Science.gov

Sample records for activity studies revealed

  1. Force and power generating mechanism(s) in active muscle as revealed from temperature perturbation studies.

    PubMed

    Ranatunga, K W

    2010-10-01

    The basic characteristics of the process of force and power generation in active muscle that have emerged from temperature studies are examined. This is done by reviewing complementary findings from temperature-dependence studies and rapid temperature-jump (T-jump) experiments and from intact and skinned fast mammalian muscle fibres. In isometric muscle, a small T-jump leads to a characteristic rise in force showing that crossbridge force generation is endothermic (heat absorbed) and associated with increased entropy (disorder). The sensitivity of the T-jump force generation to added inorganic phosphate (Pi) indicates that a T-jump enhances an early step in the actomyosin (crossbridge) ATPase cycle before Pi-release. During muscle lengthening when steady force is increased, the T-jump force generation is inhibited. Conversely, during shortening when steady force is decreased, the T-jump force generation is enhanced in a velocity-dependent manner, showing that T-jump force generation is strain sensitive. Within the temperature range of ∼5–35◦C, the temperature dependence of steady active force is sigmoidal both in isometric and in shortening muscle. However, in shortening muscle, the endothermic character of force generation becomes more pronounced with increased velocity and this can, at least partly, account for the marked increase with warming of the mechanical power output of active muscle. PMID:20660565

  2. Mechanistic Studies of Bismuth(V)-Mediated Thioglycoside Activation Reveal Differential Reactivity of Anomers.

    PubMed

    Goswami, Manibarsha; Ashley, Daniel C; Baik, Mu-Hyun; Pohl, Nicola L B

    2016-07-15

    The mechanism of bismuth(V)-mediated thioglycoside activation was examined using reaction kinetics and quantum chemical reaction models. NMR experiments show an unusual nonlinear growth/decay curve for the glycosylation reaction. Further studies suggest an anomeric inversion of the β-glycoside donor to the α-donor during its activation, even in the presence of a neighboring 2-position acetate. Interestingly, in situ anomerization was not observed in the activation of an α-glycoside donor, and this anomer also showed faster reaction times and higher product diastereoselectivites. Density functional theory calculations identify the structure of the promoter triphenyl bismuth ditriflate, [Ph3Bi(OTf)2, 1], in solution and map out the energetics of its interactions with the two thioglycoside anomers. These calculations suggest that 1 must bind the thiopropyl arm to induce triflate loss. The computational analyses also show that, unlike most O-glycosides, the β- and α-donor S-glycosides are similar in energy. One energetically reasonable anomerization pathway of the donors is an SN1-like mechanism promoted by forming a bismuth-sulfonium adduct with the Lewis acidic Bi(V) for the formation of an oxacarbenium intermediate. Finally, the computed energy compensations needed to form these α vs β Bi adducts is a possible explanation for the differential reactivity of these donors. PMID:27295299

  3. Conformational study reveals amino acid residues essential for hemagglutinating and anti-proliferative activities of Clematis montana lectin.

    PubMed

    Lu, Bangmin; Zhang, Bin; Qi, Wei; Zhu, Yanan; Zhao, Yan; Zhou, Nan; Sun, Rong; Bao, Jinku; Wu, Chuanfang

    2014-11-01

    Clematis montana lectin (CML), a novel mannose-binding lectin purified from C. montana Buch.-Ham stem (Ranunculaceae), has been proved to have hemagglutinating activity in rabbit erythrocytes and apoptosis-inducing activity in tumor cells. However, the biochemical properties of CML have not revealed and its structural information still needs to be elucidated. In this study, it was found that CML possessed quite good thermostability and alkaline resistance, and its hemagglutinating activity was bivalent metal cation dependent. In addition, hemagglutination test and fluorescence spectroscopy proved that GuHCl, urea, and sodium dodecyl sulfate could change the conformation of CML and further caused the loss of hemagglutination activity. Moreover, the changes of fluorescence spectrum indicated that the tryptophan (Trp) microenvironment conversion might be related to the conformation and bioactivities of CML. In addition, it was also found that Trp residues, arginine (Arg) residues, and sulfhydryl were important for the hemagglutinating activity of CML, but only Trp was proved to be crucial for the CML conformation. Furthermore, the Trp, Arg, and sulfhydryl-modified CML exhibited 97.17%, 76.99%, and 49.64% loss of its anti-proliferative activity, respectively, which was consistent with the alterations of its hemagglutinating activity. Given these findings, Trp residues on the surface of CML are essential for the active center to form substrate-accessible conformation and suitable environment for carbohydrate binding. PMID:25239139

  4. Mechanistic studies of anticancer aptamer AS1411 reveal a novel role for nucleolin in regulating Rac1 activation.

    PubMed

    Reyes-Reyes, E Merit; Šalipur, Francesca R; Shams, Mitra; Forsthoefel, Matthew K; Bates, Paula J

    2015-08-01

    AS1411 is a G-rich quadruplex-forming oligodeoxynucleotide that binds specifically to nucleolin, a protein found on the surface and in the cytoplasm of most malignant cells but absent from the surface/cytoplasm of most normal cells. AS1411 has shown promising clinical activity and is being widely used as a tumor-targeting agent, but its mechanism of action is not fully understood. Previously, we showed that AS1411 is taken up in cancer cells by macropinocytosis (fluid phase endocytosis) and subsequently stimulates further macropinocytosis by a nucleolin-dependent mechanism. In the current study, we have investigated the significance and molecular mechanisms of AS1411-induced macropinocytosis. Our results indicate that the antiproliferative activity of AS1411 in various cell lines correlated with its capacity to stimulate macropinocytosis. In DU145 prostate cancer cells, AS1411 induced activation of EGFR, Akt, p38, and Rac1. Activation of Akt and p38 were not critical for AS1411 activity because Akt activation was not observed in all AS1411-responsive cell lines and knockdown of p38 had no effect on AS1411's ability to inhibit proliferation. On the other hand, activation of EGFR and Rac1 appeared to play a role in AS1411 activity in all cancer cell lines examined (DU145, MDA-MB-468, A549, LNCaP) and their inhibition significantly reduced AS1411-mediated macropinocytosis and AS1411 antiproliferative activity. Interestingly, downregulation of nucleolin expression by siRNA also produced a substantial increase in activated Rac1, revealing a previously unknown role for nucleolin as a negative regulator of Rac1 activation. Our results are consistent with a model whereby AS1411 binding to nucleolin leads to sustained activation of Rac1 and causes methuosis, a novel type of nonapoptotic cell death characterized by hyperstimulation of macropinocytosis. We speculate that methuosis is a tumor/metastasis suppressor mechanism that opposes the malignant functions of Rac1 and that

  5. Structural Studies of FlaA1 from Helicobacter Pylori Reveal the Mechanism for Inverting 4,6-dehydratase Activity

    SciTech Connect

    Ishiyama,N.; Creuzenet, C.; Miller, W.; Demendi, M.; Anderson, E.; Harauz, G.; Lam, J.; Berghuis, A.

    2006-01-01

    FlaA1 from the human pathogen Helicobacter pylori is an enzyme involved in saccharide biosynthesis that has been shown to be essential for pathogenicity. Here we present five crystal structures of FlaA1 in the presence of substrate, inhibitors, and bound cofactor, with resolutions ranging from 2.8 to 1.9 {angstrom}. These structures reveal that the enzyme is a novel member of the short-chain dehydrogenase/reductase superfamily. Additional electron microscopy studies show the enzyme to possess a hexameric doughnut-shaped quaternary structure. NMR analyses of 'real time' enzyme-substrate reactions indicate that FlaA1 is a UDP-GlcNAc-inverting 4,6-dehydratase, suggesting that the enzyme catalyzes the first step in the biosynthetic pathway of a pseudaminic acid derivative, which is implicated in protein glycosylation. Guided by evidence from site-directed mutagenesis and computational simulations, a three-step reaction mechanism is proposed that involves Lys-133 functioning as both a catalytic acid and base.

  6. Episodic nature of earthquake activity in stable continental regions revealed by palaeoseismicity studies of Australian and North American Quaternary faults

    USGS Publications Warehouse

    Crone, A.J.; Machette, M.N.; Bowman, J.R.

    1997-01-01

    Palaeoseismic investigations of recent faulting in stable continental regions of Australia, North America and India show that these faults typically have a long-term behaviour characterised by episodes of activity separated by quiescent intervals of at least 10 000 and commonly 100 000 years or more. Long recurrence intervals such as these are well documented by detailed studies of the faults that ruptured during the 1986 Marryat Creek, South Australia and 1988 Tennant Creek, Northern Territory earthquakes. Thus, neotectonic features associated with stable continental region faults such as scarps and grabens commonly have subtle geomorphic expression and may be poorly preserved. Many potentially hazardous faults in stable continental regions are aseismic, which is one reason why the inventory of these faults is incomplete. Although they may be currently aseismic, faults in stable continental regions that are favourably oriented for movement in the current stress field could produce damaging earthquakes, often in unexpected places. Comprehensive palaeoseismic investigations of modern and prehistoric faulting events in stable continental regions are needed to understand the long-term behaviour of these faults, and thereby, improve seismic-hazard assessments.

  7. An active footwall shortcut thrust revealed by seismic reflection profiling: a case study of the Futaba fault, northern Honshu, Japan

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi; Ishiyama, Tatsuya; Kato, Naoko; Higashinaka, Motonori; Kurashimo, Eiji; Iwasaki, Takaya; Abe, Susumu

    2013-04-01

    The Futaba fault is located along the Pacific cast of southern part of Northern Honshu and continues at least 100 km. Based on tectonic morphological research, its central part show the active tectonic features. Due to the effect of M9 Tohoku Oki earthquake 2011, the evaluation of Coulomb stress changes on the fault surface is concerned for the assess of seismic hazards. To investigate the deep geometry of seismogenic source fault and basic crustal structure, we performed deep seismic reflection profiling along the 58-km-long seismic line across the Futaba fault. The seismic data were obtained using four vibroseis trucks and 1164 channel recorders. The seismic section portrays the half graben filled by 1000-m-thick lower Miocene fluvial sediments, suggesting that the Futaba fault reactivated as a west dipping normal fault during the early Miocene associated with opening of the Sea of Japan. On the hanging wall of the Miocene normal fault, Mesozoic metamorphic rocks are cropping out forming a narrow range parallel to the fault. On the footwall of this range, footwall shortcut thrust is clearly identified by the deformation of Plio-Pleistocene sediments on the seismic section. The deeper extension of the Futaba fault can be traced down to 4.5 seconds (TWT) and sub-horizontal reflectors are developed around 6-7 seconds (TWT). The dip angle of the Futaba fault in the seismogenic zone is about 45 degrees. The footwall shortcut thrust was formed at the shallow high-angle part of the Futaba fault as a low-angle (30 degrees) reverse fault. The formation of half graben is limited along the northern part of this fault system. The footwall shortcut thrust was developed along a 40-km-long segment only accompanied with the Miocene half graben. The southern segment of the surface trace of the Futaba fault suggests a straight geometry may represent a change in dip angle.

  8. Frantic activity revealed in dusty stellar factories

    NASA Astrophysics Data System (ADS)

    2009-01-01

    Thanks to the Very Large Telescope's acute and powerful near-infrared eye, astronomers have uncovered a host of new young, massive and dusty stellar nurseries in nearby galaxy NGC 253. The centre of this galaxy appears to harbour a twin of our own Milky Way's supermassive black hole. ESO PR Photo 02a/09 The Spiral Galaxy NGC 253 Astronomers from the Instituto de Astrofísica de Canarias (Spain) used NACO, a sharp-eyed adaptive optics instrument on ESO's Very Large Telescope (VLT), to study the fine detail in NGC 253, one of the brightest and dustiest spiral galaxies in the sky. Adaptive Optics (AO) corrects for the blurring effect introduced by the Earth's atmosphere. This turbulence causes the stars to twinkle in a way that delights poets, but frustrates astronomers, since it smears out the images. With AO in action the telescope can produce images that are as sharp as is theoretically possible, as if the telescope were in space. NACO revealed features in the galaxy that were only 11 light-years across. "Our observations provide us with so much spatially resolved detail that we can, for the first time, compare them with the finest radio maps for this galaxy -- maps that have existed for more than a decade," says Juan Antonio Fernández-Ontiveros, the lead author of the paper reporting the results [1]. Astronomers identified 37 distinct bright regions, a threefold increase on previous results, packed into a tiny region at the core of the galaxy, comprising just one percent of the galaxy's total size. The astronomers combined their NACO images with data from another VLT instrument, VISIR, as well as with images from the NASA/ESA Hubble Space Telescope and radio observations made by the Very Large Array and the Very Large Baseline Interferometer. Combining these observations, taken in different wavelength regimes, provided a clue to the nature of these regions. "We now think that these are probably very active nurseries that contain many stars bursting from their

  9. Quantitative meta-analysis of fMRI and PET studies reveals consistent activation in fronto-striatal-parietal regions and cerebellum during antisaccades and prosaccades

    PubMed Central

    Jamadar, Sharna D.; Fielding, Joanne; Egan, Gary F.

    2013-01-01

    The antisaccade task is a classic task of oculomotor control that requires participants to inhibit a saccade to a target and instead make a voluntary saccade to the mirror opposite location. By comparison, the prosaccade task requires participants to make a visually-guided saccade to the target. These tasks have been studied extensively using behavioral oculomotor, electrophysiological, and neuroimaging in both non-human primates and humans. In humans, the antisaccade task is under active investigation as a potential endophenotype or biomarker for multiple psychiatric and neurological disorders. A large and growing body of literature has used functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) to study the neural correlates of the antisaccade and prosaccade tasks. We present a quantitative meta-analysis of all published voxel-wise fMRI and PET studies (18) of the antisaccade task and show that consistent activation for antisaccades and prosaccades is obtained in a fronto-subcortical-parietal network encompassing frontal and supplementary eye fields (SEFs), thalamus, striatum, and intraparietal cortex. This network is strongly linked to oculomotor control and was activated to a greater extent for antisaccade than prosaccade trials. Antisaccade but not prosaccade trials additionally activated dorsolateral and ventrolateral prefrontal cortices. We also found that a number of additional regions not classically linked to oculomotor control were activated to a greater extent for antisaccade vs. prosaccade trials; these regions are often reported in antisaccade studies but rarely commented upon. While the number of studies eligible to be included in this meta-analysis was small, the results of this systematic review reveal that antisaccade and prosaccade trials consistently activate a distributed network of regions both within and outside the classic definition of the oculomotor network. PMID:24137150

  10. Interaction of Di-2-pyridylketone 2-pyridine Carboxylic Acid Hydrazone and Its Copper Complex with BSA: Effect on Antitumor Activity as Revealed by Spectroscopic Studies.

    PubMed

    Li, Cuiping; Huang, Tengfei; Fu, Yun; Liu, Youxun; Zhou, Sufeng; Qi, Zhangyang; Li, Changzheng

    2016-01-01

    The drug, di-2-pyridylketone-2-pyridine carboxylic acid hydrazone (DPPCAH) and its copper complex (DPPCAH-Cu) exhibit significant antitumor activity. However, the mechanism of their pharmacological interaction with the biological molecule bovine serum albumin (BSA) remains poorly understood. The present study elucidates the interactions between the drug and BSA through MTT assays, spectroscopic methods and molecular docking analysis. Our results indicate that BSA could attenuate effect on the cytotoxicity of DPPCAH, but not DPPCAH-Cu. Data from fluorescence quenching measurements demonstrated that both DPPCAH and DPPCAH-Cu could bind to BSA, with a reversed effect on the environment of tryptophan residues in polarity. CD spectra revealed that the DPPCAH-Cu exerted a slightly stronger effect on the secondary structure of BSA than DPPCAH. The association constant of DPPCAH with BSA was greater than that of DPPCAH-Cu. Docking studies indicated that the binding of DPPCAH to BSA involved a greater number of hydrogen bonds compared to DPPCAH-Cu. The calculated distances between bound ligands and tryptophans in BSA were in agreement with fluorescence resonance energy transfer results. Thus, the binding affinity of the drug (DPPCAH or DPPCAH-Cu) with BSA partially contributes to its antitumor activity; the greater the drug affinity is to BSA, the less is its antitumor activity. PMID:27136517

  11. A comprehensive alanine-scanning mutagenesis study reveals roles for salt bridges in the structure and activity of Pseudomonas aeruginosa elastase.

    PubMed

    Bian, Fei; Yue, Shousong; Peng, Zhenying; Zhang, Xiaowei; Chen, Gao; Yu, Jinhui; Xuan, Ning; Bi, Yuping

    2015-01-01

    The relationship between salt bridges and stability/enzymatic activity is unclear. We studied this relationship by systematic alanine-scanning mutation analysis using the typical M4 family metalloprotease Pseudomonas aeruginosa elastase (PAE, also known as pseudolysin) as a model. Structural analysis revealed seven salt bridges in the PAE structure. We constructed ten mutants for six salt bridges. Among these mutants, six (Asp189Ala, Arg179Ala, Asp201Ala, Arg205Ala, Arg245Ala and Glu249Ala) were active and four (Asp168Ala, Arg198Ala, Arg253Ala, and Arg279Ala) were inactive. Five mutants were purified, and their catalytic efficiencies (kcat/Km), half-lives (t1/2) and thermal unfolding curves were compared with those of PAE. Mutants Asp189Ala and Arg179Ala both showed decreased thermal stabilities and increased activities, suggesting that the salt bridge Asp189-Arg179 stabilizes the protein at the expense of catalytic efficiency. In contrast, mutants Asp201Ala and Arg205Ala both showed slightly increased thermal stability and slightly decreased activity, suggesting that the salt bridge Asp201-Arg205 destabilizes the protein. Mutant Glu249Ala is related to a C-terminal salt bridge network and showed both decreased thermal stability and decreased activity. Furthermore, Glu249Ala showed a thermal unfolding curve with three discernable states [the native state (N), the partially unfolded state (I) and the unfolded state (U)]. In comparison, there were only two discernable states (N and U) in the thermal unfolding curve of PAE. These results suggest that Glu249 is important for catalytic efficiency, stability and unfolding cooperativity. This study represents a systematic mutational analyses of salt bridges in the model metalloprotease PAE and provides important insights into the structure-function relationship of enzymes. PMID:25815820

  12. Voxel-wise resting-state MEG source magnitude imaging study reveals neurocircuitry abnormality in active-duty service members and veterans with PTSD

    PubMed Central

    Huang, Ming-Xiong; Yurgil, Kate A.; Robb, Ashley; Angeles, Annemarie; Diwakar, Mithun; Risbrough, Victoria B.; Nichols, Sharon L.; McLay, Robert; Theilmann, Rebecca J.; Song, Tao; Huang, Charles W.; Lee, Roland R.; Baker, Dewleen G.

    2014-01-01

    Post-traumatic stress disorder (PTSD) is a leading cause of sustained impairment, distress, and poor quality of life in military personnel, veterans, and civilians. Indirect functional neuroimaging studies using PET or fMRI with fear-related stimuli support a PTSD neurocircuitry model that includes amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC). However, it is not clear if this model can fully account for PTSD abnormalities detected directly by electromagnetic-based source imaging techniques in resting-state. The present study examined resting-state magnetoencephalography (MEG) signals in 25 active-duty service members and veterans with PTSD and 30 healthy volunteers. In contrast to the healthy volunteers, individuals with PTSD showed: 1) hyperactivity from amygdala, hippocampus, posterolateral orbitofrontal cortex (OFC), dorsomedial prefrontal cortex (dmPFC), and insular cortex in high-frequency (i.e., beta, gamma, and high-gamma) bands; 2) hypoactivity from vmPFC, Frontal Pole (FP), and dorsolateral prefrontal cortex (dlPFC) in high-frequency bands; 3) extensive hypoactivity from dlPFC, FP, anterior temporal lobes, precuneous cortex, and sensorimotor cortex in alpha and low-frequency bands; and 4) in individuals with PTSD, MEG activity in the left amygdala and posterolateral OFC correlated positively with PTSD symptom scores, whereas MEG activity in vmPFC and precuneous correlated negatively with symptom score. The present study showed that MEG source imaging technique revealed new abnormalities in the resting-state electromagnetic signals from the PTSD neurocircuitry. Particularly, posterolateral OFC and precuneous may play important roles in the PTSD neurocircuitry model. PMID:25180160

  13. Shocking Detail of Superstar's Activity Revealed

    NASA Astrophysics Data System (ADS)

    1999-10-01

    NASA's Chandra X-ray Observatory has imaged Eta Carinae and revealed a hot inner core around this mysterious superstar. The new X-ray observation shows three distinct structures: an outer, horseshoe shaped ring about two light years in diameter, a hot inner core about 3 light months in diameter, and a hot central source less than a light month in diameter which may contain the superstar. All three structures are thought to represent shock waves produced by matter rushing away from the superstar at supersonic speeds. The temperature of the shock-heated gas ranges from 60 million degrees Celsius in the central regions to 3 million degrees Celsius on the outer structure. An earlier image of Eta Carinae by the Hubble Space Telescope revealed two spectacular bubbles of gas expanding in opposite directions away from a central bright region at speeds in excess of a million miles per hour. The inner region visible in the Chandra image has never been resolved before, and appears to be associated with a central disk of high velocity gas rushing out at much higher speeds perpendicular to the bipolar optical nebula. "It is not what I expected," said Dr. Fred Seward of the Harvard-Smithsonian Center for Astrophysics. "I expected to see a strong point source with a little diffuse emission cloud around it. Instead, we see just the opposite- a bright cloud of diffuse emission, and much less radiation from the center." "The Chandra image contains some puzzles for existing ideas of how a star can produce such hot and intense X-rays," agreed Prof. Kris Davidson of the University of Minnesota. "In the most popular theory, X-rays are made by colliding gas streams from two stars so close together that they'd look like a point source to us. But what happens to gas streams that escape to farther distances? The extended hot stuff in the middle of the new image gives demanding new conditions for any theory to meet." Eta Carinae is one of the most enigmatic and intriguing objects in our

  14. Structure-Activity Studies of Cysteine-Rich α-Conotoxins that Inhibit High-Voltage-Activated Calcium Channels via GABA(B) Receptor Activation Reveal a Minimal Functional Motif.

    PubMed

    Carstens, Bodil B; Berecki, Géza; Daniel, James T; Lee, Han Siean; Jackson, Kathryn A V; Tae, Han-Shen; Sadeghi, Mahsa; Castro, Joel; O'Donnell, Tracy; Deiteren, Annemie; Brierley, Stuart M; Craik, David J; Adams, David J; Clark, Richard J

    2016-04-01

    α-Conotoxins are disulfide-rich peptides that target nicotinic acetylcholine receptors. Recently we identified several α-conotoxins that also modulate voltage-gated calcium channels by acting as G protein-coupled GABA(B) receptor (GABA(B)R) agonists. These α-conotoxins are promising drug leads for the treatment of chronic pain. To elucidate the diversity of α-conotoxins that act through this mechanism, we synthesized and characterized a set of peptides with homology to α-conotoxins known to inhibit high voltage-activated calcium channels via GABA(B)R activation. Remarkably, all disulfide isomers of the active α-conotoxins Pu1.2 and Pn1.2, and the previously studied Vc1.1 showed similar levels of biological activity. Structure determination by NMR spectroscopy helped us identify a simplified biologically active eight residue peptide motif containing a single disulfide bond that is an excellent lead molecule for developing a new generation of analgesic peptide drugs. PMID:26948522

  15. Quaternary migration of active extension revealed by a syn-tectonic alluvial fan shift. A case study in the Northern Apennines of Italy

    NASA Astrophysics Data System (ADS)

    Mirabella, Francesco; Bucci, Francesco; Cardinali, Mauro; Santangelo, Michele; Guzzetti, Fausto

    2016-04-01

    In areas characterized by the progressive migration of active extension through time, shifts in the position of the active depocenter occur. Such shifts through time produces peculiar geomorphological settings that are often characterized by wind gaps, abandoned valleys, streams captures and drainage inversions. These features provide the opportunity to investigate active areas by studying the recent-most geological history of the related nearby basins. We investigate this topic in a tectonically active area in the Northern Apennines of Italy, as indicated by both instrumental and historical seismicity (maximum epicentral intensity I0=VIII) and extension rates in the order of 2.5-2.7 mm/yr. In particular, we study the Montefalco ridge drainage inversion. Here, fluvial sands and imbricated conglomerates deposited in a lower Pleistocene depocenter constituted by an extensional subsiding basin, are presently uplifted more than 200 m above the present day alluvial plain. The Montefalco ridge drainage inversion, at about 400 m a.s.l., separates two valleys, the Gualdo Cattaneo - Bastardo valley to the West (300 m a.s.l.) and the Foligno present-day alluvial plain to the East (200 m a.s.l.). Seismic reflection data show that the maximum thickness of the continental sequence in the Foligno valley is in the order of 500 m. This valley is presently occupied by a 37 km2 alluvial fan produced by the Topino river flowing from NE to SW. To unravel the Quaternary tectonic evolution of the area, we integrate different data sets collected by field mapping, detailed photo-geological data, sediments provenance information, and subsurface data. We interpret the Montefalco ridge as a paleo-Foligno-like alluvial fan representing the evidence of the recent migration of the active extension to the East of around 7 km. Considering an age of deformation of 2.5 My, an extension rate of about 2.8 mm/yr is derived, which corresponds to the present-day geodetic rates. We stress the importance

  16. Active Mars Revealed through HiRISE DTMs and Orthoimages

    NASA Astrophysics Data System (ADS)

    Mattson, Sarah; McEwen, Alfred S.; Bridges, Nathan; Byrne, Shane; Chojnacki, Matthew; Daubar, Ingrid; Dundas, Colin; Russell, Patrick

    2014-11-01

    Before the arrival of the Mars Reconnaissance Orbiter (MRO) with the High-Resolution Imaging Science Experiment (HiRISE), the amount of surface activity on Mars was not well known. HiRISE repeat imaging (often at ~30 cm/pixel), combined with the ability to take stereo images and generate high resolution Digital Terrain Models (DTMs) reveals the many types of surface processes that are currently active on Mars. Examples of active processes on Mars studied with HiRISE data include aeolian activity [Bridges et al., 2012, Nature 485; Chojnacki et al., 2014, Icarus 232], Recurring Slope Lineae (RSL) [McEwen et al., 2011, Science 333; 2014, Nature Geoscience 7], active gullies [Dundas et al., 2012, Icarus 220], polar processes [Hansen et al., 2011, Science 331; Portyankina et al. 2013, AGU], new impacts [Byrne et al., 2009, Science 325; Daubar et al., 2013, Icarus 225; Dundas et al., 2014, JGR 119], and north polar scarp avalanches [Russell et al., 2008, GRL 35, 2014, LPSC]. These studies utilize images from multiple Mars years and seasons. We generate animated gifs with sequences of orthorectified images to analyze temporal changes (see http://www.uahirise.org/sim/). HiRISE DTMs and orthoimages can be used to quantitatively map and record changes in geospatial software. More than 200 DTMs and 400 orthoimages are available through the Planetary Data System (see http://uahirise.org/dtm). Three-band color (blue-green, red, and near infrared) orthoimages are also available in many cases. The ability to monitor the surface of Mars at high spatial and temporal resolution provides insight into seasonal and annual changes, further increasing our understanding of Mars as an active planet.

  17. Simultaneous structure-activity studies and arming of natural products by C–H amination reveal cellular targets of eupalmerin acetate

    PubMed Central

    Li, Jing; Cisar, Justin S.; Zhou, Congying; Vera, Brunilda; Williams, Howard; Rodríguez, Abimael D.; Cravatt, Benjamin F.; Romo, Daniel

    2014-01-01

    To fully exploit the inherent and enduring potential of natural products for fundamental cell biology and drug lead discovery, synthetic methods for functionalizing unique sites are highly desirable. Here we describe a strategy for the derivatization of natural products at ‘unfunctionalized’ positions via Rh(II)-catalyzed amination enabling simultaneous structure-activity relationship (SAR) studies and arming (alkynylation) of natural products. Employing Du Bois C–H amination, allylic and benzylic C–H bonds underwent amination and olefins underwent aziridination. With tertiary amine-containing natural products, amidines were produced via C–H amination/oxidation and unusual N-aminations provided hydrazine sulfamate inner salts. The alkynylated derivatives are readied for subsequent conjugation to access cellular probes for mechanism of action studies. Both chemo- and site-selectivity was studied by application to a diverse set of natural products including the marine-derived anticancer diterpene, eupalmerin acetate (EPA). Quantitative proteome profiling with an alkynyl EPA derivative obtained by site-selective, allylic C–H amination led to identification of several protein targets in HL-60 cells, including several known to be associated with cancer proliferation, suggestive of a polypharmacological mode of action for EPA. PMID:23695633

  18. Molecular interaction studies revealed the bifunctional behavior of triheme cytochrome PpcA from Geobacter sulfurreducens toward the redox active analog of humic substances.

    PubMed

    Dantas, Joana M; Kokhan, Oleksandr; Pokkuluri, P Raj; Salgueiro, Carlos A

    2015-10-01

    Humic substances (HS) constitute a significant fraction of natural organic matter in terrestrial and aquatic environments and can act as terminal electron acceptors in anaerobic microbial respiration. Geobacter sulfurreducens has a remarkable respiratory versatility and can utilize the HS analog anthraquinone-2,6-disulfonate (AQDS) as a terminal electron acceptor or its reduced form (AH2QDS) as an electron donor. Previous studies set the triheme cytochrome PpcA as a key component for HS respiration in G. sulfurreducens, but the process is far from fully understood. In this work, NMR chemical shift perturbation measurements were used to map the interaction region between PpcA and AH2QDS, and to measure their binding affinity. The results showed that the AH2QDS binds reversibly to the more solvent exposed edge of PpcA heme IV. The NMR and visible spectroscopies coupled to redox measurements were used to determine the thermodynamic parameters of the PpcA:quinol complex. The higher reduction potential of heme IV (-127mV) compared to that of AH2QDS (-184mV) explains why the electron transfer is more favorable in the case of reduction of the cytochrome by the quinol. The clear evidence obtained for the formation of an electron transfer complex between AH2QDS and PpcA, combined with the fact that the protein also formed a redox complex with AQDS, revealed for the first time the bifunctional behavior of PpcA toward an analog of the HS. Such behavior might confer selective advantage to G. sulfurreducens, which can utilize the HS in any redox state available in the environment for its metabolic needs. PMID:26071085

  19. A global proteome study of Mycobacterium gilvum PYR-GCK grown on pyrene and glucose reveals the activation of glyoxylate, shikimate and gluconeogenetic pathways through the central carbon metabolism highway.

    PubMed

    Badejo, Abimbola Comfort; Choi, Chi-Won; Badejo, Adegoke Olugboyega; Shin, Kyung-Hoon; Hyun, Jung-Ho; Lee, Yeol-Gyun; Kim, Seung-Il; Park, Kang-Sik; Kim, Sang Hoon; Jung, Kyoung Hwa; Chung, Young-Ho; Chai, Young Gyu

    2013-11-01

    Various hydrocarbons have been released into the environment as a result of industrialization. An effective way of removing these materials without further environmental contamination is microbial bioremediation. Mycobacterium gilvum PYR-GCK, a bacteria isolated from a PAH polluted estuary, was studied using comparative shotgun proteomics to gain insight on its molecular activity while using pyrene and glucose as sole carbon and energy sources. Based on annotated genomic information, a confirmation analysis was first performed to confirm its pyrene degradation activity, using gas chromatography-mass spectrometry technology. One dimensional gel electrophoresis and liquid chromatography-mass spectrometry technologies employed in the proteomics analysis revealed the expression of pyrene degrading gene products along with upregulated expression of proteins functioning in the glyoxylate and shikimate pathways, in the pyrene-induced cells. The study also revealed the pathway of pyrene degraded intermediates, via partial gluconeogenesis, into the pentose phosphate pathway to produce precursors for nucleotides and amino acids biosynthesis. PMID:23361126

  20. Carbohydrate active enzymes revealed in Coptotermes formosanus transcriptome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A normalized cDNA library of Coptotermes formosanus was constructed using mixed RNA isolated from workers, soldiers, nymphs and alates of both sexes. Sequencing of this library generated 131,637 EST and 25,939 unigenes were assembled. Carbohydrate active enzymes (CAZymes) revealed in this library we...

  1. Activation and inhibition of cyclin-dependent kinase-2 by phosphorylation; a molecular dynamics study reveals the functional importance of the glycine-rich loop

    PubMed Central

    Bártová, Iveta; Otyepka, Michal; Kříž, Zdeněk; Koča, Jaroslav

    2004-01-01

    Nanoseconds long molecular dynamics (MD) trajectories of differently active complexes of human cyclin-dependent kinase 2 (inactive CDK2/ATP, semiactive CDK2/Cyclin A/ATP, fully active pT160-CDK2/Cyclin A/ATP, inhibited pT14-; pY15-; and pT14,pY15,pT160-CDK2/Cyclin A/ATP) were compared. The MD simulations results of CDK2 inhibition by phosphorylation at T14 and/or Y15 sites provide insight into the structural aspects of CDK2 deactivation. The inhibitory sites are localized in the glycine-rich loop (G-loop) positioned opposite the activation T-loop. Phosphorylation of T14 and both inhibitory sites T14 and Y15 together causes ATP misalignment for phosphorylation and G-loop conformational change. This conformational change leads to the opening of the CDK2 substrate binding box. The phosphorylated Y15 residue negatively affects substrate binding or its correct alignment for ATP terminal phospho-group transfer to the CDK2 substrate. The MD simulations of the CDK2 activation process provide results in agreement with previous X-ray data. PMID:15133164

  2. Studies of glutathione transferase P1-1 bound to a platinum(IV)-based anticancer compound reveal the molecular basis of its activation.

    PubMed

    Parker, Lorien J; Italiano, Louis C; Morton, Craig J; Hancock, Nancy C; Ascher, David B; Aitken, Jade B; Harris, Hugh H; Campomanes, Pablo; Rothlisberger, Ursula; De Luca, Anastasia; Lo Bello, Mario; Ang, Wee Han; Dyson, Paul J; Parker, Michael W

    2011-07-01

    Platinum-based cancer drugs, such as cisplatin, are highly effective chemotherapeutic agents used extensively for the treatment of solid tumors. However, their effectiveness is limited by drug resistance, which, in some cancers, has been associated with an overexpression of pi class glutathione S-transferase (GST P1-1), an important enzyme in the mercapturic acid detoxification pathway. Ethacraplatin (EA-CPT), a trans-Pt(IV) carboxylate complex containing ethacrynate ligands, was designed as a platinum cancer metallodrug that could also target cytosolic GST enzymes. We previously reported that EA-CPT was an excellent inhibitor of GST activity in live mammalian cells compared to either cisplatin or ethacrynic acid. In order to understand the nature of the drug-protein interactions between EA-CPT and GST P1-1, and to obtain mechanistic insights at a molecular level, structural and biochemical investigations were carried out, supported by molecular modeling analysis using quantum mechanical/molecular mechanical methods. The results suggest that EA-CPT preferentially docks at the dimer interface at GST P1-1 and subsequent interaction with the enzyme resulted in docking of the ethacrynate ligands at both active sites (in the H-sites), with the Pt moiety remaining bound at the dimer interface. The activation of the inhibitor by its target enzyme and covalent binding accounts for the strong and irreversible inhibition of enzymatic activity by the platinum complex. PMID:21681839

  3. Topological structure dynamics revealing collective evolution in active nematics

    PubMed Central

    Shi, Xia-qing; Ma, Yu-qiang

    2013-01-01

    Topological defects frequently emerge in active matter like bacterial colonies, cytoskeleton extracts on substrates, self-propelled granular or colloidal layers and so on, but their dynamical properties and the relations to large-scale organization and fluctuations in these active systems are seldom touched. Here we reveal, through a simple model for active nematics using self-driven hard elliptic rods, that the excitation, annihilation and transportation of topological defects differ markedly from those in non-active media. These dynamical processes exhibit strong irreversibility in active nematics in the absence of detailed balance. Moreover, topological defects are the key factors in organizing large-scale dynamic structures and collective flows, resulting in multi-spatial temporal effects. These findings allow us to control the self-organization of active matter through topological structures. PMID:24346733

  4. Cassava root membrane proteome reveals activities during storage root maturation.

    PubMed

    Naconsie, Maliwan; Lertpanyasampatha, Manassawe; Viboonjun, Unchera; Netrphan, Supatcharee; Kuwano, Masayoshi; Ogasawara, Naotake; Narangajavana, Jarunya

    2016-01-01

    Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava. PMID:26547558

  5. Fundamental studies and development of nickel-catalyzed trifluoromethylthiolation of aryl chlorides: active catalytic species and key roles of ligand and traceless MeCN additive revealed.

    PubMed

    Yin, Guoyin; Kalvet, Indrek; Englert, Ulli; Schoenebeck, Franziska

    2015-04-01

    A catalytic protocol to convert aryl and heteroaryl chlorides to the corresponding trifluoromethyl sulfides is reported herein. It relies on a relatively inexpensive Ni(cod)2/dppf (cod = 1,5-cyclooctadiene; dppf = 1,1'-bis(diphenylphosphino)ferrocene) catalyst system and the readily accessible coupling reagent (Me4N)SCF3. Our computational and experimental mechanistic data are consistent with a Ni(0)/Ni(II) cycle and inconsistent with Ni(I) as the reactive species. The relevant intermediates were prepared, characterized by X-ray crystallography, and tested for their catalytic competence. This revealed that a monomeric tricoordinate Ni(I) complex is favored for dppf and Cl whose role was unambiguously assigned as being an off-cycle catalyst deactivation product. Only bidentate ligands with wide bite angles (e.g., dppf) are effective. These bulky ligands render the catalyst resting state as [(P-P)Ni(cod)]. The latter is more reactive than Ni(P-P)2, which was found to be the resting state for ligands with smaller bite angles and suffers from an initial high-energy dissociation of one ligand prior to oxidative addition, rendering the system unreactive. The key to effective catalysis is hence the presence of a labile auxiliary ligand in the catalyst resting state. For more challenging substrates, high conversions were achieved via the employment of MeCN as a traceless additive. Mechanistic data suggest that its beneficial role lies in decreasing the energetic span, therefore accelerating product formation. Finally, the methodology has been applied to synthetic targets of pharmaceutical relevance. PMID:25790253

  6. Reading the dyslexic brain: multiple dysfunctional routes revealed by a new meta-analysis of PET and fMRI activation studies

    PubMed Central

    Paulesu, Eraldo; Danelli, Laura; Berlingeri, Manuela

    2014-01-01

    Developmental dyslexia has been the focus of much functional anatomical research. The main trust of this work is that typical developmental dyslexics have a dysfunction of the phonological and orthography to phonology conversion systems, in which the left occipito-temporal cortex has a crucial role. It remains to be seen whether there is a systematic co-occurrence of dysfunctional patterns of different functional systems perhaps converging on the same brain regions associated with the reading deficit. Such evidence would be relevant for theories like, for example, the magnocellular/attentional or the motor/cerebellar ones, which postulate a more basic and anatomically distributed disorder in dyslexia. We addressed this issue with a meta-analysis of all the imaging literature published until September 2013 using a combination of hierarchical clustering and activation likelihood estimation methods. The clustering analysis on 2360 peaks identified 193 clusters, 92 of which proved spatially significant. Following binomial tests on the clusters, we found left hemispheric network specific for normal controls (i.e., of reduced involvement in dyslexics) including the left inferior frontal, premotor, supramarginal cortices and the left infero-temporal and fusiform regions: these were preferentially associated with reading and the visual-to-phonology processes. There was also a more dorsal left fronto-parietal network: these clusters included peaks from tasks involving phonological manipulation, but also motoric or visuo-spatial perception/attention. No cluster was identified in area V5 for no task, nor cerebellar clusters showed a reduced association with dyslexics. We conclude that the examined literature demonstrates a specific lack of activation of the left occipito-temporal cortex in dyslexia particularly for reading and reading-like behaviors and for visuo-phonological tasks. Additional deficits of motor and attentional systems relevant for reading may be associated

  7. Structural and Functional Studies of a Newly Grouped Haloquadratum walsbyi Bacteriorhodopsin Reveal the Acid-resistant Light-driven Proton Pumping Activity.

    PubMed

    Hsu, Min-Feng; Fu, Hsu-Yuan; Cai, Chun-Jie; Yi, Hsiu-Pin; Yang, Chii-Shen; Wang, Andrew H-J

    2015-12-01

    Retinal bound light-driven proton pumps are widespread in eukaryotic and prokaryotic organisms. Among these pumps, bacteriorhodopsin (BR) proteins cooperate with ATP synthase to convert captured solar energy into a biologically consumable form, ATP. In an acidic environment or when pumped-out protons accumulate in the extracellular region, the maximum absorbance of BR proteins shifts markedly to the longer wavelengths. These conditions affect the light-driven proton pumping functional exertion as well. In this study, wild-type crystal structure of a BR with optical stability under wide pH range from a square halophilic archaeon, Haloquadratum walsbyi (HwBR), was solved in two crystal forms. One crystal form, refined to 1.85 Å resolution, contains a trimer in the asymmetric unit, whereas another contains an antiparallel dimer was refined at 2.58 Å. HwBR could not be classified into any existing subgroup of archaeal BR proteins based on the protein sequence phylogenetic tree, and it showed unique absorption spectral stability when exposed to low pH values. All structures showed a unique hydrogen-bonding network between Arg(82) and Thr(201), linking the BC and FG loops to shield the retinal-binding pocket in the interior from the extracellular environment. This result was supported by R82E mutation that attenuated the optical stability. The negatively charged cytoplasmic side and the Arg(82)-Thr(201) hydrogen bond may play an important role in the proton translocation trend in HwBR under acidic conditions. Our findings have unveiled a strategy adopted by BR proteins to solidify their defenses against unfavorable environments and maintain their optical properties associated with proton pumping. PMID:26483542

  8. Structural and Functional Studies of a Newly Grouped Haloquadratum walsbyi Bacteriorhodopsin Reveal the Acid-resistant Light-driven Proton Pumping Activity*

    PubMed Central

    Hsu, Min-Feng; Fu, Hsu-Yuan; Cai, Chun-Jie; Yi, Hsiu-Pin; Yang, Chii-Shen; Wang, Andrew H.-J.

    2015-01-01

    Retinal bound light-driven proton pumps are widespread in eukaryotic and prokaryotic organisms. Among these pumps, bacteriorhodopsin (BR) proteins cooperate with ATP synthase to convert captured solar energy into a biologically consumable form, ATP. In an acidic environment or when pumped-out protons accumulate in the extracellular region, the maximum absorbance of BR proteins shifts markedly to the longer wavelengths. These conditions affect the light-driven proton pumping functional exertion as well. In this study, wild-type crystal structure of a BR with optical stability under wide pH range from a square halophilic archaeon, Haloquadratum walsbyi (HwBR), was solved in two crystal forms. One crystal form, refined to 1.85 Å resolution, contains a trimer in the asymmetric unit, whereas another contains an antiparallel dimer was refined at 2.58 Å. HwBR could not be classified into any existing subgroup of archaeal BR proteins based on the protein sequence phylogenetic tree, and it showed unique absorption spectral stability when exposed to low pH values. All structures showed a unique hydrogen-bonding network between Arg82 and Thr201, linking the BC and FG loops to shield the retinal-binding pocket in the interior from the extracellular environment. This result was supported by R82E mutation that attenuated the optical stability. The negatively charged cytoplasmic side and the Arg82–Thr201 hydrogen bond may play an important role in the proton translocation trend in HwBR under acidic conditions. Our findings have unveiled a strategy adopted by BR proteins to solidify their defenses against unfavorable environments and maintain their optical properties associated with proton pumping. PMID:26483542

  9. Memory activation reveals abnormal EEG in preclinical Huntington's disease.

    PubMed

    van der Hiele, Karin; Jurgens, Caroline K; Vein, Alla A; Reijntjes, Robert H A M; Witjes-Ané, Marie-Noëlle W; Roos, Raymund A C; van Dijk, Gert; Middelkoop, Huub A M

    2007-04-15

    The EEG is potentially useful as a marker of early Huntington's disease (HD). In dementia, the EEG during a memory activation challenge showed abnormalities where the resting EEG did not. We investigated whether memory activation also reveals EEG abnormalities in preclinical HD. Sixteen mutation carriers for HD and 13 nonmutation carriers underwent neurological, neuropsychological, MRI and EEG investigations. The EEG was registered during a rest condition, i.e. eyes closed, and a working memory task. In each condition we determined absolute power in the theta (4-8 Hz) and alpha (8-13 Hz) bands and subsequently calculated relative alpha power. The EEG during eyes closed did not differ between groups. The EEG during memory activation showed less relative alpha power in mutation carriers as compared to nonmutation carriers, even though memory performance was similar [F (1,27) = 10.87; P = 0.003]. Absolute powers also showed less alpha power [F (1,27) = 7.02; P = 0.013] but similar theta power. No correlations were found between absolute and relative alpha power on the one hand and neuropsychological scores, motor scores or number of CAG repeats on the other. In conclusion, memory activation reveals functional brain changes in Huntington's disease before clinical signs become overt. PMID:17266047

  10. Small molecules reveal an alternative mechanism of Bax activation

    PubMed Central

    Brahmbhatt, Hetal; Uehling, David; Al-awar, Rima; Leber, Brian; Andrews, David

    2016-01-01

    The pro-apoptotic protein Bax commits a cell to death by permeabilizing the mitochondrial outer membrane (MOM). To obtain small-molecule probes for elucidating the molecular mechanism(s) of Bax activation, we screened for compounds that induced Bax-mediated liposome permeabilization. We identified five structurally different small molecules that promoted both Bax targeting to and oligomerization at membranes. All five compounds initiated Bax oligomerization in the absence of membranes by a mechanism unlike Bax activation by Bcl-2 homology 3 domain (BH3) proteins. Some of the compounds induced Bax/Bak-dependent apoptosis in cells. Activation of Bax by the most active compound was poorly inhibited by the anti-apoptotic protein Bcl-XL and requires a cysteine residue at position 126 of Bax that is not required for activation by BH3 proteins. Our results reveal a novel pathway for Bax activation independent of pro-apoptotic BH3 proteins that may have important implications for the regulation of Bax activity in cells. PMID:26916338

  11. Small molecules reveal an alternative mechanism of Bax activation.

    PubMed

    Brahmbhatt, Hetal; Uehling, David; Al-Awar, Rima; Leber, Brian; Andrews, David

    2016-04-15

    The pro-apoptotic protein Bax commits a cell to death by permeabilizing the mitochondrial outer membrane (MOM). To obtain small-molecule probes for elucidating the molecular mechanism(s) of Bax activation, we screened for compounds that induced Bax-mediated liposome permeabilization. We identified five structurally different small molecules that promoted both Bax targeting to and oligomerization at membranes. All five compounds initiated Bax oligomerization in the absence of membranes by a mechanism unlike Bax activation by Bcl-2 homology 3 domain (BH3) proteins. Some of the compounds induced Bax/Bak-dependent apoptosis in cells. Activation of Bax by the most active compound was poorly inhibited by the anti-apoptotic protein Bcl-XL and requires a cysteine residue at position 126 of Bax that is not required for activation by BH3 proteins. Our results reveal a novel pathway for Bax activation independent of pro-apoptotic BH3 proteins that may have important implications for the regulation of Bax activity in cells. PMID:26916338

  12. Aberrant Activity in Degenerated Retinas Revealed by Electrical Imaging

    PubMed Central

    Zeck, Günther

    2016-01-01

    In this review, I present and discuss the current understanding of aberrant electrical activity found in the ganglion cell layer (GCL) of rod-degenerated (rd) mouse retinas. The reported electrophysiological properties revealed by electrical imaging using high-density microelectrode arrays can be subdivided between spiking activity originating from retinal ganglion cells (RGCs) and local field potentials (LFPs) reflecting strong trans-membrane currents within the GCL. RGCs in rd retinas show increased and rhythmic spiking compared to age-matched wild-type retinas. Fundamental spiking frequencies range from 5 to 15 Hz in various mouse models. The rhythmic RGC spiking is driven by a presynaptic network comprising AII amacrine and bipolar cells. In the healthy retina this rhythm-generating circuit is inhibited by photoreceptor input. A unique physiological feature of rd retinas is rhythmic LFP manifested as spatially-restricted low-frequency (5–15 Hz) voltage changes. Their spatiotemporal characterization revealed propagation and correlation with RGC spiking. LFPs rely on gap-junctional coupling and are shaped by glycinergic and by GABAergic transmission. The aberrant RGC spiking and LFPs provide a simple readout of the functionality of the remaining retinal circuitry which can be used in the development of improved vision restoration strategies. PMID:26903810

  13. Covert Waking Brain Activity Reveals Instantaneous Sleep Depth

    PubMed Central

    McKinney, Scott M.; Dang-Vu, Thien Thanh; Buxton, Orfeu M.; Solet, Jo M.; Ellenbogen, Jeffrey M.

    2011-01-01

    The neural correlates of the wake-sleep continuum remain incompletely understood, limiting the development of adaptive drug delivery systems for promoting sleep maintenance. The most useful measure for resolving early positions along this continuum is the alpha oscillation, an 8–13 Hz electroencephalographic rhythm prominent over posterior scalp locations. The brain activation signature of wakefulness, alpha expression discloses immediate levels of alertness and dissipates in concert with fading awareness as sleep begins. This brain activity pattern, however, is largely ignored once sleep begins. Here we show that the intensity of spectral power in the alpha band actually continues to disclose instantaneous responsiveness to noise—a measure of sleep depth—throughout a night of sleep. By systematically challenging sleep with realistic and varied acoustic disruption, we found that sleepers exhibited markedly greater sensitivity to sounds during moments of elevated alpha expression. This result demonstrates that alpha power is not a binary marker of the transition between sleep and wakefulness, but carries rich information about immediate sleep stability. Further, it shows that an empirical and ecologically relevant form of sleep depth is revealed in real-time by EEG spectral content in the alpha band, a measure that affords prediction on the order of minutes. This signal, which transcends the boundaries of classical sleep stages, could potentially be used for real-time feedback to novel, adaptive drug delivery systems for inducing sleep. PMID:21408616

  14. Revealing Student Blogging Activities Using RSS Feeds and LMS Logs

    ERIC Educational Resources Information Center

    Derntl, Michael

    2010-01-01

    Blogs are an easy-to-use, free alternative to classic means of computer-mediated communication. Moreover, they are authentically aligned with web activity patterns of today's students. The body of studies on integrating and implementing blogs in various educational settings has grown rapidly recently; however, it is often difficult to distill…

  15. Recombinant Human Peptidoglycan Recognition Proteins Reveal Antichlamydial Activity.

    PubMed

    Bobrovsky, Pavel; Manuvera, Valentin; Polina, Nadezhda; Podgorny, Oleg; Prusakov, Kirill; Govorun, Vadim; Lazarev, Vassili

    2016-07-01

    Peptidoglycan recognition proteins (PGLYRPs) are innate immune components that recognize the peptidoglycan and lipopolysaccharides of bacteria and exhibit antibacterial activity. Recently, the obligate intracellular parasite Chlamydia trachomatis was shown to have peptidoglycan. However, the antichlamydial activity of PGLYRPs has not yet been demonstrated. The aim of our study was to test whether PGLYRPs exhibit antibacterial activity against C. trachomatis Thus, we cloned the regions containing the human Pglyrp1, Pglyrp2, Pglyrp3, and Pglyrp4 genes for subsequent expression in human cell lines. We obtained stable HeLa cell lines that secrete recombinant human PGLYRPs into culture medium. We also generated purified recombinant PGLYRP1, -2, and -4 and confirmed their activities against Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria. Furthermore, we examined the activities of recombinant PGLYRPs against C. trachomatis and determined their MICs. We also observed a decrease in the infectious ability of chlamydial elementary bodies in the next generation after a single exposure to PGLYRPs. Finally, we demonstrated that PGLYRPs attach to C. trachomatis elementary bodies and activate the expression of the chlamydial two-component stress response system. Thus, PGLYRPs inhibit the development of chlamydial infection. PMID:27160295

  16. Single molecule studies reveal new mechanisms for microtubule severing

    NASA Astrophysics Data System (ADS)

    Ross, Jennifer; Diaz-Valencia, Juan Daniel; Morelli, Margaret; Zhang, Dong; Sharp, David

    2011-03-01

    Microtubule-severing enzymes are hexameric complexes made from monomeric enzyme subunits that remove tubulin dimers from the microtubule lattice. Severing proteins are known to remodel the cytoskeleton during interphase and mitosis, and are required in proper axon morphology and mammalian bone and cartilage development. We have performed the first single molecule imaging to determine where and how severing enzymes act to cut microtubules. We have focused on the original member of the group, katanin, and the newest member, fidgetin to compare their biophysical activities in vitro. We find that, as expected, severing proteins localize to areas of activity. Interestingly, the association is very brief: they do not stay bound nor do they bind cooperatively at active sites. The association duration changes with the nucleotide content, implying that the state in the catalytic cycle dictates binding affinity with the microtubule. We also discovered that, at lower concentrations, both katanin and fidgetin can depolymerize taxol-stabilized microtubules by removing terminal dimers. These studies reveal the physical regulation schemes to control severing activity in cells, and ultimately regulate cytoskeletal architecture. This work is supported by the March of Dimes Grant #5-FY09-46.

  17. Active surveillance scheme in three Romanian hospitals reveals a high prevalence and variety of carbapenamase-producing Gram-negative bacteria: a pilot study, December 2014 to May 2015.

    PubMed

    Timofte, Dorina; Panzaru, Carmen Valentina; Maciuca, Iuliana Elena; Dan, Maria; Mare, Anca Delia; Man, Adrian; Toma, Felicia

    2016-06-23

    We report the findings of an active surveillance scheme for detection of asymptomatic carriers with carbapenemase-producing Gram-negative bacteria (CP-GNB) in Romanian hospitals. During a pilot study from December 2014 to May 2015, faecal cultures were screened in three hospitals (two large, one medium-size) for patients newly admitted to selected wards or inpatients transferred from other wards to an intensive-care unit. The study revealed a high prevalence of CP-GNB detected in 22/27 and 28/38 of the carbapenem non-susceptible isolates from Hospitals 1 and 3, respectively. CP-GNB identified through faecal screening included NDM-1-producing Serratia marcescens and Klebsiella pneumoniae, OXA-48-producing K. pneumoniae and OXA-23-producing Acinetobacter baumannii. The distribution of the CP-GNB varied between the hospitals, with NDM-1-producing S. marcescens and K. pneumoniae being prevalent in the north-central part of the country and OXA-23/24-producing A. baumannii, OXA-48-producing K.pneumoniae, Morganella morganii and VIM-2-producing Escherichia coli/Pseudomonas aeruginosa detected in the north-east of the country. Conjugation studies showed that carbapenem resistance was transferable and PCR-based replicon typing identified blaNDM-1 on IncFIIs in S. marcescens and K. pneumoniae from Hospital 1 and blaOXA-48 on IncL plasmids in all Klebsiella spp. isolates from Hospitals 1 and 3. Our findings underline the importance of active surveillance for detection of CP-GNB asymptomatic faecal carriers and suggest a likely endemic spread of CP-GNB in Romania. PMID:27363583

  18. Metaproteomic analysis reveals microbial metabolic activities in the deep ocean

    NASA Astrophysics Data System (ADS)

    Wang, Da-Zhi; Xie, Zhang-Xian; Zhang, Shu-Feng; Wang, Ming-Hua; Zhang, Hao; Kong, Ling-Fen; Lin, Lin

    2016-04-01

    The deep sea is the largest habitat on earth and holds many and varied microbial life forms. However, little is known about their metabolic activities in the deep ocean. Here, we characterized protein profiles of particulate (>0.22 μm) and dissolved (between 10 kDa and 0.22 μm) fractions collected from the deep South China Sea using a shotgun proteomic approach. SAR324, Alteromonadales and SAR11 were the most abundant groups, while Prasinophyte contributed most to eukaryotes and cyanophage to viruses. The dominant heterotrophic activity was evidenced by the abundant transporters (33%). Proteins participating in nitrification, methanogenesis, methyltrophy and CO2 fixation were detected. Notably, the predominance of unique cellular proteins in dissolved fraction suggested the presence of membrane structures. Moreover, the detection of translation proteins related to phytoplankton indicated that other process rather than sinking particles might be the downward export of living cells. Our study implied that novel extracellular activities and the interaction of deep water with its overlying water could be crucial to the microbial world of deep sea.

  19. Oscillatory brain activity reveals linguistic prints in the quantity code.

    PubMed

    Salillas, Elena; Barraza, Paulo; Carreiras, Manuel

    2015-01-01

    Number representations change through education, although it is currently unclear whether and how language could impact the magnitude representation that we share with other species. The most prominent view is that language does not play any role in modulating the core numeric representation involved in the contrast of quantities. Nevertheless, possible cultural hints on the numerical magnitude representation are currently on discussion focus. In fact, the acquisition of number words provides linguistic input that the quantity system may not ignore. Bilingualism offers a window to the study of this question, especially in bilinguals where the two number wording systems imply also two different numerical systems, such as in Basque-Spanish bilinguals. The present study evidences linguistic prints in the core number representational system through the analysis of EEG oscillatory activity during a simple number comparison task. Gamma band synchronization appears when Basque-Spanish bilinguals compare pairs of Arabic numbers linked through the Basque base-20 wording system, but it does not if the pairs are related through the base-10 system. Crucially, this gamma activity, originated in a left fronto-parietal network, only appears in bilinguals who learned math in Basque and not in equivalent proficiency bilinguals who learned math in Spanish. Thus, this neural index reflected in gamma band synchrony appears to be triggered by early learning experience with the base-20 numerical associations in Basque number words. PMID:25875210

  20. Oscillatory Brain Activity Reveals Linguistic Prints in the Quantity Code

    PubMed Central

    Salillas, Elena; Barraza, Paulo; Carreiras, Manuel

    2015-01-01

    Number representations change through education, although it is currently unclear whether and how language could impact the magnitude representation that we share with other species. The most prominent view is that language does not play any role in modulating the core numeric representation involved in the contrast of quantities. Nevertheless, possible cultural hints on the numerical magnitude representation are currently on discussion focus. In fact, the acquisition of number words provides linguistic input that the quantity system may not ignore. Bilingualism offers a window to the study of this question, especially in bilinguals where the two number wording systems imply also two different numerical systems, such as in Basque-Spanish bilinguals. The present study evidences linguistic prints in the core number representational system through the analysis of EEG oscillatory activity during a simple number comparison task. Gamma band synchronization appears when Basque-Spanish bilinguals compare pairs of Arabic numbers linked through the Basque base-20 wording system, but it does not if the pairs are related through the base-10 system. Crucially, this gamma activity, originated in a left fronto-parietal network, only appears in bilinguals who learned math in Basque and not in equivalent proficiency bilinguals who learned math in Spanish. Thus, this neural index reflected in gamma band synchrony appears to be triggered by early learning experience with the base-20 numerical associations in Basque number words. PMID:25875210

  1. Autotaxin Structure Activity Relationships Revealed through Lysophosphatidylcholine Analogs

    PubMed Central

    North, E. Jeffrey; Osborne, Daniel A.; Bridson, Peter K.; Baker, Daniel L.; Parrill, Abby L.

    2009-01-01

    Autotaxin (ATX) catalyzes the hydrolysis of lysophosphatidylcholine (LPC) to form the bioactive lipid lysophosphatidic acid (LPA). LPA stimulates cell proliferation, cell survival, and cell migration and is involved in obesity, rheumatoid arthritis, neuropathic pain, atherosclerosis and various cancers, suggesting that ATX inhibitors have broad therapeutic potential. Product feedback inhibition of ATX by LPA has stimulated structure activity studies focused on LPA analogs. However, LPA displays mixed mode inhibition, indicating it can bind to both the enzyme and the enzyme-substrate complex. This suggests that LPA may not interact solely with the catalytic site. In this report we have prepared LPC analogs to help map out substrate structure activity relationships. The structural variances include length and unsaturation of the fatty tail, choline and polar linker presence, acyl versus ether linkage of the hydrocarbon chain, and methylene and nitrogen replacement of the choline oxygen. All LPC analogs were assayed in competition with the synthetic substrate, FS-3, to show the preference ATX has for each alteration. Choline presence and methylene replacement of the choline oxygen were detrimental to ATX recognition. These findings provide insights into the structure of the enzyme in the vicinity of the catalytic site as well as suggesting that ATX produces rate enhancement, at least in part, by substrate destabilization. PMID:19345587

  2. Energy Landscape Topography Reveals the Underlying Link Between Binding Specificity and Activity of Enzymes.

    PubMed

    Chu, Wen-Ting; Wang, Jin

    2016-01-01

    Enzyme activity (often quantified by kcat/Km) is the main function of enzyme when it is active against the specific substrate. Higher or lower activities are highly desired for the design of novel enzyme and drug resistance. However, it is difficult to measure the activities of all possible variants and find the "hot-spot" within the limit of experimental time. In this study, we explore the underlying energy landscape of enzyme-substrate interactions and introduce the intrinsic specificity ratio (ISR), which reflects the landscape topography. By studying two concrete systems, we uncover the statistical correlation between the intrinsic specificity and the enzyme activity kcat/Km. This physics-based concept and method show that the energy landscape topography is valuable for understanding the relationship between enzyme specificity and activity. In addition, it can reveal the underlying mechanism of enzyme-substrate actions and has potential applications on enzyme design. PMID:27298067

  3. Energy Landscape Topography Reveals the Underlying Link Between Binding Specificity and Activity of Enzymes

    PubMed Central

    Chu, Wen-Ting; Wang, Jin

    2016-01-01

    Enzyme activity (often quantified by kcat/Km) is the main function of enzyme when it is active against the specific substrate. Higher or lower activities are highly desired for the design of novel enzyme and drug resistance. However, it is difficult to measure the activities of all possible variants and find the “hot-spot” within the limit of experimental time. In this study, we explore the underlying energy landscape of enzyme-substrate interactions and introduce the intrinsic specificity ratio (ISR), which reflects the landscape topography. By studying two concrete systems, we uncover the statistical correlation between the intrinsic specificity and the enzyme activity kcat/Km. This physics-based concept and method show that the energy landscape topography is valuable for understanding the relationship between enzyme specificity and activity. In addition, it can reveal the underlying mechanism of enzyme-substrate actions and has potential applications on enzyme design. PMID:27298067

  4. Energy Landscape Topography Reveals the Underlying Link Between Binding Specificity and Activity of Enzymes

    NASA Astrophysics Data System (ADS)

    Chu, Wen-Ting; Wang, Jin

    2016-06-01

    Enzyme activity (often quantified by kcat/Km) is the main function of enzyme when it is active against the specific substrate. Higher or lower activities are highly desired for the design of novel enzyme and drug resistance. However, it is difficult to measure the activities of all possible variants and find the “hot-spot” within the limit of experimental time. In this study, we explore the underlying energy landscape of enzyme-substrate interactions and introduce the intrinsic specificity ratio (ISR), which reflects the landscape topography. By studying two concrete systems, we uncover the statistical correlation between the intrinsic specificity and the enzyme activity kcat/Km. This physics-based concept and method show that the energy landscape topography is valuable for understanding the relationship between enzyme specificity and activity. In addition, it can reveal the underlying mechanism of enzyme-substrate actions and has potential applications on enzyme design.

  5. Activities on Facebook Reveal the Depressive State of Users

    PubMed Central

    Kwak, Jinah

    2013-01-01

    Background As online social media have become prominent, much effort has been spent on identifying users with depressive symptoms in order to aim at early diagnosis, treatment, and even prevention by using various online social media. In this paper, we focused on Facebook to discern any correlations between the platform’s features and users’ depressive symptoms. This work may be helpful in trying to reach and detect large numbers of depressed individuals more easily. Objective Our goal was to develop a Web application and identify depressive symptom–related features from users of Facebook, a popular social networking platform. Methods 55 Facebook users (male=40, female=15, mean age 24.43, SD 3.90) were recruited through advertisement fliers distributed to students in a large university in Korea. Using EmotionDiary, the Facebook application we developed, we evaluated depressive symptoms using the Center for Epidemiological Studies-Depression (CES-D) scale. We also provided tips and facts about depression to participants and measured their responses using EmotionDiary. To identify the Facebook features related to depression, correlation analyses were performed between CES-D and participants’ responses to tips and facts or Facebook social features. Last, we interviewed depressed participants (CES-D≥25) to assess their depressive symptoms by a psychiatrist. Results Facebook activities had predictive power in distinguishing depressed and nondepressed individuals. Participants’ response to tips and facts, which can be explained by the number of app tips viewed and app points, had a positive correlation (P=.04 for both cases), whereas the number of friends and location tags had a negative correlation with the CES-D scale (P=.08 and P=.045 respectively). Furthermore, in finding group differences in Facebook social activities, app tips viewed and app points resulted in significant differences (P=.01 and P=.03 respectively) between probably depressed and

  6. Structure-Based Simulations Reveal Concerted Dynamics of GPCR Activation

    PubMed Central

    Leioatts, Nicholas; Suresh, Pooja; Romo, Tod D.; Grossfield, Alan

    2014-01-01

    G protein-coupled receptors (GPCRs) are a vital class of proteins that transduce biological signals across the cell membrane. However, their allosteric activation mechanism is not fully understood; crystal structures of active and inactive receptors have been reported, but the functional pathway between these two states remains elusive. Here, we employ structure-based (Gō-like) models to simulate activation of two GPCRs, rhodopsin and the β2 adrenergic receptor (β2AR). We used data-derived reaction coordinates that capture the activation mechanism for both proteins, showing that activation proceeds through quantitatively different paths in the two systems. Both reaction coordinates are determined from the dominant concerted motions in the simulations so the technique is broadly applicable. There were two surprising results. First, the main structural changes in the simulations were distributed throughout the transmembrane bundle, and not localized to the obvious areas of interest, such as the intracellular portion of helix 6. Second, the activation (and deactivation) paths were distinctly non-monotonic, populating states that were not simply interpolations between the inactive and active structures. These transitions also suggest a functional explanation for β2AR’s basal activity: it can proceed through a more broadly defined path during the observed transitions. PMID:24889093

  7. Sensors at Centrosomes Reveal Determinants of Local Separase Activity

    PubMed Central

    Agircan, Fikret Gurkan; Schiebel, Elmar

    2014-01-01

    Separase is best known for its function in sister chromatid separation at the metaphase-anaphase transition. It also has a role in centriole disengagement in late mitosis/G1. To gain insight into the activity of separase at centrosomes, we developed two separase activity sensors: mCherry-Scc1(142-467)-ΔNLS-eGFP-PACT and mCherry-kendrin(2059-2398)-eGFP-PACT. Both localize to the centrosomes and enabled us to monitor local separase activity at the centrosome in real time. Both centrosomal sensors were cleaved by separase before anaphase onset, earlier than the corresponding H2B-mCherry-Scc1(142-467)-eGFP sensor at chromosomes. This indicates that substrate cleavage by separase is not synchronous in the cells. Depletion of the proteins astrin or Aki1, which have been described as inhibitors of centrosomal separase, did not led to a significant activation of separase at centrosomes, emphasizing the importance of direct separase activity measurements at the centrosomes. Inhibition of polo-like kinase Plk1, on the other hand, decreased the separase activity towards the Scc1 but not the kendrin reporter. Together these findings indicate that Plk1 regulates separase activity at the level of substrate affinity at centrosomes and may explain in part the role of Plk1 in centriole disengagement. PMID:25299182

  8. Enceladus's activity as revealed by Cassini-Huygens

    NASA Astrophysics Data System (ADS)

    Schmidt, Juergen

    2015-08-01

    The activity of Enceladus has been monitored by Cassini for nearly one decade after its discovery (see Science, 2006, 311, special issue). Thus, crucial properties of the vapor and dust plumes, heat output, surface properties, and the gravity field of the satellite are constrained in a fairly detailed manner. In this paper I review key observational facts and discuss implications for the vent geometries as well as interior structure and composition. Special emphasize I will give to data recorded by the Cassini Cosmic Dust Analyzer, and the conclusions drawn from it, concerning the number, size, and composition of grains ejected by the plumes associated with the south polar activity.

  9. Nuclear RNA-seq of single neurons reveals molecular signatures of activation

    PubMed Central

    Lacar, Benjamin; Linker, Sara B.; Jaeger, Baptiste N.; Krishnaswami, Suguna; Barron, Jerika; Kelder, Martijn; Parylak, Sarah; Paquola, Apuã; Venepally, Pratap; Novotny, Mark; O'Connor, Carolyn; Fitzpatrick, Conor; Erwin, Jennifer; Hsu, Jonathan Y.; Husband, David; McConnell, Michael J.; Lasken, Roger; Gage, Fred H.

    2016-01-01

    Single-cell sequencing methods have emerged as powerful tools for identification of heterogeneous cell types within defined brain regions. Application of single-cell techniques to study the transcriptome of activated neurons can offer insight into molecular dynamics associated with differential neuronal responses to a given experience. Through evaluation of common whole-cell and single-nuclei RNA-sequencing (snRNA-seq) methods, here we show that snRNA-seq faithfully recapitulates transcriptional patterns associated with experience-driven induction of activity, including immediate early genes (IEGs) such as Fos, Arc and Egr1. SnRNA-seq of mouse dentate granule cells reveals large-scale changes in the activated neuronal transcriptome after brief novel environment exposure, including induction of MAPK pathway genes. In addition, we observe a continuum of activation states, revealing a pseudotemporal pattern of activation from gene expression alone. In summary, snRNA-seq of activated neurons enables the examination of gene expression beyond IEGs, allowing for novel insights into neuronal activation patterns in vivo. PMID:27090946

  10. Nuclear RNA-seq of single neurons reveals molecular signatures of activation.

    PubMed

    Lacar, Benjamin; Linker, Sara B; Jaeger, Baptiste N; Krishnaswami, Suguna; Barron, Jerika; Kelder, Martijn; Parylak, Sarah; Paquola, Apuã; Venepally, Pratap; Novotny, Mark; O'Connor, Carolyn; Fitzpatrick, Conor; Erwin, Jennifer; Hsu, Jonathan Y; Husband, David; McConnell, Michael J; Lasken, Roger; Gage, Fred H

    2016-01-01

    Single-cell sequencing methods have emerged as powerful tools for identification of heterogeneous cell types within defined brain regions. Application of single-cell techniques to study the transcriptome of activated neurons can offer insight into molecular dynamics associated with differential neuronal responses to a given experience. Through evaluation of common whole-cell and single-nuclei RNA-sequencing (snRNA-seq) methods, here we show that snRNA-seq faithfully recapitulates transcriptional patterns associated with experience-driven induction of activity, including immediate early genes (IEGs) such as Fos, Arc and Egr1. SnRNA-seq of mouse dentate granule cells reveals large-scale changes in the activated neuronal transcriptome after brief novel environment exposure, including induction of MAPK pathway genes. In addition, we observe a continuum of activation states, revealing a pseudotemporal pattern of activation from gene expression alone. In summary, snRNA-seq of activated neurons enables the examination of gene expression beyond IEGs, allowing for novel insights into neuronal activation patterns in vivo. PMID:27090946

  11. Sleeping Beauty screen reveals Pparg activation in metastatic prostate cancer.

    PubMed

    Ahmad, Imran; Mui, Ernest; Galbraith, Laura; Patel, Rachana; Tan, Ee Hong; Salji, Mark; Rust, Alistair G; Repiscak, Peter; Hedley, Ann; Markert, Elke; Loveridge, Carolyn; van der Weyden, Louise; Edwards, Joanne; Sansom, Owen J; Adams, David J; Leung, Hing Y

    2016-07-19

    Prostate cancer (CaP) is the most common adult male cancer in the developed world. The paucity of biomarkers to predict prostate tumor biology makes it important to identify key pathways that confer poor prognosis and guide potential targeted therapy. Using a murine forward mutagenesis screen in a Pten-null background, we identified peroxisome proliferator-activated receptor gamma (Pparg), encoding a ligand-activated transcription factor, as a promoter of metastatic CaP through activation of lipid signaling pathways, including up-regulation of lipid synthesis enzymes [fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACLY)]. Importantly, inhibition of PPARG suppressed tumor growth in vivo, with down-regulation of the lipid synthesis program. We show that elevated levels of PPARG strongly correlate with elevation of FASN in human CaP and that high levels of PPARG/FASN and PI3K/pAKT pathway activation confer a poor prognosis. These data suggest that CaP patients could be stratified in terms of PPARG/FASN and PTEN levels to identify patients with aggressive CaP who may respond favorably to PPARG/FASN inhibition. PMID:27357679

  12. Sleeping Beauty screen reveals Pparg activation in metastatic prostate cancer

    PubMed Central

    Ahmad, Imran; Mui, Ernest; Galbraith, Laura; Patel, Rachana; Tan, Ee Hong; Salji, Mark; Rust, Alistair G.; Repiscak, Peter; Hedley, Ann; Markert, Elke; Loveridge, Carolyn; van der Weyden, Louise; Edwards, Joanne; Sansom, Owen J.; Adams, David J.; Leung, Hing Y.

    2016-01-01

    Prostate cancer (CaP) is the most common adult male cancer in the developed world. The paucity of biomarkers to predict prostate tumor biology makes it important to identify key pathways that confer poor prognosis and guide potential targeted therapy. Using a murine forward mutagenesis screen in a Pten-null background, we identified peroxisome proliferator-activated receptor gamma (Pparg), encoding a ligand-activated transcription factor, as a promoter of metastatic CaP through activation of lipid signaling pathways, including up-regulation of lipid synthesis enzymes [fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACLY)]. Importantly, inhibition of PPARG suppressed tumor growth in vivo, with down-regulation of the lipid synthesis program. We show that elevated levels of PPARG strongly correlate with elevation of FASN in human CaP and that high levels of PPARG/FASN and PI3K/pAKT pathway activation confer a poor prognosis. These data suggest that CaP patients could be stratified in terms of PPARG/FASN and PTEN levels to identify patients with aggressive CaP who may respond favorably to PPARG/FASN inhibition. PMID:27357679

  13. Metatranscriptomics reveals overall active bacterial composition in caries lesions

    PubMed Central

    Simón-Soro, Aurea; Guillen-Navarro, Miriam; Mira, Alex

    2014-01-01

    Background Identifying the microbial species in caries lesions is instrumental to determine the etiology of dental caries. However, a significant proportion of bacteria in carious lesions have not been cultured, and the use of molecular methods has been limited to DNA-based approaches, which detect both active and inactive or dead microorganisms. Objective To identify the RNA-based, metabolically active bacterial composition of caries lesions at different stages of disease progression in order to provide a list of potential etiological agents of tooth decay. Design Non-cavitated enamel caries lesions (n=15) and dentin caries lesions samples (n=12) were collected from 13 individuals. RNA was extracted and cDNA was constructed, which was used to amplify the 16S rRNA gene. The resulting 780 bp polymerase chain reaction products were pyrosequenced using Titanium-plus chemistry, and the sequences obtained were used to determine the bacterial composition. Results A mean of 4,900 sequences of the 16S rRNA gene with an average read length of 661 bp was obtained per sample, giving a comprehensive view of the active bacterial communities in caries lesions. Estimates of bacterial diversity indicate that the microbiota of cavities is highly complex, each sample containing between 70 and 400 metabolically active species. The composition of these bacterial consortia varied among individuals and between caries lesions of the same individuals. In addition, enamel and dentin lesions had a different bacterial makeup. Lactobacilli were found almost exclusively in dentin cavities. Streptococci accounted for 40% of the total active community in enamel caries, and 20% in dentin caries. However, Streptococcus mutans represented only 0.02–0.73% of the total bacterial community. Conclusions The data indicate that the etiology of dental caries is tissue dependent and that the disease has a clear polymicrobial origin. The low proportion of mutans streptococci detected confirms that they

  14. Natural and semisynthetic analogues of manadoperoxide B reveal new structural requirements for trypanocidal activity.

    PubMed

    Chianese, Giuseppina; Scala, Fernando; Calcinai, Barbara; Cerrano, Carlo; Dien, Henny A; Kaiser, Marcel; Tasdemir, Deniz; Taglialatela-Scafati, Orazio

    2013-09-01

    Chemical analysis of the Indonesian sponge Plakortis cfr. lita afforded two new analogues of the potent trypanocidal agent manadoperoxide B (1), namely 12-isomanadoperoxide B (2) and manadoperoxidic acid B (3). These compounds were isolated along with a new short chain dicarboxylate monoester (4), bearing some interesting relationships with the polyketide endoperoxides found in this sponge. Some semi-synthetic analogues of manadoperoxide B (6-8) were prepared and evaluated for antitrypanosomal activity and cytotoxicity. These studies revealed crucial structure-activity relationships that should be taken into account in the design of optimized and simplified endoperoxyketal trypanocidal agents. PMID:23989650

  15. A High-Throughput Screen Reveals New Small-Molecule Activators and Inhibitors of Pantothenate Kinases

    PubMed Central

    2016-01-01

    Pantothenate kinase (PanK) is a regulatory enzyme that controls coenzyme A (CoA) biosynthesis. The association of PanK with neurodegeneration and diabetes suggests that chemical modifiers of PanK activity may be useful therapeutics. We performed a high throughput screen of >520000 compounds from the St. Jude compound library and identified new potent PanK inhibitors and activators with chemically tractable scaffolds. The HTS identified PanK inhibitors exemplified by the detailed characterization of a tricyclic compound (7) and a preliminary SAR. Biophysical studies reveal that the PanK inhibitor acts by binding to the ATP–enzyme complex. PMID:25569308

  16. Survey of activated kinase proteins reveals potential targets for cholangiocarcinoma treatment.

    PubMed

    Dokduang, Hasaya; Juntana, Sirinun; Techasen, Anchalee; Namwat, Nisana; Yongvanit, Puangrat; Khuntikeo, Narong; Riggins, Gregory J; Loilome, Watcharin

    2013-12-01

    Improving therapy for patients with cholangiocarcinoma (CCA) presents a significant challenge. This is made more difficult by a lack of a clear understanding of potential molecular targets, such as deregulated kinases. In this work, we profiled the activated kinases in CCA in order to apply them as the targets for CCA therapy. Human phospho-receptor tyrosine kinases (RTKs) and phospho-kinase array analyses revealed that multiple kinases are activated in both CCA cell lines and human CCA tissues that included cell growth, apoptosis, cell to cell interaction, movement, and angiogenesis RTKs. Predominately, the kinases activated downstream were those in the PI3K/Akt, Ras/MAPK, JAK/STAT, and Wnt/β-catenin signaling pathways. Western blot analysis confirms that Erk1/2 and Akt activation were increased in CCA tissues when compared with their normal adjacent tissue. The inhibition of kinase activation using multi-targeted kinase inhibitors, sorafenib and sunitinib led to significant cell growth inhibition and apoptosis induction via suppression of Erk1/2 and Akt activation, whereas drugs with specificity to a single kinase showed less potency. In conclusion, our study reveals the involvement of multiple kinase proteins in CCA growth that might serve as therapeutic targets for combined kinase inhibition. PMID:23812726

  17. Single cell activity reveals direct electron transfer in methanotrophic consortia.

    PubMed

    McGlynn, Shawn E; Chadwick, Grayson L; Kempes, Christopher P; Orphan, Victoria J

    2015-10-22

    Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer. PMID:26375009

  18. Single cell activity reveals direct electron transfer in methanotrophic consortia

    NASA Astrophysics Data System (ADS)

    McGlynn, Shawn E.; Chadwick, Grayson L.; Kempes, Christopher P.; Orphan, Victoria J.

    2015-10-01

    Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer.

  19. Metatranscriptomic Analysis of Groundwater Reveals an Active Anammox Bacterial Population

    NASA Astrophysics Data System (ADS)

    Jewell, T. N. M.; Karaoz, U.; Thomas, B. C.; Banfield, J. F.; Brodie, E.; Williams, K. H.; Beller, H. R.

    2014-12-01

    Groundwater is a major natural resource, yet little is known about the contribution of microbial anaerobic ammonium oxidation (anammox) activity to subsurface nitrogen cycling. During anammox, energy is generated as ammonium is oxidized under anaerobic conditions to dinitrogen gas, using nitrite as the final electron acceptor. This process is a global sink for fixed nitrogen. Only a narrow range of monophyletic bacteria within the Planctomycetes carries out anammox, and the full extent of their metabolism, and subsequent impact on nitrogen cycling and microbial community structure, is still unknown. Here, we employ a metatranscriptomic analysis on enriched mRNA to identify the abundance and activity of a population of anammox bacteria within an aquifer at Rifle, CO. Planktonic biomass was collected over a two-month period after injection of up to 1.5 mM nitrate. Illumina-generated sequences were mapped to a phylogenetically binned Rifle metagenome database. We identified transcripts for genes with high protein sequence identities (81-98%) to those of anammox strain KSU-1 and to two of the five anammox bacteria genera, Brocadia and Kuenenia, suggesting an active, if not diverse, anammox population. Many of the most abundant anammox transcripts mapped to a single scaffold, indicative of a single dominant anammox species. Transcripts of the genes necessary for the anammox pathway were present, including an ammonium transporter (amtB), nitrite/formate transporter, nitrite reductase (nirK), and hydrazine oxidoreductase (hzoB). The form of nitrite reductase encoded by anammox is species-dependent, and we only identified nirK, with no evidence of anammox nirS. In addition to the anammox pathway we saw evidence of the anammox bacterial dissimilatory nitrate reduction to ammonium pathway (narH, putative nrfA, and nrfB), which provides an alternate means of generating substrates for anammox from nitrate, rather than relying on an external pool. Transcripts for hydroxylamine

  20. Hidden Stages of Cognition Revealed in Patterns of Brain Activation.

    PubMed

    Anderson, John R; Pyke, Aryn A; Fincham, Jon M

    2016-09-01

    To advance cognitive theory, researchers must be able to parse the performance of a task into its significant mental stages. In this article, we describe a new method that uses functional MRI brain activation to identify when participants are engaged in different cognitive stages on individual trials. The method combines multivoxel pattern analysis to identify cognitive stages and hidden semi-Markov models to identify their durations. This method, applied to a problem-solving task, identified four distinct stages: encoding, planning, solving, and responding. We examined whether these stages corresponded to their ascribed functions by testing whether they are affected by appropriate factors. Planning-stage duration increased as the method for solving the problem became less obvious, whereas solving-stage duration increased as the number of calculations to produce the answer increased. Responding-stage duration increased with the difficulty of the motor actions required to produce the answer. PMID:27440808

  1. 19th century auroral observations reveal solar activity patterns

    NASA Astrophysics Data System (ADS)

    Silverman, Sam

    Growing interest in the aurora in the early part of the eighteenth century, which resulted from the spectacular reappearance of the aurora in 1707 and 1716, followed a relative scarcity of great auroras during the Maunder minimum, a period of prolonged reduced solar activity from about 1645-1715. Observations in the early eighteenth century led to questions about the geographical extent, nature, and temporal variability of the auroras. Typically, such observations were included as part of recorded meteorological notations, though occasionally early astronomers, such as Tycho Brahe in the 1590s, included auroras in their observations. Meteorological observations were important because of the effects of weather and climate on agriculture, and, according to the belief at the time, on disease.

  2. Phosphoproteomic network analysis in the sea urchin Strongylocentrotus purpuratus reveals new candidates in egg activation.

    PubMed

    Guo, Hongbo; Garcia-Vedrenne, Ana Elisa; Isserlin, Ruth; Lugowski, Andrew; Morada, Anthony; Sun, Alex; Miao, Yishen; Kuzmanov, Uros; Wan, Cuihong; Ma, Hongyue; Foltz, Kathy; Emili, Andrew

    2015-12-01

    Fertilization triggers a dynamic symphony of molecular transformations induced by a rapid rise in intracellular calcium. Most prominent are surface alterations, metabolic activation, cytoskeletal reorganization, and cell-cycle reentry. While the activation process appears to be broadly evolutionarily conserved, and protein phosphorylation is known to play a key role, the signaling networks mediating the response to fertilization are not well described. To address this gap, we performed a time course phosphoproteomic analysis of egg activation in the sea urchin Strongylocentrotus purpuratus, a system that offers biochemical tractability coupled with exquisite synchronicity. By coupling large-scale phosphopeptide enrichment with unbiased quantitative MS, we identified striking changes in global phosphoprotein patterns at 2- and 5-min postfertilization as compared to unfertilized eggs. Overall, we mapped 8796 distinct phosphosite modifications on 2833 phosphoproteins, of which 15% were differentially regulated in early egg activation. Activated kinases were identified by phosphosite mapping, while enrichment analyses revealed conserved signaling cascades not previously associated with egg activation. This work represents the most comprehensive study of signaling associated with egg activation to date, suggesting novel mechanisms that can be experimentally tested and providing a valuable resource for the broader research community. All MS data have been deposited in the ProteomeXchange with identifier PXD002239 (http://proteomecentral.proteomexchange.org/dataset/PXD002239). PMID:26227301

  3. Structural snapshots reveal distinct mechanisms of procaspase-3 and -7 activation

    PubMed Central

    Thomsen, Nathan D.; Koerber, James T.; Wells, James A.

    2013-01-01

    Procaspase-3 (P3) and procaspase-7 (P7) are activated through proteolytic maturation to form caspase-3 (C3) and caspase-7 (C7), respectively, which serve overlapping but nonredundant roles as the executioners of apoptosis in humans. However, it is unclear if differences in P3 and P7 maturation mechanisms underlie their unique biological functions, as the structure of P3 remains unknown. Here, we report structures of P3 in a catalytically inactive conformation, structures of P3 and P7 bound to covalent peptide inhibitors that reveal the active conformation of the zymogens, and the structure of a partially matured C7:P7 heterodimer. Along with a biochemical analysis, we show that P3 is catalytically inactive and matures through a symmetric all-or-nothing process. In contrast, P7 contains latent catalytic activity and matures through an asymmetric and tiered mechanism, suggesting a lower threshold for activation. Finally, we use our structures to design a selection strategy for conformation specific antibody fragments that stimulate procaspase activity, showing that executioner procaspase conformational equilibrium can be rationally modulated. Our studies provide a structural framework that may help to explain the unique roles of these important proapoptotic enzymes, and suggest general strategies for the discovery of proenzyme activators. PMID:23650375

  4. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells.

    PubMed

    Luo, Yuping; Coskun, Volkan; Liang, Aibing; Yu, Juehua; Cheng, Liming; Ge, Weihong; Shi, Zhanping; Zhang, Kunshan; Li, Chun; Cui, Yaru; Lin, Haijun; Luo, Dandan; Wang, Junbang; Lin, Connie; Dai, Zachary; Zhu, Hongwen; Zhang, Jun; Liu, Jie; Liu, Hailiang; deVellis, Jean; Horvath, Steve; Sun, Yi Eve; Li, Siguang

    2015-05-21

    The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133(+)/GFAP(-) quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors. Administration of vascular endothelial growth factor (VEGF) activated CD133(+) ependymal neural stem cells (NSCs), lining not only the lateral but also the fourth ventricles and, together with basic fibroblast growth factor (bFGF), elicited subsequent neural lineage differentiation and migration. This study revealed the existence of dormant ependymal NSCs throughout the ventricular surface of the CNS, as well as signals abundant after injury for their activation. PMID:26000486

  5. Ethiopian population dermatoglyphic study reveals linguistic stratification of diversity.

    PubMed

    Yohannes, Seile; Bekele, Endashaw

    2015-01-01

    The manifestation of ethnic, blood type, & gender-wise population variations regarding Dermatoglyphic manifestations are of interest to assess intra-group diversity and differentiation. The present study reports on the analysis of qualitaive and quantitative finger Dermatoglyphic traits of 382 individuals cross-sectionally sampled from an administrative region of Ethiopia, consisting of five ethnic cohorts from the Afro-Asiatic & Nilo-Saharan affiliations. These Dermatoglyphic parameters were then applied in the assessment of diversity & differentiation, including Heterozygosity, Fixation, Panmixia, Wahlund's variance, Nei's measure of genetic diversity, and thumb & finger pattern genotypes, which were inturn used in homology inferences as summarized by a Neighbour-Joining tree constructed from Nei's standard genetic distance. Results revealed significant correlation between Dermatoglyphics & population parameters that were further found to be in concordance with the historical accounts of the ethnic groups. Such inductions as the ancient north-eastern presence and subsequent admixure events of the Oromos (PII= 15.01), the high diversity of the Amharas (H= 0.1978, F= 0.6453, and P= 0.4144), and the Nilo-Saharan origin of the Berta group (PII= 10.66) are evidences to this. The study has further tested the possibility of applying Dermatoglyphics in population genetic & anthropologic research, highlighting on the prospect of developing a method to trace back population origins & ancient movement patterns. Additionally, linguistic clustering was deemed significant for the Ethiopian population, coinciding with recent genome wide studies that have ascertained that linguistic clustering as to being more crucial than the geographical patterning in the Ethiopian context. Finally, Dermatoglyphic markers have been proven to be endowed with a strong potential as non-invasive preliminary tools applicable prior to genetic studies to analyze ethnically sub-divided populations and

  6. Dynamic Allostery of the Catabolite Activator Protein Revealed by Interatomic Forces

    PubMed Central

    Louet, Maxime; Seifert, Christian; Hensen, Ulf; Gräter, Frauke

    2015-01-01

    The Catabolite Activator Protein (CAP) is a showcase example for entropic allostery. For full activation and DNA binding, the homodimeric protein requires the binding of two cyclic AMP (cAMP) molecules in an anti-cooperative manner, the source of which appears to be largely of entropic nature according to previous experimental studies. We here study at atomic detail the allosteric regulation of CAP with Molecular dynamics (MD) simulations. We recover the experimentally observed entropic penalty for the second cAMP binding event with our recently developed force covariance entropy estimator and reveal allosteric communication pathways with Force Distribution Analyses (FDA). Our observations show that CAP binding results in characteristic changes in the interaction pathways connecting the two cAMP allosteric binding sites with each other, as well as with the DNA binding domains. We identified crucial relays in the mostly symmetric allosteric activation network, and suggest point mutants to test this mechanism. Our study suggests inter-residue forces, as opposed to coordinates, as a highly sensitive measure for structural adaptations that, even though minute, can very effectively propagate allosteric signals. PMID:26244893

  7. Dynamic Allostery of the Catabolite Activator Protein Revealed by Interatomic Forces.

    PubMed

    Louet, Maxime; Seifert, Christian; Hensen, Ulf; Gräter, Frauke

    2015-08-01

    The Catabolite Activator Protein (CAP) is a showcase example for entropic allostery. For full activation and DNA binding, the homodimeric protein requires the binding of two cyclic AMP (cAMP) molecules in an anti-cooperative manner, the source of which appears to be largely of entropic nature according to previous experimental studies. We here study at atomic detail the allosteric regulation of CAP with Molecular dynamics (MD) simulations. We recover the experimentally observed entropic penalty for the second cAMP binding event with our recently developed force covariance entropy estimator and reveal allosteric communication pathways with Force Distribution Analyses (FDA). Our observations show that CAP binding results in characteristic changes in the interaction pathways connecting the two cAMP allosteric binding sites with each other, as well as with the DNA binding domains. We identified crucial relays in the mostly symmetric allosteric activation network, and suggest point mutants to test this mechanism. Our study suggests inter-residue forces, as opposed to coordinates, as a highly sensitive measure for structural adaptations that, even though minute, can very effectively propagate allosteric signals. PMID:26244893

  8. Interdomain conformational changes in Akt activation revealed by chemical cross-linking and tandem mass spectrometry.

    PubMed

    Huang, Bill X; Kim, Hee-Yong

    2006-06-01

    Akt, a serine/threonine kinase, plays a critical role in cell survival. Upon growth factor receptor stimulation, cytosolic Akt is recruited to the plasma membrane by phospholipid binding and activated through phosphorylation at Thr(308) and Ser(473). Although crystal structures for the parts of Akt have been reported, neither the three-dimensional structure of the whole molecule nor sequential conformational changes during activation have been demonstrated. In this study, we demonstrated that Akt undergoes dramatic interdomain conformational changes during activation processes by probing the three-dimensional structure of full-length Akt in solution using chemical cross-linking and tandem mass spectrometry. The cross-linking results not only provided new structural information but also revealed distinctive spatial arrangements of individual domains in the Akt molecule in resting, membrane-interacted, phosphorylated, and substrate-bound states. Our data allowed a new model for stepwise interdomain conformational changes in Akt activation sequence, setting a stage for the further investigation on Akt-membrane, Akt-protein, and/or Akt-drug interactions in solution to understand molecular mechanisms involved in physiological and pathophysiological processes of cell survival. PMID:16531397

  9. A contrast agent recognizing activated platelets reveals murine cerebral malaria pathology undetectable by conventional MRI.

    PubMed

    von Zur Muhlen, Constantin; Sibson, Nicola R; Peter, Karlheinz; Campbell, Sandra J; Wilainam, Panop; Grau, Georges E; Bode, Christoph; Choudhury, Robin P; Anthony, Daniel C

    2008-03-01

    Human and murine cerebral malaria are associated with elevated levels of cytokines in the brain and adherence of platelets to the microvasculature. Here we demonstrated that the accumulation of platelets in the brain microvasculature can be detected with MRI, using what we believe to be a novel contrast agent, at a time when the pathology is undetectable by conventional MRI. Ligand-induced binding sites (LIBS) on activated platelet glycoprotein IIb/IIIa receptors were detected in the brains of malaria-infected mice 6 days after inoculation with Plasmodium berghei using microparticles of iron oxide (MPIOs) conjugated to a single-chain antibody specific for the LIBS (LIBS-MPIO). No binding of the LIBS-MPIO contrast agent was detected in uninfected animals. A combination of LIBS-MPIO MRI, confocal microscopy, and transmission electron microscopy revealed that the proinflammatory cytokine TNF-alpha, but not IL-1beta or lymphotoxin-alpha (LT-alpha), induced adherence of platelets to cerebrovascular endothelium. Peak platelet adhesion was found 12 h after TNF-alpha injection and was readily detected with LIBS-MPIO contrast-enhanced MRI. Temporal studies revealed that the level of MPIO-induced contrast was proportional to the number of platelets bound. Thus, the LIBS-MPIO contrast agent enabled noninvasive detection of otherwise undetectable cerebral pathology by in vivo MRI before the appearance of clinical disease, highlighting the potential of targeted contrast agents for diagnostic, mechanistic, and therapeutic studies. PMID:18274670

  10. A contrast agent recognizing activated platelets reveals murine cerebral malaria pathology undetectable by conventional MRI

    PubMed Central

    von zur Muhlen, Constantin; Sibson, Nicola R.; Peter, Karlheinz; Campbell, Sandra J.; Wilainam, Panop; Grau, Georges E.; Bode, Christoph; Choudhury, Robin P.; Anthony, Daniel C.

    2008-01-01

    Human and murine cerebral malaria are associated with elevated levels of cytokines in the brain and adherence of platelets to the microvasculature. Here we demonstrated that the accumulation of platelets in the brain microvasculature can be detected with MRI, using what we believe to be a novel contrast agent, at a time when the pathology is undetectable by conventional MRI. Ligand-induced binding sites (LIBS) on activated platelet glycoprotein IIb/IIIa receptors were detected in the brains of malaria-infected mice 6 days after inoculation with Plasmodium berghei using microparticles of iron oxide (MPIOs) conjugated to a single-chain antibody specific for the LIBS (LIBS-MPIO). No binding of the LIBS-MPIO contrast agent was detected in uninfected animals. A combination of LIBS-MPIO MRI, confocal microscopy, and transmission electron microscopy revealed that the proinflammatory cytokine TNF-α, but not IL-1β or lymphotoxin-α (LT-α), induced adherence of platelets to cerebrovascular endothelium. Peak platelet adhesion was found 12 h after TNF-α injection and was readily detected with LIBS-MPIO contrast-enhanced MRI. Temporal studies revealed that the level of MPIO-induced contrast was proportional to the number of platelets bound. Thus, the LIBS-MPIO contrast agent enabled noninvasive detection of otherwise undetectable cerebral pathology by in vivo MRI before the appearance of clinical disease, highlighting the potential of targeted contrast agents for diagnostic, mechanistic, and therapeutic studies. PMID:18274670

  11. On the way of revealing coactivator complexes cross-talk during transcriptional activation.

    PubMed

    Krasnov, Aleksey N; Mazina, Marina Yu; Nikolenko, Julia V; Vorobyeva, Nadezhda E

    2016-01-01

    Transcriptional activation is a complex, multistage process implemented by hundreds of proteins. Many transcriptional proteins are organized into coactivator complexes, which participate in transcription regulation at numerous genes and are a driver of this process. The molecular action mechanisms of coactivator complexes remain largely understudied. Relevant publications usually deal with the involvement of these complexes in the entire process of transcription, and only a few studies are aimed to elucidate their functions at its particular stages. This review summarizes available information on the participation of key coactivator complexes in transcriptional activation. The timing of coactivator complex binding/removal has been used for restructuring previously described information about the transcriptional process. Several major stages of transcriptional activation have been distinguished based on the presence of covalent histone modifications and general transcriptional factors, and the recruitment and/or removal phases have been determined for each coactivator included in analysis. Recruitment of Mediator, SWItch/Sucrose Non-Fermentable and NUcleosome Remodeling Factor complexes during transcription activation has been investigated thoroughly; CHD and INOsitol auxotrophy 80 families are less well studied. In most cases, the molecular mechanisms responsible for the removal of certain coactivator complexes after the termination of their functions at the promoters are still not understood. On the basis of the summarized information, we propose a scheme that illustrates the involvement of coactivator complexes in different stages of the transcription activation process. This scheme may help to gain a deeper insight into the molecular mechanism of functioning of coactivator complexes, find novel participants of the process, and reveal novel structural or functional connections between different coactivators. PMID:26913181

  12. Comparative Proteomic Analysis Reveals Activation of Mucosal Innate Immune Signaling Pathways during Cholera

    PubMed Central

    LaRocque, Regina C.; Uddin, Taher; Krastins, Bryan; Mayo-Smith, Leslie M.; Sarracino, David; Karlsson, Elinor K.; Rahman, Atiqur; Shirin, Tahmina; Bhuiyan, Taufiqur R.; Chowdhury, Fahima; Khan, Ashraful Islam; Ryan, Edward T.; Calderwood, Stephen B.; Qadri, Firdausi

    2015-01-01

    Vibrio cholerae O1 is a major cause of acute watery diarrhea in over 50 countries. Evidence suggests that V. cholerae O1 may activate inflammatory pathways, and a recent study of a Bangladeshi population showed that variants in innate immune genes play a role in mediating susceptibility to cholera. We analyzed human proteins present in the small intestine of patients infected with V. cholerae O1 to characterize the host response to this pathogen. We collected duodenal biopsy specimens from patients with acute cholera after stabilization and again 30 days after initial presentation. Peptides extracted from biopsy specimens were sequenced and quantified using label-free mass spectrometry and SEQUEST. Twenty-seven host proteins were differentially abundant between the acute and convalescent stages of infection; the majority of these have known roles in innate defense, cytokine production, and apoptosis. Immunostaining confirmed that two proteins, WARS and S100A8, were more abundant in lamina propria cells during the acute stage of cholera. Analysis of the differentially abundant proteins revealed the activation of key regulators of inflammation by the innate immune system, including Toll-like receptor 4, nuclear factor kappa-light-chain-enhancer of activated B cells, mitogen-activated protein kinases, and caspase-dependent inflammasomes. Interleukin-12β (IL-12β) was a regulator of several proteins that were activated during cholera, and we confirmed that IL-12β was produced by lymphocytes recovered from duodenal biopsy specimens of cholera patients. Our study shows that a broad inflammatory response is generated in the gut early after onset of cholera, which may be critical in the development of long-term mucosal immunity against V. cholerae O1. PMID:25561705

  13. Comparative proteomic analysis reveals activation of mucosal innate immune signaling pathways during cholera.

    PubMed

    Ellis, Crystal N; LaRocque, Regina C; Uddin, Taher; Krastins, Bryan; Mayo-Smith, Leslie M; Sarracino, David; Karlsson, Elinor K; Rahman, Atiqur; Shirin, Tahmina; Bhuiyan, Taufiqur R; Chowdhury, Fahima; Khan, Ashraful Islam; Ryan, Edward T; Calderwood, Stephen B; Qadri, Firdausi; Harris, Jason B

    2015-03-01

    Vibrio cholerae O1 is a major cause of acute watery diarrhea in over 50 countries. Evidence suggests that V. cholerae O1 may activate inflammatory pathways, and a recent study of a Bangladeshi population showed that variants in innate immune genes play a role in mediating susceptibility to cholera. We analyzed human proteins present in the small intestine of patients infected with V. cholerae O1 to characterize the host response to this pathogen. We collected duodenal biopsy specimens from patients with acute cholera after stabilization and again 30 days after initial presentation. Peptides extracted from biopsy specimens were sequenced and quantified using label-free mass spectrometry and SEQUEST. Twenty-seven host proteins were differentially abundant between the acute and convalescent stages of infection; the majority of these have known roles in innate defense, cytokine production, and apoptosis. Immunostaining confirmed that two proteins, WARS and S100A8, were more abundant in lamina propria cells during the acute stage of cholera. Analysis of the differentially abundant proteins revealed the activation of key regulators of inflammation by the innate immune system, including Toll-like receptor 4, nuclear factor kappa-light-chain-enhancer of activated B cells, mitogen-activated protein kinases, and caspase-dependent inflammasomes. Interleukin-12β (IL-12β) was a regulator of several proteins that were activated during cholera, and we confirmed that IL-12β was produced by lymphocytes recovered from duodenal biopsy specimens of cholera patients. Our study shows that a broad inflammatory response is generated in the gut early after onset of cholera, which may be critical in the development of long-term mucosal immunity against V. cholerae O1. PMID:25561705

  14. Use of new guidance to profile 'equivalent minutes' of aerobic physical activity for adults in England reveals gender, geographical, and socio-economic inequalities in meeting public health guidance: A cross-sectional study.

    PubMed

    Roberts, David; Townsend, Nick; Foster, Charlie

    2016-12-01

    English physical activity guidance now recognises a double weighting of vigorous over moderate activity; 1 min of vigorous activity is the same as two 'equivalent' minutes of moderate activity. In addition, concerns of over-estimation of occupational PA led to newly applied measurement methods for this domain. Vigorous activity is associated with higher socio-economic position and occupational PA has the opposite association, so these changes may increase inequalities. We profiled adults' total and domain-specific 'equivalent minutes' of weekly PA in England 2012, and investigated inequalities in PA participation, accounting for the new weighting of vigorous PA, and new measurements of occupational PA. Nationally representative cross-sectional survey data on the self-reported PA of 8158 adults was used to produce a profile of the domain and duration of weekly 'equivalent minutes' of PA. Vigorous PA was double-weighted compared to moderate PA, and the percentage contribution from each PA domain quantified, stratified by gender and activity status and split by socio-demographic variables. Women, older adults, and adults without qualifications, from deprived areas, with worse employment conditions, or living in the North of England were significantly less likely to meet MVPA guidance. Type of activity was also socially patterned, particularly sport participation, which contributed a higher percentage of PA in adults of higher socioeconomic status. For active men, sporting activity was the most prevalent domain, and sports and walking for active women. In England, there are important socio-demographic differences in how adults participate in PA, and in percentage meeting public health guidance. PMID:27413661

  15. Characterization of the circulating hemocytes in mud crab (Scylla olivacea) revealed phenoloxidase activity.

    PubMed

    Mangkalanan, Seksan; Sanguanrat, Piyachat; Utairangsri, Tanatchaporn; Sritunyalucksana, Kallaya; Krittanai, Chartchai

    2014-05-01

    This study focused on an isolation and characterization of the circulating hemocytes in mud crab, Scylla olivacea. Isolation of specific cell types of hemocytes from crab hemolymph was accomplished by using 60% Percoll density gradient centrifugation. Four separated bands of the hemocytes were successfully obtained. Characterization of these isolated hemocytes by light microscope using trypan blue-rose bengal staining, rose bengal-hematoxilin staining, and phase contrast revealed four distinct types of hemocyte cells. Using their specific morphology and granularity, they were identified as hyaline cell (HC), small granular cell (SGC), large granular cell (LGC) and mixed granular cell (MGC). Transmission electron microscopy (TEM) revealed more details on specific cell size, size of cytoplasmic granule, and nuclear to cytoplasmic ratio, and confirmed the classification. Relative abundance of these cells types in the hemolymph of an adult crab were 15.50±8.22% for HC, 55.50±7.15% for SGC, 13.50±5.28% for LGC, and 15.50±3.50% for MGC. Proteomic analysis of protein expression for each specific cell types by two-dimensional electrophoresis identified two highly abundant proteins, prophenoloxidase (ProPO) and peroxinectin in LGC. Determination of phenoloxidase (PO) activity in each isolated cell types using in vitro and in situ chemical assays confirmed the presence of PO activity only in LGC. Based on an increased PO activity of crab hemolymph during the course of White Spot Syndrome Virus (WSSV) infection, these results suggest that prophenoloxidase pathway was employed for host defense mechanism against WSSV and it may link to the role of large granular hemocyte. PMID:24316230

  16. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants

    PubMed Central

    Zhang, Tong; Shao, Ming-Fei; Ye, Lin

    2012-01-01

    Activated sludge (AS) contains highly complex microbial communities. In this study, PCR-based 454 pyrosequencing was applied to investigate the bacterial communities of AS samples from 14 sewage treatment plants of Asia (mainland China, Hong Kong, and Singapore), and North America (Canada and the United States). A total of 259 K effective sequences of 16S rRNA gene V4 region were obtained from these AS samples. These sequences revealed huge amount of operational taxonomic units (OTUs) in AS, that is, 1183–3567 OTUs in a sludge sample, at 3% cutoff level and sequencing depth of 16 489 sequences. Clear geographical differences among the AS samples from Asia and North America were revealed by (1) cluster analyses based on abundances of OTUs or the genus/family/order assigned by Ribosomal Database Project (RDP) and (2) the principal coordinate analyses based on OTUs abundances, RDP taxa abundances and UniFrac of OTUs and their distances. In addition to certain unique bacterial populations in each AS sample, some genera were dominant, and core populations shared by multiple samples, including two commonly reported genera of Zoogloea and Dechloromonas, three genera not frequently reported (i.e., Prosthecobacter, Caldilinea and Tricoccus) and three genera not well described so far (i.e., Gp4 and Gp6 in Acidobacteria and Subdivision3 genera incertae sedis of Verrucomicrobia). Pyrosequencing analyses of multiple AS samples in this study also revealed the minority populations that are hard to be explored by traditional molecular methods and showed that a large proportion of sequences could not be assigned to taxonomic affiliations even at the phylum/class levels. PMID:22170428

  17. Phase II-I-II Study of Two Different Doses and Schedules of Pralatrexate, a High-Affinity Substrate for the Reduced Folate Carrier, in Patients With Relapsed or Refractory Lymphoma Reveals Marked Activity in T-Cell Malignancies

    PubMed Central

    O'Connor, Owen A.; Horwitz, Steven; Hamlin, Paul; Portlock, Carol; Moskowitz, Craig H.; Sarasohn, Debra; Neylon, Ellen; Mastrella, Jill; Hamelers, Rachel; MacGregor-Cortelli, Barbara; Patterson, Molly; Seshan, Venkatraman E.; Sirotnak, Frank; Fleisher, Martin; Mould, Diane R.; Saunders, Mike; Zelenetz, Andrew D.

    2009-01-01

    Purpose To determine the maximum-tolerated dose (MTD) and efficacy of pralatrexate in patients with lymphoma. Patients and Methods Pralatrexate, initially given at a dose of 135 mg/m2 on an every-other-week basis, was associated with stomatitis. A redesigned, weekly phase I/II study established an MTD of 30 mg/m2 weekly for six weeks every 7 weeks. Patients were required to have relapsed/refractory disease, an absolute neutrophil greater than 1,000/μL, and a platelet count greater than 50,000/μL for the first dose of any cycle. Results The every-other-week, phase II experience was associated with an increased risk of stomatitis and hematologic toxicity. On a weekly schedule, the MTD was 30 mg/m2 weekly for 6 weeks every 7 weeks. This schedule modification resulted in a 50% reduction in the major hematologic toxicities and abrogation of the grades 3 to 4 stomatitis. Stomatitis was associated with elevated homocysteine and methylmalonic acid, which were reduced by folate and vitamin B12 supplementation. Of 48 assessable patients, the overall response rate was 31% (26% by intention to treat), including 17% who experienced complete remission (CR). When analyzed by lineage, the overall response rates were 10% and 54% in patients with B- and T-cell lymphomas, respectively. All eight patients who experienced CR had T-cell lymphoma, and four of the six patients with a partial remission were positron emission tomography negative. The duration of responses ranged from 3 to 26 months. Conclusion Pralatrexate has significant single-agent activity in patients with relapsed/refractory T-cell lymphoma. PMID:19652067

  18. A new autoinhibited kinase conformation reveals a salt-bridge switch in kinase activation

    PubMed Central

    Wei, Qiang; Yang, Shaoyuan; Li, Dan; Zhang, Xiaoying; Zheng, Jimin; Jia, Zongchao

    2016-01-01

    In the structure of autoinhibited EphA2 tyrosine kinase reported herein, we have captured the entire activation segment, revealing a previously unknown role of the conserved Arg762 in kinase autoinhibition by interacting with the essential Mg2+-chelating Asp757. While it is well known that this Arg residue is involved in an electrostatic interaction with the phospho-residue of the activation loop to stabilize the active conformation, our structure determination revealed a new role for the Arg, acting as a switch between the autoinhibited and activated conformations. Mutation of Arg762 to Ala in EphA2 sensitized Mg2+ response, resulting in enhanced kinase catalytic activity and Mg2+ cooperativity. Furthermore, mutation of the corresponding Arg/Lys to Ala in PKA and p38MAPK also exhibited similar behavior. This new salt bridge-mediated switch may thus be an important mechanism of activation on a broader scope for kinases which utilize autophosphorylation. PMID:27324091

  19. Neuroinformatics analyses reveal GABAt and SSADH as major proteins involved in anticonvulsant activity of valproic acid.

    PubMed

    Piplani, Sakshi; Verma, Prabhakar Kumar; Kumar, Ajit

    2016-07-01

    The unequivocal hypotheses about anticonvulsant activity of valproic acid (VPA) have always been a basic hurdle in designing next generation neurotherapeutics, particularly the anti-epileptic drugs. The present study reports about a comprehensive in-silico investigation into qualitative and quantitative binding of VPA and corresponding natural ligands of four major enzymes involved in neurotransmissions, namely-GABA transaminase (GABAt), α-keto glutarate dehydrogenase (α-KGDH), Succinate Semialdehyde dehydrogenase (SSADH) and Glutamate Decarboxylase (GAD), respectively. The molecular docking analyses revealed that VPA inhibits GABAt and α-KGDH through allosteric while SSADH through competitive mode of binding. There is an observed elevation in binding of glutamate over GAD in the presence of VPA. The docking inhibition constant (Ki) of VPA to all the studied enzymatic receptors were observed to be well below the therapeutic concentration of VPA in blood, except for α-KGDH, thus favouring GABAergic over glutamatergic mode of anticonvulsant activity of VPA. The report is probably the first comprehensive in-silico molecular study about VPA action. PMID:27261619

  20. Electrophilic activity-based RNA probes reveal a self-alkylating RNA for RNA labeling

    PubMed Central

    McDonald, Richard I.; Guilinger, John P.; Mukherji, Shankar; Curtis, Edward A.; Lee, Won I.; Liu, David R.

    2014-01-01

    Probes that form covalent bonds with RNA molecules based on their chemical reactivity would advance our ability to study the transcriptome. We developed a set of electrophilic activity-based RNA probes designed to react with unusually nucleophilic RNAs. We used these probes to identify reactive genome-encoded RNAs, resulting in the discovery of a 42-nt catalytic RNA from an archaebacterium that reacts with a 2,3-disubstituted epoxide at N7 of a specific guanosine. Detailed characterization of the catalytic RNA revealed the structural requirements for reactivity. We developed this catalytic RNA into a general tool to selectively conjugate a small molecule to an RNA of interest. This strategy enabled up to 500-fold enrichment of target RNA from total mammalian RNA or from cell lysate. We demonstrated the utility of this approach by selectively capturing proteins in yeast cell lysate that bind to the ASH1 mRNA. PMID:25306441

  1. Targeted massively parallel sequencing of angiosarcomas reveals frequent activation of the mitogen activated protein kinase pathway

    PubMed Central

    Murali, Rajmohan; Chandramohan, Raghu; Möller, Inga; Scholz, Simone L.; Berger, Michael; Huberman, Kety; Viale, Agnes; Pirun, Mono; Socci, Nicholas D.; Bouvier, Nancy; Bauer, Sebastian; Artl, Monika; Schilling, Bastian; Schimming, Tobias; Sucker, Antje; Schwindenhammer, Benjamin; Grabellus, Florian; Speicher, Michael R.; Schaller, Jörg; Hillen, Uwe; Schadendorf, Dirk; Mentzel, Thomas; Cheng, Donavan T.; Wiesner, Thomas; Griewank, Klaus G.

    2015-01-01

    Angiosarcomas are rare malignant mesenchymal tumors of endothelial differentiation. The clinical behavior is usually aggressive and the prognosis for patients with advanced disease is poor with no effective therapies. The genetic bases of these tumors have been partially revealed in recent studies reporting genetic alterations such as amplifications of MYC (primarily in radiation-associated angiosarcomas), inactivating mutations in PTPRB and R707Q hotspot mutations of PLCG1. Here, we performed a comprehensive genomic analysis of 34 angiosarcomas using a clinically-approved, hybridization-based targeted next-generation sequencing assay for 341 well-established oncogenes and tumor suppressor genes. Over half of the angiosarcomas (n = 18, 53%) harbored genetic alterations affecting the MAPK pathway, involving mutations in KRAS, HRAS, NRAS, BRAF, MAPK1 and NF1, or amplifications in MAPK1/CRKL, CRAF or BRAF. The most frequently detected genetic aberrations were mutations in TP53 in 12 tumors (35%) and losses of CDKN2A in 9 tumors (26%). MYC amplifications were generally mutually exclusive of TP53 alterations and CDKN2A loss and were identified in 8 tumors (24%), most of which (n = 7, 88%) arose post-irradiation. Previously reported mutations in PTPRB (n = 10, 29%) and one (3%) PLCG1 R707Q mutation were also identified. Our results demonstrate that angiosarcomas are a genetically heterogeneous group of tumors, harboring a wide range of genetic alterations. The high frequency of genetic events affecting the MAPK pathway suggests that targeted therapies inhibiting MAPK signaling may be promising therapeutic avenues in patients with advanced angiosarcomas. PMID:26440310

  2. Multimodal imaging reveals temporal and spatial microglia and matrix metalloproteinase activity after experimental stroke

    PubMed Central

    Zinnhardt, Bastian; Viel, Thomas; Wachsmuth, Lydia; Vrachimis, Alexis; Wagner, Stefan; Breyholz, Hans-Jörg; Faust, Andreas; Hermann, Sven; Kopka, Klaus; Faber, Cornelius; Dollé, Frédéric; Pappata, Sabina; Planas, Anna M; Tavitian, Bertrand; Schäfers, Michael; Sorokin, Lydia M; Kuhlmann, Michael T; Jacobs, Andreas H

    2015-01-01

    Stroke is the most common cause of death and disability from neurologic disease in humans. Activation of microglia and matrix metalloproteinases (MMPs) is involved in positively and negatively affecting stroke outcome. Novel, noninvasive, multimodal imaging methods visualizing microglial and MMP alterations were employed. The spatio-temporal dynamics of these parameters were studied in relation to blood flow changes. Micro positron emission tomography (μPET) using [18F]BR-351 showed MMP activity within the first days after transient middle cerebral artery occlusion (tMCAo), followed by increased [18F]DPA-714 uptake as a marker for microglia activation with a maximum at 14 days after tMCAo. The inflammatory response was spatially located in the infarct core and in adjacent (penumbral) tissue. For the first time, multimodal imaging based on PET, single photon emission computed tomography, and magnetic resonance imaging revealed insight into the spatio-temporal distribution of critical parameters of poststroke inflammation. This allows further evaluation of novel treatment paradigms targeting the postischemic inflammation. PMID:26126867

  3. Multimodal imaging reveals temporal and spatial microglia and matrix metalloproteinase activity after experimental stroke.

    PubMed

    Zinnhardt, Bastian; Viel, Thomas; Wachsmuth, Lydia; Vrachimis, Alexis; Wagner, Stefan; Breyholz, Hans-Jörg; Faust, Andreas; Hermann, Sven; Kopka, Klaus; Faber, Cornelius; Dollé, Frédéric; Pappata, Sabina; Planas, Anna M; Tavitian, Bertrand; Schäfers, Michael; Sorokin, Lydia M; Kuhlmann, Michael T; Jacobs, Andreas H

    2015-11-01

    Stroke is the most common cause of death and disability from neurologic disease in humans. Activation of microglia and matrix metalloproteinases (MMPs) is involved in positively and negatively affecting stroke outcome. Novel, noninvasive, multimodal imaging methods visualizing microglial and MMP alterations were employed. The spatio-temporal dynamics of these parameters were studied in relation to blood flow changes. Micro positron emission tomography (μPET) using [(18)F]BR-351 showed MMP activity within the first days after transient middle cerebral artery occlusion (tMCAo), followed by increased [(18)F]DPA-714 uptake as a marker for microglia activation with a maximum at 14 days after tMCAo. The inflammatory response was spatially located in the infarct core and in adjacent (penumbral) tissue. For the first time, multimodal imaging based on PET, single photon emission computed tomography, and magnetic resonance imaging revealed insight into the spatio-temporal distribution of critical parameters of poststroke inflammation. This allows further evaluation of novel treatment paradigms targeting the postischemic inflammation. PMID:26126867

  4. Community Lenses Revealing the Role of Sociocultural Environment on Physical Activity

    PubMed Central

    Belon, Ana Paula; Nieuwendyk, Laura M.; Vallianatos, Helen; Nykiforuk, Candace I. J.

    2016-01-01

    Purpose To identify perceptions of how sociocultural environment enabled and hindered physical activity (PA) participation. Design Community-based participatory research. Setting Two semirural and two urban communities located in Alberta, Canada. Participants Thirty-five people (74.3% females, 71.4% aged 25–64 years) across the four communities. Method PhotoVoice activities occurred over 3 months during the spring of 2009. Participants were asked to document perceived environmental attributes that might foster or inhibit PA in their community. Photographs and narratives were shared in one-on-one interviews. Line-by-line coding of the transcripts was independently conducted by two researchers using an inductive approach. Codes were arranged into themes and subthemes, which were then organized into the Analysis Grid for Environments Linked to Obesity (ANGELO) framework. Results Six main themes (accompanied by subthemes) emerged: sociocultural aesthetics, safety, social involvement, PA motivation, cultural ideas of recreation, and car culture. Representative quotes and photographs illustrate enablers and obstacles identified by participants. Conclusion This PhotoVoice study revealed how aspects of participants’ sociocultural environments shaped their decisions to be physically active. Providing more PA resources is only one step in the promotion of supportive environments. Strategies should also account for the beautification and maintenance of communities, increasing feelings of safety, enhancement of social support among community members, popularization of PA, and mitigating car culture, among others. PMID:25973966

  5. Reveal genes functionally associated with ACADS by a network study.

    PubMed

    Chen, Yulong; Su, Zhiguang

    2015-09-15

    Establishing a systematic network is aimed at finding essential human gene-gene/gene-disease pathway by means of network inter-connecting patterns and functional annotation analysis. In the present study, we have analyzed functional gene interactions of short-chain acyl-coenzyme A dehydrogenase gene (ACADS). ACADS plays a vital role in free fatty acid β-oxidation and regulates energy homeostasis. Modules of highly inter-connected genes in disease-specific ACADS network are derived by integrating gene function and protein interaction data. Among the 8 genes in ACADS web retrieved from both STRING and GeneMANIA, ACADS is effectively conjoined with 4 genes including HAHDA, HADHB, ECHS1 and ACAT1. The functional analysis is done via ontological briefing and candidate disease identification. We observed that the highly efficient-interlinked genes connected with ACADS are HAHDA, HADHB, ECHS1 and ACAT1. Interestingly, the ontological aspect of genes in the ACADS network reveals that ACADS, HAHDA and HADHB play equally vital roles in fatty acid metabolism. The gene ACAT1 together with ACADS indulges in ketone metabolism. Our computational gene web analysis also predicts potential candidate disease recognition, thus indicating the involvement of ACADS, HAHDA, HADHB, ECHS1 and ACAT1 not only with lipid metabolism but also with infant death syndrome, skeletal myopathy, acute hepatic encephalopathy, Reye-like syndrome, episodic ketosis, and metabolic acidosis. The current study presents a comprehensible layout of ACADS network, its functional strategies and candidate disease approach associated with ACADS network. PMID:26045367

  6. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization.

    PubMed

    Zhang, Liman; Chen, Shuobing; Ruan, Jianbin; Wu, Jiayi; Tong, Alexander B; Yin, Qian; Li, Yang; David, Liron; Lu, Alvin; Wang, Wei Li; Marks, Carolyn; Ouyang, Qi; Zhang, Xinzheng; Mao, Youdong; Wu, Hao

    2015-10-23

    The NLR family apoptosis inhibitory proteins (NAIPs) bind conserved bacterial ligands, such as the bacterial rod protein PrgJ, and recruit NLR family CARD-containing protein 4 (NLRC4) as the inflammasome adapter to activate innate immunity. We found that the PrgJ-NAIP2-NLRC4 inflammasome is assembled into multisubunit disk-like structures through a unidirectional adenosine triphosphatase polymerization, primed with a single PrgJ-activated NAIP2 per disk. Cryo-electron microscopy (cryo-EM) reconstruction at subnanometer resolution revealed a ~90° hinge rotation accompanying NLRC4 activation. Unlike in the related heptameric Apaf-1 apoptosome, in which each subunit needs to be conformationally activated by its ligand before assembly, a single PrgJ-activated NAIP2 initiates NLRC4 polymerization in a domino-like reaction to promote the disk assembly. These insights reveal the mechanism of signal amplification in NAIP-NLRC4 inflammasomes. PMID:26449474

  7. Comparative analyses of Podospora anserina secretomes reveal a large array of lignocellulose-active enzymes.

    PubMed

    Poidevin, Laetitia; Berrin, Jean-Guy; Bennati-Granier, Chloé; Levasseur, Anthony; Herpoël-Gimbert, Isabelle; Chevret, Didier; Coutinho, Pedro M; Henrissat, Bernard; Heiss-Blanquet, Senta; Record, Eric

    2014-09-01

    The genome of the coprophilous fungus Podospora anserina harbors a large and highly diverse set of putative lignocellulose-acting enzymes. In this study, we investigated the enzymatic diversity of a broad range of P. anserina secretomes induced by various carbon sources (dextrin, glucose, xylose, arabinose, lactose, cellobiose, saccharose, Avicel, Solka-floc, birchwood xylan, wheat straw, maize bran, and sugar beet pulp (SBP)). Compared with the Trichoderma reesei enzymatic cocktail, P. anserina secretomes displayed similar cellulase, xylanase, and pectinase activities and greater arabinofuranosidase, arabinanase, and galactanase activities. The secretomes were further tested for their capacity to supplement a T. reesei cocktail. Four of them improved significantly the saccharification yield of steam-exploded wheat straw up to 48 %. Fine analysis of the P. anserina secretomes produced with Avicel and SBP using proteomics revealed a large array of CAZymes with a high number of GH6 and GH7 cellulases, CE1 esterases, GH43 arabinofuranosidases, and AA1 laccase-like multicopper oxidases. Moreover, a preponderance of AA9 (formerly GH61) was exclusively produced in the SBP condition. This study brings additional insights into the P. anserina enzymatic machinery and will facilitate the selection of promising targets for the development of future biorefineries. PMID:24695830

  8. Inner workings of thrombolites: spatial gradients of metabolic activity as revealed by metatranscriptome profiling

    PubMed Central

    Mobberley, J. M.; Khodadad, C. L. M.; Visscher, P. T.; Reid, R. P.; Hagan, P.; Foster, J. S.

    2015-01-01

    Microbialites are sedimentary deposits formed by the metabolic interactions of microbes and their environment. These lithifying microbial communities represent one of the oldest ecosystems on Earth, yet the molecular mechanisms underlying the function of these communities are poorly understood. In this study, we used comparative metagenomic and metatranscriptomic analyses to characterize the spatial organization of the thrombolites of Highborne Cay, The Bahamas, an actively forming microbialite system. At midday, there were differences in gene expression throughout the spatial profile of the thrombolitic mat with a high abundance of transcripts encoding genes required for photosynthesis, nitrogen fixation and exopolymeric substance production in the upper three mm of the mat. Transcripts associated with denitrification and sulfate reduction were in low abundance throughout the depth profile, suggesting these metabolisms were less active during midday. Comparative metagenomics of the Bahamian thrombolites with other known microbialite ecosystems from across the globe revealed that, despite many shared core pathways, the thrombolites represented genetically distinct communities. This study represents the first time the metatranscriptome of living microbialite has been characterized and offers a new molecular perspective on those microbial metabolisms, and their underlying genetic pathways, that influence the mechanisms of carbonate precipitation in lithifying microbial mat ecosystems. PMID:26213359

  9. Inner workings of thrombolites: spatial gradients of metabolic activity as revealed by metatranscriptome profiling

    NASA Astrophysics Data System (ADS)

    Mobberley, J. M.; Khodadad, C. L. M.; Visscher, P. T.; Reid, R. P.; Hagan, P.; Foster, J. S.

    2015-07-01

    Microbialites are sedimentary deposits formed by the metabolic interactions of microbes and their environment. These lithifying microbial communities represent one of the oldest ecosystems on Earth, yet the molecular mechanisms underlying the function of these communities are poorly understood. In this study, we used comparative metagenomic and metatranscriptomic analyses to characterize the spatial organization of the thrombolites of Highborne Cay, The Bahamas, an actively forming microbialite system. At midday, there were differences in gene expression throughout the spatial profile of the thrombolitic mat with a high abundance of transcripts encoding genes required for photosynthesis, nitrogen fixation and exopolymeric substance production in the upper three mm of the mat. Transcripts associated with denitrification and sulfate reduction were in low abundance throughout the depth profile, suggesting these metabolisms were less active during midday. Comparative metagenomics of the Bahamian thrombolites with other known microbialite ecosystems from across the globe revealed that, despite many shared core pathways, the thrombolites represented genetically distinct communities. This study represents the first time the metatranscriptome of living microbialite has been characterized and offers a new molecular perspective on those microbial metabolisms, and their underlying genetic pathways, that influence the mechanisms of carbonate precipitation in lithifying microbial mat ecosystems.

  10. Patterns of Activity Revealed by a Time Lag Analysis of a Model Active Region

    NASA Astrophysics Data System (ADS)

    Bradshaw, Stephen; Viall, Nicholeen

    2016-05-01

    We investigate the global activity patterns predicted from a model active region heated by distributions of nanoflares that have a range of average frequencies. The activity patterns are manifested in time lag maps of narrow-band instrument channel pairs. We combine an extrapolated magnetic skeleton with hydrodynamic and forward modeling codes to create a model active region, and apply the time lag method to synthetic observations. Our aim is to recover some typical properties and patterns of activity observed in active regions. Our key findings are: 1. Cooling dominates the time lag signature and the time lags between the channel pairs are generally consistent with observed values. 2. Shorter coronal loops in the core cool more quickly than longer loops at the periphery. 3. All channel pairs show zero time lag when the line-of-sight passes through coronal loop foot-points. 4. There is strong evidence that plasma must be re-energized on a time scale comparable to the cooling timescale to reproduce the observed coronal activity, but it is likely that a relatively broad spectrum of heating frequencies operates across active regions. 5. Due to their highly dynamic nature, we find nanoflare trains produce zero time lags along entire flux tubes in our model active region that are seen between the same channel pairs in observed active regions.

  11. Future volcanic lake research: revealing secrets from poorly studied lakes

    NASA Astrophysics Data System (ADS)

    Rouwet, D.; Tassi, F.; Mora-Amador, R. A.

    2012-04-01

    Volcanic lake research boosted after the 1986 Lake Nyos lethal gas burst, a limnic rather than volcanic event. This led to the formation of the IAVCEI-Commission on Volcanic Lakes, which grew out into a multi-disciplinary scientific community since the 1990's. At Lake Nyos, a degassing pipe is functional since 2001, and two additional pipes were added in 2011, aimed to prevent further limnic eruption events. There are between 150 and 200 volcanic lakes on Earth. Some acidic crater lakes topping active magmatic-hydrothermal systems are monitored continuously or discontinuously. Such detailed studies have shown their usefulness in volcanic surveillance (e.g. Ruapehu, Yugama-Kusatsu-Shiran, Poás). Others are "Nyos-type" lakes, with possible gas accumulation in bottom waters and thus potentially hazardous. "Nyos-type" lakes tend to remain stably stratified in tropical and sub-tropical climates (meromictic), leading to long-term gas build-up and thus higher potential risk. In temperate climates, such lakes tend to turn over in winter (monomictic), and thus liberating its gas charge yearly. We line out research strategies for the different types of lakes. We believe a complementary, multi-disciplinary approach (geochemistry, geophysics, limnology, biology, statistics, etc.) will lead to new insights and ideas, which can be the base for future following-up and monitoring. After 25 years of pioneering studies on rather few lakes, the scientific community should be challenged to study the many poorly studied volcanic lakes, in order to better constrain the related hazard, based on probabilistic approaches.

  12. Clinical efficacy, radiographic and safety findings through 5 years of subcutaneous golimumab treatment in patients with active psoriatic arthritis: results from a long-term extension of a randomised, placebo-controlled trial (the GO-REVEAL study)

    PubMed Central

    Kavanaugh, Arthur; McInnes, Iain B; Mease, Philip; Krueger, Gerald G; Gladman, Dafna; van der Heijde, Désirée; Zhou, Yiying; Lu, Jiandong; Leu, Jocelyn H; Goldstein, Neil; Beutler, Anna

    2014-01-01

    Objectives Assess golimumab's long-term efficacy/safety in psoriatic arthritis (PsA). Methods Adults with active PsA (≥3 swollen and tender joints, active psoriasis) were randomly assigned to subcutaneous placebo, golimumab 50 mg, or golimumab 100 mg every 4 weeks (q4wks) through wk20. All patients received golimumab 50 mg or 100 mg q4wks from wk24 forward. Methotrexate was allowed and taken by approximately half the patients. Findings through 5 years are reported herein. Efficacy assessments included ≥20% improvement in American College of Rheumatology (ACR20) response, C-reactive-protein-based, 28-joint-count Disease Activity Score (DAS28-CRP) response, ≥75% improvement in Psoriasis Area and Severity Index (PASI75) scores, and PsA-modified Sharp/van der Heijde scores (SHSs). Results 126/405 (31%) randomised patients discontinued treatment through wk252. Golimumab was effective in maintaining clinical improvement through year-5 (ACR20: 62.8–69.9%, DAS28-CRP: 75.2-84.9% for randomised patients; PASI75: 60.8–72.2% among randomised patients with ≥3% body surface area involvement) and inhibiting radiographic progression (mean changes in PsA-modified SHS: 0.1–0.3) among patients with radiographic data. While concomitant methotrexate did not affect ACR20/PASI75, it appeared to reduce radiographic progression. No new safety signals were identified. Antibodies-to-golimumab occurred in 1.8%/10.0% of patients with/without methotrexate). Conclusions Long-term golimumab safety/efficacy in PsA was demonstrated through 5 years. Trial registration number NCT00265096. PMID:24748630

  13. A Global Genomic Screening Strategy Reveals Diverse Activators of Constitutive Activated Receptor (CAR)

    EPA Science Inventory

    A comprehensive survey of conditions that activate CAR in the mouse liver has not been carried out but would be useful in understanding their impact on CAR-dependent liver tumor induction. A gene signature dependent on CAR activation was identified by comparing the transcript pr...

  14. Context Differences Reveal Insulator and Activator Functions of a Su(Hw) Binding Region

    PubMed Central

    Wehling, Misty D.; Geyer, Pamela K.

    2008-01-01

    Insulators are DNA elements that divide chromosomes into independent transcriptional domains. The Drosophila genome contains hundreds of binding sites for the Suppressor of Hairy-wing [Su(Hw)] insulator protein, corresponding to locations of the retroviral gypsy insulator and non-gypsy binding regions (BRs). The first non-gypsy BR identified, 1A-2, resides in cytological region 1A. Using a quantitative transgene system, we show that 1A-2 is a composite insulator containing enhancer blocking and facilitator elements. We discovered that 1A-2 separates the yellow (y) gene from a previously unannotated, non-coding RNA gene, named yar for y-achaete (ac) intergenic RNA. The role of 1A-2 was elucidated using homologous recombination to excise these sequences from the natural location, representing the first deletion of any Su(Hw) BR in the genome. Loss of 1A-2 reduced yar RNA accumulation, without affecting mRNA levels from the neighboring y and ac genes. These data indicate that within the 1A region, 1A-2 acts an activator of yar transcription. Taken together, these studies reveal that the properties of 1A-2 are context-dependent, as this element has both insulator and enhancer activities. These findings imply that the function of non-gypsy Su(Hw) BRs depends on the genomic environment, predicting that Su(Hw) BRs represent a diverse collection of genomic regulatory elements. PMID:18704163

  15. Structure analysis reveals the flexibility of the ADAMTS-5 active site.

    PubMed

    Shieh, Huey-Sheng; Tomasselli, Alfredo G; Mathis, Karl J; Schnute, Mark E; Woodard, Scott S; Caspers, Nicole; Williams, Jennifer M; Kiefer, James R; Munie, Grace; Wittwer, Arthur; Malfait, Anne-Marie; Tortorella, Micky D

    2011-04-01

    A ((1S,2R)-2-hydroxy-2,3-dihydro-1H-inden-1-yl) succinamide derivative (here referred to as Compound 12) shows significant activity toward many matrix metalloproteinases (MMPs), including MMP-2, MMP-8, MMP-9, and MMP-13. Modeling studies had predicted that this compound would not bind to ADAMTS-5 (a disintegrin and metalloproteinase with thrombospondin motifs-5) due to its shallow S1' pocket. However, inhibition analysis revealed it to be a nanomolar inhibitor of both ADAMTS-4 and -5. The observed inconsistency was explained by analysis of crystallographic structures, which showed that Compound 12 in complex with the catalytic domain of ADAMTS-5 (cataTS5) exhibits an unusual conformation in the S1' pocket of the protein. This first demonstration that cataTS5 can undergo an induced conformational change in its active site pocket by a molecule like Compound 12 should enable the design of new aggrecanase inhibitors with better potency and selectivity profiles. PMID:21370305

  16. Optogenetic activation of mechanically insensitive afferents in mouse colorectum reveals chemosensitivity.

    PubMed

    Feng, Bin; Joyce, Sonali C; Gebhart, G F

    2016-05-15

    The sensory innervation of the distal colorectum includes mechanically insensitive afferents (MIAs; ∼25%), which acquire mechanosensitivity in persistent visceral hypersensitivity and thus generate de novo input to the central nervous system. We utilized an optogenetic approach to bypass the process of transduction (generator potential) and focus on transformation (spike initiation) at colorectal MIA sensory terminals, which is otherwise not possible in typical functional studies. From channelrhodopsin2-expressing mice (driven by Advillin-Cre), the distal colorectum with attached pelvic nerve was harvested for ex vivo single-fiber recordings. Afferent receptive fields (RFs) were identified by electrical stimulation and tested for response to mechanical stimuli (probing, stroking, and stretch), and afferents were classified as either MIAs or mechanosensitive afferents (MSAs). All MIA and MSA RFs were subsequently stimulated optically and MIAs were also tested for activation/sensitization with inflammatory soup (IS), acidic hypertonic solution (AHS), and/or bile salts (BS). Responses to pulsed optical stimuli (1-10 Hz) were comparable between MSAs and MIAs whereas 43% of MIAs compared with 86% of MSAs responded tonically to stepped optical stimuli. Tonic-spiking MIAs responded preferentially to AHS (an osmotic stimulus) whereas non-tonic-spiking MIAs responded to IS (an inflammatory stimulus). A significant proportion of MIAs were also sensitized by BS. These results reveal transformation as a critical factor underlying the differences between MIAs (osmosensors vs. inflammatory sensors), revealing a previously unappreciated heterogeneity of MIA endings. The current study draws attention to the sensory encoding of MIA nerve endings that likely contribute to afferent sensitization and thus have important roles in visceral pain. PMID:26950857

  17. Toxin Diversity Revealed by a Transcriptomic Study of Ornithoctonus huwena

    PubMed Central

    He, Quanze; Liu, Jinyan; Luo, Ji; Zhu, Li; Lu, Shanshan; Huang, Pengfei; Chen, Xinyi; Zeng, Xiongzhi; Liang, Songping

    2014-01-01

    Spider venom comprises a mixture of compounds with diverse biological activities, which are used to capture prey and defend against predators. The peptide components bind a broad range of cellular targets with high affinity and selectivity, and appear to have remarkable structural diversity. Although spider venoms have been intensively investigated over the past few decades, venomic strategies to date have generally focused on high-abundance peptides. In addition, the lack of complete spider genomes or representative cDNA libraries has presented significant limitations for researchers interested in molecular diversity and understanding the genetic mechanisms of toxin evolution. In the present study, second-generation sequencing technologies, combined with proteomic analysis, were applied to determine the diverse peptide toxins in venom of the Chinese bird spider Ornithoctonus huwena. In total, 626 toxin precursor sequences were retrieved from transcriptomic data. All toxin precursors clustered into 16 gene superfamilies, which included six novel superfamilies and six novel cysteine patterns. A surprisingly high number of hypermutations and fragment insertions/deletions were detected, which accounted for the majority of toxin gene sequences with low-level expression. These mutations contribute to the formation of diverse cysteine patterns and highly variable isoforms. Furthermore, intraspecific venom variability, in combination with variable transcripts and peptide processing, contributes to the hypervariability of toxins in venoms, and associated rapid and adaptive evolution of toxins for prey capture and defense. PMID:24949878

  18. Functional studies of TcRjl, a novel GTPase of Trypanosoma cruzi, reveals phenotypes related with MAPK activation during parasite differentiation and after heterologous expression in Drosophila model system.

    PubMed

    dos-Santos, Guilherme Rodrigo Reis Monteiro; Fontenele, Marcio Ribeiro; Dias, Felipe de Almeida; de Oliveira, Pedro Lagerblad; Nepomuceno-Silva, José Luciano; de Melo, Luiz Dione Barbosa; Araujo, Helena Maria Marcolla; Lopes, Ulisses Gazos

    2015-11-01

    The life cycle of the protozoan parasite Trypanosoma cruzi comprises rounds of proliferative cycles and differentiation in distinct host environments. Ras GTPases are molecular switches that play pivotal regulatory functions in cell fate. Rjl is a novel GTPase with unknown function. Herein we show that TcRjl blocks in vivo cell differentiation. The forced expression of TcRjl leads to changes in the overall tyrosine protein phosphorylation profile of parasites. TcRjl expressing parasites sustained DNA synthesis regardless the external stimuli for differentiation. Heterologous expression in the Drosophila melanogaster genetic system strongly suggests a role from TcRjl protein in RTK-dependent pathways and MAPK activation. PMID:26408905

  19. Expression of the vertebrate Gli proteins in Drosophila reveals a distribution of activator and repressor activities.

    PubMed

    Aza-Blanc, P; Lin, H Y; Ruiz i Altaba, A; Kornberg, T B

    2000-10-01

    The Cubitus interruptus (Ci) and Gli proteins are transcription factors that mediate responses to Hedgehog proteins (Hh) in flies and vertebrates, respectively. During development of the Drosophila wing, Ci transduces the Hh signal and regulates transcription of different target genes at different locations. In vertebrates, the three Gli proteins are expressed in overlapping domains and are partially redundant. To assess how the vertebrate Glis correlate with Drosophila Ci, we expressed each in Drosophila and monitored their behaviors and activities. We found that each Gli has distinct activities that are equivalent to portions of the regulatory arsenal of Ci. Gli2 and Gli1 have activator functions that depend on Hh. Gli2 and Gli3 are proteolyzed to produce a repressor form able to inhibit hh expression. However, while Gli3 repressor activity is regulated by Hh, Gli2 repressor activity is not. These observations suggest that the separate activator and repressor functions of Ci are unevenly partitioned among the three Glis, yielding proteins with related yet distinct properties. PMID:10976059

  20. Extensive hydrothermal activity in the NE Lau basin revealed by ROV dives

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Resing, J. A.; Tebo, B.; Baker, E. T.; Butterfield, D. A.; Chadwick, B.; Davis, R.; de Ronde, C. E. J.; Lilley, M. D.; Lupton, J. E.; Merle, S. G.; Rubin, K. H.; Shank, T. M.; Walker, S. L.; Arculus, R. J.; Bobbitt, A. M.; Buck, N. J.; Caratori Tontini, F.; Crowhurst, P. V.; Mitchell, E.; Olson, E. J.; Ratmeyer, V.; Richards, S.; Roe, K. K.; Kenner-Chavis, P.; Martinez-Lyons, A.; Sheehan, C.; Brian, R.

    2014-12-01

    Dives with the QUEST 4000 ROV (Remotely Operated Vehicle) in September 2012 discovered nine hydrothermal sites in the arc and rear-arc region of the NE Lau Basin in 1150 m to 2630 m depth. These sites, originally detected by water column and seafloor surveys conducted in 2008-2011, include: (1) a paired sulfur-rich/black smoker field on the summit of a tectonically deformed magmatic arc volcano (Niua), (2) fracture-controlled black smoker venting on several small en echelon seamounts (north Matas) that lie between the magmatic arc and the backarc spreading center and (3) a magmatic degassing site on the summit of a dacite cone within a large (~12 km diameter) caldera volcano (Niuatahi). Dives at West Mata Seamount, which was undergoing strombolian volcanic activity and effusive rift-zone eruptions from 2008 to 2010, revealed a dormant volcanic phase in September 2012, with continued low-temperature diffuse venting. The high-temperature venting is likely driven by magmatic heat indicative of underlying partial melt zones and/or melt pockets distributed through the region. The occurrence of the youngest known boninite eruptions on the Mata volcanoes is consistent with subduction fluid flux melting extending into the rear-arc zone. Extension related to the transition from subduction to strike-slip motion of the northern Tonga Arc over the active Subduction-Transform Edge Propagator (STEP) fault probably contributes to the enhanced volcanism/hydrothermal activity in the NE Lau Basin. Chemosynthetic ecosystems at these sites range from mostly motile, lower diversity ecosystems at the eruptive/magmatically-degassing sites to higher diversity ecosystems with less mobile faunal components at the black-smoker systems. The wide range of fluid chemistry, water depth and geologic settings of the hydrothermal systems in this area provides an intriguing template to study the interaction of hydrothermal fluid chemistry, chemosynthetic habitats and their geologic underpinning

  1. Hyperactive hydrothermal activity in the NE Lau basin revealed by ROV dives

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Resing, J. A.; Tebo, B.; Baker, E. T.; Butterfield, D. A.; Chadwick, B.; Davis, R.; de Ronde, C. E.; Lilley, M. D.; Lupton, J. E.; Merle, S. G.; Rubin, K. H.; Shank, T. M.; Walker, S. L.; Arculus, R. J.; Bobbitt, A. M.; Buck, N.; Caratori Tontini, F.; Crowhurst, P. V.; Mitchell, E.; Olson, E. J.; Ratmeyer, V.; Richards, S.; Roe, K. K.; Keener, P.; Martinez Lyons, A.; Sheehan, C.; Brian, R.

    2013-12-01

    Dives with the QUEST 4000 ROV (Remotely Operated Vehicle) in September 2012 discovered nine hydrothermal sites in the arc and rear-arc region of the NE Lau Basin in 1150 m to 2630 m depth. These sites, originally detected by water column and seafloor surveys conducted in 2008-2011, include: (1) a paired sulfur-rich/black smoker field on the summit of a tectonically deformed magmatic arc volcano (Niua), (2) fracture-controlled black smoker venting on several small en echelon seamounts (north Matas) that lie between the magmatic arc and the backarc spreading center and (3) a magmatic degassing site on the summit of a dacite cone within a large (~12 km diameter) caldera volcano (Niuatahi). Dives at West Mata Seamount, which was undergoing strombolian volcanic activity and effusive rift-zone eruptions from 2008 to 2010, revealed a dormant volcanic phase in September 2012, with continued low-temperature diffuse venting. The high-temperature venting is likely driven by magmatic heat indicative of underlying partial melt zones and/or melt pockets distributed through the region. The occurrence of the youngest known boninite eruptions on the Mata volcanoes is consistent with subduction fluid flux melting extending into the rear-arc zone. Extension related to the transition from subduction to strike-slip motion of the northern Tonga Arc over the active Subduction-Transform Edge Propagator (STEP) fault probably contributes to the enhanced volcanism/hydrothermal activity in the NE Lau Basin. Chemosynthetic ecosystems at these sites range from mostly motile, lower diversity ecosystems at the eruptive/magmatically-degassing sites to higher diversity ecosystems with less mobile faunal components at the black-smoker systems. The wide range of fluid chemistry, water depth and geologic settings of the hydrothermal systems in this area provides an intriguing template to study the interaction of hydrothermal fluid chemistry, chemosynthetic habitats and their geologic underpinning

  2. Transcriptomic Sequencing Reveals a Set of Unique Genes Activated by Butyrate-Induced Histone Modification.

    PubMed

    Li, Cong-Jun; Li, Robert W; Baldwin, Ransom L; Blomberg, Le Ann; Wu, Sitao; Li, Weizhong

    2016-01-01

    Butyrate is a nutritional element with strong epigenetic regulatory activity as a histone deacetylase inhibitor. Based on the analysis of differentially expressed genes in the bovine epithelial cells using RNA sequencing technology, a set of unique genes that are activated only after butyrate treatment were revealed. A complementary bioinformatics analysis of the functional category, pathway, and integrated network, using Ingenuity Pathways Analysis, indicated that these genes activated by butyrate treatment are related to major cellular functions, including cell morphological changes, cell cycle arrest, and apoptosis. Our results offered insight into the butyrate-induced transcriptomic changes and will accelerate our discerning of the molecular fundamentals of epigenomic regulation. PMID:26819550

  3. Transcriptomic Sequencing Reveals a Set of Unique Genes Activated by Butyrate-Induced Histone Modification

    PubMed Central

    Li, Cong-Jun; Li, Robert W.; Baldwin, Ransom L.; Blomberg, Le Ann; Wu, Sitao; Li, Weizhong

    2016-01-01

    Butyrate is a nutritional element with strong epigenetic regulatory activity as a histone deacetylase inhibitor. Based on the analysis of differentially expressed genes in the bovine epithelial cells using RNA sequencing technology, a set of unique genes that are activated only after butyrate treatment were revealed. A complementary bioinformatics analysis of the functional category, pathway, and integrated network, using Ingenuity Pathways Analysis, indicated that these genes activated by butyrate treatment are related to major cellular functions, including cell morphological changes, cell cycle arrest, and apoptosis. Our results offered insight into the butyrate-induced transcriptomic changes and will accelerate our discerning of the molecular fundamentals of epigenomic regulation. PMID:26819550

  4. Apoptotic human neutrophil peptide-1 anti-tumor activity revealed by cellular biomechanics.

    PubMed

    Gaspar, Diana; Freire, João M; Pacheco, Teresa R; Barata, João T; Castanho, Miguel A R B

    2015-02-01

    Cancer remains a major cause of morbidity and mortality worldwide. Although progress has been made regarding chemotherapeutic agents, new therapies that combine increased selectivity and efficacy with low resistance are still needed. In the search for new anticancer agents, therapies based on biologically active peptides, in particular, antimicrobial peptides (AMPs), have attracted attention for their decreased resistance development and low cytotoxicity. Many AMPs have proved to be tumoricidal agents against human cancer cells, but their mode of action is still controversial. The existence of common properties shared by the membranes of bacteria and tumor cells points to similar lipid-targeting mechanisms in both cases. On the other hand, anticancer peptides (ACPs) also induce apoptosis and inhibit angiogenesis. Human neutrophil peptide-1 (HNP-1) is an endogenous AMP that has been implicated in different cellular phenomena such as tumor proliferation. The presence of HNP-1 in the serum/plasma of oncologic patients turns this peptide into a potential tumor biomarker. The present work reveals the different effects of HNP-1 on the biophysical and nanomechanical properties of solid and hematological tumor cells. Studies on cellular morphology, cellular stiffness, and membrane ultrastructure and charge using atomic force microscopy (AFM) and zeta potential measurements show a preferential binding of HNP-1 to solid tumor cells from human prostate adenocarcinoma when compared to human leukemia cells. AFM also reveals induction of apoptosis with cellular membrane defects at very low peptide concentrations. Understanding ACPs mode(s) of action will certainly open innovative pathways for drug development in cancer treatment. PMID:25447543

  5. Functional Screening of Hydrolytic Activities Reveals an Extremely Thermostable Cellulase from a Deep-Sea Archaeon

    PubMed Central

    Leis, Benedikt; Heinze, Simon; Angelov, Angel; Pham, Vu Thuy Trang; Thürmer, Andrea; Jebbar, Mohamed; Golyshin, Peter N.; Streit, Wolfgang R.; Daniel, Rolf; Liebl, Wolfgang

    2015-01-01

    Extreme habitats serve as a source of enzymes that are active under extreme conditions and are candidates for industrial applications. In this work, six large-insert mixed genomic libraries were screened for hydrolase activities in a broad temperature range (8–70°C). Among a variety of hydrolytic activities, one fosmid clone, derived from a library of pooled isolates of hyperthermophilic archaea from deep sea vents, displayed hydrolytic activity on carboxymethyl cellulose substrate plates at 70°C but not at lower temperatures. Sequence analysis of the fosmid insert revealed a gene encoding a novel glycoside hydrolase family 12 (GHF12) endo-1,4-β-glucanase, termed Cel12E. The enzyme shares 45% sequence identity with a protein from the archaeon Thermococcus sp. AM4 and displays a unique multidomain architecture. Biochemical characterization of Cel12E revealed a remarkably thermostable protein, which appears to be of archaeal origin. The enzyme displayed maximum activity at 92°C and was active on a variety of linear 1,4-β-glucans like carboxymethyl cellulose, β-glucan, lichenan, and phosphoric acid swollen cellulose. The protein is able to bind to various insoluble β-glucans. Product pattern analysis indicated that Cel12E is an endo-cleaving β-glucanase. Cel12E expands the toolbox of hyperthermostable archaeal cellulases with biotechnological potential. PMID:26191525

  6. Protein phosphorylation changes reveal new candidates in the regulation of egg activation and early embryogenesis in D. melanogaster

    PubMed Central

    Krauchunas, Amber R.; Horner, Vanessa L.; Wolfner, Mariana F.

    2012-01-01

    Egg activation is the series of events that must occur for a mature oocyte to become capable of supporting embryogenesis. These events include changes to the egg’s outer coverings, the resumption and completion of meiosis, the translation of new proteins, and the degradation of specific maternal mRNAs. While we know some of the molecules that direct the initial events of egg activation, it remains unclear how multiple pathways are coordinated to change the cellular state from mature oocyte to activated egg. Using a proteomic approach we have identified new candidates for the regulation and progression of egg activation. Reasoning that phosphorylation can simultaneously and rapidly modulate the activity of many proteins, we identified proteins that are post-translationally modified during the transition from oocyte to activated egg in Drosophila melanogaster. We find that at least 311 proteins change in phosphorylation state between mature oocytes and activated eggs. These proteins fall into various functional classes related to the events of egg activation including calcium binding, proteolysis, and protein translation. Our set of candidates includes genes already associated with egg activation, as well as many genes not previously studied during this developmental period. RNAi knockdown of a subset of these genes revealed a new gene, mrityu, necessary for embryonic development past the first mitosis. Thus, by identifying phospho-modulated proteins we have produced a focused candidate set for future genetic studies to test their roles in egg activation and the initiation of embryogenesis. PMID:22884528

  7. Metabolomics Reveals that Aryl Hydrocarbon Receptor Activation by Environmental Chemicals Induces Systemic Metabolic Dysfunction in Mice

    PubMed Central

    Zhang, Limin; Hatzakis, Emmanuel; Nichols, Robert G.; Hao, Ruixin; Correll, Jared; Smith, Philip B.; Chiaro, Christopher R.; Perdew, Gary H.; Patterson, Andrew D.

    2016-01-01

    Environmental exposure to dioxins and dioxin-like compounds poses a significant health risk for human health. Developing a better understanding of the mechanisms of toxicity through activation of the aryl hydrocarbon receptor (AHR) is likely to improve the reliability of risk assessment. In this study, the AHR-dependent metabolic response of mice exposed to 2,3,7,8-tetrachlorodibenzofuran (TCDF) were assessed using global 1H nuclear magnetic resonance (NMR)-based metabolomics and targeted metabolic profiling of extracts obtained from serum and liver. 1H NMR analyses revealed that TCDF exposure suppressed gluconeogenesis and glycogenolysis, stimulated lipogenesis, and triggered inflammatory gene expression in an Ahr-dependent manner. Targeted analyses using gas chromatography mass spectrometry showed TCDF treatment altered the ratio of unsaturated/saturated fatty acids. Consistent with this observation, an increase in hepatic expression of stearoyl coenzyme A desaturase 1 was also observed. In addition, TCDF exposure resulted in inhibition of de novo fatty acid biosynthesis manifested by down-regulation of acetyl-CoA, malonyl-CoA and palmitoyl-CoA metabolites and related mRNA levels. In contrast, no significant changes in the levels of glucose and lipid were observed in serum and liver obtained from Ahr-null mice following TCDF treatment, thus strongly supporting the important role of the AHR in mediating the metabolic effects seen following TCDF exposure. PMID:26023891

  8. High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision.

    PubMed

    Grewe, Benjamin F; Langer, Dominik; Kasper, Hansjörg; Kampa, Björn M; Helmchen, Fritjof

    2010-05-01

    Two-photon calcium imaging of neuronal populations enables optical recording of spiking activity in living animals, but standard laser scanners are too slow to accurately determine spike times. Here we report in vivo imaging in mouse neocortex with greatly improved temporal resolution using random-access scanning with acousto-optic deflectors. We obtained fluorescence measurements from 34-91 layer 2/3 neurons at a 180-490 Hz sampling rate. We detected single action potential-evoked calcium transients with signal-to-noise ratios of 2-5 and determined spike times with near-millisecond precision and 5-15 ms confidence intervals. An automated 'peeling' algorithm enabled reconstruction of complex spike trains from fluorescence traces up to 20-30 Hz frequency, uncovering spatiotemporal trial-to-trial variability of sensory responses in barrel cortex and visual cortex. By revealing spike sequences in neuronal populations on a fast time scale, high-speed calcium imaging will facilitate optical studies of information processing in brain microcircuits. PMID:20400966

  9. Revealing a new activity of the human Dicer DUF283 domain in vitro

    PubMed Central

    Kurzynska-Kokorniak, Anna; Pokornowska, Maria; Koralewska, Natalia; Hoffmann, Weronika; Bienkowska-Szewczyk, Krystyna; Figlerowicz, Marek

    2016-01-01

    The ribonuclease Dicer is a multidomain enzyme that plays a fundamental role in the biogenesis of small regulatory RNAs (srRNAs), which control gene expression by targeting complementary transcripts and inducing their cleavage or repressing their translation. Recent studies of Dicer’s domains have permitted to propose their roles in srRNA biogenesis. For all of Dicer’s domains except one, called DUF283 (domain of unknown function), their involvement in RNA substrate recognition, binding or cleavage has been postulated. For DUF283, the interaction with Dicer’s protein partners has been the only function suggested thus far. In this report, we demonstrate that the isolated DUF283 domain from human Dicer is capable of binding single-stranded nucleic acids in vitro. We also show that DUF283 can act as a nucleic acid annealer that accelerates base-pairing between complementary RNA/DNA molecules in vitro. We further demonstrate an annealing activity of full length human Dicer. The overall results suggest that Dicer, presumably through its DUF283 domain, might facilitate hybridization between short RNAs and their targets. The presented findings reveal the complex nature of Dicer, whose functions may extend beyond the biogenesis of srRNAs. PMID:27045313

  10. The anti-obesity drug orlistat reveals anti-viral activity.

    PubMed

    Ammer, Elisabeth; Nietzsche, Sandor; Rien, Christian; Kühnl, Alexander; Mader, Theresa; Heller, Regine; Sauerbrei, Andreas; Henke, Andreas

    2015-12-01

    The administration of drugs to inhibit metabolic pathways not only reduces the risk of obesity-induced diseases in humans but may also hamper the replication of different viral pathogens. In order to investigate the value of the US Food and Drug Administration-approved anti-obesity drug orlistat in view of its anti-viral activity against different human-pathogenic viruses, several anti-viral studies, electron microscopy analyses as well as fatty acid uptake experiments were performed. The results indicate that administrations of non-cytotoxic concentrations of orlistat reduced the replication of coxsackievirus B3 (CVB3) in different cell types significantly. Moreover, orlistat revealed cell protective effects and modified the formation of multi-layered structures in CVB3-infected cells, which are necessary for viral replication. Lowering fatty acid uptake from the extracellular environment by phloretin administrations had only marginal impact on CVB3 replication. Finally, orlistat reduced also the replication of varicella-zoster virus moderately but had no significant influence on the replication of influenza A viruses. The data support further experiments into the value of orlistat as an inhibitor of the fatty acid synthase to develop new anti-viral compounds, which are based on the modulation of cellular metabolic pathways. PMID:25680890

  11. Detailed investigation of the microbial community in foaming activated sludge reveals novel foam formers

    PubMed Central

    Guo, Feng; Wang, Zhi-Ping; Yu, Ke; Zhang, T.

    2015-01-01

    Foaming of activated sludge (AS) causes adverse impacts on wastewater treatment operation and hygiene. In this study, we investigated the microbial communities of foam, foaming AS and non-foaming AS in a sewage treatment plant via deep-sequencing of the taxonomic marker genes 16S rRNA and mycobacterial rpoB and a metagenomic approach. In addition to Actinobacteria, many genera (e.g., Clostridium XI, Arcobacter, Flavobacterium) were more abundant in the foam than in the AS. On the other hand, deep-sequencing of rpoB did not detect any obligate pathogenic mycobacteria in the foam. We found that unknown factors other than the abundance of Gordonia sp. could determine the foaming process, because abundance of the same species was stable before and after a foaming event over six months. More interestingly, although the dominant Gordonia foam former was the closest with G. amarae, it was identified as an undescribed Gordonia species by referring to the 16S rRNA gene, gyrB and, most convincingly, the reconstructed draft genome from metagenomic reads. Our results, based on metagenomics and deep sequencing, reveal that foams are derived from diverse taxa, which expands previous understanding and provides new insight into the underlying complications of the foaming phenomenon in AS. PMID:25560234

  12. Detailed investigation of the microbial community in foaming activated sludge reveals novel foam formers

    NASA Astrophysics Data System (ADS)

    Guo, Feng; Wang, Zhi-Ping; Yu, Ke; Zhang, T.

    2015-01-01

    Foaming of activated sludge (AS) causes adverse impacts on wastewater treatment operation and hygiene. In this study, we investigated the microbial communities of foam, foaming AS and non-foaming AS in a sewage treatment plant via deep-sequencing of the taxonomic marker genes 16S rRNA and mycobacterial rpoB and a metagenomic approach. In addition to Actinobacteria, many genera (e.g., Clostridium XI, Arcobacter, Flavobacterium) were more abundant in the foam than in the AS. On the other hand, deep-sequencing of rpoB did not detect any obligate pathogenic mycobacteria in the foam. We found that unknown factors other than the abundance of Gordonia sp. could determine the foaming process, because abundance of the same species was stable before and after a foaming event over six months. More interestingly, although the dominant Gordonia foam former was the closest with G. amarae, it was identified as an undescribed Gordonia species by referring to the 16S rRNA gene, gyrB and, most convincingly, the reconstructed draft genome from metagenomic reads. Our results, based on metagenomics and deep sequencing, reveal that foams are derived from diverse taxa, which expands previous understanding and provides new insight into the underlying complications of the foaming phenomenon in AS.

  13. Wide-field Ca2+ imaging reveals visually evoked activity in the retrosplenial area

    PubMed Central

    Murakami, Tomonari; Yoshida, Takashi; Matsui, Teppei; Ohki, Kenichi

    2015-01-01

    Due to recent advances of genetic manipulation, mouse brain has become a useful model for studying brain function, which demands whole brain functional mapping techniques in the mouse brain. In the present study, to finely map visual responsive areas in the mouse brain, we combined high-resolution wide-field optical imaging with transgenic mice containing the genetically encoded Ca2+ indicator, GCaMP3. With the high signal amplitude of GCaMP3 expressing in excitatory neurons, this system allowed neural activity to be observed with relatively fine spatial resolution and cell-type specificity. To evaluate this system, we examined whether non-visual areas exhibited a visual response over the entire surface of the mouse hemisphere. We found that two association areas, the retrosplenial area (RS) and secondary motor/anterior cingulate area (M2/AC), were significantly responsive to drifting gratings. Examination using gratings with distinct spatiotemporal frequency parameters revealed that the RS strongly responded to high-spatial and low-temporal frequency gratings. The M2/AC exhibited a response property similar to that of the RS, though it was not statistically significant. Finally, we performed cellular imaging using two-photon microscopy to examine orientation and direction selectivity of individual neurons, and found that a minority of neurons in the RS clearly showed visual responses sharply selective for orientation and direction. These results suggest that neurons in RS encode visual information of fine spatial details in images. Thus, the present study shows the usefulness of the functional mapping method using a combination of wide-field and two-photon Ca2+ imaging, which allows for whole brain mapping with high spatiotemporal resolution and cell-type specificity. PMID:26106292

  14. Microscopic study reveals the singular origins of growth

    NASA Astrophysics Data System (ADS)

    Yaari, G.; Nowak, A.; Rakocy, K.; Solomon, S.

    2008-04-01

    Anderson [Science 177, 293 (1972)] proposed the concept of complexity in order to describe the emergence and growth of macroscopic collective patterns out of the simple interactions of many microscopic agents. In the physical sciences this paradigm was implemented systematically and confirmed repeatedly by successful confrontation with reality. In the social sciences however, the possibilities to stage experiments to validate it are limited. During the 90's a series of dramatic political and economic events have provided the opportunity to do so. We exploit the resulting empirical evidence to validate a simple agent based alternative to the classical logistic dynamics. The post-liberalization empirical data from Poland confirm the theoretical prediction that the dynamics is dominated by singular rare events which insure the resilience and adaptability of the system. We have shown that growth is led by few singular “growth centers" (Fig. 1), that initially developed at a tremendous rate (Fig. 3), followed by a diffusion process to the rest of the country and leading to a positive growth rate uniform across the counties. In addition to the interdisciplinary unifying potential of our generic formal approach, the present work reveals the strong causal ties between the “softer" social conditions and their “hard" economic consequences.

  15. DNA polymerase beta reveals enhanced activity and processivity in reverse micelles.

    PubMed

    Anarbaev, Rashid O; Rogozina, Anastasia L; Lavrik, Olga I

    2009-04-01

    Water is essential for the stability and functions of proteins and DNA. Reverse micelles are simple model systems where the structure and dynamics of water are controlled. We have estimated the size of complex reverse micelles by light scattering technique and examined the local microenvironment using fluorescein as molecular probe. The micelle size and water polarity inside reverse micelles depend on water volume fraction. We have investigated the different hydration and confinement effects on activity, processivity, and stability of mammalian DNA polymerase beta in reverse micelles. The enzyme displays high processivity on primed single-stranded M13mp19 DNA with maximal activity at 10% of water content. The processivity and activity of DNA polymerase strongly depend on the protein concentration. The enzyme reveals also the enhanced stability in the presence of template-primer and at high protein concentration. The data provide direct evidence for strong influence of microenvironment on DNA polymerase activity. PMID:19138815

  16. Implementing Japanese Lesson Study in Foreign Countries: Misconceptions Revealed

    ERIC Educational Resources Information Center

    Fujii, Toshiakira

    2014-01-01

    This paper is based on data gathered during visits to Uganda and Malawi, conducted by the International Math-teacher Professionalization Using Lesson Study (IMPULS) project and the Japanese International Cooperation Agency (JICA). The author's observations and experiences highlighted misconceptions about lesson study. The paper concludes that…

  17. Study Reveals Brain Biology behind Self-Control

    ERIC Educational Resources Information Center

    Sparks, Sarah D.

    2011-01-01

    A new neuroscience twist on a classic psychology study offers some clues to what makes one student able to buckle down for hours of homework before a test while his classmates party. The study published in the September 2011 edition of "Proceedings of the National Academy of Science," suggests environmental cues may "hijack" the brain's mechanisms…

  18. Multitargeting by curcumin as revealed by molecular interaction studies

    PubMed Central

    Gupta, Subash C.; Prasad, Sahdeo; Kim, Ji Hye; Patchva, Sridevi; Webb, Lauren J.; Priyadarsini, Indira K.

    2012-01-01

    Curcumin (diferuloylmethane), the active ingredient in turmeric (Curcuma longa), is a highly pleiotropic molecule with anti-inflammatory, anti-oxidant, chemopreventive, chemosensitization, and radiosensitization activities. The pleiotropic activities attributed to curcumin come from its complex molecular structure and chemistry, as well as its ability to influence multiple signaling molecules. Curcumin has been shown to bind by multiple forces directly to numerous signaling molecules, such as inflammatory molecules, cell survival proteins, protein kinases, protein reductases, histone acetyltransferase, histone deacetylase, glyoxalase I, xanthine oxidase, proteasome, HIV1 integrase, HIV1 protease, sarco (endo) plasmic reticulum Ca2+ ATPase, DNA methyltransferases 1, FtsZ protofilaments, carrier proteins, and metal ions. Curcumin can also bind directly to DNA and RNA. Owing to its β-diketone moiety, curcumin undergoes keto–enol tautomerism that has been reported as a favorable state for direct binding. The functional groups on curcumin found suitable for interaction with other macromolecules include the α, β-unsaturated β-diketone moiety, carbonyl and enolic groups of the β-diketone moiety, methoxy and phenolic hydroxyl groups, and the phenyl rings. Various biophysical tools have been used to monitor direct interaction of curcumin with other proteins, including absorption, fluorescence, Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy, surface plasmon resonance, competitive ligand binding, Forster type fluorescence resonance energy transfer (FRET), radiolabeling, site-directed mutagenesis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), immunoprecipitation, phage display biopanning, electron microscopy, 1-anilino-8-naphthalene-sulfonate (ANS) displacement, and co-localization. Molecular docking, the most commonly employed computational tool for calculating binding affinities and predicting

  19. Metatranscriptome Analysis of Aquifer Samples Reveals Unexpected Metabolic Lifestyles Relevant to Active Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Beller, H. R.; Jewell, T. N. M.; Karaoz, U.; Banfield, J. F.; Brodie, E.; Williams, K. H.

    2015-12-01

    Modern molecular ecology techniques are revealing the metabolic potential of uncultivated microorganisms, but there is still much to be learned about the actual biogeochemical roles of microbes that have cultivated relatives. Here, we present metatranscriptomic and metagenomic data from a field study that provides evidence of coupled redox processes that have not been documented in cultivated relatives and, indeed, represent strains with metabolic traits that are novel with respect to closely related isolates. The data come from omics analysis of groundwater samples collected during an experiment in which nitrate (a native electron acceptor) was injected into a perennially suboxic aquifer in Rifle (CO). Transcriptional data indicated that just two groups of chemolithoautotrophic bacteria accounted for a very large portion (~80%) of overall community gene expression: (1) members of the Fe(II)-oxidizing Gallionellaceae family and (2) strains of the S-oxidizing species, Sulfurimonas denitrificans. Metabolic lifestyles for Gallionellaceae strains that were novel compared to cultivated representatives included nitrate-dependent Fe(II) oxidation and S oxidation. Evidence for these metabolisms included highly correlated temporal expression in binned data of nitrate reductase (e.g., narGHI) genes (which have never been reported in Gallionellaceae genomes) and Fe(II) oxidation genes (e.g., mtoA) or S oxidation genes (e.g., dsrE, aprA). Of the two most active strains of S. denitrificans, only one showed strong expression of S oxidation genes, whereas the other was apparently using an unexpected (as-yet unidentified) primary electron donor. Transcriptional data added considerable interpretive value to this study, as (1) metagenomic data would not have highlighted these organisms, which had a disproportionately large role in community metabolism relative to their populations, and (2) co-expression of coupled pathway genes could not be predicted based solely on metagenomic data.

  20. Characterization of Drosophila CMP-sialic acid synthetase activity reveals unusual enzymatic properties.

    PubMed

    Mertsalov, Ilya B; Novikov, Boris N; Scott, Hilary; Dangott, Lawrence; Panin, Vladislav M

    2016-07-01

    CMP-sialic acid synthetase (CSAS) is a key enzyme of the sialylation pathway. CSAS produces the activated sugar donor, CMP-sialic acid, which serves as a substrate for sialyltransferases to modify glycan termini with sialic acid. Unlike other animal CSASs that normally localize in the nucleus, Drosophila melanogaster CSAS (DmCSAS) localizes in the cell secretory compartment, predominantly in the Golgi, which suggests that this enzyme has properties distinct from those of its vertebrate counterparts. To test this hypothesis, we purified recombinant DmCSAS and characterized its activity in vitro Our experiments revealed several unique features of this enzyme. DmCSAS displays specificity for N-acetylneuraminic acid as a substrate, shows preference for lower pH and can function with a broad range of metal cofactors. When tested at a pH corresponding to the Golgi compartment, the enzyme showed significant activity with several metal cations, including Zn(2+), Fe(2+), Co(2+) and Mn(2+), whereas the activity with Mg(2+) was found to be low. Protein sequence analysis and site-specific mutagenesis identified an aspartic acid residue that is necessary for enzymatic activity and predicted to be involved in co-ordinating a metal cofactor. DmCSAS enzymatic activity was found to be essential in vivo for rescuing the phenotype of DmCSAS mutants. Finally, our experiments revealed a steep dependence of the enzymatic activity on temperature. Taken together, our results indicate that DmCSAS underwent evolutionary adaptation to pH and ionic environment different from that of counterpart synthetases in vertebrates. Our data also suggest that environmental temperatures can regulate Drosophila sialylation, thus modulating neural transmission. PMID:27114558

  1. Crystal structure of an avian influenza polymerase PA[subscript N] reveals an endonuclease active site

    SciTech Connect

    Yuan, Puwei; Bartlam, Mark; Lou, Zhiyong; Chen, Shoudeng; Zhou, Jie; He, Xiaojing; Lv, Zongyang; Ge, Ruowen; Li, Xuemei; Deng, Tao; Fodor, Ervin; Rao, Zihe; Liu, Yingfang

    2009-11-10

    The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 angstrom (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenza H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.

  2. Single molecule analysis reveals reversible and irreversible steps during spliceosome activation

    PubMed Central

    Hoskins, Aaron A; Rodgers, Margaret L; Friedman, Larry J; Gelles, Jeff; Moore, Melissa J

    2016-01-01

    The spliceosome is a complex machine composed of small nuclear ribonucleoproteins (snRNPs) and accessory proteins that excises introns from pre-mRNAs. After assembly the spliceosome is activated for catalysis by rearrangement of subunits to form an active site. How this rearrangement is coordinated is not well-understood. During activation, U4 must be released to allow U6 conformational change, while Prp19 complex (NTC) recruitment is essential for stabilizing the active site. We used multi-wavelength colocalization single molecule spectroscopy to directly observe the key events in Saccharomyces cerevisiae spliceosome activation. Following binding of the U4/U6.U5 tri-snRNP, the spliceosome either reverses assembly by discarding tri-snRNP or proceeds to activation by irreversible U4 loss. The major pathway for NTC recruitment occurs after U4 release. ATP stimulates both the competing U4 release and tri-snRNP discard processes. The data reveal the activation mechanism and show that overall splicing efficiency may be maintained through repeated rounds of disassembly and tri-snRNP reassociation. DOI: http://dx.doi.org/10.7554/eLife.14166.001 PMID:27244240

  3. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior

    PubMed Central

    Portugues, Ruben; Feierstein, Claudia E.; Engert, Florian; Orger, Michael B.

    2014-01-01

    Summary Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate, but ordered, pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments reveal, for the first time in a vertebrate, the comprehensive functional architecture of the neural circuits underlying a sensorimotor behavior. PMID:24656252

  4. Integrative analysis of breast cancer reveals prognostic haematopoietic activity and patient-specific immune response profiles

    PubMed Central

    Varn, Frederick S.; Andrews, Erik H.; Mullins, David W.; Cheng, Chao

    2016-01-01

    Transcriptional programmes active in haematopoietic cells enable a variety of functions including dedifferentiation, innate immunity and adaptive immunity. Understanding how these programmes function in the context of cancer can provide valuable insights into host immune response, cancer severity and potential therapy response. Here we present a method that uses the transcriptomes of over 200 murine haematopoietic cells, to infer the lineage-specific haematopoietic activity present in human breast tumours. Correlating this activity with patient survival and tumour purity reveals that the transcriptional programmes of many cell types influence patient prognosis and are found in environments of high lymphocytic infiltration. Collectively, these results allow for a detailed and personalized assessment of the patient immune response to a tumour. When combined with routinely collected patient biopsy genomic data, this method can enable a richer understanding of the complex interplay between the host immune system and cancer. PMID:26725977

  5. Integrative analysis of breast cancer reveals prognostic haematopoietic activity and patient-specific immune response profiles.

    PubMed

    Varn, Frederick S; Andrews, Erik H; Mullins, David W; Cheng, Chao

    2016-01-01

    Transcriptional programmes active in haematopoietic cells enable a variety of functions including dedifferentiation, innate immunity and adaptive immunity. Understanding how these programmes function in the context of cancer can provide valuable insights into host immune response, cancer severity and potential therapy response. Here we present a method that uses the transcriptomes of over 200 murine haematopoietic cells, to infer the lineage-specific haematopoietic activity present in human breast tumours. Correlating this activity with patient survival and tumour purity reveals that the transcriptional programmes of many cell types influence patient prognosis and are found in environments of high lymphocytic infiltration. Collectively, these results allow for a detailed and personalized assessment of the patient immune response to a tumour. When combined with routinely collected patient biopsy genomic data, this method can enable a richer understanding of the complex interplay between the host immune system and cancer. PMID:26725977

  6. Latent luciferase activity in the fruit fly revealed by a synthetic luciferin

    PubMed Central

    Mofford, David M.; Reddy, Gadarla Randheer; Miller, Stephen C.

    2014-01-01

    Beetle luciferases are thought to have evolved from fatty acyl-CoA synthetases present in all insects. Both classes of enzymes activate fatty acids with ATP to form acyl-adenylate intermediates, but only luciferases can activate and oxidize d-luciferin to emit light. Here we show that the Drosophila fatty acyl-CoA synthetase CG6178, which cannot use d-luciferin as a substrate, is able to catalyze light emission from the synthetic luciferin analog CycLuc2. Bioluminescence can be detected from the purified protein, live Drosophila Schneider 2 cells, and from mammalian cells transfected with CG6178. Thus, the nonluminescent fruit fly possesses an inherent capacity for bioluminescence that is only revealed upon treatment with a xenobiotic molecule. This result expands the scope of bioluminescence and demonstrates that the introduction of a new substrate can unmask latent enzymatic activity that differs significantly from an enzyme’s normal function without requiring mutation. PMID:24616520

  7. Recent advances in maize nuclear proteomic studies reveal histone modifications.

    PubMed

    Casati, Paula

    2012-01-01

    The nucleus of eukaryotic organisms is highly dynamic and complex, containing different types of macromolecules including DNA, RNA, and a wide range of proteins. Novel proteomic applications have led to a better overall determination of nucleus protein content. Although nuclear plant proteomics is only at the initial phase, several studies have been reported and are summarized in this review using different plants species, such as Arabidopsis thaliana, rice, cowpea, onion, garden cress, and barrel clover. These include the description of the total nuclear or phospho-proteome (i.e., Arabidopsis, cowpea, onion), or the analysis of the differential nuclear proteome under different growth environments (i.e., Arabidopsis, rice, cowpea, onion, garden cress, and barrel clover). However, only few reports exist on the analysis of the maize nuclear proteome or its changes under various conditions. This review will present recent data on the study of the nuclear maize proteome, including the analysis of changes in posttranslational modifications in histone proteins. PMID:23248634

  8. Yeast studies reveal moonlighting functions of the ancient actin cytoskeleton.

    PubMed

    Sattlegger, Evelyn; Chernova, Tatiana A; Gogoi, Neeku M; Pillai, Indu V; Chernoff, Yury O; Munn, Alan L

    2014-08-01

    Classic functions of the actin cytoskeleton include control of cell size and shape and the internal organization of cells. These functions are manifest in cellular processes of fundamental importance throughout biology such as the generation of cell polarity, cell migration, cell adhesion, and cell division. However, studies in the unicellular model eukaryote Saccharomyces cerevisiae (Baker's yeast) are giving insights into other functions in which the actin cytoskeleton plays a critical role. These include endocytosis, control of protein translation, and determination of protein 3-dimensional shape (especially conversion of normal cellular proteins into prions). Here, we present a concise overview of these new "moonlighting" roles for the actin cytoskeleton and how some of these roles might lie at the heart of important molecular switches. This is an exciting time for researchers interested in the actin cytoskeleton. We show here how studies of actin are leading us into many new and exciting realms at the interface of genetics, biochemistry, and cell biology. While many of the pioneering studies have been conducted using yeast, the conservation of the actin cytoskeleton and its component proteins throughout eukaryotes suggests that these new roles for the actin cytoskeleton may not be restricted to yeast cells but rather may reflect new roles for the actin cytoskeleton of all eukaryotes. PMID:25138357

  9. Yeast studies reveal moonlighting functions of the ancient actin cytoskeleton

    PubMed Central

    Sattlegger, Evelyn; Chernova, Tatiana A.; Gogoi, Neeku M.; Pillai, Indu V.; Chernoff, Yury O.; Munn, Alan L.

    2014-01-01

    Classic functions of the actin cytoskeleton include control of cell size and shape and the internal organisation of cells. These functions are manifest in cellular processes of fundamental importance throughout biology such as the generation of cell polarity, cell migration, cell adhesion and cell division. However, studies in the unicellular model eukaryote Saccharomyces cerevisiae (Baker's yeast) are giving insights into other functions in which the actin cytoskeleton plays a critical role. These include endocytosis, control of protein translation and determination of protein 3-dimensional shape (especially conversion of normal cellular proteins into prions). Here we present a concise overview of these new "moonlighting" roles for the actin cytoskeleton and how some of these roles might lie at the heart of important molecular switches. This is an exciting time for researchers interested in the actin cytoskeleton. We show here how studies of actin are leading us into many new and exciting realms at the interface of genetics, biochemistry and cell biology. While many of the pioneering studies have been conducted using yeast, the conservation of the actin cytoskeleton and its component proteins throughout eukaryotes suggests that these new roles for the actin cytoskeleton may not be restricted to yeast cells but rather may reflect new roles for the actin cytoskeleton of all eukaryotes. PMID:25138357

  10. Engagement in activities revealing the body and psychosocial adjustment in adults with a trans-tibial prosthesis.

    PubMed

    Donovan-Hall, M K; Yardley, L; Watts, R J

    2002-04-01

    The purpose of this study was to examine the effects of the appearance of a prosthesis on social behaviour, social discomfort and psychological well-being in eleven amputees taking delivery of a prosthesis with a silicone cover. Two new scales were developed: the 'Engagement in everyday activities involving revealing the body' (EEARB); and the 'Discomfort-Engagement in everyday activities involving revealing the body' (Discomfort-EEARB) scales. The psychometric properties of these scales were determined using a sample of 101 able-bodied adults. The Hospital Anxiety and Depression Scale and the Rosenberg Self-Esteem Scale were also used to measure psychological well-being in the amputee sample. The EEARB and Discomfort-EEARB proved to have good reliability and validity. Comparison of amputees' scores prior to receiving the silicone cosmesis with those of the able-bodied adults revealed significant behavioural limitations and social discomfort, associated with low self-esteem, anxiety and depression. There was a significant increase in amputees' scores three months afier taking delivery of their prosthesis, indicating that amputees reported engaging in more activities which involved revealing their body, and that they would feel more comfortable in situations which involved revealing the body. As the amputee sample available was small and self-selected, it is not possible to generalise these findings to the amputee population as a whole. However, since there is little previous research investigating the effects of the appearance of the prosthesis, these findings demonstrate the need for further research in this area. PMID:12043922

  11. Saccharomyces cerevisiae a-Factor Mutants Reveal Residues Critical for Processing, Activity, and Export

    PubMed Central

    Huyer, Gregory; Kistler, Amy; Nouvet, Franklin J.; George, Carolyn M.; Boyle, Meredith L.; Michaelis, Susan

    2006-01-01

    The Saccharomyces cerevisiae mating pheromone a-factor provides a paradigm for understanding the biogenesis of prenylated fungal pheromones. The biogenesis of a-factor involves multiple steps: (i) C-terminal CAAX modification (where C is cysteine, A is aliphatic, and X is any residue) which includes prenylation, proteolysis, and carboxymethylation (by Ram1p/Ram2p, Ste24p or Rce1p, and Ste14p, respectively); (ii) N-terminal processing, involving two sequential proteolytic cleavages (by Ste24p and Axl1p); and (iii) nonclassical export (by Ste6p). Once exported, mature a-factor interacts with the Ste3p receptor on MATα cells to stimulate mating. The a-factor biogenesis machinery is well defined, as is the CAAX motif that directs C-terminal modification; however, very little is known about the sequence determinants within a-factor required for N-terminal processing, activity, and export. Here we generated a large collection of a-factor mutants and identified residues critical for the N-terminal processing steps mediated by Ste24p and Axl1p. We also identified mutants that fail to support mating but do not affect biogenesis or export, suggesting a defective interaction with the Ste3p receptor. Mutants significantly impaired in export were also found, providing evidence that the Ste6p transporter recognizes sequence determinants as well as CAAX modifications. We also performed a phenotypic analysis of the entire set of isogenic a-factor biogenesis machinery mutants, which revealed information about the dependency of biogenesis steps upon one another, and demonstrated that export by Ste6p requires the completion of all processing events. Overall, this comprehensive analysis will provide a useful framework for the study of other fungal pheromones, as well as prenylated metazoan proteins involved in development and aging. PMID:16963638

  12. Transcriptional Analysis of a Dehalococcoides-Containing Microbial Consortium Reveals Prophage Activation

    PubMed Central

    Waller, Alison S.; Hug, Laura A.; Mo, Kaiguo; Radford, Devon R.; Maxwell, Karen L.

    2012-01-01

    Chlorinated solvents are among the most prevalent groundwater contaminants in the industrialized world. Biodegradation with Dehalococcoides-containing mixed cultures is an effective remediation technology. To elucidate transcribed genes in a Dehalococcoides-containing mixed culture, a shotgun metagenome microarray was created and used to investigate gene transcription during vinyl chloride (VC) dechlorination and during starvation (no chlorinated compounds) by a microbial enrichment culture called KB-1. In both treatment conditions, methanol was amended as an electron donor. Subsequently, spots were sequenced that contained the genes most differentially transcribed between the VC-degrading and methanol-only conditions, as well as spots with the highest intensities. Sequencing revealed that during VC degradation Dehalococcoides genes involved in transcription, translation, metabolic energy generation, and amino acid and lipid metabolism and transport were overrepresented in the transcripts compared to the average Dehalococcoides genome. KB-1 rdhA14 (vcrA) was the only reductive dehalogenase homologous (RDH) gene with higher transcript levels during VC degradation, while multiple RDH genes had higher transcript levels in the absence of VC. Numerous hypothetical genes from Dehalococcoides also had higher transcript levels in methanol-only treatments, indicating that many uncharacterized proteins are involved in cell maintenance in the absence of chlorinated substrates. In addition, microarray results prompted biological experiments confirming that electron acceptor limiting conditions activated a Dehalococcoides prophage. Transcripts from Spirochaetes, Chloroflexi, Geobacter, and methanogens demonstrate the importance of non-Dehalococcoides organisms to the culture, and sequencing of identified shotgun clones of interest provided information for follow-on targeted studies. PMID:22179237

  13. Metabolomics reveal 1-palmitoyl lysophosphatidylcholine production by peroxisome proliferator-activated receptor α.

    PubMed

    Takahashi, Haruya; Goto, Tsuyoshi; Yamazaki, Yota; Kamakari, Kosuke; Hirata, Mariko; Suzuki, Hideyuki; Shibata, Daisuke; Nakata, Rieko; Inoue, Hiroyasu; Takahashi, Nobuyuki; Kawada, Teruo

    2015-02-01

    PPARα is well known as a master regulator of lipid metabolism. PPARα activation enhances fatty acid oxidation and decreases the levels of circulating and cellular lipids in obese diabetic patients. Although PPARα target genes are widely known, little is known about the alteration of plasma and liver metabolites during PPARα activation. Here, we report that metabolome analysis-implicated upregulation of many plasma lysoGP species during bezafibrate (PPARα agonist) treatment. In particular, 1-palmitoyl lysophosphatidylcholine [LPC(16:0)] is increased by bezafibrate treatment in both plasma and liver. In mouse primary hepatocytes, the secretion of LPC(16:0) increased on PPARα activation, and this effect was attenuated by PPARα antagonist treatment. We demonstrated that Pla2g7 gene expression levels in the murine hepatocytes were increased by PPARα activation, and the secretion of LPC(16:0) was suppressed by Pla2g7 siRNA treatment. Interestingly, LPC(16:0) activates PPARα and induces the expression of PPARα target genes in hepatocytes. Furthermore, we showed that LPC(16:0) has the ability to recover glucose uptake in adipocytes induced insulin resistance. These results reveal that LPC(16:0) is induced by PPARα activation in hepatocytes; LPC(16:0) contributes to the upregulation of PPARα target genes in hepatocytes and the recovery of glucose uptake in insulin-resistant adipocytes. PMID:25510248

  14. Metabolomics reveal 1-palmitoyl lysophosphatidylcholine production by peroxisome proliferator-activated receptor α[S

    PubMed Central

    Takahashi, Haruya; Goto, Tsuyoshi; Yamazaki, Yota; Kamakari, Kosuke; Hirata, Mariko; Suzuki, Hideyuki; Shibata, Daisuke; Nakata, Rieko; Inoue, Hiroyasu; Takahashi, Nobuyuki; Kawada, Teruo

    2015-01-01

    PPARα is well known as a master regulator of lipid metabolism. PPARα activation enhances fatty acid oxidation and decreases the levels of circulating and cellular lipids in obese diabetic patients. Although PPARα target genes are widely known, little is known about the alteration of plasma and liver metabolites during PPARα activation. Here, we report that metabolome analysis-implicated upregulation of many plasma lysoGP species during bezafibrate (PPARα agonist) treatment. In particular, 1-palmitoyl lysophosphatidylcholine [LPC(16:0)] is increased by bezaf­ibrate treatment in both plasma and liver. In mouse primary hepatocytes, the secretion of LPC(16:0) increased on PPARα activation, and this effect was attenuated by PPARα antagonist treatment. We demonstrated that Pla2g7 gene expression levels in the murine hepatocytes were increased by PPARα activation, and the secretion of LPC(16:0) was suppressed by Pla2g7 siRNA treatment. Interestingly, LPC(16:0) activates PPARα and induces the expression of PPARα target genes in hepatocytes. Furthermore, we showed that LPC(16:0) has the ability to recover glucose uptake in adipocytes induced insulin resistance. These results reveal that LPC(16:0) is induced by PPARα activation in hepatocytes; LPC(16:0) contributes to the upregulation of PPARα target genes in hepatocytes and the recovery of glucose uptake in insulin-resistant adipocytes. PMID:25510248

  15. Studies of Ancient Lice Reveal Unsuspected Past Migrations of Vectors

    PubMed Central

    Drali, Rezak; Mumcuoglu, Kosta Y.; Yesilyurt, Gonca; Raoult, Didier

    2015-01-01

    Lice are among the oldest parasites of humans representing an excellent marker of the evolution and migration of our species over time. Here, we analyzed by real-time polymerase chain reaction (RT-PCR) developed in this study the mitochondrial DNA of seven ancient head louse eggs found on hair remains recovered from two sites in Israel: 1) five nits dating from Chalcolithic period (4,000 bc) were found in the Cave of the Treasure located at Nahal Mishmar, in the Judean Desert and 2) two nits dating from Early Islamic Period (ad 650–810) were found in Nahal Omer in the Arava Valley (between Dead Sea and Red Sea). Our results suggest that these eggs belonged to people originating from west Africa based on identification of the louse mitochondrial sub-clade specific to that region. PMID:26078317

  16. Pubertal control mechanisms as revealed from human studies.

    PubMed

    Chipman, J J

    1980-05-15

    Human puberty is thought to be regulated by a central nervous system (CNS) program. Strong presumptive evidence for this thesis has been drawn from the augmented gonadotropin secretion that occurs synchronously with sleep in early puberty and serves as a biologic index to CNS puberty. In response to wake/sleep gonadotropin patterns, sex steroids are also secreted in circadian-like patterns during puberty. In disorders such as precocious puberty, anorexia nervosa, and gonadal dysgenesis, the physiological mechanisms that control wake/sleep differences in gonadotropin secretion appear to be intact. Studies in such patients suggest that the primary sex hormones have a quantitative but not qualitative modulating effect on the CNS program. Possible additional control mechanisms include adrenal androgen secretion and body composition. PMID:6989643

  17. Studies of Ancient Lice Reveal Unsuspected Past Migrations of Vectors.

    PubMed

    Drali, Rezak; Mumcuoglu, Kosta Y; Yesilyurt, Gonca; Raoult, Didier

    2015-09-01

    Lice are among the oldest parasites of humans representing an excellent marker of the evolution and migration of our species over time. Here, we analyzed by real-time polymerase chain reaction (RT-PCR) developed in this study the mitochondrial DNA of seven ancient head louse eggs found on hair remains recovered from two sites in Israel: 1) five nits dating from Chalcolithic period (4,000 bc) were found in the Cave of the Treasure located at Nahal Mishmar, in the Judean Desert and 2) two nits dating from Early Islamic Period (ad 650-810) were found in Nahal Omer in the Arava Valley (between Dead Sea and Red Sea). Our results suggest that these eggs belonged to people originating from west Africa based on identification of the louse mitochondrial sub-clade specific to that region. PMID:26078317

  18. Phenotype Specific Analyses Reveal Distinct Regulatory Mechanism for Chronically Activated p53

    PubMed Central

    Cairns, Jonathan M.; Menon, Suraj; Pérez-Mancera, Pedro A.; Tomimatsu, Kosuke; Bermejo-Rodriguez, Camino; Ito, Yoko; Chandra, Tamir; Narita, Masako; Lyons, Scott K.; Lynch, Andy G.; Kimura, Hiroshi; Ohbayashi, Tetsuya; Tavaré, Simon; Narita, Masashi

    2015-01-01

    The downstream functions of the DNA binding tumor suppressor p53 vary depending on the cellular context, and persistent p53 activation has recently been implicated in tumor suppression and senescence. However, genome-wide information about p53-target gene regulation has been derived mostly from acute genotoxic conditions. Using ChIP-seq and expression data, we have found distinct p53 binding profiles between acutely activated (through DNA damage) and chronically activated (in senescent or pro-apoptotic conditions) p53. Compared to the classical ‘acute’ p53 binding profile, ‘chronic’ p53 peaks were closely associated with CpG-islands. Furthermore, the chronic CpG-island binding of p53 conferred distinct expression patterns between senescent and pro-apoptotic conditions. Using the p53 targets seen in the chronic conditions together with external high-throughput datasets, we have built p53 networks that revealed extensive self-regulatory ‘p53 hubs’ where p53 and many p53 targets can physically interact with each other. Integrating these results with public clinical datasets identified the cancer-associated lipogenic enzyme, SCD, which we found to be directly repressed by p53 through the CpG-island promoter, providing a mechanistic link between p53 and the ‘lipogenic phenotype’, a hallmark of cancer. Our data reveal distinct phenotype associations of chronic p53 targets that underlie specific gene regulatory mechanisms. PMID:25790137

  19. Selective activation of SHP2 activity by cisplatin revealed by a novel chemical probe-based assay

    SciTech Connect

    Kuo, Chun-Chen; Chu, Chi-Yuan; Lin, Jing-Jer; Lo, Lee-Chiang

    2010-01-01

    Src homology-2 (SH2) domain-containing phosphatase 2 (SHP2) is known to participate in several different signaling pathways to mediate cell growth, survival, migration, and differentiation. However, due to the lack of proper analytical tools, it is unclear whether the phosphatase activity of SHP2 is activated in most studies. We have previously developed an activity-based probe LCL2 that formed covalent linkage with catalytically active protein tyrosine phosphatases (PTPs). Here, by combining LCL2 with a SHP2 specific antibody, we established an assay system that enables the direct monitoring of SHP2 activity upon cisplatin treatment of cancer cells. The protocol is advantageous over conventional colorimetric or in-gel PTP assays as it is specific and does not require the use of radioisotope reagents. Using this assay, we found SHP2 activity was selectively activated by cisplatin. Moreover, the activation of SHP2 appeared to be specific for cisplatin as other DNA damage agents failed to activate the activity. Although the role of SHP2 activation by cisplatin treatments is still unclear to us, our results provide the first direct evidence for the activation of SHP2 during cisplatin treatments. More importantly, the concept of using activity-based probe in conjunction with target-specific antibodies could be extended to other enzyme classes.

  20. A Trade-Off Study Revealing Nested Timescales of Constraint

    PubMed Central

    Wijnants, M. L.; Cox, R. F. A.; Hasselman, F.; Bosman, A. M. T.; Van Orden, G.

    2012-01-01

    This study investigates human performance in a cyclic Fitts task at three different scales of observation, either in the presence (difficult condition) or in the absence (easy condition) of a speed–accuracy trade-off. At the fastest scale, the harmonicity of the back and forth movements, which reflects the dissipation of mechanical energy, was measured within the timeframe of single trials. At an intermediate scale, speed and accuracy measures were determined over a trial. The slowest scale pertains to the temporal structure of movement variability, which evolves over multiple trials. In the difficult condition, reliable correlations across each of the measures corroborated a coupling of nested scales of performance. Participants who predominantly emphasized the speed-side of the trade-off (despite the instruction to be both fast and accurate) produced more harmonic movements and clearer 1/f scaling in the produced movement time series, but were less accurate and produced more random variability in the produced movement amplitudes (vice versa for more accurate participants). This implied that speed–accuracy trade-off was accompanied by a trade-off between temporal and spatial streams of 1/f scaling, as confirmed by entropy measures. In the easy condition, however, no trade-offs nor couplings among scales of performance were observed. Together, these results suggest that 1/f scaling is more than just a byproduct of cognition. These findings rather support the claim that interaction-dominant dynamics constitute a coordinative basis for goal-directed behavior. PMID:22654760

  1. New study reveals twice as many asteroids as previously believed

    NASA Astrophysics Data System (ADS)

    2002-05-01

    The ISO satellite Credits: ESA ISO An artist's impression of the ISO spacecraft. The ISO Deep Asteroid Search indicates that there are between 1.1 million and 1.9 million 'space rocks' larger than 1 kilometre in diameter in the so-called 'main asteroid belt', about twice as many as previously believed. However, astronomers think it is premature to revise current assessments of the risk of the Earth being hit by an asteroid. Despite being in our own Solar System, asteroids can be more difficult to study than very distant galaxies. With sizes of up to one thousand kilometres in diameter, the brightness of these rocky objects may vary considerably in just a few minutes. They move very quickly with respect to the stars - they have been dubbed 'vermin of the sky' because they often appear as trails on long exposure images. This elusiveness explains why their actual number and size distribution remains uncertain. Most of the almost 40,000 asteroids catalogued so far (1) orbit the Sun forming the 'main asteroid belt', between Mars and Jupiter, too far to pose any threat to Earth. However, space-watchers do keep a closer eye on another category of asteroids, the 'Near Earth Asteroids' or 'NEAs', which are those whose orbits cross, or are likely to cross, that of our planet. The ISO Deep Asteroid Search (IDAS), the first systematic search for these objects performed in infrared light, focused on main belt asteroids. Because it is impossible to simply point the telescope at the whole main belt and count, astronomers choose selected regions of the belt and then use a theoretical model to extrapolate the data to the whole belt. Edward Tedesco (TerraSystems, Inc., New Hampshire, United States) and François-Xavier Desert (Observatoire de Grenoble, France) observed their main belt selected areas in 1996 and 1997 with ESA's ISO. They found that in the middle region of the belt the density of asteroids was 160 asteroids larger than 1 kilometre per square degree - an area of the

  2. Cofactor bypass variants reveal a conformational control mechanism governing cell wall polymerase activity.

    PubMed

    Markovski, Monica; Bohrhunter, Jessica L; Lupoli, Tania J; Uehara, Tsuyoshi; Walker, Suzanne; Kahne, Daniel E; Bernhardt, Thomas G

    2016-04-26

    To fortify their cytoplasmic membrane and protect it from osmotic rupture, most bacteria surround themselves with a peptidoglycan (PG) exoskeleton synthesized by the penicillin-binding proteins (PBPs). As their name implies, these proteins are the targets of penicillin and related antibiotics. We and others have shown that the PG synthases PBP1b and PBP1a of Escherichia coli require the outer membrane lipoproteins LpoA and LpoB, respectively, for their in vivo function. Although it has been demonstrated that LpoB activates the PG polymerization activity of PBP1b in vitro, the mechanism of activation and its physiological relevance have remained unclear. We therefore selected for variants of PBP1b (PBP1b*) that bypass the LpoB requirement for in vivo function, reasoning that they would shed light on LpoB function and its activation mechanism. Several of these PBP1b variants were isolated and displayed elevated polymerization activity in vitro, indicating that the activation of glycan polymer growth is indeed one of the relevant functions of LpoB in vivo. Moreover, the location of amino acid substitutions causing the bypass phenotype on the PBP1b structure support a model in which polymerization activation proceeds via the induction of a conformational change in PBP1b initiated by LpoB binding to its UB2H domain, followed by its transmission to the glycosyl transferase active site. Finally, phenotypic analysis of strains carrying a PBP1b* variant revealed that the PBP1b-LpoB complex is most likely not providing an important physical link between the inner and outer membranes at the division site, as has been previously proposed. PMID:27071112

  3. Dynamic Transcription Factor Activity Profiles Reveal Key Regulatory Interactions During Megakaryocytic and Erythroid Differentiation

    PubMed Central

    Duncan, Mark T.; Shin, Seungjin; Wu, Jia J.; Mays, Zachary; Weng, Stanley; Bagheri, Neda; Miller, William M.; Shea, Lonnie D.

    2014-01-01

    The directed differentiation toward erythroid (E) or megakaryocytic (MK) lineages by the MK-E progenitor (MEP) could enhance the ex vivo generation of red blood cells and platelets for therapeutic transfusions. The lineage choice at the MEP bifurcation is controlled in large part by activity within the intracellular signal transduction network, the output of which determines the activity of transcription factors (TFs) and ultimately gene expression. Although many TFs have been implicated, E or MK differentiation is a complex process requiring multiple days, and the dynamics of TF activities during commitment and terminal maturation are relatively unexplored. Herein, we applied a living cell array for the large-scale, dynamic quantification of TF activities during MEP bifurcation. A panel of hematopoietic TFs (GATA-1, GATA-2, SCL/TAL1, FLI-1, NF-E2, PU.1, c-Myb) was characterized during E and MK differentiation of bipotent K562 cells. Dynamic TF activity profiles associated with differentiation towards each lineage were identified, and validated with previous reports. From these activity profiles, we show that GATA-1 is an important hub during early hemin- and PMA-induced differentiation, and reveal several characteristic TF interactions for E and MK differentiation that confirm regulatory mechanisms documented in the literature. Additionally, we highlight several novel TF interactions at various stages of E and MK differentiation. Furthermore, we investigated the mechanism by which nicotinamide (NIC) promoted terminal MK maturation using an MK-committed cell line, CHRF-288-11 (CHRF). Concomitant with its enhancement of ploidy, NIC strongly enhanced the activity of three TFs with known involvement in terminal MK maturation: FLI-1, NF-E2, and p53. Dynamic profiling of TF activity represents a novel tool to complement traditional assays focused on mRNA and protein expression levels to understand progenitor cell differentiation. PMID:24853077

  4. Dynamic transcription factor activity profiles reveal key regulatory interactions during megakaryocytic and erythroid differentiation.

    PubMed

    Duncan, Mark T; Shin, Seungjin; Wu, Jia J; Mays, Zachary; Weng, Stanley; Bagheri, Neda; Miller, William M; Shea, Lonnie D

    2014-10-01

    The directed differentiation toward erythroid (E) or megakaryocytic (MK) lineages by the MK-E progenitor (MEP) could enhance the ex vivo generation of red blood cells and platelets for therapeutic transfusions. The lineage choice at the MEP bifurcation is controlled in large part by activity within the intracellular signal transduction network, the output of which determines the activity of transcription factors (TFs) and ultimately gene expression. Although many TFs have been implicated, E or MK differentiation is a complex process requiring multiple days, and the dynamics of TF activities during commitment and terminal maturation are relatively unexplored. Herein, we applied a living cell array for the large-scale, dynamic quantification of TF activities during MEP bifurcation. A panel of hematopoietic TFs (GATA-1, GATA-2, SCL/TAL1, FLI-1, NF-E2, PU.1, c-Myb) was characterized during E and MK differentiation of bipotent K562 cells. Dynamic TF activity profiles associated with differentiation towards each lineage were identified, and validated with previous reports. From these activity profiles, we show that GATA-1 is an important hub during early hemin- and PMA-induced differentiation, and reveal several characteristic TF interactions for E and MK differentiation that confirm regulatory mechanisms documented in the literature. Additionally, we highlight several novel TF interactions at various stages of E and MK differentiation. Furthermore, we investigated the mechanism by which nicotinamide (NIC) promoted terminal MK maturation using an MK-committed cell line, CHRF-288-11 (CHRF). Concomitant with its enhancement of ploidy, NIC strongly enhanced the activity of three TFs with known involvement in terminal MK maturation: FLI-1, NF-E2, and p53. Dynamic profiling of TF activity represents a novel tool to complement traditional assays focused on mRNA and protein expression levels to understand progenitor cell differentiation. PMID:24853077

  5. Active-Site Monovalent Cations Revealed in a 1.55 Å Resolution Hammerhead Ribozyme Structure

    PubMed Central

    Anderson, Michael; Schultz, Eric P.; Martick, Monika; Scott, William G.

    2013-01-01

    We have obtained a 1.55 Å crystal structure of a hammerhead ribozyme derived from Schistosoma mansoni in conditions that permit detailed observations of Na+ ion binding in the ribozyme's active site. At least two such Na+ ions are observed. The first Na+ ion binds to the N7 of G10.1 and the adjacent A9 phosphate in a manner identical to that previously observed for divalent cations. A second Na+ ion binds to the Hoogsteen face of G12, the general base in the hammerhead cleavage reaction, thereby potentially dissipating the negative charge of the catalytically active enolate form of the nucleotide base. A potential but more ambiguous third site bridges the A9 and scissile phosphates in a manner consistent with previous predictions. Hammerhead ribozymes have been observed to be active in the presence of high concentrations of monovalent cations, including Na+, but the mechanism by which monovalent cations substitute for divalent cations in hammerhead catalysis remains unclear. Our results enable us to suggest that Na+ directly and specifically substitutes for divalent cations in the hammerhead active site. The detailed geometry of the pre-catalytic active site complex is also revealed with a new level of precision, thanks to the quality of the electron density maps obtained from what is currently the highest resolution ribozyme structure in the protein data bank. PMID:23711504

  6. Active sensing associated with spatial learning reveals memory-based attention in an electric fish.

    PubMed

    Jun, James J; Longtin, André; Maler, Leonard

    2016-05-01

    Active sensing behaviors reveal what an animal is attending to and how it changes with learning. Gymnotus sp, a gymnotiform weakly electric fish, generates an electric organ discharge (EOD) as discrete pulses to actively sense its surroundings. We monitored freely behaving gymnotid fish in a large dark "maze" and extracted their trajectories and EOD pulse pattern and rate while they learned to find food with electrically detectable landmarks as cues. After training, they more rapidly found food using shorter, more stereotyped trajectories and spent more time near the food location. We observed three forms of active sensing: sustained high EOD rates per unit distance (sampling density), transient large increases in EOD rate (E-scans) and stereotyped scanning movements (B-scans) were initially strong at landmarks and food, but, after learning, intensified only at the food location. During probe (no food) trials, after learning, the fish's search area and intense active sampling was still centered on the missing food location, but now also increased near landmarks. We hypothesize that active sensing is a behavioral manifestation of attention and essential for spatial learning; the fish use spatial memory of landmarks and path integration to reach the expected food location and confine their attention to this region. PMID:26961107

  7. Studies in geophysics: Active tectonics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Active tectonics is defined within the study as tectonic movements that are expected to occur within a future time span of concern to society. Such movements and their associated hazards include earthquakes, volcanic eruptions, and land subsidence and emergence. The entire range of geology, geophysics, and geodesy is, to some extent, pertinent to this topic. The needs for useful forecasts of tectonic activity, so that actions may be taken to mitigate hazards, call for special attention to ongoing tectonic activity. Further progress in understanding active tectonics depends on continued research. Particularly important is improvement in the accuracy of dating techniques for recent geologic materials.

  8. Cloud-based simulations on Google Exacycle reveal ligand-modulation of GPCR activation pathways

    PubMed Central

    Bowman, Gregory R.; Konerding, David E.; Belov, Dan; Altman, Russ B.; Pande, Vijay S.

    2014-01-01

    Simulations can provide tremendous insight into atomistic details of biological mechanisms, but micro- to milliseconds timescales are historically only accessible on dedicated supercomputers. We demonstrate that cloud computing is a viable alternative, bringing long-timescale processes within reach of a broader community. We used Google's Exacycle cloud computing platform to simulate 2 milliseconds of dynamics of the β2 adrenergic receptor — a major drug target G protein-coupled receptor (GPCR). Markov state models aggregate independent simulations into a single statistical model that is validated by previous computational and experimental results. Moreover, our models provide an atomistic description of the activation of a GPCR, revealing multiple activation pathways. Agonists and inverse agonists interact differentially with these pathways, with profound implications for drug design PMID:24345941

  9. Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways

    NASA Astrophysics Data System (ADS)

    Kohlhoff, Kai J.; Shukla, Diwakar; Lawrenz, Morgan; Bowman, Gregory R.; Konerding, David E.; Belov, Dan; Altman, Russ B.; Pande, Vijay S.

    2014-01-01

    Simulations can provide tremendous insight into the atomistic details of biological mechanisms, but micro- to millisecond timescales are historically only accessible on dedicated supercomputers. We demonstrate that cloud computing is a viable alternative that brings long-timescale processes within reach of a broader community. We used Google's Exacycle cloud-computing platform to simulate two milliseconds of dynamics of a major drug target, the G-protein-coupled receptor β2AR. Markov state models aggregate independent simulations into a single statistical model that is validated by previous computational and experimental results. Moreover, our models provide an atomistic description of the activation of a G-protein-coupled receptor and reveal multiple activation pathways. Agonists and inverse agonists interact differentially with these pathways, with profound implications for drug design.

  10. TAF4 Inactivation Reveals the 3 Dimensional Growth Promoting Activities of Collagen 6A3

    PubMed Central

    Duluc, Isabelle; Vicaire, Serge; Philipps, Muriel; Freund, Jean-Noel; Davidson, Irwin

    2014-01-01

    Collagen 6A3 (Col6a3), a component of extracellular matrix, is often up-regulated in tumours and is believed to play a pro-oncogenic role. However the mechanisms of its tumorigenic activity are poorly understood. We show here that Col6a3 is highly expressed in densely growing mouse embryonic fibroblasts (MEFs). In MEFs where the TAF4 subunit of general transcription factor IID (TFIID) has been inactivated, elevated Col6a3 expression prevents contact inhibition promoting their 3 dimensional growth as foci and fibrospheres. Analyses of gene expression in densely growing Taf4−/− MEFs revealed repression of the Hippo pathway and activation of Wnt signalling. The Hippo activator Kibra/Wwc1 is repressed under dense conditions in Taf4−/− MEFs, leading to nuclear accumulation of the proliferation factor YAP1 in the cells forming 3D foci. At the same time, Wnt9a is activated and the Sfrp2 antagonist of Wnt signalling is repressed. Surprisingly, treatment of Taf4−/− MEFs with all-trans retinoic acid (ATRA) restores contact inhibition suppressing 3D growth. ATRA represses Col6a3 expression independently of TAF4 expression and Col6a3 silencing is sufficient to restore contact inhibition in Taf4−/− MEFs and to suppress 3D growth by reactivating Kibra expression to induce Hippo signalling and by inducing Sfrp2 expression to antagonize Wnt signalling. All together, these results reveal a critical role for Col6a3 in regulating both Hippo and Wnt signalling to promote 3D growth, and show that the TFIID subunit TAF4 is essential to restrain the growth promoting properties of Col6a3. Our data provide new insight into the role of extra cellular matrix components in regulating cell growth. PMID:24498316

  11. Analysis of Geminivirus AL2 and L2 Proteins Reveals a Novel AL2 Silencing Suppressor Activity

    PubMed Central

    Jackel, Jamie N.; Buchmann, R. Cody; Singhal, Udit

    2014-01-01

    ABSTRACT Both posttranscriptional and transcriptional gene silencing (PTGS and TGS, respectively) participate in defense against the DNA-containing geminiviruses. As a countermeasure, members of the genus Begomovirus (e.g., Cabbage leaf curl virus) encode an AL2 protein that is both a transcriptional activator and a silencing suppressor. The related L2 protein of Beet curly top virus (genus Curtovirus) lacks transcription activation activity. Previous studies showed that both AL2 and L2 suppress silencing by a mechanism that correlates with adenosine kinase (ADK) inhibition, while AL2 in addition activates transcription of cellular genes that negatively regulate silencing pathways. The goal of this study was to clarify the general means by which these viral proteins inhibit various aspects of silencing. We confirmed that AL2 inhibits systemic silencing spread by a mechanism that requires transcription activation activity. Surprisingly, we also found that reversal of PTGS and TGS by ADK inactivation depended on whether experiments were conducted in vegetative or reproductive Nicotiana benthamiana plants (i.e., before or after the vegetative-to-reproductive transition). While AL2 was able to reverse silencing in both vegetative and reproductive plants, L2 and ADK inhibition were effective only in vegetative plants. This suggests that silencing maintenance mechanisms can change during development or in response to stress. Remarkably, we also observed that AL2 lacking its transcription activation domain could reverse TGS in reproductive plants, revealing a third, previously unsuspected AL2 suppression mechanism that depends on neither ADK inactivation nor transcription activation. IMPORTANCE RNA silencing in plants is a multivalent antiviral defense, and viruses respond by elaborating multiple and sometimes multifunctional proteins that inhibit various aspects of silencing. The studies described here add an additional layer of complexity to this interplay. By examining

  12. A biosensor for the protease TACE reveals actin damage induced TACE activation

    PubMed Central

    Chapnick, Douglas A.; Bunker, Eric; Liu, Xuedong

    2016-01-01

    Ligand shedding has gained increased attention as a major posttranslational modification mechanism used by cells to respond to diverse environmental conditions. The TACEadam17 protease is a critical mediator of such ligand shedding, regulating the maturation and release of an impressive range of extracellular substrates that drive diverse cellular responses. Exactly how this protease is itself activated remains unclear, in part due to the lack of available tools to measure TACE activity with temporal and spatial resolution in live cells. We have developed a FRET based biosensor for TACE activity (TSen), which is capable of reporting TACE activation kinetics in live cells with a high degree of specificity. TSen was used in combination with chemical biology to probe the dependence of various means of TACE activation on p38 and Erk kinase activities, as well as to identify a novel connection between actin cytoskeletal disruption and TACE activation. Such cytoskeletal disruption leads to rapid and robust TACE activation in some cell types and accumulation of TACE at the plasma membrane, allowing for increased cleavage of endogenous substrates. Our study highlights both the versatility of TSen as a tool to understand the mechanisms of TACE activation in live cells and the importance of actin cytoskeletal integrity as a modulator of TACE activity. PMID:25714465

  13. Early activation of Broca's area in grammar processing as revealed by the syntactic mismatch negativity and distributed source analysis.

    PubMed

    Hanna, Jeff; Mejias, Sandrine; Schelstraete, Marie-Anne; Pulvermüller, Friedemann; Shtyrov, Yury; Van der Lely, Heather K J

    2014-01-01

    Though activation of Broca's region in the combinatorial processing of symbols (language, music) has been revealed by neurometabolic studies, most previous neurophysiological research found the earliest grammar indices in the temporal cortex, with inferior-frontal generators becoming active at relatively late stages. We use the attention- and task-free syntactic mismatch negativity (sMMN) event-related potential (ERP) to measure rapid and automatic sensitivity of the human brain to grammatical information in participants' native language (French). Further, sources underlying the MMN were estimated by applying the Parametrical Empirical Bayesian (PEB) approach, with the Multiple Sparse Priors (MSP) technique. Results showed reliable grammar-related activation focused on Broca's region already in the 150-190 ms time window, providing robust documentation of its involvement in the first stages of syntactic processing. PMID:24279717

  14. Microfluidic Investigation Reveals Distinct Roles for Actin Cytoskeleton and Myosin II Activity in Capillary Leukocyte Trafficking

    PubMed Central

    Gabriele, Sylvain; Benoliel, Anne-Marie; Bongrand, Pierre; Théodoly, Olivier

    2009-01-01

    Circulating leukocyte sequestration in pulmonary capillaries is arguably the initiating event of lung injury in acute respiratory distress syndrome. We present a microfluidic investigation of the roles of actin organization and myosin II activity during the different stages of leukocyte trafficking through narrow capillaries (entry, transit and shape relaxation) using specific drugs (latrunculin A, jasplakinolide, and blebbistatin). The deformation rate during entry reveals that cell stiffness depends strongly on F-actin organization and hardly on myosin II activity, supporting a microfilament role in leukocyte sequestration. In the transit stage, cell friction is influenced by stiffness, demonstrating that the actin network is not completely broken after a forced entry into a capillary. Conversely, membrane unfolding was independent of leukocyte stiffness. The surface area of sequestered leukocytes increased by up to 160% in the absence of myosin II activity, showing the major role of molecular motors in microvilli wrinkling and zipping. Finally, cell shape relaxation was largely independent of both actin organization and myosin II activity, whereas a deformed state was required for normal trafficking through capillary segments. PMID:19450501

  15. Rapid ester biosynthesis screening reveals a high activity alcohol-O-acyltransferase (AATase) from tomato fruit.

    PubMed

    Lin, Jyun-Liang; Zhu, Jie; Wheeldon, Ian

    2016-05-01

    Ethyl and acetate esters are naturally produced in various yeasts, plants, and bacteria. The biosynthetic pathways that produce these esters share a common reaction step, the condensation of acetyl/acyl-CoA with an alcohol by alcohol-O-acetyl/acyltransferase (AATase). Recent metabolic engineering efforts exploit AATase activity to produce fatty acid ethyl esters as potential diesel fuel replacements as well as short- and medium-chain volatile esters as fragrance and flavor compounds. These efforts have been limited by the lack of a rapid screen to quantify ester biosynthesis. Enzyme engineering efforts have also been limited by the lack of a high throughput screen for AATase activity. Here, we developed a high throughput assay for AATase activity and used this assay to discover a high activity AATase from tomato fruit, Solanum lycopersicum (Atf-S.l). Atf1-S.l exhibited broad specificity towards acyl-CoAs with chain length from C4 to C10 and was specific towards 1-pentanol. The AATase screen also revealed new acyl-CoA substrate specificities for Atf1, Atf2, Eht1, and Eeb1 from Saccharomyces cerevisiae, and Atf-C.m from melon fruit, Cucumis melo, thus increasing the pool of characterized AATases that can be used in ester biosynthesis of ester-based fragrance and flavor compounds as well as fatty acid ethyl ester biofuels. PMID:26814045

  16. Visualization of poly(ADP-ribose) bound to PARG reveals inherent balance between exo- and endo-glycohydrolase activities

    PubMed Central

    Barkauskaite, Eva; Brassington, Amy; Tan, Edwin S.; Warwicker, Jim; Dunstan, Mark S.; Banos, Benito; Lafite, Pierre; Ahel, Marijan; Mitchison, Timothy J.; Ahel, Ivan; Leys, David

    2013-01-01

    Poly-ADP-ribosylation is a post-translational modification that regulates processes involved in genome stability. Breakdown of the poly(ADP-ribose) (PAR) polymer is catalysed by poly(ADP-ribose) glycohydrolase (PARG), whose endo-glycohydrolase activity generates PAR fragments. Here we present the crystal structure of PARG incorporating the PAR substrate. The two terminal ADP-ribose units of the polymeric substrate are bound in exo-mode. Biochemical and modelling studies reveal that PARG acts predominantly as an exo-glycohydrolase. This preference is linked to Phe902 (human numbering), which is responsible for low-affinity binding of the substrate in endo-mode. Our data reveal the mechanism of poly-ADP-ribosylation reversal, with ADP-ribose as the dominant product, and suggest that the release of apoptotic PAR fragments occurs at unusual PAR/PARG ratios. PMID:23917065

  17. Knockin of Cre Gene at Ins2 Locus Reveals No Cre Activity in Mouse Hypothalamic Neurons

    PubMed Central

    Li, Ling; Gao, Lin; Wang, Kejia; Ma, Xianhua; Chang, Xusheng; Shi, Jian-Hui; Zhang, Ye; Yin, Kai; Liu, Zhimin; Shi, Yuguang; Xie, Zhifang; Zhang, Weiping J.

    2016-01-01

    The recombination efficiency and cell specificity of Cre driver lines are critical for exploring pancreatic β cell biology with the Cre/LoxP approach. Some commonly used Cre lines are based on the short Ins2 promoter fragment and show recombination activity in hypothalamic neurons; however, whether this stems from endogenous Ins2 promoter activity remains controversial. In this study, we generated Ins2-Cre knockin mice with a targeted insertion of IRES-Cre at the Ins2 locus and demonstrated with a cell lineage tracing study that the Ins2 gene is not transcriptionally active in the hypothalamus. The Ins2-Cre driver line displayed robust Cre expression and activity in pancreatic β cells without significant alterations in insulin expression. In the brain, Cre activity was mainly restricted to the choroid plexus, without significant recombination detected in the hippocampus or hypothalamus by the LacZ or fluorescent tdTomato reporters. Furthermore, Ins2-Cre mice exhibited normal glucose tolerance and insulin secretion upon glucose stimulation in vivo. In conclusion, this Ins2-Cre driver line allowed high-fidelity detection of endogenous Ins2 promoter activity in vivo, and the negative activity in the hypothalamus demonstrated that this system is a promising alternative tool for studying β cell biology. PMID:26830324

  18. Abnormal affective decision making revealed in adolescent binge drinkers using a functional magnetic resonance imaging study.

    PubMed

    Xiao, Lin; Bechara, Antoine; Gong, Qiyong; Huang, Xiaoqi; Li, Xiangrui; Xue, Gui; Wong, Savio; Lu, Zhong-Lin; Palmer, Paula; Wei, Yonglan; Jia, Yong; Johnson, C Anderson

    2013-06-01

    The goal of this study was to investigate the neural correlates of affective decision making, as measured by the Iowa Gambling Task (IGT), which are associated with adolescent binge drinking. Fourteen adolescent binge drinkers (16-18 years of age) and 14 age-matched adolescents who had never consumed alcohol--never drinkers--were recruited from local high schools in Chengdu, China. Questionnaires were used to assess academic performance, drinking experience, and urgency. Brain regions activated by the IGT performance were identified with functional magnetic resonance imaging. Results showed that, compared to never drinkers, binge drinkers performed worse on the IGT and showed higher activity in the subcomponents of the decision-making neural circuitry implicated in the execution of emotional and incentive-related behaviors, namely, the left amygdala and insula bilaterally. Moreover, measures of the severity of drinking problems in real life, as well as high urgency scores, were associated with increased activity within the insula, combined with decreased activity within the orbitofrontal cortex. These results suggest that hyperreactivity of a neural system implicated in the execution of emotional and incentive-related behaviors can be associated with socially undesirable behaviors, such as binge drinking, among adolescents. These findings have social implications because they potentially reveal underlying neural mechanisms for making poor decisions, which may increase an individual's risk and vulnerability for alcoholism. PMID:22486330

  19. Generation of 2,000 breast cancer metabolic landscapes reveals a poor prognosis group with active serotonin production

    PubMed Central

    Leoncikas, Vytautas; Wu, Huihai; Ward, Lara T.; Kierzek, Andrzej M.; Plant, Nick J.

    2016-01-01

    A major roadblock in the effective treatment of cancers is their heterogeneity, whereby multiple molecular landscapes are classified as a single disease. To explore the contribution of cellular metabolism to cancer heterogeneity, we analyse the Metabric dataset, a landmark genomic and transcriptomic study of 2,000 individual breast tumours, in the context of the human genome-scale metabolic network. We create personalized metabolic landscapes for each tumour by exploring sets of active reactions that satisfy constraints derived from human biochemistry and maximize congruency with the Metabric transcriptome data. Classification of the personalized landscapes derived from 997 tumour samples within the Metabric discovery dataset reveals a novel poor prognosis cluster, reproducible in the 995-sample validation dataset. We experimentally follow mechanistic hypotheses resulting from the computational study and establish that active serotonin production is a major metabolic feature of the poor prognosis group. These data support the reconsideration of concomitant serotonin-specific uptake inhibitors treatment during breast cancer chemotherapy. PMID:26813959

  20. Active role of lagging chromosomes in spindle collapse as revealed by live phase contrast and tubulin immunostaining in grasshopper spermatocytes.

    PubMed

    Rebollo, E; Arana, P

    2001-08-01

    Univalents, that is, chromosomes lacking an attached partner at the first meiotic division, show extremely faulty transmission. Most segregational errors stem from amphitelic (mitotic-like) orientation at metaphase I followed by anaphase I lagging. Our studies in living grasshopper spermatocytes show that amphitelic orientation may provoke spindle collapse: spindle elongation and cytokinesis are impaired and an unreduced restitution nucleus is formed. This does not prevent meiotic progression and eventually leads to the production of diploid gametes. The morphology and characteristics of spindle collapse in our material, as revealed by in vivo observation and tubulin immunostaining, indicate an active role of the chromosomes in the whole process. PMID:11534821

  1. Identification of Chronic Stress Activated Regions Reveals a Potential Recruited Circuit in Rat Brain

    PubMed Central

    Flak, Jonathan N.; Solomon, Matia B.; Jankord, Ryan; Krause, Eric G.; Herman, James P.

    2015-01-01

    Chronic stress induces pre-synaptic and post-synaptic modifications in the paraventricular nucleus of the hypothalamus (PVN) that are consistent with enhanced excitatory hypothalamo-pituitary-adrenocortical (HPA) axis drive. The brain regions mediating these molecular modifications are not known. We hypothesized that chronic variable stress (CVS) tonically activates stress-excitatory regions that interact with the PVN, culminating in stress facilitation. In order to identify chronically activated brain regions, ΔFosB, a documented marker of tonic neuronal activation, was assessed in known stress regulatory limbic and brainstem sites. Four experimental groups were included: CVS, repeated restraint (RR) (control for HPA habituation), animals weight-matched (WM) to CVS animals (control for changes in circulating metabolic factors due to reduced weight gain), and non-handled controls. CVS, but not RR or WM, induced adrenal hypertrophy, indicating that sustained HPA axis drive only occurred in the CVS group. CVS (but not RR or WM) selectively increased the number of FosB/ΔFosB nuclei in the nucleus of the solitary tract, posterior hypothalamic nucleus, and both the infralimbic and prelimbic divisions of the medial prefrontal cortex, indicating an involvement of these regions in chronic drive of the HPA axis. Increases in FosB/ΔFosB-immunoreactive cells were observed following both RR and CVS in the other regions (e.g., the dorsomedial hypothalamus), suggesting activation by both habituating and non-habituating stress conditions. The data suggest that unpredictable stress uniquely activates interconnected cortical, hypothalamic, and brainstem nuclei, potentially revealing the existence of a recruited circuitry mediating chronic drive of brain stress effector systems. PMID:22789020

  2. Lost for emotion words: what motor and limbic brain activity reveals about autism and semantic theory.

    PubMed

    Moseley, Rachel L; Shtyrov, Yury; Mohr, Bettina; Lombardo, Michael V; Baron-Cohen, Simon; Pulvermüller, Friedemann

    2015-01-01

    Autism spectrum conditions (ASC) are characterised by deficits in understanding and expressing emotions and are frequently accompanied by alexithymia, a difficulty in understanding and expressing emotion words. Words are differentially represented in the brain according to their semantic category and these difficulties in ASC predict reduced activation to emotion-related words in limbic structures crucial for affective processing. Semantic theories view 'emotion actions' as critical for learning the semantic relationship between a word and the emotion it describes, such that emotion words typically activate the cortical motor systems involved in expressing emotion actions such as facial expressions. As ASC are also characterised by motor deficits and atypical brain structure and function in these regions, motor structures would also be expected to show reduced activation during emotion-semantic processing. Here we used event-related fMRI to compare passive processing of emotion words in comparison to abstract verbs and animal names in typically-developing controls and individuals with ASC. Relatively reduced brain activation in ASC for emotion words, but not matched control words, was found in motor areas and cingulate cortex specifically. The degree of activation evoked by emotion words in the motor system was also associated with the extent of autistic traits as revealed by the Autism Spectrum Quotient. We suggest that hypoactivation of motor and limbic regions for emotion word processing may underlie difficulties in processing emotional language in ASC. The role that sensorimotor systems and their connections might play in the affective and social-communication difficulties in ASC is discussed. PMID:25278250

  3. Lost for emotion words: What motor and limbic brain activity reveals about autism and semantic theory

    PubMed Central

    Moseley, Rachel L.; Shtyrov, Yury; Mohr, Bettina; Lombardo, Michael V.; Baron-Cohen, Simon; Pulvermüller, Friedemann

    2015-01-01

    Autism spectrum conditions (ASC) are characterised by deficits in understanding and expressing emotions and are frequently accompanied by alexithymia, a difficulty in understanding and expressing emotion words. Words are differentially represented in the brain according to their semantic category and these difficulties in ASC predict reduced activation to emotion-related words in limbic structures crucial for affective processing. Semantic theories view ‘emotion actions’ as critical for learning the semantic relationship between a word and the emotion it describes, such that emotion words typically activate the cortical motor systems involved in expressing emotion actions such as facial expressions. As ASC are also characterised by motor deficits and atypical brain structure and function in these regions, motor structures would also be expected to show reduced activation during emotion-semantic processing. Here we used event-related fMRI to compare passive processing of emotion words in comparison to abstract verbs and animal names in typically-developing controls and individuals with ASC. Relatively reduced brain activation in ASC for emotion words, but not matched control words, was found in motor areas and cingulate cortex specifically. The degree of activation evoked by emotion words in the motor system was also associated with the extent of autistic traits as revealed by the Autism Spectrum Quotient. We suggest that hypoactivation of motor and limbic regions for emotion word processing may underlie difficulties in processing emotional language in ASC. The role that sensorimotor systems and their connections might play in the affective and social-communication difficulties in ASC is discussed. PMID:25278250

  4. A chimeric prokaryotic pentameric ligand–gated channel reveals distinct pathways of activation

    PubMed Central

    Schmandt, Nicolaus; Velisetty, Phanindra; Chalamalasetti, Sreevatsa V.; Stein, Richard A.; Bonner, Ross; Talley, Lauren; Parker, Mark D.; Mchaourab, Hassane S.; Yee, Vivien C.; Lodowski, David T.

    2015-01-01

    Recent high resolution structures of several pentameric ligand–gated ion channels have provided unprecedented details of their molecular architecture. However, the conformational dynamics and structural rearrangements that underlie gating and allosteric modulation remain poorly understood. We used a combination of electrophysiology, double electron–electron resonance (DEER) spectroscopy, and x-ray crystallography to investigate activation mechanisms in a novel functional chimera with the extracellular domain (ECD) of amine-gated Erwinia chrysanthemi ligand–gated ion channel, which is activated by primary amines, and the transmembrane domain of Gloeobacter violaceus ligand–gated ion channel, which is activated by protons. We found that the chimera was independently gated by primary amines and by protons. The crystal structure of the chimera in its resting state, at pH 7.0 and in the absence of primary amines, revealed a closed-pore conformation and an ECD that is twisted with respect to the transmembrane region. Amine- and pH-induced conformational changes measured by DEER spectroscopy showed that the chimera exhibits a dual mode of gating that preserves the distinct conformational changes of the parent channels. Collectively, our findings shed light on both conserved and divergent features of gating mechanisms in this class of channels, and will facilitate the design of better allosteric modulators. PMID:26415570

  5. Stepwise multiphoton activation fluorescence reveals a new method of melanin detection

    NASA Astrophysics Data System (ADS)

    Lai, Zhenhua; Kerimo, Josef; Mega, Yair; DiMarzio, Charles A.

    2013-06-01

    The stepwise multiphoton activated fluorescence (SMPAF) of melanin, activated by a continuous-wave mode near infrared (NIR) laser, reveals a broad spectrum extending from the visible spectra to the NIR and has potential application for a low-cost, reliable method of detecting melanin. SMPAF images of melanin in mouse hair and skin are compared with conventional multiphoton fluorescence microscopy and confocal reflectance microscopy (CRM). By combining CRM with SMPAF, we can locate melanin reliably. However, we have the added benefit of eliminating background interference from other components inside mouse hair and skin. The melanin SMPAF signal from the mouse hair is a mixture of a two-photon process and a third-order process. The melanin SMPAF emission spectrum is activated by a 1505.9-nm laser light, and the resulting spectrum has a peak at 960 nm. The discovery of the emission peak may lead to a more energy-efficient method of background-free melanin detection with less photo-bleaching.

  6. Timing of posterior parahippocampal gyrus activity reveals multiple scene processing stages.

    PubMed

    Bastin, Julien; Committeri, Giorgia; Kahane, Philippe; Galati, Gaspare; Minotti, Lorella; Lachaux, Jean-Philippe; Berthoz, Alain

    2013-06-01

    Posterior parahippocampal gyrus (PPHG) is strongly involved during scene recognition and spatial cognition. How PPHG electrophysiological activity could underlie these functions, and whether they share similar timing mechanisms is unknown. We addressed this question in two intracerebral experiments which revealed that PPHG neural activity dissociated an early stimulus-driven effect (>200 and <500 ms) and a late task-related effect (>600 and <800 ms). Strongest PPHG gamma band (50-150 Hz) activities were found early when subjects passively viewed scenes (scene selectivity effect) and lately when they had to estimate the position of an object relative to the environment (allocentric effect). Based on single trial analyses, we were able to predict when patients viewed scenes (compared to other visual categories) and when they performed allocentric judgments (compared to other spatial judgments). The anatomical location corresponding to the strongest effects was in the depth of the collateral sulcus. Our findings directly affect current theories of visual scene processing and spatial orientation by providing new timing constraints and by demonstrating the existence of separable information processing stages in the functionally defined parahippocampal place area. PMID:22287281

  7. Simultaneous fNIRS and thermal infrared imaging during cognitive task reveal autonomic correlates of prefrontal cortex activity

    NASA Astrophysics Data System (ADS)

    Pinti, Paola; Cardone, Daniela; Merla, Arcangelo

    2015-12-01

    Functional Near Infrared-Spectroscopy (fNIRS) represents a powerful tool to non-invasively study task-evoked brain activity. fNIRS assessment of cortical activity may suffer for contamination by physiological noises of different origin (e.g. heart beat, respiration, blood pressure, skin blood flow), both task-evoked and spontaneous. Spontaneous changes occur at different time scales and, even if they are not directly elicited by tasks, their amplitude may result task-modulated. In this study, concentration changes of hemoglobin were recorded over the prefrontal cortex while simultaneously recording the facial temperature variations of the participants through functional infrared thermal (fIR) imaging. fIR imaging provides touch-less estimation of the thermal expression of peripheral autonomic. Wavelet analysis revealed task-modulation of the very low frequency (VLF) components of both fNIRS and fIR signals and strong coherence between them. Our results indicate that subjective cognitive and autonomic activities are intimately linked and that the VLF component of the fNIRS signal is affected by the autonomic activity elicited by the cognitive task. Moreover, we showed that task-modulated changes in vascular tone occur both at a superficial and at larger depth in the brain. Combined use of fNIRS and fIR imaging can effectively quantify the impact of VLF autonomic activity on the fNIRS signals.

  8. Simultaneous fNIRS and thermal infrared imaging during cognitive task reveal autonomic correlates of prefrontal cortex activity

    PubMed Central

    Pinti, Paola; Cardone, Daniela; Merla, Arcangelo

    2015-01-01

    Functional Near Infrared-Spectroscopy (fNIRS) represents a powerful tool to non-invasively study task-evoked brain activity. fNIRS assessment of cortical activity may suffer for contamination by physiological noises of different origin (e.g. heart beat, respiration, blood pressure, skin blood flow), both task-evoked and spontaneous. Spontaneous changes occur at different time scales and, even if they are not directly elicited by tasks, their amplitude may result task-modulated. In this study, concentration changes of hemoglobin were recorded over the prefrontal cortex while simultaneously recording the facial temperature variations of the participants through functional infrared thermal (fIR) imaging. fIR imaging provides touch-less estimation of the thermal expression of peripheral autonomic. Wavelet analysis revealed task-modulation of the very low frequency (VLF) components of both fNIRS and fIR signals and strong coherence between them. Our results indicate that subjective cognitive and autonomic activities are intimately linked and that the VLF component of the fNIRS signal is affected by the autonomic activity elicited by the cognitive task. Moreover, we showed that task-modulated changes in vascular tone occur both at a superficial and at larger depth in the brain. Combined use of fNIRS and fIR imaging can effectively quantify the impact of VLF autonomic activity on the fNIRS signals. PMID:26632763

  9. The elastase-PK101 structure: Mechanism of an ultrasensitive activity-based probe revealed

    SciTech Connect

    Lechtenberg, Bernhard C.; Robinson, Howard R.; Kasperkiewicz, Paulina; Drag, Marcin; Riedl, Stefan J.

    2015-01-22

    Human neutrophil elastase (HNE) plays a central role in neutrophil host defense, but its broad specificity makes HNE a difficult target for both inhibitor and probe development. Recently, we identified the unnatural amino acid containing activity-based probe PK101, which exhibits astounding sensitivity and selectivity for HNE, yet completely lacks mechanistic explanation for its unique characteristics. Here, we present the crystal structure of the HNE-PK101 complex which not only reveals the basis for PK101 ultrasensitivity but also uncovers so far unrecognized HNE features. Strikingly, the Nle(O-Bzl) function in the P4 position of PK101 reveals and leverages an “exo-pocket” on HNE as a critical factor for selectivity. Furthermore, the PK101 P3 position harbors a methionine dioxide function, which mimics a post-translationally oxidized methionine residue and forms a critical hydrogen bond to the backbone amide of Gly219 of HNE. Gly219 resides in a Gly–Gly motif that is unique to HNE, yet compulsory for this interaction. Consequently, this feature enables HNE to accommodate substrates that have undergone methionine oxidation, which constitutes a hallmark post-translational modification of neutrophil signaling.

  10. Core microbial functional activities in ocean environments revealed by global metagenomic profiling analyses.

    PubMed

    Ferreira, Ari J S; Siam, Rania; Setubal, João C; Moustafa, Ahmed; Sayed, Ahmed; Chambergo, Felipe S; Dawe, Adam S; Ghazy, Mohamed A; Sharaf, Hazem; Ouf, Amged; Alam, Intikhab; Abdel-Haleem, Alyaa M; Lehvaslaiho, Heikki; Ramadan, Eman; Antunes, André; Stingl, Ulrich; Archer, John A C; Jankovic, Boris R; Sogin, Mitchell; Bajic, Vladimir B; El-Dorry, Hamza

    2014-01-01

    Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world's oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs) of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light. PMID:24921648

  11. Core Microbial Functional Activities in Ocean Environments Revealed by Global Metagenomic Profiling Analyses

    PubMed Central

    Ferreira, Ari J. S.; Siam, Rania; Setubal, João C.; Moustafa, Ahmed; Sayed, Ahmed; Chambergo, Felipe S.; Dawe, Adam S.; Ghazy, Mohamed A.; Sharaf, Hazem; Ouf, Amged; Alam, Intikhab; Abdel-Haleem, Alyaa M.; Lehvaslaiho, Heikki; Ramadan, Eman; Antunes, André; Stingl, Ulrich; Archer, John A. C.; Jankovic, Boris R.; Sogin, Mitchell; Bajic, Vladimir B.; El-Dorry, Hamza

    2014-01-01

    Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world's oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs) of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light. PMID:24921648

  12. The elastase-PK101 structure: Mechanism of an ultrasensitive activity-based probe revealed

    DOE PAGESBeta

    Lechtenberg, Bernhard C.; Robinson, Howard R.; Kasperkiewicz, Paulina; Drag, Marcin; Riedl, Stefan J.

    2015-01-22

    Human neutrophil elastase (HNE) plays a central role in neutrophil host defense, but its broad specificity makes HNE a difficult target for both inhibitor and probe development. Recently, we identified the unnatural amino acid containing activity-based probe PK101, which exhibits astounding sensitivity and selectivity for HNE, yet completely lacks mechanistic explanation for its unique characteristics. Here, we present the crystal structure of the HNE-PK101 complex which not only reveals the basis for PK101 ultrasensitivity but also uncovers so far unrecognized HNE features. Strikingly, the Nle(O-Bzl) function in the P4 position of PK101 reveals and leverages an “exo-pocket” on HNE asmore » a critical factor for selectivity. Furthermore, the PK101 P3 position harbors a methionine dioxide function, which mimics a post-translationally oxidized methionine residue and forms a critical hydrogen bond to the backbone amide of Gly219 of HNE. Gly219 resides in a Gly–Gly motif that is unique to HNE, yet compulsory for this interaction. Consequently, this feature enables HNE to accommodate substrates that have undergone methionine oxidation, which constitutes a hallmark post-translational modification of neutrophil signaling.« less

  13. Single-molecule spectroscopy reveals how calmodulin activates NO synthase by controlling its conformational fluctuation dynamics

    PubMed Central

    He, Yufan; Haque, Mohammad Mahfuzul; Stuehr, Dennis J.; Lu, H. Peter

    2015-01-01

    Mechanisms that regulate the nitric oxide synthase enzymes (NOS) are of interest in biology and medicine. Although NOS catalysis relies on domain motions, and is activated by calmodulin binding, the relationships are unclear. We used single-molecule fluorescence resonance energy transfer (FRET) spectroscopy to elucidate the conformational states distribution and associated conformational fluctuation dynamics of the two electron transfer domains in a FRET dye-labeled neuronal NOS reductase domain, and to understand how calmodulin affects the dynamics to regulate catalysis. We found that calmodulin alters NOS conformational behaviors in several ways: It changes the distance distribution between the NOS domains, shortens the lifetimes of the individual conformational states, and instills conformational discipline by greatly narrowing the distributions of the conformational states and fluctuation rates. This information was specifically obtainable only by single-molecule spectroscopic measurements, and reveals how calmodulin promotes catalysis by shaping the physical and temporal conformational behaviors of NOS. PMID:26311846

  14. Single-molecule spectroscopy reveals how calmodulin activates NO synthase by controlling its conformational fluctuation dynamics.

    PubMed

    He, Yufan; Haque, Mohammad Mahfuzul; Stuehr, Dennis J; Lu, H Peter

    2015-09-22

    Mechanisms that regulate the nitric oxide synthase enzymes (NOS) are of interest in biology and medicine. Although NOS catalysis relies on domain motions, and is activated by calmodulin binding, the relationships are unclear. We used single-molecule fluorescence resonance energy transfer (FRET) spectroscopy to elucidate the conformational states distribution and associated conformational fluctuation dynamics of the two electron transfer domains in a FRET dye-labeled neuronal NOS reductase domain, and to understand how calmodulin affects the dynamics to regulate catalysis. We found that calmodulin alters NOS conformational behaviors in several ways: It changes the distance distribution between the NOS domains, shortens the lifetimes of the individual conformational states, and instills conformational discipline by greatly narrowing the distributions of the conformational states and fluctuation rates. This information was specifically obtainable only by single-molecule spectroscopic measurements, and reveals how calmodulin promotes catalysis by shaping the physical and temporal conformational behaviors of NOS. PMID:26311846

  15. Structures of two superoxide dismutases from Bacillus anthracis reveal a novel active centre

    SciTech Connect

    Boucher, Ian W.; Kalliomaa, Anne K.; Levdikov, Vladimir M.; Blagova, Elena V.; Fogg, Mark J.; Brannigan, James A. Wilson, Keith S.; Wilkinson, Anthony J.

    2005-07-01

    The crystal structures of two manganese superoxide dismutases from B. anthracis were solved by X-ray crystallography using molecular replacement. The BA4499 and BA5696 genes of Bacillus anthracis encode proteins homologous to manganese superoxide dismutase, suggesting that this organism has an expanded repertoire of antioxidant proteins. Differences in metal specificity and quaternary structure between the dismutases of prokaryotes and higher eukaryotes may be exploited in the development of therapeutic antibacterial compounds. Here, the crystal structure of two Mn superoxide dismutases from B. anthracis solved to high resolution are reported. Comparison of their structures reveals that a highly conserved residue near the active centre is substituted in one of the proteins and that this is a characteristic feature of superoxide dismutases from the B. cereus/B. anthracis/B. thuringiensis group of organisms.

  16. Structures of two superoxide dismutases from Bacillus anthracis reveal a novel active centre

    PubMed Central

    Boucher, Ian W.; Kalliomaa, Anne K.; Levdikov, Vladimir M.; Blagova, Elena V.; Fogg, Mark J.; Brannigan, James A.; Wilson, Keith S.; Wilkinson, Anthony J.

    2005-01-01

    The BA4499 and BA5696 genes of Bacillus anthracis encode proteins homologous to manganese superoxide dismutase, suggesting that this organism has an expanded repertoire of antioxidant proteins. Differences in metal specificity and quaternary structure between the dismutases of prokaryotes and higher eukaryotes may be exploited in the development of therapeutic antibacterial compounds. Here, the crystal structure of two Mn superoxide dismutases from B. anthracis solved to high resolution are reported. Comparison of their structures reveals that a highly conserved residue near the active centre is substituted in one of the proteins and that this is a characteristic feature of superoxide dismutases from the B. cereus/B. anthracis/B. thuringiensis group of organisms. PMID:16511113

  17. The structure of Plasmodium falciparum serine hydroxymethyltransferase reveals a novel redox switch that regulates its activities

    SciTech Connect

    Chitnumsub, Penchit Ittarat, Wanwipa; Jaruwat, Aritsara; Noytanom, Krittikar; Amornwatcharapong, Watcharee; Pornthanakasem, Wichai; Chaiyen, Pimchai; Yuthavong, Yongyuth; Leartsakulpanich, Ubolsree

    2014-06-01

    The crystal structure of P. falciparum SHMT revealed snapshots of an intriguing disulfide/sulfhydryl switch controlling the functional activity. Plasmodium falciparum serine hydroxymethyltransferase (PfSHMT), an enzyme in the dTMP synthesis cycle, is an antimalarial target because inhibition of its expression or function has been shown to be lethal to the parasite. As the wild-type enzyme could not be crystallized, protein engineering of residues on the surface was carried out. The surface-engineered mutant PfSHMT-F292E was successfully crystallized and its structure was determined at 3 Å resolution. The PfSHMT-F292E structure is a good representation of PfSHMT as this variant revealed biochemical properties similar to those of the wild type. Although the overall structure of PfSHMT is similar to those of other SHMTs, unique features including the presence of two loops and a distinctive cysteine pair formed by Cys125 and Cys364 in the tetrahydrofolate (THF) substrate binding pocket were identified. These structural characteristics have never been reported in other SHMTs. Biochemical characterization and mutation analysis of these two residues confirm that they act as a disulfide/sulfhydryl switch to regulate the THF-dependent catalytic function of the enzyme. This redox switch is not present in the human enzyme, in which the cysteine pair is absent. The data reported here can be further exploited as a new strategy to specifically disrupt the activity of the parasite enzyme without interfering with the function of the human enzyme.

  18. The characterization of the endoglucanase Cel12A from Gloeophyllum trabeum reveals an enzyme highly active on β-glucan.

    PubMed

    Miotto, Lis Schwartz; de Rezende, Camila Alves; Bernardes, Amanda; Serpa, Viviane Isabel; Tsang, Adrian; Polikarpov, Igor

    2014-01-01

    The basidiomycete fungus Gloeophyllum trabeum causes a typical brown rot and is known to use reactive oxygen species in the degradation of cellulose. The extracellular Cel12A is one of the few endo-1,4-β-glucanase produced by G. trabeum. Here we cloned cel12A and heterologously expressed it in Aspergillus niger. The identity of the resulting recombinant protein was confirmed by mass spectrometry. We used the purified GtCel12A to determine its substrate specificity and basic biochemical properties. The G. trabeum Cel12A showed highest activity on β-glucan, followed by lichenan, carboxymethylcellulose, phosphoric acid swollen cellulose, microcrystalline cellulose, and filter paper. The optimal pH and temperature for enzymatic activity were, respectively, 4.5 and 50 °C on β-glucan. Under these conditions specific activity was 239.2 ± 9.1 U mg(-1) and the half-life of the enzyme was 84.6 ± 3.5 hours. Thermofluor studies revealed that the enzyme was most thermal stable at pH 3. Using β-glucan as a substrate, the Km was 3.2 ± 0.5 mg mL(-1) and the Vmax was 0.41 ± 0.02 µmol min(-1). Analysis of the effects of GtCel12A on oat spelt and filter paper by scanning electron microscopy revealed the morphological changes taking place during the process. PMID:25251390

  19. Transcriptomic Analysis of Musca domestica to Reveal Key Genes of the Prophenoloxidase-Activating System

    PubMed Central

    Li, Dianxiang; Liang, Yongli; Wang, Xianwei; Wang, Lei; Qi, Mei; Yu, Yang; Luan, Yuanyuan

    2015-01-01

    The proPO system regulates melanization in arthropods. However, the genes that are involved in the proPO system in housefly Musca domestica remain unclear. Thus, this study analyzed the combined transcriptome obtained from M. domestica larvae, pupae, and adults that were either normal or bacteria-challenged by an Escherichia coli and Staphylococcus aureus mixture. A total of 54,821,138 clean reads (4.93 Gb) were yielded by Illumina sequencing, which were de novo assembled into 89,842 unigenes. Of the 89,842 unigenes, based on a similarity search with known genes in other insects, 24 putative genes related to the proPO system were identified. Eight of the identified genes encoded for peptidoglycan recognition receptors, two encoded for prophenoloxidases, three encoded for prophenoloxidase-activating enzymes, and 11 encoded for serine proteinase inhibitors. The expression levels of these identified genes were investigated by qRT-PCR assay, which were consistent with expected activation process of the proPO system, and their activation functions were confirmed by the measurement of phenoloxidase activity in bacteria-infected larvae after proPO antibody blockage, suggesting these candidate genes might have potentially different roles in the activation of proPO system. Collectively, this study has provided the comprehensive transcriptomic data of an insect and some fundamental basis toward achieving understanding of the activation mechanisms and immune functions of the proPO system in M. domestica. PMID:26156588

  20. Inverse relationship between chitobiase and transglycosylation activities of chitinase-D from Serratia proteamaculans revealed by mutational and biophysical analyses

    PubMed Central

    Madhuprakash, Jogi; Bobbili, Kishore Babu; Moerschbacher, Bruno M.; Singh, Tej Pal; Swamy, Musti J.; Podile, Appa Rao

    2015-01-01

    Serratia proteamaculans chitinase-D (SpChiD) has a unique combination of hydrolytic and transglycosylation (TG) activities. The TG activity of SpChiD can be used for large-scale production of chito-oligosaccharides (CHOS). The multiple activities (hydrolytic and/or chitobiase activities and TG) of SpChiD appear to be strongly influenced by the substrate-binding cleft. Here, we report the unique property of SpChiD substrate-binding cleft, wherein, the residues Tyr28, Val35 and Thr36 control chitobiase activity and the residues Trp160 and Trp290 are crucial for TG activity. Mutants with reduced (V35G and T36G/F) or no (SpChiDΔ30–42 and Y28A) chitobiase activity produced higher amounts of the quantifiable even-chain TG product with degree of polymerization (DP)-6, indicating that the chitobiase and TG activities are inversely related. In addition to its unprecedented catalytic properties, unlike other chitinases, the single modular SpChiD showed dual unfolding transitions. Ligand-induced thermal stability studies with the catalytically inactive mutant of SpChiD (E153A) showed that the transition temperature increased upon binding of CHOS with DP2–6. Isothermal titration calorimetry experiments revealed the exceptionally high binding affinities for E153A to CHOS with DP2–6. These observations strongly support that the architecture of SpChiD substrate-binding cleft adopted to control chitobiase and TG activities, in addition to usual chitinase-mediated hydrolysis. PMID:26493546

  1. Equilibrium physics breakdown reveals the active nature of red blood cell flickering

    NASA Astrophysics Data System (ADS)

    Turlier, H.; Fedosov, D. A.; Audoly, B.; Auth, T.; Gov, N. S.; Sykes, C.; Joanny, J.-F.; Gompper, G.; Betz, T.

    2016-05-01

    Red blood cells, or erythrocytes, are seen to flicker under optical microscopy, a phenomenon initially described as thermal fluctuations of the cell membrane. But recent studies have suggested the involvement of non-equilibrium processes, without definitively ruling out equilibrium interpretations. Using active and passive microrheology to directly compare the membrane response and fluctuations on single erythrocytes, we report here a violation of the fluctuation-dissipation relation, which is a direct demonstration of the non-equilibrium nature of flickering. With an analytical model of the composite erythrocyte membrane and realistic stochastic simulations, we show that several molecular mechanisms may explain the active fluctuations, and we predict their kinetics. We demonstrate that tangential metabolic activity in the network formed by spectrin, a cytoskeletal protein, can generate curvature-mediated active membrane motions. We also show that other active membrane processes represented by direct normal force dipoles may explain the observed membrane activity. Our findings provide solid experimental and theoretical frameworks for future investigations of the origin and function of active motion in cells.

  2. Revealing Nature’s Synthetic Potential Through the Study of Ribosomal Natural Product Biosynthesis

    PubMed Central

    Dunbar, Kyle L.; Mitchell, Douglas A.

    2013-01-01

    Ribosomally synthesized posttranslationally modified peptides (RiPPs) are a rapidly growing class of natural products with diverse structures and activities. In recent years, a great deal of progress has been made in elucidating the biosynthesis of various RiPP family members. As with the study of nonribosomal peptide and polyketide biosynthetic enzymes, these investigations have led to the discovery of entirely new biological chemistry. With each unique enzyme investigated, a more complex picture of Nature’s synthetic potential is revealed. This review focuses on recent reports (since 2008) that have changed the way that we think about ribosomal natural product biosynthesis and the enzymology of complex bond-forming reactions. PMID:23286465

  3. Spores of most common airborne fungi reveal no ice nucleation activity

    NASA Astrophysics Data System (ADS)

    Pummer, B. G.; Atanasova, L.; Bauer, H.; Bernardi, J.; Druzhinina, I. S.; Grothe, H.

    2013-06-01

    Fungal spores are ubiquitous biological aerosols, which are considered to show ice nucleation (IN) activity. In this study the respective IN activity was tested in oil emulsion in the immersion freezing mode. The focus was laid on species of economical, ecological or sanitary significance. For the first time, not only common moulds, but also edible mushrooms (Basidiomycota, Agaricomycetes) were investigated, as they contribute massively to the total amount of fungal spores in the atmosphere. Only Fusarium avenaceum showed freezing events at low subzero-temperatures, while the other investigated fungal spores showed no significant IN activity. Furthermore, we selected a set of fungal strains from different sites and exposed them to occasional freezing stress during cultivation. Although the total protein expression was altered by this treatment, it had no significant impact on the IN activity.

  4. Backpocket: Activities for Nature Study.

    ERIC Educational Resources Information Center

    Hendry, Ian; And Others

    1995-01-01

    Leading naturalist-teachers share outdoor learning activities and techniques, including using binoculars as magnifiers, scavenger hunts, games such as "what's it called" and "I spy," insect study, guessing the age of trees by examining the bark, leading bird walks, exploring nature in the community, and enhancing nature hikes with props. (LP)

  5. High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase.

    PubMed

    Gajula, Kiran S; Huwe, Peter J; Mo, Charlie Y; Crawford, Daniel J; Stivers, James T; Radhakrishnan, Ravi; Kohli, Rahul M

    2014-09-01

    Antibody maturation is a critical immune process governed by the enzyme activation-induced deaminase (AID), a member of the AID/APOBEC DNA deaminase family. AID/APOBEC deaminases preferentially target cytosine within distinct preferred sequence motifs in DNA, with specificity largely conferred by a small 9-11 residue protein loop that differs among family members. Here, we aimed to determine the key functional characteristics of this protein loop in AID and to thereby inform our understanding of the mode of DNA engagement. To this end, we developed a methodology (Sat-Sel-Seq) that couples saturation mutagenesis at each position across the targeting loop, with iterative functional selection and next-generation sequencing. This high-throughput mutational analysis revealed dominant characteristics for residues within the loop and additionally yielded enzymatic variants that enhance deaminase activity. To rationalize these functional requirements, we performed molecular dynamics simulations that suggest that AID and its hyperactive variants can engage DNA in multiple specific modes. These findings align with AID's competing requirements for specificity and flexibility to efficiently drive antibody maturation. Beyond insights into the AID-DNA interface, our Sat-Sel-Seq approach also serves to further expand the repertoire of techniques for deep positional scanning and may find general utility for high-throughput analysis of protein function. PMID:25064858

  6. Structural characterization reveals the keratinolytic activity of an arthrobacter nicotinovorans protease.

    PubMed

    Sone, Teruo; Haraguchi, Yumiko; Kuwahara, Aki; Ose, Toyoyuki; Takano, Megumi; Abe, Ayumi; Tanaka, Michiko; Tanaka, Isao; Asano, Kozo

    2015-01-01

    Elevated cadmium (Cd) concentrations in fishery byproducts are an environmental concern, that might be reduced by enzymatic removal and adsorption of the contaminants during recycling the byproducts as animal food. We cloned the gene for Arthrobacter nicotinovorans serine protease (ANISEP), which was isolated from the hepatopancreas of the Japanese scallop (Patiopecten yessoensis) and has been found to be an effective enzyme for Cd(II) removal. The gene is 993 bp in length and encodes 330 amino acids, including the pre (1-30) and pro (31-111) sequences. The catalytic triad consists of His, Asp, and Ser. Sequence similarities indicate that ANISEP is a extracellular serine protease. X-ray crystallography revealed structural similarities between ANISEP and the trypsin-like serine protease NAALP from Nesterenkonia sp. Site-directed mutagenesis identified Ser171 as catalytic residue. The keratinolytic activity of ANISEP was 10-fold greater than that of trypsin. ANISEP digested Cd(II)-bound recombinant metallothionein MT-10a from Laternula elliptica, but did not release Cd. These results further suggest ANISEP is a trypsin-like serine protease that can release Cd from the Japanese scallop hepatopancreas because of its strong keratinolytic activity. PMID:25256266

  7. High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase

    PubMed Central

    Gajula, Kiran S.; Huwe, Peter J.; Mo, Charlie Y.; Crawford, Daniel J.; Stivers, James T.; Radhakrishnan, Ravi; Kohli, Rahul M.

    2014-01-01

    Antibody maturation is a critical immune process governed by the enzyme activation-induced deaminase (AID), a member of the AID/APOBEC DNA deaminase family. AID/APOBEC deaminases preferentially target cytosine within distinct preferred sequence motifs in DNA, with specificity largely conferred by a small 9–11 residue protein loop that differs among family members. Here, we aimed to determine the key functional characteristics of this protein loop in AID and to thereby inform our understanding of the mode of DNA engagement. To this end, we developed a methodology (Sat-Sel-Seq) that couples saturation mutagenesis at each position across the targeting loop, with iterative functional selection and next-generation sequencing. This high-throughput mutational analysis revealed dominant characteristics for residues within the loop and additionally yielded enzymatic variants that enhance deaminase activity. To rationalize these functional requirements, we performed molecular dynamics simulations that suggest that AID and its hyperactive variants can engage DNA in multiple specific modes. These findings align with AID's competing requirements for specificity and flexibility to efficiently drive antibody maturation. Beyond insights into the AID-DNA interface, our Sat-Sel-Seq approach also serves to further expand the repertoire of techniques for deep positional scanning and may find general utility for high-throughput analysis of protein function. PMID:25064858

  8. Transcription closed and open complex dynamics studies reveal balance between genetic determinants and co-factors

    NASA Astrophysics Data System (ADS)

    Sala, Adrien; Shoaib, Muhammad; Anufrieva, Olga; Mutharasu, Gnanavel; Jahan Hoque, Rawnak; Yli-Harja, Olli; Kandhavelu, Meenakshisundaram

    2015-05-01

    In E. coli, promoter closed and open complexes are key steps in transcription initiation, where magnesium-dependent RNA polymerase catalyzes RNA synthesis. However, the exact mechanism of initiation remains to be fully elucidated. Here, using single mRNA detection and dual reporter studies, we show that increased intracellular magnesium concentration affects Plac initiation complex formation resulting in a highly dynamic process over the cell growth phases. Mg2+ regulates transcription transition, which modulates bimodality of mRNA distribution in the exponential phase. We reveal that Mg2+ regulates the size and frequency of the mRNA burst by changing the open complex duration. Moreover, increasing magnesium concentration leads to higher intrinsic and extrinsic noise in the exponential phase. RNAP-Mg2+ interaction simulation reveals critical movements creating a shorter contact distance between aspartic acid residues and Nucleotide Triphosphate residues and increasing electrostatic charges in the active site. Our findings provide unique biophysical insights into the balanced mechanism of genetic determinants and magnesium ion in transcription initiation regulation during cell growth.

  9. Active mechanics in living oocytes reveal molecular-scale force kinetics

    NASA Astrophysics Data System (ADS)

    Ahmed, Wylie; Fodor, Etienne; Almonacid, Maria; Bussonnier, Matthias; Verlhac, Marie-Helene; Gov, Nir; Visco, Paolo; van Wijland, Frederic; Betz, Timo

    Unlike traditional materials, living cells actively generate forces at the molecular scale that change their structure and mechanical properties. This nonequilibrium activity is essential for cellular function, and drives processes such as cell division. Single molecule studies have uncovered the detailed force kinetics of isolated motor proteins in-vitro, however their behavior in-vivo has been elusive due to the complex environment inside the cell. Here, we quantify active forces and intracellular mechanics in living oocytes using in-vivo optical trapping and laser interferometry of endogenous vesicles. We integrate an experimental and theoretical framework to connect mesoscopic measurements of nonequilibrium properties to the underlying molecular- scale force kinetics. Our results show that force generation by myosin-V drives the cytoplasmic-skeleton out-of-equilibrium (at frequencies below 300 Hz) and actively softens the environment. In vivo myosin-V activity generates a force of F ~ 0 . 4 pN, with a power-stroke of length Δx ~ 20 nm and duration τ ~ 300 μs, that drives vesicle motion at vv ~ 320 nm/s. This framework is widely applicable to characterize living cells and other soft active materials.

  10. Structure of Escherichia coli tyrosine Kinase Etk Reveals a Novel Activation Mechanism

    SciTech Connect

    Lee,D.; Zheng, J.; She, Y.; Jia, Z.

    2008-01-01

    While protein tyrosine (Tyr) kinases (PTKs) have been extensively characterized in eukaryotes, far less is known about their emerging counterparts in prokaryotes. The inner-membrane Wzc/Etk protein belongs to the bacterial PTK family, which has an important function in regulating the polymerization and transport of virulence-determining capsular polysaccharide (CPS). The kinase uses a unique two-step activation process involving intra-phosphorylation of a Tyr residue, although the molecular mechanism remains unknown. Herein, we report the first crystal structure of a bacterial PTK, the C-terminal kinase domain of Escherichia coli Tyr kinase (Etk) at 2.5-Angstroms resolution. The fold of the Etk kinase domain differs markedly from that of eukaryotic PTKs. Based on the observed structure and supporting mass spectrometric evidence of Etk, a unique activation mechanism is proposed that involves the phosphorylated Tyr residue, Y574, at the active site and its specific interaction with a previously unidentified key Arg residue, R614, to unblock the active site. Both in vitro kinase activity and in vivo antibiotics resistance studies using structure-guided mutants further support the novel activation mechanism.

  11. An in vitro screening with emerging contaminants reveals inhibition of carboxylesterase activity in aquatic organisms.

    PubMed

    Solé, Montserrat; Sanchez-Hernandez, Juan C

    2015-12-01

    Pharmaceuticals and personal care products (PPCPs) form part of the new generation of pollutants present in many freshwater and marine ecosystems. Although environmental concentrations of these bioactive substances are low, they cause sublethal effects (e.g., enzyme inhibition) in non-target organisms. However, little is known on metabolism of PPCPs by non-mammal species. Herein, an in vitro enzyme trial was performed to explore sensitivity of carboxylesterase (CE) activity of aquatic organisms to fourteen PPCPs. The esterase activity was determined in the liver of Mediterranean freshwater fish (Barbus meridionalis and Squalius laietanus), coastal marine fish (Dicentrarchus labrax and Solea solea), middle-slope fish (Trachyrhynchus scabrus), deep-sea fish (Alepocephalus rostratus and Cataetix laticeps), and in the digestive gland of a decapod crustacean (Aristeus antennatus). Results showed that 100μM of the lipid regulators simvastatin and fenofibrate significantly inhibited (30-80% of controls) the CE activity of all target species. Among the personal care products, nonylphenol and triclosan were strong esterase inhibitors in most species (36-68% of controls). Comparison with literature data suggests that fish CE activity is as sensitive to inhibition by some PPCPs as that of mammals, although their basal activity levels are lower than in mammals. Pending further studies on the interaction between PPCPs and CE activity, we postulate that this enzyme may act as a molecular sink for certain PPCPs in a comparable way than that described for the organophosphorus pesticides. PMID:26562051

  12. Small-angle neutron and X-ray scattering reveal conformational changes in rhodopsin activation

    NASA Astrophysics Data System (ADS)

    Shrestha, Utsab R.; Bhowmik, Debsindhu; Perera, Suchitrhanga M. C. D.; Chawla, Udeep; Struts, Andrey V.; Graziono, Vito; Pingali, Sai Venkatesh; Heller, William T.; Qian, Shuo; Brown, Michael F.; Chu, Xiang-Qiang

    2015-03-01

    Understanding G-protein-coupled receptor (GPCR) activation plays a crucial role in the development of novel improved molecular drugs. During photo-activation, the retinal chromophore of the visual GPCR rhodopsin isomerizes from 11-cis to all-trans conformation, yielding an equilibrium between inactive Meta-I and active Meta-II states. The principal goals of this work are to address whether the activation of rhodopsin leads to a single state or a conformational ensemble, and how protein organizational structure changes with detergent environment in solution. We use both small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS) techniques to answer the above questions. For the first time we observe the change in protein conformational ensemble upon photo-activation by SANS with contrast variation, which enables the separate study of the protein structure within the detergent assembly. In addition, SAXS study of protein structure within detergent assembly suggests that the detergent molecules form a belt of monolayer (micelle) around protein with different geometrical shapes to keep the protein in folded state.

  13. Active populations of rare microbes in oceanic environments as revealed by bromodeoxyuridine incorporation and 454 tag sequencing.

    PubMed

    Hamasaki, Koji; Taniguchi, Akito; Tada, Yuya; Kaneko, Ryo; Miki, Takeshi

    2016-02-01

    The "rare biosphere" consisting of thousands of low-abundance microbial taxa is important as a seed bank or a gene pool to maintain microbial functional redundancy and robustness of the ecosystem. Here we investigated contemporaneous growth of diverse microbial taxa including rare taxa and determined their variability in environmentally distinctive locations along a north-south transect in the Pacific Ocean in order to assess which taxa were actively growing and how environmental factors influenced bacterial community structures. A bromodeoxyuridine-labeling technique in combination with PCR amplicon pyrosequencing of 16S rRNA genes gave 215-793 OTUs from 1200 to 3500 unique sequences in the total communities and 175-299 OTUs nearly 860 to 1800 sequences in the active communities. Unexpectedly, many of the active OTUs were not detected in the total fractions. Among these active but rare OTUs, some taxa (2-4% of rare OTUs) showed much higher abundance (>0.10% of total reads) in the active fraction than in the total fraction, suggesting that their contribution to bacterial community productivity or growth was much larger than that expected from their standing stocks at each location. An ordination plot by the principal component analysis presented that bacterial community compositions among 4 sampling locations and between total and active fractions were distinctive with each other. A redundancy analysis revealed that the variability of community compositions significantly correlated to seawater temperature and dissolved oxygen concentration. Also, a variation partitioning analysis showed that the environmental factors explained 49% of the variability of community compositions and the distance only explained 4.0% of its variability. These results implied very dynamic change of community structures due to environmental filtering. The active bacterial populations are more diverse and spread further in rare biosphere than we have ever seen. This study implied that rare

  14. Phosphoproteomic Analysis of KSHV-Infected Cells Reveals Roles of ORF45-Activated RSK during Lytic Replication

    PubMed Central

    Avey, Denis; Tepper, Sarah; Li, Wenwei; Turpin, Zachary; Zhu, Fanxiu

    2015-01-01

    Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) is an oncogenic virus which has adapted unique mechanisms to modulate the cellular microenvironment of its human host. The pathogenesis of KSHV is intimately linked to its manipulation of cellular signaling pathways, including the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway. We have previously shown that KSHV ORF45 contributes to the sustained activation of both ERK and p90 ribosomal S6 kinase (RSK, a major functional mediator of ERK/MAPK signaling) during KSHV lytic replication. ORF45-activated RSK is required for optimal KSHV lytic gene expression and progeny virion production, though the underlying mechanisms downstream of this activation are still unclear. We hypothesized that the activation of RSK by ORF45 causes differential phosphorylation of cellular and viral substrates, affecting biological processes essential for efficient KSHV lytic replication. Accordingly, we observed widespread and significant differences in protein phosphorylation upon induction of lytic replication. Mass-spectrometry-based phosphoproteomic screening identified putative substrates of ORF45-activated RSK in KSHV-infected cells. Bioinformatic analyses revealed that nuclear proteins, including several transcriptional regulators, were overrepresented among these candidates. We validated the ORF45/RSK-dependent phosphorylation of several putative substrates by employing KSHV BAC mutagenesis, kinase inhibitor treatments, and/or CRISPR-mediated knockout of RSK in KSHV-infected cells. Furthermore, we assessed the consequences of knocking out these substrates on ORF45/RSK-dependent regulation of gene expression and KSHV progeny virion production. Finally, we show data to support that ORF45 regulates the translational efficiency of a subset of viral/cellular genes with complex secondary structure in their 5’ UTR. Altogether, these data shed light on the mechanisms by which KSHV ORF45 manipulates

  15. Interaction of Rio1 Kinase with Toyocamycin Reveals a Conformational Switch That Controls Oligomeric State and Catalytic Activity

    SciTech Connect

    Kiburu, Irene N.; LaRonde-LeBlanc, Nicole

    2012-10-10

    Rio1 kinase is an essential ribosome-processing factor required for proper maturation of 40 S ribosomal subunit. Although its structure is known, several questions regarding its functional remain to be addressed. We report that both Archaeoglobus fulgidus and human Rio1 bind more tightly to an adenosine analog, toyocamycin, than to ATP. Toyocamycin has antibiotic, antiviral and cytotoxic properties, and is known to inhibit ribosome biogenesis, specifically the maturation of 40 S. We determined the X-ray crystal structure of toyocamycin bound to Rio1 at 2.0 {angstrom} and demonstrated that toyocamycin binds in the ATP binding pocket of the protein. Despite this, measured steady state kinetics were inconsistent with strict competitive inhibition by toyocamycin. In analyzing this interaction, we discovered that Rio1 is capable of accessing multiple distinct oligomeric states and that toyocamycin may inhibit Rio1 by stabilizing a less catalytically active oligomer. We also present evidence of substrate inhibition by high concentrations of ATP for both archaeal and human Rio1. Oligomeric state studies show both proteins access a higher order oligomeric state in the presence of ATP. The study revealed that autophosphorylation by Rio1 reduces oligomer formation and promotes monomerization, resulting in the most active species. Taken together, these results suggest the activity of Rio1 may be modulated by regulating its oligomerization properties in a conserved mechanism, identifies the first ribosome processing target of toyocamycin and presents the first small molecule inhibitor of Rio1 kinase activity.

  16. Electrocorticography reveals the temporal dynamics of posterior parietal cortical activity during recognition memory decisions

    PubMed Central

    Gonzalez, Alex; Hutchinson, J. Benjamin; Uncapher, Melina R.; Chen, Janice; LaRocque, Karen F.; Foster, Brett L.; Rangarajan, Vinitha; Parvizi, Josef; Wagner, Anthony D.

    2015-01-01

    Theories of the neurobiology of episodic memory predominantly focus on the contributions of medial temporal lobe structures, based on extensive lesion, electrophysiological, and imaging evidence. Against this backdrop, functional neuroimaging data have unexpectedly implicated left posterior parietal cortex (PPC) in episodic retrieval, revealing distinct activation patterns in PPC subregions as humans make memory-related decisions. To date, theorizing about the functional contributions of PPC has been hampered by the absence of information about the temporal dynamics of PPC activity as retrieval unfolds. Here, we leveraged electrocorticography to examine the temporal profile of high gamma power (HGP) in dorsal PPC subregions as participants made old/new recognition memory decisions. A double dissociation in memory-related HGP was observed, with activity in left intraparietal sulcus (IPS) and left superior parietal lobule (SPL) differing in time and sign for recognized old items (Hits) and correctly rejected novel items (CRs). Specifically, HGP in left IPS increased for Hits 300–700 ms poststimulus onset, and decayed to baseline ∼200 ms preresponse. By contrast, HGP in left SPL increased for CRs early after stimulus onset (200−300 ms) and late in the memory decision (from 700 ms to response). These memory-related effects were unique to left PPC, as they were not observed in right PPC. Finally, memory-related HGP in left IPS and SPL was sufficiently reliable to enable brain-based decoding of the participant’s memory state at the single-trial level, using multivariate pattern classification. Collectively, these data provide insights into left PPC temporal dynamics as humans make recognition memory decisions. PMID:26283375

  17. Angiogenesis Interactome and Time Course Microarray Data Reveal the Distinct Activation Patterns in Endothelial Cells

    PubMed Central

    Chu, Liang-Hui; Lee, Esak; Bader, Joel S.; Popel, Aleksander S.

    2014-01-01

    Angiogenesis involves stimulation of endothelial cells (EC) by various cytokines and growth factors, but the signaling mechanisms are not completely understood. Combining dynamic gene expression time-course data for stimulated EC with protein-protein interactions associated with angiogenesis (the “angiome”) could reveal how different stimuli result in different patterns of network activation and could implicate signaling intermediates as points for control or intervention. We constructed the protein-protein interaction networks of positive and negative regulation of angiogenesis comprising 367 and 245 proteins, respectively. We used five published gene expression datasets derived from in vitro assays using different types of blood endothelial cells stimulated by VEGFA (vascular endothelial growth factor A). We used the Short Time-series Expression Miner (STEM) to identify significant temporal gene expression profiles. The statistically significant patterns between 2D fibronectin and 3D type I collagen substrates for telomerase-immortalized EC (TIME) show that different substrates could influence the temporal gene activation patterns in the same cell line. We investigated the different activation patterns among 18 transmembrane tyrosine kinase receptors, and experimentally measured the protein level of the tyrosine-kinase receptors VEGFR1, VEGFR2 and VEGFR3 in human umbilical vein EC (HUVEC) and human microvascular EC (MEC). The results show that VEGFR1–VEGFR2 levels are more closely coupled than VEGFR1–VEGFR3 or VEGFR2–VEGFR3 in HUVEC and MEC. This computational methodology can be extended to investigate other molecules or biological processes such as cell cycle. PMID:25329517

  18. Glycan structure of Gc Protein-derived Macrophage Activating Factor as revealed by mass spectrometry.

    PubMed

    Borges, Chad R; Rehder, Douglas S

    2016-09-15

    Disagreement exists regarding the O-glycan structure attached to human vitamin D binding protein (DBP). Previously reported evidence indicated that the O-glycan of the Gc1S allele product is the linear core 1 NeuNAc-Gal-GalNAc-Thr trisaccharide. Here, glycan structural evidence is provided from glycan linkage analysis and over 30 serial glycosidase-digestion experiments which were followed by analysis of the intact protein by electrospray ionization mass spectrometry (ESI-MS). Results demonstrate that the O-glycan from the Gc1F protein is the same linear trisaccharide found on the Gc1S protein and that the hexose residue is galactose. In addition, the putative anti-cancer derivative of DBP known as Gc Protein-derived Macrophage Activating Factor (GcMAF, which is formed by the combined action of β-galactosidase and neuraminidase upon DBP) was analyzed intact by ESI-MS, revealing that the activating E. coli β-galactosidase cleaves nothing from the protein-leaving the glycan structure of active GcMAF as a Gal-GalNAc-Thr disaccharide, regardless of the order in which β-galactosidase and neuraminidase are applied. Moreover, glycosidase digestion results show that α-N-Acetylgalactosamindase (nagalase) lacks endoglycosidic function and only cleaves the DBP O-glycan once it has been trimmed down to a GalNAc-Thr monosaccharide-precluding the possibility of this enzyme removing the O-glycan trisaccharide from cancer-patient DBP in vivo. PMID:27503803

  19. Metagenomics, metatranscriptomics and single cell genomics reveal functional response of active Oceanospirillales to Gulf oil spill

    SciTech Connect

    Mason, Olivia U.; Hazen, Terry C.; Borglin, Sharon; Chain, Patrick S. G.; Dubinsky, Eric A.; Fortney, Julian L.; Han, James; Holman, Hoi-Ying N.; Hultman, Jenni; Lamendella, Regina; Mackelprang, Rachel; Malfatti, Stephanie; Tom, Lauren M.; Tringe, Susannah G.; Woyke, Tanja; Zhou, Jizhong; Rubin, Edward M.; Jansson, Janet K.

    2012-06-12

    The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.

  20. Analysis of protein phosphorylation in nerve terminal reveals extensive changes in active zone proteins upon exocytosis.

    PubMed

    Kohansal-Nodehi, Mahdokht; Chua, John Je; Urlaub, Henning; Jahn, Reinhard; Czernik, Dominika

    2016-01-01

    Neurotransmitter release is mediated by the fast, calcium-triggered fusion of synaptic vesicles with the presynaptic plasma membrane, followed by endocytosis and recycling of the membrane of synaptic vesicles. While many of the proteins governing these processes are known, their regulation is only beginning to be understood. Here we have applied quantitative phosphoproteomics to identify changes in phosphorylation status of presynaptic proteins in resting and stimulated nerve terminals isolated from the brains of Wistar rats. Using rigorous quantification, we identified 252 phosphosites that are either up- or downregulated upon triggering calcium-dependent exocytosis. Particularly pronounced were regulated changes of phosphosites within protein constituents of the presynaptic active zone, including bassoon, piccolo, and RIM1. Additionally, we have mapped kinases and phosphatases that are activated upon stimulation. Overall, our study provides a snapshot of phosphorylation changes associated with presynaptic activity and provides a foundation for further functional analysis of key phosphosites involved in presynaptic plasticity. PMID:27115346

  1. Brain Activation of Negative Feedback in Rule Acquisition Revealed in a Segmented Wisconsin Card Sorting Test

    PubMed Central

    Wang, Jing; Cao, Bihua; Cai, Xueli; Gao, Heming; Li, Fuhong

    2015-01-01

    The present study is to investigate the brain activation associated with the informative value of negative feedback in rule acquisition. In each trial of a segmented Wisconsin Card Sorting Test, participants were provided with three reference cards and one target card, and were asked to match one of three reference cards to the target card based on a classification rule. Participants received feedback after each match. Participants would acquire the rule after one negative feedback (1-NF condition) or two successive negative feedbacks (2-NF condition). The functional magnetic resonance imaging (fMRI) results indicated that lateral prefrontal-to-parietal cortices were more active in the 2-NF condition than in the 1-NF condition. The activation in the right lateral prefrontal cortex and left posterior parietal cortex increased gradually with the amount of negative feedback. These results demonstrate that the informative value of negative feedback in rule acquisition might be modulated by the lateral prefronto-parietal loop. PMID:26469519

  2. Complex Regulation Pattern of IRF3 Activation Revealed by a Novel Dimerization Reporter System.

    PubMed

    Wang, Zining; Ji, Jingyun; Peng, Di; Ma, Feng; Cheng, Genhong; Qin, F Xiao-Feng

    2016-05-15

    Induction of type I IFN (IFN-I) is essential for host antiviral immune responses. However, IFN-I also plays divergent roles in antibacterial immunity, persistent viral infections, autoimmune diseases, and tumorigenesis. IFN regulatory factor 3 (IRF3) is the master transcription factor that controls IFN-I production via phosphorylation-dependent dimerization in most cell types in response to viral infections and various innate stimuli by pathogen-associated molecular patterns (PAMPs). To monitor the dynamic process of IRF3 activation, we developed a novel IRF3 dimerization reporter based on bimolecular luminescence complementation (BiLC) techniques, termed the IRF3-BiLC reporter. Robust induction of luciferase activity of the IRF3-BiLC reporter was observed upon viral infection and PAMP stimulation with a broad dynamic range. Knockout of TANK-binding kinase 1, the critical upstream kinase of IRF3, as well as the mutation of serine 386, the essential phosphorylation site of IRF3, completely abolished the luciferase activity of IRF3-BiLC reporter, confirming the authenticity of IRF3 activation. Taken together, these results demonstrated that the IRF3-BiLC reporter is a highly specific, reliable, and sensitive system to measure IRF3 activity. Using this reporter system, we further observed that the temporal pattern and magnitude of IRF3 activation induced by various PAMPs are highly complex with distinct cell type-specific characteristics, and IRF3 dimerization is a direct regulatory node for IFN-α/β receptor-mediated feed-forward regulation and crosstalk with other pathways. Therefore, the IRF3-BiLC reporter has multiple potential applications, including mechanistic studies as well as the identification of novel compounds that can modulate IRF3 activation. PMID:27045107

  3. Genetically encoded proton sensors reveal activity-dependent pH changes in neurons

    PubMed Central

    Raimondo, Joseph V.; Irkle, Agnese; Wefelmeyer, Winnie; Newey, Sarah E.; Akerman, Colin J.

    2011-01-01

    The regulation of hydrogen ion concentration (pH) is fundamental to cell viability, metabolism, and enzymatic function. Within the nervous system, the control of pH is also involved in diverse and dynamic processes including development, synaptic transmission, and the control of network excitability. As pH affects neuronal activity, and can also itself be altered by neuronal activity, the existence of tools to accurately measure hydrogen ion fluctuations is important for understanding the role pH plays under physiological and pathological conditions. Outside of their use as a marker of synaptic release, genetically encoded pH sensors have not been utilized to study hydrogen ion fluxes associated with network activity. By combining whole-cell patch clamp with simultaneous two-photon or confocal imaging, we quantified the amplitude and time course of neuronal, intracellular, acidic transients evoked by epileptiform activity in two separate in vitro models of temporal lobe epilepsy. In doing so, we demonstrate the suitability of three genetically encoded pH sensors: deGFP4, E2GFP, and Cl-sensor for investigating activity-dependent pH changes at the level of single neurons. PMID:22666186

  4. Activity-Based Protein Profiling of Organophosphorus and Thiocarbamate Pesticides Reveals Multiple Serine Hydrolase Targets in Mouse Brain

    PubMed Central

    NOMURA, DANIEL K.; CASIDA, JOHN E.

    2010-01-01

    Organophosphorus (OP) and thiocarbamate (TC) agrochemicals are used worldwide as insecticides, herbicides, and fungicides, but their safety assessment in terms of potential off-targets remains incomplete. In this study, we used a chemoproteomic platform, termed activity-based protein profiling, to broadly define serine hydrolase targets in mouse brain of a panel of 29 OP and TC pesticides. Among the secondary targets identified, enzymes involved in degradation of endocannabinoid signaling lipids, monoacylglycerol lipase and fatty acid amide hydrolase, were inhibited by several OP and TC pesticides. Blockade of these two enzymes led to elevations in brain endocannabinoid levels and dysregulated brain arachidonate metabolism. Other secondary targets include enzymes thought to also play important roles in the nervous system and unannotated proteins. This study reveals a multitude of secondary targets for OP and TC pesticides and underscores the utility of chemoproteomic platforms in gaining insights into biochemical pathways that are perturbed by these toxicants. PMID:21341672

  5. Metaproteomics Applied to Activated Sludge for Industrial Wastewater Treatment Revealed a Dominant Methylotrophic Metabolism of Hyphomicrobium zavarzinii.

    PubMed

    Salerno, Carlo; Benndorf, Dirk; Kluge, Sabine; Palese, Luigi Leonardo; Reichl, Udo; Pollice, Alfieri

    2016-07-01

    In biological wastewater treatments, microbial populations of the so-called activated sludge work together in the abatement of pollutants. In this work, the metabolic behavior of the biomass of a lab-scale plant treating industrial pharmaceutical wastewater was investigated through a metaproteomic approach. The complete treatment process included a membrane biological reactor (MBR) coupled with an advanced oxidation process (AOP) for partial breakdown of non-biodegradable molecules. Proteins from biomass samples collected pre- and post-AOP application were investigated by two-dimensional gel electrophoresis (2DE), mass spectrometry (MS), and finally identified by database search. Results showed that most proteins remained constant between pre- and post-AOP. Methanol dehydrogenase (MDH) belonging to Hyphomicrobium zavarzinii appeared as the most constantly expressed protein in the studied consortium. Other identified proteins belonging to Hyphomicrobium spp. revealed a predominant methylotrophic metabolism, and H. zavarzinii appeared as a key actor in the studied microbial community. PMID:27090901

  6. Determination of the physiological 2:2 TLR5:flagellin activation stoichiometry revealed by the activity of a fusion receptor

    SciTech Connect

    Ivičak-Kocjan, Karolina; Panter, Gabriela; Benčina, Mojca; Jerala, Roman

    2013-05-24

    Highlights: •The chimeric protein fusing flagellin to the TLR5 ectodomain is constitutively active. •Mutation P736H within the BB-loop of TLR5 TIR domain renders the receptor inactive. •The R90D mutation in flagellin inactivated autoactivation of the chimeric protein. •The 2:2 stoichiometry of the TLR5:flagellin complex is physiologically relevant. -- Abstract: Toll-like receptor 5 (TLR5) recognizes flagellin of most flagellated bacteria, enabling activation of the MyD88-dependent signaling pathway. The recently published crystal structure of a truncated zebrafish TLR5 ectodomain in complex with an inactive flagellin fragment indicated binding of two flagellin molecules to a TLR5 homodimer, however this complex did not dimerize in solution. In the present study, we aimed to determine the physiological stoichiometry of TLR5:flagellin activation by the use of a chimeric protein composed of an active flagellin fragment linked to the N-terminus of human TLR5 (SF-TLR5). This construct was constitutively active. Inactivation by the R90D mutation within flagellin demonstrated that autoactivation of the chimeric protein depended solely on the specific interaction between TLR5 and flagellin. Addition of wild-type hTLR5 substantially lowered autoactivation of SF-TLR5 in a concentration dependent manner, an effect which was reversible by the addition of exogenous Salmonella typhimurium flagellin, indicating the biological activity of a TLR5:flagellin complex with a 2:2 stoichiometry. These results, in addition to the combinations of inactive P736H mutation within the BB-loop of the TIR domain of TLR5 and SF-TLR5, further confirm the mechanism of TLR5 activation.

  7. Activity profiling reveals changes in the diversity and activity of proteins in Arabidopsis roots in response to nematode infection.

    PubMed

    Hütten, Marion; Geukes, Melanie; Misas-Villamil, Johana C; van der Hoorn, Renier A L; Grundler, Florian M W; Siddique, Shahid

    2015-12-01

    Cyst nematodes are obligate, sedentary endoparasites with a highly specialised biology and a huge economic impact in agriculture. Successful parasitism involves morphological and physiological modifications of the host cells which lead to the formation of specialised syncytial feeding structures in roots. The development of the syncytium is aided by a cocktail of nematode effectors that manipulate the host plant activities in a complex network of interactions through post-translational modifications. Traditional transcriptomic and proteomic approaches cannot display this functional proteomic information. Activity-based protein profiling (ABPP) is a powerful technology that can be used to investigate the activity of the proteome through activity-based probes. To better understand the functional proteomics of syncytium, ABPP was conducted on syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots. Our results demonstrated that the activity of several enzymes is differentially regulated in the syncytium compared to the control roots. Among those specifically activated in the syncytium are a putative S-formyl-glutathione hydrolase (SFGH), a putative methylesterase (MES) and two unidentified enzymes. In contrast, the activities of vacuolar processing enzymes (VPEs) are specifically suppressed in the syncytium. Competition labelling, quantitative gene expression and T-DNA knock-out mutants were used to further characterise the roles of the differentially regulated enzymes during plant-nematode interaction. In conclusion, our study will open the door to generate a comprehensive and integrated view of the host-pathogen warfare that results in the formation of long-term feeding sites for pathogens. PMID:26408809

  8. Revealing divergent evolution, identifying circular permutations and detecting active-sites by protein structure comparison

    PubMed Central

    Chen, Luonan; Wu, Ling-Yun; Wang, Yong; Zhang, Shihua; Zhang, Xiang-Sun

    2006-01-01

    Background Protein structure comparison is one of the most important problems in computational biology and plays a key role in protein structure prediction, fold family classification, motif finding, phylogenetic tree reconstruction and protein docking. Results We propose a novel method to compare the protein structures in an accurate and efficient manner. Such a method can be used to not only reveal divergent evolution, but also identify circular permutations and further detect active-sites. Specifically, we define the structure alignment as a multi-objective optimization problem, i.e., maximizing the number of aligned atoms and minimizing their root mean square distance. By controlling a single distance-related parameter, theoretically we can obtain a variety of optimal alignments corresponding to different optimal matching patterns, i.e., from a large matching portion to a small matching portion. The number of variables in our algorithm increases with the number of atoms of protein pairs in almost a linear manner. In addition to solid theoretical background, numerical experiments demonstrated significant improvement of our approach over the existing methods in terms of quality and efficiency. In particular, we show that divergent evolution, circular permutations and active-sites (or structural motifs) can be identified by our method. The software SAMO is available upon request from the authors, or from and . Conclusion A novel formulation is proposed to accurately align protein structures in the framework of multi-objective optimization, based on a sequence order-independent strategy. A fast and accurate algorithm based on the bipartite matching algorithm is developed by exploiting the special features. Convergence of computation is shown in experiments and is also theoretically proven. PMID:16948858

  9. Spatio-Temporal Analysis of Micro Economic Activities in Rome Reveals Patterns of Mixed-Use Urban Evolution.

    PubMed

    Fiasconaro, Alessandro; Strano, Emanuele; Nicosia, Vincenzo; Porta, Sergio; Latora, Vito

    2016-01-01

    Understanding urban growth is one with understanding how society evolves to satisfy the needs of its individuals in sharing a common space and adapting to the territory. We propose here a quantitative analysis of the historical development of a large urban area by investigating the spatial distribution and the age of commercial activities in the whole city of Rome. We find that the age of activities of various categories presents a very interesting double exponential trend, with a transition possibly related to the long-term economical effects determined by the oil crisis of the Seventies. The diversification of commercial categories, studied through various measures of entropy, shows, among other interesting features, a saturating behaviour with the density of activities. Moreover, different couples of commercial categories exhibit over the years a tendency to attract in space. Our results demonstrate that the spatio-temporal distribution of commercial activities can provide important insights on the urbanisation processes at work, revealing specific and non trivial socio-economical dynamics, as the presence of crisis periods and expansion trends, and contributing to the characterisation of the maturity of urban areas. PMID:26982028

  10. Spatio-Temporal Analysis of Micro Economic Activities in Rome Reveals Patterns of Mixed-Use Urban Evolution

    PubMed Central

    Fiasconaro, Alessandro; Strano, Emanuele; Nicosia, Vincenzo; Porta, Sergio; Latora, Vito

    2016-01-01

    Understanding urban growth is one with understanding how society evolves to satisfy the needs of its individuals in sharing a common space and adapting to the territory. We propose here a quantitative analysis of the historical development of a large urban area by investigating the spatial distribution and the age of commercial activities in the whole city of Rome. We find that the age of activities of various categories presents a very interesting double exponential trend, with a transition possibly related to the long-term economical effects determined by the oil crisis of the Seventies. The diversification of commercial categories, studied through various measures of entropy, shows, among other interesting features, a saturating behaviour with the density of activities. Moreover, different couples of commercial categories exhibit over the years a tendency to attract in space. Our results demonstrate that the spatio-temporal distribution of commercial activities can provide important insights on the urbanisation processes at work, revealing specific and non trivial socio-economical dynamics, as the presence of crisis periods and expansion trends, and contributing to the characterisation of the maturity of urban areas. PMID:26982028

  11. ACTIVE LONGITUDES REVEALED BY LARGE-SCALE AND LONG-LIVED CORONAL STREAMERS

    SciTech Connect

    Li Jing

    2011-07-10

    We use time-series ultraviolet full sun images to construct limb-synoptic maps of the Sun. On these maps, large-scale, long-lived coronal streamers appear as repetitive sinusoid-like arcs projected over the polar regions. They are caused by high altitude plasma produced from sunspot-rich regions at latitudes generally far from the poles. The non-uniform longitudinal distribution of these streamers reveals four longitudinal zones at the surface of the Sun from which sunspots erupt preferentially over the 5 year observing interval (2006 January to 2011 April). Spots in these zones (or clusters) have individual lifetimes short compared to the lifetimes of the coronal features which they sustain, and they erupt at different times. The four sunspot clusters contain >75% of all numbered sunspots in this period. They occupy two distinct longitudinal zones separated by {approx}180{sup 0} and each spanning {approx}100{sup 0} in longitude. The rotation rates of the spot clusters are {approx}5% faster than the rates at both the surface and the bottom of the convection zone. While no convincing theoretical framework exists to interpret the sunspot clusters in the longitude-time space, their persistent and nonuniform distribution indicates long-lived, azimuthal structures beneath the surface, and are compatible with the existence of previously reported active longitudes on the Sun.

  12. In vivo role of the HNF4α AF-1 activation domain revealed by exon swapping

    PubMed Central

    Briançon, Nadège; Weiss, Mary C

    2006-01-01

    The gene encoding the nuclear receptor hepatocyte nuclear factor 4α (HNF4α) generates isoforms HNF4α1 and HNF4α7 from usage of alternative promoters. In particular, HNF4α7 is expressed in the pancreas whereas HNF4α1 is found in liver, and mutations affecting HNF4α function cause impaired insulin secretion and/or hepatic defects in humans and in tissue-specific ‘knockout' mice. HNF4α1 and α7 isoforms differ exclusively by amino acids encoded by the first exon which, in HNF4α1 but not in HNF4α7, includes the activating function (AF)-1 transactivation domain. To investigate the roles of HNF4α1 and HNF4α7 in vivo, we generated mice expressing only one isoform under control of both promoters, via reciprocal swapping of the isoform-specific first exons. Unlike Hnf4α gene disruption which causes embryonic lethality, these ‘α7-only' and ‘α1-only' mice are viable, indicating functional redundancy of the isoforms. However, the former show dyslipidemia and preliminary results indicate impaired glucose tolerance for the latter, revealing functional specificities of the isoforms. These ‘knock-in' mice provide the first test in vivo of the HNF4α AF-1 function and have permitted identification of AF-1-dependent target genes. PMID:16498401

  13. Activation of Nanoscale Allosteric Protein Domain Motion Revealed by Neutron Spin Echo Spectroscopy

    PubMed Central

    Farago, Bela; Li, Jianquan; Cornilescu, Gabriel; Callaway, David J.E.; Bu, Zimei

    2010-01-01

    NHERF1 is a multidomain scaffolding protein that assembles signaling complexes, and regulates the cell surface expression and endocytic recycling of a variety of membrane proteins. The ability of the two PDZ domains in NHERF1 to assemble protein complexes is allosterically modulated by the membrane-cytoskeleton linker protein ezrin, whose binding site is located as far as 110 Ångstroms away from the PDZ domains. Here, using neutron spin echo (NSE) spectroscopy, selective deuterium labeling, and theoretical analyses, we reveal the activation of interdomain motion in NHERF1 on nanometer length-scales and on submicrosecond timescales upon forming a complex with ezrin. We show that a much-simplified coarse-grained model suffices to describe interdomain motion of a multidomain protein or protein complex. We expect that future NSE experiments will benefit by exploiting our approach of selective deuteration to resolve the specific domain motions of interest from a plethora of global translational and rotational motions. Our results demonstrate that the dynamic propagation of allosteric signals to distal sites involves changes in long-range coupled domain motions on submicrosecond timescales, and that these coupled motions can be distinguished and characterized by NSE. PMID:21081097

  14. Ribosome•RelA structures reveal the mechanism of stringent response activation

    PubMed Central

    Loveland, Anna B; Bah, Eugene; Madireddy, Rohini; Zhang, Ying; Brilot, Axel F; Grigorieff, Nikolaus; Korostelev, Andrei A

    2016-01-01

    Stringent response is a conserved bacterial stress response underlying virulence and antibiotic resistance. RelA/SpoT-homolog proteins synthesize transcriptional modulators (p)ppGpp, allowing bacteria to adapt to stress. RelA is activated during amino-acid starvation, when cognate deacyl-tRNA binds to the ribosomal A (aminoacyl-tRNA) site. We report four cryo-EM structures of E. coli RelA bound to the 70S ribosome, in the absence and presence of deacyl-tRNA accommodating in the 30S A site. The boomerang-shaped RelA with a wingspan of more than 100 Å wraps around the A/R (30S A-site/RelA-bound) tRNA. The CCA end of the A/R tRNA pins the central TGS domain against the 30S subunit, presenting the (p)ppGpp-synthetase domain near the 30S spur. The ribosome and A/R tRNA are captured in three conformations, revealing hitherto elusive states of tRNA engagement with the ribosomal decoding center. Decoding-center rearrangements are coupled with the step-wise 30S-subunit 'closure', providing insights into the dynamics of high-fidelity tRNA decoding. DOI: http://dx.doi.org/10.7554/eLife.17029.001 PMID:27434674

  15. Multimodular biosensors reveal a novel platform for activation of G proteins by growth factor receptors

    PubMed Central

    Midde, Krishna K.; Aznar, Nicolas; Laederich, Melanie B.; Ma, Gary S.; Kunkel, Maya T.; Newton, Alexandra C.; Ghosh, Pradipta

    2015-01-01

    Environmental cues are transmitted to the interior of the cell via a complex network of signaling hubs. Receptor tyrosine kinases (RTKs) and trimeric G proteins are two such major signaling hubs in eukaryotes. Conventionally, canonical signal transduction via trimeric G proteins is thought to be triggered exclusively by G protein-coupled receptors. Here we used molecular engineering to develop modular fluorescent biosensors that exploit the remarkable specificity of bimolecular recognition, i.e., of both G proteins and RTKs, and reveal the workings of a novel platform for activation of G proteins by RTKs in single living cells. Comprised of the unique modular makeup of guanidine exchange factor Gα-interacting vesicle-associated protein (GIV)/girdin, a guanidine exchange factor that links G proteins to a variety of RTKs, these biosensors provide direct evidence that RTK–GIV–Gαi ternary complexes are formed in living cells and that Gαi is transactivated within minutes after growth factor stimulation at the plasma membrane. Thus, GIV-derived biosensors provide a versatile strategy for visualizing, monitoring, and manipulating the dynamic association of Gαi with RTKs for noncanonical transactivation of G proteins in cells and illuminate a fundamental signaling event regulated by GIV during diverse cellular processes and pathophysiologic states. PMID:25713130

  16. Ribosome•RelA structures reveal the mechanism of stringent response activation.

    PubMed

    Loveland, Anna B; Bah, Eugene; Madireddy, Rohini; Zhang, Ying; Brilot, Axel F; Grigorieff, Nikolaus; Korostelev, Andrei A

    2016-01-01

    Stringent response is a conserved bacterial stress response underlying virulence and antibiotic resistance. RelA/SpoT-homolog proteins synthesize transcriptional modulators (p)ppGpp, allowing bacteria to adapt to stress. RelA is activated during amino-acid starvation, when cognate deacyl-tRNA binds to the ribosomal A (aminoacyl-tRNA) site. We report four cryo-EM structures of E. coli RelA bound to the 70S ribosome, in the absence and presence of deacyl-tRNA accommodating in the 30S A site. The boomerang-shaped RelA with a wingspan of more than 100 Å wraps around the A/R (30S A-site/RelA-bound) tRNA. The CCA end of the A/R tRNA pins the central TGS domain against the 30S subunit, presenting the (p)ppGpp-synthetase domain near the 30S spur. The ribosome and A/R tRNA are captured in three conformations, revealing hitherto elusive states of tRNA engagement with the ribosomal decoding center. Decoding-center rearrangements are coupled with the step-wise 30S-subunit 'closure', providing insights into the dynamics of high-fidelity tRNA decoding. PMID:27434674

  17. Chlorophyll a fluorescence lifetime reveals reversible UV-induced photosynthetic activity in the green algae Tetraselmis.

    PubMed

    Kristoffersen, Arne S; Hamre, Børge; Frette, Øyvind; Erga, Svein R

    2016-04-01

    The fluorescence lifetime is a very useful parameter for investigating biological materials on the molecular level as it is mostly independent of the fluorophore concentration. The green alga Tetraselmis blooms in summer, and therefore its response to UV irradiation is of particular interest. In vivo fluorescence lifetimes of chlorophyll a were measured under both normal and UV-stressed conditions of Tetraselmis. Fluorescence was induced by two-photon excitation using a femtosecond laser and laser scanning microscope. The lifetimes were measured in the time domain by time-correlated single-photon counting. Under normal conditions, the fluorescence lifetime was 262 ps, while after 2 h of exposure to UV radiation the lifetime increased to 389 ps, indicating decreased photochemical quenching, likely caused by a damaged and down-regulated photosynthetic apparatus. This was supported by a similar increase in the lifetime to 425 ps when inhibiting photosynthesis chemically using DCMU. Furthermore, the UV-stressed sample was dark-adapted overnight, resulting in a return of the lifetime to 280 ps, revealing that the damage caused by UV radiation is repairable on a relatively short time scale. This reversal of photosynthetic activity was also confirmed by [Formula: see text] measurements. PMID:26538330

  18. Optical Studies of Active Comets

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1998-01-01

    This grant was to support optical studies of comets close enough to the sun to be outgassing. The main focus of the observations was drawn to the two extraordinarily bright comets Hyakutake and Hale-Bopp, but other active comets were also studied in detail during the period of funding. Major findings (all fully published) under this grant include: (1) Combined optical and submillimeter observations of the comet/Centaur P/Schwassmann-Wachmann 1 were used to study the nature of mass loss from this object. The submillimeter observations show directly that the optically prominent dust coma is ejected by the sublimation of carbon monoxide. Simultaneous optical-submillimeter observations allowed us to test earlier determinations of the dust mass loss rate. (2) We modelled the rotation of cometary nuclei using time-resolved images of dust jets as the primary constraint. (3) We obtained broad-band optical images of several comets for which we subsequently attempted submillimeter observations, in order to test and update the cometary ephemerides. (4) Broad-band continuum images of a set of weakly active comets and, apparently, inactive asteroids were obtained in BVRI using the University of Hawaii 2.2-m telescope. These images were taken in support of a program to test the paradigm that many near-Earth asteroids might be dead or dormant comets. We measured coma vs. nucleus colors in active comets (finding that coma particle scattering is different from, and cannot be simply related to, nucleus color). We obtained spectroscopic observations of weakly active comets and other small bodies using the HIRES spectrograph on the Keck 10-m telescope. These observation place sensitive limits to outgassing from these bodies, aided by the high (40,000) spectral resolution of HIRES.

  19. In vivo imaging of alphaherpesvirus infection reveals synchronized activity dependent on axonal sorting of viral proteins

    PubMed Central

    Granstedt, Andrea E.; Bosse, Jens B.; Thiberge, Stephan Y.; Enquist, Lynn W.

    2013-01-01

    A clinical hallmark of human alphaherpesvirus infections is peripheral pain or itching. Pseudorabies virus (PRV), a broad host range alphaherpesvirus, causes violent pruritus in many different animals, but the mechanism is unknown. Previous in vitro studies have shown that infected, cultured peripheral nervous system (PNS) neurons exhibited aberrant electrical activity after PRV infection due to the action of viral membrane fusion proteins, yet it is unclear if such activity occurs in infected PNS ganglia in living animals and if it correlates with disease symptoms. Using two-photon microscopy, we imaged autonomic ganglia in living mice infected with PRV strains expressing GCaMP3, a genetically encoded calcium indicator, and used the changes in calcium flux to monitor the activity of many neurons simultaneously with single-cell resolution. Infection with virulent PRV caused these PNS neurons to fire synchronously and cyclically in highly correlated patterns among infected neurons. This activity persisted even when we severed the presynaptic axons, showing that infection-induced firing is independent of input from presynaptic brainstem neurons. This activity was not observed after infections with an attenuated PRV recombinant used for circuit tracing or with PRV mutants lacking either viral glycoprotein B, required for membrane fusion, or viral membrane protein Us9, required for sorting virions and viral glycoproteins into axons. We propose that the viral fusion proteins produced by virulent PRV infection induce electrical coupling in unmyelinated axons in vivo. This action would then give rise to the synchronous and cyclical activity in the ganglia and contribute to the characteristic peripheral neuropathy. PMID:23980169

  20. Comparative Proteomics Analysis Reveals L-Arginine Activates Ethanol Degradation Pathways in HepG2 Cells

    PubMed Central

    Yan, Guokai; Lestari, Retno; Long, Baisheng; Fan, Qiwen; Wang, Zhichang; Guo, Xiaozhen; Yu, Jie; Hu, Jun; Yang, Xingya; Chen, Changqing; Liu, Lu; Li, Xiuzhi; Purnomoadi, Agung; Achmadi, Joelal; Yan, Xianghua

    2016-01-01

    L-Arginine (Arg) is a versatile amino acid that plays crucial roles in a wide range of physiological and pathological processes. In this study, to investigate the alteration induced by Arg supplementation in proteome scale, isobaric tags for relative and absolute quantification (iTRAQ) based proteomic approach was employed to comparatively characterize the differentially expressed proteins between Arg deprivation (Ctrl) and Arg supplementation (+Arg) treated human liver hepatocellular carcinoma (HepG2) cells. A total of 21 proteins were identified as differentially expressed proteins and these 21 proteins were all up-regulated by Arg supplementation. Six amino acid metabolism-related proteins, mostly metabolic enzymes, showed differential expressions. Intriguingly, Ingenuity Pathway Analysis (IPA) based pathway analysis suggested that the three ethanol degradation pathways were significantly altered between Ctrl and +Arg. Western blotting and enzymatic activity assays validated that the key enzymes ADH1C, ALDH1A1, and ALDH2, which are mainly involved in ethanol degradation pathways, were highly differentially expressed, and activated between Ctrl and +Arg in HepG2 cells. Furthermore, 10 mM Arg significantly attenuated the cytotoxicity induced by 100 mM ethanol treatment (P < 0.0001). This study is the first time to reveal that Arg activates ethanol degradation pathways in HepG2 cells. PMID:26983598

  1. Ensemble Activation of G-Protein -Coupled Receptors Revealed by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Chu, Xiang-Qiang; Perera, Suchithranga; Shrestha, Utsab; Chawla, Udeep; Struts, Andrey; Qian, Shuo; Brown, Michael

    2014-03-01

    Rhodopsin is a G-protein -coupled receptor (GPCR) involved in visual light perception and occurs naturally in a membrane lipid environment. Rhodopsin photoactivation yields cis-trans isomerization of retinal giving equilibrium between inactive Meta-I and active Meta-II states. Does photoactivation lead to a single Meta-II conformation, or do substates exist as described by an ensemble-activation mechanism (EAM)? We use small-angle neutron scattering (SANS) to investigate conformational changes in rhodopsin-detergent and rhodopsin-lipid complexes upon photoactivation. Meta-I state is stabilized in CHAPS-solubilized rhodopsin, while Meta-II is trapped in DDM-solubilized rhodopsin. SANS data are acquired from 80% D2O solutions and at contrast-matching points for both DDM and CHAPS samples. Our experiments demonstrate that for detergent-solubilized rhodopsin, SANS with contrast variation can detect structural differences between the rhodopsin dark-state, Meta-I, Meta-II, and ligand-free opsin states. Dark-state rhodopsin has more conformational flexibility in DDM micelles compared to CHAPS, which is consistent with an ensemble of activated Meta-II states. Furthermore, time-resolved SANS enables study of the time-dependent structural transitions between Meta-I and Meta-II, which is crucial to understanding the ensemble-based activation.

  2. Single molecule microscopy reveals mechanistic insight into RNA polymerase II preinitiation complex assembly and transcriptional activity

    PubMed Central

    Horn, Abigail E.; Kugel, Jennifer F.; Goodrich, James A.

    2016-01-01

    Transcription by RNA polymerase II (Pol II) is a complex process that requires general transcription factors and Pol II to assemble on DNA into preinitiation complexes that can begin RNA synthesis upon binding of NTPs (nucleoside triphosphate). The pathways by which preinitiation complexes form, and how this impacts transcriptional activity are not completely clear. To address these issues, we developed a single molecule system using TIRF (total internal reflection fluorescence) microscopy and purified human transcription factors, which allows us to visualize transcriptional activity at individual template molecules. We see that stable interactions between polymerase II (Pol II) and a heteroduplex DNA template do not depend on general transcription factors; however, transcriptional activity is highly dependent upon TATA-binding protein, TFIIB and TFIIF. We also found that subsets of general transcription factors and Pol II can form stable complexes that are precursors for functional transcription complexes upon addition of the remaining factors and DNA. Ultimately we found that Pol II, TATA-binding protein, TFIIB and TFIIF can form a quaternary complex in the absence of promoter DNA, indicating that a stable network of interactions exists between these proteins independent of promoter DNA. Single molecule studies can be used to learn how different modes of preinitiation complex assembly impact transcriptional activity. PMID:27112574

  3. Skipped-Stimulus Approach Reveals That Short-Term Plasticity Dominates Synaptic Strength during Ongoing Activity

    PubMed Central

    Yang, Hua

    2015-01-01

    All synapses show activity-dependent changes in strength, which affect the fidelity of postsynaptic spiking. This is particularly important at auditory nerve synapses, where the presence and timing of spikes carry information about a sound's structure, which must be passed along for proper processing. However, it is not clear how synaptic plasticity influences spiking during ongoing activity. Under these conditions, conventional analyses erroneously suggest that synaptic plasticity has no influence on EPSC amplitude or spiking. Therefore, we developed new approaches to study how ongoing activity influences synaptic strength, using voltage- and current-clamp recordings from bushy cells in brain slices from mouse anteroventral cochlear nucleus. We applied identical trains of stimuli, except for one skipped stimulus, and found that EPSC amplitude was affected for 60 ms following a skipped stimulus. We further showed that the initial probability of release, calcium-dependent mechanisms of recovery, and desensitization all play a role even during ongoing activity. Current-clamp experiments indicated that these processes had a significant effect on postsynaptic spiking, as did the refractory period to a smaller extent. Thus short-term plasticity has real, important functional consequences. PMID:26019343

  4. Event-related potentials reveal early activation of body part representations in action concept comprehension.

    PubMed

    Lu, Aitao; Liu, Jing; Zhang, John X

    2012-03-01

    With tasks involving action concept comprehension, many fMRI studies have reported brain activations in sensori-motor regions specific to effectors of the referent action. There is relatively less evidence whether such activations reflect early semantic access or late conceptual re-processing. Here we recorded event-related potentials when participants recognized noun-verb pairs. For Congruent pairs, the verb was the one most commonly associated with the noun (e.g., football-kick). Compared with a control condition, verbs in Congruent pairs showed priming effects in the time windows of 100-150 ms and 210-260 ms. Such activation seems to be specific to body part but not other aspects of the action as similar priming effect was also found when the noun and verb involved different actions though sharing the same body part (e.g., football-jump), documenting for the first time the early activation of body part representations in action concept comprehension. PMID:22306088

  5. Native Electrophoresis-Coupled Activity Assays Reveal Catalytically-Active Protein Aggregates of Escherichia coli β-Glucuronidase

    PubMed Central

    Burchett, Gina G.; Folsom, Charles G.; Lane, Kimberly T.

    2015-01-01

    β-glucuronidase is found as a functional homotetramer in a variety of organisms, including humans and other animals, as well as a number of bacteria. This enzyme is important in these organisms, catalyzing the hydrolytic removal of a glucuronide moiety from substrate molecules. This process serves to break down sugar conjugates in animals and provide sugars for metabolism in bacteria. While β-glucuronidase is primarily found as a homotetramer, previous studies have indicated that the human form of the protein is also catalytically active as a dimer. Here we present evidence for not only an active dimer of the E. coli form of the protein, but also for several larger active complexes, including an octomer and a 16-mer. Additionally, we propose a model for the structures of these large complexes, based on computationally-derived molecular modeling studies. These structures may have application in the study of human disease, as several diseases have been associated with the aggregation of proteins. PMID:26121040

  6. Multichannel brain recordings in behaving Drosophila reveal oscillatory activity and local coherence in response to sensory stimulation and circuit activation

    PubMed Central

    Paulk, Angelique C.; Zhou, Yanqiong; Stratton, Peter; Liu, Li

    2013-01-01

    Neural networks in vertebrates exhibit endogenous oscillations that have been associated with functions ranging from sensory processing to locomotion. It remains unclear whether oscillations may play a similar role in the insect brain. We describe a novel “whole brain” readout for Drosophila melanogaster using a simple multichannel recording preparation to study electrical activity across the brain of flies exposed to different sensory stimuli. We recorded local field potential (LFP) activity from >2,000 registered recording sites across the fly brain in >200 wild-type and transgenic animals to uncover specific LFP frequency bands that correlate with: 1) brain region; 2) sensory modality (olfactory, visual, or mechanosensory); and 3) activity in specific neural circuits. We found endogenous and stimulus-specific oscillations throughout the fly brain. Central (higher-order) brain regions exhibited sensory modality-specific increases in power within narrow frequency bands. Conversely, in sensory brain regions such as the optic or antennal lobes, LFP coherence, rather than power, best defined sensory responses across modalities. By transiently activating specific circuits via expression of TrpA1, we found that several circuits in the fly brain modulate LFP power and coherence across brain regions and frequency domains. However, activation of a neuromodulatory octopaminergic circuit specifically increased neuronal coherence in the optic lobes during visual stimulation while decreasing coherence in central brain regions. Our multichannel recording and brain registration approach provides an effective way to track activity simultaneously across the fly brain in vivo, allowing investigation of functional roles for oscillations in processing sensory stimuli and modulating behavior. PMID:23864378

  7. Acetohydroxyacid synthase activity and transcripts profiling reveal tissue-specific regulation of ahas genes in sunflower.

    PubMed

    Ochogavía, Ana C; Breccia, Gabriela; Vega, Tatiana; Felitti, Silvina A; Picardi, Liliana A; Nestares, Graciela

    2014-07-01

    Acetohydroxyacid synthase (AHAS) is the target site of several herbicides and catalyses the first step in the biosynthesis of branched chain amino acid. Three genes coding for AHAS catalytic subunit (ahas1, ahas2 and ahas3) have been reported for sunflower. The aim of this work was to study the expression pattern of ahas genes family and AHAS activity in sunflower (Helianthus annuus L.). Different organs (leaves, hypocotyls, roots, flowers and embryos) were evaluated at several developmental stages. The transcriptional profile was studied through RT-qPCR. The highest expression for ahas1 was shown in leaves, where all the induced and natural gene mutations conferring herbicide resistance were found. The maximal expression of ahas2 and ahas3 occurred in immature flowers and embryos. The highest AHAS activity was found in leaves and immature embryos. Correlation analysis among ahas gene expression and AHAS activity was discussed. Our results show that differences in ahas genes expression are tissue-specific and temporally regulated. Moreover, the conservation of multiple AHAS isoforms in sunflower seems to result from different expression requirements controlled by tissue-specific regulatory mechanisms at different developmental stages. PMID:24908515

  8. Spores of many common airborne fungi reveal no ice nucleation activity in oil immersion freezing experiments

    NASA Astrophysics Data System (ADS)

    Pummer, B. G.; Atanasova, L.; Bauer, H.; Bernardi, J.; Druzhinina, I. S.; Fröhlich-Nowoisky, J.; Grothe, H.

    2013-12-01

    Fungal spores are ubiquitous biological aerosols, which are considered to act as ice nuclei. In this study the ice nucleation (IN) activity of spores harvested from 29 fungal strains belonging to 21 different species was tested in the immersion freezing mode by microscopic observation of water-in-oil emulsions. Spores of 8 of these strains were also investigated in a microdroplet freezing array instrument. The focus was laid on species of economical, ecological or sanitary significance. Besides common molds (Ascomycota), some representatives of the widespread group of mushrooms (Basidiomycota) were also investigated. Fusarium avenaceum was the only sample showing IN activity at relatively high temperatures (about 264 K), while the other investigated fungal spores showed no freezing above 248 K. Many of the samples indeed froze at homogeneous ice nucleation temperatures (about 237 K). In combination with other studies, this suggests that only a limited number of species may act as atmospheric ice nuclei. This would be analogous to what is already known for the bacterial ice nuclei. Apart from that, we selected a set of fungal strains from different sites and exposed them to occasional freezing stress during their cultivation. This was in order to test if the exposure to a cold environment encourages the expression of ice nuclei during growth as a way of adaptation. Although the total protein expression was altered by this treatment, it had no significant impact on the IN activity.

  9. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes.

    PubMed

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  10. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    PubMed Central

    Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  11. Competitive balance of intrabulge BMP/Wnt signaling reveals a robust gene network ruling stem cell homeostasis and cyclic activation

    PubMed Central

    Kandyba, Eve; Leung, Yvonne; Chen, Yi-Bu; Widelitz, Randall; Chuong, Cheng-Ming; Kobielak, Krzysztof

    2013-01-01

    Hair follicles facilitate the study of stem cell behavior because stem cells in progressive activation stages, ordered within the follicle architecture, are capable of cyclic regeneration. To study the gene network governing the homeostasis of hair bulge stem cells, we developed a Keratin 15-driven genetic model to directly perturb molecular signaling in the stem cells. We visualize the behavior of these modified stem cells, evaluating their hair-regenerating ability and profile their molecular expression. Bone morphogenetic protein (BMP)-inactivated stem cells exhibit molecular profiles resembling those of hair germs, yet still possess multipotentiality in vivo. These cells also exhibit up-regulation of Wnt7a, Wnt7b, and Wnt16 ligands and Frizzled (Fzd) 10 receptor. We demonstrate direct transcriptional modulation of the Wnt7a promoter. These results highlight a previously unknown intra-stem cell antagonistic competition, between BMP and Wnt signaling, to balance stem cell activity. Reduced BMP signaling and increased Wnt signaling tilts each stem cell toward a hair germ fate and, vice versa, based on a continuous scale dependent on the ratio of BMP/Wnt activity. This work reveals one more hierarchical layer regulating stem cell homeostasis beneath the stem cell–dermal papilla-based epithelial–mesenchymal interaction layer and the hair follicle–intradermal adipocyte-based tissue interaction layer. Although hierarchical layers are all based on BMP/Wnt signaling, the multilayered control ensures that all information is taken into consideration and allows hair stem cells to sum up the total activators/inhibitors involved in making the decision of activation. PMID:23292934

  12. Systems Level Analyses Reveal Multiple Regulatory Activities of CodY Controlling Metabolism, Motility and Virulence in Listeria monocytogenes.

    PubMed

    Lobel, Lior; Herskovits, Anat A

    2016-02-01

    Bacteria sense and respond to many environmental cues, rewiring their regulatory network to facilitate adaptation to new conditions/niches. Global transcription factors that co-regulate multiple pathways simultaneously are essential to this regulatory rewiring. CodY is one such global regulator, controlling expression of both metabolic and virulence genes in Gram-positive bacteria. Branch chained amino acids (BCAAs) serve as a ligand for CodY and modulate its activity. Classically, CodY was considered to function primarily as a repressor under rich growth conditions. However, our previous studies of the bacterial pathogen Listeria monocytogenes revealed that CodY is active also when the bacteria are starved for BCAAs. Under these conditions, CodY loses the ability to repress genes (e.g., metabolic genes) and functions as a direct activator of the master virulence regulator gene, prfA. This observation raised the possibility that CodY possesses multiple functions that allow it to coordinate gene expression across a wide spectrum of metabolic growth conditions, and thus better adapt bacteria to the mammalian niche. To gain a deeper understanding of CodY's regulatory repertoire and identify direct target genes, we performed a genome wide analysis of the CodY regulon and DNA binding under both rich and minimal growth conditions, using RNA-Seq and ChIP-Seq techniques. We demonstrate here that CodY is indeed active (i.e., binds DNA) under both conditions, serving as a repressor and activator of different genes. Further, we identified new genes and pathways that are directly regulated by CodY (e.g., sigB, arg, his, actA, glpF, gadG, gdhA, poxB, glnR and fla genes), integrating metabolism, stress responses, motility and virulence in L. monocytogenes. This study establishes CodY as a multifaceted factor regulating L. monocytogenes physiology in a highly versatile manner. PMID:26895237

  13. Systems Level Analyses Reveal Multiple Regulatory Activities of CodY Controlling Metabolism, Motility and Virulence in Listeria monocytogenes

    PubMed Central

    Lobel, Lior; Herskovits, Anat A.

    2016-01-01

    Bacteria sense and respond to many environmental cues, rewiring their regulatory network to facilitate adaptation to new conditions/niches. Global transcription factors that co-regulate multiple pathways simultaneously are essential to this regulatory rewiring. CodY is one such global regulator, controlling expression of both metabolic and virulence genes in Gram-positive bacteria. Branch chained amino acids (BCAAs) serve as a ligand for CodY and modulate its activity. Classically, CodY was considered to function primarily as a repressor under rich growth conditions. However, our previous studies of the bacterial pathogen Listeria monocytogenes revealed that CodY is active also when the bacteria are starved for BCAAs. Under these conditions, CodY loses the ability to repress genes (e.g., metabolic genes) and functions as a direct activator of the master virulence regulator gene, prfA. This observation raised the possibility that CodY possesses multiple functions that allow it to coordinate gene expression across a wide spectrum of metabolic growth conditions, and thus better adapt bacteria to the mammalian niche. To gain a deeper understanding of CodY’s regulatory repertoire and identify direct target genes, we performed a genome wide analysis of the CodY regulon and DNA binding under both rich and minimal growth conditions, using RNA-Seq and ChIP-Seq techniques. We demonstrate here that CodY is indeed active (i.e., binds DNA) under both conditions, serving as a repressor and activator of different genes. Further, we identified new genes and pathways that are directly regulated by CodY (e.g., sigB, arg, his, actA, glpF, gadG, gdhA, poxB, glnR and fla genes), integrating metabolism, stress responses, motility and virulence in L. monocytogenes. This study establishes CodY as a multifaceted factor regulating L. monocytogenes physiology in a highly versatile manner. PMID:26895237

  14. Multiwavelength Search and Studies of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2016-06-01

    Since 1950s, Byurakan Astrophysical Observatory (BAO) has always been one of the centres for surveys and studies of active galaxies. Here I review our search and studies of active galaxies during last 30 years using various wavelength ranges, as well as some recent related works. These projects since late 1980s were focused on multiwavelength search and studies of AGN and Starbursts (SB). 1103 blue stellar objects (BSOs) on the basis of their UV-excess were selected using Markarian Survey (First Byurakan Survey, FBS) plates and Markarian's criteria used for the galaxies. Among many blue stars, QSOs and Seyfert galaxies were found by follow-up observations. 1577 IRAS point sources were optically identified using FBS low-dispersion spectra and many AGN, SB and high-luminosity IR galaxies (LIRG/ULIRG) were discovered. 32 extremely high IR/opt flux ratio galaxies were studies with Spitzer. 2791 ROSAT FSC sources were optically identified using Hamburg Quasar Survey (HQS) low-dispersion spectra and many AGN were discovered by follow-up observations. Fine analysis of emission line spectra was carried out using spectral line decomposition software to establish true profiles and calculate physical parameters for the emitting regions, as well as to study the spectral variability of these objects. X-ray and radio selection criteria were used to find new AGN and variable objects for further studies. Multiwavelength approach allowed revealing many new AGN and SB and obtaining a number of interesting relations using their observational characteristics and physical properties.

  15. Rhythmic Components in Extracranial Brain Signals Reveal Multifaceted Task Modulation of Overlapping Neuronal Activity.

    PubMed

    van der Meij, Roemer; van Ede, Freek; Maris, Eric

    2016-01-01

    Oscillatory neuronal activity is implicated in many cognitive functions, and its phase coupling between sensors may reflect networks of communicating neuronal populations. Oscillatory activity is often studied using extracranial recordings and compared between experimental conditions. This is challenging, because there is overlap between sensor-level activity generated by different sources, and this can obscure differential experimental modulations of these sources. Additionally, in extracranial data, sensor-level phase coupling not only reflects communicating populations, but can also be generated by a current dipole, whose sensor-level phase coupling does not reflect source-level interactions. We present a novel method, which is capable of separating and characterizing sources on the basis of their phase coupling patterns as a function of space, frequency and time (trials). Importantly, this method depends on a plausible model of a neurobiological rhythm. We present this model and an accompanying analysis pipeline. Next, we demonstrate our approach, using magnetoencephalographic (MEG) recordings during a cued tactile detection task as a case study. We show that the extracted components have overlapping spatial maps and frequency content, which are difficult to resolve using conventional pairwise measures. Because our decomposition also provides trial loadings, components can be readily contrasted between experimental conditions. Strikingly, we observed heterogeneity in alpha and beta sources with respect to whether their activity was suppressed or enhanced as a function of attention and performance, and this happened both in task relevant and irrelevant regions. This heterogeneity contrasts with the common view that alpha and beta amplitude over sensory areas are always negatively related to attention and performance. PMID:27336159

  16. Unexpected hormonal activity of a catechol equine estrogen metabolite reveals reversible glutathione conjugation

    PubMed Central

    Peng, Kuan-Wei; Chang, Minsun; Wang, Yue-Ting; Wang, Zhican; Qin, Zhihui; Bolton, Judy L.; Thatcher, Gregory R. J.

    2010-01-01

    4-Hydroxyequilenin (4-OHEN) is a major phase I metabolite of the equine estrogens present in widely prescribed hormone replacement formulations. 4-OHEN is autoxidized to an electrophilic o-quinone that has been shown to redox cycle, generating ROS, and to covalently modify proteins and DNA and thus potentially to act as a chemical carcinogen. To establish the ability of 4-OHEN to act as a hormonal carcinogen at the estrogen receptor (ER), estrogen responsive gene expression and proliferation were studied in ER(+) breast cancer cells. Recruitment by 4-OHEN of ER to estrogen responsive elements (ERE) of DNA in MCF-7 cells was also studied and observed. 4-OHEN was a potent estrogen, with additional weak activity associated with binding to the arylhydrocarbon receptor (AhR). The potency of 4-OHEN towards classical ERα mediated activity was unexpected given the reported rapid autoxidation and trapping of the resultant quinone by GSH. Addition of thiols to cell cultures did not attenuate the estrogenic activity of 4-OHEN and pre-formed thiol conjugates added to cell incubations only marginally reduced ERE-luciferase induction. On reaction of the 4OHEN-GSH conjugate with NADPH, 4-OHEN was observed to be regenerated at a rate dependent upon NADPH concentration, indicating that intracellular non-enzymatic and enzymatic regeneration of 4-OHEN accounts for the observed estrogenic activity of 4-OHEN. 4-OHEN is therefore capable of inducing chemical and hormonal pathways that may contribute to estrogen-dependent carcinogenesis, and trapping by cellular thiols does not provide a mechanism of termination of these pathways. PMID:20540524

  17. Rhythmic Components in Extracranial Brain Signals Reveal Multifaceted Task Modulation of Overlapping Neuronal Activity

    PubMed Central

    van Ede, Freek; Maris, Eric

    2016-01-01

    Oscillatory neuronal activity is implicated in many cognitive functions, and its phase coupling between sensors may reflect networks of communicating neuronal populations. Oscillatory activity is often studied using extracranial recordings and compared between experimental conditions. This is challenging, because there is overlap between sensor-level activity generated by different sources, and this can obscure differential experimental modulations of these sources. Additionally, in extracranial data, sensor-level phase coupling not only reflects communicating populations, but can also be generated by a current dipole, whose sensor-level phase coupling does not reflect source-level interactions. We present a novel method, which is capable of separating and characterizing sources on the basis of their phase coupling patterns as a function of space, frequency and time (trials). Importantly, this method depends on a plausible model of a neurobiological rhythm. We present this model and an accompanying analysis pipeline. Next, we demonstrate our approach, using magnetoencephalographic (MEG) recordings during a cued tactile detection task as a case study. We show that the extracted components have overlapping spatial maps and frequency content, which are difficult to resolve using conventional pairwise measures. Because our decomposition also provides trial loadings, components can be readily contrasted between experimental conditions. Strikingly, we observed heterogeneity in alpha and beta sources with respect to whether their activity was suppressed or enhanced as a function of attention and performance, and this happened both in task relevant and irrelevant regions. This heterogeneity contrasts with the common view that alpha and beta amplitude over sensory areas are always negatively related to attention and performance. PMID:27336159

  18. Structures of BmrR-Drug Complexes Reveal a Rigid Multidrug Binding Pocket And Transcription Activation Through Tyrosine Expulsion

    SciTech Connect

    Newberry, K.J.; Huffman, J.L.; Miller, M.C.; Vazquez-Laslop, N.; Neyfakh, A.A.; Brennan, R.G.

    2009-05-22

    BmrR is a member of the MerR family and a multidrug binding transcription factor that up-regulates the expression of the bmr multidrug efflux transporter gene in response to myriad lipophilic cationic compounds. The structural mechanism by which BmrR binds these chemically and structurally different drugs and subsequently activates transcription is poorly understood. Here, we describe the crystal structures of BmrR bound to rhodamine 6G (R6G) or berberine (Ber) and cognate DNA. These structures reveal each drug stacks against multiple aromatic residues with their positive charges most proximal to the carboxylate group of Glu-253 and that, unlike other multidrug binding pockets, that of BmrR is rigid. Substitution of Glu-253 with either alanine (E253A) or glutamine (E253Q) results in unpredictable binding affinities for R6G, Ber, and tetraphenylphosphonium. Moreover, these drug binding studies reveal that the negative charge of Glu-253 is not important for high affinity binding to Ber and tetraphenylphosphonium but plays a more significant, but unpredictable, role in R6G binding. In vitro transcription data show that E253A and E253Q are constitutively active, and structures of the drug-free E253A-DNA and E253Q-DNA complexes support a transcription activation mechanism requiring the expulsion of Tyr-152 from the multidrug binding pocket. In sum, these data delineate the mechanism by which BmrR binds lipophilic, monovalent cationic compounds and suggest the importance of the redundant negative electrostatic nature of this rigid drug binding pocket that can be used to discriminate against molecules that are not substrates of the Bmr multidrug efflux pump.

  19. Juxtaposition of chemical and mutation- induced developmental defects in zebrafish reveal a novel copper-chelating activity for kalihinol F

    PubMed Central

    Sandoval, Imelda T.; Manos, Elizabeth J.; Van Wagoner, Ryan M.; Delacruz, Richard Glenn C.; Edes, Kornelia; Winge, Dennis R.; Ireland, Chris M.; Jones, David A.

    2013-01-01

    SUMMARY A major hurdle in using complex systems for drug screening is the difficulty of defining the mechanistic targets of small molecules. The zebrafish provides an excellent model system for juxtaposing developmental phenotypes with mechanism discovery using organism genetics. We carried out a phenotype-based screen of uncharacterized small molecules in zebrafish that produced a variety of chemically-induced phenotypes with potential genetic parallels. Specifically, kalihinol F caused an undulated notochord, defects in pigment formation, hematopoiesis and neural development. These phenotypes were strikingly similar to the zebrafish mutant, calamity, an established model of copper deficiency. Further studies into the mechanism of action of kalihinol F revealed a novel copper chelating activity. Our data support a novel mechanism of action for kalihinol F and the utility of zebrafish as an effective system for identifying new therapeutics and target pathways. PMID:23790486

  20. Juxtaposition of chemical and mutation-induced developmental defects in zebrafish reveal a copper-chelating activity for kalihinol F.

    PubMed

    Sandoval, Imelda T; Manos, Elizabeth J; Van Wagoner, Ryan M; Delacruz, Richard Glenn C; Edes, Kornelia; Winge, Dennis R; Ireland, Chris M; Jones, David A

    2013-06-20

    A major hurdle in using complex systems for drug screening is the difficulty of defining the mechanistic targets of small molecules. The zebrafish provides an excellent model system for juxtaposing developmental phenotypes with mechanism discovery using organism genetics. We carried out a phenotype-based screen of uncharacterized small molecules in zebrafish that produced a variety of chemically induced phenotypes with potential genetic parallels. Specifically, kalihinol F caused an undulated notochord, defects in pigment formation, hematopoiesis, and neural development. These phenotypes were strikingly similar to the zebrafish mutant, calamity, an established model of copper deficiency. Further studies into the mechanism of action of kalihinol F revealed a copper-chelating activity. Our data support this mechanism of action for kalihinol F and the utility of zebrafish as an effective system for identifying therapeutic and target pathways. PMID:23790486

  1. Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998-2001

    NASA Astrophysics Data System (ADS)

    Lee, Jian-Cheng; Angelier, Jacques; Chu, Hao-Tsu; Hu, Jyr-Ching; Jeng, Fu-Shu; Rau, Ruey-Juin

    2003-11-01

    The daily creep meter data recorded at Chihshang in 1998-2001 are presented. The Chihshang creep meter experiment was set up across the Chihshang thrust fault, the most active segment of the Longitudinal Valley Fault, which is the present-day plate suture between the Eurasian and the Philippine Sea plates in eastern Taiwan. Near-continuous data recording at two sites revealed different surface fault motions yet similar annual shortening rates: 16.2 mm at the Tapo site (comprising two connected creep meters) and 15.0 mm at the Chinyuan site (three creep meters straddling parallel fault branches). Four of the five creep meters showed a seasonal variation, with the fault moving steadily during the rainy season from April to October, and remaining quiescent during the rest of the year. The only exception was recorded by the creep meter located on a mélange-composed hillslope, where local gravitational landsliding played an additional role other than tectonic faulting. Through comparison with daily precipitation data, we inferred that moderate rainfall suffices to trigger or facilitate slippage on the surface fault, during the transition period of the dry/wet season. During the observation period from 1998 to 2001, the subsurface seismicity exhibited clusters of microearthquakes on the Chihshang Fault at depths of 10-25 km. Recurrent earthquakes occurred regardless of whether the season was wet or dry, indicating that the stress relaxation associated with seismicity in the seismogenic zone did not transfer immediately up to the surface. The accumulated strain on the Chihshang Fault at shallow surface levels was released through creep during the wet season. In addition to these short-term seasonal variations, an apparent decrease in the annual slipping rate on the Chihshang Fault during the last few years deserves further investigation in order to mitigate against seismic hazard.

  2. Structure of Human Acid Sphingomyelinase Reveals the Role of the Saposin Domain in Activating Substrate Hydrolysis.

    PubMed

    Xiong, Zi-Jian; Huang, Jingjing; Poda, Gennady; Pomès, Régis; Privé, Gilbert G

    2016-07-31

    Acid sphingomyelinase (ASM) is a lysosomal phosphodiesterase that catalyzes the hydrolysis of sphingomyelin to produce ceramide and phosphocholine. While other lysosomal sphingolipid hydrolases require a saposin activator protein for full activity, the ASM polypeptide incorporates a built-in N-terminal saposin domain and does not require an external activator protein. Here, we report the crystal structure of human ASM and describe the organization of the three main regions of the enzyme: the N-terminal saposin domain, the proline-rich connector, and the catalytic domain. The saposin domain is tightly associated along an edge of the large, bowl-shaped catalytic domain and adopts an open form that exposes a hydrophobic concave surface approximately 30Å from the catalytic center. The calculated electrostatic potential of the enzyme is electropositive at the acidic pH of the lysosome, consistent with the strict requirement for the presence of acidic lipids in target membranes. Docking studies indicate that sphingomyelin binds with the ceramide-phosphate group positioned at the binuclear zinc center and molecular dynamic simulations indicate that the intrinsic flexibility of the saposin domain is important for monomer-dimer exchange and for membrane interactions. Overall, ASM uses a combination of electrostatic and hydrophobic interactions to cause local disruptions of target bilayers in order to bring the lipid headgroup to the catalytic center in a membrane-bound reaction. PMID:27349982

  3. Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation.

    PubMed

    Masters, Seth L; Lagou, Vasiliki; Jéru, Isabelle; Baker, Paul J; Van Eyck, Lien; Parry, David A; Lawless, Dylan; De Nardo, Dominic; Garcia-Perez, Josselyn E; Dagley, Laura F; Holley, Caroline L; Dooley, James; Moghaddas, Fiona; Pasciuto, Emanuela; Jeandel, Pierre-Yves; Sciot, Raf; Lyras, Dena; Webb, Andrew I; Nicholson, Sandra E; De Somer, Lien; van Nieuwenhove, Erika; Ruuth-Praz, Julia; Copin, Bruno; Cochet, Emmanuelle; Medlej-Hashim, Myrna; Megarbane, Andre; Schroder, Kate; Savic, Sinisa; Goris, An; Amselem, Serge; Wouters, Carine; Liston, Adrian

    2016-03-30

    Pyrin responds to pathogen signals and loss of cellular homeostasis by forming an inflammasome complex that drives the cleavage and secretion of interleukin-1β (IL-1β). Mutations in the B30.2/SPRY domain cause pathogen-independent activation of pyrin and are responsible for the autoinflammatory disease familial Mediterranean fever (FMF). We studied a family with a dominantly inherited autoinflammatory disease, distinct from FMF, characterized by childhood-onset recurrent episodes of neutrophilic dermatosis, fever, elevated acute-phase reactants, arthralgia, and myalgia/myositis. The disease was caused by a mutation in MEFV, the gene encoding pyrin (S242R). The mutation results in the loss of a 14-3-3 binding motif at phosphorylated S242, which was not perturbed by FMF mutations in the B30.2/SPRY domain. However, loss of both S242 phosphorylation and 14-3-3 binding was observed for bacterial effectors that activate the pyrin inflammasome, such as Clostridium difficile toxin B (TcdB). The S242R mutation thus recapitulated the effect of pathogen sensing, triggering inflammasome activation and IL-1β production. Successful therapy targeting IL-1β has been initiated in one patient, resolving pyrin-associated autoinflammation with neutrophilic dermatosis. This disease provides evidence that a guard-like mechanism of pyrin regulation, originally identified for Nod-like receptors in plant innate immunity, also exists in humans. PMID:27030597

  4. Molecular Dynamics Simulations Reveal the Mechanisms of Allosteric Activation of Hsp90 by Designed Ligands

    NASA Astrophysics Data System (ADS)

    Vettoretti, Gerolamo; Moroni, Elisabetta; Sattin, Sara; Tao, Jiahui; Agard, David A.; Bernardi, Anna; Colombo, Giorgio

    2016-04-01

    Controlling biochemical pathways through chemically designed modulators may provide novel opportunities to develop therapeutic drugs and chemical tools. The underlying challenge is to design new molecular entities able to act as allosteric chemical switches that selectively turn on/off functions by modulating the conformational dynamics of their target protein. We examine the origins of the stimulation of ATPase and closure kinetics in the molecular chaperone Hsp90 by allosteric modulators through atomistic molecular dynamics (MD) simulations and analysis of protein-ligand interactions. In particular, we focus on the cross-talk between allosteric ligands and protein conformations and its effect on the dynamic properties of the chaperone’s active state. We examine the impact of different allosteric modulators on the stability, structural and internal dynamics properties of Hsp90 closed state. A critical aspect of this study is the development of a quantitative model that correlates Hsp90 activation to the presence of a certain compound, making use of information on the dynamic adaptation of protein conformations to the presence of the ligand, which allows to capture conformational states relevant in the activation process. We discuss the implications of considering the conformational dialogue between allosteric ligands and protein conformations for the design of new functional modulators.

  5. Molecular Dynamics Simulations Reveal the Mechanisms of Allosteric Activation of Hsp90 by Designed Ligands

    PubMed Central

    Vettoretti, Gerolamo; Moroni, Elisabetta; Sattin, Sara; Tao, Jiahui; Agard, David A.; Bernardi, Anna; Colombo, Giorgio

    2016-01-01

    Controlling biochemical pathways through chemically designed modulators may provide novel opportunities to develop therapeutic drugs and chemical tools. The underlying challenge is to design new molecular entities able to act as allosteric chemical switches that selectively turn on/off functions by modulating the conformational dynamics of their target protein. We examine the origins of the stimulation of ATPase and closure kinetics in the molecular chaperone Hsp90 by allosteric modulators through atomistic molecular dynamics (MD) simulations and analysis of protein-ligand interactions. In particular, we focus on the cross-talk between allosteric ligands and protein conformations and its effect on the dynamic properties of the chaperone’s active state. We examine the impact of different allosteric modulators on the stability, structural and internal dynamics properties of Hsp90 closed state. A critical aspect of this study is the development of a quantitative model that correlates Hsp90 activation to the presence of a certain compound, making use of information on the dynamic adaptation of protein conformations to the presence of the ligand, which allows to capture conformational states relevant in the activation process. We discuss the implications of considering the conformational dialogue between allosteric ligands and protein conformations for the design of new functional modulators. PMID:27032695

  6. Analysis of protein phosphorylation in nerve terminal reveals extensive changes in active zone proteins upon exocytosis

    PubMed Central

    Kohansal-Nodehi, Mahdokht; Chua, John JE; Urlaub, Henning; Jahn, Reinhard; Czernik, Dominika

    2016-01-01

    Neurotransmitter release is mediated by the fast, calcium-triggered fusion of synaptic vesicles with the presynaptic plasma membrane, followed by endocytosis and recycling of the membrane of synaptic vesicles. While many of the proteins governing these processes are known, their regulation is only beginning to be understood. Here we have applied quantitative phosphoproteomics to identify changes in phosphorylation status of presynaptic proteins in resting and stimulated nerve terminals isolated from the brains of Wistar rats. Using rigorous quantification, we identified 252 phosphosites that are either up- or downregulated upon triggering calcium-dependent exocytosis. Particularly pronounced were regulated changes of phosphosites within protein constituents of the presynaptic active zone, including bassoon, piccolo, and RIM1. Additionally, we have mapped kinases and phosphatases that are activated upon stimulation. Overall, our study provides a snapshot of phosphorylation changes associated with presynaptic activity and provides a foundation for further functional analysis of key phosphosites involved in presynaptic plasticity. DOI: http://dx.doi.org/10.7554/eLife.14530.001 PMID:27115346

  7. A new autocatalytic activation mechanism for cysteine proteases revealed by Prevotella intermedia interpain A

    PubMed Central

    Mallorquí-Fernández, Noemí; Manandhar, Surya P.; Mallorquí-Fernández, Goretti; Usón, Isabel; Wawrzonek, Katarzyna; Kantyka, Tomasz; Solà, Maria; Thøgersen, Ida B.; Enghild, Jan J.; Potempa, Jan; Gomis-Rüth, F.Xavier

    2009-01-01

    Prevotella intermedia is a major periodontopathogen contributing to human gingivitis and periodontitis. Such pathogens release proteases as virulence factors that cause deterrence of host defences and tissue destruction. A new cysteine protease from the cysteine-histidine-dyad class, interpain A, was studied in its zymogenic and its self-processed mature form. The latter consists of a bivalved moiety made up by two subdomains. In the structure of a catalytic cysteine-to-alanine zymogen variant, the right subdomain interacts with an unusual prodomain, thus contributing to latency. Unlike the catalytic cysteine residue, already in its competent conformation in the zymogen, the catalytic histidine is swung out from its active conformation and trapped in a cage shaped by a backing helix, a zymogenic hairpin and a latency flap in the zymogen. Dramatic rearrangement of up to 20Å of these elements triggered by a tryptophan switch occurs during activation and accounts for a new activation mechanism for proteolytic enzymes. These findings can be extrapolated to related potentially pathogenic cysteine proteases such as Streprococcus pyogenes SpeB and Porphyromonas gingivalis periodontain. PMID:17993455

  8. Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation.

    PubMed

    Kimata, Naoki; Pope, Andreyah; Eilers, Markus; Opefi, Chikwado A; Ziliox, Martine; Hirshfeld, Amiram; Zaitseva, Ekaterina; Vogel, Reiner; Sheves, Mordechai; Reeves, Philip J; Smith, Steven O

    2016-01-01

    The 11-cis retinal chromophore is tightly packed within the interior of the visual receptor rhodopsin and isomerizes to the all-trans configuration following absorption of light. The mechanism by which this isomerization event drives the outward rotation of transmembrane helix H6, a hallmark of activated G protein-coupled receptors, is not well established. To address this question, we use solid-state NMR and FTIR spectroscopy to define the orientation and interactions of the retinal chromophore in the active metarhodopsin II intermediate. Here we show that isomerization of the 11-cis retinal chromophore generates strong steric interactions between its β-ionone ring and transmembrane helices H5 and H6, while deprotonation of its protonated Schiff's base triggers the rearrangement of the hydrogen-bonding network involving residues on H6 and within the second extracellular loop. We integrate these observations with previous structural and functional studies to propose a two-stage mechanism for rhodopsin activation. PMID:27585742

  9. Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc-LCOs in Medicago truncatula.

    PubMed

    Camps, Céline; Jardinaud, Marie-Françoise; Rengel, David; Carrère, Sébastien; Hervé, Christine; Debellé, Frédéric; Gamas, Pascal; Bensmihen, Sandra; Gough, Clare

    2015-10-01

    Myc-LCOs are newly identified symbiotic signals produced by arbuscular mycorrhizal (AM) fungi. Like rhizobial Nod factors, they are lipo-chitooligosaccharides that activate the common symbiotic signalling pathway (CSSP) in plants. To increase our limited understanding of the roles of Myc-LCOs we aimed to analyse Myc-LCO-induced transcriptional changes and their genetic control. Whole genome RNA sequencing (RNA-seq) was performed on roots of Medicago truncatula wild-type plants, and dmi3 and nsp1 symbiotic mutants affected in nodulation and mycorrhizal signalling. Plants were treated separately with the two major types of Myc-LCOs, sulphated and nonsulphated. Generalized linear model analysis identified 2201 differentially expressed genes and classified them according to genotype and/or treatment effects. Three genetic pathways for Myc-LCO-regulation of transcriptomic reprogramming were highlighted: DMI3- and NSP1-dependent; DMI3-dependent and NSP1-independent; and DMI3- and NSP1-independent. Comprehensive analysis revealed overlaps with previous AM studies, and highlighted certain functions, especially signalling components and transcription factors. These data provide new insights into mycorrhizal signalling mechanisms, supporting a role for NSP1, and specialisation for NSP1-dependent and -independent pathways downstream of DMI3. Our data also indicate significant Myc-LCO-activated signalling upstream of DMI3 and/or parallel to the CSSP and some constitutive activity of the CSSP. PMID:25919491

  10. Bioluminescent imaging of Ca2+ activity reveals spatiotemporal dynamics in glial networks of dark-adapted mouse retina

    PubMed Central

    Agulhon, Cendra; Platel, Jean-Claude; Kolomiets, Bogdan; Forster, Valérie; Picaud, Serge; Brocard, Jacques; Faure, Philippe; Brulet, Philippe

    2007-01-01

    Glial Ca2+ excitability plays a key role in reciprocal neuron–glia communication. In the retina, neuron–glia signalling is expected to be maximal in the dark, but the glial Ca2+ signal characteristics under such conditions have not been evaluated. To address this question, we used bioluminescence imaging to monitor spontaneous Ca2+ changes under dark conditions selectively in Müller cells, the principal retinal glial cells. By combining this imaging approach with network analysis, we demonstrate that activity in Müller cells is organized in networks of coactive cells, involving 2–16 cells located distantly and/or in clusters. We also report that spontaneous activity of small networks (2–6 Müller cells) repeat over time, sometimes in the same sequential order, revealing specific temporal dynamics. In addition, we show that networks of coactive glial cells are inhibited by TTX, indicating that ganglion and/or amacrine neuronal cells probably regulate Müller cell network properties. These results represent the first demonstration that spontaneous activity in adult Müller cells is patterned into correlated networks that display repeated sequences of coactivations over time. Furthermore, our bioluminescence technique provides a novel tool to study the dynamic characteristics of glial Ca2+ events in the retina under dark conditions, which should greatly facilitate future investigations of retinal dark-adaptive processes. PMID:17627996

  11. 10Be surface exposure dating reveals strong active deformation in the central Andean backarc interior

    NASA Astrophysics Data System (ADS)

    García Morabito, Ezequiel; Terrizzano, Carla; Zech, Roland; Willett, Sean; Yamin, Marcela; Haghipour, Negar; Wuethrich, Lorenz; Christl, Marcus; María Cortes, José; Ramos, Victor

    2016-04-01

    Understanding the deformation associated with active thrust wedges is essential to evaluate seismic hazard. How is active faulting distributed throughout the wedge, and how much deformation is taken up by individual structures? We address these questions for our study region, the central Andean backarc of Argentina. We combined a structural and geomorphological approach with surface exposure dating (10Be) of alluvial fans and strath terraces in two key localities at ~32° S: the Cerro Salinas, located in the active orogenic front of the Precordillera, and the Barreal block in the interior of the Andean mountain range. We analysed 22 surface samples and 6 depth profiles. At the thrust front, the oldest terrace (T1) yields an age of 100-130 ka, the intermediate terrace (T2) between 40-95 ka, and the youngest terrace (T3) an age of ~20 ka. In the Andean interior, T1´ dates to 117-146 ka, T2´ to ~70 ka, and T3´ to ~20 ka, all calculations assuming negligible erosion and using the scaling scheme for spallation based on Lal 1991, Stone 2000. Vertical slip rates of fault offsets are 0.3-0.5 mm/yr and of 0.6-1.2 mm/yr at the thrust front and in the Andean interior, respectively. Our results highlight: i) fault activity related to the growth of the Andean orogenic wedge is not only limited to a narrow thrust front zone. Internal structures have been active during the last 150 ka, ii) deformation rates in the Andean interior are comparable or even higher that those estimated and reported along the emerging thrust front, iii) distribution of active faulting seems to account for unsteady state conditions, and iv) seismic hazards may be more relevant in the internal parts of the Andean orogen than assumed so far. References Lal, D., 1991: Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104: 424-439. Stone, J.O., 2000: Air pressure and cosmogenic isotope production. Journal of Geophysical

  12. Integrated Experimental and Model-based Analysis Reveals the Spatial Aspects of EGFR Activation Dynamics

    SciTech Connect

    Shankaran, Harish; Zhang, Yi; Chrisler, William B.; Ewald, Jonathan A.; Wiley, H. S.; Resat, Haluk

    2012-10-02

    The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases, and controls a diverse set of cellular responses relevant to development and tumorigenesis. ErbB activation is a complex process involving receptor-ligand binding, receptor dimerization, phosphorylation, and trafficking (internalization, recycling and degradation), which together dictate the spatio-temporal distribution of active receptors within the cell. The ability to predict this distribution, and elucidation of the factors regulating it, would help to establish a mechanistic link between ErbB expression levels and the cellular response. Towards this end, we constructed mathematical models for deconvolving the contributions of receptor dimerization and phosphorylation to EGFR activation, and to examine the dependence of these processes on sub-cellular location. We collected experimental datasets for EGFR activation dynamics in human mammary epithelial cells, with the specific goal of model parameterization, and used the data to estimate parameters for several alternate models. Model-based analysis indicated that: 1) signal termination via receptor dephosphorylation in late endosomes, prior to degradation, is an important component of the response, 2) less than 40% of the receptors in the cell are phosphorylated at any given time, even at saturating ligand doses, and 3) receptor dephosphorylation rates at the cell surface and early endosomes are comparable. We validated the last finding by measuring EGFR dephosphorylation rates at various times following ligand addition both in whole cells, and in endosomes using ELISAs and fluorescent imaging. Overall, our results provide important information on how EGFR phosphorylation levels are regulated within cells. Further, the mathematical model described here can be extended to determine receptor dimer abundances in cells co-expressing various levels of ErbB receptors. This study demonstrates that an iterative cycle of

  13. Active Trans-Plasma Membrane Water Cycling in Yeast Is Revealed by NMR

    PubMed Central

    Zhang, Yajie; Poirier-Quinot, Marie; Springer, Charles S.; Balschi, James A.

    2011-01-01

    Plasma membrane water transport is a crucial cellular phenomenon. Net water movement in response to an osmotic gradient changes cell volume. Steady-state exchange of water molecules, with no net flux or volume change, occurs by passive diffusion through the phospholipid bilayer and passage through membrane proteins. The hypothesis is tested that plasma membrane water exchange also correlates with ATP-driven membrane transport activity in yeast (Saccharomyces cerevisiae). Longitudinal 1H2O NMR relaxation time constant (T1) values were measured in yeast suspensions containing extracellular relaxation reagent. Two-site-exchange analysis quantified the reversible exchange kinetics as the mean intracellular water lifetime (τi), where τi−1 is the pseudo-first-order rate constant for water efflux. To modulate cellular ATP, yeast suspensions were bubbled with 95%O2/5%CO2 (O2) or 95%N2/5%CO2 (N2). ATP was high during O2, and τi−1 was 3.1 s−1 at 25°C. After changing to N2, ATP decreased and τi−1 was 1.8 s−1. The principal active yeast ion transport protein is the plasma membrane H+-ATPase. Studies using the H+-ATPase inhibitor ebselen or a yeast genetic strain with reduced H+-ATPase found reduced τi−1, notwithstanding high ATP. Steady-state water exchange correlates with H+-ATPase activity. At volume steady state, water is cycling across the plasma membrane in response to metabolic transport activity. PMID:22261073

  14. Integrative analyses of genetic variation in enzyme activities of primary carbohydrate metabolism reveal distinct modes of regulation in Arabidopsis thaliana

    PubMed Central

    Keurentjes, Joost JB; Sulpice, Ronan; Gibon, Yves; Steinhauser, Marie-Caroline; Fu, Jingyuan; Koornneef, Maarten; Stitt, Mark; Vreugdenhil, Dick

    2008-01-01

    Background Plant primary carbohydrate metabolism is complex and flexible, and is regulated at many levels. Changes of transcript levels do not always lead to changes in enzyme activities, and these do not always affect metabolite levels and fluxes. To analyze interactions between these three levels of function, we have performed parallel genetic analyses of 15 enzyme activities involved in primary carbohydrate metabolism, transcript levels for their encoding structural genes, and a set of relevant metabolites. Quantitative analyses of each trait were performed in the Arabidopsis thaliana Ler × Cvi recombinant inbred line (RIL) population and subjected to correlation and quantitative trait locus (QTL) analysis. Results Traits affecting primary metabolism were often correlated, possibly due to developmental control affecting multiple genes, enzymes, or metabolites. Moreover, the activity QTLs of several enzymes co-localized with the expression QTLs (eQTLs) of their structural genes, or with metabolite accumulation QTLs of their substrates or products. In addition, many trait-specific QTLs were identified, revealing that there is also specific regulation of individual metabolic traits. Regulation of enzyme activities often occurred through multiple loci, involving both cis- and trans-acting transcriptional or post-transcriptional control of structural genes, as well as independently of the structural genes. Conclusion Future studies of the regulatory processes in primary carbohydrate metabolism will benefit from an integrative genetic analysis of gene transcription, enzyme activity, and metabolite content. The multiparallel QTL analyses of the various interconnected transducers of biological information flow, described here for the first time, can assist in determining the causes and consequences of genetic regulation at different levels of complex biological systems. PMID:18710526

  15. Revealed social preference for potable groundwater: An Eastern Iowa case study

    NASA Astrophysics Data System (ADS)

    Raunikar, R. P.; Bernknopf, R. L.; Forney, W.; Mishra, S.

    2011-12-01

    The spatially explicit land use and land cover information provided by Landsat moderate-resolution land imagery (MRLI) is needed to more efficiently balance the production of goods and services over landscapes. For example, economic trade-offs are needed to provide both clean groundwater resources and other non-environmental goods and services produced by activities that affect the vadose zone and thus contribute to contamination of groundwater. These trade-off choices are made by numerous economic agents and are constrained by many social institutions including governmental regulations at many levels, contractual obligations and traditions. In effect, on a social level, society acts as if it values groundwater by foregoing other goods to protect these resources. The result of the protection afforded to groundwater resources is observable by measuring contamination in well samples. This observed level of groundwater contamination risk is the revealed preference of society as a whole for clean groundwater. We observed the risk of groundwater contamination in a sampling of well data from our study area (35 counties of Eastern Iowa.) We used a proportional hazard model to quantify the nitrate contamination survival implied by the panel of 19,873 well data, where remaining below a 10 mg/ml maximum contamination level (MCL) is defined as survival. We tested the data for evidence that the levels of protection provided to these resources is correlated with aquifer and vadose zone characteristics and geographic location and whether it changed over time and with economic and other conditions. We demonstrate the use of a nitrate conditioned hazard function for projecting the survival of wells based on nitrate exposure information over the 1940 to 2010 time period. We discuss results of simulations of the survival process that demonstrate the economic significance of this approach. We find that aquifer survival has been significantly improving over time. The principle of

  16. Prodigiosin inhibits motility and activates bacterial cell death revealing molecular biomarkers of programmed cell death.

    PubMed

    Darshan, N; Manonmani, H K

    2016-12-01

    The antimicrobial activity of prodigiosin from Serratia nematodiphila darsh1, a bacterial pigment was tested against few food borne bacterial pathogens Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. The mode of action of prodigiosin was studied. Prodigiosin induced bactericidal activity indicating a stereotypical set of biochemical and morphological feature of Programmed cell death (PCD). PCD involves DNA fragmentation, generation of ROS, and expression of a protein with caspase-like substrate specificity in bacterial cells. Prodigiosin was observed to be internalized into bacterial cells and was localized predominantly in the membrane and the nuclear fraction, thus, facilitating intracellular trafficking and then binding of prodigiosin to the bacterial DNA. Corresponding to an increasing concentration of prodigiosin, the level of certain proteases were observed to increase in bacteria studied, thus initiating the onset of PCD. Prodigiosin at a sub-inhibitory concentration inhibits motility of pathogens. Our observations indicated that prodigiosin could be a promising antibacterial agent and could be used in the prevention of bacterial infections. PMID:27460563

  17. Characterization of 10-hydroxygeraniol dehydrogenase from Catharanthus roseus reveals cascaded enzymatic activity in iridoid biosynthesis.

    PubMed

    Krithika, Ramakrishnan; Srivastava, Prabhakar Lal; Rani, Bajaj; Kolet, Swati P; Chopade, Manojkumar; Soniya, Mantri; Thulasiram, Hirekodathakallu V

    2015-01-01

    Catharanthus roseus [L.] is a major source of the monoterpene indole alkaloids (MIAs), which are of significant interest due to their therapeutic value. These molecules are formed through an intermediate, cis-trans-nepetalactol, a cyclized product of 10-oxogeranial. One of the key enzymes involved in the biosynthesis of MIAs is an NAD(P)(+) dependent oxidoreductase system, 10-hydroxygeraniol dehydrogenase (Cr10HGO), which catalyses the formation of 10-oxogeranial from 10-hydroxygeraniol via 10-oxogeraniol or 10-hydroxygeranial. This work describes the cloning and functional characterization of Cr10HGO from C. roseus and its role in the iridoid biosynthesis. Substrate specificity studies indicated that, Cr10HGO has good activity on substrates such as 10-hydroxygeraniol, 10-oxogeraniol or 10-hydroxygeranial over monohydroxy linear terpene derivatives. Further it was observed that incubation of 10-hydroxygeraniol with Cr10HGO and iridoid synthase (CrIDS) in the presence of NADP(+) yielded a major metabolite, which was characterized as (1R, 4aS, 7S, 7aR)-nepetalactol by comparing its retention time, mass fragmentation pattern, and co-injection studies with that of the synthesized compound. These results indicate that there is concerted activity of Cr10HGO with iridoid synthase in the formation of (1R, 4aS, 7S, 7aR)-nepetalactol, an important intermediate in iridoid biosynthesis. PMID:25651761

  18. Characterization of 10-Hydroxygeraniol Dehydrogenase from Catharanthus roseus Reveals Cascaded Enzymatic Activity in Iridoid Biosynthesis

    PubMed Central

    Krithika, Ramakrishnan; Srivastava, Prabhakar Lal; Rani, Bajaj; Kolet, Swati P.; Chopade, Manojkumar; Soniya, Mantri; Thulasiram, Hirekodathakallu V.

    2015-01-01

    Catharanthus roseus [L.] is a major source of the monoterpene indole alkaloids (MIAs), which are of significant interest due to their therapeutic value. These molecules are formed through an intermediate, cis-trans-nepetalactol, a cyclized product of 10-oxogeranial. One of the key enzymes involved in the biosynthesis of MIAs is an NAD(P)+ dependent oxidoreductase system, 10-hydroxygeraniol dehydrogenase (Cr10HGO), which catalyses the formation of 10-oxogeranial from 10-hydroxygeraniol via 10-oxogeraniol or 10-hydroxygeranial. This work describes the cloning and functional characterization of Cr10HGO from C. roseus and its role in the iridoid biosynthesis. Substrate specificity studies indicated that, Cr10HGO has good activity on substrates such as 10-hydroxygeraniol, 10-oxogeraniol or 10-hydroxygeranial over monohydroxy linear terpene derivatives. Further it was observed that incubation of 10-hydroxygeraniol with Cr10HGO and iridoid synthase (CrIDS) in the presence of NADP+ yielded a major metabolite, which was characterized as (1R, 4aS, 7S, 7aR)-nepetalactol by comparing its retention time, mass fragmentation pattern, and co-injection studies with that of the synthesized compound. These results indicate that there is concerted activity of Cr10HGO with iridoid synthase in the formation of (1R, 4aS, 7S, 7aR)-nepetalactol, an important intermediate in iridoid biosynthesis. PMID:25651761

  19. Length and activity of the root apical meristem revealed in vivo by infrared imaging.

    PubMed

    Bizet, François; Hummel, Irène; Bogeat-Triboulot, Marie-Béatrice

    2015-03-01

    Understanding how cell division and cell elongation influence organ growth and development is a long-standing issue in plant biology. In plant roots, most of the cell divisions occur in a short and specialized region, the root apical meristem (RAM). Although RAM activity has been suggested to be of high importance to understand how roots grow and how the cell cycle is regulated, few experimental and numeric data are currently available. The characterization of the RAM is difficult and essentially based upon cell length measurements through destructive and time-consuming microscopy approaches. Here, a new non-invasive method is described that couples infrared light imaging and kinematic analyses and that allows in vivo measurements of the RAM length. This study provides a detailed description of the RAM activity, especially in terms of cell flux and cell division rate. We focused on roots of hydroponic grown poplars and confirmed our method on maize roots. How the RAM affects root growth rate is studied by taking advantage of the high inter-individual variability of poplar root growth. An osmotic stress was applied and did not significantly affect the RAM length, highlighting its homeostasis in short to middle-term responses. The methodology described here simplifies a lot experimental procedures, allows an increase in the number of individuals that can be taken into account in experiments, and means new experiments can be formulated that allow temporal monitoring of the RAM length. PMID:25540436

  20. Aberrant spontaneous brain activity in chronic tinnitus patients revealed by resting-state functional MRI

    PubMed Central

    Chen, Yu-Chen; Zhang, Jian; Li, Xiao-Wei; Xia, Wenqing; Feng, Xu; Gao, Bo; Ju, Sheng-Hong; Wang, Jian; Salvi, Richard; Teng, Gao-Jun

    2014-01-01

    Objective The neural mechanisms that give rise to the phantom sound of tinnitus are poorly understood. This study aims to investigate whether aberrant spontaneous brain activity exists in chronic tinnitus patients using resting-state functional magnetic resonance imaging (fMRI) technique. Materials and methods A total of 31 patients with chronic tinnitus patients and 32 healthy age-, sex-, and education-matched healthy controls were prospectively examined. Both groups had normal hearing thresholds. We calculated the amplitude of low-frequency fluctuations (ALFFs) of fMRI signals to measure spontaneous neuronal activity and detect the relationship between fMRI information and clinical data of tinnitus. Results Compared with healthy controls, we observed significant increased ALFF within several selected regions including the right middle temporal gyrus (MTG), right superior frontal gyrus (SFG), and right angular gyrus; decreased ALFF was detected in the left cuneus, right middle occipital gyrus and bilateral thalamus. Moreover, tinnitus distress correlated positively with increased ALFF in right MTG and right SFG; tinnitus duration correlated positively with higher ALFF values in right SFG. Conclusions The present study confirms that chronic tinnitus patients have aberrant ALFF in many brain regions, which is associated with specific clinical tinnitus characteristics. ALFF disturbance in specific brain regions might be used to identify the neuro-pathophysiological mechanisms in chronic tinnitus patients. PMID:25379434

  1. Length and activity of the root apical meristem revealed in vivo by infrared imaging

    PubMed Central

    Bizet, François; Hummel, Irène; Bogeat-Triboulot, Marie-Béatrice

    2015-01-01

    Understanding how cell division and cell elongation influence organ growth and development is a long-standing issue in plant biology. In plant roots, most of the cell divisions occur in a short and specialized region, the root apical meristem (RAM). Although RAM activity has been suggested to be of high importance to understand how roots grow and how the cell cycle is regulated, few experimental and numeric data are currently available. The characterization of the RAM is difficult and essentially based upon cell length measurements through destructive and time-consuming microscopy approaches. Here, a new non-invasive method is described that couples infrared light imaging and kinematic analyses and that allows in vivo measurements of the RAM length. This study provides a detailed description of the RAM activity, especially in terms of cell flux and cell division rate. We focused on roots of hydroponic grown poplars and confirmed our method on maize roots. How the RAM affects root growth rate is studied by taking advantage of the high inter-individual variability of poplar root growth. An osmotic stress was applied and did not significantly affect the RAM length, highlighting its homeostasis in short to middle-term responses. The methodology described here simplifies a lot experimental procedures, allows an increase in the number of individuals that can be taken into account in experiments, and means new experiments can be formulated that allow temporal monitoring of the RAM length. PMID:25540436

  2. Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in diffuse large B-cell lymphoma.

    PubMed

    Lock, Frances E; Rebollo, Rita; Miceli-Royer, Katharine; Gagnier, Liane; Kuah, Sabrina; Babaian, Artem; Sistiaga-Poveda, Maialen; Lai, C Benjamin; Nemirovsky, Oksana; Serrano, Isabel; Steidl, Christian; Karimi, Mohammad M; Mager, Dixie L

    2014-08-26

    Remnants of ancient transposable elements (TEs) are abundant in mammalian genomes. These sequences harbor multiple regulatory motifs and hence are capable of influencing expression of host genes. In response to environmental changes, TEs are known to be released from epigenetic repression and to become transcriptionally active. Such activation could also lead to lineage-inappropriate activation of oncogenes, as one study described in Hodgkin lymphoma. However, little further evidence for this mechanism in other cancers has been reported. Here, we reanalyzed whole transcriptome data from a large cohort of patients with diffuse large B-cell lymphoma (DLBCL) compared with normal B-cell centroblasts to detect genes ectopically expressed through activation of TE promoters. We have identified 98 such TE-gene chimeric transcripts that were exclusively expressed in primary DLBCL cases and confirmed several in DLBCL-derived cell lines. We further characterized a TE-gene chimeric transcript involving a fatty acid-binding protein gene (LTR2-FABP7), normally expressed in brain, that was ectopically expressed in a subset of DLBCL patients through the use of an endogenous retroviral LTR promoter of the LTR2 family. The LTR2-FABP7 chimeric transcript encodes a novel chimeric isoform of the protein with characteristics distinct from native FABP7. In vitro studies reveal a dependency for DLBCL cell line proliferation and growth on LTR2-FABP7 chimeric protein expression. Taken together, these data demonstrate the significance of TEs as regulators of aberrant gene expression in cancer and suggest that LTR2-FABP7 may contribute to the pathogenesis of DLBCL in a subgroup of patients. PMID:25114248

  3. Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in diffuse large B-cell lymphoma

    PubMed Central

    Lock, Frances E.; Rebollo, Rita; Miceli-Royer, Katharine; Gagnier, Liane; Kuah, Sabrina; Babaian, Artem; Sistiaga-Poveda, Maialen; Lai, C. Benjamin; Nemirovsky, Oksana; Serrano, Isabel; Steidl, Christian; Karimi, Mohammad M.; Mager, Dixie L.

    2014-01-01

    Remnants of ancient transposable elements (TEs) are abundant in mammalian genomes. These sequences harbor multiple regulatory motifs and hence are capable of influencing expression of host genes. In response to environmental changes, TEs are known to be released from epigenetic repression and to become transcriptionally active. Such activation could also lead to lineage-inappropriate activation of oncogenes, as one study described in Hodgkin lymphoma. However, little further evidence for this mechanism in other cancers has been reported. Here, we reanalyzed whole transcriptome data from a large cohort of patients with diffuse large B-cell lymphoma (DLBCL) compared with normal B-cell centroblasts to detect genes ectopically expressed through activation of TE promoters. We have identified 98 such TE-gene chimeric transcripts that were exclusively expressed in primary DLBCL cases and confirmed several in DLBCL-derived cell lines. We further characterized a TE-gene chimeric transcript involving a fatty acid-binding protein gene (LTR2-FABP7), normally expressed in brain, that was ectopically expressed in a subset of DLBCL patients through the use of an endogenous retroviral LTR promoter of the LTR2 family. The LTR2-FABP7 chimeric transcript encodes a novel chimeric isoform of the protein with characteristics distinct from native FABP7. In vitro studies reveal a dependency for DLBCL cell line proliferation and growth on LTR2-FABP7 chimeric protein expression. Taken together, these data demonstrate the significance of TEs as regulators of aberrant gene expression in cancer and suggest that LTR2-FABP7 may contribute to the pathogenesis of DLBCL in a subgroup of patients. PMID:25114248

  4. Structure-activity relations of leucine derivatives reveal critical moieties for cellular uptake and activation of mTORC1-mediated signaling.

    PubMed

    Nagamori, Shushi; Wiriyasermkul, Pattama; Okuda, Suguru; Kojima, Naoto; Hari, Yoshiyuki; Kiyonaka, Shigeki; Mori, Yasuo; Tominaga, Hideyuki; Ohgaki, Ryuichi; Kanai, Yoshikatsu

    2016-04-01

    Among amino acids, leucine is a potential signaling molecule to regulate cell growth and metabolism by activating mechanistic target of rapamycin complex 1 (mTORC1). To reveal the critical structures of leucine molecule to activate mTORC1, we examined the structure-activity relationships of leucine derivatives in HeLa S3 cells for cellular uptake and for the induction of phosphorylation of p70 ribosomal S6 kinase 1 (p70S6K), a downstream effector of mTORC1. The activation of mTORC1 by leucine and its derivatives was the consequence of two successive events: the cellular uptake by L-type amino acid transporter 1 (LAT1) responsible for leucine uptake in HeLa S3 cells and the activation of mTORC1 following the transport. The structural requirement for the recognition by LAT1 was to have carbonyl oxygen, alkoxy oxygen of carboxyl group, amino group and hydrophobic side chain. In contrast, the requirement for mTORC1 activation was more rigorous. It additionally required fixed distance between carbonyl oxygen and alkoxy oxygen of carboxyl group, and amino group positioned at α-carbon. L-Configuration in chirality and appropriate length of side chain with a terminal isopropyl group were also important. This confirmed that LAT1 itself is not a leucine sensor. Some specialized leucine sensing mechanism with rigorous requirement for agonistic structures should exist inside the cells because leucine derivatives not transported by LAT1 did not activate mTORC1. Because LAT1-mTOR axis is involved in the regulation of cell growth and cancer progression, the results from this study may provide a new insight into therapeutics targeting both LAT1 and leucine sensor. PMID:26724922

  5. Actinomycin D binding mode reveals the basis for its potent HIV-1 and cancer activity

    NASA Astrophysics Data System (ADS)

    Paramanathan, Thayaparan; Vladescu, Ioana D.; McCauley, Micah J.; Rouzina, Ioulia; Williams, Mark C.

    2011-03-01

    Actinomycin D (ActD) is one of the most studied antibiotics, which has been used as an anti-cancer agent and also shown to inhibit HIV reverse transcription. Initial studies with ActD established that it intercalates double stranded DNA (dsDNA). However, recent studies have shown that ActD binds with even higher affinity to single stranded DNA (ssDNA). In our studies we use optical tweezers to stretch and hold single dsDNA molecule at constant force in the presence of varying ActD concentrations until the binding reaches equilibrium. The change in dsDNA length upon ActD binding measured as a function of time yields the rate of binding in addition to the equilibrium lengthening of DNA. The results suggest extremely slow kinetics, on the order of several minutes and 0.52 +/- 0.06 μ M binding affinity. Holding DNA at constant force while stretching and relaxing suggests that ActD binds to two single strands that are close to each other rather than to pure dsDNA or ssDNA. This suggests that biological activity of ActD that contributes towards the inhibition of cellular replication is due to its ability to bind at DNA bubbles during RNA transcription, thereby stalling the transcription process.

  6. Expression and activity analysis reveal that heme oxygenase (decycling) 1 is associated with blue egg formation.

    PubMed

    Wang, Z P; Liu, R F; Wang, A R; Li, J Y; Deng, X M

    2011-04-01

    Biliverdin is responsible for the coloration of blue eggs and is secreted onto the eggshell by the shell gland. Previous studies confirmed that a significant difference exists in biliverdin content between blue eggs and brown eggs, although the reasons are still unknown. Because the pigment is derived from oxidative degradation of heme catalyzed by heme oxygenase (HO), this study compared heme oxygenase (decycling) 1 (HMOX1), the gene encoding HO expression and HO activity, in the shell glands of the Dongxiang blue-shelled chicken (n = 12) and the Dongxiang brown-shelled chicken (n = 12). Results showed that HMOX1 was highly expressed at the mRNA (1.58-fold; P < 0.05) and protein levels in blue-shelled chickens compared with brown-shelled chickens. At the functional level, blue-shelled chickens also showed 1.40-fold (P < 0.05) higher HO activity than brown-shelled chickens. To explore the reasons for the differential expression of HMOX1, an association study of 6 SNP capturing the majority of HMOX1 variants with the blue egg coloration was performed. Results showed no significant association between SNP and the blue egg coloration in HMOX1 (P > 0.05). Taken together, these results show that blue egg formation is associated with high expression of HMOX1 in the shell gland of Dongxiang blue-shelled chickens, and suggest that differential expression of HMOX1 in the 2 groups of chickens is most likely to arise from an alteration in the trans-acting factor. PMID:21406370

  7. Quantitative cell signalling analysis reveals down-regulation of MAPK pathway activation in colorectal cancer.

    PubMed

    Gulmann, Christian; Sheehan, Katherine M; Conroy, Ronán M; Wulfkuhle, Julia D; Espina, Virginia; Mullarkey, Michelle J; Kay, Elaine W; Liotta, Lance A; Petricoin, Emanuel F

    2009-08-01

    Mitogen-activated protein kinases (MAPK) are considered to play significant roles in colonic carcinogenesis and kinase inhibitor therapy has been proposed as a potential tool in the treatment of this disease. Reverse-phase microarray assays using phospho-specific antibodies can directly measure levels of phosphorylated protein isoforms. In the current study, samples from 35 cases of untreated colorectal cancer colectomies were laser capture-microdissected to isolate epithelium and stroma from cancer as well as normal (i.e. uninvolved) mucosa. Lysates generated from these four tissue types were spotted onto reverse-phase protein microarrays and probed with a panel of antibodies to ERK, p-ERK, p38, p-p38, p-JNK, MEK and p-MEK. Whereas total protein levels were unchanged, or slightly elevated (p38, p = 0.0025) in cancers, activated isoforms, including p-ERK, p-p38 and p-JNK, were decreased two- to four-fold in cancers compared with uninvolved mucosa (p < 0.0023 in all cases except for p-JNK in epithelium, where decrement was non-significant). This was backed up by western blotting. Dukes' stage B and C cancers displayed lower p-ERK and p-p38 expression than Dukes' stage A cancers, although this was not statistically significant. It is concluded that MAPK activity may be down-regulated in colorectal cancer and that further exploration of inhibitory therapy in this system should be carefully evaluated if this finding is confirmed in larger series. PMID:19396842

  8. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors.

    PubMed

    Zhou, Hui; Lin-Wang, Kui; Wang, Huiliang; Gu, Chao; Dare, Andrew P; Espley, Richard V; He, Huaping; Allan, Andrew C; Han, Yuepeng

    2015-04-01

    Anthocyanin pigmentation is an important consumer trait in peach (Prunus persica). In this study, the genetic basis of the blood-flesh trait was investigated using the cultivar Dahongpao, which shows high levels of cyanidin-3-glucoside in the mesocarp. Elevation of anthocyanin levels in the flesh was correlated with the expression of an R2R3 MYB transcription factor, PpMYB10.1. However, PpMYB10.1 did not co-segregate with the blood-flesh trait. The blood-flesh trait was mapped to a 200-kb interval on peach linkage group (LG) 5. Within this interval, a gene encoding a NAC domain transcription factor (TF) was found to be highly up-regulated in blood-fleshed peaches when compared with non-red-fleshed peaches. This NAC TF, designated blood (BL), acts as a heterodimer with PpNAC1 which shows high levels of expression in fruit at late developmental stages. We show that the heterodimer of BL and PpNAC1 can activate the transcription of PpMYB10.1, resulting in anthocyanin pigmentation in tobacco. Furthermore, silencing the BL gene reduces anthocyanin pigmentation in blood-fleshed peaches. The transactivation activity of the BL-PpNAC1 heterodimer is repressed by a SQUAMOSA promoter-binding protein-like TF, PpSPL1. Low levels of PpMYB10.1 expression in fruit at early developmental stages is probably attributable to lower levels of expression of PpNAC1 plus the presence of high levels of repressors such as PpSPL1. We present a mechanism whereby BL is the key gene for the blood-flesh trait in peach via its activation of PpMYB10.1 in maturing fruit. Partner TFs such as basic helix-loop-helix proteins and NAC1 are required, as is the removal of transcriptional repressors. PMID:25688923

  9. Extensive small-angle X-ray scattering studies of blood coagulation factor VIIa reveal interdomain flexibility.

    PubMed

    Mosbaek, Charlotte Rode; Nolan, David; Persson, Egon; Svergun, Dmitri I; Bukrinsky, Jens Thostrup; Vestergaard, Bente

    2010-11-16

    Blood coagulation factor VIIa (FVIIa) is used in the treatment of replacement therapy resistant hemophilia patients, and FVIIa is normally activated upon complex formation with tissue factor (TF), potentially in context with structural rearrangements. The solution behavior of uncomplexed FVIIa is important for understanding the mechanism of activation and for the stability and activity of the pharmaceutical product. However, crystal structures of FVIIa in complex with TF and of truncated free FVIIa reveal different overall conformations while previous small-angle scattering studies suggest FVIIa always to be fully extended in solution. Here, small-angle X-ray scattering analysis of multiple forms of FVIIa and TF under several experimental conditions elaborate extensively on the understanding of the solution behavior of FVIIa. We reveal significant FVIIa domain flexibility in solution, whereas TF has a well-defined conformation. Unspecific formation of dimers of FVIIa is also observed and varies with experimental conditions. In particular, active site-inhibited FVIIa displays a distinct solution behavior different from that of uninhibited FVIIa, which may reflect structural rearrangements causing resistance to activation, thereby emphasizing the connection between the distribution of different conformations of FVII and the mechanism of activation. PMID:20873866

  10. Coseismic landslides reveal near-surface rock strength in a high-relief tectonically active setting

    USGS Publications Warehouse

    Gallen, Sean F; Clark, Marin K; Godt, Jonathan W.

    2014-01-01

    We present quantitative estimates of near-surface rock strength relevant to landscape evolution and landslide hazard assessment for 15 geologic map units of the Longmen Shan, China. Strength estimates are derived from a novel method that inverts earthquake peak ground acceleration models and coseismic landslide inventories to obtain material proper- ties and landslide thickness. Aggregate rock strength is determined by prescribing a friction angle of 30° and solving for effective cohesion. Effective cohesion ranges are from 70 kPa to 107 kPa for 15 geologic map units, and are approximately an order of magnitude less than typical laboratory measurements, probably because laboratory tests on hand-sized specimens do not incorporate the effects of heterogeneity and fracturing that likely control near-surface strength at the hillslope scale. We find that strength among the geologic map units studied varies by less than a factor of two. However, increased weakening of units with proximity to the range front, where precipitation and active fault density are the greatest, suggests that cli- matic and tectonic factors overwhelm lithologic differences in rock strength in this high-relief tectonically active setting.

  11. Cortical Effects on Ipsilateral Hindlimb Muscles Revealed with Stimulus-Triggered Averaging of EMG Activity.

    PubMed

    Messamore, William G; Van Acker, Gustaf M; Hudson, Heather M; Zhang, Hongyu Y; Kovac, Anthony; Nazzaro, Jules; Cheney, Paul D

    2016-07-01

    While a large body of evidence supports the view that ipsilateral motor cortex may make an important contribution to normal movements and to recovery of function following cortical injury (Chollet et al. 1991; Fisher 1992; Caramia et al. 2000; Feydy et al. 2002), relatively little is known about the properties of output from motor cortex to ipsilateral muscles. Our aim in this study was to characterize the organization of output effects on hindlimb muscles from ipsilateral motor cortex using stimulus-triggered averaging of EMG activity. Stimulus-triggered averages of EMG activity were computed from microstimuli applied at 60-120 μA to sites in both contralateral and ipsilateral M1 of macaque monkeys during the performance of a hindlimb push-pull task. Although the poststimulus effects (PStEs) from ipsilateral M1 were fewer in number and substantially weaker, clear and consistent effects were obtained at an intensity of 120 μA. The mean onset latency of ipsilateral poststimulus facilitation was longer than contralateral effects by an average of 0.7 ms. However, the shortest latency effects in ipsilateral muscles were as short as the shortest latency effects in the corresponding contralateral muscles suggesting a minimal synaptic linkage that is equally direct in both cases. PMID:26088970

  12. Proteomic analysis of tylosin-resistant Mycoplasma gallisepticum reveals enzymatic activities associated with resistance.

    PubMed

    Xia, Xi; Wu, Congming; Cui, Yaowen; Kang, Mengjiao; Li, Xiaowei; Ding, Shuangyang; Shen, Jianzhong

    2015-01-01

    Mycoplasma gallisepticum is a significant pathogenic bacterium that infects poultry, causing chronic respiratory disease and sinusitis in chickens and turkeys, respectively. M. gallisepticum infection poses a substantial economic threat to the poultry industry, and this threat is made worse by the emergence of antibiotic-resistant strains. The mechanisms of resistance are often difficult to determine; for example, little is known about antibiotic resistance of M. gallisepticum at the proteome level. In this study, we performed comparative proteomic analyses of an antibiotic (tylosin)-resistant M. gallisepticum mutant and a susceptible parent strain using a combination of two-dimensional differential gel electrophoresis and nano-liquid chromatography-quadrupole-time of flight mass spectrometry. Thirteen proteins were identified as differentially expressed in the resistant strain compared to the susceptible strain. Most of these proteins were related to catalytic activity, including catalysis that promotes the formylation of initiator tRNA and energy production. Elongation factors Tu and G were over-expressed in the resistant strains, and this could promote the binding of tRNA to ribosomes and catalyze ribosomal translocation, the coordinated movement of tRNA, and conformational changes in the ribosome. Taken together, our results indicate that M. gallisepticum develops resistance to tylosin by regulating associated enzymatic activities. PMID:26584633

  13. Proteomic analysis of tylosin-resistant Mycoplasma gallisepticum reveals enzymatic activities associated with resistance

    PubMed Central

    Xia, Xi; Wu, Congming; Cui, Yaowen; Kang, Mengjiao; Li, Xiaowei; Ding, Shuangyang; Shen, Jianzhong

    2015-01-01

    Mycoplasma gallisepticum is a significant pathogenic bacterium that infects poultry, causing chronic respiratory disease and sinusitis in chickens and turkeys, respectively. M. gallisepticum infection poses a substantial economic threat to the poultry industry, and this threat is made worse by the emergence of antibiotic-resistant strains. The mechanisms of resistance are often difficult to determine; for example, little is known about antibiotic resistance of M. gallisepticum at the proteome level. In this study, we performed comparative proteomic analyses of an antibiotic (tylosin)-resistant M. gallisepticum mutant and a susceptible parent strain using a combination of two-dimensional differential gel electrophoresis and nano-liquid chromatography-quadrupole-time of flight mass spectrometry. Thirteen proteins were identified as differentially expressed in the resistant strain compared to the susceptible strain. Most of these proteins were related to catalytic activity, including catalysis that promotes the formylation of initiator tRNA and energy production. Elongation factors Tu and G were over-expressed in the resistant strains, and this could promote the binding of tRNA to ribosomes and catalyze ribosomal translocation, the coordinated movement of tRNA, and conformational changes in the ribosome. Taken together, our results indicate that M. gallisepticum develops resistance to tylosin by regulating associated enzymatic activities. PMID:26584633

  14. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site.

    PubMed

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called 'catalytic residues' are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. PMID:25902402

  15. Laser speckle contrast reveals cerebral blood flow dynamics evoked by optogenetically controlled neuronal activity

    NASA Astrophysics Data System (ADS)

    Li, Nan; Thakor, Nitish V.; Pelled, Galit

    2013-03-01

    As a critical basis of functional brain imaging, neurovascular coupling describes the link between neuronal and hemodynamic changes. The majority of in vivo neurovascular coupling studies was performed by inducing sensory stimulation via afferent inputs. Unfortunately such an approach results in recruiting of multiple types of cells, which confounds the explanation of neuronal roles in stimulus evoked hemodynamic changes. Recently optogenetics has emerged to provide immediate control of neurons by exciting or inhibiting genetically engineered neurons expressing light sensitive proteins. However, there is a need for optical methods capable of imaging the concurrent hemodynamic changes. We utilize laser speckle contrast imaging (LSCI) to obtain high resolution display of cerebral blood flow (CBF) in the vicinity of the targeted neural population. LSCI is a minimally invasive method for imaging CBF in microvessels through thinned skull, and produces images with high spatiotemporal resolution, wide field of view. In the integrated system light sources with different wavelengths and band-passing/blocking filters were used to allow simultaneous optical manipulation of neuronal activities and optical imaging of corresponding CBF. Experimental studies were carried out in a rodent model expressing channalrhodopsin (ChR2) in excitatory neurons in the somatosensory cortex (S1). The results demonstrated significant increases of CBF in response to ChR2 stimulation (exciting neuronal firing) comparable to the CBF response to contralateral forepaw stimulation. The approach promises to be an exciting minimally invasive method to study neurovascular coupling. The complete system provides a novel approach for broad neuroscience applications.

  16. Behavioral Analysis of Dopaminergic Activation in Zebrafish and Rats Reveals Similar Phenotypes.

    PubMed

    Ek, Fredrik; Malo, Marcus; Åberg Andersson, Madelene; Wedding, Christoffer; Kronborg, Joel; Svensson, Peder; Waters, Susanna; Petersson, Per; Olsson, Roger

    2016-05-18

    Zebrafish is emerging as a complement to mammals in behavioral studies; however, there is a lack of comparative studies with rodents and humans to establish the zebrafish as a predictive translational model. Here we present a detailed phenotype evaluation of zebrafish larvae, measuring 300-3000 variables and analyzing them using multivariate analysis to identify the most important ones for further evaluations. The dopamine agonist apomorphine has previously been shown to have a complex U-shaped dose-response relationship in the variable distance traveled. In this study, we focused on breaking down distance traveled into more detailed behavioral phenotypes for both zebrafish and rats and identified in the multivariate analysis low and high dose phenotypes with characteristic behavioral features. Further analysis of single parameters also identified an increased activity at the lowest concentration indicative of a U-shaped dose-response. Apomorphine increased the distance of each swim movement (bout) at both high and low doses, but the underlying behavior of this increase is different; at high dose, both bout duration and frequency increased whereas bout max speed was higher at low dose. Larvae also displayed differences in place preference. The low dose phenotype spent more time in the center, indicative of an anxiolytic effect, while the high-dose phenotype had a wall preference. These dose-dependent effects corroborated findings in a parallel rat study and previous observations in humans. The translational value of pharmacological zebrafish studies was further evaluated by comparing the amino acid sequence of the dopamine receptors (D1-D4), between zebrafish, rats and humans. Humans and zebrafish share 100% of the amino acids in the binding site for D1 and D3 whereas D2 and D4 receptors share 85-95%. Molecular modeling of dopamine D2 and D4 receptors indicated that nonconserved amino acids have limited influence on important ligand-receptor interactions. PMID

  17. Altered Spontaneous Activity in Patients with Persistent Somatoform Pain Disorder Revealed by Regional Homogeneity

    PubMed Central

    Yan, Chao; Lu, Jing; Li, Xuzhou; Tang, Chaozheng; Fan, Mingxia; Luo, Yanli

    2016-01-01

    Persistent somatoform pain disorder (PSPD) is a mental disorder un-associated with any somatic injury and can cause severe somatosensory and emotional impairments in patients. However, so far, the neuro-pathophysiological mechanism of the functional impairments in PSPD is still unclear. The present study assesses the difference in regional spontaneous activity between PSPD and healthy controls (HC) during a resting state, in order to elucidate the neural mechanisms underlying PSPD. Resting-state functional Magnetic Resonance Imaging data were obtained from 13 PSPD patients and 23 age- and gender-matched HC subjects in this study. Kendall’s coefficient of concordance was used to measure regional homogeneity (ReHo), and a two-sample t-test was subsequently performed to investigate the ReHo difference between PSPD and HC. Additionally, the correlations between the mean ReHo of each survived area and the clinical assessments were further analyzed. Compared with the HC group, patients with PSPD exhibited decreased ReHo in the bilateral primary somatosensory cortex, posterior cerebellum, and occipital lobe, while increased ReHo in the prefrontal cortex (PFC) and default mode network (including the medial PFC, right inferior parietal lobe (IPL), and left supramarginal gyrus). In addition, significant positive correlations were found between the mean ReHo of both right IPL and left supramarginal gyrus and participants’ Self-Rating Anxiety Scale (SAS) scores, and between the mean ReHo of the left middle frontal gyrus and Visual Analogue Scale (VAS) scores. Our results suggest that abnormal spontaneous brain activity in specific brain regions during a resting state may be associated with the dysfunctions in pain, memory and emotional processing commonly observed in patients with PSPD. These findings help us to understand the neural mechanisms underlying PSPD and suggest that the ReHo metric could be used as a clinical marker for PSPD. PMID:26977802

  18. Altered Spontaneous Activity in Patients with Persistent Somatoform Pain Disorder Revealed by Regional Homogeneity.

    PubMed

    Huang, Tianming; Zhao, Zhiyong; Yan, Chao; Lu, Jing; Li, Xuzhou; Tang, Chaozheng; Fan, Mingxia; Luo, Yanli

    2016-01-01

    Persistent somatoform pain disorder (PSPD) is a mental disorder un-associated with any somatic injury and can cause severe somatosensory and emotional impairments in patients. However, so far, the neuro-pathophysiological mechanism of the functional impairments in PSPD is still unclear. The present study assesses the difference in regional spontaneous activity between PSPD and healthy controls (HC) during a resting state, in order to elucidate the neural mechanisms underlying PSPD. Resting-state functional Magnetic Resonance Imaging data were obtained from 13 PSPD patients and 23 age- and gender-matched HC subjects in this study. Kendall's coefficient of concordance was used to measure regional homogeneity (ReHo), and a two-sample t-test was subsequently performed to investigate the ReHo difference between PSPD and HC. Additionally, the correlations between the mean ReHo of each survived area and the clinical assessments were further analyzed. Compared with the HC group, patients with PSPD exhibited decreased ReHo in the bilateral primary somatosensory cortex, posterior cerebellum, and occipital lobe, while increased ReHo in the prefrontal cortex (PFC) and default mode network (including the medial PFC, right inferior parietal lobe (IPL), and left supramarginal gyrus). In addition, significant positive correlations were found between the mean ReHo of both right IPL and left supramarginal gyrus and participants' Self-Rating Anxiety Scale (SAS) scores, and between the mean ReHo of the left middle frontal gyrus and Visual Analogue Scale (VAS) scores. Our results suggest that abnormal spontaneous brain activity in specific brain regions during a resting state may be associated with the dysfunctions in pain, memory and emotional processing commonly observed in patients with PSPD. These findings help us to understand the neural mechanisms underlying PSPD and suggest that the ReHo metric could be used as a clinical marker for PSPD. PMID:26977802

  19. Climate impacts on human settlement and agricultural activities in northern Norway revealed through sediment biogeochemistry

    PubMed Central

    D’Anjou, Robert M.; Bradley, Raymond S.; Balascio, Nicholas L.; Finkelstein, David B.

    2012-01-01

    Disentangling the effects of climate change and anthropogenic activities on the environment is a major challenge in paleoenvironmental research. Here, we used fecal sterols and other biogeochemical compounds in lake sediments from northern Norway to identify both natural and anthropogenic signals of environmental change during the late Holocene. The area was first occupied by humans and their grazing animals at ∼2,250 ± 75 calendar years before 1950 AD (calendar years before present). The arrival of humans is indicated by an abrupt increase in coprostanol (and its epimer epicoprostanol) in the sediments and an associated increase in 5β-stigmastanol (and 5β-epistigmastanol), which resulted from human and animal feces washing into the lake. Human settlement was accompanied by an abrupt increase in landscape fires (indicated by the rise in pyrolytic polycyclic aromatic hydrocarbons) and a decline in woodland (registered by a change in n-alkane chain lengths from leaf waxes), accelerating a process that began earlier in the Holocene. Human activity and associated landscape changes in the region over the last two millennia were mainly driven by summer temperatures, as indicated by independent tree-ring reconstructions, although there were periods when socioeconomic factors played an equally important role. In this study, fecal sterols in lake sediments have been used to provide a record of human occupancy through time. This approach may be useful in many archeological studies, both to confirm the presence of humans and grazing animals, and to distinguish between anthropogenic and natural factors that have influenced the environment in the past. PMID:23185025

  20. Climate impacts on human settlement and agricultural activities in northern Norway revealed through sediment biogeochemistry

    NASA Astrophysics Data System (ADS)

    D'Anjou, Robert M.; Bradley, Raymond S.; Balascio, Nicholas L.; Finkelstein, David B.

    2012-12-01

    Disentangling the effects of climate change and anthropogenic activities on the environment is a major challenge in paleoenvironmental research. Here, we used fecal sterols and other biogeochemical compounds in lake sediments from northern Norway to identify both natural and anthropogenic signals of environmental change during the late Holocene. The area was first occupied by humans and their grazing animals at ∼2,250 ± 75 calendar years before 1950 AD (calendar years before present). The arrival of humans is indicated by an abrupt increase in coprostanol (and its epimer epicoprostanol) in the sediments and an associated increase in 5β-stigmastanol (and 5β-epistigmastanol), which resulted from human and animal feces washing into the lake. Human settlement was accompanied by an abrupt increase in landscape fires (indicated by the rise in pyrolytic polycyclic aromatic hydrocarbons) and a decline in woodland (registered by a change in n-alkane chain lengths from leaf waxes), accelerating a process that began earlier in the Holocene. Human activity and associated landscape changes in the region over the last two millennia were mainly driven by summer temperatures, as indicated by independent tree-ring reconstructions, although there were periods when socioeconomic factors played an equally important role. In this study, fecal sterols in lake sediments have been used to provide a record of human occupancy through time. This approach may be useful in many archeological studies, both to confirm the presence of humans and grazing animals, and to distinguish between anthropogenic and natural factors that have influenced the environment in the past.

  1. Climate impacts on human settlement and agricultural activities in northern Norway revealed through sediment biogeochemistry.

    PubMed

    D'Anjou, Robert M; Bradley, Raymond S; Balascio, Nicholas L; Finkelstein, David B

    2012-12-11

    Disentangling the effects of climate change and anthropogenic activities on the environment is a major challenge in paleoenvironmental research. Here, we used fecal sterols and other biogeochemical compounds in lake sediments from northern Norway to identify both natural and anthropogenic signals of environmental change during the late Holocene. The area was first occupied by humans and their grazing animals at ∼2,250 ± 75 calendar years before 1950 AD (calendar years before present). The arrival of humans is indicated by an abrupt increase in coprostanol (and its epimer epicoprostanol) in the sediments and an associated increase in 5β-stigmastanol (and 5β-epistigmastanol), which resulted from human and animal feces washing into the lake. Human settlement was accompanied by an abrupt increase in landscape fires (indicated by the rise in pyrolytic polycyclic aromatic hydrocarbons) and a decline in woodland (registered by a change in n-alkane chain lengths from leaf waxes), accelerating a process that began earlier in the Holocene. Human activity and associated landscape changes in the region over the last two millennia were mainly driven by summer temperatures, as indicated by independent tree-ring reconstructions, although there were periods when socioeconomic factors played an equally important role. In this study, fecal sterols in lake sediments have been used to provide a record of human occupancy through time. This approach may be useful in many archeological studies, both to confirm the presence of humans and grazing animals, and to distinguish between anthropogenic and natural factors that have influenced the environment in the past. PMID:23185025

  2. 101 Environmental Education Activities. Booklet 6--Social Studies Activities.

    ERIC Educational Resources Information Center

    Whitney, Helen, Comp.

    Based on the environment and directed at elementary and intermediate level students, 5 field trips are a significant part of the 12 social studies activities in the sixth booklet by the Upper Mississippi River ECO-Center outlining environmental and outdoor education activities. Most of the activities include objectives, activity description,…

  3. The Study of Animal Activity

    ERIC Educational Resources Information Center

    Westling, Bruce

    1971-01-01

    Describes how to measure the daily rhythm of activity (photoperiodism) of small mammals. Three methods for recording information are reviewed including instructions for making a recorder. Includes suggestions for activities and experiments. (PR)

  4. The Structure of the GM-CSF Receptor Complex Reveals a Distinct Mode of Cytokine Receptor Activation

    SciTech Connect

    Hansen, Guido; Hercus, Timothy R.; McClure, Barbara J.; Stomski, Frank C.; Dottore, Mara; Powell, Jason; Ramshaw, Hayley; Woodcock, Joanna M.; Xu, Yibin; Guthridge, Mark; McKinstry, William J.; Lopez, Angel F.; Parker, Michael W.

    2008-08-11

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that controls the production and function of blood cells, is deregulated in clinical conditions such as rheumatoid arthritis and leukemia, yet offers therapeutic value for other diseases. Its receptors are heterodimers consisting of a ligand-specific {alpha} subunit and a {beta}c subunit that is shared with the interleukin (IL)-3 and IL-5 receptors. How signaling is initiated remains an enigma. We report here the crystal structure of the human GM-CSF/GM-CSF receptor ternary complex and its assembly into an unexpected dodecamer or higher-order complex. Importantly, mutagenesis of the GM-CSF receptor at the dodecamer interface and functional studies reveal that dodecamer formation is required for receptor activation and signaling. This unusual form of receptor assembly likely applies also to IL-3 and IL-5 receptors, providing a structural basis for understanding their mechanism of activation and for the development of therapeutics.

  5. Toxicogenomic analysis of mainstream tobacco smoke-exposed mice reveals repression of plasminogen activator inhibitor-1 gene in heart.

    PubMed

    Halappanavar, Sabina; Stampfli, Martin R; Berndt-Weis, Lynn; Williams, Andrew; Douglas, George R; Yauk, Carole L

    2009-01-01

    Tobacco smoking is associated with cardiovascular pathology. However, the molecular mechanisms of tobacco smoke exposure that lead to initiation or exacerbation of cardiovascular disease are unclear. In this study, the effects of mainstream tobacco smoke (MTS) on global transcription in the heart were investigated. Male C57B1/CBA mice were exposed to MTS from 2 cigarettes daily, 5 days/wk for 6 or 12 wk. Mice were sacrificed immediately, or 6 wk following the last cigarette. High-density DNA microarrays were used to characterize global gene expression changes in whole heart. Fifteen genes were significantly differentially expressed following exposure to MTS. Among these genes, cytochrome P-450 1A1 (Cyp1A1) was upregulated by 12-fold, and Serpine-1 (plasminogen activator inhibitor-1, PAI-1) was downregulated by 1.7-fold. Concomitant increase in Cyp1A1 protein levels and decrease in total and active PAI-1 protein was observed in tissue extracts by Western blot assay and enzyme-linked immunosorbent assay (ELISA), respectively. Observed changes were transient and were partially reversed during break periods. Thus, gene expression profiling of heart tissue revealed a novel cardiovascular mechanism operating in response to MTS. Our results suggest a potential role for PAI-1 in MTS-induced cardiovascular pathology. PMID:18925475

  6. Potentially novel copper resistance genes in copper-enriched activated sludge revealed by metagenomic analysis.

    PubMed

    Li, Li-Guan; Cai, Lin; Zhang, Xu-Xiang; Zhang, Tong

    2014-12-01

    In this study, we utilized the Illumina high-throughput metagenomic approach to investigate diversity and abundance of both microbial community and copper resistance genes (CuRGs) in activated sludge (AS) which was enriched under copper selective stress up to 800 mg/L. The raw datasets (~3.5 Gb for each sample, i.e., the copper-enriched AS and the control AS) were merged and normalized for the BLAST analyses against the SILVA SSU rRNA gene database and self-constructed copper resistance protein database (CuRD). Also, the raw metagenomic sequences were assembled into contigs and analyzed based on Open Reading Frames (ORFs) to identify potentially novel copper resistance genes. Among the different resistance systems for copper detoxification under the high copper stress condition, the Cus system was the most enriched system. The results also indicated that genes encoding multi-copper oxidase played a more important role than those encoding efflux proteins. More significantly, several potentially novel copper resistance ORFs were identified by Pfam search and phylogenic analysis. This study demonstrated a new understanding of microbial-mediated copper resistance under high copper stress using high-throughput shotgun sequencing technique. PMID:25081552

  7. Analysis of Culex and Aedes mosquitoes in southwestern Nigeria revealed no West Nile virus activity

    PubMed Central

    Sule, Waidi Folorunso; Oluwayelu, Daniel Oladimeji

    2016-01-01

    Introduction Amplification and transmission of West Nile virus (WNV) by mosquitoes are driven by presence and number of viraemic/susceptible avian hosts. Methods In order to predict risk of WNV infection to humans, we collected mosquitoes from horse stables in Lagos and Ibadan, southwestern Nigeria. The mosquitoes were sorted and tested in pools with real-time RT-PCR to detect WNV (or flavivirus) RNA using WNV-specific primers and probes, as well as, pan-flavivirus-specific primers in two-step real-time RT-PCR. Minimum infection rate (MIR) was used to estimate mosquito infection rate. Results Only two genera of mosquitoes were caught (Culex, 98.9% and Aedes, 1.0%) totalling 4,112 females. None of the 424 mosquito pools tested was positive for WNV RNA; consequently the MIR was zero. Sequencing and BLAST analysis of amplicons detected in pan-flavivirus primer-mediated RT-PCR gave a consensus sequence of 28S rRNA of Culex quinquefasciatus suggesting integration of flaviviral RNA into mosquito genome. Conclusion While the latter finding requires further investigation, we conclude there was little or no risk of human infection with WNV in the study areas during sampling. There was predominance of Culex mosquito, a competent WNV vector, around horse stables in the study areas. However, mosquito surveillance needs to continue for prompt detection of WNV activity in mosquitoes. PMID:27279943

  8. Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics.

    PubMed

    Mo, Charlie Y; Manning, Sara A; Roggiani, Manuela; Culyba, Matthew J; Samuels, Amanda N; Sniegowski, Paul D; Goulian, Mark; Kohli, Rahul M

    2016-01-01

    The bacterial SOS response is a DNA damage repair network that is strongly implicated in both survival and acquired drug resistance under antimicrobial stress. The two SOS regulators, LexA and RecA, have therefore emerged as potential targets for adjuvant therapies aimed at combating resistance, although many open questions remain. For example, it is not well understood whether SOS hyperactivation is a viable therapeutic approach or whether LexA or RecA is a better target. Furthermore, it is important to determine which antimicrobials could serve as the best treatment partners with SOS-targeting adjuvants. Here we derived Escherichia coli strains that have mutations in either lexA or recA genes in order to cover the full spectrum of possible SOS activity levels. We then systematically analyzed a wide range of antimicrobials by comparing the mean inhibitory concentrations (MICs) and induced mutation rates for each drug-strain combination. We first show that significant changes in MICs are largely confined to DNA-damaging antibiotics, with strains containing a constitutively repressed SOS response impacted to a greater extent than hyperactivated strains. Second, antibiotic-induced mutation rates were suppressed when SOS activity was reduced, and this trend was observed across a wider spectrum of antibiotics. Finally, perturbing either LexA or RecA proved to be equally viable strategies for targeting the SOS response. Our work provides support for multiple adjuvant strategies, while also suggesting that the combination of an SOS inhibitor with a DNA-damaging antibiotic could offer the best potential for lowering MICs and decreasing acquired drug resistance. IMPORTANCE Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role in

  9. Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics

    PubMed Central

    Mo, Charlie Y.; Manning, Sara A.; Roggiani, Manuela; Culyba, Matthew J.; Samuels, Amanda N.; Sniegowski, Paul D.; Goulian, Mark

    2016-01-01

    ABSTRACT The bacterial SOS response is a DNA damage repair network that is strongly implicated in both survival and acquired drug resistance under antimicrobial stress. The two SOS regulators, LexA and RecA, have therefore emerged as potential targets for adjuvant therapies aimed at combating resistance, although many open questions remain. For example, it is not well understood whether SOS hyperactivation is a viable therapeutic approach or whether LexA or RecA is a better target. Furthermore, it is important to determine which antimicrobials could serve as the best treatment partners with SOS-targeting adjuvants. Here we derived Escherichia coli strains that have mutations in either lexA or recA genes in order to cover the full spectrum of possible SOS activity levels. We then systematically analyzed a wide range of antimicrobials by comparing the mean inhibitory concentrations (MICs) and induced mutation rates for each drug-strain combination. We first show that significant changes in MICs are largely confined to DNA-damaging antibiotics, with strains containing a constitutively repressed SOS response impacted to a greater extent than hyperactivated strains. Second, antibiotic-induced mutation rates were suppressed when SOS activity was reduced, and this trend was observed across a wider spectrum of antibiotics. Finally, perturbing either LexA or RecA proved to be equally viable strategies for targeting the SOS response. Our work provides support for multiple adjuvant strategies, while also suggesting that the combination of an SOS inhibitor with a DNA-damaging antibiotic could offer the best potential for lowering MICs and decreasing acquired drug resistance. IMPORTANCE Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role

  10. Dual-color STED microscopy reveals a sandwich structure of Bassoon and Piccolo in active zones of adult and aged mice

    PubMed Central

    Nishimune, Hiroshi; Badawi, Yomna; Mori, Shuuichi; Shigemoto, Kazuhiro

    2016-01-01

    Presynaptic active zones play a pivotal role as synaptic vesicle release sites for synaptic transmission, but the molecular architecture of active zones in mammalian neuromuscular junctions (NMJs) at sub-diffraction limited resolution remains unknown. Bassoon and Piccolo are active zone specific cytosolic proteins essential for active zone assembly in NMJs, ribbon synapses, and brain synapses. These proteins are thought to colocalize and share some functions at active zones. Here, we report an unexpected finding of non-overlapping localization of these two proteins in mouse NMJs revealed using dual-color stimulated emission depletion (STED) super resolution microscopy. Piccolo puncta sandwiched Bassoon puncta and aligned in a Piccolo-Bassoon-Piccolo structure in adult NMJs. P/Q-type voltage-gated calcium channel (VGCC) puncta colocalized with Bassoon puncta. The P/Q-type VGCC and Bassoon protein levels decreased significantly in NMJs from aged mouse. In contrast, the Piccolo levels in NMJs from aged mice were comparable to levels in adult mice. This study revealed the molecular architecture of active zones in mouse NMJs at sub-diffraction limited resolution, and described the selective degeneration mechanism of active zone proteins in NMJs from aged mice. Interestingly, the localization pattern of active zone proteins described herein is similar to active zone structures described using electron microscope tomography. PMID:27321892

  11. Insights into Brown Adipose Tissue Physiology as Revealed by Imaging Studies

    PubMed Central

    Izzi-Engbeaya, Chioma; Salem, Victoria; Atkar, Rajveer S; Dhillo, Waljit S

    2014-01-01

    There has been resurgence in interest in brown adipose tissue (BAT) following radiological and histological identification of metabolically active BAT in adult humans. Imaging enables BAT to be studied non-invasively and therefore imaging studies have contributed a significant amount to what is known about BAT function in humans. In this review the current knowledge (derived from imaging studies) about the prevalence, function, activity and regulation of BAT in humans (as well as relevant rodent studies), will be summarized. PMID:26167397

  12. A proteomic approach reveals integrin activation state-dependent control of microtubule cortical targeting.

    PubMed

    Byron, Adam; Askari, Janet A; Humphries, Jonathan D; Jacquemet, Guillaume; Koper, Ewa J; Warwood, Stacey; Choi, Colin K; Stroud, Matthew J; Chen, Christopher S; Knight, David; Humphries, Martin J

    2015-01-01

    Integrin activation, which is regulated by allosteric changes in receptor conformation, enables cellular responses to the chemical, mechanical and topological features of the extracellular microenvironment. A global view of how activation state converts the molecular composition of the region proximal to integrins into functional readouts is, however, lacking. Here, using conformation-specific monoclonal antibodies, we report the isolation of integrin activation state-dependent complexes and their characterization by mass spectrometry. Quantitative comparisons, integrating network, clustering, pathway and image analyses, define multiple functional protein modules enriched in a conformation-specific manner. Notably, active integrin complexes are specifically enriched for proteins associated with microtubule-based functions. Visualization of microtubules on micropatterned surfaces and live cell imaging demonstrate that active integrins establish an environment that stabilizes microtubules at the cell periphery. These data provide a resource for the interrogation of the global molecular connections that link integrin activation to adhesion signalling. PMID:25609142

  13. Alanine-Scanning Mutational Analysis of Durancin GL Reveals Residues Important for Its Antimicrobial Activity.

    PubMed

    Ju, Xingrong; Chen, Xinquan; Du, Lihui; Wu, Xueyou; Liu, Fang; Yuan, Jian

    2015-07-22

    Durancin GL is a novel class IIa bacteriocin with 43 residues produced by Enterococcus durans 41D. This bacteriocin demonstrates narrow inhibition spectrum and potent antimicrobial activity against several Listeria monocytogenes strains, including nisin-resistant L. monocytogenes NR30. A systematic alanine-scanning mutational analysis with site-directed mutagenesis was performed to analyze durancin GL residues important for antimicrobial activity and specificity. Results showed that three mutations lost their antimicrobial activity, ten mutations demonstrated a decreased effect on the activity, and seven mutations exhibited relatively high activity. With regard to inhibitory spectrum, four mutants demonstrated a narrower antimicrobial spectrum than wild-type durancin GL. Another four mutants displayed a broader target cell spectrum and increased potency relative to wild-type durancin GL. These findings broaden our understanding of durancin GL residues important for its antimicrobial activity and contribute to future rational design of variants with increased potency. PMID:26168032

  14. A FRET biosensor reveals spatiotemporal activation and functions of aurora kinase A in living cells.

    PubMed

    Bertolin, Giulia; Sizaire, Florian; Herbomel, Gaëtan; Reboutier, David; Prigent, Claude; Tramier, Marc

    2016-01-01

    Overexpression of AURKA is a major hallmark of epithelial cancers. It encodes the multifunctional serine/threonine kinase aurora A, which is activated at metaphase and is required for cell cycle progression; assessing its activation in living cells is mandatory for next-generation drug design. We describe here a Förster's resonance energy transfer (FRET) biosensor detecting the conformational changes of aurora kinase A induced by its autophosphorylation on Thr288. The biosensor functionally replaces the endogenous kinase in cells and allows the activation of the kinase to be followed throughout the cell cycle. Inhibiting the catalytic activity of the kinase prevents the conformational changes of the biosensor. Using this approach, we discover that aurora kinase A activates during G1 to regulate the stability of microtubules in cooperation with TPX2 and CEP192. These results demonstrate that the aurora kinase A biosensor is a powerful tool to identify new regulatory pathways controlling aurora kinase A activation. PMID:27624869

  15. A proteomic approach reveals integrin activation state-dependent control of microtubule cortical targeting

    PubMed Central

    Byron, Adam; Askari, Janet A.; Humphries, Jonathan D.; Jacquemet, Guillaume; Koper, Ewa J.; Warwood, Stacey; Choi, Colin K.; Stroud, Matthew J.; Chen, Christopher S.; Knight, David; Humphries, Martin J.

    2015-01-01

    Integrin activation, which is regulated by allosteric changes in receptor conformation, enables cellular responses to the chemical, mechanical and topological features of the extracellular microenvironment. A global view of how activation state converts the molecular composition of the region proximal to integrins into functional readouts is, however, lacking. Here, using conformation-specific monoclonal antibodies, we report the isolation of integrin activation state-dependent complexes and their characterization by mass spectrometry. Quantitative comparisons, integrating network, clustering, pathway and image analyses, define multiple functional protein modules enriched in a conformation-specific manner. Notably, active integrin complexes are specifically enriched for proteins associated with microtubule-based functions. Visualization of microtubules on micropatterned surfaces and live cell imaging demonstrate that active integrins establish an environment that stabilizes microtubules at the cell periphery. These data provide a resource for the interrogation of the global molecular connections that link integrin activation to adhesion signalling. PMID:25609142

  16. Crystal Structures of a Multidrug-Resistant Human Immunodeficiency Virus Type 1 Protease Reveal an Expanded Active-Site Cavity

    SciTech Connect

    Logsdon, Bradley C.; Vickrey, John F.; Martin, Philip; Proteasa, Gheorghe; Koepke, Jay I.; Terlecky, Stanley R.; Wawrzak, Zdzislaw; Winters, Mark A.; Merigan, Thomas C.; Kovari, Ladislau C.

    2010-03-08

    The goal of this study was to use X-ray crystallography to investigate the structural basis of resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors. We overexpressed, purified, and crystallized a multidrug-resistant (MDR) HIV-1 protease enzyme derived from a patient failing on several protease inhibitor-containing regimens. This HIV-1 variant contained codon mutations at positions 10, 36, 46, 54, 63, 71, 82, 84, and 90 that confer drug resistance to protease inhibitors. The 1.8-{angstrom} crystal structure of this MDR patient isolate reveals an expanded active-site cavity. The active-site expansion includes position 82 and 84 mutations due to the alterations in the amino acid side chains from longer to shorter (e.g., V82A and I84V). The MDR isolate 769 protease 'flaps' stay open wider, and the difference in the flap tip distances in the MDR 769 variant is 12 {angstrom}. The MDR 769 protease crystal complexes with lopinavir and DMP450 reveal completely different binding modes. The network of interactions between the ligands and the MDR 769 protease is completely different from that seen with the wild-type protease-ligand complexes. The water molecule-forming hydrogen bonds bridging between the two flaps and either the substrate or the peptide-based inhibitor are lacking in the MDR 769 clinical isolate. The S1, S1', S3, and S3' pockets show expansion and conformational change. Surface plasmon resonance measurements with the MDR 769 protease indicate higher k{sub off} rates, resulting in a change of binding affinity. Surface plasmon resonance measurements provide k{sub on} and k{sub off} data (K{sub d} = k{sub off}/k{sub on}) to measure binding of the multidrug-resistant protease to various ligands. This MDR 769 protease represents a new antiviral target, presenting the possibility of designing novel inhibitors with activity against the open and expanded protease forms.

  17. Multiwavelength Study of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Singh, Veeresh

    2010-08-01

    Seyfert galaxies are a subclass of active galaxies and are categorized as nearby, low luminosity, radio-quiet Active Galactic Nuclei (AGN) hosted in spiral or lenticular galaxies. Demographically, Seyfert galaxies may account for ~ 10% of the entire population of active galaxies in the nearby universe. Seyfert galaxies are classified mainly into two subclasses named as `type 1' and `type 2' Seyferts, based on the presence and absence of broad permitted emission lines in their optical spectra, respectively. Detection of broad permitted emission lines in some Seyfert type 2s observed in the polarized light laid the foundation of the Seyfert unification scheme, which hypothesizes that Seyfert type 1s and type 2s belong to the same parent population and appear different solely due to the differing orientations of the obscuring material having a torus-like geometry around the AGN (Antonucci and Miller 1985; Antonucci 1993). The primary objective of this thesis work is to examine the validity and limitations of the orientation and obscuration based Seyfert unification scheme using multiwavelength (mainly X-ray and radio) observations. The key issue in testing the Seyfert unification scheme has been acquiring a well defined rigorously selected Seyfert sample. I have argued that the Seyfert samples based on flux limited surveys at optical, IR, UV and X-ray are likely to be biased against obscured and faint sources. In order to test the predictions of Seyfert unification scheme I use a sample based on properties (i.e., cosmological redshift, [OIII] emission line luminosity, absolute bulge magnitude, absolute stellar magnitude of the host galaxy and the Hubble stage of the host galaxy) that are independent to the orientation of the obscuring torus, host galaxy and the AGN axis. Furthermore, two Seyfert subtypes of our sample have matched distributions in the orientation-independent properties and this ensures the intrinsic similarity between two Seyfert subtypes within the

  18. Amplitude-modulated stimuli reveal auditory-visual interactions in brain activity and brain connectivity

    PubMed Central

    Laing, Mark; Rees, Adrian; Vuong, Quoc C.

    2015-01-01

    The temporal congruence between auditory and visual signals coming from the same source can be a powerful means by which the brain integrates information from different senses. To investigate how the brain uses temporal information to integrate auditory and visual information from continuous yet unfamiliar stimuli, we used amplitude-modulated tones and size-modulated shapes with which we could manipulate the temporal congruence between the sensory signals. These signals were independently modulated at a slow or a fast rate. Participants were presented with auditory-only, visual-only, or auditory-visual (AV) trials in the fMRI scanner. On AV trials, the auditory and visual signal could have the same (AV congruent) or different modulation rates (AV incongruent). Using psychophysiological interaction analyses, we found that auditory regions showed increased functional connectivity predominantly with frontal regions for AV incongruent relative to AV congruent stimuli. We further found that superior temporal regions, shown previously to integrate auditory and visual signals, showed increased connectivity with frontal and parietal regions for the same contrast. Our findings provide evidence that both activity in a network of brain regions and their connectivity are important for AV integration, and help to bridge the gap between transient and familiar AV stimuli used in previous studies. PMID:26483710

  19. Synchrotron X-ray imaging reveals a correlation of tumor copper speciation with Clioquinol's anticancer activity

    SciTech Connect

    Barrea, Raul A.; Chen, Di; Irving, Thomas C.; Dou, Q. Ping

    2009-10-21

    Tumor development and metastasis depend on angiogenesis that requires certain growth factors, proteases, and the trace element copper (Cu). Recent studies suggest that Cu could be used as a novel target for cancer therapies. Clioquinol (CQ), an antibiotic that is able to form stable complexes with Cu or zinc (Zn), has shown proteasome-inhibitory, androgen receptor-suppressing, apoptosis-inducing, and antitumor activities in human cancer cells and xenografts. The mechanisms underlying the interaction of CQ with cellular Cu, the alteration of the Cu/Zn ratio and the antitumor role of CQ in vivo have not been fully elucidated. We report here that Cu accumulates in tumor tissue and that the Cu/Zn balances in tumor, but not normal, tissue change significantly after the treatment with CQ. Cu speciation analysis showed that the Cu(I) species is predominant in both normal and tumor tissues and that Cu(II) content was significantly increased in tumor, but not normal tissue after CQ treatment. Our findings indicate that CQ can interact with cellular Cu in vivo, dysregulates the Cu/Zn balance and is able to convert Cu(I) to Cu(II) in tumor tissue. This conversion of Cu(I) to Cu(II) may be associated with CQ-induced proteasome inhibition and growth suppression in the human prostate tumor xenografts.

  20. Neural activity in the medial temporal lobe reveals the fidelity of mental time travel.

    PubMed

    Kragel, James E; Morton, Neal W; Polyn, Sean M

    2015-02-18

    Neural circuitry in the medial temporal lobe (MTL) is critically involved in mental time travel, which involves the vivid retrieval of the details of past experience. Neuroscientific theories propose that the MTL supports memory of the past by retrieving previously encoded episodic information, as well as by reactivating a temporal code specifying the position of a particular event within an episode. However, the neural computations supporting these abilities are underspecified. To test hypotheses regarding the computational mechanisms supported by different MTL subregions during mental time travel, we developed a computational model that linked a blood oxygenation level-dependent signal to cognitive operations, allowing us to predict human performance in a memory search task. Activity in the posterior MTL, including parahippocampal cortex, reflected how strongly one reactivates the temporal context of a retrieved memory, allowing the model to predict whether the next memory will correspond to a nearby moment in the study episode. A signal in the anterior MTL, including perirhinal cortex, indicated the successful retrieval of list items, without providing information regarding temporal organization. A hippocampal signal reflected both processes, consistent with theories that this region binds item and context information together to form episodic memories. These findings provide evidence for modern theories that describe complementary roles of the hippocampus and surrounding parahippocampal and perirhinal cortices during the retrieval of episodic memories, shaping how humans revisit the past. PMID:25698731

  1. Clumpy tori around type II active galactic nuclei as revealed by X-ray fluorescent lines

    NASA Astrophysics Data System (ADS)

    Liu, Jiren; Liu, Yuan; Li, Xiaobo; Xu, Weiwei; Gou, Lijun; Cheng, Cheng

    2016-06-01

    The reflection spectrum of a torus around an active galactic nucleus (AGN) is characterized by X-ray fluorescent lines, which are most prominent for type II AGNs. A clumpy torus allows photons reflected from the back-side of the torus to leak through the front regions that are free of obscuration. The observed X-ray fluorescent lines are therefore sensitive to the clumpiness of the torus. We analysed a sample of type II AGNs observed with the Chandra High Energy Transmission Grating Spectrometer (HETGS), and measured the fluxes for the Si Kα and Fe Kα lines. The measured Fe Kα/Si Kα ratios, spanning a range between 5 and 60, are far smaller than the ratios predicted from simulations of smooth tori, indicating that the tori of the studied sources have clumpy distributions rather than smooth ones. We compared the measured Fe Kα/Si Kα ratios with simulation results of clumpy tori. The Circinus galaxy has a Fe Kα/Si Kα ratio of ˜60, which is close to the simulation results for N = 5, where N is the average number of clumps along the line of sight. The Fe Kα/Si Kα ratios of the other sources are all below the simulation results for N = 2. Overall, this shows that the non-Fe fluorescent lines in the soft X-ray band are a potentially powerful probe of the clumpiness of tori around AGNs.

  2. Optical Coherence Tomography angiography reveals laminar microvascular hemodynamics in the rat somatosensory cortex during activation

    PubMed Central

    Srinivasan, Vivek J.; Radhakrishnan, Harsha

    2014-01-01

    The BOLD (blood-oxygen-level dependent) fMRI (functional Magnetic Resonance Imaging) signal is shaped, in part, by changes in red blood cell (RBC) content and flow across vascular compartments over time. These complex dynamics have been challenging to characterize directly due to a lack of appropriate imaging modalities. In this study, making use of infrared light scattering from RBCs, depth-resolved Optical Coherence Tomography (OCT) angiography was applied to image laminar functional hyperemia in the rat somatosensory cortex. After defining and validating depth-specific metrics for changes in RBC content and speed, laminar hemodynamic responses in microvasculature up to cortical depths of >1 mm were measured during a forepaw stimulus. The results provide a comprehensive picture of when and where changes in RBC content and speed occur during and immediately following cortical activation. In summary, the earliest and largest microvascular RBC content changes occurred in the middle cortical layers, while post-stimulus undershoots were most prominent superficially. These laminar variations in positive and negative responses paralleled known distributions of excitatory and inhibitory synapses, suggesting neuronal underpinnings. Additionally, the RBC speed response consistently returned to baseline more promptly than RBC content after the stimulus across cortical layers, supporting a “flow-volume mismatch” of hemodynamic origin. PMID:25111471

  3. Characterization of the Active Microbiotas Associated with Honey Bees Reveals Healthier and Broader Communities when Colonies are Genetically Diverse

    PubMed Central

    Mattila, Heather R.; Rios, Daniela; Walker-Sperling, Victoria E.; Roeselers, Guus; Newton, Irene L. G.

    2012-01-01

    Recent losses of honey bee colonies have led to increased interest in the microbial communities that are associated with these important pollinators. A critical function that bacteria perform for their honey bee hosts, but one that is poorly understood, is the transformation of worker-collected pollen into bee bread, a nutritious food product that can be stored for long periods in colonies. We used 16S rRNA pyrosequencing to comprehensively characterize in genetically diverse and genetically uniform colonies the active bacterial communities that are found on honey bees, in their digestive tracts, and in bee bread. This method provided insights that have not been revealed by past studies into the content and benefits of honey bee-associated microbial communities. Colony microbiotas differed substantially between sampling environments and were dominated by several anaerobic bacterial genera never before associated with honey bees, but renowned for their use by humans to ferment food. Colonies with genetically diverse populations of workers, a result of the highly promiscuous mating behavior of queens, benefited from greater microbial diversity, reduced pathogen loads, and increased abundance of putatively helpful bacteria, particularly species from the potentially probiotic genus Bifidobacterium. Across all colonies, Bifidobacterium activity was negatively correlated with the activity of genera that include pathogenic microbes; this relationship suggests a possible target for understanding whether microbes provide protective benefits to honey bees. Within-colony diversity shapes microbiotas associated with honey bees in ways that may have important repercussions for colony function and health. Our findings illuminate the importance of honey bee-bacteria symbioses and examine their intersection with nutrition, pathogen load, and genetic diversity, factors that are considered key to understanding honey bee decline. PMID:22427917

  4. Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse.

    PubMed

    Mattila, Heather R; Rios, Daniela; Walker-Sperling, Victoria E; Roeselers, Guus; Newton, Irene L G

    2012-01-01

    Recent losses of honey bee colonies have led to increased interest in the microbial communities that are associated with these important pollinators. A critical function that bacteria perform for their honey bee hosts, but one that is poorly understood, is the transformation of worker-collected pollen into bee bread, a nutritious food product that can be stored for long periods in colonies. We used 16S rRNA pyrosequencing to comprehensively characterize in genetically diverse and genetically uniform colonies the active bacterial communities that are found on honey bees, in their digestive tracts, and in bee bread. This method provided insights that have not been revealed by past studies into the content and benefits of honey bee-associated microbial communities. Colony microbiotas differed substantially between sampling environments and were dominated by several anaerobic bacterial genera never before associated with honey bees, but renowned for their use by humans to ferment food. Colonies with genetically diverse populations of workers, a result of the highly promiscuous mating behavior of queens, benefited from greater microbial diversity, reduced pathogen loads, and increased abundance of putatively helpful bacteria, particularly species from the potentially probiotic genus Bifidobacterium. Across all colonies, Bifidobacterium activity was negatively correlated with the activity of genera that include pathogenic microbes; this relationship suggests a possible target for understanding whether microbes provide protective benefits to honey bees. Within-colony diversity shapes microbiotas associated with honey bees in ways that may have important repercussions for colony function and health. Our findings illuminate the importance of honey bee-bacteria symbioses and examine their intersection with nutrition, pathogen load, and genetic diversity, factors that are considered key to understanding honey bee decline. PMID:22427917

  5. A Study of Student Activism.

    ERIC Educational Resources Information Center

    Baird, Leonard L.

    Available data on interests, achievement goals, competencies, self-concepts and personalities were used to survey 12, 432 college freshmen at 31 institutions in Spring 1964. The following spring a checklist which combined a Student Activism Scale with items relating to other extracurricular activities was presented to a sample of 5,129 of the…

  6. A 220-nucleotide deletion of the intronic enhancer reveals an epigenetic hierarchy in immunoglobulin heavy chain locus activation

    PubMed Central

    Chakraborty, Tirtha; Perlot, Thomas; Subrahmanyam, Ramesh; Jani, Anant; Goff, Peter H.; Zhang, Yu; Ivanova, Irina; Alt, Frederick W.

    2009-01-01

    A tissue-specific transcriptional enhancer, Eμ, has been implicated in developmentally regulated recombination and transcription of the immunoglobulin heavy chain (IgH) gene locus. We demonstrate that deleting 220 nucleotides that constitute the core Eμ results in partially active locus, characterized by reduced histone acetylation, chromatin remodeling, transcription, and recombination, whereas other hallmarks of tissue-specific locus activation, such as loss of H3K9 dimethylation or gain of H3K4 dimethylation, are less affected. These observations define Eμ-independent and Eμ-dependent phases of locus activation that reveal an unappreciated epigenetic hierarchy in tissue-specific gene expression. PMID:19414554

  7. Protein-tyrosine phosphorylation interaction network in Bacillus subtilis reveals new substrates, kinase activators and kinase cross-talk

    PubMed Central

    Shi, Lei; Pigeonneau, Nathalie; Ventroux, Magali; Derouiche, Abderahmane; Bidnenko, Vladimir; Mijakovic, Ivan; Noirot-Gros, Marie-Françoise

    2014-01-01

    Signal transduction in eukaryotes is generally transmitted through phosphorylation cascades that involve a complex interplay of transmembrane receptors, protein kinases, phosphatases and their targets. Our previous work indicated that bacterial protein-tyrosine kinases and phosphatases may exhibit similar properties, since they act on many different substrates. To capture the complexity of this phosphorylation-based network, we performed a comprehensive interactome study focused on the protein-tyrosine kinases and phosphatases in the model bacterium Bacillus subtilis. The resulting network identified many potential new substrates of kinases and phosphatases, some of which were experimentally validated. Our study highlighted the role of tyrosine and serine/threonine kinases and phosphatases in DNA metabolism, transcriptional control and cell division. This interaction network reveals significant crosstalk among different classes of kinases. We found that tyrosine kinases can bind to several modulators, transmembrane or cytosolic, consistent with a branching of signaling pathways. Most particularly, we found that the division site regulator MinD can form a complex with the tyrosine kinase PtkA and modulate its activity in vitro. In vivo, it acts as a scaffold protein which anchors the kinase at the cell pole. This network highlighted a role of tyrosine phosphorylation in the spatial regulation of the Z-ring during cytokinesis. PMID:25374563

  8. Transcriptomes reveal alterations in gravity impact circadian clocks and activate mechanotransduction pathways with adaptation through epigenetic change.

    PubMed

    Casey, Theresa; Patel, Osman V; Plaut, Karen

    2015-04-01

    Few studies have investigated the impact of alterations in gravity on mammalian transcriptomes. Here, we describe the impact of spaceflight on mammary transcriptome of late pregnant rats and the effect of hypergravity exposure on mammary, liver, and adipose transcriptomes in late pregnancy and at the onset of lactation. RNA was isolated from mammary collected on pregnancy day 20 from rats exposed to spaceflight from days 11 to 20 of gestation. To measure the impact of hypergravity on mammary, liver, and adipose transcriptomes we isolated RNA from tissues collected on P20 and lactation day 1 from rats exposed to hypergravity beginning on pregnancy day 9. Gene expression was measured with Affymetrix GeneChips. Microarray analysis of variance revealed alterations in gravity affected the expression of genes that regulate circadian clocks and activate mechanotransduction pathways. Changes in these systems may explain global gene expression changes in immune response, metabolism, and cell proliferation. Expression of genes that modify chromatin structure and methylation was affected, suggesting adaptation to gravity alterations may proceed through epigenetic change. Altered gravity experiments offer insights into the role of forces omnipresent on Earth that shape genomes in heritable ways. Our study is the first to analyze the impact of alterations in gravity on transcriptomes of pregnant and lactating mammals. Findings provide insight into systems that sense gravity and the way in which they affect phenotype, as well as the possibility of sustaining life beyond Earth's orbit. PMID:25649141

  9. Equilibrium physics breakdown reveals the active nature of red blood cell flickering

    NASA Astrophysics Data System (ADS)

    Turlier, Herve; Fedosov, Dmitry; Auth, Thorsten; Gov, Nir S.; Sykes, Cecile; Joanny, Jean-Francois; Gompper, Gerhard; Betz, Timo

    2015-03-01

    Red blood cell membrane flickering stimulated an abundant biological, biophysical and biochemical literature over the past 50 years. While the phenomenon has been interpreted as thermal fluctuations of the cell membrane, recent results suggest the involvement of metabolic processes. However, to date there is no direct and conclusive evidence that an active force drives membrane flickering. By comparing membrane undulations and active microrheology measurements on single human erythrocytes, we show that flickering is partly driven by an active metabolic process, as it does not satisfy the equilibrium fluctuation-dissipation relation on timescales slower than 100ms. Analytical and numerical models of the red blood cell reproduce experimental results. The analytical model assumes that membrane activity results from reversible binding of the elastic spectrin network to the lipid bilayer and predicts active fluctuations to increase with local curvature and extensional prestress in the cytoskeleton. Our mean-field calculation shows that the strength and kinetics of the binding activity regulates thereupon both passive and active mechanical properties of the red blood cell. Numerical simulations explore other possible origins of active forces on the membrane and predict coherent timescales for the molecular underlying metabolic processes.

  10. A caspase active site probe reveals high fractional inhibition needed to block DNA fragmentation.

    PubMed

    Méthot, Nathalie; Vaillancourt, John P; Huang, JingQi; Colucci, John; Han, Yongxin; Ménard, Stéphane; Zamboni, Robert; Toulmond, Sylvie; Nicholson, Donald W; Roy, Sophie

    2004-07-01

    Apoptotic markers consist of either caspase substrate cleavage products or phenotypic changes that manifest themselves as a consequence of caspase-mediated substrate cleavage. We have shown recently that pharmacological inhibitors of caspase activity prevent the appearance of two such apoptotic manifestations, alphaII-spectrin cleavage and DNA fragmentation, but that blockade of the latter required a significantly higher concentration of inhibitor. We investigated this phenomenon through the use of a novel radiolabeled caspase inhibitor, [(125)I]M808, which acts as a caspase active site probe. [(125)I]M808 bound to active caspases irreversibly and with high sensitivity in apoptotic cell extracts, in tissue extracts from several commonly used animal models of cellular injury, and in living cells. Moreover, [(125)I]M808 detected active caspases in septic mice when injected intravenously. Using this caspase probe, an active site occupancy assay was developed and used to measure the fractional inhibition required to block apoptosis-induced DNA fragmentation. In thymocytes, occupancy of up to 40% of caspase active sites had no effect on DNA fragmentation, whereas inhibition of half of the DNA cleaving activity required between 65 and 75% of active site occupancy. These results suggest that a high and persistent fractional inhibition will be required for successful caspase inhibition-based therapies. PMID:15067000

  11. Parallel functional activity profiling reveals valvulopathogens are potent 5-hydroxytryptamine(2B) receptor agonists: implications for drug safety assessment.

    PubMed

    Huang, Xi-Ping; Setola, Vincent; Yadav, Prem N; Allen, John A; Rogan, Sarah C; Hanson, Bonnie J; Revankar, Chetana; Robers, Matt; Doucette, Chris; Roth, Bryan L

    2009-10-01

    Drug-induced valvular heart disease (VHD) is a serious side effect of a few medications, including some that are on the market. Pharmacological studies of VHD-associated medications (e.g., fenfluramine, pergolide, methysergide, and cabergoline) have revealed that they and/or their metabolites are potent 5-hydroxytryptamine(2B) (5-HT(2B)) receptor agonists. We have shown that activation of 5-HT(2B) receptors on human heart valve interstitial cells in vitro induces a proliferative response reminiscent of the fibrosis that typifies VHD. To identify current or future drugs that might induce VHD, we screened approximately 2200 U.S. Food and Drug Administration (FDA)-approved or investigational medications to identify 5-HT(2B) receptor agonists, using calcium-based high-throughput screening. Of these 2200 compounds, 27 were 5-HT(2B) receptor agonists (hits); 14 of these had previously been identified as 5-HT(2B) receptor agonists, including seven bona fide valvulopathogens. Six of the hits (guanfacine, quinidine, xylometazoline, oxymetazoline, fenoldopam, and ropinirole) are approved medications. Twenty-three of the hits were then "functionally profiled" (i.e., assayed in parallel for 5-HT(2B) receptor agonism using multiple readouts to test for functional selectivity). In these assays, the known valvulopathogens were efficacious at concentrations as low as 30 nM, whereas the other compounds were less so. Hierarchical clustering analysis of the pEC(50) data revealed that ropinirole (which is not associated with valvulopathy) was clearly segregated from known valvulopathogens. Taken together, our data demonstrate that patterns of 5-HT(2B) receptor functional selectivity might be useful for identifying compounds likely to induce valvular heart disease. PMID:19570945

  12. RNA Profiles of Porcine Embryos during Genome Activation Reveal Complex Metabolic Switch Sensitive to In Vitro Conditions

    PubMed Central

    Østrup, Olga; Olbricht, Gayla; Østrup, Esben; Hyttel, Poul; Collas, Philippe; Cabot, Ryan

    2013-01-01

    Fertilization is followed by complex changes in cytoplasmic composition and extensive chromatin reprogramming which results in the abundant activation of totipotent embryonic genome at embryonic genome activation (EGA). While chromatin reprogramming has been widely studied in several species, only a handful of reports characterize changing transcriptome profiles and resulting metabolic changes in cleavage stage embryos. The aims of the current study were to investigate RNA profiles of in vivo developed (ivv) and in vitro produced (ivt) porcine embryos before (2-cell stage) and after (late 4-cell stage) EGA and determine major metabolic changes that regulate totipotency. The period before EGA was dominated by transcripts responsible for cell cycle regulation, mitosis, RNA translation and processing (including ribosomal machinery), protein catabolism, and chromatin remodelling. Following EGA an increase in the abundance of transcripts involved in transcription, translation, DNA metabolism, histone and chromatin modification, as well as protein catabolism was detected. The further analysis of members of overlapping GO terms revealed that despite that comparable cellular processes are taking place before and after EGA (RNA splicing, protein catabolism), different metabolic pathways are involved. This strongly suggests that a complex metabolic switch accompanies EGA. In vitro conditions significantly altered RNA profiles before EGA, and the character of these changes indicates that they originate from oocyte and are imposed either before oocyte aspiration or during in vitro maturation. IVT embryos have altered content of apoptotic factors, cell cycle regulation factors and spindle components, and transcription factors, which all may contribute to reduced developmental competence of embryos produced in vitro. Overall, our data are in good accordance with previously published, genome-wide profiling data in other species. Moreover, comparison with mouse and human embryos

  13. Active Media Studies for PASER

    SciTech Connect

    Antipov, Sergey P.; Kanareykin, Alexei; Schoessow, Paul; Schaechter, Levi

    2009-01-22

    The Particle Acceleration by Stimulated Emission of Radiation (PASER) is a concept that is based on the direct transfer of energy from active medium to a charged particle beam. The PASER was originally formulated and demonstrated for optical (laser) media; we are pursuing a PASER demonstration experiment based on an optically pumped paramagnetic medium active in the X-band. The activity in this case is produced via Zeeman Effect. We report on the development of an active medium based on fullerene (C{sub 60}). Various aspects like temperature dependence, concentration effects and the role of the host media are presented. Application of the technology to accelerators and microwave components will be discussed.

  14. Properties of active nucleosomes as revealed by HMG 14 and 17 chromatography.

    PubMed Central

    Weisbrod, S T

    1982-01-01

    Nucleosomes from actively transcribed genes (active nucleosomes) contain nonhistone proteins HMG 14 and 17 and are preferentially sensitive to digestion by DNAse I. Active nucleosomes isolated by chromatography on an HMG 14 and 17 glass bead affinity column were analyzed with respect to overall structure, accessory nonhistone components and modifications to the DNA and histones. The experiments lead to the following conclusions: the DNA in the active nucleosome is undermethylated compared to bulk DNA; topoisomerase I is a non-stoichiometric component of the active nucleosome fraction; the level of histone acetylation is enriched in active nucleosomes, but the extent of enrichment cannot account for HMG binding; and the two histone H3 molecules in the active nucleosome can dimerize more readily and are, therefore, probably closer together than those in the bulk of the nucleosomes. Additionally it is shown that HMG 14 and 17 prefer to bind to single- vs. double-stranded nucleic acids. The role of HMG 14 and 17 in producing a highly DNAse I sensitive structure and correspondingly helping to facilitate transcription is discussed in terms of these properties. Images PMID:6210882

  15. Optogenetic activation reveals distinct roles of PIP3 and Akt in adipocyte insulin action.

    PubMed

    Xu, Yingke; Nan, Di; Fan, Jiannan; Bogan, Jonathan S; Toomre, Derek

    2016-05-15

    Glucose transporter 4 (GLUT4; also known as SLC2A4) resides on intracellular vesicles in muscle and adipose cells, and translocates to the plasma membrane in response to insulin. The phosphoinositide 3-kinase (PI3K)-Akt signaling pathway plays a major role in GLUT4 translocation; however, a challenge has been to unravel the potentially distinct contributions of PI3K and Akt (of which there are three isoforms, Akt1-Akt3) to overall insulin action. Here, we describe new optogenetic tools based on CRY2 and the N-terminus of CIB1 (CIBN). We used these 'Opto' modules to activate PI3K and Akt selectively in time and space in 3T3-L1 adipocytes. We validated these tools using biochemical assays and performed live-cell kinetic analyses of IRAP-pHluorin translocation (IRAP is also known as LNPEP and acts as a surrogate marker for GLUT4 here). Strikingly, Opto-PIP3 largely mimicked the maximal effects of insulin stimulation, whereas Opto-Akt only partially triggered translocation. Conversely, drug-mediated inhibition of Akt only partially dampened the translocation response of Opto-PIP3 In spatial optogenetic studies, focal targeting of Akt to a region of the cell marked the sites where IRAP-pHluorin vesicles fused, supporting the idea that local Akt-mediated signaling regulates exocytosis. Taken together, these results indicate that PI3K and Akt play distinct roles, and that PI3K stimulates Akt-independent pathways that are important for GLUT4 translocation. PMID:27076519

  16. Induced activation study of LDEF

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Fishman, G. J.; Parnell, T. A.; Laird, C. E.

    1993-01-01

    Analysis of the induced radioactivity of the Long Duration Exposure Facility (LDEF) is continuing with extraction of specific activities for various spacecraft materials. Data and results of activation measurements from eight facilities are being collected for interpretation at Eastern Kentucky University and NASA/Marshall Space Flight Center. The major activation mechanism in LDEF components is the proton flux in the South Atlantic Anomaly (SAA). This flux is highly anisotropic, and could be sampled by taking advantage of the gravity-gradient stabilization of the LDEF. The directionally-dependent activation due to these protons was clearly observed in the data from aluminum experiment tray clamps (reaction product Na-22), steel trunnions (reaction product Mn-54 and others) and is also indicated by the presence of a variety of nuclides in other materials. A secondary production mechanism, thermal neutron capture, was observed in cobalt, indium, and tantalum, which are known to have large capture cross sections. Experiments containing samples of these metals and significant amounts of thermalizing low atomic number (Z) material showed clear evidence of enhanced activation of Co-60, In-114m, and Ta-182. Other mechanisms which activate spacecraft material that are not as easily separable from SAA proton activation, such as galactic proton bombardment and secondary production by fast neutrons, are being investigated by comparison to radiation environmental calculations. Deviations from one-dimensional radiation models indicate that these mechanisms are more important at greater shielding depths. The current status of the induced radioactivity measurements as of mid-year 1992 are reviewed. Specific activities for a number of materials which show SAA effects and thermal neutron capture are presented. The results for consistency by combining data from the participating institutions is also examined.

  17. Bacterial biofilm formation inhibitory activity revealed for plant derived natural compounds.

    PubMed

    Artini, M; Papa, R; Barbato, G; Scoarughi, G L; Cellini, A; Morazzoni, P; Bombardelli, E; Selan, L

    2012-01-15

    Use of herbal plant remedies to treat infectious diseases is a common practice in many countries in traditional and alternative medicine. However to date there are only few antimicrobial agents derived from botanics. Based on microbiological screening tests of crude plant extracts we identified four compounds derived from Krameria, Aesculus hippocastanum and Chelidonium majus that showed a potentially interesting antimicrobial activity. In this work we present an in depth characterization of the inhibition activity of these pure compounds on the formation of biofilm of Staphylococcus aureus as well as of Staphylococcus epidermidis strains. We show that two of these compounds possess interesting potential to become active principles of new drugs. PMID:22182580

  18. A biosensor of local kinesin activity reveals roles of PKC and EB1 in KIF17 activation

    PubMed Central

    Espenel, Cedric; Acharya, Bipul R.

    2013-01-01

    We showed previously that the kinesin-2 motor KIF17 regulates microtubule (MT) dynamics and organization to promote epithelial differentiation. How KIF17 activity is regulated during this process remains unclear. Several kinesins, including KIF17, adopt compact and extended conformations that reflect autoinhibited and active states, respectively. We designed biosensors of KIF17 to monitor its activity directly in single cells using fluorescence lifetime imaging to detect Förster resonance energy transfer. Lifetime data are mapped on a phasor plot, allowing us to resolve populations of active and inactive motors in individual cells. Using this biosensor, we demonstrate that PKC contributes to the activation of KIF17 and that this is required for KIF17 to stabilize MTs in epithelia. Furthermore, we show that EB1 recruits KIF17 to dynamic MTs, enabling its accumulation at MT ends and thus promoting MT stabilization at discrete cellular domains. PMID:24189273

  19. Gang Activity on Campus: A Crisis Response Case Study

    ERIC Educational Resources Information Center

    Shaw, Mahauganee; Meaney, Sarah

    2015-01-01

    This case study challenges readers to consider a contemporary issue for campus threat assessment and emergency preparedness: gang presence on college campuses. A body of research examining the presence of gangs and gang activity on college campuses has developed, revealing that gangs pose a viable threat for institutions of higher education. The…

  20. Active-site mobility revealed by the crystal structure of arylmalonate decarboxylase from Bordetella bronchiseptica.

    PubMed

    Kuettner, E Bartholomeus; Keim, Antje; Kircher, Markus; Rosmus, Susann; Sträter, Norbert

    2008-03-21

    Arylmalonate decarboxylase (AMDase) from Bordetella bronchiseptica catalyzes the enantioselective decarboxylation of arylmethylmalonates without the need for an organic cofactor or metal ion. The decarboxylation reaction is of interest for the synthesis of fine chemicals. As basis for an analysis of the catalytic mechanism of AMDase and for a rational enzyme design, we determined the X-ray structure of the enzyme up to 1.9 A resolution. Like the distantly related aspartate or glutamate racemases, AMDase has an aspartate transcarbamoylase fold consisting of two alpha/beta domains related by a pseudo dyad. However, the domain orientation of AMDase differs by about 30 degrees from that of the glutamate racemases, and also significant differences in active-site structures are observed. In the crystals, four independent subunits showing different conformations of active-site loops are present. This finding is likely to reflect the active-site mobility necessary for catalytic activity. PMID:18258259

  1. Dynamic BRG1 Recruitment during T Helper Differentiation and Activation Reveals Distal Regulatory Elements▿§

    PubMed Central

    De, Supriyo; Wurster, Andrea L.; Precht, Patricia; Wood, William H.; Becker, Kevin G.; Pazin, Michael J.

    2011-01-01

    T helper cell differentiation and activation require specific transcriptional programs accompanied by changes in chromatin structure. However, little is known about the chromatin remodeling enzymes responsible. We performed genome-wide analysis to determine the general principles of BRG1 binding, followed by analysis of specific genes to determine whether these general rules were typical of key T cell genes. We found that binding of the remodeling protein BRG1 was programmed by both lineage and activation signals. BRG1 binding positively correlated with gene activity at protein-coding and microRNA (miRNA) genes. BRG1 binding was found at promoters and distal regions, including both novel and previously validated distal regulatory elements. Distal BRG1 binding correlated with expression, and novel distal sites in the Gata3 locus possessed enhancer-like activity, suggesting a general role for BRG1 in long-distance gene regulation. BRG1 recruitment to distal sites in Gata3 was impaired in cells lacking STAT6, a transcription factor that regulates lineage-specific genes. Together, these findings suggest that BRG1 interprets both differentiation and activation signals and plays a causal role in gene regulation, chromatin structure, and cell fate. Our findings suggest that BRG1 binding is a useful marker for identifying active cis-regulatory regions in protein-coding and miRNA genes. PMID:21262765

  2. Activity Patterns of Free-Ranging Koalas (Phascolarctos cinereus) Revealed by Accelerometry

    PubMed Central

    Ryan, Michelle A.; Whisson, Desley A.; Holland, Greg J.; Arnould, John P. Y.

    2013-01-01

    An understanding of koala activity patterns is important for measuring the behavioral response of this species to environmental change, but to date has been limited by the logistical challenges of traditional field methodologies. We addressed this knowledge gap by using tri-axial accelerometer data loggers attached to VHF radio collars to examine activity patterns of adult male and female koalas in a high-density population at Cape Otway, Victoria, Australia. Data were obtained from 27 adult koalas over two 7-d periods during the breeding season: 12 in the early-breeding season in November 2010, and 15 in the late-breeding season in January 2011. Multiple 15 minute observation blocks on each animal were used for validation of activity patterns determined from the accelerometer data loggers. Accelerometry was effective in distinguishing between inactive (sleeping, resting) and active (grooming, feeding and moving) behaviors. Koalas were more active during the early-breeding season with a higher index of movement (overall dynamic body acceleration [ODBA]) for both males and females. Koalas showed a distinct temporal pattern of behavior, with most activity occurring from mid-afternoon to early morning. Accelerometry has potential for examining fine-scale behavior of a wide range of arboreal and terrestrial species. PMID:24224050

  3. β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle.

    PubMed

    Nuber, Susanne; Zabel, Ulrike; Lorenz, Kristina; Nuber, Andreas; Milligan, Graeme; Tobin, Andrew B; Lohse, Martin J; Hoffmann, Carsten

    2016-03-31

    (β-)Arrestins are important regulators of G-protein-coupled receptors (GPCRs). They bind to active, phosphorylated GPCRs and thereby shut off 'classical' signalling to G proteins, trigger internalization of GPCRs via interaction with the clathrin machinery and mediate signalling via 'non-classical' pathways. In addition to two visual arrestins that bind to rod and cone photoreceptors (termed arrestin1 and arrestin4), there are only two (non-visual) β-arrestin proteins (β-arrestin1 and β-arrestin2, also termed arrestin2 and arrestin3), which regulate hundreds of different (non-visual) GPCRs. Binding of these proteins to GPCRs usually requires the active form of the receptors plus their phosphorylation by G-protein-coupled receptor kinases (GRKs). The binding of receptors or their carboxy terminus as well as certain truncations induce active conformations of (β-)arrestins that have recently been solved by X-ray crystallography. Here we investigate both the interaction of β-arrestin with GPCRs, and the β-arrestin conformational changes in real time and in living human cells, using a series of fluorescence resonance energy transfer (FRET)-based β-arrestin2 biosensors. We observe receptor-specific patterns of conformational changes in β-arrestin2 that occur rapidly after the receptor-β-arrestin2 interaction. After agonist removal, these changes persist for longer than the direct receptor interaction. Our data indicate a rapid, receptor-type-specific, two-step binding and activation process between GPCRs and β-arrestins. They further indicate that β-arrestins remain active after dissociation from receptors, allowing them to remain at the cell surface and presumably signal independently. Thus, GPCRs trigger a rapid, receptor-specific activation/deactivation cycle of β-arrestins, which permits their active signalling. PMID:27007855

  4. From Blame to Punishment: Disrupting Prefrontal Cortex Activity Reveals Norm Enforcement Mechanisms.

    PubMed

    Buckholtz, Joshua W; Martin, Justin W; Treadway, Michael T; Jan, Katherine; Zald, David H; Jones, Owen; Marois, René

    2015-09-23

    The social welfare provided by cooperation depends on the enforcement of social norms. Determining blameworthiness and assigning a deserved punishment are two cognitive cornerstones of norm enforcement. Although prior work has implicated the dorsolateral prefrontal cortex (DLPFC) in norm-based judgments, the relative contribution of this region to blameworthiness and punishment decisions remains poorly understood. Here, we used repetitive transcranial magnetic stimulation (rTMS) and fMRI to determine the specific role of DLPFC function in norm-enforcement behavior. DLPFC rTMS reduced punishment for wrongful acts without affecting blameworthiness ratings, and fMRI revealed punishment-selective DLPFC recruitment, suggesting that these two facets of norm-based decision making are neurobiologically dissociable. Finally, we show that DLPFC rTMS affects punishment decision making by altering the integration of information about culpability and harm. Together, these findings reveal a selective, causal role for DLPFC in norm enforcement: representational integration of the distinct information streams used to make punishment decisions. PMID:26386518

  5. Depletion of interfering antibodies in chronic hepatitis C patients and vaccinated chimpanzees reveals broad cross-genotype neutralizing activity

    PubMed Central

    Zhang, Pei; Zhong, Lilin; Struble, Evi Budo; Watanabe, Hisayoshi; Kachko, Alla; Mihalik, Kathleen; Virata-Theimer, Maria Luisa; Alter, Harvey J.; Feinstone, Stephen; Major, Marian

    2009-01-01

    Using human immune globulins made from antihepatitis C virus (HCV)-positive plasma, we recently identified two antibody epitopes in the E2 protein at residues 412–426 (epitope I) and 434–446 (epitope II). Whereas epitope I is highly conserved among genotypes, epitope II varies. We discovered that epitope I was implicated in HCV neutralization whereas the binding of non-neutralizing antibody to epitope II disrupted virus neutralization mediated by antibody binding at epitope I. These findings suggested that, if this interfering mechanism operates in vivo during HCV infection, a neutralizing antibody against epitope I can be restrained by an interfering antibody, which may account for the persistence of HCV even in the presence of an abundance of neutralizing antibodies. We tested this hypothesis by affinity depletion and peptide-blocking of epitope-II-specific antibodies in plasma of a chronically HCV-infected patient and recombinant E1E2 vaccinated chimpanzees. We demonstrate that, by removing the restraints imposed by the interfering antibodies to epitope-II, neutralizing activity can be revealed in plasma that previously failed to neutralize viral stock in cell culture. Further, cross-genotype neutralization could be generated from monospecific plasma. Our studies contribute to understanding the mechanisms of antibody-mediated neutralization and interference and provide a practical approach to the development of more potent and broadly reactive hepatitis C immune globulins. PMID:19380744

  6. Novel nitrifiers and comammox in a full-scale hybrid biofilm and activated sludge reactor revealed by metagenomic approach.

    PubMed

    Chao, Yuanqing; Mao, Yanping; Yu, Ke; Zhang, Tong

    2016-09-01

    Biofilms are widely used in wastewater treatment for their particular enhancement of nitrogen removal and other significant advantages. In this study, the diversity and potential functions of nitrogen removal bacteria in suspended activated sludge (AS) and biofilm of a full-scale hybrid reactor were uncovered by metagenomes (∼34 Gb), coupled with PCR-based 454 reads (>33 K reads). The results indicated that the diversity and abundance of nitrifiers and denitrifiers in biofilm did not surpass that in AS, while more nitrification and denitrification genes were indeed found in biofilm than AS, suggesting that the increased nitrogen removal ability by applying biofilm might be attributed to the enhancement of removal efficiency, rather than the biomass accumulation of nitrogen removal bacteria. The gene annotation and phylogenetic analysis results revealed that AS and biofilm samples consisted of 6.0 % and 9.4 % of novel functional genes for nitrogen removal and 18 % and 30 % of new Nitrospira species for nitrite-oxidizing bacteria, respectively. Moreover, the identification of Nitrospira-like amoA genes provided metagenomic evidence for the presence of complete ammonia oxidizer (comammox) with the functional potential to perform the complete oxidation of ammonia to nitrate. These findings have significant implications in expanding our knowledge of the biological nitrogen transformations in wastewater treatment. PMID:27287850

  7. A novel molecule integrating therapeutic and diagnostic activities reveals multiple aspects of stem cell-based therapy.

    PubMed

    Hingtgen, Shawn D; Kasmieh, Randa; van de Water, Jeroen; Weissleder, Ralph; Shah, Khalid

    2010-04-01

    Stem cells are promising therapeutic delivery vehicles; however pre-clinical and clinical applications of stem cell-based therapy would benefit significantly from the ability to simultaneously determine therapeutic efficacy and pharmacokinetics of therapies delivered by engineered stem cells. In this study, we engineered and screened numerous fusion variants that contained therapeutic (TRAIL) and diagnostic (luciferase) domains designed to allow simultaneous investigation of multiple events in stem cell-based therapy in vivo. When various stem cell lines were engineered with the optimized molecule, SRL(O)L(2)TR, diagnostic imaging showed marked differences in the levels and duration of secretion between stem cell lines, while the therapeutic activity of the molecule showed the different secretion levels translated to significant variability in tumor cell killing. In vivo, simultaneous diagnostic and therapeutic monitoring revealed that stem cell-based delivery significantly improved pharmacokinetics and anti-tumor effectiveness of the therapy compared to intravenous or intratumoral delivery. As treatment for highly malignant brain tumor xenografts, tracking SRL(O)L(2)TR showed stable stem cell-mediated delivery significantly regressed peripheral and intracranial tumors. Together, the integrated diagnostic and therapeutic properties of SRL(O)L(2)TR answer critical questions necessary for successful utilization of stem cells as novel therapeutic vehicles. PMID:20127797

  8. Mutant N143P Reveals How Na[superscript +] Activates Thrombin

    SciTech Connect

    Niu, Weiling; Chen, Zhiwei; Bush-Pelc, Leslie A.; Bah, Alaji; Gandhi, Prafull S.; Di Cera, Enrico

    2010-01-12

    The molecular mechanism of thrombin activation by Na{sup +} remains elusive. Its kinetic formulation requires extension of the classical Botts-Morales theory for the action of a modifier on an enzyme to correctly account for the contribution of the E*, E, and E:Na{sup +} forms. The extended scheme establishes that analysis of k{sub cat} unequivocally identifies allosteric transduction of Na{sup +} binding into enhanced catalytic activity. The thrombin mutant N143P features no Na{sup +}-dependent enhancement of k{sub cat} yet binds Na{sup +} with an affinity comparable to that of wild type. Crystal structures of the mutant in the presence and absence of Na{sup +} confirm that Pro{sup 143} abrogates the important H-bond between the backbone N atom of residue 143 and the carbonyl O atom of Glu{sup 192}, which in turn controls the orientation of the Glu{sup 192}-Gly{sup 193} peptide bond and the correct architecture of the oxyanion hole. We conclude that Na{sup +} activates thrombin by securing the correct orientation of the Glu{sup 192}-Gly{sup 193} peptide bond, which is likely flipped in the absence of cation. Absolute conservation of the 143-192 H-bond in trypsin-like proteases and the importance of the oxyanion hole in protease function suggest that this mechanism of Na{sup +} activation is present in all Na{sup +}-activated trypsin-like proteases.

  9. fMRI reveals neural activity overlap between adult and infant pain

    PubMed Central

    Goksan, Sezgi; Hartley, Caroline; Emery, Faith; Cockrill, Naomi; Poorun, Ravi; Moultrie, Fiona; Rogers, Richard; Campbell, Jon; Sanders, Michael; Adams, Eleri; Clare, Stuart; Jenkinson, Mark; Tracey, Irene; Slater, Rebeccah

    2015-01-01

    Limited understanding of infant pain has led to its lack of recognition in clinical practice. While the network of brain regions that encode the affective and sensory aspects of adult pain are well described, the brain structures involved in infant nociceptive processing are less well known, meaning little can be inferred about the nature of the infant pain experience. Using fMRI we identified the network of brain regions that are active following acute noxious stimulation in newborn infants, and compared the activity to that observed in adults. Significant infant brain activity was observed in 18 of the 20 active adult brain regions but not in the infant amygdala or orbitofrontal cortex. Brain regions that encode sensory and affective components of pain are active in infants, suggesting that the infant pain experience closely resembles that seen in adults. This highlights the importance of developing effective pain management strategies in this vulnerable population. DOI: http://dx.doi.org/10.7554/eLife.06356.001 PMID:25895592

  10. Structural interpretation of activity cliffs revealed by systematic analysis of structure-activity relationships in analog series.

    PubMed

    Sisay, Mihiret T; Peltason, Lisa; Bajorath, Jürgen

    2009-10-01

    Discontinuity in structure-activity relationships (SARs) is caused by so-called activity cliffs and represents one of the major caveats in SAR modeling and lead optimization. At activity cliffs, small structural modifications of compounds lead to substantial differences in potency that are essentially unpredictable using quantitative structure-activity relationship (QSAR) methods. In order to better understand SAR discontinuity at the molecular level of detail, we have analyzed different compound series in combinatorial analog graphs and determined substitution patterns that introduce activity cliffs of varying magnitude. So identified SAR determinants were then analyzed on the basis of complex crystal structures to enable a structural interpretation of SAR discontinuity and underlying activity cliffs. In some instances, SAR discontinuity detected within analog series could be well rationalized on the basis of structural data, whereas in others a structural explanation was not possible. This reflects the intrinsic complexity of small molecule SARs and suggests that the analysis of short-range receptor-ligand interactions seen in X-ray structures is insufficient to comprehensively account for SAR discontinuity. However, in other cases, SAR information extracted from ligands was incomplete but could be deduced taking X-ray data into account. Thus, taken together, these findings illustrate the complementarity of ligand-based SAR analysis and structural information. PMID:19761254

  11. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    PubMed Central

    Wernimont, Amy K.; Artz, Jennifer D.; Finerty, Patrick; Lin, Y.; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond

    2013-01-01

    Calcium-dependent protein kinases (CDPKs) play pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites, and comprise a CaMK-like kinase domain regulated by a calcium-binding domain in the C-terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N-terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate-binding site. This large conformational change constitutes a distinct mechanism in calcium signal transduction pathways. PMID:20436473

  12. Structural investigation of heteroyohimbine alkaloid synthesis reveals active site elements that control stereoselectivity.

    PubMed

    Stavrinides, Anna; Tatsis, Evangelos C; Caputi, Lorenzo; Foureau, Emilien; Stevenson, Clare E M; Lawson, David M; Courdavault, Vincent; O'Connor, Sarah E

    2016-01-01

    Plants produce an enormous array of biologically active metabolites, often with stereochemical variations on the same molecular scaffold. These changes in stereochemistry dramatically impact biological activity. Notably, the stereoisomers of the heteroyohimbine alkaloids show diverse pharmacological activities. We reported a medium chain dehydrogenase/reductase (MDR) from Catharanthus roseus that catalyses formation of a heteroyohimbine isomer. Here we report the discovery of additional heteroyohimbine synthases (HYSs), one of which produces a mixture of diastereomers. The crystal structures for three HYSs have been solved, providing insight into the mechanism of reactivity and stereoselectivity, with mutation of one loop transforming product specificity. Localization and gene silencing experiments provide a basis for understanding the function of these enzymes in vivo. This work sets the stage to explore how MDRs evolved to generate structural and biological diversity in specialized plant metabolism and opens the possibility for metabolic engineering of new compounds based on this scaffold. PMID:27418042

  13. Structural investigation of heteroyohimbine alkaloid synthesis reveals active site elements that control stereoselectivity

    PubMed Central

    Stavrinides, Anna; Tatsis, Evangelos C.; Caputi, Lorenzo; Foureau, Emilien; Stevenson, Clare E. M.; Lawson, David M.; Courdavault, Vincent; O'Connor, Sarah E.

    2016-01-01

    Plants produce an enormous array of biologically active metabolites, often with stereochemical variations on the same molecular scaffold. These changes in stereochemistry dramatically impact biological activity. Notably, the stereoisomers of the heteroyohimbine alkaloids show diverse pharmacological activities. We reported a medium chain dehydrogenase/reductase (MDR) from Catharanthus roseus that catalyses formation of a heteroyohimbine isomer. Here we report the discovery of additional heteroyohimbine synthases (HYSs), one of which produces a mixture of diastereomers. The crystal structures for three HYSs have been solved, providing insight into the mechanism of reactivity and stereoselectivity, with mutation of one loop transforming product specificity. Localization and gene silencing experiments provide a basis for understanding the function of these enzymes in vivo. This work sets the stage to explore how MDRs evolved to generate structural and biological diversity in specialized plant metabolism and opens the possibility for metabolic engineering of new compounds based on this scaffold. PMID:27418042

  14. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    SciTech Connect

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  15. The early asthmatic response is associated with glycolysis, calcium binding and mitochondria activity as revealed by proteomic analysis in rats

    PubMed Central

    2010-01-01

    Background The inhalation of allergens by allergic asthmatics results in the early asthmatic response (EAR), which is characterized by acute airway obstruction beginning within a few minutes. The EAR is the earliest indicator of the pathological progression of allergic asthma. Because the molecular mechanism underlying the EAR is not fully defined, this study will contribute to a better understanding of asthma. Methods In order to gain insight into the molecular basis of the EAR, we examined changes in protein expression patterns in the lung tissue of asthmatic rats during the EAR using 2-DE/MS-based proteomic techniques. Bioinformatic analysis of the proteomic data was then performed using PPI Spider and KEGG Spider to investigate the underlying molecular mechanism. Results In total, 44 differentially expressed protein spots were detected in the 2-DE gels. Of these 44 protein spots, 42 corresponded to 36 unique proteins successfully identified using mass spectrometry. During subsequent bioinformatic analysis, the gene ontology classification, the protein-protein interaction networking and the biological pathway exploration demonstrated that the identified proteins were mainly involved in glycolysis, calcium binding and mitochondrial activity. Using western blot and semi-quantitative RT-PCR, we confirmed the changes in expression of five selected proteins, which further supports our proteomic and bioinformatic analyses. Conclusions Our results reveal that the allergen-induced EAR in asthmatic rats is associated with glycolysis, calcium binding and mitochondrial activity, which could establish a functional network in which calcium binding may play a central role in promoting the progression of asthma. PMID:20691077

  16. Studying Activity Series of Metals.

    ERIC Educational Resources Information Center

    Hoon, Tien-Ghun; And Others

    1995-01-01

    Presents teaching strategies that illustrate the linking together of numerous chemical concepts involving the activity of metals (quantitative analysis, corrosion, and electrolysis) through the use of deep-level processing strategies. Concludes that making explicit links in the process of teaching chemistry can lead effectively to meaningful…

  17. Revealing the activation pathway for TMEM16A chloride channels from macroscopic currents and kinetic models.

    PubMed

    Contreras-Vite, Juan A; Cruz-Rangel, Silvia; De Jesús-Pérez, José J; Figueroa, Iván A Aréchiga; Rodríguez-Menchaca, Aldo A; Pérez-Cornejo, Patricia; Hartzell, H Criss; Arreola, Jorge

    2016-07-01

    TMEM16A (ANO1), the pore-forming subunit of calcium-activated chloride channels, regulates several physiological and pathophysiological processes such as smooth muscle contraction, cardiac and neuronal excitability, salivary secretion, tumour growth and cancer progression. Gating of TMEM16A is complex because it involves the interplay between increases in intracellular calcium concentration ([Ca(2+)]i), membrane depolarization, extracellular Cl(-) or permeant anions and intracellular protons. Our goal here was to understand how these variables regulate TMEM16A gating and to explain four observations. (a) TMEM16A is activated by voltage in the absence of intracellular Ca(2+). (b) The Cl(-) conductance is decreased after reducing extracellular Cl(-) concentration ([Cl(-)]o). (c) ICl is regulated by physiological concentrations of [Cl(-)]o. (d) In cells dialyzed with 0.2 μM [Ca(2+)]i, Cl(-) has a bimodal effect: at [Cl(-)]o <30 mM TMEM16A current activates with a monoexponential time course, but above 30 mM, [Cl(-)]o ICl activation displays fast and slow kinetics. To explain the contribution of Vm, Ca(2+) and Cl(-) to gating, we developed a 12-state Markov chain model. This model explains TMEM16A activation as a sequential, direct, and Vm-dependent binding of two Ca(2+) ions coupled to a Vm-dependent binding of an external Cl(-) ion, with Vm-dependent transitions between states. Our model predicts that extracellular Cl(-) does not alter the apparent Ca(2+) affinity of TMEM16A, which we corroborated experimentally. Rather, extracellular Cl(-) acts by stabilizing the open configuration induced by Ca(2+) and by contributing to the Vm dependence of activation. PMID:27138167

  18. Thermal activation of a group II intron ribozyme reveals multiple conformational states.

    PubMed

    Franzen, J S; Zhang, M; Chay, T R; Peebles, C L

    1994-09-20

    Conformational changes often accompany biological catalysis. Group II introns promote a variety of reactions in vitro that show an unusually sharp temperature dependence. This suggests that the chemical steps are accompanied by the conversion of a folded-but-inactive form to a differently folded active state. We report here the kinetic analysis of 5'-splice-junction hydrolysis (SJH) by E1:12345, a transcript containing the 5'-exon plus the first five of six intron secondary structure domains. The pseudo-first-order SJH reaction shows (1) activation by added KCl to 1.5 M; (2) cooperative activation by added MgCl2, nHill = 4.1-4.3, and [MgCl2]vmax/2 approximately 0.040 M; and (3) a rather high apparent activation energy, Ea approximately 50 kcal mol-l. In contrast, the 5'-terminal phosphodiester bond of a domain 5 transcript (GGD5) was hydrolyzed with Ea approximately 30 kcal mol-1 under SJH conditions; the 5'-GG leader dinucleotide presumably lacks secondary structure constraints. The effect of adding the chaotropic salt tetraethylammonium chloride (TEA) was also investigated. TEA reduced the melting temperatures of GGD5 and E1:12345. TEA also shifted the profile of rate versus temperature for SJH by E1:12345 toward lower temperatures without affecting the maximum rate. TEA had little effect on the rate of hydrolysis of the 5'-phosphodiester bond of GGD5. The high apparent activation enthalpy and entropy for SJH along with the effect of TEA on these parameters imply that conversion of an inactive form of E1:12345 to an active conformation accompanies enhanced occupation of the transition state as the temperature is raised to that for maximum SJH. Analytical modeling indicates that either a two-state model (open and disordered, with open being active) or a three-state model (compact, open, and disordered) could account for the temperature dependence of kSJH. However, the three-state model is clearly preferable, since it does not require that the activation parameters

  19. Single-molecule studies reveal the function of a third polymerase in the replisome

    PubMed Central

    Georgescu, Roxana E; Kurth, Isabel; O'Donnell, Mike E

    2013-01-01

    The Escherichia coli replisome contains three polymerases, one more than necessary to duplicate the two parental strands. Using single-molecule studies, we reveal two advantages conferred by the third polymerase. First, dipolymerase replisomes are inefficient at synthesizing lagging strands, leaving single-strand gaps, whereas tripolymerase replisomes fill strands almost to completion. Second, tripolymerase replisomes are much more processive than dipolymerase replisomes. These features account for the unexpected three-polymerase-structure of bacterial replisomes. PMID:22157955

  20. An integrated multi-omics study revealed metabolic alterations underlying the effects of coffee consumption.

    PubMed

    Takahashi, Shoko; Saito, Kenji; Jia, Huijuan; Kato, Hisanori

    2014-01-01

    Many epidemiological studies have indicated that coffee consumption may reduce the risks of developing obesity and diabetes, but the underlying mechanisms of these effects are poorly understood. Our previous study revealed the changes on gene expression profiles in the livers of C57BL/6J mice fed a high-fat diet containing three types of coffee (caffeinated, decaffeinated and green unroasted coffee), using DNA microarrays. The results revealed remarkable alterations in lipid metabolism-related molecules which may be involved in the anti-obesity effects of coffee. We conducted the present study to further elucidate the metabolic alterations underlying the effects of coffee consumption through comprehensive proteomic and metabolomic analyses. Proteomics revealed an up-regulation of isocitrate dehydrogenase (a key enzyme in the TCA cycle) and its related proteins, suggesting increased energy generation. The metabolomics showed an up-regulation of metabolites involved in the urea cycle, with which the transcriptome data were highly consistent, indicating accelerated energy expenditure. The TCA cycle and the urea cycle are likely be accelerated in a concerted manner, since they are directly connected by mutually providing each other's intermediates. The up-regulation of these pathways might result in a metabolic shift causing increased ATP turnover, which is related to the alterations of lipid metabolism. This mechanism may play an important part in the suppressive effects of coffee consumption on obesity, inflammation, and hepatosteatosis. This study newly revealed global metabolic alterations induced by coffee intake, providing significant insights into the association between coffee intake and the prevention of type 2 diabetes, utilizing the benefits of multi-omics analyses. PMID:24618914

  1. Active role of the liquid phase of developer in revealing surface flaws by capillary methods

    SciTech Connect

    Prokhorenko, P.P.; Dezhkunov, N.V.; Stoicheva, I.V.

    1988-08-01

    The article investigates the interaction of two chemically nonreacting liquids after they have been brought into contact with each other in a capillary. It is established that the liquid phase of the developer is not only a passive carrier of the developing component but also exerts an active influence on the process of development, and consequently, on the detectability of flaws.

  2. Single Particle Tracking Reveals that EGFR Signaling Activity Is Amplified in Clathrin-Coated Pits

    PubMed Central

    Ibach, Jenny; Radon, Yvonne; Gelléri, Márton; Sonntag, Michael H.; Brunsveld, Luc; Bastiaens, Philippe I. H.; Verveer, Peter J.

    2015-01-01

    Signaling from the epidermal growth factor receptor (EGFR) via phosphorylation on its C-terminal tyrosine residues requires self-association, which depends on the diffusional properties of the receptor and its density in the plasma membrane. Dimerization is a key event for EGFR activation, but the role of higher order clustering is unknown. We employed single particle tracking to relate the mobility and aggregation of EGFR to its signaling activity. EGFR mobility alternates between short-lived free, confined and immobile states. In the immobile state, EGFR tends to aggregate in clathrin-coated pits, which is further enhanced in a phosphorylation-dependent manner and does not require ligand binding. EGFR phosphorylation is further amplified by cross-phosphorylation in clathrin-coated pits. Because phosphorylated receptors can escape from the pits, local gradients of signaling active EGFR are formed. These results show that amplification of EGFR phosphorylation by receptor clustering in clathrin-coated pits supports signal activation at the plasma membrane. PMID:26575183

  3. Fractal analysis reveals subclasses of neurons and suggests an explanation of their spontaneous activity.

    PubMed

    Favela, Luis H; Coey, Charles A; Griff, Edwin R; Richardson, Michael J

    2016-07-28

    The present work used fractal time series analysis (detrended fluctuation analysis; DFA) to examine the spontaneous activity of single neurons in an anesthetized animal model, specifically, the mitral cells in the rat main olfactory bulb. DFA bolstered previous research in suggesting two subclasses of mitral cells. Although there was no difference in the fractal scaling of the interspike interval series at the shorter timescales, there was a significant difference at longer timescales. Neurons in Group B exhibited fractal, power-law scaled interspike intervals, whereas neurons in Group A exhibited random variation. These results raise questions about the role of these different cells within the olfactory bulb and potential explanations of their dynamics. Specifically, self-organized criticality has been proposed as an explanation of fractal scaling in many natural systems, including neural systems. However, this theory is based on certain assumptions that do not clearly hold in the case of spontaneous neural activity, which likely reflects intrinsic cell dynamics rather than activity driven by external stimulation. Moreover, it is unclear how self-organized criticality might account for the random dynamics observed in Group A, and how these random dynamics might serve some functional role when embedded in the typical activity of the olfactory bulb. These theoretical considerations provide direction for additional experimental work. PMID:27189719

  4. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics

    EPA Science Inventory

    We developed a quantitative method for estimating resource allocation strategies of microbial communities based on the proportional activities of four, key extracellular enzymes, 1,4-ß-glucosidase (BG), leucine amino-peptidase (LAP), 1,4-ß-N-acetylglucosaminidase (NAG...

  5. Beyond Rhyme or Reason: ERPs Reveal Task-Specific Activation of Orthography on Spoken Language

    ERIC Educational Resources Information Center

    Pattamadilok, Chotiga; Perre, Laetitia; Ziegler, Johannes C.

    2011-01-01

    Metaphonological tasks, such as rhyme judgment, have been the primary tool for the investigation of the effects of orthographic knowledge on spoken language. However, it has been recently argued that the orthography effect in rhyme judgment does not reflect the automatic activation of orthographic codes but rather stems from sophisticated response…

  6. Transcriptomic sequencing reveals a set of unique genes activated by butyrate-induced histone modification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate is a nutritional element with strong epigenetic regulatory activity as an inhibitor of histone deacetylases (HDACs). Based on the analysis of differentially expressed genes induced by butyrate in the bovine epithelial cell using deep RNA-sequencing technology (RNA-seq), a set of unique gen...

  7. Suppression of voluntary motor activity revealed using transcranial magnetic stimulation of the motor cortex in man.

    PubMed Central

    Davey, N J; Romaiguère, P; Maskill, D W; Ellaway, P H

    1994-01-01

    1. Suppression of voluntary muscle activity of hand and arm muscles in response to transcranial magnetic stimulation (TMS) of the motor cortex has been investigated in man. 2. Suppression could be elicited by low levels of TMS without any prior excitatory response. The latency of the suppression was 3-8 ms longer than the excitation observed at a higher stimulus intensity. The duration of the suppression ranged from 8 to 26 ms. 3. A circular stimulating coil was used to determine threshold intensity for excitation and suppression of contraction of thenar muscles in response to TMS at different locations over the motor cortex. The locations for lowest threshold excitation coincided with those for lowest threshold suppression. Suppression was elicited at a lower threshold than excitation at all locations. 4. A figure-of-eight stimulating coil was positioned over the left motor cortex at the lowest threshold point for excitation of the right thenar muscles. The orientation for the lowest threshold excitatory and inhibitory responses was the same for all subjects. That orientation induced a stimulating current travelling in an antero-medial direction. Suppression was invariably elicited at lower thresholds than excitation. 5. When antagonistic muscles (second and third dorsal interosseus) were co-contracted, TMS evoked coincident suppression of voluntary EMG in the two muscles without prior excitation of either muscle. This suggests that the suppression is not mediated via corticospinal activation of spinal interneurones. 6. Test responses to electrical stimulation of the cervical spinal cord were evoked in both relaxed and activated thenar muscles. In the relaxed muscle, prior TMS at an intensity that would suppress voluntary activity failed to influence the test responses, suggesting absence of inhibition at a spinal level. However, in the activated muscle, prior TMS could reduce the test response. This may be explained by disfacilitation of motoneurones due to

  8. Revealing Praxis: A Study of Professional Learning and Development as a Beginning Social Studies Teacher Educator

    ERIC Educational Resources Information Center

    Ritter, Jason K.

    2010-01-01

    This self-study reports on the professional learning and development of a beginning social studies teacher educator via an examination of the evolving relationship between the author's beliefs and practices during his first three years preparing social studies teachers. Throughout this time data were systematically collected in the form of written…

  9. Structure of inorganic pyrophosphatase from Staphylococcus aureus reveals conformational flexibility of the active site.

    PubMed

    Gajadeera, Chathurada S; Zhang, Xinyi; Wei, Yinan; Tsodikov, Oleg V

    2015-02-01

    Cytoplasmic inorganic pyrophosphatase (PPiase) is an enzyme essential for survival of organisms, from bacteria to human. PPiases are divided into two structurally distinct families: family I PPiases are Mg(2+)-dependent and present in most archaea, eukaryotes and prokaryotes, whereas the relatively less understood family II PPiases are Mn(2+)-dependent and present only in some archaea, bacteria and primitive eukaryotes. Staphylococcus aureus (SA), a dangerous pathogen and a frequent cause of hospital infections, contains a family II PPiase (PpaC), which is an attractive potential target for development of novel antibacterial agents. We determined a crystal structure of SA PpaC in complex with catalytic Mn(2+) at 2.1Å resolution. The active site contains two catalytic Mn(2+) binding sites, each half-occupied, reconciling the previously observed 1:1 Mn(2+):enzyme stoichiometry with the presence of two divalent metal ion sites in the apo-enzyme. Unexpectedly, despite the absence of the substrate or products in the active site, the two domains of SA PpaC form a closed active site, a conformation observed in structures of other family II PPiases only in complex with substrate or product mimics. A region spanning residues 295-298, which contains a conserved substrate binding RKK motif, is flipped out of the active site, an unprecedented conformation for a PPiase. Because the mutant of Arg295 to an alanine is devoid of activity, this loop likely undergoes an induced-fit conformational change upon substrate binding and product dissociation. This closed conformation of SA PPiase may serve as an attractive target for rational design of inhibitors of this enzyme. PMID:25576794

  10. Fractionation of a Herbal Antidiarrheal Medicine Reveals Eugenol as an Inhibitor of Ca2+-Activated Cl− Channel TMEM16A

    PubMed Central

    Yao, Zhen; Namkung, Wan; Ko, Eun A.; Park, Jinhong; Tradtrantip, Lukmanee; Verkman, A. S.

    2012-01-01

    The Ca2+-activated Cl− channel TMEM16A is involved in epithelial fluid secretion, smooth muscle contraction and neurosensory signaling. We identified a Thai herbal antidiarrheal formulation that inhibited TMEM16A Cl− conductance. C18-reversed-phase HPLC fractionation of the herbal formulation revealed >98% of TMEM16A inhibition activity in one out of approximately 20 distinct peaks. The purified, active compound was identified as eugenol (4-allyl-2-methoxyphenol), the major component of clove oil. Eugenol fully inhibited TMEM16A Cl− conductance with single-site IC50∼150 µM. Eugenol inhibition of TMEM16A in interstitial cells of Cajal produced strong inhibition of intestinal contraction in mouse ileal segments. TMEM16A Cl− channel inhibition adds to the list of eugenol molecular targets and may account for some of its biological activities. PMID:22666439

  11. Fractionation of a herbal antidiarrheal medicine reveals eugenol as an inhibitor of Ca2+-Activated Cl- channel TMEM16A.

    PubMed

    Yao, Zhen; Namkung, Wan; Ko, Eun A; Park, Jinhong; Tradtrantip, Lukmanee; Verkman, A S

    2012-01-01

    The Ca(2+)-activated Cl(-) channel TMEM16A is involved in epithelial fluid secretion, smooth muscle contraction and neurosensory signaling. We identified a Thai herbal antidiarrheal formulation that inhibited TMEM16A Cl(-) conductance. C18-reversed-phase HPLC fractionation of the herbal formulation revealed >98% of TMEM16A inhibition activity in one out of approximately 20 distinct peaks. The purified, active compound was identified as eugenol (4-allyl-2-methoxyphenol), the major component of clove oil. Eugenol fully inhibited TMEM16A Cl(-) conductance with single-site IC(50)~150 µM. Eugenol inhibition of TMEM16A in interstitial cells of Cajal produced strong inhibition of intestinal contraction in mouse ileal segments. TMEM16A Cl(-) channel inhibition adds to the list of eugenol molecular targets and may account for some of its biological activities. PMID:22666439

  12. Jail Participants Actively Study Words

    ERIC Educational Resources Information Center

    Shaw, Donita Massengill; Berg, Margaret A.

    2009-01-01

    The purpose of this research was to evaluate the impact of a word study literacy approach on the spelling ability and self-efficacy of adults in a county jail. Forty-four inmates participated in the word study intervention that provided them with hands-on learning. The word study intervention was conducted in four separate sessions (September,…

  13. Studies of Transient Meteor Activity

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter M. M.

    2002-01-01

    Meteoroids bombard Earth's atmosphere daily, but occasionally meteor rates increase to unusual high levels when Earth crosses the relatively fresh ejecta of comets. These transient events in meteor activity provide clues about the whereabouts of Earth-threatening long-period comets, the mechanisms of large-grain dust ejection from comets, and the particle composition and size distribution of the cometary ejecta. Observations of these transient events provide important insight in natural processes that determine the large grain dust environment of comets, in natural phenomena that were prevalent during the time of the origin of life, and in processes that determine the hazard of civilizations to large impacts and of man-made satellites to the periodic blizzard of small meteoroids. In this proposal, three tasks form a coherent program aimed at elucidating various aspects of meteor outbursts, with special reference to planetary astronomy and astrobiology. Task 1 was a ground-based effort to observe periods of transient meteor activity. This includes: (1) stereoscopic imaging of meteors during transient meteor events for measurements of particle size distribution, meteoroid orbital dispersions and fluxes; and (2) technical support for Global-MS-Net, a network of amateur-operated automatic counting stations for meteor reflections from commercial VHF radio and TV broadcasting stations, keeping a 24h vigil on the level of meteor activity for the detection of new meteor streams. Task 2 consisted of ground-based and satellite born spectroscopic observations of meteors and meteor trains during transient meteor events for measurements of elemental composition, the presence of organic matter in the meteoroids, and products generated by the interaction of the meteoroid with the atmosphere. Task 3 was an airborne effort to explore the 2000 Leonid meteor outbursts, which are anticipated to be the most significant of transient meteor activity events in the remainder of the

  14. Novel Molecular Insights into Classical and Alternative Activation States of Microglia as Revealed by Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-based Proteomics*

    PubMed Central

    Bell-Temin, Harris; Culver-Cochran, Ashley E.; Chaput, Dale; Carlson, Christina M.; Kuehl, Melanie; Burkhardt, Brant R.; Bickford, Paula C.; Liu, Bin; Stevens, Stanley M.

    2015-01-01

    Microglia, the resident immune cells of the brain, have been shown to display a complex spectrum of roles that span from neurotrophic to neurotoxic depending on their activation status. Microglia can be classified into four stages of activation, M1, which most closely matches the classical (pro-inflammatory) activation stage, and the alternative activation stages M2a, M2b, and M2c. The alternative activation stages have not yet been comprehensively analyzed through unbiased, global-scale protein expression profiling. In this study, BV2 mouse immortalized microglial cells were stimulated with agonists specific for each of the four stages and total protein expression for 4644 protein groups was quantified using SILAC-based proteomic analysis. After validating induction of the various stages through a targeted cytokine assay and Western blotting of activation states, the data revealed novel insights into the similarities and differences between the various states. The data identify several protein groups whose expression in the anti-inflammatory, pro-healing activation states are altered presumably to curtail inflammatory activation through differential protein expression, in the M2a state including CD74, LYN, SQST1, TLR2, and CD14. The differential expression of these proteins promotes healing, limits phagocytosis, and limits activation of reactive nitrogen species through toll-like receptor cascades. The M2c state appears to center around the down-regulation of a key member in the formation of actin-rich phagosomes, SLP-76. In addition, the proteomic data identified a novel activation marker, DAB2, which is involved in clathrin-mediated endocytosis and is significantly different between M2a and either M1 or M2b states. Western blot analysis of mouse primary microglia stimulated with the various agonists of the classical and alternative activation states revealed a similar trend of DAB2 expression compared with BV2 cells. PMID:26424600

  15. Novel Molecular Insights into Classical and Alternative Activation States of Microglia as Revealed by Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-based Proteomics.

    PubMed

    Bell-Temin, Harris; Culver-Cochran, Ashley E; Chaput, Dale; Carlson, Christina M; Kuehl, Melanie; Burkhardt, Brant R; Bickford, Paula C; Liu, Bin; Stevens, Stanley M

    2015-12-01

    Microglia, the resident immune cells of the brain, have been shown to display a complex spectrum of roles that span from neurotrophic to neurotoxic depending on their activation status. Microglia can be classified into four stages of activation, M1, which most closely matches the classical (pro-inflammatory) activation stage, and the alternative activation stages M2a, M2b, and M2c. The alternative activation stages have not yet been comprehensively analyzed through unbiased, global-scale protein expression profiling. In this study, BV2 mouse immortalized microglial cells were stimulated with agonists specific for each of the four stages and total protein expression for 4644 protein groups was quantified using SILAC-based proteomic analysis. After validating induction of the various stages through a targeted cytokine assay and Western blotting of activation states, the data revealed novel insights into the similarities and differences between the various states. The data identify several protein groups whose expression in the anti-inflammatory, pro-healing activation states are altered presumably to curtail inflammatory activation through differential protein expression, in the M2a state including CD74, LYN, SQST1, TLR2, and CD14. The differential expression of these proteins promotes healing, limits phagocytosis, and limits activation of reactive nitrogen species through toll-like receptor cascades. The M2c state appears to center around the down-regulation of a key member in the formation of actin-rich phagosomes, SLP-76. In addition, the proteomic data identified a novel activation marker, DAB2, which is involved in clathrin-mediated endocytosis and is significantly different between M2a and either M1 or M2b states. Western blot analysis of mouse primary microglia stimulated with the various agonists of the classical and alternative activation states revealed a similar trend of DAB2 expression compared with BV2 cells. PMID:26424600

  16. A Global Genomic Screening Strategy Reveals Genetic and Chemical Activators ofPeroxisome Proliferator-Activated Receptor alpha (PPARalpha)

    EPA Science Inventory

    A comprehensive survey of chemical, diet and genetic perturbations that activate PPARalpha in the mouse liver has not been carried out but would be useful to identify the factors that may contribute to PPARalpha-dependent liver tumors. A gene signature dependent on PPARalpha ac...

  17. Targeted mutagenesis of the human papillomavirus type 16 E2 transactivation domain reveals separable transcriptional activation and DNA replication functions.

    PubMed

    Sakai, H; Yasugi, T; Benson, J D; Dowhanick, J J; Howley, P M

    1996-03-01

    The E2 gene products of papillomavirus play key roles in viral replication, both as regulators of viral transcription and as auxiliary factors that act with E1 in viral DNA replication. We have carried out a detailed structure-function analysis of conserved amino acids within the N-terminal domain of the human papillomavirus type 16 (HPV16) E2 protein. These mutants were tested for their transcriptional activation activities as well as transient DNA replication and E1 binding activities. Analysis of the stably expressed mutants revealed that the transcriptional activation and replication activities of HPV16 E2 could be dissociated. The 173A mutant was defective for the transcriptional activation function but retained wild-type DNA replication activity, whereas the E39A mutant wild-type transcriptional activation function but was defective in transient DNA replication assays. The E39A mutant was also defective for HPV16 E1 binding in vitro, suggesting that the ability of E2 protein to form a complex with E1 appears to be essential for its function as an auxiliary replication factor. PMID:8627680

  18. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide.

    PubMed

    Xu, Junyuan; Kan, Yuhe; Huang, Rui; Zhang, Bingsen; Wang, Bolun; Wu, Kuang-Hsu; Lin, Yangming; Sun, Xiaoyan; Li, Qingfeng; Centi, Gabriele; Su, Dangsheng

    2016-05-23

    Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2 ). The investigation explores the origin of the catalyst's activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate-determining transfer of one electron to CO2 , which leads to the formation of carbon dioxide radical anion (CO2 (.-) ). The initial reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction. The doped nitrogen atoms stabilize the radical anion, thereby lowering the initial reduction barrier and improving the intrinsic activity. The most efficient nitrogen chemical state for this reaction is quaternary nitrogen, followed by pyridinic and pyrrolic nitrogen. PMID:27100272

  19. Stepwise multi-photon activation fluorescence reveals a new method of melanoma imaging for dermatologists

    NASA Astrophysics Data System (ADS)

    Lai, Zhenhua; Lian, Christine; Ma, Jie; Yu, Jingyi; Gu, Zetong; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2014-02-01

    Previous research has shown that the stepwise multi-photon activated fluorescence (SMPAF) of melanin, activated by a continuous-wave (CW) mode near infrared (NIR) laser, is a low cost and reliable method of detecting melanin. SMPAF images of melanin in a mouse hair and a formalin fixed mouse melanoma were compared with conventional multiphoton fluorescence microscopy (MPFM) images and confocal reflectance microscopy (CRM) images, all of which were acquired at an excitation wavelength of 920 nm, to further prove the effectiveness of SMPAF in detecting melanin. SMPAF images add specificity for melanin detection to MPFM images and CRM images. Melanin SMPAF can be a promising technology to enable melanoma imaging for dermatologists.

  20. Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes.

    PubMed

    Labernadie, Anna; Bouissou, Anaïs; Delobelle, Patrick; Balor, Stéphanie; Voituriez, Raphael; Proag, Amsha; Fourquaux, Isabelle; Thibault, Christophe; Vieu, Christophe; Poincloux, Renaud; Charrière, Guillaume M; Maridonneau-Parini, Isabelle

    2014-01-01

    Podosomes are adhesion structures formed in monocyte-derived cells. They are F-actin-rich columns perpendicular to the substrate surrounded by a ring of integrins. Here, to measure podosome protrusive forces, we designed an innovative experimental setup named protrusion force microscopy (PFM), which consists in measuring by atomic force microscopy the deformation induced by living cells onto a compliant Formvar sheet. By quantifying the heights of protrusions made by podosomes onto Formvar sheets, we estimate that a single podosome generates a protrusion force that increases with the stiffness of the substratum, which is a hallmark of mechanosensing activity. We show that the protrusive force generated at podosomes oscillates with a constant period and requires combined actomyosin contraction and actin polymerization. Finally, we elaborate a model to explain the mechanical and oscillatory activities of podosomes. Thus, PFM shows that podosomes are mechanosensing cell structures exerting a protrusive force. PMID:25385672

  1. Genome sequence of Wickerhamomyces anomalus DSM 6766 reveals genetic basis of biotechnologically important antimicrobial activities.

    PubMed

    Schneider, Jessica; Rupp, Oliver; Trost, Eva; Jaenicke, Sebastian; Passoth, Volkmar; Goesmann, Alexander; Tauch, Andreas; Brinkrolf, Karina

    2012-05-01

    The ascomycetous yeast Wickerhamomyces anomalus (formerly Pichia anomala and Hansenula anomala) exhibits antimicrobial activities and flavoring features that are responsible for its frequent association with food, beverage and feed products. However, limited information on the genetic background of this yeast and its multiple capabilities are currently available. Here, we present the draft genome sequence of the neotype strain W. anomalus DSM 6766. On the basis of pyrosequencing, a de novo assembly of this strain resulted in a draft genome sequence with a total size of 25.47 Mbp. An automatic annotation using RAPYD generated 11 512 protein-coding sequences. This annotation provided the basis to analyse metabolic capabilities, phylogenetic relationships, as well as biotechnologically important features and yielded novel candidate genes of W. anomalus DSM 6766 coding for proteins participating in antimicrobial activities. PMID:22292503

  2. Aromatic C-H bond activation revealed by infrared multiphoton dissociation spectroscopy.

    PubMed

    Jašíková, Lucie; Hanikýřová, Eva; Schröder, Detlef; Roithová, Jana

    2012-04-01

    Metal-oxide cations are models of catalyst mediating the C-H bond activation of organic substrates. One of the most powerful reagents suggested in the gas phase is based on CuO(+) . Here, we describe the activation of the aromatic C-H bonds of phenanthroline in its complex with CuO(+) . The reaction sequence starts with a hydrogen atom abstraction by the oxygen atom from the 2-position of the phenanthroline ring, followed by OH migration to the ring. Using infrared multiphoton spectroscopy, it is shown that the reaction can be energetically facilitated by additional coordination of a water ligand to the copper ion. As the reaction is intramolecular, a spectroscopic characterization of the product is mandatory in order to unambiguously address the reaction mechanism. PMID:22689621

  3. Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes

    NASA Astrophysics Data System (ADS)

    Labernadie, Anna; Bouissou, Anaïs; Delobelle, Patrick; Balor, Stéphanie; Voituriez, Raphael; Proag, Amsha; Fourquaux, Isabelle; Thibault, Christophe; Vieu, Christophe; Poincloux, Renaud; Charrière, Guillaume M.; Maridonneau-Parini, Isabelle

    2014-11-01

    Podosomes are adhesion structures formed in monocyte-derived cells. They are F-actin-rich columns perpendicular to the substrate surrounded by a ring of integrins. Here, to measure podosome protrusive forces, we designed an innovative experimental setup named protrusion force microscopy (PFM), which consists in measuring by atomic force microscopy the deformation induced by living cells onto a compliant Formvar sheet. By quantifying the heights of protrusions made by podosomes onto Formvar sheets, we estimate that a single podosome generates a protrusion force that increases with the stiffness of the substratum, which is a hallmark of mechanosensing activity. We show that the protrusive force generated at podosomes oscillates with a constant period and requires combined actomyosin contraction and actin polymerization. Finally, we elaborate a model to explain the mechanical and oscillatory activities of podosomes. Thus, PFM shows that podosomes are mechanosensing cell structures exerting a protrusive force.

  4. Synthesis of Isomeric Phosphoubiquitin Chains Reveals that Phosphorylation Controls Deubiquitinase Activity and Specificity.

    PubMed

    Huguenin-Dezot, Nicolas; De Cesare, Virginia; Peltier, Julien; Knebel, Axel; Kristaryianto, Yosua Adi; Rogerson, Daniel T; Kulathu, Yogesh; Trost, Matthias; Chin, Jason W

    2016-07-26

    Ubiquitin is post-translationally modified by phosphorylation at several sites, but the consequences of these modifications are largely unknown. Here, we synthesize multi-milligram quantities of ubiquitin phosphorylated at serine 20, serine 57, and serine 65 via genetic code expansion. We use these phosphoubiquitins for the enzymatic assembly of 20 isomeric phosphoubiquitin dimers, with different sites of isopeptide linkage and/or phosphorylation. We discover that phosphorylation of serine 20 on ubiquitin converts UBE3C from a dual-specificity E3 ligase into a ligase that primarily synthesizes K48 chains. We profile the activity of 31 deubiquitinases on the isomeric phosphoubiquitin dimers in 837 reactions, and we discover that phosphorylation at distinct sites in ubiquitin can activate or repress cleavage of a particular linkage by deubiquitinases and that phosphorylation at a single site in ubiquitin can control the specificity of deubiquitinases for distinct ubiquitin linkages. PMID:27425610

  5. Polycomb repressive complex 2 structure with inhibitor reveals a mechanism of activation and drug resistance

    PubMed Central

    Brooun, Alexei; Gajiwala, Ketan S.; Deng, Ya-Li; Liu, Wei; Bolaños, Ben; Bingham, Patrick; He, You-Ai; Diehl, Wade; Grable, Nicole; Kung, Pei-Pei; Sutton, Scott; Maegley, Karen A.; Yu, Xiu; Stewart, Al E.

    2016-01-01

    Polycomb repressive complex 2 (PRC2) mediates gene silencing through chromatin reorganization by methylation of histone H3 lysine 27 (H3K27). Overexpression of the complex and point mutations in the individual subunits of PRC2 have been shown to contribute to tumorigenesis. Several inhibitors of the PRC2 activity have shown efficacy in EZH2-mutated lymphomas and are currently in clinical development, although the molecular basis of inhibitor recognition remains unknown. Here we report the crystal structures of the inhibitor-bound wild-type and Y641N PRC2. The structures illuminate an important role played by a stretch of 17 residues in the N-terminal region of EZH2, we call the activation loop, in the stimulation of the enzyme activity, inhibitor recognition and the potential development of the mutation-mediated drug resistance. The work presented here provides new avenues for the design and development of next-generation PRC2 inhibitors through establishment of a structure-based drug design platform. PMID:27122193

  6. A Sleeping Beauty screen reveals NF-kB activation in CLL mouse model.

    PubMed

    Zanesi, Nicola; Balatti, Veronica; Riordan, Jesse; Burch, Aaron; Rizzotto, Lara; Palamarchuk, Alexey; Cascione, Luciano; Lagana, Alessandro; Dupuy, Adam J; Croce, Carlo M; Pekarsky, Yuri

    2013-05-23

    TCL1 oncogene is overexpressed in aggressive form of human chronic lymphocytic leukemia (CLL) and its dysregulation in mouse B cells causes a CD5-positive leukemia similar to the aggressive form of human CLLs. To identify oncogenes that cooperate with Tcl1, we performed genetic screen in Eμ-TCL1 mice using Sleeping Beauty transposon-mediated mutagenesis. Analysis of transposon common insertion sites identified 7 genes activated by transposon insertions. Overexpression of these genes in mouse CLL was confirmed by real time reverse transcription-polymerase chain reaction. Interestingly, the main known function of 4 of 7 genes (Nfkb1, Tab2, Map3K14, and Nfkbid) is participation in or activation of the nuclear factor-kB (NF-kB) pathway. In addition, activation of the NF-kB is 1 of main functions of Akt2, also identified in the screen. These findings demonstrate cooperation of Tcl1 and the NF-kB pathway in the pathogenesis of aggressive CLL. Identification cooperating cancer genes will result in the development of combinatorial therapies to treat CLL. PMID:23591791

  7. Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse.

    PubMed

    Vincent, Jean-Baptiste; Bodewits, Dennis; Besse, Sébastien; Sierks, Holger; Barbieri, Cesare; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst Uwe; Agarwal, Jessica; A'Hearn, Michael F; Auger, Anne-Thérèse; Barucci, M Antonella; Bertaux, Jean-Loup; Bertini, Ivano; Capanna, Claire; Cremonese, Gabriele; Da Deppo, Vania; Davidsson, Björn; Debei, Stefano; De Cecco, Mariolino; El-Maarry, Mohamed Ramy; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Gaskell, Robert; Giacomini, Lorenza; Groussin, Olivier; Guilbert-Lepoutre, Aurélie; Gutierrez-Marques, P; Gutiérrez, Pedro J; Güttler, Carsten; Hoekzema, Nick; Höfner, Sebastian; Hviid, Stubbe F; Ip, Wing-Huen; Jorda, Laurent; Knollenberg, Jörg; Kovacs, Gabor; Kramm, Rainer; Kührt, Ekkehard; Küppers, Michael; La Forgia, Fiorangela; Lara, Luisa M; Lazzarin, Monica; Lee, Vicky; Leyrat, Cédric; Lin, Zhong-Yi; Lopez Moreno, Josè J; Lowry, Stephen; Magrin, Sara; Maquet, Lucie; Marchi, Simone; Marzari, Francesco; Massironi, Matteo; Michalik, Harald; Moissl, Richard; Mottola, Stefano; Naletto, Giampiero; Oklay, Nilda; Pajola, Maurizio; Preusker, Frank; Scholten, Frank; Thomas, Nicolas; Toth, Imre; Tubiana, Cecilia

    2015-07-01

    Pits have been observed on many cometary nuclei mapped by spacecraft. It has been argued that cometary pits are a signature of endogenic activity, rather than impact craters such as those on planetary and asteroid surfaces. Impact experiments and models cannot reproduce the shapes of most of the observed cometary pits, and the predicted collision rates imply that few of the pits are related to impacts. Alternative mechanisms like explosive activity have been suggested, but the driving process remains unknown. Here we report that pits on comet 67P/Churyumov-Gerasimenko are active, and probably created by a sinkhole process, possibly accompanied by outbursts. We argue that after formation, pits expand slowly in diameter, owing to sublimation-driven retreat of the walls. Therefore, pits characterize how eroded the surface is: a fresh cometary surface will have a ragged structure with many pits, while an evolved surface will look smoother. The size and spatial distribution of pits imply that large heterogeneities exist in the physical, structural or compositional properties of the first few hundred metres below the current nucleus surface. PMID:26135448

  8. Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse

    NASA Astrophysics Data System (ADS)

    Vincent, Jean-Baptiste; Bodewits, Dennis; Besse, Sébastien; Sierks, Holger; Barbieri, Cesare; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst Uwe; Agarwal, Jessica; A'Hearn, Michael F.; Auger, Anne-Thérèse; Barucci, M. Antonella; Bertaux, Jean-Loup; Bertini, Ivano; Capanna, Claire; Cremonese, Gabriele; da Deppo, Vania; Davidsson, Björn; Debei, Stefano; de Cecco, Mariolino; El-Maarry, Mohamed Ramy; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Gaskell, Robert; Giacomini, Lorenza; Groussin, Olivier; Guilbert-Lepoutre, Aurélie; Gutierrez-Marques, P.; Gutiérrez, Pedro J.; Güttler, Carsten; Hoekzema, Nick; Höfner, Sebastian; Hviid, Stubbe F.; Ip, Wing-Huen; Jorda, Laurent; Knollenberg, Jörg; Kovacs, Gabor; Kramm, Rainer; Kührt, Ekkehard; Küppers, Michael; La Forgia, Fiorangela; Lara, Luisa M.; Lazzarin, Monica; Lee, Vicky; Leyrat, Cédric; Lin, Zhong-Yi; Lopez Moreno, Josè J.; Lowry, Stephen; Magrin, Sara; Maquet, Lucie; Marchi, Simone; Marzari, Francesco; Massironi, Matteo; Michalik, Harald; Moissl, Richard; Mottola, Stefano; Naletto, Giampiero; Oklay, Nilda; Pajola, Maurizio; Preusker, Frank; Scholten, Frank; Thomas, Nicolas; Toth, Imre; Tubiana, Cecilia

    2015-07-01

    Pits have been observed on many cometary nuclei mapped by spacecraft. It has been argued that cometary pits are a signature of endogenic activity, rather than impact craters such as those on planetary and asteroid surfaces. Impact experiments and models cannot reproduce the shapes of most of the observed cometary pits, and the predicted collision rates imply that few of the pits are related to impacts. Alternative mechanisms like explosive activity have been suggested, but the driving process remains unknown. Here we report that pits on comet 67P/Churyumov-Gerasimenko are active, and probably created by a sinkhole process, possibly accompanied by outbursts. We argue that after formation, pits expand slowly in diameter, owing to sublimation-driven retreat of the walls. Therefore, pits characterize how eroded the surface is: a fresh cometary surface will have a ragged structure with many pits, while an evolved surface will look smoother. The size and spatial distribution of pits imply that large heterogeneities exist in the physical, structural or compositional properties of the first few hundred metres below the current nucleus surface.

  9. A Sleeping Beauty screen reveals NF-kB activation in CLL mouse model

    PubMed Central

    Zanesi, Nicola; Balatti, Veronica; Riordan, Jesse; Burch, Aaron; Rizzotto, Lara; Palamarchuk, Alexey; Cascione, Luciano; Lagana, Alessandro; Dupuy, Adam J.; Croce, Carlo M.

    2013-01-01

    TCL1 oncogene is overexpressed in aggressive form of human chronic lymphocytic leukemia (CLL) and its dysregulation in mouse B cells causes a CD5-positive leukemia similar to the aggressive form of human CLLs. To identify oncogenes that cooperate with Tcl1, we performed genetic screen in Eμ−TCL1 mice using Sleeping Beauty transposon-mediated mutagenesis. Analysis of transposon common insertion sites identified 7 genes activated by transposon insertions. Overexpression of these genes in mouse CLL was confirmed by real time reverse transcription-polymerase chain reaction. Interestingly, the main known function of 4 of 7 genes (Nfkb1, Tab2, Map3K14, and Nfkbid) is participation in or activation of the nuclear factor-kB (NF-kB) pathway. In addition, activation of the NF-kB is 1 of main functions of Akt2, also identified in the screen. These findings demonstrate cooperation of Tcl1 and the NF-kB pathway in the pathogenesis of aggressive CLL. Identification cooperating cancer genes will result in the development of combinatorial therapies to treat CLL. PMID:23591791

  10. Active faults in the deformation zone off Noto Peninsula, Japan, revealed by high- resolution seismic profiles

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Okamura, Y.; Murakami, F.; Kimura, H.; Ikehara, K.

    2008-12-01

    Recently, a lot of earthquakes occur in Japan. The deformation zone which many faults and folds have concentrated exists on the Japan Sea side of Japan. The 2007 Noto Hanto Earthquake (MJMA 6.9) and 2007 Chuetsu-oki Earthquake (MJMA 6.8) were caused by activity of parts of faults in this deformation zone. The Noto Hanto Earthquake occurred on 25 March, 2007 under the northwestern coast of Noto Peninsula, Ishikawa Prefecture, Japan. This earthquake is located in Quaternary deformation zone that is continued from northern margin of Noto Peninsula to southeast direction (Okamura, 2007a). National Institute of Advanced Industrial Science and Technology (AIST) carried out high-resolution seismic survey using Boomer and 12 channels short streamer cable in the northern part off Noto Peninsula, in order to clarify distribution and activities of active faults in the deformation zone. A twelve channels short streamer cable with 2.5 meter channel spacing developed by AIST and private corporation is designed to get high resolution seismic profiles in shallow sea area. The multi-channel system is possible to equip on a small fishing boat, because the data acquisition system is based on PC and the length of the cable is short and easy to handle. Moreover, because the channel spacing is short, this cable is very effective for a high- resolution seismic profiling survey in the shallow sea, and seismic data obtained by multi-channel cable can be improved by velocity analysis and CDP stack. In the northern part off Noto Peninsula, seismic profiles depicting geologic structure up to 100 meters deep under sea floor were obtained. The most remarkable reflection surface recognized in the seismic profiles is erosion surface at the Last Glacial Maximum (LGM). In the western part, sediments about 30 meters (40 msec) thick cover the erosional surface that is distributed under the shelf shallower than 100m in depth and the sediments thin toward offshore and east. Flexures like deformation in

  11. Small-scale studies of roasted ore waste reveal extreme ranges of stable mercury isotope signatures

    NASA Astrophysics Data System (ADS)

    Smith, Robin S.; Wiederhold, Jan G.; Jew, Adam D.; Brown, Gordon E.; Bourdon, Bernard; Kretzschmar, Ruben

    2014-07-01

    Active and closed Hg mines are significant sources of Hg contamination to the environment, mainly due to large volumes of mine waste material disposed of on-site. The application of Hg isotopes as source tracer from such contaminated sites requires knowledge of the Hg isotope signatures of different materials potentially released to the environment. Previous work has shown that calcine, the waste residue of the on-site ore roasting process, can exhibit distinct Hg isotope signatures compared with the primary ore. Here, we report results from a detailed small-scale study of Hg isotope variations in calcine collected from the closed New Idria Hg mine, San Benito County, CA, USA. The calcine samples exhibited different internal layering features which were investigated using optical microscopy, micro X-ray fluorescence, micro X-ray absorption spectroscopy (μ-XAS), and stable Hg isotope analysis. Significant Fe, S, and Hg concentration gradients were found across the different internal layers. Isotopic analyses revealed an extreme variation with pronounced isotopic gradients across the internal layered features. Overall, δ202Hg (±0.10‰, 2 SD) describing mass-dependent fractionation (MDF) ranged from -5.96 to 14.49‰, which is by far the largest range of δ202Hg values reported for any environmental sample. In addition, Δ199Hg (±0.06‰, 2 SD) describing mass-independent fractionation (MIF) ranged from -0.17 to 0.21‰. The μ-XAS analyses suggested that cinnabar and metacinnabar are the dominant Hg-bearing phases in the calcine. Our results demonstrate that the incomplete roasting of HgS ores in Hg mines can cause extreme mass-dependent Hg isotope fractionations at the scale of individual calcine pieces with enrichments in both light and heavy Hg isotopes relative to the primary ore signatures. This finding has important implications for the application of Hg isotopes as potential source tracers for Hg released to the environment from closed Hg mines and

  12. Being PRO-ACTive: What can a Clinical Trial Database Reveal About ALS?

    PubMed

    Zach, Neta; Ennist, David L; Taylor, Albert A; Alon, Hagit; Sherman, Alexander; Kueffner, Robert; Walker, Jason; Sinani, Ervin; Katsovskiy, Igor; Cudkowicz, Merit; Leitner, Melanie L

    2015-04-01

    Advancing research and clinical care, and conducting successful and cost-effective clinical trials requires characterizing a given patient population. To gather a sufficiently large cohort of patients in rare diseases such as amyotrophic lateral sclerosis (ALS), we developed the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) platform. The PRO-ACT database currently consists of >8600 ALS patient records from 17 completed clinical trials, and more trials are being incorporated. The database was launched in an open-access mode in December 2012; since then, >400 researchers from >40 countries have requested the data. This review gives an overview on the research enabled by this resource, through several examples of research already carried out with the goal of improving patient care and understanding the disease. These examples include predicting ALS progression, the simulation of future ALS clinical trials, the verification of previously proposed predictive features, the discovery of novel predictors of ALS progression and survival, the newly identified stratification of patients based on their disease progression profiles, and the development of tools for better clinical trial recruitment and monitoring. Results from these approaches clearly demonstrate the value of large datasets for developing a better understanding of ALS natural history, prognostic factors, patient stratification, and more. The increasing use by the community suggests that further analyses of the PRO-ACT database will continue to reveal more information about this disease that has for so long defied our understanding. PMID:25613183

  13. Stability of active mantle upwelling revealed by net characteristics of plate tectonics.

    PubMed

    Conrad, Clinton P; Steinberger, Bernhard; Torsvik, Trond H

    2013-06-27

    Viscous convection within the mantle is linked to tectonic plate motions and deforms Earth's surface across wide areas. Such close links between surface geology and deep mantle dynamics presumably operated throughout Earth's history, but are difficult to investigate for past times because the history of mantle flow is poorly known. Here we show that the time dependence of global-scale mantle flow can be deduced from the net behaviour of surface plate motions. In particular, we tracked the geographic locations of net convergence and divergence for harmonic degrees 1 and 2 by computing the dipole and quadrupole moments of plate motions from tectonic reconstructions extended back to the early Mesozoic era. For present-day plate motions, we find dipole convergence in eastern Asia and quadrupole divergence in both central Africa and the central Pacific. These orientations are nearly identical to the dipole and quadrupole orientations of underlying mantle flow, which indicates that these 'net characteristics' of plate motions reveal deeper flow patterns. The positions of quadrupole divergence have not moved significantly during the past 250 million years, which suggests long-term stability of mantle upwelling beneath Africa and the Pacific Ocean. These upwelling locations are positioned above two compositionally and seismologically distinct regions of the lowermost mantle, which may organize global mantle flow as they remain stationary over geologic time. PMID:23803848

  14. Motif module map reveals enforcement of aging by continual NF-κB activity

    PubMed Central

    Adler, Adam S.; Sinha, Saurabh; Kawahara, Tiara L.A.; Zhang, Jennifer Y.; Segal, Eran; Chang, Howard Y.

    2007-01-01

    Aging is characterized by specific alterations in gene expression, but their underlying mechanisms and functional consequences are not well understood. Here we develop a systematic approach to identify combinatorial cis-regulatory motifs that drive age-dependent gene expression across different tissues and organisms. Integrated analysis of 365 microarrays spanning nine tissue types predicted fourteen motifs as major regulators of age-dependent gene expression in human and mouse. The motif most strongly associated with aging was that of the transcription factor NF-κB. Inducible genetic blockade of NF-κB for 2 wk in the epidermis of chronologically aged mice reverted the tissue characteristics and global gene expression programs to those of young mice. Age-specific NF-κB blockade and orthogonal cell cycle interventions revealed that NF-κB controls cell cycle exit and gene expression signature of aging in parallel but not sequential pathways. These results identify a conserved network of regulatory pathways underlying mammalian aging and show that NF-κB is continually required to enforce many features of aging in a tissue-specific manner. PMID:18055696

  15. Structure of the nisin leader peptidase NisP revealing a C-terminal autocleavage activity.

    PubMed

    Xu, Yueyang; Li, Xin; Li, Ruiqing; Li, Shanshan; Ni, Hongqian; Wang, Hui; Xu, Haijin; Zhou, Weihong; Saris, Per E J; Yang, Wen; Qiao, Mingqiang; Rao, Zihe

    2014-06-01

    Nisin is a widely used antibacterial lantibiotic polypeptide produced by Lactococcus lactis. NisP belongs to the subtilase family and functions in the last step of nisin maturation as the leader-peptide peptidase. Deletion of the nisP gene in LAC71 results in the production of a non-active precursor peptide with the leader peptide unremoved. Here, the 1.1 Å resolution crystal structure of NisP is reported. The structure shows similarity to other subtilases, which can bind varying numbers of Ca atoms. However, no calcium was found in this NisP structure, and the predicted calcium-chelating residues were placed so as to not allow NisP to bind a calcium ion in this conformation. Interestingly, a short peptide corresponding to its own 635-647 sequence was found to bind to the active site of NisP. Biochemical assays and native mass-spectrometric analysis confirmed that NisP possesses an auto-cleavage site between residues Arg647 and Ser648. Further, it was shown that NisP mutated at the auto-cleavage site (R647P/S648P) had full catalytic activity for nisin leader-peptide cleavage, although the C-terminal region of NisP was no longer cleaved. Expressing this mutant in L. lactis LAC71 did not affect the production of nisin but did decrease the proliferation rate of the bacteria, suggesting the biological significance of the C-terminal auto-cleavage of NisP. PMID:24914961

  16. Widely Used Pesticides with Previously Unknown Endocrine Activity Revealed as in Vitro Antiandrogens

    PubMed Central

    Orton, Frances; Rosivatz, Erika; Scholze, Martin; Kortenkamp, Andreas

    2011-01-01

    Background Evidence suggests that there is widespread decline in male reproductive health and that antiandrogenic pollutants may play a significant role. There is also a clear disparity between pesticide exposure and data on endocrine disruption, with most of the published literature focused on pesticides that are no longer registered for use in developed countries. Objective We used estimated human exposure data to select pesticides to test for antiandrogenic activity, focusing on highest use pesticides. Methods We used European databases to select 134 candidate pesticides based on highest exposure, followed by a filtering step according to known or predicted receptor-mediated antiandrogenic potency, based on a previously published quantitative structure–activity relationship (QSAR) model. In total, 37 pesticides were tested for in vitro androgen receptor (AR) antagonism. Of these, 14 were previously reported to be AR antagonists (“active”), 4 were predicted AR antagonists using the QSAR, 6 were predicted to not be AR antagonists (“inactive”), and 13 had unknown activity, which were “out of domain” and therefore could not be classified with the QSAR (“unknown”). Results All 14 pesticides with previous evidence of AR antagonism were confirmed as antiandrogenic in our assay, and 9 previously untested pesticides were identified as antiandrogenic (dimethomorph, fenhexamid, quinoxyfen, cyprodinil, λ-cyhalothrin, pyrimethanil, fludioxonil, azinphos-methyl, pirimiphos-methyl). In addition, we classified 7 compounds as androgenic. Conclusions Due to estimated antiandrogenic potency, current use, estimated exposure, and lack of previous data, we strongly recommend that dimethomorph, fludioxonil, fenhexamid, imazalil, ortho-phenylphenol, and pirimiphos-methyl be tested for antiandrogenic effects in vivo. The lack of human biomonitoring data for environmentally relevant pesticides presents a barrier to current risk assessment of pesticides on humans. PMID

  17. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    SciTech Connect

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W.; Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel

    2015-06-30

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.

  18. Mapping the Human Platelet Lipidome Reveals Cytosolic Phospholipase A2 as a Regulator of Mitochondrial Bioenergetics during Activation.

    PubMed

    Slatter, David A; Aldrovandi, Maceler; O'Connor, Anne; Allen, Stuart M; Brasher, Christopher J; Murphy, Robert C; Mecklemann, Sven; Ravi, Saranya; Darley-Usmar, Victor; O'Donnell, Valerie B

    2016-05-10

    Human platelets acutely increase mitochondrial energy generation following stimulation. Herein, a lipidomic circuit was uncovered whereby the substrates for this are exclusively provided by cPLA2, including multiple fatty acids and oxidized species that support energy generation via β-oxidation. This indicates that acute lipid membrane remodeling is required to support energetic demands during platelet activation. Phospholipase activity is linked to energy metabolism, revealing cPLA2 as a central regulator of both lipidomics and energy flux. Using a lipidomic approach (LipidArrays), we also estimated the total number of lipids in resting, thrombin-activated, and aspirinized platelets. Significant diversity between genetically unrelated individuals and a wealth of species was revealed. Resting platelets demonstrated ∼5,600 unique species, with only ∼50% being putatively identified. Thrombin elevated ∼900 lipids >2-fold with 86% newly appearing and 45% inhibited by aspirin supplementation, indicating COX-1 is required for major activation-dependent lipidomic fluxes. Many lipids were structurally identified. With ∼50% of the lipids being absent from databases, a major opportunity for mining lipids relevant to human health and disease is presented. PMID:27133131

  19. Transcriptional activity around bacterial cell death reveals molecular biomarkers for cell viability

    PubMed Central

    Kort, Remco; Keijser, Bart J; Caspers, Martien PM; Schuren, Frank H; Montijn, Roy

    2008-01-01

    Background In bacteriology, the ability to grow in selective media and to form colonies on nutrient agar plates is routinely used as a retrospective criterion for the detection of living bacteria. However, the utilization of indicators for bacterial viability-such as the presence of specific transcripts or membrane integrity-would overcome bias introduced by cultivation and reduces the time span of analysis from initiation to read out. Therefore, we investigated the correlation between transcriptional activity, membrane integrity and cultivation-based viability in the Gram-positive model bacterium Bacillus subtilis. Results We present microbiological, cytological and molecular analyses of the physiological response to lethal heat stress under accurately defined conditions through systematic sampling of bacteria from a single culture exposed to gradually increasing temperatures. We identified a coherent transcriptional program including known heat shock responses as well as the rapid expression of a small number of sporulation and competence genes, the latter only known to be active in the stationary growth phase. Conclusion The observed coordinated gene expression continued even after cell death, in other words after all bacteria permanently lost their ability to reproduce. Transcription of a very limited number of genes correlated with cell viability under the applied killing regime. The transcripts of the expressed genes in living bacteria – but silent in dead bacteria-include those of essential genes encoding chaperones of the protein folding machinery and can serve as molecular biomarkers for bacterial cell viability. PMID:19061518

  20. Covalent Inhibition of Ubc13 Affects Ubiquitin Signaling and Reveals Active Site Elements Important for Targeting

    PubMed Central

    Hodge, Curtis D.; Edwards, Ross A.; Markin, Craig J.; McDonald, Darin; Pulvino, Mary; Huen, Michael S. Y.; Zhao, Jiyong; Spyracopoulos, Leo; Hendzel, Michael J.; Glover, J.N. Mark

    2015-01-01

    Ubc13 is an E2 ubiquitin conjugating enzyme that functions in nuclear DNA damage signaling and cytoplasmic NF-κB signaling. Here we present the structures of complexes of Ubc13 with two inhibitors, NSC697923 and BAY 11-7082, which inhibit DNA damage and NF-κB signaling in human cells. NSC697923 and BAY 11-7082 both inhibit Ubc13 by covalent adduct formation through a Michael addition at the Ubc13 active site cysteine. The resulting adducts of both compounds exploit a binding groove unique to Ubc13. We developed a Ubc13 mutant which resists NSC697923 inhibition and, using this mutant, we show that the inhibition of cellular DNA damage and NF-κB signaling by NSC697923 is largely due to specific Ubc13 inhibition. We propose that unique structural features near the Ubc13 active site could provide a basis for the rational development and design of specific Ubc13 inhibitors. PMID:25909880

  1. Covalent Inhibition of Ubc13 Affects Ubiquitin Signaling and Reveals Active Site Elements Important for Targeting.

    PubMed

    Hodge, Curtis D; Edwards, Ross A; Markin, Craig J; McDonald, Darin; Pulvino, Mary; Huen, Michael S Y; Zhao, Jiyong; Spyracopoulos, Leo; Hendzel, Michael J; Glover, J N Mark

    2015-07-17

    Ubc13 is an E2 ubiquitin conjugating enzyme that functions in nuclear DNA damage signaling and cytoplasmic NF-κB signaling. Here, we present the structures of complexes of Ubc13 with two inhibitors, NSC697923 and BAY 11-7082, which inhibit DNA damage and NF-κB signaling in human cells. NSC697923 and BAY 11-7082 both inhibit Ubc13 by covalent adduct formation through a Michael addition at the Ubc13 active site cysteine. The resulting adducts of both compounds exploit a binding groove unique to Ubc13. We developed a Ubc13 mutant which resists NSC697923 inhibition and, using this mutant, we show that the inhibition of cellular DNA damage and NF-κB signaling by NSC697923 is largely due to specific Ubc13 inhibition. We propose that unique structural features near the Ubc13 active site could provide a basis for the rational development and design of specific Ubc13 inhibitors. PMID:25909880

  2. Molecular Network Analysis of Endometriosis Reveals a Novel Role for c-Jun Regulated Macrophage Activation

    PubMed Central

    Beste, Michael T.; Pfäffle-Doyle, Nicole; Prentice, Emily A.; Morris, Stephanie N.; Lauffenburger, Douglas A.; Isaacson, Keith B.; Griffith, Linda G.

    2014-01-01

    Clinical management of endometriosis is limited by the complex relationship between symptom severity, heterogeneous surgical presentations, and variability in clinical outcomes. As a complement to visual classification schemes, molecular profiles of disease activity may improve risk stratification to better inform treatment decisions and identify novel approaches to targeted treatment. Here, we employ a network analysis of information flow within and between inflammatory cells to discern consensus behaviors characterizing patient sub-populations. Unsupervised multivariate analysis of cytokine profiles quantified by multiplex immunoassays identified a subset of patients with a shared “consensus signature” of thirteen elevated cytokines that was associated with common clinical features, but was not observed among patient subpopulations defined by morphologic presentation alone. Enrichment analysis of consensus markers reinforced the primacy of peritoneal macrophage infiltration and activation, which was demonstrably elevated in ex vivo cultures. Although familiar targets of the NFκB family emerged among over-represented transcriptional binding sites for consensus markers, our analysis provides evidence for a previously unrecognized contribution from c-Jun, c-Fos, and AP-1 effectors of mitogen associated kinase signaling. Their crucial involvement in propagation of macrophage-driven inflammatory networks was confirmed via targeted inhibition of upstream kinases. Collectively, these analyses provide in vivo validation of a clinically relevant inflammatory network that may serve as an objective measure for guiding treatment decisions for endometriosis management, and in the future may provide a mechanistic endpoint for assessing efficacy of novel agents aimed at curtailing inflammatory mechanisms that drive disease progression. PMID:24500404

  3. Activation of TRPM3 by a potent synthetic ligand reveals a role in peptide release

    PubMed Central

    Held, Katharina; Kichko, Tatjana; De Clercq, Katrien; Klaassen, Hugo; Van Bree, Rieta; Vanherck, Jean-Christophe; Marchand, Arnaud; Reeh, Peter W.; Chaltin, Patrick; Voets, Thomas; Vriens, Joris

    2015-01-01

    Transient receptor potential (TRP) cation channel subfamily M member 3 (TRPM3), a member of the TRP channel superfamily, was recently identified as a nociceptor channel in the somatosensory system, where it is involved in the detection of noxious heat; however, owing to the lack of potent and selective agonists, little is known about other potential physiological consequences of the opening of TRPM3. Here we identify and characterize a synthetic TRPM3 activator, CIM0216, whose potency and apparent affinity greatly exceeds that of the canonical TRPM3 agonist, pregnenolone sulfate (PS). In particular, a single application of CIM0216 causes opening of both the central calcium-conducting pore and the alternative cation permeation pathway in a membrane-delimited manner. CIM0216 evoked robust calcium influx in TRPM3-expressing somatosensory neurons, and intradermal injection of the compound induced a TRPM3-dependent nocifensive behavior. Moreover, CIM0216 elicited the release of the peptides calcitonin gene-related peptide (CGRP) from sensory nerve terminals and insulin from isolated pancreatic islets in a TRPM3-dependent manner. These experiments identify CIM0216 as a powerful tool for use in investigating the physiological roles of TRPM3, and indicate that TRPM3 activation in sensory nerve endings can contribute to neurogenic inflammation. PMID:25733887

  4. A Systematic Analysis Reveals Heterogeneous Changes in the Endocytic Activities of Cancer Cells

    PubMed Central

    Elkin, Sarah R.; Bendris, Nawal; Reis, Carlos R.; Zhou, Yunyun; Xie, Yang; Huffman, Kenneth E.; Minna, John D.; Schmid, Sandra L.

    2016-01-01

    Metastasis is a multistep process requiring cancer cell signaling, invasion, migration, survival, and proliferation. These processes require dynamic modulation of cell surface proteins by endocytosis. Given this functional connection, it has been suggested that endocytosis is dysregulated in cancer. To test this, we developed In-Cell ELISA assays to measure three different endocytic pathways: clathrin-mediated endocytosis, caveolae-mediated endocytosis, and clathrin-independent endocytosis and compared these activities using two different syngeneic models for normal and oncogene-transformed human lung epithelial cells. We found that all endocytic activities were reduced in the transformed versus normal counterparts. However, when we screened 29 independently isolated non–small cell lung cancer (NSCLC) cell lines to determine whether these changes were systematic, we observed significant heterogeneity. Nonetheless, using hierarchical clustering based on their combined endocytic properties, we identified two phenotypically distinct clusters of NSCLCs. One co-clustered with mutations in KRAS, a mesenchymal phenotype, increased invasion through collagen and decreased growth in soft agar, whereas the second was enriched in cells with an epithelial phenotype. Interestingly, the two clusters also differed significantly in clathrin-independent internalization and surface expression of CD44 and CD59. Taken together, our results suggest that endocytotic alterations in cancer cells that affect cell surface expression of critical molecules have a significant influence on cancer-relevant phenotypes, with potential implications for interventions to control cancer by modulating endocytic dynamics. PMID:26359453

  5. Deep Sequencing of Subseafloor Eukaryotic rRNA Reveals Active Fungi across Marine Subsurface Provinces

    PubMed Central

    Orsi, William; Biddle, Jennifer F.; Edgcomb, Virginia

    2013-01-01

    The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Because DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA) is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA by amplicon pyrosequencing, unique profiles of Fungi were found across a range of marine subsurface provinces including ridge flanks, continental margins, and abyssal plains. Subseafloor fungal populations exhibit statistically significant correlations with total organic carbon (TOC), nitrate, sulfide, and dissolved inorganic carbon (DIC). These correlations are supported by terminal restriction length polymorphism (TRFLP) analyses of fungal rRNA. Geochemical correlations with fungal pyrosequencing and TRFLP data from this geographically broad sample set suggests environmental selection of active Fungi in the marine subsurface. Within the same dataset, ancient rRNA signatures were recovered from plants and diatoms in marine sediments ranging from 0.03 to 2.7 million years old, suggesting that rRNA from some eukaryotic taxa may be much more stable than previously considered in the marine subsurface. PMID:23418556

  6. Active sites of two orthologous cytochromes P450 2E1: Differences revealed by spectroscopic methods

    SciTech Connect

    Anzenbacherova, Eva; Hudecek, Jiri; Murgida, Daniel; Hildebrandt, Peter; Marchal, Stephane; Lange, Reinhard; Anzenbacher, Pavel . E-mail: anzen@tunw.upol.cz

    2005-12-09

    Cytochromes P450 2E1 of human and minipig origin were examined by absorption spectroscopy under high hydrostatic pressure and by resonance Raman spectroscopy. Human enzyme tends to denature to the P420 form more easily than the minipig form; moreover, the apparent compressibility of the heme active site (as judged from a redshift of the absorption maximum with pressure) is greater than that of the minipig counterpart. Relative compactness of the minipig enzyme is also seen in the Raman spectra, where the presence of planar heme conformation was inferred from band positions characteristic of the low-spin heme with high degree of symmetry. In this respect, the CYP2E1 seems to be another example of P450 conformational heterogeneity as shown, e.g., by Davydov et al. for CYP3A4 [Biochem. Biophys. Res. Commun. 312 (2003) 121-130]. The results indicate that the flexibility of the CYP active site is likely one of its basic structural characteristics.

  7. The dynamic surface tension of atmospheric aerosol surfactants reveals new aspects of cloud activation

    PubMed Central

    Nozière, Barbara; Baduel, Christine; Jaffrezo, Jean-Luc

    2014-01-01

    The activation of aerosol particles into cloud droplets in the Earth’s atmosphere is both a key process for the climate budget and a main source of uncertainty. Its investigation is facing major experimental challenges, as no technique can measure the main driving parameters, the Raoult’s term and surface tension, σ, for sub-micron atmospheric particles. In addition, the surfactant fraction of atmospheric aerosols could not be isolated until recently. Here we present the first dynamic investigation of the total surfactant fraction of atmospheric aerosols, evidencing adsorption barriers that limit their gradient (partitioning) in particles and should enhance their cloud-forming efficiency compared with current models. The results also show that the equilibration time of surfactants in sub-micron atmospheric particles should be beyond the detection of most on-line instruments. Such instrumental and theoretical shortcomings would be consistent with atmospheric and laboratory observations and could have limited the understanding of cloud activation until now. PMID:24566451

  8. Activity-dependent silencing reveals functionally distinct itch-generating sensory neurons

    PubMed Central

    Roberson, David P.; Gudes, Sagi; Sprague, Jared M.; Patoski, Haley A. W.; Robson, Victoria K.; Blasl, Felix; Duan, Bo; Oh, Seog Bae; Bean, Bruce P.; Ma, Qiufu

    2013-01-01

    The peripheral terminals of primary sensory neurons detect histamine and non-histamine itch-provoking ligands through molecularly distinct transduction mechanisms. It remains unclear, however, whether these distinct pruritogens activate the same or different afferent fibers. We utilized a strategy of reversibly silencing specific subsets of murine pruritogen-sensitive sensory axons by targeted delivery of a charged sodium-channel blocker and found that functional blockade of histamine itch did not affect the itch evoked by chloroquine or SLIGRL-NH2, and vice versa. Notably, blocking itch-generating fibers did not reduce pain-associated behavior. However, silencing TRPV1+ or TRPA1+ neurons allowed AITC or capsaicin respectively to evoke itch, implying that certain peripheral afferents may normally indirectly inhibit algogens from eliciting itch. These findings support the presence of functionally distinct sets of itch-generating neurons and suggest that targeted silencing of activated sensory fibers may represent a clinically useful anti-pruritic therapeutic approach for histaminergic and non-histaminergic pruritus. PMID:23685721

  9. Nuclear Fractionation Reveals Thousands of Chromatin-Tethered Noncoding RNAs Adjacent to Active Genes.

    PubMed

    Werner, Michael S; Ruthenburg, Alexander J

    2015-08-18

    A number of long noncoding RNAs (lncRNAs) have been reported to regulate transcription via recruitment of chromatin modifiers or bridging distal enhancer elements to gene promoters. However, the generality of these modes of regulation and the mechanisms of chromatin attachment for thousands of unstudied human lncRNAs remain unclear. To address these questions, we performed stringent nuclear fractionation coupled to RNA sequencing. We provide genome-wide identification of human chromatin-associated lncRNAs and demonstrate tethering of RNA to chromatin by RNAPII is a pervasive mechanism of attachment. We also uncovered thousands of chromatin-enriched RNAs (cheRNAs) that share molecular properties with known lncRNAs. Although distinct from eRNAs derived from active prototypical enhancers, the production of cheRNAs is strongly correlated with the expression of neighboring protein-coding genes. This work provides an updated framework for nuclear RNA organization that includes a large chromatin-associated transcript population correlated with active genes and may prove useful in de novo enhancer annotation. PMID:26257179

  10. Asymmetric mutations in the tetrameric R67 dihydrofolate reductase reveal high tolerance to active-site substitutions

    PubMed Central

    Ebert, Maximilian C C J C; Morley, Krista L; Volpato, Jordan P; Schmitzer, Andreea R; Pelletier, Joelle N

    2015-01-01

    Type II R67 dihydrofolate reductase (DHFR) is a bacterial plasmid-encoded enzyme that is intrinsically resistant to the widely-administered antibiotic trimethoprim. R67 DHFR is genetically and structurally unrelated to E. coli chromosomal DHFR and has an unusual architecture, in that four identical protomers form a single symmetrical active site tunnel that allows only one substrate binding/catalytic event at any given time. As a result, substitution of an active-site residue has as many as four distinct consequences on catalysis, constituting an atypical model of enzyme evolution. Although we previously demonstrated that no single residue of the native active site is indispensable for function, library selection here revealed a strong bias toward maintenance of two native protomers per mutated tetramer. A variety of such “half-native” tetramers were shown to procure native-like catalytic activity, with similar KM values but kcat values 5- to 33-fold lower, illustrating a high tolerance for active-site substitutions. The selected variants showed a reduced thermal stability (Tm ∼12°C lower), which appears to result from looser association of the protomers, but generally showed a marked increase in resilience to heat denaturation, recovering activity to a significantly greater extent than the variant with no active-site substitutions. Our results suggest that the presence of two native protomers in the R67 DHFR tetramer is sufficient to provide native-like catalytic rate and thus ensure cellular proliferation. PMID:25401264

  11. Active Interior Noise Control Studies

    NASA Technical Reports Server (NTRS)

    Park, J.; Veeramani, S.; Sampath, A.; Balachandran, B.; Wereley, N.

    1996-01-01

    Analytical and experimental investigations into the control of noise in the interior of a three-dimensional enclosure with a flexible boundary are presented. The rigid boundaries are constructed from acrylic material, and in the different cases considered the flexible boundary is constructed from either aluminum or composite material. Noise generated by an external speaker is transmitted into the enclosure through the flexible boundary and active control is realized by using Lead Zirconate Titanate (PZT) piezoelectric actuators bonded to the flexible boundary. Condenser microphones are used for noise measurements inside and outside the enclosure. Minimization schemes for global and local noise control in the presence of a harmonic disturbance are developed and discussed. In the experiments, analog feedforward control is implemented by using the harmonic disturbance as a reference signal.

  12. Tectonic activity revealed by morphostructural analysis: Development of the Sierra de la Candelaria range, northwestern Argentina

    NASA Astrophysics Data System (ADS)

    Barcelona, H.; Peri, G.; Tobal, J.; Sagripanti, L.; Favetto, A.

    2014-12-01

    The tectonically active broken foreland of NW Argentina is a recent analog of the eastern margin of the Puna plateau during Mio-Pliocene times and likely of other broken forelands worldwide. In order to evaluate active tectonism in the broken foreland of the NW Argentine Andes, we examined the complex geomorphology in the vicinity of the basement-cored Sierra de la Candelaria range at ˜26°S and deciphered multiple episodes of crustal deformation spanning the Pliocene to the Quaternary. Digital elevation models, satellite images and geological data within a GIS environment allowed us to analyze the terrain, drainage networks, river dynamics and structure, as well as to obtain detailed geomorphological mapping, active tectonic indices, longitudinal river profiles and structural sections. Three morphostructural segments were defined based on the structural features, the differential vertical dissection pattern over the basement, the faulted Pliocene to recent deposits, the stepwise propagation of anticlines and the distortion over the fluvial system. By combining the several lines of evidence, we concluded that the Sierra de la Candelaria range was subjected to a multi-stage development. The first stage uplifted the central segment concomitant with the formation of the surrounding ranges and with the main partition phase of the foreland. After a significant time lapse, the mountain range was subjected to southward thick-skinned growth and northward growth via stepwise thin-skinned deformation and exerted control over the dynamics of the Río Rosario. Taking into account the surrounding basins and ranges of the Sierra de la Candelaria, the southern Santa Bárbara System is characterized by partially isolated intramontane basins (Choromoro and Rosario) limited by shielded ranges that caused moisture block and shows continuous deformation. These features were related to early stages of a broken foreland evolution model and modern analogs were found at the northern

  13. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    PubMed Central

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W.; Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel

    2015-01-01

    Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macro­globulin, this protease-activation mechanism is likely to operate across the diverse members of this group. PMID:26143919

  14. In vivo activation of azipropofol prolongs anesthesia and reveals synaptic targets.

    PubMed

    Weiser, Brian P; Kelz, Max B; Eckenhoff, Roderic G

    2013-01-11

    General anesthetic photolabels have been instrumental in discovering and confirming protein binding partners and binding sites of these promiscuous ligands. We report the in vivo photoactivation of meta-azipropofol, a potent analog of propofol, in Xenopus laevis tadpoles. Covalent adduction of meta-azipropofol in vivo prolongs the primary pharmacologic effect of general anesthetics in a behavioral phenotype we termed "optoanesthesia." Coupling this behavior with a tritiated probe, we performed unbiased, time-resolved gel proteomics to identify neuronal targets of meta-azipropofol in vivo. We have identified synaptic binding partners, such as synaptosomal-associated protein 25, as well as voltage-dependent anion channels as potential facilitators of the general anesthetic state. Pairing behavioral phenotypes elicited by the activation of efficacious photolabels in vivo with time-resolved proteomics provides a novel approach to investigate molecular mechanisms of general anesthetics. PMID:23184948

  15. Preparatory EMG activity reveals a rapid adaptation pattern in humans performing landing movements in blindfolded condition.

    PubMed

    Magalhães, Fernando Henrique; Goroso, Daniel Gustavo

    2009-10-01

    The main questions addressed in this work were whether and how adaptation to suppression of visual information occurs in a free-fall paradigm, and the extent to which vision availability influences the control of landing movements. The prelanding modulation of EMG timing and amplitude of four lower-limb muscles was investigated. Participants performed six consecutive drop-landings from four different heights in two experimental conditions: with and without vision. Experimental design precluded participants from estimating the height of the drop. Since cues provided by proprioceptive and vestibular information acquired during the first trials were processed, the nervous system rapidly adapted to the lack of visual information, and hence produced a motor output (i.e., prelanding EMG modulation) similar to that observed when performing the activity with vision available. PMID:20038004

  16. Quantifying activity: a new assay reveals T-cell signalling in tiny skin biopsy samples.

    PubMed

    Dornmair, Klaus

    2014-06-01

    Tissue-invasive T cells are observed in many inflammatory dermatological diseases, but in most cases, it is not known how they were attracted, what they might recognize, and to which extent they are activated. Answering these questions is surely essential for understanding pathogeneses of the diseases. In a recent issue of Experimental Dermatology, Smith et al. showed that early signalling events in skin-resident T cells may be investigated by multiplex immunoprecipitation flow cytometry, even if only few T cells are available from skin biopsy samples. This new technology will most likely contribute to elucidating the role of skin-invasive T cells and to understanding the pathology of dermatological diseases. PMID:24665970

  17. Impedance spectroscopy of micro-Droplets reveals activation of Bacterial Mechanosensitive Channels in Hypotonic Solutions

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Aida; Alam, Muhammad A.

    Rapid detection of bacterial pathogens is of great importance in healthcare, food safety, environmental monitoring, and homeland security. Most bacterial detection platforms rely on binary fission (i.e. cell growth) to reach a threshold cell population that can be resolved by the sensing method. Since cell division depends on the bacteria type, the detection time of such methods can vary from hours to days. In contrast, in this work, we show that bacteria cells can be detected within minutes by relying on activation of specific protein channels, i.e. mechanosensitive channels (MS channels). When cells are exposed to hypotonic solutions, MS channels allow efflux of solutes to the external solution which leads to release the excessive membrane tension. Release of the cytoplasmic solutes, in turn, results in increase of the electrical conductance measured by droplet-based impedance sensing. The approach can be an effective technique for fast, pre-screening of bacterial contamination at ultra-low concentration.

  18. Unmasking the ancestral activity of integron integrases reveals a smooth evolutionary transition during functional innovation

    PubMed Central

    Escudero, Jose Antonio; Loot, Celine; Parissi, Vincent; Nivina, Aleksandra; Bouchier, Christiane; Mazel, Didier

    2016-01-01

    Tyrosine (Y)-recombinases have evolved to deliver mechanistically different reactions on a variety of substrates, but these evolutionary transitions are poorly understood. Among them, integron integrases are hybrid systems recombining single- and double-stranded DNA partners. These reactions are asymmetric and need a replicative resolution pathway, an exception to the canonical second strand exchange model of Y-recombinases. Integron integrases possess a specific domain for this specialized pathway. Here we show that despite this, integrases are still capable of efficiently operating the ancestral second strand exchange in symmetrical reactions between double-stranded substrates. During these reactions, both strands are reactive and Holliday junction resolution can follow either pathway. A novel deep-sequencing approach allows mapping of the crossover point for the second strand exchange. The persistence of the ancestral activity in integrases illustrates their robustness and shows that innovation towards new recombination substrates and resolution pathways was a smooth evolutionary process. PMID:26961432

  19. In Vivo Activation of Azipropofol Prolongs Anesthesia and Reveals Synaptic Targets*

    PubMed Central

    Weiser, Brian P.; Kelz, Max B.; Eckenhoff, Roderic G.

    2013-01-01

    General anesthetic photolabels have been instrumental in discovering and confirming protein binding partners and binding sites of these promiscuous ligands. We report the in vivo photoactivation of meta-azipropofol, a potent analog of propofol, in Xenopus laevis tadpoles. Covalent adduction of meta-azipropofol in vivo prolongs the primary pharmacologic effect of general anesthetics in a behavioral phenotype we termed “optoanesthesia.” Coupling this behavior with a tritiated probe, we performed unbiased, time-resolved gel proteomics to identify neuronal targets of meta-azipropofol in vivo. We have identified synaptic binding partners, such as synaptosomal-associated protein 25, as well as voltage-dependent anion channels as potential facilitators of the general anesthetic state. Pairing behavioral phenotypes elicited by the activation of efficacious photolabels in vivo with time-resolved proteomics provides a novel approach to investigate molecular mechanisms of general anesthetics. PMID:23184948

  20. Substrate-bound structures of benzylsuccinate synthase reveal how toluene is activated in anaerobic hydrocarbon degradation.

    PubMed

    Funk, Michael A; Marsh, E Neil G; Drennan, Catherine L

    2015-09-11

    Various bacteria perform anaerobic degradation of small hydrocarbons as a source of energy and cellular carbon. To activate non-reactive hydrocarbons such as toluene, enzymes conjugate these molecules to fumarate in a radical-catalyzed, C-C bond-forming reaction. We have determined x-ray crystal structures of the glycyl radical enzyme that catalyzes the addition of toluene to fumarate, benzylsuccinate synthase (BSS), in two oligomeric states with fumarate alone or with both substrates. We find that fumarate is secured at the bottom of a long active site cavity with toluene bound directly above it. The two substrates adopt orientations that appear ideal for radical-mediated C-C bond formation; the methyl group of toluene is positioned between fumarate and a cysteine that forms a thiyl radical during catalysis, which is in turn adjacent to the glycine that serves as a radical storage residue. Toluene is held in place by fumarate on one face and tight packing by hydrophobic residues on the other face and sides. These hydrophobic residues appear to become ordered, thus encapsulating toluene, only in the presence of BSSβ, a small protein subunit that forms a tight complex with BSSα, the catalytic subunit. Enzymes related to BSS are able to metabolize a wide range of hydrocarbons through attachment to fumarate. Using our structures as a guide, we have constructed homology models of several of these "X-succinate synthases" and determined conservation patterns that will be useful in understanding the basis for catalysis and specificity in this family of enzymes. PMID:26224635

  1. Metaproteogenomics reveals the soil microbial communities active in nutrient cycling processes under different tree species

    NASA Astrophysics Data System (ADS)

    Keiblinger, Katharina Maria; Masse, Jacynthe; Zühlke, Daniela; Riedel, Katharina; Zechmeister-Boltenstern, Sophie; Prescott, Cindy E.; Grayston, Sue

    2016-04-01

    Tree species exert strong effects on microbial communities in litter and soil and may alter rates of soil processes fundamental to nutrient cycling and carbon fluxes (Prescott and Grayston 2013). However, the influence of tree species on decomposition processes are still contradictory and poorly understood. An understanding of the mechanisms underlying plant influences on soil processes is important for our ability to predict ecosystem response to altered global/environmental conditions. In order to link microbial community structure and function to forest-floor nutrient cycling processes, we sampled forest floors under western redcedar (Thuja plicata), Douglas-fir (Pseudotsuga menziesii) and Sitka spruce (Picea sitchensis) grown in nutrient-poor sites in common garden experiments on Vancouver island (Canada). We measured forest-floor total N, total C, initial NH4+ and NO3‑ concentrations, DOC, Cmic and Nmic. Gross rates of ammonification and NH4+ consumption were measured using the 15N pool-dilution method. Organic carbon quality was assessed through FTIR analyses. Microbial community structure was analysed by a metaproteogenomic approach using 16S and ITS amplification and sequencing with MiSeq platform. Proteins were extracted and peptides characterized via LC-MS/MS on a Velos Orbitrap to assess the active microbial community. Different microbial communities were active under the three tree species and variation in process rates were observed and will be discussed. This research provides new insights on microbial processes during organic matter decomposition. The metaproteogenomic approach enables us to investigate these changes with respect to possible effects on soil C-storage at even finer taxonomic resolution.

  2. Test-retest Stability Analysis of Resting Brain Activity Revealed by BOLD fMRI

    PubMed Central

    Li, Zhengjun; Kadivar, Aniseh; Pluta, John; Dunlop, John; Wang, Ze

    2012-01-01

    Purpose To assess test-retest stability of four fMRI-derived resting brain activity metrics: the seed-region-based functional connectivity (SRFC), independent component analysis (ICA)-derived network-based FC (NTFC), regional homogeneity (ReHo), and the amplitude of low frequency fluctuation (ALFF). Methods Simulations were used to assess the sensitivity of SRFC, ReHo, and ALFF to noise interference. Repeat resting blood-oxygen-level-dependent (BOLD) fMRI were acquired from 32 healthy subjects. The intra-class correlation coefficient (ICC) was used to assess the stability of the 4 metrics. Results Random noise yielded small random SRFC, small but consistent ReHo and ALFF. A neighborhood size greater than 20 voxels should be used for calculating ReHo in order to reduce the noise interference. Both the anterior cingulate cortex (ACC) and posterior cingulate cortex (PCC)-based SRFC were reproducible in more spatially extended regions than ICA NTFC. The two regional spontaneous brain activity (SBA) measures, ReHo and ALFF, showed test-retest reproducibility in almost the whole grey matter. Conclusion SRFC, ReHo, and ALFF are robust to random noise interference. The neighborhood size for calculating ReHo should be larger than 20 voxels. ICC>0.5 and cluster size>11 should be used to assess the ICC maps for ACC/PCC SRFC, ReHo and ALFF. BOLD fMRI-based SBA can be reliably measured using ACC/PCC SRFC, ReHo and ALFF after two months. PMID:22535702

  3. Adaptability and selectivity of human peroxisome proliferator-activated receptor (PPAR) pan agonists revealed from crystal structures

    SciTech Connect

    Oyama, Takuji; Toyota, Kenji; Waku, Tsuyoshi; Hirakawa, Yuko; Nagasawa, Naoko; Kasuga, Jun-ichi; Hashimoto, Yuichi; Miyachi, Hiroyuki; Morikawa, Kosuke

    2009-08-01

    The structures of the ligand-binding domains (LBDs) of human peroxisome proliferator-activated receptors (PPARα, PPARγ and PPARδ) in complexes with a pan agonist, an α/δ dual agonist and a PPARδ-specific agonist were determined. The results explain how each ligand is recognized by the PPAR LBDs at an atomic level. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family, which is defined as transcriptional factors that are activated by the binding of ligands to their ligand-binding domains (LBDs). Although the three PPAR subtypes display different tissue distribution patterns and distinct pharmacological profiles, they all are essentially related to fatty-acid and glucose metabolism. Since the PPARs share similar three-dimensional structures within the LBDs, synthetic ligands which simultaneously activate two or all of the PPARs could be potent candidates in terms of drugs for the treatment of abnormal metabolic homeostasis. The structures of several PPAR LBDs were determined in complex with synthetic ligands, derivatives of 3-(4-alkoxyphenyl)propanoic acid, which exhibit unique agonistic activities. The PPARα and PPARγ LBDs were complexed with the same pan agonist, TIPP-703, which activates all three PPARs and their crystal structures were determined. The two LBD–ligand complex structures revealed how the pan agonist is adapted to the similar, but significantly different, ligand-binding pockets of the PPARs. The structures of the PPARδ LBD in complex with an α/δ-selective ligand, TIPP-401, and with a related δ-specific ligand, TIPP-204, were also determined. The comparison between the two PPARδ complexes revealed how each ligand exhibits either a ‘dual selective’ or ‘single specific’ binding mode.

  4. Representing Microbial Dormancy in Soil Decomposition Models Improves Model Performance and Reveals Key Ecosystem Controls on Microbial Activity

    NASA Astrophysics Data System (ADS)

    He, Y.; Yang, J.; Zhuang, Q.; Wang, G.; Liu, Y.

    2014-12-01

    Climate feedbacks from soils can result from environmental change and subsequent responses of plant and microbial communities and nutrient cycling. Explicit consideration of microbial life history traits and strategy may be necessary to predict climate feedbacks due to microbial physiology and community changes and their associated effect on carbon cycling. In this study, we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of dormancy at six temperate forest sites with observed soil efflux ranged from 4 to 10 years across different forest types. We then extrapolated the model to all temperate forests in the Northern Hemisphere (25-50°N) to investigate spatial controls on microbial and soil C dynamics. Both models captured the observed soil heterotrophic respiration (RH), yet no-dormancy model consistently exhibited large seasonal amplitude and overestimation in microbial biomass. Spatially, the total RH from temperate forests based on dormancy model amounts to 6.88PgC/yr, and 7.99PgC/yr based on no-dormancy model. However, no-dormancy model notably overestimated the ratio of microbial biomass to SOC. Spatial correlation analysis revealed key controls of soil C:N ratio on the active proportion of microbial biomass, whereas local dormancy is primarily controlled by soil moisture and temperature, indicating scale-dependent environmental and biotic controls on microbial and SOC dynamics. These developments should provide essential support to modeling future soil carbon dynamics and enhance the avenue for collaboration between empirical soil experiment and modeling in the sense that more microbial physiological measurements are needed to better constrain and evaluate the models.

  5. FRET analysis using sperm-activating peptides tagged with fluorescent proteins reveals that ligand-binding sites exist as clusters.

    PubMed

    Arcos-Hernández, César; Romero, Francisco; Sánchez-Guevara, Yoloxochitl; Beltrán, Carmen; Nishigaki, Takuya

    2016-02-01

    Long-range cellular communication between the sperm and egg is critical for external fertilization. Sperm-activating peptides (SAPs) are diffusible components of the outer layer of eggs in echinoderms, and function as chemoattractants for spermatozoa. The decapeptide named speract is the best-characterized sea urchin SAP. Biochemical and physiological actions of speract have been studied with purified or chemically synthesized peptides. In this work, we prepared recombinant speract fused to a fluorescent protein (FP; FP-speract) using three color variants: a cyan (eCFP), a yellow (mVenus) and a large Stokes shift yellow (mAmetrine) FP. Although these fluorescence tags are 20 times larger than speract, competitive binding experiments using mAmetrine-speract revealed that this FP-speract has binding affinity to the receptor that is comparable (7.6-fold less) to that of non-labeled speract. Indeed, 10 nmol l(-1) eCFP-speract induces physiological sperm responses such as membrane potential changes and increases in intracellular pH and Ca(2+) concentrations similar to those triggered by 10 nmol l(-1) speract. Furthermore, FP-speract maintains its fluorescence upon binding to its receptor. Using this property, we performed fluorescence resonance energy transfer (FRET) measurements with eCFP-speract and mVenus-speract as probes and obtained a positive FRET signal upon binding to the receptor, which suggests that the speract receptor exists as an oligomer, at least as a dimer, or alternatively that a single speract receptor protein possesses multiple binding sites. This property could partially account for the positive and/or negative cooperative binding of speract to the receptor. PMID:26889001

  6. Microarray analysis of nemorosone-induced cytotoxic effects on pancreatic cancer cells reveals activation of the unfolded protein response (UPR)

    PubMed Central

    Holtrup, Frank; Bauer, Andrea; Fellenberg, Kurt; Hilger, Ralf A; Wink, Michael; Hoheisel, Jörg D

    2011-01-01

    BACKGROUND AND PURPOSE Pancreatic cancer is one of the leading cancer-related causes of death due to high chemo-resistance and fast metastasation. Nemorosone, a polycyclic polyprenylated acylphloroglucinol, has recently been identified as a promising anticancer agent. Here, we examine its growth-inhibitory effects on pancreatic cancer cells. Based on transcription profiling, a molecular mode of action is proposed. EXPERIMENTAL APPROACH Nemorosone cytotoxicity was assessed by the resazurin proliferation assay on pancreatic cancer cells and fibroblasts. Apoptosis was determined by Annexin V/propidium iodide staining as well as cytochrome c and caspase activation assays. Staining with the voltage-dependent dye JC-1 and fluorescence microscopy were used to detect effects on mitochondrial membrane potential. Total RNA was isolated from treated cell lines and subjected to microarray analysis, subsequent pathway identification and modelling. Gene expression data were validated by quantitative polymerase chain reaction and siRNA-mediated gene knock-down. KEY RESULTS Nemorosone significantly inhibited cancer cell growth, induced cytochrome c release and subsequent caspase-dependent apoptosis, rapidly abolished mitochondrial membrane potential and elevated cytosolic calcium levels, while fibroblasts were largely unaffected. Expression profiling revealed 336 genes to be affected by nemorosone. A total of 75 genes were altered in all three cell lines, many of which were within the unfolded protein response (UPR) network. DNA damage inducible transcript 3 was identified as a key regulator in UPR-mediated cell death. CONCLUSIONS AND IMPLICATIONS Nemorosone could be a lead compound for the development of novel anticancer drugs amplifying the already elevated UPR level in solid tumours, thus driving them into apoptosis. This study forms the basis for further investigations identifying nemorosone's direct molecular target(s). PMID:21091652

  7. Revealing Rembrandt

    PubMed Central

    Parker, Andrew J.

    2014-01-01

    The power and significance of artwork in shaping human cognition is self-evident. The starting point for our empirical investigations is the view that the task of neuroscience is to integrate itself with other forms of knowledge, rather than to seek to supplant them. In our recent work, we examined a particular aspect of the appreciation of artwork using present-day functional magnetic resonance imaging (fMRI). Our results emphasized the continuity between viewing artwork and other human cognitive activities. We also showed that appreciation of a particular aspect of artwork, namely authenticity, depends upon the co-ordinated activity between the brain regions involved in multiple decision making and those responsible for processing visual information. The findings about brain function probably have no specific consequences for understanding how people respond to the art of Rembrandt in comparison with their response to other artworks. However, the use of images of Rembrandt's portraits, his most intimate and personal works, clearly had a significant impact upon our viewers, even though they have been spatially confined to the interior of an MRI scanner at the time of viewing. Neuroscientific studies of humans viewing artwork have the capacity to reveal the diversity of human cognitive responses that may be induced by external advice or context as people view artwork in a variety of frameworks and settings. PMID:24795552

  8. Field-scale tracking of active methane-oxidizing communities in a landfill cover soil reveals spatial and seasonal variability.

    PubMed

    Henneberger, Ruth; Chiri, Eleonora; Bodelier, Paul E L; Frenzel, Peter; Lüke, Claudia; Schroth, Martin H

    2015-05-01

    Aerobic methane-oxidizing bacteria (MOB) in soils mitigate methane (CH4 ) emissions. We assessed spatial and seasonal differences in active MOB communities in a landfill cover soil characterized by highly variable environmental conditions. Field-based measurements of CH4 oxidation activity and stable-isotope probing of polar lipid-derived fatty acids (PLFA-SIP) were complemented by microarray analysis of pmoA genes and transcripts, linking diversity and function at the field scale. In situ CH4 oxidation rates varied between sites and were generally one order of magnitude lower in winter compared with summer. Results from PLFA-SIP and pmoA transcripts were largely congruent, revealing distinct spatial and seasonal clustering. Overall, active MOB communities were highly diverse. Type Ia MOB, specifically Methylomonas and Methylobacter, were key drivers for CH4 oxidation, particularly at a high-activity site. Type II MOB were mainly active at a site showing substantial fluctuations in CH4 loading and soil moisture content. Notably, Upland Soil Cluster-gamma-related pmoA transcripts were also detected, indicating concurrent oxidation of atmospheric CH4 . Spatial separation was less distinct in winter, with Methylobacter and uncultured MOB mediating CH4 oxidation. We propose that high diversity of active MOB communities in this soil is promoted by high variability in environmental conditions, facilitating substantial removal of CH4 generated in the waste body. PMID:25186436

  9. Deficient Orthographic and Phonological Representations in Children with Dyslexia Revealed by Brain Activation Patterns

    ERIC Educational Resources Information Center

    Cao, Fan; Bitan, Tali; Chou, Tai-Li; Burman, Douglas D.; Booth, James R.

    2006-01-01

    Background: The current study examined the neuro-cognitive network of visual word rhyming judgment in 14 children with dyslexia and 14 age-matched control children (8- to 14-year-olds) using functional magnetic resonance imaging (fMRI). Methods: In order to manipulate the difficulty of mapping orthography to phonology, we used conflicting and…

  10. Revealing the Interactional Features of Learning and Teaching Moments in Outdoor Activity

    ERIC Educational Resources Information Center

    Waters, Jane; Bateman, Amanda

    2015-01-01

    The data considered in this article was generated as part of a doctoral research study entitled: "A sociocultural consideration of child-initiated interaction with teachers in indoor and outdoor spaces" (Waters 2011) where child-initiated, teacher-child interaction in indoor and outdoor spaces were investigated. The purpose of the…

  11. Structure of recombinant Leishmania donovani pteridine reductase reveals a disordered active site

    PubMed Central

    Barrack, Keri L.; Tulloch, Lindsay B.; Burke, Lynsey-Ann; Fyfe, Paul K.; Hunter, William N.

    2011-01-01

    Pteridine reductase (PTR1) is a potential target for drug development against parasitic Trypanosoma and Leishmania species, protozoa that are responsible for a range of serious diseases found in tropical and subtropical parts of the world. As part of a structure-based approach to inhibitor development, specifically targeting Leishmania species, well ordered crystals of L. donovani PTR1 were sought to support the characterization of complexes formed with inhibitors. An efficient system for recombinant protein production was prepared and the enzyme was purified and crystallized in an orthorhombic form with ammonium sulfate as the precipitant. Diffraction data were measured to 2.5 Å resolution and the structure was solved by molecular replacement. However, a sulfate occupies a phosphate-binding site used by NADPH and occludes cofactor binding. The nicotinamide moiety is a critical component of the active site and without it this part of the structure is disordered. The crystal form obtained under these conditions is therefore unsuitable for the characterization of inhibitor complexes. PMID:21206018

  12. Mass spectrometry footprinting reveals the structural rearrangements of cyanobacterial orange carotenoid protein upon light activation

    SciTech Connect

    Liu, Haijun; Zhang, Hao; King, Jeremy D.; Wolf, Nathan R.; Prado, Mindy; Gross, Michael L.; Blankenship, Robert E.

    2014-12-01

    The orange carotenoid protein (OCP), a member of the family of blue light photoactive proteins, is required for efficient photoprotection in many cyanobacteria. Photoexcitation of the carotenoid in the OCP results in structural changes within the chromophore and the protein to give an active red form of OCP that is required for phycobilisome binding and consequent fluorescence quenching. We characterized the light-dependent structural changes by mass spectrometry-based carboxyl footprinting and found that an α helix in the N-terminal extension of OCP plays a key role in this photoactivation process. Although this helix is located on and associates with the outside of the β-sheet core in the C-terminal domain of OCP in the dark, photoinduced changes in the domain structure disrupt this interaction. We propose that this mechanism couples light-dependent carotenoid conformational changes to global protein conformational dynamics in favor of functional phycobilisome binding, and is an essential part of the OCP photocycle.

  13. Microfluidic glucose stimulation reveals limited coordination of intracellular Ca2+ activity oscillations in pancreatic islets

    PubMed Central

    Rocheleau, Jonathan V.; Walker, Glenn M.; Head, W. Steven; McGuinness, Owen P.; Piston, David W.

    2004-01-01

    The pancreatic islet is a functional microorgan involved in maintaining normoglycemia through regulated secretion of insulin and other hormones. Extracellular glucose stimulates insulin secretion from islet β cells through an increase in redox state, which can be measured by NAD(P)H autofluorescence. Glucose concentrations over ≈7 mM generate synchronous oscillations in β cell intracellular Ca2+ concentration ([Ca2+]i), which lead to pulsatile insulin secretion. Prevailing models assume that the pancreatic islet acts as a functional syncytium, and the whole islet [Ca2+]i response has been modeled in terms of islet bursting and pacemaker models. To test these models, we developed a microfluidic device capable of partially stimulating an islet, while allowing observation of the NAD(P)H and [Ca2+]i responses. We show that β cell [Ca2+]i oscillations occur only within regions stimulated with more than ≈6.6 mM glucose. Furthermore, we show that tolbutamide, an antagonist of the ATP-sensitive K+ channel, allows these oscillations to travel farther into the nonstimulated regions of the islet. Our approach shows that the extent of Ca2+ propagation across the islet depends on a delicate interaction between the degree of coupling and the extent of ATP-sensitive K+-channel activation and illustrates an experimental paradigm that will have utility for many other biological systems. PMID:15317941

  14. A genetic screen reveals a periplasmic copper chaperone required for nitrite reductase activity in pathogenic Neisseria.

    PubMed

    Jen, Freda E-C; Djoko, Karrera Y; Bent, Stephen J; Day, Christopher J; McEwan, Alastair G; Jennings, Michael P

    2015-09-01

    Under conditions of low oxygen availability, Neisseria meningitidis and Neisseria gonorrhoeae are able to respire via a partial denitrification pathway in which nitrite is converted to nitrous oxide. In this process, nitrite reductase (AniA), a copper (Cu)-containing protein converts nitrite to NO, and this product is converted to nitrous oxide by nitric oxide reductase (NorB). NorB also confers protection against toxic NO, and so we devised a conditional lethal screen, using a norB mutant, to identify mutants that were resistant to nitrite-dependent killing. After random-deletion mutagenesis of N. meningitidis, this genetic screen identified a gene encoding a Cu chaperone that is essential for AniA function, AccA. Purified AccA binds one Cu (I) ion and also possesses a second binding site for Cu (II). This novel periplasmic Cu chaperone (AccA) appears to be essential for provision of Cu ions to AniA of pathogenic Neisseria to generate an active nitrite reductase. Apart from the Neisseria genus, AccA is distributed across a wide range of environmental Proteobacteria species. PMID:26031293

  15. Contralateral delay activity reveals dimension-based attentional orienting to locations in visual working memory.

    PubMed

    Töllner, Thomas; Eschmann, Kathrin C J; Rusch, Tessa; Müller, Hermann J

    2014-04-01

    In research on visual working memory (WM), a contentiously debated issue concerns whether or not items are stored independently of one another in WM. Here we addressed this issue by exploring the role of the physical context that surrounds a given item in the memory display in the formation of WM representations. In particular, we employed bilateral memory displays that contained two or three lateralized singleton items (together with six or five distractor items), defined either within the same or in different visual feature dimensions. After a variable interval, a retro-cue was presented centrally, requiring participants to discern the presence (vs. the absence) of this item in the previously shown memory array. Our results show that search for targets in visual WM is determined interactively by dimensional context and set size: For larger, but not smaller, set sizes, memory search slowed down when targets were defined across rather than within dimensions. This dimension-specific cost manifested in a stronger contralateral delay activity component, an established neural marker of the access to WM representations. Overall, our findings provide electrophysiological evidence for the hierarchically structured nature of WM representations, and they appear inconsistent with the view that WM items are encoded in isolation. PMID:24510425

  16. STUDY OF ACTIVATION OF COAL CHAR

    SciTech Connect

    E.M. Suuberg; I. Kulaots; I Aarna; M. Callejo; A. Hsu

    2003-12-31

    This is the final report on a project whose aim is to explore in a fundamental manner the factors that influence the development of porosity in coal chars during the process of activation. It is known that choices of starting coal, activating agent and conditions can strongly influence the nature of an activated carbon produced from a coal. This project has been concerned mainly with the process of physical activation, which in fact involves the gasification of a char produced from a coal by oxidizing gases. This is of interest for two reasons. One is that there is commercial interest in production of activated carbons from coal, and therefore, in the conditions that can best be used in producing these materials. Much is already known about this, but there is a great deal that is in the realm of ''trade secret'' or just ''industry lore''. The second reason for interest in these processes is that they shed light on how porosity develops during any gasification process involving oxidizing gases. This has implications for understanding the kinetics and the role that ''surface area'' may play in determining kinetics. In earlier reports from this project, several conclusions had been reached upon which the present results rest. There is an often-cited difference in use of nitrogen and carbon dioxide as molecular probes of carbon porosity when using vapor adsorption techniques. Carbon dioxide is often ''preferred'' since it is argued that it offers greater access to fine microporosity, due to the higher temperature of carbon dioxide as opposed to nitrogen measurements. The early phases of this work revealed that the extreme differences are observed only in chars which are not much activated, and that by a few weight percent burnoff, the difference was negligible, provided a consistent theoretical equation was used in calculating uptake or ''surface area''. In another phase of this study, it was noted in a preliminary way how the use of different oxidizing environments

  17. Infections Revealing Complement Deficiency in Adults: A French Nationwide Study Enrolling 41 Patients.

    PubMed

    Audemard-Verger, A; Descloux, E; Ponard, D; Deroux, A; Fantin, B; Fieschi, C; John, M; Bouldouyre, A; Karkowsi, L; Moulis, G; Auvinet, H; Valla, F; Lechiche, C; Davido, B; Martinot, M; Biron, C; Lucht, F; Asseray, N; Froissart, A; Buzelé, R; Perlat, A; Boutboul, D; Fremeaux-Bacchi, V; Isnard, S; Bienvenu, B

    2016-05-01

    Complement system is a part of innate immunity, its main function is to protect human from bacterial infection. As genetic disorders, complement deficiencies are often diagnosed in pediatric population. However, complement deficiencies can also be revealed in adults but have been poorly investigated. Herein, we describe a case series of infections revealing complement deficiency in adults to study clinical spectrum and management of complement deficiencies.A nationwide retrospective study was conducted in French university and general hospitals in departments of internal medicine, infectious diseases enrolling patients older than 15 years old who had presented at least one infection leading to a complement deficiency diagnosis.Forty-one patients included between 2002 and 2015 in 19 different departments were enrolled in this study. The male-to-female ratio was 1.3 and the mean age at diagnosis was 28 ± 14 (15-67) years. The main clinical feature was Neisseria meningitidis meningitis 75% (n = 31/41) often involving rare serotype: Y (n = 9) and W 135 (n = 7). The main complement deficiency observed was the common final pathway deficiency 83% (n = 34/41). Half of the cohort displayed severe sepsis or septic shock at diagnosis (n = 22/41) but no patient died. No patient had family history of complement deficiency. The mean follow-up was 1.15 ± 1.95 (0.1-10) years. Half of the patients had already suffered from at least one infection before diagnosis of complement deficiency: meningitis (n = 13), pneumonia (n = 4), fulminans purpura (n = 1), or recurrent otitis (n = 1). Near one-third (n = 10/39) had received prophylactic antibiotics (cotrimoxazole or penicillin) after diagnosis of complement deficiency. The vaccination coverage rate, at the end of the follow-up, for N meningitidis, Streptococcus pneumonia, and Haemophilius influenzae were, respectively, 90% (n = 33/37), 47% (n = 17/36), and 35% (n = 14

  18. Oxidation Induced Doping of Nanoparticles Revealed by in Situ X-ray Absorption Studies.

    PubMed

    Kwon, Soon Gu; Chattopadhyay, Soma; Koo, Bonil; Dos Santos Claro, Paula Cecilia; Shibata, Tomohiro; Requejo, Félix G; Giovanetti, Lisandro J; Liu, Yuzi; Johnson, Christopher; Prakapenka, Vitali; Lee, Byeongdu; Shevchenko, Elena V

    2016-06-01

    Doping is a well-known approach to modulate the electronic and optical properties of nanoparticles (NPs). However, doping at nanoscale is still very challenging, and the reasons for that are not well understood. We studied the formation and doping process of iron and iron oxide NPs in real time by in situ synchrotron X-ray absorption spectroscopy. Our study revealed that the mass flow of the iron triggered by oxidation is responsible for the internalization of the dopant (molybdenum) adsorbed at the surface of the host iron NPs. The oxidation induced doping allows controlling the doping levels by varying the amount of dopant precursor. Our in situ studies also revealed that the dopant precursor substantially changes the reaction kinetics of formation of iron and iron oxide NPs. Thus, in the presence of dopant precursor we observed significantly faster decomposition rate of iron precursors and substantially higher stability of iron NPs against oxidation. The same doping mechanism and higher stability of host metal NPs against oxidation was observed for cobalt-based systems. Since the internalization of the adsorbed dopant at the surface of the host NPs is driven by the mass transport of the host, this mechanism can be potentially applied to introduce dopants into different oxidized forms of metal and metal alloy NPs providing the extra degree of compositional control in material design. PMID:27152970

  19. The Truth Before and After: Brain Potentials Reveal Automatic Activation of Event Knowledge during Sentence Comprehension.

    PubMed

    Nieuwland, Mante S

    2015-11-01

    How does knowledge of real-world events shape our understanding of incoming language? Do temporal terms like "before" and "after" impact the online recruitment of real-world event knowledge? These questions were addressed in two ERP experiments, wherein participants read sentences that started with "before" or "after" and contained a critical word that rendered each sentence true or false (e.g., "Before/After the global economic crisis, securing a mortgage was easy/harder"). The critical words were matched on predictability, rated truth value, and semantic relatedness to the words in the sentence. Regardless of whether participants explicitly verified the sentences or not, false-after-sentences elicited larger N400s than true-after-sentences, consistent with the well-established finding that semantic retrieval of concepts is facilitated when they are consistent with real-world knowledge. However, although the truth judgments did not differ between before- and after-sentences, no such sentence N400 truth value effect occurred in before-sentences, whereas false-before-sentences elicited an enhanced subsequent positive ERPs. The temporal term "before" itself elicited more negative ERPs at central electrode channels than "after." These patterns of results show that, irrespective of ultimate sentence truth value judgments, semantic retrieval of concepts is momentarily facilitated when they are consistent with the known event outcome compared to when they are not. However, this inappropriate facilitation incurs later processing costs as reflected in the subsequent positive ERP deflections. The results suggest that automatic activation of event knowledge can impede the incremental semantic processes required to establish sentence truth value. PMID:26244719

  20. Metaproteomics of cellulose methanisation under thermophilic conditions reveals a surprisingly high proteolytic activity

    PubMed Central

    Lü, Fan; Bize, Ariane; Guillot, Alain; Monnet, Véronique; Madigou, Céline; Chapleur, Olivier; Mazéas, Laurent; He, Pinjing; Bouchez, Théodore

    2014-01-01

    Cellulose is the most abundant biopolymer on Earth. Optimising energy recovery from this renewable but recalcitrant material is a key issue. The metaproteome expressed by thermophilic communities during cellulose anaerobic digestion was investigated in microcosms. By multiplying the analytical replicates (65 protein fractions analysed by MS/MS) and relying solely on public protein databases, more than 500 non-redundant protein functions were identified. The taxonomic community structure as inferred from the metaproteomic data set was in good overall agreement with 16S rRNA gene tag pyrosequencing and fluorescent in situ hybridisation analyses. Numerous functions related to cellulose and hemicellulose hydrolysis and fermentation catalysed by bacteria related to Caldicellulosiruptor spp. and Clostridium thermocellum were retrieved, indicating their key role in the cellulose-degradation process and also suggesting their complementary action. Despite the abundance of acetate as a major fermentation product, key methanogenesis enzymes from the acetoclastic pathway were not detected. In contrast, enzymes from the hydrogenotrophic pathway affiliated to Methanothermobacter were almost exclusively identified for methanogenesis, suggesting a syntrophic acetate oxidation process coupled to hydrogenotrophic methanogenesis. Isotopic analyses confirmed the high dominance of the hydrogenotrophic methanogenesis. Very surprising was the identification of an abundant proteolytic activity from Coprothermobacter proteolyticus strains, probably acting as scavenger and/or predator performing proteolysis and fermentation. Metaproteomics thus appeared as an efficient tool to unravel and characterise metabolic networks as well as ecological interactions during methanisation bioprocesses. More generally, metaproteomics provides direct functional insights at a limited cost, and its attractiveness should increase in the future as sequence databases are growing exponentially. PMID:23949661

  1. Revealing the Functional States in the Active Site of BLUF Photoreceptors from Electrochromic Shift Calculations

    PubMed Central

    2014-01-01

    Photoexcitation with blue light of the flavin chromophore in BLUF photoreceptors induces a switch into a metastable signaling state that is characterized by a red-shifted absorption maximum. The red shift is due to a rearrangement in the hydrogen bond pattern around Gln63 located in the immediate proximity of the isoalloxazine ring system of the chromophore. There is a long-lasting controversy between two structural models, named Q63A and Q63J in the literature, on the local conformation of the residues Gln63 and Tyr21 in the dark state of the photoreceptor. As regards the mechanistic details of the light-activation mechanism, rotation of Gln63 is opposed by tautomerism in the Q63A and Q63J models, respectively. We provide a structure-based simulation of electrochromic shifts of the flavin chromophore in the wild type and in various site-directed mutants. The excellent overall agreement between experimental and computed data allows us to evaluate the two structural models. Compelling evidence is obtained that the Q63A model is incorrect, whereas the Q63J is fully consistent with the present computations. Finally, we confirm independently that a keto–enol tautomerization of the glutamine at position 63, which was proposed as molecular mechanism for the transition between the dark and the light-adapted state, explains the measured 10 to 15 nm red shift in flavin absorption between these two states of the protein. We believe that the accurateness of our results provides evidence that the BLUF photoreceptors absorption is fine-tuned through electrostatic interactions between the chromophore and the protein matrix, and finally that the simplicity of our theoretical model is advantageous as regards easy reproducibility and further extensions. PMID:25153778

  2. Whisker Movements Reveal Spatial Attention: A Unified Computational Model of Active Sensing Control in the Rat

    PubMed Central

    Mitchinson, Ben; Prescott, Tony J.

    2013-01-01

    Spatial attention is most often investigated in the visual modality through measurement of eye movements, with primates, including humans, a widely-studied model. Its study in laboratory rodents, such as mice and rats, requires different techniques, owing to the lack of a visual fovea and the particular ethological relevance of orienting movements of the snout and the whiskers in these animals. In recent years, several reliable relationships have been observed between environmental and behavioural variables and movements of the whiskers, but the function of these responses, as well as how they integrate, remains unclear. Here, we propose a unifying abstract model of whisker movement control that has as its key variable the region of space that is the animal's current focus of attention, and demonstrate, using computer-simulated behavioral experiments, that the model is consistent with a broad range of experimental observations. A core hypothesis is that the rat explicitly decodes the location in space of whisker contacts and that this representation is used to regulate whisker drive signals. This proposition stands in contrast to earlier proposals that the modulation of whisker movement during exploration is mediated primarily by reflex loops. We go on to argue that the superior colliculus is a candidate neural substrate for the siting of a head-centred map guiding whisker movement, in analogy to current models of visual attention. The proposed model has the potential to offer a more complete understanding of whisker control as well as to highlight the potential of the rodent and its whiskers as a tool for the study of mammalian attention. PMID:24086120

  3. A cellular genome-wide association study reveals human variation in microtubule stability and a role in inflammatory cell death

    PubMed Central

    Salinas, Raul E.; Ogohara, Cassandra; Thomas, Monica I.; Shukla, Kajal P.; Miller, Samuel I.; Ko, Dennis C.

    2014-01-01

    Pyroptosis is proinflammatory cell death that occurs in response to certain microbes. Activation of the protease caspase-1 by molecular platforms called inflammasomes is required for pyroptosis. We performed a cellular genome-wide association study (GWAS) using Salmonella typhimurium infection of human lymphoblastoid cell lines as a means of dissecting the genetic architecture of susceptibility to pyroptosis and identifying unknown regulatory mechanisms. Cellular GWAS revealed that a common human genetic difference that regulates pyroptosis also alters microtubule stability. An intergenic single-nucleotide polymorphism on chromosome 18 is associated with decreased pyroptosis and increased expression of TUBB6 (tubulin, β 6 class V). TUBB6 is unique among tubulin isoforms in that its overexpression can completely disrupt the microtubule network. Cells from individuals with higher levels of TUBB6 expression have lower microtubule stability and less pyroptosis. Reducing TUBB6 expression or stabilizing microtubules pharmacologically with paclitaxel (Taxol) increases pyroptosis without affecting the other major readout of caspase-1 activation, interleukin-1β secretion. The results reveal a new role for microtubules and possibly specific tubulin isoforms in the execution of pyroptosis. Furthermore, the finding that there is common diversity in TUBB6 expression and microtubule stability could have broad consequences for other microtubule-dependent phenotypes, diseases, and pharmacological responses. PMID:24173717

  4. The low density lipoprotein receptor-related protein 1: Unique tissue-specific functions revealed by selective gene knockout studies

    PubMed Central

    Lillis, Anna P.; Van Duyn, Lauren B.; Murphy-Ullrich, Joanne E.; Strickland, Dudley K.

    2008-01-01

    The low-density lipoprotein (LDL) receptor-related protein (originally called LRP, but now referred to as LRP1) is a large endocytic receptor that is widely expressed in several tissues. LRP1 is a member of the LDL receptor family that plays diverse roles in various biological processes including lipoprotein metabolism, degradation of proteases, activation of lysosomal enzymes and cellular entry of bacterial toxins and viruses. Deletion of the LRP1 gene leads to lethality in mice, revealing a critical, but as of yet, undefined role in development. Tissue-specific gene deletion studies reveal an important contribution of LRP1 in the vasculature, central nervous system, in macrophages and in adipocytes. Three important properties of LRP1 dictate its diverse role in physiology: first, its ability to recognize more than thirty distinct ligands; second, its ability to bind a large number of cytoplasmic adaptor proteins via determinants located on its cytoplasmic domain in a phosphorylation-specific manner; and third, its ability to associate with and modulate the activity of other transmembrane receptors such as integrins and receptor tyrosine kinases. PMID:18626063

  5. ESR detection of 1O2 reveals enhanced redox activity in illuminated cell cultures.

    PubMed

    Lavi, Ronit; Sinyakov, Michael; Samuni, Amram; Shatz, Smadar; Friedmann, Harry; Shainberg, Asher; Breitbart, Haim; Lubart, Rachel

    2004-09-01

    Low-energy visible light (LEVL) has previously been found to modulate various processes in different biological systems. One explanation for the stimulatory effect of LEVL is light-induced reactive oxygen species formation. In the present study, both sperm and skin cells were illuminated with LEVL and were found to generate singlet oxygen (1O2). The detection of 1O2 was performed using a trapping probe, 2,2,6,6-tetramethyl-4-piperidone, coupled with electron paramagnetic resonance spectroscopy. In addition, we have shown that, together with O2 generation, LEVL illumination increases the reductive capacity of the cells, which explains the difficulties encountered in 1O2 detection. The potential of visible light to change the cellular redox state may explain the recently observed biostimulative effects exerted by LEVL. PMID:15621706

  6. Cutting edge: An in vivo reporter reveals active B cell receptor signaling in the germinal center.

    PubMed

    Mueller, James; Matloubian, Mehrdad; Zikherman, Julie

    2015-04-01

    Long-lasting Ab responses rely on the germinal center (GC), where B cells bearing high-affinity Ag receptors are selected from a randomly mutated pool to populate the memory and plasma cell compartments. Signaling downstream of the BCR is dampened in GC B cells, raising the possibility that Ag presentation and competition for T cell help, rather than Ag-dependent signaling per se, drive these critical selection events. In this study we use an in vivo reporter of BCR signaling, Nur77-eGFP, to demonstrate that although BCR signaling is reduced among GC B cells, a small population of cells exhibiting GC light zone phenotype (site of Ag and follicular helper T cell encounter) express much higher levels of GFP. We show that these cells exhibit somatic hypermutation, gene expression characteristic of signaling and selection, and undergo BCR signaling in vivo. PMID:25725108

  7. Activation of acid-sensing ion channels by localized proton transient reveals their role in proton signaling

    PubMed Central

    Zeng, Wei-Zheng; Liu, Di-Shi; Liu, Lu; She, Liang; Wu, Long-Jun; Xu, Tian-Le

    2015-01-01

    Extracellular transients of pH alterations likely mediate signal transduction in the nervous system. Neuronal acid-sensing ion channels (ASICs) act as sensors for extracellular protons, but the mechanism underlying ASIC activation remains largely unknown. Here, we show that, following activation of a light-activated proton pump, Archaerhodopsin-3 (Arch), proton transients induced ASIC currents in both neurons and HEK293T cells co-expressing ASIC1a channels. Using chimera proteins that bridge Arch and ASIC1a by a glycine/serine linker, we found that successful coupling occurred within 15 nm distance. Furthermore, two-cell sniffer patch recording revealed that regulated release of protons through either Arch or voltage-gated proton channel Hv1 activated neighbouring cells expressing ASIC1a channels. Finally, computational modelling predicted the peak proton concentration at the intercellular interface to be at pH 6.7, which is acidic enough to activate ASICs in vivo. Our results highlight the pathophysiological role of proton signalling in the nervous system. PMID:26370138

  8. Voltage Sensitive Dye Imaging Reveals Improved Topographic Activation of Cortex in Response to Manipulation of Thalamic Microstimulation Parameters

    PubMed Central

    Wang, Qi; Millard, Daniel C.; Zheng, He J.V.; Stanley, Garrett B.

    2012-01-01

    Voltage sensitive dye (VSD) imaging was used to quantify in-vivo, network level spatiotemporal cortical activation in response to electrical microstimulation of the thalamus in the rat vibrissa pathway. Thalamic microstimulation evoked a distinctly different cortical response than natural sensory stimulation, with the response to microstimulation spreading over a larger area of cortex and being topographically misaligned with the cortical column to which the stimulated thalamic region projects. Electrical stimulation with cathode-leading asymmetric waveforms reduced this topographic misalignment while simultaneously increasing the spatial specificity of the cortical activation. Systematically increasing the asymmetry of the microstimulation pulses revealed a continuum between symmetric and asymmetric stimulation that gradually reduced the topographic bias. These data strongly support the hypothesis that manipulation of the electrical stimulation waveform can be used to selectively activate specific neural elements. Specifically, our results are consistent with the prediction that cathode-leading asymmetric waveforms preferentially stimulating cell bodies over axons, while symmetric waveforms preferentially activate axons over cell bodies. The findings here provide some initial steps toward the design and optimization of microstimulation of neural circuitry, and open the door to more sophisticated engineering tools, such as nonlinear system identification techniques, to develop technologies for more effective control of activity in the nervous system. PMID:22327024

  9. Prognostic value of cortically induced motor evoked activity by TMS in chronic stroke: Caveats from a revealing single clinical case

    PubMed Central

    2012-01-01

    Background We report the case of a chronic stroke patient (62 months after injury) showing total absence of motor activity evoked by transcranial magnetic stimulation (TMS) of spared regions of the left motor cortex, but near-to-complete recovery of motor abilities in the affected hand. Case presentation Multimodal investigations included detailed TMS based motor mapping, motor evoked potentials (MEP), and Cortical Silent period (CSP) as well as functional magnetic resonance imaging (fMRI) of motor activity, MRI based lesion analysis and Diffusion Tensor Imaging (DTI) Tractography of corticospinal tract (CST). Anatomical analysis revealed a left hemisphere subinsular lesion interrupting the descending left CST at the level of the internal capsule. The absence of MEPs after intense TMS pulses to the ipsilesional M1, and the reversible suppression of ongoing electromyographic (EMG) activity (indexed by CSP) demonstrate a weak modulation of subcortical systems by the ipsilesional left frontal cortex, but an inability to induce efficient descending volleys from those cortical locations to right hand and forearm muscles. Functional MRI recordings under grasping and finger tapping patterns involving the affected hand showed slight signs of subcortical recruitment, as compared to the unaffected hand and hemisphere, as well as the expected cortical activations. Conclusions The potential sources of motor voluntary activity for the affected hand in absence of MEPs are discussed. We conclude that multimodal analysis may contribute to a more accurate prognosis of stroke patients. PMID:22682434

  10. Voltage-sensitive dye imaging reveals improved topographic activation of cortex in response to manipulation of thalamic microstimulation parameters

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Millard, Daniel C.; Zheng, He J. V.; Stanley, Garrett B.

    2012-04-01

    Voltage-sensitive dye imaging was used to quantify in vivo, network level spatiotemporal cortical activation in response to electrical microstimulation of the thalamus in the rat vibrissa pathway. Thalamic microstimulation evoked a distinctly different cortical response than natural sensory stimulation, with response to microstimulation spreading over a larger area of cortex and being topographically misaligned with the cortical column to which the stimulated thalamic region projects. Electrical stimulation with cathode-leading asymmetric waveforms reduced this topographic misalignment while simultaneously increasing the spatial specificity of the cortical activation. Systematically increasing the asymmetry of the microstimulation pulses revealed a continuum between symmetric and asymmetric stimulation that gradually reduced the topographic bias. These data strongly support the hypothesis that manipulation of the electrical stimulation waveform can be used to selectively activate specific neural elements. Specifically, our results are consistent with the prediction that cathode-leading asymmetric waveforms preferentially stimulate cell bodies over axons, while symmetric waveforms preferentially activate axons over cell bodies. The findings here provide some initial steps toward the design and optimization of microstimulation of neural circuitry, and open the door to more sophisticated engineering tools, such as nonlinear system identification techniques, to develop technologies for more effective control of activity in the nervous system.

  11. Crystal structures of human soluble adenylyl cyclase reveal mechanisms of catalysis and of its activation through bicarbonate

    PubMed Central

    Kleinboelting, Silke; Diaz, Ana; Moniot, Sebastien; van den Heuvel, Joop; Weyand, Michael; Levin, Lonny R.; Buck, Jochen; Steegborn, Clemens

    2014-01-01

    cAMP is an evolutionary conserved, prototypic second messenger regulating numerous cellular functions. In mammals, cAMP is synthesized by one of 10 homologous adenylyl cyclases (ACs): nine transmembrane enzymes and one soluble AC (sAC). Among these, only sAC is directly activated by bicarbonate (HCO3−); it thereby serves as a cellular sensor for HCO3−, carbon dioxide (CO2), and pH in physiological functions, such as sperm activation, aqueous humor formation, and metabolic regulation. Here, we describe crystal structures of human sAC catalytic domains in the apo state and in complex with substrate analog, products, and regulators. The activator HCO3− binds adjacent to Arg176, which acts as a switch that enables formation of the catalytic cation sites. An anionic inhibitor, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid, inhibits sAC through binding to the active site entrance, which blocks HCO3− activation through steric hindrance and trapping of the Arg176 side chain. Finally, product complexes reveal small, local rearrangements that facilitate catalysis. Our results provide a molecular mechanism for sAC catalysis and cellular HCO3− sensing and a basis for targeting this system with drugs. PMID:24567411

  12. Proteomics study revealed altered proteome of Dichogaster curgensis upon exposure to fly ash.

    PubMed

    Markad, Vijaykumar L; Adav, Sunil S; Ghole, Vikram S; Sze, Siu Kwan; Kodam, Kisan M

    2016-10-01

    Fly ash is toxic and its escalating use as a soil amendment and disposal by dumping into environment is receiving alarming attention due to its impact on environment. Proteomics technology is being used for environmental studies since proteins respond rapidly when an organism is exposed to a toxicant, and hence soil engineers such as earthworms are used as model organisms to assess the toxic effects of soil toxicants. This study adopted proteomics technology and profiled proteome of earthworm Dichogaster curgensis that was exposed to fly ash, with main aim to elucidate fly ash effects on cellular and metabolic pathways. The functional classification of identified proteins revealed carbohydrate metabolism (14.36%), genetic information processing (15.02%), folding, sorting and degradation (10.83%), replication and repair (3.95%); environmental information processing (2.19%), signal transduction (9.61%), transport and catabolism (17.27%), energy metabolism (6.69%), etc. in the proteome. Proteomics data and functional assays revealed that the exposure of earthworm to fly ash induced protein synthesis, up-regulation of gluconeogenesis, disturbed energy metabolism, oxidative and cellular stress, and mis-folding of proteins. The regulation of ubiquitination, proteasome and modified alkaline comet assay in earthworm coelomocytes suggested DNA-protein cross link affecting chromatin remodeling and protein folding. PMID:27371791

  13. Phylogenetic and Molecular Variability Studies Reveal a New Genetic Clade of Citrus leprosis virus C

    PubMed Central

    Ramos-González, Pedro Luis; Chabi-Jesus, Camila; Guerra-Peraza, Orlene; Breton, Michèle Claire; Arena, Gabriella Dias; Nunes, Maria Andreia; Kitajima, Elliot Watanabe; Machado, Marcos Antonio; Freitas-Astúa, Juliana

    2016-01-01

    Citrus leprosis virus C (CiLV-C) causes a severe disease affecting citrus orchards in the Western hemisphere. This study reveals the molecular variability of the virus by analyzing four genomic regions (p29, p15, MP and RNA2-intergenic region) distributed over its two RNAs. Nucleotide diversity (π) values were relatively low but statistically different over the analyzed genes and subpopulations, indicating their distinct evolutionary history. Values of πp29 and πMP were higher than those of πp15 and πRNA2–IR, whereas πMP was increased due to novel discovered isolates phylogenetically clustered in a divergent clade that we called SJP. Isolate BR_SP_SJP_01 RNA1 and RNA2 sequences, clade SJP, showed an identity of 85.6% and 88.4%, respectively, with those corresponding to CiLV-C, the type member of the genus Cilevirus, and its RNA2 5′-proximal region was revealed as a minor donor in a putative inter-clade recombination event. In addition to citrus, BR_SP_SJP_01 naturally infects the weed Commelina benghalensis and is efficiently transmitted by Brevipalpus yothersi mites. Our data demonstrated that negative selection was the major force operating in the evaluated viral coding regions and defined amino acids putatively relevant for the biological function of cilevirus proteins. This work provides molecular tools and sets up a framework for further epidemiological studies. PMID:27275832

  14. Phylogenetic and Molecular Variability Studies Reveal a New Genetic Clade of Citrus leprosis virus C.

    PubMed

    Ramos-González, Pedro Luis; Chabi-Jesus, Camila; Guerra-Peraza, Orlene; Breton, Michèle Claire; Arena, Gabriella Dias; Nunes, Maria Andreia; Kitajima, Elliot Watanabe; Machado, Marcos Antonio; Freitas-Astúa, Juliana

    2016-01-01

    Citrus leprosis virus C (CiLV-C) causes a severe disease affecting citrus orchards in the Western hemisphere. This study reveals the molecular variability of the virus by analyzing four genomic regions (p29, p15, MP and RNA2-intergenic region) distributed over its two RNAs. Nucleotide diversity (π) values were relatively low but statistically different over the analyzed genes and subpopulations, indicating their distinct evolutionary history. Values of πp29 and πMP were higher than those of πp15 and πRNA2-IR, whereas πMP was increased due to novel discovered isolates phylogenetically clustered in a divergent clade that we called SJP. Isolate BR_SP_SJP_01 RNA1 and RNA2 sequences, clade SJP, showed an identity of 85.6% and 88.4%, respectively, with those corresponding to CiLV-C, the type member of the genus Cilevirus, and its RNA2 5'-proximal region was revealed as a minor donor in a putative inter-clade recombination event. In addition to citrus, BR_SP_SJP_01 naturally infects the weed Commelina benghalensis and is efficiently transmitted by Brevipalpus yothersi mites. Our data demonstrated that negative selection was the major force operating in the evaluated viral coding regions and defined amino acids putatively relevant for the biological function of cilevirus proteins. This work provides molecular tools and sets up a framework for further epidemiological studies. PMID:27275832

  15. Revealing pathologies in the liquid crystalline structures of the brain by polarimetric studies (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Bakhshetyan, Karen; Melkonyan, Gurgen G.; Galstian, Tigran V.; Saghatelyan, Armen

    2015-10-01

    Natural or "self" alignment of molecular complexes in living tissue represents many similarities with liquid crystals (LC), which are anisotropic liquids. The orientational characteristics of those complexes may be related to many important functional parameters and their study may reveal important pathologies. The know-how, accumulated thanks to the study of LC materials, may thus be used to this end. One of the traditionally used methods, to characterize those materials, is the polarized light imaging (PLI) that allows for label-free analysis of anisotropic structures in the brain tissue and can be used, for example, for the analysis of myelinated fiber bundles. In the current work, we first attempted to apply the PLI on the mouse histological brain sections to create a map of anisotropic structures using cross-polarizer transmission light. Then we implemented the PLI for comparative study of histological sections of human postmortem brain samples under normal and pathological conditions, such as Parkinson's disease (PD). Imaging the coronal, sagittal and horizontal sections of mouse brain allowed us to create a false color-coded fiber orientation map under polarized light. In human brain datasets for both control and PD groups we measured the pixel intensities in myelin-rich subregions of internal capsule and normalized these to non-myelinated background signal from putamen and caudate nucleus. Quantification of intensities revealed a statistically significant reduction of fiber intensity of PD compared to control subjects (2.801 +/- 0.303 and 3.724 +/- 0.07 respectively; *p < 0.05). Our study confirms the validity of PLI method for visualizing myelinated axonal fibers. This relatively simple technique can become a promising tool for study of neurodegenerative diseases where labeling-free imaging is an important benefit.

  16. Hemin-functionalized reduced graphene oxide nanosheets reveal peroxynitrite reduction and isomerization activity.

    PubMed

    Vernekar, Amit A; Mugesh, Govindasamy

    2012-11-19

    Facile and efficient reduction of graphene oxide (GO) and novel applications of the reduced graphene oxide (RGO) based materials are of current interest. Herein, we report a novel and facile method for the reduction of GO by using a biocompatible reducing agent dithiothreitol (DTT). Stabilization of DTT by the formation of a six-membered ring with internal disulfide linkage upon oxidation is responsible for the reduction of GO. The reduced graphene oxide is characterized by several spectroscopic and microscopic techniques. Dispersion of RGO in DMF remained stable for several weeks suggesting that the RGO obtained by DTT-mediated reduction is hydrophobic in nature. This method can be considered for large scale production of good quality RGO. Treatment of RGO with hemin afforded a functional hemin-reduced graphene oxide (H-RGO) hybrid material that exhibited remarkable protective effects against the potentially harmful peroxynitrite (PN). A detailed inhibition study on PN-mediated oxidation and nitration reactions indicate that the interaction between hemin and RGO results in a synergistic effect, which leads to an efficient reduction of PN to nitrate. The RGO also catalyzes the isomerization of PN to nitrate as the RGO layers facilitate the rapid recombination of (·)NO(2) with Fe(IV)=O species. In the presence of reducing agents such as ascorbic acid, the Fe(IV)=O species can be reduced to Fe(III), thus helping to maintain the PN reductase cycle. PMID:23042238

  17. [Secondary Career Education Activities: Social Studies.

    ERIC Educational Resources Information Center

    Radford City Schools, VA.

    The guide is one of a series developed in a pilot project to integrate career education concepts with subject matter in secondary grades. The units are designed to reveal career orientation aspects of traditional topics within five major subject areas: English, social studies, mathematics, science, and health and physical education. The lesson…

  18. Nitric Oxide Mediated Transcriptome Profiling Reveals Activation of Multiple Regulatory Pathways in Arabidopsis thaliana.

    PubMed

    Hussain, Adil; Mun, Bong-Gyu; Imran, Qari M; Lee, Sang-Uk; Adamu, Teferi A; Shahid, Muhammad; Kim, Kyung-Min; Yun, Byung-Wook

    2016-01-01

    Imbalance between the accumulation and removal of nitric oxide and its derivatives is a challenge faced by all plants at the cellular level, and is especially important under stress conditions. Exposure of plants to various biotic and abiotic stresses causes rapid changes in cellular redox tone potentiated by the rise in reactive nitrogen species that serve as signaling molecules in mediating defensive responses. To understand mechanisms mediated by these signaling molecules, we performed a large-scale analysis of the Arabidopsis transcriptome induced by nitrosative stress. We generated an average of 84 and 91 million reads from three replicates each of control and 1 mM S-nitrosocysteine (CysNO)-infiltrated Arabidopsis leaf samples, respectively. After alignment, more than 95% of all reads successfully mapped to the reference and 32,535 genes and 55,682 transcripts were obtained. CysNO infiltration caused differential expression of 6436 genes (3448 up-regulated and 2988 down-regulated) and 6214 transcripts (3335 up-regulated and 2879 down-regulated) 6 h post-infiltration. These differentially expressed genes were found to be involved in key physiological processes, including plant defense against various biotic and abiotic stresses, hormone signaling, and other developmental processes. After quantile normalization of the FPKM values followed by student's T-test (P < 0.05) we identified 1165 DEGs (463 up-regulated and 702 down-regulated) with at least 2-folds change in expression after CysNO treatment. Expression patterns of selected genes involved in various biological pathways were verified using quantitative real-time PCR. This study provides comprehensive information about plant responses to nitrosative stress at transcript level and would prove helpful in understanding and incorporating mechanisms associated with nitrosative stress responses in plants. PMID:27446194

  19. Nitric Oxide Mediated Transcriptome Profiling Reveals Activation of Multiple Regulatory Pathways in Arabidopsis thaliana

    PubMed Central

    Hussain, Adil; Mun, Bong-Gyu; Imran, Qari M.; Lee, Sang-Uk; Adamu, Teferi A.; Shahid, Muhammad; Kim, Kyung-Min; Yun, Byung-Wook

    2016-01-01

    Imbalance between the accumulation and removal of nitric oxide and its derivatives is a challenge faced by all plants at the cellular level, and is especially important under stress conditions. Exposure of plants to various biotic and abiotic stresses causes rapid changes in cellular redox tone potentiated by the rise in reactive nitrogen species that serve as signaling molecules in mediating defensive responses. To understand mechanisms mediated by these signaling molecules, we performed a large-scale analysis of the Arabidopsis transcriptome induced by nitrosative stress. We generated an average of 84 and 91 million reads from three replicates each of control and 1 mM S-nitrosocysteine (CysNO)-infiltrated Arabidopsis leaf samples, respectively. After alignment, more than 95% of all reads successfully mapped to the reference and 32,535 genes and 55,682 transcripts were obtained. CysNO infiltration caused differential expression of 6436 genes (3448 up-regulated and 2988 down-regulated) and 6214 transcripts (3335 up-regulated and 2879 down-regulated) 6 h post-infiltration. These differentially expressed genes were found to be involved in key physiological processes, including plant defense against various biotic and abiotic stresses, hormone signaling, and other developmental processes. After quantile normalization of the FPKM values followed by student's T-test (P < 0.05) we identified 1165 DEGs (463 up-regulated and 702 down-regulated) with at least 2-folds change in expression after CysNO treatment. Expression patterns of selected genes involved in various biological pathways were verified using quantitative real-time PCR. This study provides comprehensive information about plant responses to nitrosative stress at transcript level and would prove helpful in understanding and incorporating mechanisms associated with nitrosative stress responses in plants. PMID:27446194

  20. Quantitative Proteomic Analysis Reveals Molecular Adaptations in the Hippocampal Synaptic Active Zone of Chronic Mild Stress-Unsusceptible Rats

    PubMed Central

    Zhou, Jian; Liu, Zhao; Yu, Jia; Han, Xin; Fan, Songhua; Shao, Weihua; Chen, Jianjun; Qiao, Rui

    2016-01-01

    Background: While stressful events are recognized as an important cause of major depressive disorder, some individuals exposed to life stressors maintain normal psychological functioning. The molecular mechanism(s) underlying this phenomenon remain unclear. Abnormal transmission and plasticity of hippocampal synapses have been implied to play a key role in the pathoetiology of major depressive disorder. Methods: A chronic mild stress protocol was applied to separate susceptible and unsusceptible rat subpopulations. Proteomic analysis using an isobaric tag for relative and absolute quantitation coupled with tandem mass spectrometry was performed to identify differential proteins in enriched hippocampal synaptic junction preparations. Results: A total of 4318 proteins were quantified, and 89 membrane proteins were present in differential amounts. Of these, SynaptomeDB identified 81 (91%) having a synapse-specific localization. The unbiased profiles identified several candidate proteins within the synaptic junction that may be associated with stress vulnerability or insusceptibility. Subsequent functional categorization revealed that protein systems particularly involved in membrane trafficking at the synaptic active zone exhibited a positive strain as potential molecular adaptations in the unsusceptible rats. Moreover, through STRING and immunoblotting analysis, membrane-associated GTP-bound Rab3a and Munc18-1 appear to coregulate syntaxin-1/SNAP25/VAMP2 assembly at the hippocampal presynaptic active zone of unsusceptible rats, facilitating SNARE-mediated membrane fusion and neurotransmitter release, and may be part of a stress-protection mechanism in actively maintaining an emotional homeostasis. Conclusions: The present results support the concept that there is a range of potential protein adaptations in the hippocampal synaptic active zone of unsusceptible rats, revealing new investigative targets that may contribute to a better understanding of stress

  1. Active Tectonics of Southern California Revealed by Cluster Analysis of GPS Velocities

    NASA Astrophysics Data System (ADS)

    Thatcher, W. R.; Savage, J. C.; Simpson, R. W.

    2013-12-01

    We use cluster analysis of the USGS National Seismic Hazard Map GPS velocity field for southern California with standard deviations < 1 mm/yr to determine velocity gradients that locate the most important faults, the elastic strain associated with them, and regions of possible block-like behavior. Seven to ten well resolved clusters are statistically significant and spatially distinct with small overlap. In map view (see figure), the 7 clusters solution shows bands of relatively constant velocity sub-parallel to the San Andreas (SAF) and San Jacinto (SJF) faults and the major faults of the eastern Mojave shear zone (EMSZ). These bands are due both to elastic strain accumulation on the SAF and relative motion across lower slip rate faults in the EMSZ and Los Angeles and Ventura basins. At the largest scale, the 7-cluster map shows two main trends. The blue dots define the SJ and SA faults from northwest of the Salton Sea (SS) to Parkfield (P); the grey/magenta boundary suggests that the defined Eastern California Shear Zone could be extended farther south to the Salton Sea. The short ~80-km-long San Gorgonio Pass-San Bernardino Mountains (SGP) segment of the SAF has a much lower slip rate, ~7 mm/yr of right-lateral oblique convergence. As generally shown by previous GPS studies, right-lateral strike-slip movement rates vary considerably along the SAF. In the Imperial Valley (IV) the rate is ~40 mm/yr; east of the Salton Sea it drops to ~20 mm/yr, with 10-15 mm/yr having been shunted westward to the SJF; north of the Salton Sea ~10-15 mm/yr of strike-slip is transferred to the faults of the eastern Mojave; therefore the east-trending faults of San Gorgonio Pass (SGP) take up only ~5 mm/yr of strike slip and ~equal amounts of north-south shortening; on the Mojave (M) segment of the SAF the slip rate increases to ~15-20 mm/yr in the vicinity of Cajon Pass (CP) because of transfer of SJF slip back onto the San Andreas; northwest of Tejon Pass the rate increases again to

  2. Stimulatory effect of Echinacea purpurea extract on the trafficking activity of mouse dendritic cells: revealed by genomic and proteomic analyses

    PubMed Central

    2010-01-01

    Background Several Echinacea species have been used as nutraceuticals or botanical drugs for "immunostimulation", but scientific evidence supporting their therapeutic use is still controversial. In this study, a phytocompound mixture extracted from the butanol fraction (BF) of a stem and leaf (S+L) extract of E. purpurea ([BF/S+L/Ep]) containing stringently defined bioactive phytocompounds was obtained using standardized and published procedures. The transcriptomic and proteomic effects of this phytoextract on mouse bone marrow-derived dendritic cells (BMDCs) were analyzed using primary cultures. Results Treatment of BMDCs with [BF/S+L/Ep] did not significantly influence the phenotypic maturation activity of dendritic cells (DCs). Affymetrix DNA microarray and bioinformatics analyses of genes differentially expressed in DCs treated with [BF/S+L/Ep] for 4 or 12 h revealed that the majority of responsive genes were related to cell adhesion or motility (Cdh10, Itga6, Cdh1, Gja1 and Mmp8), or were chemokines (Cxcl2, Cxcl7) or signaling molecules (Nrxn1, Pkce and Acss1). TRANSPATH database analyses of gene expression and related signaling pathways in treated-DCs predicted the JNK, PP2C-α, AKT, ERK1/2 or MAPKAPK pathways as the putative targets of [BF/S+L/Ep]. In parallel, proteomic analysis showed that the expressions of metabolic-, cytoskeleton- or NF-κB signaling-related proteins were regulated by treatment with [BF/S+L/Ep]. In vitro flow cytometry analysis of chemotaxis-related receptors and in vivo cell trafficking assay further showed that DCs treated with [BF/S+L/Ep] were able to migrate more effectively to peripheral lymph node and spleen tissues than DCs treated as control groups. Conclusion Results from this study suggest that [BF/S+L/Ep] modulates DC mobility and related cellular physiology in the mouse immune system. Moreover, the signaling networks and molecules highlighted here are potential targets for nutritional or clinical application of Echinacea or

  3. Multifunctional bioscaffolds for 3D culture of melanoma cells reveal increased MMP activity and migration with BRAF kinase inhibition.

    PubMed

    Leight, Jennifer L; Tokuda, Emi Y; Jones, Caitlin E; Lin, Austin J; Anseth, Kristi S

    2015-04-28

    Matrix metalloproteinases (MMPs) are important for many different types of cancer-related processes, including metastasis. Understanding the functional impact of changes in MMP activity during cancer treatment is an important facet not typically evaluated as part of preclinical research. With MMP activity being a critical component of the metastatic cascade, we designed a 3D hydrogel system to probe whether pharmacological inhibition affected human melanoma cell proteolytic activity; metastatic melanoma is a highly aggressive and drug-resistant form of skin cancer. The relationship between MMP activity and drug treatment is unknown, and therefore we used an in situ fluorogenic MMP sensor peptide to determine how drug treatment affects melanoma cell MMP activity in three dimensions. We encapsulated melanoma cells from varying stages of progression within PEG-based hydrogels to examine the relationship between drug treatment and MMP activity. From these results, a metastatic melanoma cell line (A375) and two inhibitors that inhibit RAF (PLX4032 and sorafenib) were studied further to determine whether changes in MMP activity led to a functional change in cell behavior. A375 cells exhibited increased MMP activity despite an overall decrease in metabolic activity with PLX4032 treatment. The changes in proteolytic activity correlated with increased cell elongation and increased single-cell migration. In contrast, sorafenib did not alter MMP activity or cell motility, showing that the changes induced by PLX4032 were not a universal response to small-molecule inhibition. Therefore, we argue the importance of studying MMP activity with drug treatment and its possible implications for unwanted side effects. PMID:25870264

  4. Superresolution microscopy reveals nanometer-scale reorganization of inhibitory natural killer cell receptors upon activation of NKG2D.

    PubMed

    Pageon, Sophie V; Cordoba, Shaun-Paul; Owen, Dylan M; Rothery, Stephen M; Oszmiana, Anna; Davis, Daniel M

    2013-07-23

    Natural killer (NK) cell responses are regulated by a dynamic equilibrium between activating and inhibitory receptor signals at the immune synapse (or interface) with target cells. Although the organization of receptors at the immune synapse is important for appropriate integration of these signals, there is little understanding of this in detail, because research has been hampered by the limited resolution of light microscopy. Through the use of superresolution single-molecule fluorescence microscopy to reveal the organization of the NK cell surface at the single-protein level, we report that the inhibitory receptor KIR2DL1 is organized in nanometer-scale clusters at the surface of human resting NK cells. Nanoclusters of KIR2DL1 became smaller and denser upon engagement of the activating receptor NKG2D, establishing an unexpected crosstalk between activating receptor signals and the positioning of inhibitory receptors. These rearrangements in the nanoscale organization of surface NK cell receptors were dependent on the actin cytoskeleton. Together, these data establish that NK cell activation involves a nanometer-scale reorganization of surface receptors, which in turn affects models for signal integration and thresholds that control NK cell effector functions and NK cell development. PMID:23882121

  5. Physical Connectivity Mapping by Circular Permutation of Human Telomerase RNA Reveals New Regions Critical for Activity and Processivity.

    PubMed

    Mefford, Melissa A; Zappulla, David C

    2015-01-01

    Telomerase is a specialized ribonucleoprotein complex that extends the 3' ends of chromosomes to counteract telomere shortening. However, increased telomerase activity is associated with ∼90% of human cancers. The telomerase enzyme minimally requires an RNA (hTR) and a specialized reverse transcriptase protein (TERT) for activity in vitro. Understanding the structure-function relationships within hTR has important implications for human disease. For the first time, we have tested the physical-connectivity requirements in the 451-nucleotide hTR RNA using circular permutations, which reposition the 5' and 3' ends. Our extensive in vitro analysis identified three classes of hTR circular permutants with altered function. First, circularly permuting 3' of the template causes specific defects in repeat-addition processivity, revealing that the template recognition element found in ciliates is conserved in human telomerase RNA. Second, seven circular permutations residing within the catalytically important core and CR4/5 domains completely abolish telomerase activity, unveiling mechanistically critical portions of these domains. Third, several circular permutations between the core and CR4/5 significantly increase telomerase activity. Our extensive circular permutation results provide insights into the architecture and coordination of human telomerase RNA and highlight where the RNA could be targeted for the development of antiaging and anticancer therapeutics. PMID:26503788

  6. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    PubMed Central

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Bælum, Jacob; Taş, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Philipp; Priemé, Anders

    2015-01-01

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below −10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface. PMID:25983731

  7. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    SciTech Connect

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Bælum, Jacob; Taş, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Philipp; Priemé, Anders

    2015-04-30

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.

  8. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    DOE PAGESBeta

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Bælum, Jacob; Taş, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Philipp; Priemé, Anders

    2015-04-30

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy numbermore » of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.« less

  9. Pyruvate Dehydrogenase Kinase-4 Structures Reveal a Metastable Open Conformation Fostering Robust Core-free Basal Activity

    SciTech Connect

    Wynn, R. Max; Kato, Masato; Chuang, Jacinta L.; Tso, Shih-Chia; Li, Jun; Chuang, David T.

    2008-10-21

    Human pyruvate dehydrogenase complex (PDC) is down-regulated by pyruvate dehydrogenase kinase (PDK) isoforms 1-4. PDK4 is overexpressed in skeletal muscle in type 2 diabetes, resulting in impaired glucose utilization. Here we show that human PDK4 has robust core-free basal activity, which is considerably higher than activity levels of other PDK isoforms stimulated by the PDC core. PDK4 binds the L3 lipoyl domain, but its activity is not significantly stimulated by any individual lipoyl domains or the core of PDC. The 2.0-{angstrom} crystal structures of the PDK4 dimer with bound ADP reveal an open conformation with a wider active-site cleft, compared with that in the closed conformation epitomized by the PDK2-ADP structure. The open conformation in PDK4 shows partially ordered C-terminal cross-tails, in which the conserved DW (Asp{sup 394}-Trp{sup 395}) motif from one subunit anchors to the N-terminal domain of the other subunit. The open conformation fosters a reduced binding affinity for ADP, facilitating the efficient removal of product inhibition by this nucleotide. Alteration or deletion of the DW-motif disrupts the C-terminal cross-tail anchor, resulting in the closed conformation and the nearly complete inactivation of PDK4. Fluorescence quenching and enzyme activity data suggest that compounds AZD7545 and dichloroacetate lock PDK4 in the open and the closed conformational states, respectively. We propose that PDK4 with bound ADP exists in equilibrium between the open and the closed conformations. The favored metastable open conformation is responsible for the robust basal activity of PDK4 in the absence of the PDC core.

  10. A HUPO test sample study reveals common problems in mass spectrometry-based proteomics.

    PubMed

    Bell, Alexander W; Deutsch, Eric W; Au, Catherine E; Kearney, Robert E; Beavis, Ron; Sechi, Salvatore; Nilsson, Tommy; Bergeron, John J M

    2009-06-01

    We performed a test sample study to try to identify errors leading to irreproducibility, including incompleteness of peptide sampling, in liquid chromatography-mass spectrometry-based proteomics. We distributed an equimolar test sample, comprising 20 highly purified recombinant human proteins, to 27 laboratories. Each protein contained one or more unique tryptic peptides of 1,250 Da to test for ion selection and sampling in the mass spectrometer. Of the 27 labs, members of only 7 labs initially reported all 20 proteins correctly, and members of only 1 lab reported all tryptic peptides of 1,250 Da. Centralized analysis of the raw data, however, revealed that all 20 proteins and most of the 1,250 Da peptides had been detected in all 27 labs. Our centralized analysis determined missed identifications (false negatives), environmental contamination, database matching and curation of protein identifications as sources of problems. Improved search engines and databases are needed for mass spectrometry-based proteomics. PMID:19448641

  11. Network-Based Study Reveals Potential Infection Pathways of Hepatitis-C Leading to Various Diseases

    PubMed Central

    Mukhopadhyay, Anirban; Maulik, Ujjwal

    2014-01-01

    Protein-protein interaction network-based study of viral pathogenesis has been gaining popularity among computational biologists in recent days. In the present study we attempt to investigate the possible pathways of hepatitis-C virus (HCV) infection by integrating the HCV-human interaction network, human protein interactome and human genetic disease association network. We have proposed quasi-biclique and quasi-clique mining algorithms to integrate these three networks to identify infection gateway host proteins and possible pathways of HCV pathogenesis leading to various diseases. Integrated study of three networks, namely HCV-human interaction network, human protein interaction network, and human proteins-disease association network reveals potential pathways of infection by the HCV that lead to various diseases including cancers. The gateway proteins have been found to be biologically coherent and have high degrees in human interactome compared to the other virus-targeted proteins. The analyses done in this study provide possible targets for more effective anti-hepatitis-C therapeutic involvement. PMID:24743187

  12. Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars.

    PubMed

    Lin, Hong; Rao, Jun; Shi, Jianxin; Hu, Chaoyang; Cheng, Fang; Wilson, Zoe A; Zhang, Dabing; Quan, Sheng

    2014-09-01

    Soybean [Glycine max (L.) Merr.] is one of the world's major crops, and soybean seeds are a rich and important resource for proteins and oils. While "omics" studies, such as genomics, transcriptomics, and proteomics, have been widely applied in soybean molecular research, fewer metabolomic studies have been conducted for large-scale detection of low molecular weight metabolites, especially in soybean seeds. In this study, we investigated the seed metabolomes of 29 common soybean cultivars through combined gas chromatography-mass spectrometry and ultra-performance liquid chromatography-tandem mass spectrometry. One hundred sixty-nine named metabolites were identified and subsequently used to construct a metabolic network of mature soybean seed. Among the 169 detected metabolites, 104 were found to be significantly variable in their levels across tested cultivars. Metabolite markers that could be used to distinguish genetically related soybean cultivars were also identified, and metabolite-metabolite correlation analysis revealed some significant associations within the same or among different metabolite groups. Findings from this work may potentially provide the basis for further studies on both soybean seed metabolism and metabolic engineering to improve soybean seed quality and yield. PMID:24942044

  13. Comparative Proteomic Study Reveals the Molecular Aspects of Delayed Ocular Symptoms Induced by Sulfur Mustard

    PubMed Central

    Pashandi, Zaiddodine; Saraygord-Afshari, Neda; Naderi-Manesh, Hossein; Naderi, Mostafa

    2015-01-01

    Objective. Sulfur mustard (SM) is a highly reactive alkylating agent which produces ocular, respiratory, and skin damages. Eyes are the most sensitive organ to SM due to high intrinsic metabolic and rapid turnover rate of corneal epithelium and aqueous-mucous interfaces of the cornea and conjunctiva. Here we investigate underlying molecular mechanism of SM exposure delayed effects which is still a controversial issue after about 30 years. Materials and Methods. Following ethical approval, we have analyzed serum proteome of ten severe SM exposed male patients with delayed eye symptoms with two-dimensional electrophoresis followed by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. The western blotting was used to confirm the proteins that have been identified. Results. We have identified thirteen proteins including albumin, haptoglobin, and keratin isoforms as well as immunoglobulin kappa chain which showed upregulation while transferrin and alpha 1 antitrypsin revealed downregulation in these patients in comparison with healthy control group. Conclusions. Our results elevated participation of free iron circulatory imbalance and local matrix-metalloproteinase activity in development of delayed ocular symptoms induced by SM. It demonstrates that SM induced systemic toxicity leads to some serum protein changes that continually and gradually exacerbate the ocular surface injuries. PMID:25685557

  14. Sequential Activation of Molecular Breathing and Bending during Spin-Crossover Photoswitching Revealed by Femtosecond Optical and X-Ray Absorption Spectroscopy.

    PubMed

    Cammarata, Marco; Bertoni, Roman; Lorenc, Maciej; Cailleau, Hervé; Di Matteo, Sergio; Mauriac, Cindy; Matar, Samir F; Lemke, Henrik; Chollet, Matthieu; Ravy, Sylvain; Laulhé, Claire; Létard, Jean-François; Collet, Eric

    2014-11-28

    We study the basic mechanisms allowing light to photoswitch at the molecular scale a spin-crossover material from a low- to a high-spin state. Combined femtosecond x-ray absorption performed at LCLS X-FEL and optical spectroscopy reveal that the structural stabilization of the photoinduced high-spin state results from a two step structural trapping. Molecular breathing vibrations are first activated and rapidly damped as part of the energy is sequentially transferred to molecular bending vibrations. During the photoswitching, the system follows a curved trajectory on the potential energy surface. PMID:25494090

  15. Sequential Activation of Molecular Breathing and Bending during Spin-Crossover Photoswitching Revealed by Femtosecond Optical and X-Ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cammarata, Marco; Bertoni, Roman; Lorenc, Maciej; Cailleau, Hervé; Di Matteo, Sergio; Mauriac, Cindy; Matar, Samir F.; Lemke, Henrik; Chollet, Matthieu; Ravy, Sylvain; Laulhé, Claire; Létard, Jean-François; Collet, Eric

    2014-11-01

    We study the basic mechanisms allowing light to photoswitch at the molecular scale a spin-crossover material from a low- to a high-spin state. Combined femtosecond x-ray absorption performed at LCLS X-FEL and optical spectroscopy reveal that the structural stabilization of the photoinduced high-spin state results from a two step structural trapping. Molecular breathing vibrations are first activated and rapidly damped as part of the energy is sequentially transferred to molecular bending vibrations. During the photoswitching, the system follows a curved trajectory on the potential energy surface.

  16. Understanding the Learning Process of Peer Feedback Activity: An Ethnographic Study of Exploratory Practice

    ERIC Educational Resources Information Center

    Zheng, Chunxian

    2012-01-01

    This ethnographic study attempts to find, reveal and understand the learning possibilities, from the social learning perspective, in the process of peer feedback activity in a College English classroom for non-English majors in China. The study reveals the nature of Exploratory Practice (EP), and the investigation is guided by EP principles,…

  17. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination

    PubMed Central

    Rowley, Paul A.; Kachroo, Aashiq H.; Ma, Chien-Hui; Maciaszek, Anna D.; Guga, Piotr; Jayaram, Makkuni

    2015-01-01

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals