaanxi Province, China. The spatial variations in activities of five hydrolytic enzymes were examined using geostatistical methods. The relationships between soil enzyme activities and other soil properties were evaluated using both an integrated total enzyme activity index (TEI) and the geometric mean of enzyme activities (GME). At the county scale, soil invertase, phosphatase, and catalase activities were moderately spatially correlated, whereas urease and dehydrogenase activities were weakly spatially correlated. Correlation analysis showed that both TEI and GME were better correlated with selected soil physicochemical properties than single enzyme activities. Multivariate regression analysis showed that soil OM content had the strongest positive effect while soil pH had a negative effect on the two enzyme activity indices. In addition, total phosphorous content had a positive effect on TEI and GME in orchard soils, whereas alkali-hydrolyzable nitrogen and available potassium contents, respectively, had negative and positive effects on these two enzyme indices in cropland soils. The results indicate that land use changes strongly affect soil enzyme activities in agricultural land, where TEI provides a sensitive biological indicator for soil quality.

  18. Effects of genistein in the maternal diet on reproductive development and spatial learning in male rats.

    PubMed

    Ball, Evan R; Caniglia, Mary Kay; Wilcox, Jenna L; Overton, Karla A; Burr, Marra J; Wolfe, Brady D; Sanders, Brian J; Wisniewski, Amy B; Wrenn, Craige C

    2010-03-01

    Endocrine disruptors, chemicals that disturb the actions of endogenous hormones, have been implicated in birth defects associated with hormone-dependent development. Phytoestrogens are a class of endocrine disruptors found in plants. In the current study we examined the effects of exposure at various perinatal time periods to genistein, a soy phytoestrogen, on reproductive development and learning in male rats. Dams were fed genistein-containing (5 mg/kg feed) food during both gestation and lactation, during gestation only, during lactation only, or during neither period. Measures of reproductive development and body mass were taken in the male offspring during postnatal development, and learning and memory performance was assessed in adulthood. Genistein exposure via the maternal diet decreased body mass in the male offspring of dams fed genistein during both gestation and lactation, during lactation only, but not during gestation only. Genistein decreased anogenital distance when exposure was during both gestation and lactation, but there was no effect when exposure was limited to one of these time periods. Similarly, spatial learning in the Morris water maze was impaired in male rats exposed to genistein during both gestation and lactation, but not in rats exposed during only one of these time periods. There was no effect of genistein on cued or contextual fear conditioning. In summary, the data indicate that exposure to genistein through the maternal diet significantly impacts growth in male offspring if exposure is during lactation. The effects of genistein on reproductive development and spatial learning required exposure throughout the pre- and postnatal periods. Copyright 2009 Elsevier Inc. All rights reserved.

  19. Child Development: An Active Learning Approach

    ERIC Educational Resources Information Center

    Levine, Laura E.; Munsch, Joyce

    2010-01-01

    Within each chapter of this innovative topical text, the authors engage students by demonstrating the wide range of real-world applications of psychological research connected to child development. In particular, the distinctive Active Learning features incorporated throughout the book foster a dynamic and personal learning process for students.…

  20. Active Learning in an Introductory Meteorology Class

    NASA Astrophysics Data System (ADS)

    Marchese, P. J.; Bluestone, C.

    2007-12-01

    Active learning modules were introduced to the primarily minority population in the introductory meteorology class at Queensborough Community College (QCC). These activities were developed at QCC and other 4 year colleges and designed to reinforce basic meteorological concepts. The modules consisted of either Interactive Lecture Demonstrations (ILD) or discovery-based activities. During the ILD the instructor would describe an experiment that would be demonstrated in class. Students would predict what the outcome would be and compare their expected results to the actual outcome of the experiment. In the discovery-based activities students would learn about physical concepts by performing basic experiments. These activities differed from the traditional lab in that it avoided "cookbook" procedures and emphasized having the students learn about the concept using the scientific method. As a result of these activities student scores measuring conceptual understanding, as well as factual knowledge, increased as compared to student scores in a more affluent community college. Students also had higher self- efficacy scores. Lower scoring students demonstrated the greatest benefit, while the better students had little (or no) changes.

  1. Learning what children know about space from looking at their hands: The added value of gesture in spatial communication

    PubMed Central

    Sauter, Megan; Uttal, David H.; Alman, Amanda Schaal; Goldin-Meadow, Susan; Levine, Susan C.

    2013-01-01

    This article examines two issues: the role of gesture in the communication of spatial information and the relation between communication and mental representation. Children (8–10 years) and adults walked through a space to learn the locations of six hidden toy animals and then explained the space to another person. In Study 1, older children and adults typically gestured when describing the space and rarely provided spatial information in speech without also providing the information in gesture. However, few 8-year-olds communicated spatial information in speech or gesture. Studies 2 and 3 showed that 8-year-olds did understand the spatial arrangement of the animals and could communicate spatial information if prompted to use their hands. Taken together, these results indicate that gesture is important for conveying spatial relations at all ages and, as such, provides us with a more complete picture of what children do and do not know about communicating spatial relations. PMID:22209401

  2. Activating Metacognition through Online Learning Log (OLL)

    ERIC Educational Resources Information Center

    Kurt, Mustafa

    2007-01-01

    This study aims to investigate the activation process of metacognition of learners who systematically reflect on their learning using Online Learning Logs (OLL) which were designed to encourage them to think about learning. The study is qualitative and attempts to identify the metacognitive strategies of learners and their attitudes towards OLL.…

  3. Generation of Tutorial Dialogues: Discourse Strategies for Active Learning

    DTIC Science & Technology

    1998-05-29

    AND SUBTITLE Generation of Tutorial Dialogues: Discourse Strategies for active Learning AUTHORS Dr. Martha Evens 7. PERFORMING ORGANI2ATION NAME...time the student starts in on a new topic. Michael and Rovick constantly attempt to promote active learning . They regularly use hints and only resort...Controlling active learning : How tutors decide when to generate hints. Proceedings of FLAIRS 󈨣. Melbourne Beach, FL. 157-161. Hume, G., Michael

  4. [Supporting an Academic Society with the Active Learning Tool Clica].

    PubMed

    Arai, Kensuke; Mitsubori, Masahiro

    2018-01-01

     Within school classrooms, Active Learning has been receiving unprecedented attention. Indeed, Active Learning's popularity does not stop in the classroom. As more and more people argue that the Japanese government needs to renew guidelines for education, Active Learning has surfaced as a method capable of providing the necessary knowledge and training for people in all areas of society, helping them reach their full potential. It has become accepted that Active Learning is more effective over the passive listening of lectures, where there is little to no interaction. Active Learning emphasizes that learners explain their thoughts, ask questions, and express their opinions, resulting in a better retention rate of the subject at hand. In this review, I introduce an Active Learning support tool developed at Digital Knowledge, "Clica". This tool is currently being used at many educational institutions. I will also introduce an online questionnaire that Digital Knowledge provided at the 10th Annual Meeting of the Japanese Society for Pharmaceutical Palliative Care and Sciences.

  5. MLS student active learning within a "cloud" technology program.

    PubMed

    Tille, Patricia M; Hall, Heather

    2011-01-01

    In November 2009, the MLS program in a large public university serving a geographically large, sparsely populated state instituted an initiative for the integration of technology enhanced teaching and learning within the curriculum. This paper is intended to provide an introduction to the system requirements and sample instructional exercises used to create an active learning technology-based classroom. Discussion includes the following: 1.) define active learning and the essential components, 2.) summarize teaching methods, technology and exercises utilized within a "cloud" technology program, 3.) describe a "cloud" enhanced classroom and programming 4.) identify active learning tools and exercises that can be implemented into laboratory science programs, and 5.) describe the evaluation and assessment of curriculum changes and student outcomes. The integration of technology in the MLS program is a continual process and is intended to provide student-driven active learning experiences.

  6. Effects of alcoholic beverage treatment on spatial learning and fear memory in mice.

    PubMed

    Hashikawa-Hobara, Narumi; Mishima, Shuta; Nagase, Shotaro; Morita, Keishi; Otsuka, Ami; Hashikawa, Naoya

    2018-04-24

    Although chronic ethanol treatment is known to impair learning and memory, humans commonly consume a range of alcoholic beverages. However, the specific effects of some alcoholic beverages on behavioral performance are largely unknown. The present study compared the effects of a range of alcoholic beverages (plain ethanol solution, red wine, sake and whiskey; with a matched alcohol concentration of 10%) on learning and memory. 6-week-old C57BL6J mice were orally administered alcohol for 7 weeks. The results revealed that red wine treatment exhibited a trend toward improvement of spatial memory and advanced extinction of fear memory. Additionally, red wine treatment significantly increased mRNA levels of brain-derived neurotrophic factor (BDNF) and N-methyl-D-aspartate (NMDA) receptors in mice hippocampus. These results support previous reports that red wine has beneficial effects.

  7. Spatial distribution of enzyme activities along the root and in the rhizosphere of different plants

    NASA Astrophysics Data System (ADS)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Extracellular enzymes are important for decomposition of many biological macromolecules abundant in soil such as cellulose, hemicelluloses and proteins. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. So far acquisition of in situ data about local activity of different enzymes in soil has been challenged. That is why there is an urgent need in spatially explicit methods such as 2-D zymography to determine the variation of enzymes along the roots in different plants. Here, we developed further the zymography technique in order to quantitatively visualize the enzyme activities (Spohn and Kuzyakov, 2013), with a better spatial resolution We grew Maize (Zea mays L.) and Lentil (Lens culinaris) in rhizoboxes under optimum conditions for 21 days to study spatial distribution of enzyme activity in soil and along roots. We visualized the 2D distribution of the activity of three enzymes:β-glucosidase, leucine amino peptidase and phosphatase, using fluorogenically labelled substrates. Spatial resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography shows different pattern of spatial distribution of enzyme activity along roots and soil of different plants. We observed a uniform distribution of enzyme activities along the root system of Lentil. However, root system of Maize demonstrated inhomogeneity of enzyme activities. The apical part of an individual root (root tip) in maize showed the highest activity. The activity of all enzymes was the highest at vicinity of the roots and it decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify

  8. Visible spatial contiguity of social information and reward affects social learning in brown capuchins (Sapajus apella) and children (Homo sapiens).

    PubMed

    Wood, Lara A; Whiten, Andrew

    2017-11-01

    Animal social learning is typically studied experimentally by the presentation of artificial foraging tasks. Although productive, results are often variable even for the same species. We present and test the hypothesis that one cause of variation is that spatial distance between rewards and the means of reward release causes conflicts for participants' attentional focus. We investigated whether spatial contiguity between a visible reward and the means of release would affect behavioral responses that evidence social learning, testing 21 brown capuchins ( Sapajus apella ), a much-studied species with variant evidence for social learning, and one hundred eighty 2- to 4-year-old human children ( Homo sapiens ), a benchmark species known for a strong social learning disposition. Participants were presented with a novel transparent apparatus where a reward was either proximal or distal to a demonstrated means of releasing it. A distal reward location decreased attention toward the location of the demonstration and impaired subsequent success in gaining rewards. Generally, the capuchins produced the alternative method to that demonstrated, whereas children copied the method demonstrated, although a distal reward location reduced copying in younger children. We conclude that some design features in common social learning tasks may significantly degrade the evidence for social learning. We have demonstrated this for 2 different primates but suggest that it is a significant factor to control for in social learning research across all taxa. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Graduate Faculty Perceptions of Experiential Learning Activities in Multicultural Classrooms

    ERIC Educational Resources Information Center

    Su, Yu-Han

    2012-01-01

    Current graduate programs employ many effective teaching methods. One of these methods, using experiential learning activities (Lee & Caffarella, 1994) in class, includes the subcomponents of cooperative learning, self-directed learning, and active learning. While these methods are commonly used, not much scholarly literature has examined the…

  10. An Active Learning Activity to Reinforce the Design Components of the Corticosteroids

    PubMed Central

    Mandela, Prashant

    2018-01-01

    Despite the popularity of active learning applications over the past few decades, few activities have been reported for the field of medicinal chemistry. The purpose of this study is to report a new active learning activity, describe participant contributions, and examine participant performance on the assessment questions mapped to the objective covered by the activity. In this particular activity, students are asked to design two novel corticosteroids as a group (6–8 students per group) based on the design characteristics of marketed corticosteroids covered in lecture coupled with their pharmaceutics knowledge from the previous semester and then defend their design to the class through an interactive presentation model. Although class performance on the objective mapped to this material on the assessment did not reach statistical significance, use of this activity has allowed fruitful discussion of misunderstood concepts and facilitated multiple changes to the lecture presentation. As pharmacy schools continue to emphasize alternative learning pedagogies, publication of previously implemented activities demonstrating their use will help others apply similar methodologies. PMID:29401733

  11. An Active Learning Activity to Reinforce the Design Components of the Corticosteroids.

    PubMed

    Slauson, Stephen R; Mandela, Prashant

    2018-02-05

    Despite the popularity of active learning applications over the past few decades, few activities have been reported for the field of medicinal chemistry. The purpose of this study is to report a new active learning activity, describe participant contributions, and examine participant performance on the assessment questions mapped to the objective covered by the activity. In this particular activity, students are asked to design two novel corticosteroids as a group (6-8 students per group) based on the design characteristics of marketed corticosteroids covered in lecture coupled with their pharmaceutics knowledge from the previous semester and then defend their design to the class through an interactive presentation model. Although class performance on the objective mapped to this material on the assessment did not reach statistical significance, use of this activity has allowed fruitful discussion of misunderstood concepts and facilitated multiple changes to the lecture presentation. As pharmacy schools continue to emphasize alternative learning pedagogies, publication of previously implemented activities demonstrating their use will help others apply similar methodologies.

  12. Altered spatial learning and delay discounting in a rat model of human third trimester binge ethanol exposure

    PubMed Central

    Bañuelos, Cristina; Gilbert, Ryan J.; Montgomery, Karienn S.; Fincher, Annette S.; Wang, Haiying; Frye, Gerald D.; Setlow, Barry; Bizon, Jennifer L.

    2012-01-01

    Ethanol exposure during perinatal development can cause cognitive abnormalities including difficulties in learning, attention, and memory, as well as heightened impulsivity. The purpose of this study was to assess performance in spatial learning and impulsive choice tasks in rats subjected to an intragastric intubation model of binge ethanol exposure during human third trimester-equivalent brain development. Male and female Sprague–Dawley rat pups were intubated with ethanol (5.25 g/kg/day) on postnatal days 4–9. At adolescence (between postnatal days 35–38), these rats and sham intubated within-litter controls were trained in both spatial and cued versions of the Morris water maze. A subset of the male rats was subsequently tested on a delay-discounting task to assess impulsive choice. Ethanol-exposed rats were spatially impaired relative to controls, but performed comparably to controls on the cued version of the water maze. Ethanol-exposed rats also showed greater preference for large delayed rewards on the delay discounting task, but no evidence for altered reward sensitivity or perseverative behavior. These data demonstrate that early postnatal intermittent binge-like ethanol exposure has prolonged, detrimental, but selective effects on cognition, suggesting that even relatively brief ethanol exposure late in human pregnancy can be deleterious for cognitive function. PMID:22129556

  13. Changing University Students' Alternative Conceptions of Optics by Active Learning

    ERIC Educational Resources Information Center

    Hadžibegovic, Zalkida; Sliško, Josip

    2013-01-01

    Active learning is individual and group participation in effective activities such as in-class observing, writing, experimenting, discussion, solving problems, and talking about to-be-learned topics. Some instructors believe that active learning is impossible, or at least extremely difficult to achieve in large lecture sessions. Nevertheless, the…

  14. An active-learning laboratory on immunizations.

    PubMed

    Donohoe, Krista L; Mawyer, Tonya M; Stevens, J Tyler; Morgan, Laura A; Harpe, Spencer E

    2012-12-12

    To implement and evaluate an active-learning laboratory activity to teach pharmacy students about influenza, pneumococcal, and shingles vaccines. The laboratory session was divided into 6 immunization stations: 3 stations on influenza including a pediatrics station, and 1 station each for pneumococcal, shingles, and anaphylaxis. Although 118 of 123 (95.9%) students had completed an immunization training certificate prior to attending the laboratory, the average score on a pre-assessment to measure immunization knowledge and confidence was 56%. The post-assessment score was 87.4%. Students' confidence improved by 18.7% to 51.2% in each of the 5 areas assessed. Most respondents rated the activity overall as good or excellent on a post-activity evaluation. An active-learning approach to teaching immunizations allowed students to gain knowledge in simulated real-world experiences and reinforced key concepts on influenza, pneumococcal, and shingles vaccines.

  15. Functional Equivalence of Spatial Images from Touch and Vision: Evidence from Spatial Updating in Blind and Sighted Individuals

    ERIC Educational Resources Information Center

    Giudice, Nicholas A.; Betty, Maryann R.; Loomis, Jack M.

    2011-01-01

    This research examined whether visual and haptic map learning yield functionally equivalent spatial images in working memory, as evidenced by similar encoding bias and updating performance. In 3 experiments, participants learned 4-point routes either by seeing or feeling the maps. At test, blindfolded participants made spatial judgments about the…

  16. Active Learning Strategies in Face-to-Face Courses. IDEA Paper #53

    ERIC Educational Resources Information Center

    Millis, Barbara J.

    2012-01-01

    As numerous research studies suggest, teachers who desire increased student learning should adopt active learning. This article explores the research, defines active learning, discusses its value, offers suggestions for implementing it, and provides six concrete examples of active learning approaches: Thinking-Aloud Pair Problem-Solving;…

  17. Predicting reading and mathematics from neural activity for feedback learning.

    PubMed

    Peters, Sabine; Van der Meulen, Mara; Zanolie, Kiki; Crone, Eveline A

    2017-01-01

    Although many studies use feedback learning paradigms to study the process of learning in laboratory settings, little is known about their relevance for real-world learning settings such as school. In a large developmental sample (N = 228, 8-25 years), we investigated whether performance and neural activity during a feedback learning task predicted reading and mathematics performance 2 years later. The results indicated that feedback learning performance predicted both reading and mathematics performance. Activity during feedback learning in left superior dorsolateral prefrontal cortex (DLPFC) predicted reading performance, whereas activity in presupplementary motor area/anterior cingulate cortex (pre-SMA/ACC) predicted mathematical performance. Moreover, left superior DLPFC and pre-SMA/ACC activity predicted unique variance in reading and mathematics ability over behavioral testing of feedback learning performance alone. These results provide valuable insights into the relationship between laboratory-based learning tasks and learning in school settings, and the value of neural assessments for prediction of school performance over behavioral testing alone. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. Workshop on active learning: two examples

    NASA Astrophysics Data System (ADS)

    Ben Lakhdar, Zohra; Lahmar, Souad; Lakshminarayanan, Vasudevan

    2014-07-01

    Optics is an enabling science that has far ranging importance in many diverse fields. However, many students do not find it to be of great interest. A solution to this problem is to train teachers in active learning methodologies so that the subject matter can be presented to generate student interest. We describe a workshop to present an example of an active learning process in Optics developed for training of teachers in developing countries (a UNESCO project) and will focus on 2 two different activities: 1. Interference and diffraction is considered by students as being very hard to understand and is taught in most developing countries as purely theoretical with almost no experiments. Simple experiments to enhance the conceptual understanding of these wave phenomena will be presented and 2. Image formation by the eye. Here we will discuss myopia, hyperopia and astigmatism as well as accommodation. In this module we will discuss image. The objective of the workshop will be to provide an experience of the use of the active learning method in optics including the use of experiments, mind's on and hands-on exercises, group and class discussions

  19. Teaching Engineering with Autonomous Learning Activities

    ERIC Educational Resources Information Center

    Otero, Beatriz; Rodríguez, Eva; Royo, Pablo

    2015-01-01

    This paper proposes several activities that encourage self-learning in engineering courses. For each activity, the context and the pedagogical issues addressed are described emphasizing strengths and weaknesses. Specifically, this work describes and implements five activities, which are: questionnaires, conceptual maps, videos, jigsaw and…

  20. Cross-sensory reference frame transfer in spatial memory: the case of proprioceptive learning.

    PubMed

    Avraamides, Marios N; Sarrou, Mikaella; Kelly, Jonathan W

    2014-04-01

    In three experiments, we investigated whether the information available to visual perception prior to encoding the locations of objects in a path through proprioception would influence the reference direction from which the spatial memory was formed. Participants walked a path whose orientation was misaligned to the walls of the enclosing room and to the square sheet that covered the path prior to learning (Exp. 1) and, in addition, to the intrinsic structure of a layout studied visually prior to walking the path and to the orientation of stripes drawn on the floor (Exps. 2 and 3). Despite the availability of prior visual information, participants constructed spatial memories that were aligned with the canonical axes of the path, as opposed to the reference directions primed by visual experience. The results are discussed in the context of previous studies documenting transfer of reference frames within and across perceptual modalities.