Sample records for activity subcellular localization

  1. Semi-supervised protein subcellular localization.

    PubMed

    Xu, Qian; Hu, Derek Hao; Xue, Hong; Yu, Weichuan; Yang, Qiang

    2009-01-30

    Protein subcellular localization is concerned with predicting the location of a protein within a cell using computational method. The location information can indicate key functionalities of proteins. Accurate predictions of subcellular localizations of protein can aid the prediction of protein function and genome annotation, as well as the identification of drug targets. Computational methods based on machine learning, such as support vector machine approaches, have already been widely used in the prediction of protein subcellular localization. However, a major drawback of these machine learning-based approaches is that a large amount of data should be labeled in order to let the prediction system learn a classifier of good generalization ability. However, in real world cases, it is laborious, expensive and time-consuming to experimentally determine the subcellular localization of a protein and prepare instances of labeled data. In this paper, we present an approach based on a new learning framework, semi-supervised learning, which can use much fewer labeled instances to construct a high quality prediction model. We construct an initial classifier using a small set of labeled examples first, and then use unlabeled instances to refine the classifier for future predictions. Experimental results show that our methods can effectively reduce the workload for labeling data using the unlabeled data. Our method is shown to enhance the state-of-the-art prediction results of SVM classifiers by more than 10%.

  2. Modeling of Protein Subcellular Localization in Bacteria

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohua; Kulkarni, Rahul

    2006-03-01

    Specific subcellular localization of proteins is a vital component of important bacterial processes: e.g. the Min proteins which regulate cell division in E. coli and Spo0J-Soj system which is critical for sporulation in B. subtilis. We examine how the processes of diffusion and membrane attachment contribute to protein subcellular localization for the above systems. We use previous experimental results to suggest minimal models for these processes. For the minimal models, we derive analytic expressions which provide insight into the processes that determine protein subcellular localization. Finally, we present the results of numerical simulations for the systems studied and make connections to the observed experiemental phenomenology.

  3. Acetylation of the RhoA GEF Net1A controls its subcellular localization and activity

    PubMed Central

    Song, Eun Hyeon; Oh, Wonkyung; Ulu, Arzu; Carr, Heather S.; Zuo, Yan; Frost, Jeffrey A.

    2015-01-01

    ABSTRACT Net1 isoform A (Net1A) is a RhoA GEF that is required for cell motility and invasion in multiple cancers. Nuclear localization of Net1A negatively regulates its activity, and we have recently shown that Rac1 stimulates Net1A relocalization to the plasma membrane to promote RhoA activation and cytoskeletal reorganization. However, mechanisms controlling the subcellular localization of Net1A are not well understood. Here, we show that Net1A contains two nuclear localization signal (NLS) sequences within its N-terminus and that residues surrounding the second NLS sequence are acetylated. Treatment of cells with deacetylase inhibitors or expression of active Rac1 promotes Net1A acetylation. Deacetylase inhibition is sufficient for Net1A relocalization outside the nucleus, and replacement of the N-terminal acetylation sites with arginine residues prevents cytoplasmic accumulation of Net1A caused by deacetylase inhibition or EGF stimulation. By contrast, replacement of these sites with glutamine residues is sufficient for Net1A relocalization, RhoA activation and downstream signaling. Moreover, the N-terminal acetylation sites are required for rescue of F-actin accumulation and focal adhesion maturation in Net1 knockout MEFs. These data indicate that Net1A acetylation regulates its subcellular localization to impact on RhoA activity and actin cytoskeletal organization. PMID:25588829

  4. Subcellular Localization and Activity of TRPM4 in Medial Prefrontal Cortex Layer 2/3

    PubMed Central

    Riquelme, Denise; Silva, Ian; Philp, Ashleigh M.; Huidobro-Toro, Juan P.; Cerda, Oscar; Trimmer, James S.; Leiva-Salcedo, Elias

    2018-01-01

    TRPM4 is a Ca2+-activated non-selective cationic channel that conducts monovalent cations. TRPM4 has been proposed to contribute to burst firing and sustained activity in several brain regions, however, the cellular and subcellular pattern of TRPM4 expression in medial prefrontal cortex (mPFC) during postnatal development has not been elucidated. Here, we use multiplex immunofluorescence labeling of brain sections to characterize the postnatal developmental expression of TRPM4 in the mouse mPFC. We also performed electrophysiological recordings to correlate the expression of TRPM4 immunoreactivity with the presence of TRPM4-like currents. We found that TRPM4 is expressed from the first postnatal day, with expression increasing up to postnatal day 35. Additionally, in perforated patch clamp experiments, we found that TRPM4-like currents were active at resting membrane potentials at all postnatal ages studied. Moreover, TRPM4 is expressed in both pyramidal neurons and interneurons. TRPM4 expression is localized in the soma and proximal dendrites, but not in the axon initial segment of pyramidal neurons. This subcellular localization is consistent with a reduction in the basal current only when we locally perfused 9-Phenanthrol in the soma, but not upon perfusion in the medial or distal dendrites. Our results show a specific localization of TRPM4 expression in neurons in the mPFC and that a 9-Phenanthrol sensitive current is active at resting membrane potential, suggesting specific functional roles in mPFC neurons during postnatal development and in adulthood. PMID:29440991

  5. Subcellular Localization and Activity of TRPM4 in Medial Prefrontal Cortex Layer 2/3.

    PubMed

    Riquelme, Denise; Silva, Ian; Philp, Ashleigh M; Huidobro-Toro, Juan P; Cerda, Oscar; Trimmer, James S; Leiva-Salcedo, Elias

    2018-01-01

    TRPM4 is a Ca 2+ -activated non-selective cationic channel that conducts monovalent cations. TRPM4 has been proposed to contribute to burst firing and sustained activity in several brain regions, however, the cellular and subcellular pattern of TRPM4 expression in medial prefrontal cortex (mPFC) during postnatal development has not been elucidated. Here, we use multiplex immunofluorescence labeling of brain sections to characterize the postnatal developmental expression of TRPM4 in the mouse mPFC. We also performed electrophysiological recordings to correlate the expression of TRPM4 immunoreactivity with the presence of TRPM4-like currents. We found that TRPM4 is expressed from the first postnatal day, with expression increasing up to postnatal day 35. Additionally, in perforated patch clamp experiments, we found that TRPM4-like currents were active at resting membrane potentials at all postnatal ages studied. Moreover, TRPM4 is expressed in both pyramidal neurons and interneurons. TRPM4 expression is localized in the soma and proximal dendrites, but not in the axon initial segment of pyramidal neurons. This subcellular localization is consistent with a reduction in the basal current only when we locally perfused 9-Phenanthrol in the soma, but not upon perfusion in the medial or distal dendrites. Our results show a specific localization of TRPM4 expression in neurons in the mPFC and that a 9-Phenanthrol sensitive current is active at resting membrane potential, suggesting specific functional roles in mPFC neurons during postnatal development and in adulthood.

  6. LOCATE: a mouse protein subcellular localization database

    PubMed Central

    Fink, J. Lynn; Aturaliya, Rajith N.; Davis, Melissa J.; Zhang, Fasheng; Hanson, Kelly; Teasdale, Melvena S.; Kai, Chikatoshi; Kawai, Jun; Carninci, Piero; Hayashizaki, Yoshihide; Teasdale, Rohan D.

    2006-01-01

    We present here LOCATE, a curated, web-accessible database that houses data describing the membrane organization and subcellular localization of proteins from the FANTOM3 Isoform Protein Sequence set. Membrane organization is predicted by the high-throughput, computational pipeline MemO. The subcellular locations of selected proteins from this set were determined by a high-throughput, immunofluorescence-based assay and by manually reviewing >1700 peer-reviewed publications. LOCATE represents the first effort to catalogue the experimentally verified subcellular location and membrane organization of mammalian proteins using a high-throughput approach and provides localization data for ∼40% of the mouse proteome. It is available at . PMID:16381849

  7. Subcellular localization of Mitf in monocytic cells.

    PubMed

    Lu, Ssu-Yi; Wan, Hsiao-Ching; Li, Mengtao; Lin, Yi-Ling

    2010-06-01

    Microphthalmia-associated transcription factor (Mitf) is a transcription factor that plays an important role in regulating the development of several cell lineages. The subcellular localization of Mitf is dynamic and is associated with its transcription activity. In this study, we examined factors that affect its subcellular localization in cells derived from the monocytic lineage since Mitf is present abundantly in these cells. We identified a domain encoded by Mitf exon 1B1b to be important for Mitf to commute between the cytoplasm and the nucleus. Deletion of this domain disrupts the shuttling of Mitf to the cytoplasm and results in its retention in the nucleus. M-CSF and RANKL both induce nuclear translocation of Mitf. We showed that Mitf nuclear transport is greatly influenced by ratio of M-CSF/Mitf protein expression. In addition, cell attachment to a solid surface also is needed for the nuclear transport of Mitf.

  8. Protein subcellular localization prediction using artificial intelligence technology.

    PubMed

    Nair, Rajesh; Rost, Burkhard

    2008-01-01

    Proteins perform many important tasks in living organisms, such as catalysis of biochemical reactions, transport of nutrients, and recognition and transmission of signals. The plethora of aspects of the role of any particular protein is referred to as its "function." One aspect of protein function that has been the target of intensive research by computational biologists is its subcellular localization. Proteins must be localized in the same subcellular compartment to cooperate toward a common physiological function. Aberrant subcellular localization of proteins can result in several diseases, including kidney stones, cancer, and Alzheimer's disease. To date, sequence homology remains the most widely used method for inferring the function of a protein. However, the application of advanced artificial intelligence (AI)-based techniques in recent years has resulted in significant improvements in our ability to predict the subcellular localization of a protein. The prediction accuracy has risen steadily over the years, in large part due to the application of AI-based methods such as hidden Markov models (HMMs), neural networks (NNs), and support vector machines (SVMs), although the availability of larger experimental datasets has also played a role. Automatic methods that mine textual information from the biological literature and molecular biology databases have considerably sped up the process of annotation for proteins for which some information regarding function is available in the literature. State-of-the-art methods based on NNs and HMMs can predict the presence of N-terminal sorting signals extremely accurately. Ab initio methods that predict subcellular localization for any protein sequence using only the native amino acid sequence and features predicted from the native sequence have shown the most remarkable improvements. The prediction accuracy of these methods has increased by over 30% in the past decade. The accuracy of these methods is now on par with

  9. Cell-Selective Biological Activity of Rhodium Metalloinsertors Correlates with Subcellular Localization

    PubMed Central

    Komor, Alexis C.; Schneider, Curtis J.; Weidmann, Alyson G.; Barton, Jacqueline K.

    2013-01-01

    Deficiencies in the mismatch repair (MMR) pathway are associated with several types of cancers, as well as resistance to commonly used chemotherapeutics. Rhodium metalloinsertors have been found to bind DNA mismatches with high affinity and specificity in vitro, and also exhibit cell-selective cytotoxicity, targeting MMR-deficient cells over MMR-proficient cells. Ten distinct metalloinsertors with varying lipophilicities have been synthesized and their mismatch binding affinities and biological activities determined. Although DNA photocleavage experiments demonstrate that their binding affinities are quite similar, their cell-selective antiproliferative and cytotoxic activities vary significantly. Inductively coupled plasma mass spectrometry (ICP-MS) experiments have uncovered a relationship between the subcellular distribution of these metalloinsertors and their biological activities. Specifically, we find that all of our metalloinsertors localize in the nucleus at sufficient concentrations for binding to DNA mismatches. However, the metalloinsertors with high rhodium localization in the mitochondria show toxicity that is not selective for MMR-deficient cells, whereas metalloinsertors with less mitochondrial rhodium show activity that is highly selective for MMR-deficient versus proficient cells. This work supports the notion that specific targeting of the metalloinsertors to nuclear DNA gives rise to their cell-selective cytotoxic and antiproliferative activities. The selectivity in cellular targeting depends upon binding to mismatches in genomic DNA. PMID:23137296

  10. Subcellular localization and cytoplasmic complex status of endogenous Keap1.

    PubMed

    Watai, Yoriko; Kobayashi, Akira; Nagase, Hiroko; Mizukami, Mio; McEvoy, Justina; Singer, Jeffrey D; Itoh, Ken; Yamamoto, Masayuki

    2007-10-01

    Keap1 acts as a sensor for oxidative/electrophilic stress, an adaptor for Cullin-3-based ubiquitin ligase, and a regulator of Nrf2 activity through the interaction with Nrf2 Neh2 domain. However, the mechanism(s) of Nrf2 migration into the nucleus in response to stress remains largely unknown due to the lack of a reliable antibody for the detection of endogenous Keap1 molecule. Here, we report the generation of a new monoclonal antibody for the detection of endogenous Keap1 molecules. Immunocytochemical analysis of mouse embryonic fibroblasts with the antibody revealed that under normal, unstressed condition, Keap1 is localized primarily in the cytoplasm with minimal amount in the nucleus and endoplasmic reticulum. This subcellular localization profile of Keap1 appears unchanged after treatment of cells with diethyl maleate, an electrophile, and/or Leptomycin B, a nuclear export inhibitor. Subcellular fractionation analysis of mouse liver cells showed similar results. No substantial change in the subcellular distribution profile could be observed in cells isolated from butylated hydroxyanisole-treated mice. Analyses of sucrose density gradient centrifugation of mouse liver cells indicated that Keap1 appears to form multiprotein complexes in the cytoplasm. These results demonstrate that endogenous Keap1 remains mostly in the cytoplasm, and electrophiles promote nuclear accumulation of Nrf2 without altering the subcellular localization of Keap1.

  11. Biochemical properties and subcellular localization of tyrosine aminotransferases in Arabidopsis thaliana.

    PubMed

    Wang, Minmin; Toda, Kyoko; Maeda, Hiroshi A

    2016-12-01

    Plants produce various L-tyrosine (Tyr)-derived compounds that are of pharmaceutical or nutritional importance to humans. Tyr aminotransferase (TAT) catalyzes the reversible transamination between Tyr and 4-hydroxyphenylpyruvate (HPP), the initial step in the biosynthesis of many Tyr-derived plant natural products. Herein reported is the biochemical characterization and subcellular localization of TAT enzymes from the model plant Arabidopsis thaliana. Phylogenetic analysis showed that Arabidopsis has at least two homologous TAT genes, At5g53970 (AtTAT1) and At5g36160 (AtTAT2). Their recombinant enzymes showed distinct biochemical properties: AtTAT1 had the highest activity towards Tyr, while AtTAT2 exhibited a broad substrate specificity for both amino and keto acid substrates. Also, AtTAT1 favored the direction of Tyr deamination to HPP, whereas AtTAT2 preferred transamination of HPP to Tyr. Subcellular localization analysis using GFP-fusion proteins and confocal microscopy showed that AtTAT1, AtTAT2, and HPP dioxygenase (HPPD), which catalyzes the subsequent step of TAT, are localized in the cytosol, unlike plastid-localized Tyr and tocopherol biosynthetic enzymes. Furthermore, subcellular fractionation indicated that, while HPPD activity is restricted to the cytosol, TAT activity is detected in both cytosolic and plastidic fractions of Arabidopsis leaf tissue, suggesting that an unknown aminotransferase(s) having TAT activity is also present in the plastids. Biochemical and cellular analyses of Arabidopsis TATs provide a fundamental basis for future in vivo studies and metabolic engineering for enhanced production of Tyr-derived phytochemicals in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Subcellular Localization of Pseudomonas syringae pv. tomato Effector Proteins in Plants.

    PubMed

    Aung, Kyaw; Xin, Xiufang; Mecey, Christy; He, Sheng Yang

    2017-01-01

    Animal and plant pathogenic bacteria use type III secretion systems to translocate proteinaceous effectors to subvert innate immunity of their host organisms. Type III secretion/effector systems are a crucial pathogenicity factor in many bacterial pathogens of plants and animals. Pseudomonas syringae pv. tomato (Pst) DC3000 injects a total of 36 protein effectors that target a variety of host proteins. Studies of a subset of Pst DC3000 effectors demonstrated that bacterial effectors, once inside the host cell, are localized to different subcellular compartments, including plasma membrane, cytoplasm, mitochondria, chloroplast, and Trans-Golgi network, to carry out their virulence functions. Identifying the subcellular localization of bacterial effector proteins in host cells could provide substantial clues to understanding the molecular and cellular basis of the virulence activities of effector proteins. In this chapter, we present methods for transient or stable expression of bacterial effector proteins in tobacco and/or Arabidopsis thaliana for live cell imaging as well as confirming the subcellular localization in plants using fluorescent organelle markers or chemical treatment.

  13. Compressed learning and its applications to subcellular localization.

    PubMed

    Zheng, Zhong-Long; Guo, Li; Jia, Jiong; Xie, Chen-Mao; Zeng, Wen-Cai; Yang, Jie

    2011-09-01

    One of the main challenges faced by biological applications is to predict protein subcellular localization in automatic fashion accurately. To achieve this in these applications, a wide variety of machine learning methods have been proposed in recent years. Most of them focus on finding the optimal classification scheme and less of them take the simplifying the complexity of biological systems into account. Traditionally, such bio-data are analyzed by first performing a feature selection before classification. Motivated by CS (Compressed Sensing) theory, we propose the methodology which performs compressed learning with a sparseness criterion such that feature selection and dimension reduction are merged into one analysis. The proposed methodology decreases the complexity of biological system, while increases protein subcellular localization accuracy. Experimental results are quite encouraging, indicating that the aforementioned sparse methods are quite promising in dealing with complicated biological problems, such as predicting the subcellular localization of Gram-negative bacterial proteins.

  14. Protein subcellular localization assays using split fluorescent proteins

    DOEpatents

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  15. BUSCA: an integrative web server to predict subcellular localization of proteins.

    PubMed

    Savojardo, Castrense; Martelli, Pier Luigi; Fariselli, Piero; Profiti, Giuseppe; Casadio, Rita

    2018-04-30

    Here, we present BUSCA (http://busca.biocomp.unibo.it), a novel web server that integrates different computational tools for predicting protein subcellular localization. BUSCA combines methods for identifying signal and transit peptides (DeepSig and TPpred3), GPI-anchors (PredGPI) and transmembrane domains (ENSEMBLE3.0 and BetAware) with tools for discriminating subcellular localization of both globular and membrane proteins (BaCelLo, MemLoci and SChloro). Outcomes from the different tools are processed and integrated for annotating subcellular localization of both eukaryotic and bacterial protein sequences. We benchmark BUSCA against protein targets derived from recent CAFA experiments and other specific data sets, reporting performance at the state-of-the-art. BUSCA scores better than all other evaluated methods on 2732 targets from CAFA2, with a F1 value equal to 0.49 and among the best methods when predicting targets from CAFA3. We propose BUSCA as an integrated and accurate resource for the annotation of protein subcellular localization.

  16. Protein subcellular localization prediction using multiple kernel learning based support vector machine.

    PubMed

    Hasan, Md Al Mehedi; Ahmad, Shamim; Molla, Md Khademul Islam

    2017-03-28

    Predicting the subcellular locations of proteins can provide useful hints that reveal their functions, increase our understanding of the mechanisms of some diseases, and finally aid in the development of novel drugs. As the number of newly discovered proteins has been growing exponentially, which in turns, makes the subcellular localization prediction by purely laboratory tests prohibitively laborious and expensive. In this context, to tackle the challenges, computational methods are being developed as an alternative choice to aid biologists in selecting target proteins and designing related experiments. However, the success of protein subcellular localization prediction is still a complicated and challenging issue, particularly, when query proteins have multi-label characteristics, i.e., if they exist simultaneously in more than one subcellular location or if they move between two or more different subcellular locations. To date, to address this problem, several types of subcellular localization prediction methods with different levels of accuracy have been proposed. The support vector machine (SVM) has been employed to provide potential solutions to the protein subcellular localization prediction problem. However, the practicability of an SVM is affected by the challenges of selecting an appropriate kernel and selecting the parameters of the selected kernel. To address this difficulty, in this study, we aimed to develop an efficient multi-label protein subcellular localization prediction system, named as MKLoc, by introducing multiple kernel learning (MKL) based SVM. We evaluated MKLoc using a combined dataset containing 5447 single-localized proteins (originally published as part of the Höglund dataset) and 3056 multi-localized proteins (originally published as part of the DBMLoc set). Note that this dataset was used by Briesemeister et al. in their extensive comparison of multi-localization prediction systems. Finally, our experimental results indicate that

  17. Subcellular localization patterns and their relationship to photodynamic activity of pyropheophorbide-a derivatives.

    PubMed

    MacDonald, I J; Morgan, J; Bellnier, D A; Paszkiewicz, G M; Whitaker, J E; Litchfield, D J; Dougherty, T J

    1999-11-01

    To determine if subcellular localization is important to photodynamic therapy (PDT) efficacy, an in vitro fluorescence microscopy study was conducted with a congeneric series of pyropheophorbide-a derivatives in human pharyngeal squamous cell carcinoma (FaDu) cells and murine radiation-induced fibrosarcoma (RIF) mutant cells. In the FaDu cells the octyl, decyl and dodecyl ether derivatives localized to the lysosomes at extracellular concentrations less than needed to produce a 50% cell kill (LD50). At extracellular concentrations equal or greater than the LD50 the compounds localized mainly to mitochondria. The propyl, pentyl, hexyl and heptyl ether derivatives localized mainly to the mitochondria at all concentrations studied. This suggested that mitochondria are a sensitive PDT target for these derivatives. Similar experiments were performed with two Photofrin-PDT resistant RIF cell lines, one of which was found to be resistant to hexyl ether derivative (C6) mediated-PDT and the other sensitive to C6-PDT relative to the parent line. At extracellular concentrations of C6 below the LD50 of each cell line, the mutants exhibited lysosomal localization. At concentrations above these values the patterns shifted to a mainly mitochondrial pattern. In these cell lines mitochondrial localization also correlated with PDT sensitivity. Localization to mitochondria or lysosomes appeared to be affected by the aggregation state of the congeners, all of which are highly aggregated in aqueous medium. Monomers apparently were the active fraction of these compounds because equalizing the extracellular monomer concentrations produced equivalent intracellular concentrations, photoxicity and localization patterns. Compounds that were mainly aggregates localized to the lysosomes where they were rendered less active. Mitochondria appear to be a sensitive target for pyropheophorbide-a-mediated photodamage, and the degree of aggregation seems to be a determinant of the localization site.

  18. SubCellProt: predicting protein subcellular localization using machine learning approaches.

    PubMed

    Garg, Prabha; Sharma, Virag; Chaudhari, Pradeep; Roy, Nilanjan

    2009-01-01

    High-throughput genome sequencing projects continue to churn out enormous amounts of raw sequence data. However, most of this raw sequence data is unannotated and, hence, not very useful. Among the various approaches to decipher the function of a protein, one is to determine its localization. Experimental approaches for proteome annotation including determination of a protein's subcellular localizations are very costly and labor intensive. Besides the available experimental methods, in silico methods present alternative approaches to accomplish this task. Here, we present two machine learning approaches for prediction of the subcellular localization of a protein from the primary sequence information. Two machine learning algorithms, k Nearest Neighbor (k-NN) and Probabilistic Neural Network (PNN) were used to classify an unknown protein into one of the 11 subcellular localizations. The final prediction is made on the basis of a consensus of the predictions made by two algorithms and a probability is assigned to it. The results indicate that the primary sequence derived features like amino acid composition, sequence order and physicochemical properties can be used to assign subcellular localization with a fair degree of accuracy. Moreover, with the enhanced accuracy of our approach and the definition of a prediction domain, this method can be used for proteome annotation in a high throughput manner. SubCellProt is available at www.databases.niper.ac.in/SubCellProt.

  19. LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell

    PubMed Central

    Sperschneider, Jana; Catanzariti, Ann-Maree; DeBoer, Kathleen; Petre, Benjamin; Gardiner, Donald M.; Singh, Karam B.; Dodds, Peter N.; Taylor, Jennifer M.

    2017-01-01

    Pathogens secrete effector proteins and many operate inside plant cells to enable infection. Some effectors have been found to enter subcellular compartments by mimicking host targeting sequences. Although many computational methods exist to predict plant protein subcellular localization, they perform poorly for effectors. We introduce LOCALIZER for predicting plant and effector protein localization to chloroplasts, mitochondria, and nuclei. LOCALIZER shows greater prediction accuracy for chloroplast and mitochondrial targeting compared to other methods for 652 plant proteins. For 107 eukaryotic effectors, LOCALIZER outperforms other methods and predicts a previously unrecognized chloroplast transit peptide for the ToxA effector, which we show translocates into tobacco chloroplasts. Secretome-wide predictions and confocal microscopy reveal that rust fungi might have evolved multiple effectors that target chloroplasts or nuclei. LOCALIZER is the first method for predicting effector localisation in plants and is a valuable tool for prioritizing effector candidates for functional investigations. LOCALIZER is available at http://localizer.csiro.au/. PMID:28300209

  20. Prediction of protein subcellular localization by weighted gene ontology terms.

    PubMed

    Chi, Sang-Mun

    2010-08-27

    We develop a new weighting approach of gene ontology (GO) terms for predicting protein subcellular localization. The weights of individual GO terms, corresponding to their contribution to the prediction algorithm, are determined by the term-weighting methods used in text categorization. We evaluate several term-weighting methods, which are based on inverse document frequency, information gain, gain ratio, odds ratio, and chi-square and its variants. Additionally, we propose a new term-weighting method based on the logarithmic transformation of chi-square. The proposed term-weighting method performs better than other term-weighting methods, and also outperforms state-of-the-art subcellular prediction methods. Our proposed method achieves 98.1%, 99.3%, 98.1%, 98.1%, and 95.9% overall accuracies for the animal BaCelLo independent dataset (IDS), fungal BaCelLo IDS, animal Höglund IDS, fungal Höglund IDS, and PLOC dataset, respectively. Furthermore, the close correlation between high-weighted GO terms and subcellular localizations suggests that our proposed method appropriately weights GO terms according to their relevance to the localizations. Copyright 2010 Elsevier Inc. All rights reserved.

  1. DeepLoc: prediction of protein subcellular localization using deep learning.

    PubMed

    Almagro Armenteros, José Juan; Sønderby, Casper Kaae; Sønderby, Søren Kaae; Nielsen, Henrik; Winther, Ole

    2017-11-01

    The prediction of eukaryotic protein subcellular localization is a well-studied topic in bioinformatics due to its relevance in proteomics research. Many machine learning methods have been successfully applied in this task, but in most of them, predictions rely on annotation of homologues from knowledge databases. For novel proteins where no annotated homologues exist, and for predicting the effects of sequence variants, it is desirable to have methods for predicting protein properties from sequence information only. Here, we present a prediction algorithm using deep neural networks to predict protein subcellular localization relying only on sequence information. At its core, the prediction model uses a recurrent neural network that processes the entire protein sequence and an attention mechanism identifying protein regions important for the subcellular localization. The model was trained and tested on a protein dataset extracted from one of the latest UniProt releases, in which experimentally annotated proteins follow more stringent criteria than previously. We demonstrate that our model achieves a good accuracy (78% for 10 categories; 92% for membrane-bound or soluble), outperforming current state-of-the-art algorithms, including those relying on homology information. The method is available as a web server at http://www.cbs.dtu.dk/services/DeepLoc. Example code is available at https://github.com/JJAlmagro/subcellular_localization. The dataset is available at http://www.cbs.dtu.dk/services/DeepLoc/data.php. jjalma@dtu.dk. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  2. Subcellular distribution of 3 beta-hydroxysteroid dehydrogenase-isomerase in bovine and murine adrenocortical tissue: species differences in the localization of activity and immunoreactivity.

    PubMed

    Perry, J E; Ishii-Ohba, H; Stalvey, J R

    1991-06-01

    Key to the production of biologically active steroids is the enzyme 3 beta-hydroxysteroid dehydrogenase-isomerase. Some controversy has arisen concerning the subcellular distribution of this enzyme within steroidogenic cells. The distribution of 3 beta-hydroxysteroid dehydrogenase-isomerase was assessed in subcellular fractions obtained from homogenates of rat, bovine, and mouse adrenal glands in two ways. The activity of 3 beta-hydroxysteroid dehydrogenase-isomerase was quantitated by measuring the conversion of radiolabeled pregnenolone to radiolabeled progesterone in an aliquot of each of the fractions obtained. The presence of the enzyme was assessed by performing Western analyses on aliquots of each of the fractions obtained with the use of a specific polyclonal antiserum against 3 beta-hydroxysteroid dehydrogenase-isomerase, the characterization of which is described. In control experiments, the degree of contamination of the fractions was determined by assessing the presence of known subcellular fraction markers with Western analysis. In the bovine and mouse adrenal glands, 3 beta-hydroxysteroid dehydrogenase-isomerase appears to be localized solely in the microsomal fraction, while in the rat, 3 beta-hydroxysteroid dehydrogenase-isomerase appears to have dual subcellular distribution: the microsomes and the inner mitochondrial membrane. We conclude that there is a species difference in the subcellular distribution of this important steroidogenic enzyme and that this species difference may be related to the steroidogenic pathway preferred in that species.

  3. Many local pattern texture features: which is better for image-based multilabel human protein subcellular localization classification?

    PubMed

    Yang, Fan; Xu, Ying-Ying; Shen, Hong-Bin

    2014-01-01

    Human protein subcellular location prediction can provide critical knowledge for understanding a protein's function. Since significant progress has been made on digital microscopy, automated image-based protein subcellular location classification is urgently needed. In this paper, we aim to investigate more representative image features that can be effectively used for dealing with the multilabel subcellular image samples. We prepared a large multilabel immunohistochemistry (IHC) image benchmark from the Human Protein Atlas database and tested the performance of different local texture features, including completed local binary pattern, local tetra pattern, and the standard local binary pattern feature. According to our experimental results from binary relevance multilabel machine learning models, the completed local binary pattern, and local tetra pattern are more discriminative for describing IHC images when compared to the traditional local binary pattern descriptor. The combination of these two novel local pattern features and the conventional global texture features is also studied. The enhanced performance of final binary relevance classification model trained on the combined feature space demonstrates that different features are complementary to each other and thus capable of improving the accuracy of classification.

  4. TRPC6-mediated ERK1/2 Activation Regulates Neuronal Excitability via Subcellular Kv4.3 Localization in the Rat Hippocampus

    PubMed Central

    Kim, Ji-Eun; Park, Jin-Young; Kang, Tae-Cheon

    2017-01-01

    Recently, we have reported that transient receptor potential channel-6 (TRPC6) plays an important role in the regulation of neuronal excitability and synchronization of spiking activity in the dentate granule cells (DGC). However, the underlying mechanisms of TRPC6 in these phenomena have been still unclear. In the present study, we investigated the role of TRPC6 in subcellular localization of Kv4.3 and its relevance to neuronal excitability in the rat hippocampus. TRPC6 knockdown increased excitability and inhibitory transmission in the DGC and the CA1 neurons in response to a paired-pulse stimulus. However, TRPC6 knockdown impaired γ-aminobutyric acid (GABA)ergic inhibition in the hippocampus during and after high-frequency stimulation (HFS). TRPC6 knockdown reduced the Kv4.3 clusters in membrane fractions and its dendritic localization on DGC and GABAergic interneurons. TRPC6 knockdown also decreased extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and the efficacy of 4-aminopyridine (4-AP) in neuronal excitability. An ERK1/2 inhibitor generated multiple population spikes in response to a paired-pulse stimulus, concomitant with reduced membrane Kv4.3 translocation. A TRPC6 activator (hyperforin) reversed the effects of TRPC knockdown, except paired-pulse inhibition. These findings provide valuable clues indicating that TRPC6-mediated ERK1/2 activation may regulate subcellular Kv4.3 localization in DGC and interneurons, which is cause-effect relationship between neuronal excitability and seizure susceptibility. PMID:29326557

  5. A Variable Polyglutamine Repeat Affects Subcellular Localization and Regulatory Activity of a Populus ANGUSTIFOLIA Protein.

    PubMed

    Bryan, Anthony C; Zhang, Jin; Guo, Jianjun; Ranjan, Priya; Singan, Vasanth; Barry, Kerrie; Schmutz, Jeremy; Weighill, Deborah; Jacobson, Daniel; Jawdy, Sara; Tuskan, Gerald A; Chen, Jin-Gui; Muchero, Wellington

    2018-06-08

    Polyglutamine (polyQ) stretches have been reported to occur in proteins across many organisms including animals, fungi and plants. Expansion of these repeats has attracted much attention due their associations with numerous human diseases including Huntington's and other neurological maladies. This suggests that the relative length of polyQ stretches is an important modulator of their function. Here, we report the identification of a Populus C-terminus binding protein (CtBP) ANGUSTIFOLIA ( PtAN1 ) which contains a polyQ stretch whose functional relevance had not been established. Analysis of 917 resequenced Populus trichocarpa genotypes revealed three allelic variants at this locus encoding 11-, 13- and 15-glutamine residues. Transient expression assays using Populus leaf mesophyll protoplasts revealed that the 11Q variant exhibited strong nuclear localization whereas the 15Q variant was only found in the cytosol, with the 13Q variant exhibiting localization in both subcellular compartments. We assessed functional implications by evaluating expression changes of putative PtAN1 targets in response to overexpression of the three allelic variants and observed allele-specific differences in expression levels of putative targets. Our results provide evidence that variation in polyQ length modulates PtAN1 function by altering subcellular localization. Copyright © 2018, G3: Genes, Genomes, Genetics.

  6. Determining the sub-cellular localization of proteins within Caenorhabditis elegans body wall muscle.

    PubMed

    Meissner, Barbara; Rogalski, Teresa; Viveiros, Ryan; Warner, Adam; Plastino, Lorena; Lorch, Adam; Granger, Laure; Segalat, Laurent; Moerman, Donald G

    2011-01-01

    Determining the sub-cellular localization of a protein within a cell is often an essential step towards understanding its function. In Caenorhabditis elegans, the relatively large size of the body wall muscle cells and the exquisite organization of their sarcomeres offer an opportunity to identify the precise position of proteins within cell substructures. Our goal in this study is to generate a comprehensive "localizome" for C. elegans body wall muscle by GFP-tagging proteins expressed in muscle and determining their location within the cell. For this project, we focused on proteins that we know are expressed in muscle and are orthologs or at least homologs of human proteins. To date we have analyzed the expression of about 227 GFP-tagged proteins that show localized expression in the body wall muscle of this nematode (e.g. dense bodies, M-lines, myofilaments, mitochondria, cell membrane, nucleus or nucleolus). For most proteins analyzed in this study no prior data on sub-cellular localization was available. In addition to discrete sub-cellular localization we observe overlapping patterns of localization including the presence of a protein in the dense body and the nucleus, or the dense body and the M-lines. In total we discern more than 14 sub-cellular localization patterns within nematode body wall muscle. The localization of this large set of proteins within a muscle cell will serve as an invaluable resource in our investigation of muscle sarcomere assembly and function.

  7. Subcellular localization of pituitary enzymes

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1970-01-01

    A cytochemical procedure is reported for identifying subcellular sites of enzymes hydrolyzing beta-naphthylamine substrates, and to study the sites of reaction product localization in cells of various tissues. Investigations using the substrate Leu 4-methoxy-8-naphthylamine, a capture with hexonium pararosaniline, and the final chelation of osmium have identified the hydrolyzing enzyme of rat liver cells; this enzyme localized on cell membranes with intense deposition in the areas of the parcanaliculi. The study of cells in the anterior pituitary of the rat showed the deposition of reaction product on cell membrane; and on the membranes of secretion granules contained within the cell. The deposition of reaction product on the cell membrane however showed no increase or decrease with changes in the physiological state of the gland and release of secretion granules from specific cells.

  8. Analysis of the subcellular localization of the human histone methyltransferase SETDB1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tachibana, Keisuke, E-mail: nya@phs.osaka-u.ac.jp; Gotoh, Eiko; Kawamata, Natsuko

    2015-10-02

    SET domain, bifurcated 1 (SETDB1) is a histone methyltransferase that methylates lysine 9 on histone H3. Although it is important to know the localization of proteins to elucidate their physiological function, little is known of the subcellular localization of human SETDB1. In the present study, to investigate the subcellular localization of hSETDB1, we established a human cell line constitutively expressing enhanced green fluorescent protein fused to hSETDB1. We then generated a monoclonal antibody against the hSETDB1 protein. Expression of both exogenous and endogenous hSETDB1 was observed mainly in the cytoplasm of various human cell lines. Combined treatment with the nuclearmore » export inhibitor leptomycin B and the proteasome inhibitor MG132 led to the accumulation of hSETDB1 in the nucleus. These findings suggest that hSETDB1, localized in the nucleus, might undergo degradation by the proteasome and be exported to the cytosol, resulting in its detection mainly in the cytosol. - Highlights: • Endogenous human SETDB1 was localized mainly in the cytoplasm. • Combined treatment with LMB and MG132 led to accumulation of human SETDB1 in the nucleus. • HeLa cells expressing EFGP-hSETDB1 are useful for subcellular localization analyses.« less

  9. Detrended cross-correlation coefficient: Application to predict apoptosis protein subcellular localization.

    PubMed

    Liang, Yunyun; Liu, Sanyang; Zhang, Shengli

    2016-12-01

    Apoptosis, or programed cell death, plays a central role in the development and homeostasis of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful for understanding the apoptosis mechanism. The prediction of subcellular localization of an apoptosis protein is still a challenging task, and existing methods mainly based on protein primary sequences. In this paper, we introduce a new position-specific scoring matrix (PSSM)-based method by using detrended cross-correlation (DCCA) coefficient of non-overlapping windows. Then a 190-dimensional (190D) feature vector is constructed on two widely used datasets: CL317 and ZD98, and support vector machine is adopted as classifier. To evaluate the proposed method, objective and rigorous jackknife cross-validation tests are performed on the two datasets. The results show that our approach offers a novel and reliable PSSM-based tool for prediction of apoptosis protein subcellular localization. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Subcellular Localization of Arabidopsis 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase1

    PubMed Central

    Leivar, Pablo; González, Víctor M.; Castel, Susanna; Trelease, Richard N.; López-Iglesias, Carmen; Arró, Montserrat; Boronat, Albert; Campos, Narciso; Ferrer, Albert; Fernàndez-Busquets, Xavier

    2005-01-01

    Plants produce diverse isoprenoids, which are synthesized in plastids, mitochondria, endoplasmic reticulum (ER), and the nonorganellar cytoplasm. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the synthesis of mevalonate, a rate-limiting step in the cytoplasmic pathway. Several branches of the pathway lead to the synthesis of structurally and functionally varied, yet essential, isoprenoids. Several HMGR isoforms have been identified in all plants examined. Studies based on gene expression and on fractionation of enzyme activity suggested that subcellular compartmentalization of HMGR is an important intracellular channeling mechanism for the production of the specific classes of isoprenoids. Plant HMGR has been shown previously to insert in vitro into the membrane of microsomal vesicles, but the final in vivo subcellular localization(s) remains controversial. To address the latter in Arabidopsis (Arabidopsis thaliana) cells, we conducted a multipronged microscopy and cell fractionation approach that included imaging of chimeric HMGR green fluorescent protein localizations in transiently transformed cell leaves, immunofluorescence confocal microscopy in wild-type and stably transformed seedlings, immunogold electron microscopy examinations of endogenous HMGR in seedling cotyledons, and sucrose density gradient analyses of HMGR-containing organelles. Taken together, the results reveal that endogenous Arabidopsis HMGR is localized at steady state within ER as expected, but surprisingly also predominantly within spherical, vesicular structures that range from 0.2- to 0.6-μm diameter, located in the cytoplasm and within the central vacuole in differentiated cotyledon cells. The N-terminal region, including the transmembrane domain of HMGR, was found to be necessary and sufficient for directing HMGR to ER and the spherical structures. It is believed, although not directly demonstrated, that these vesicle-like structures are derived from segments of HMGR

  11. Dynamic subcellular localization of a respiratory complex controls bacterial respiration

    PubMed Central

    Alberge, François; Espinosa, Leon; Seduk, Farida; Sylvi, Léa; Toci, René; Walburger, Anne; Magalon, Axel

    2015-01-01

    Respiration, an essential process for most organisms, has to optimally respond to changes in the metabolic demand or the environmental conditions. The branched character of their respiratory chains allows bacteria to do so by providing a great metabolic and regulatory flexibility. Here, we show that the native localization of the nitrate reductase, a major respiratory complex under anaerobiosis in Escherichia coli, is submitted to tight spatiotemporal regulation in response to metabolic conditions via a mechanism using the transmembrane proton gradient as a cue for polar localization. These dynamics are critical for controlling the activity of nitrate reductase, as the formation of polar assemblies potentiates the electron flux through the complex. Thus, dynamic subcellular localization emerges as a critical factor in the control of respiration in bacteria. DOI: http://dx.doi.org/10.7554/eLife.05357.001 PMID:26077726

  12. Plasmodium berghei MAPK1 Displays Differential and Dynamic Subcellular Localizations during Liver Stage Development

    PubMed Central

    Wierk, Jannika Katharina; Langbehn, Annette; Kamper, Maria; Richter, Stefanie; Burda, Paul-Christian; Heussler, Volker Theo; Deschermeier, Christina

    2013-01-01

    Mitogen-activated protein kinases (MAPKs) regulate key signaling events in eukaryotic cells. In the genomes of protozoan Plasmodium parasites, the causative agents of malaria, two genes encoding kinases with significant homology to other eukaryotic MAPKs have been identified (mapk1, mapk2). In this work, we show that both genes are transcribed during Plasmodium berghei liver stage development, and analyze expression and subcellular localization of the PbMAPK1 protein in liver stage parasites. Live cell imaging of transgenic parasites expressing GFP-tagged PbMAPK1 revealed a nuclear localization of PbMAPK1 in the early schizont stage mediated by nuclear localization signals in the C-terminal domain. In contrast, a distinct localization of PbMAPK1 in comma/ring-shaped structures in proximity to the parasite’s nuclei and the invaginating parasite membrane was observed during the cytomere stage of parasite development as well as in immature blood stage schizonts. The PbMAPK1 localization was found to be independent of integrity of a motif putatively involved in ATP binding, integrity of the putative activation motif and the presence of a predicted coiled-coil domain in the C-terminal domain. Although PbMAPK1 knock out parasites showed normal liver stage development, the kinase may still fulfill a dual function in both schizogony and merogony of liver stage parasites regulated by its dynamic and stage-dependent subcellular localization. PMID:23544094

  13. Subcellular localization for Gram positive and Gram negative bacterial proteins using linear interpolation smoothing model.

    PubMed

    Saini, Harsh; Raicar, Gaurav; Dehzangi, Abdollah; Lal, Sunil; Sharma, Alok

    2015-12-07

    Protein subcellular localization is an important topic in proteomics since it is related to a protein׳s overall function, helps in the understanding of metabolic pathways, and in drug design and discovery. In this paper, a basic approximation technique from natural language processing called the linear interpolation smoothing model is applied for predicting protein subcellular localizations. The proposed approach extracts features from syntactical information in protein sequences to build probabilistic profiles using dependency models, which are used in linear interpolation to determine how likely is a sequence to belong to a particular subcellular location. This technique builds a statistical model based on maximum likelihood. It is able to deal effectively with high dimensionality that hinders other traditional classifiers such as Support Vector Machines or k-Nearest Neighbours without sacrificing performance. This approach has been evaluated by predicting subcellular localizations of Gram positive and Gram negative bacterial proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Subcellular localization of rat CYP2E1 impacts metabolic efficiency toward common substrates.

    PubMed

    Hartman, Jessica H; Martin, H Cass; Caro, Andres A; Pearce, Amy R; Miller, Grover P

    2015-12-02

    Cytochrome P450 2E1 (CYP2E1) detoxifies or bioactivates many low molecular-weight compounds. Most knowledge about CYP2E1 activity relies on studies of the enzyme localized to endoplasmic reticulum (erCYP2E1); however, CYP2E1 undergoes transport to mitochondria (mtCYP2E1) and becomes metabolically active. We report the first comparison of in vitro steady-state kinetic profiles for erCYP2E1 and mtCYP2E1 oxidation of probe substrate 4-nitrophenol and pollutants styrene and aniline using subcellular fractions from rat liver. For all substrates, metabolic efficiency changed with substrate concentration for erCYP2E1 reflected in non-hyperbolic kinetic profiles but not for mtCYP2E1. Hyperbolic kinetic profiles for the mitochondrial enzyme were consistent with Michaelis-Menten mechanism in which metabolic efficiency was constant. By contrast, erCYP2E1 metabolism of 4-nitrophenol led to a loss of enzyme efficiency at high substrate concentrations when substrate inhibited the reaction. Similarly, aniline metabolism by erCYP2E1 demonstrated negative cooperativity as metabolic efficiency decreased with increasing substrate concentration. The opposite was observed for erCYP2E1 oxidation of styrene; the sigmoidal kinetic profile indicated increased efficiency at higher substrate concentrations. These mechanisms and CYP2E1 levels in mitochondria and endoplasmic reticulum were used to estimate the impact of CYP2E1 subcellular localization on metabolic flux of pollutants. Those models showed that erCYP2E1 mainly carries out aniline metabolism at all aniline concentrations. Conversely, mtCYP2E1 dominates styrene oxidation at low styrene concentrations and erCYP2E1 at higher concentrations. Taken together, subcellular localization of CYP2E1 results in distinctly different enzyme activities that could impact overall metabolic clearance and/or activation of substrates and thus impact the interpretation and prediction of toxicological outcomes. Copyright © 2015 Elsevier Ireland Ltd

  15. Demonstration of subcellular migration of CK2α localization from nucleus to sarco(endo)plasmic reticulum in mammalian cardiomyocytes under hyperglycemia.

    PubMed

    Bitirim, Ceylan Verda; Tuncay, Erkan; Turan, Belma

    2018-06-01

    The cellular control of glucose uptake and glycogen metabolism in mammalian tissues is in part mediated through the regulation of protein-serine/threonine kinases including CK2. Although it participates to several cellular signaling processes, however, its subcellular localization is not well-defined while some documents mentioned its localization change under pathological conditions. The activation/phosphorylation of some proteins including Zn 2+ -transporter ZIP7 in cardiomyocytes is controlled with CK2α, thereby, inducing changes in the level of intracellular free Zn 2+ ([Zn 2+ ] i ). In this regard, we aimed to examine cellular localization of CK2α in cardiomyocytes and its possible subcellular migration under hyperglycemia. Our confocal imaging together with biochemical analysis in isolated sarco(endo)plasmic reticulum [S(E)R] and nuclear fractions from hearts have shown that CK2α localized highly to S(E)R and Golgi and weakly to nuclear fractions in physiological condition. However, it can migrate from nuclear fractions to S(E)R under hyperglycemia. This migration can further underlie phosphorylation of a target protein ZIP7 as well as some endogenous kinases and phosphatases including PKA, CaMKII, and PP2A. We also have shown that CK2α activation is responsible for hyperglycemia-associated [Zn 2+ ] i increase in diabetic heart. Therefore, our present data demonstrated, for the first time, the physiological relevance of CK2α in cellular control of Zn 2+ -distribution via inducing ZIP7 phosphorylation and activation of these above endogenous actors in hyperglycemia/diabetes-associated cardiac dysfunction. Moreover, our present data also emphasized the multi-subcellular compartmental localizations of CK2α and a tightly regulation of these localizations in cardiomyocytes. Therefore, taken into consideration of all data, one can emphasize the important role of the subcellular localization of CK2α as a novel target-pathway for understanding of diabetic

  16. Cdc2/cyclin B1 regulates centrosomal Nlp proteolysis and subcellular localization.

    PubMed

    Zhao, Xuelian; Jin, Shunqian; Song, Yongmei; Zhan, Qimin

    2010-11-01

    The formation of proper mitotic spindles is required for appropriate chromosome segregation during cell division. Aberrant spindle formation often causes aneuploidy and results in tumorigenesis. However, the underlying mechanism of regulating spindle formation and chromosome separation remains to be further defined. Centrosomal Nlp (ninein-like protein) is a recently characterized BRCA1-regulated centrosomal protein and plays an important role in centrosome maturation and spindle formation. In this study, we show that Nlp can be phosphorylated by cell cycle protein kinase Cdc2/cyclin B1. The phosphorylation sites of Nlp are mapped at Ser185 and Ser589. Interestingly, the Cdc2/cyclin B1 phosphorylation site Ser185 of Nlp is required for its recognition by PLK1, which enable Nlp depart from centrosomes to allow the establishment of a mitotic scaffold at the onset of mitosis . PLK1 fails to dissociate the Nlp mutant lacking Ser185 from centrosome, suggesting that Cdc2/cyclin B1 might serve as a primary kinase of PLK1 in regulating Nlp subcellular localization. However, the phosphorylation at the site Ser589 by Cdc2/cyclin B1 plays an important role in Nlp protein stability probably due to its effect on protein degradation. Furthermore, we show that deregulated expression or subcellular localization of Nlp lead to multinuclei in cells, indicating that scheduled levels of Nlp and proper subcellular localization of Nlp are critical for successful completion of normal cell mitosis, These findings demonstrate that Cdc2/cyclin B1 is a key regulator in maintaining appropriate degradation and subcellular localization of Nlp, providing novel insights into understanding on the role of Cdc2/cyclin B1 in mitotic progression.

  17. Optogenetic Tools for Subcellular Applications in Neuroscience.

    PubMed

    Rost, Benjamin R; Schneider-Warme, Franziska; Schmitz, Dietmar; Hegemann, Peter

    2017-11-01

    The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Predicting plant protein subcellular multi-localization by Chou's PseAAC formulation based multi-label homolog knowledge transfer learning.

    PubMed

    Mei, Suyu

    2012-10-07

    Recent years have witnessed much progress in computational modeling for protein subcellular localization. However, there are far few computational models for predicting plant protein subcellular multi-localization. In this paper, we propose a multi-label multi-kernel transfer learning model for predicting multiple subcellular locations of plant proteins (MLMK-TLM). The method proposes a multi-label confusion matrix and adapts one-against-all multi-class probabilistic outputs to multi-label learning scenario, based on which we further extend our published work MK-TLM (multi-kernel transfer learning based on Chou's PseAAC formulation for protein submitochondria localization) for plant protein subcellular multi-localization. By proper homolog knowledge transfer, MLMK-TLM is applicable to novel plant protein subcellular localization in multi-label learning scenario. The experiments on plant protein benchmark dataset show that MLMK-TLM outperforms the baseline model. Unlike the existing models, MLMK-TLM also reports its misleading tendency, which is important for comprehensive survey of model's multi-labeling performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Targeted Degradation of Proteins Localized in Subcellular Compartments by Hybrid Small Molecules.

    PubMed

    Okuhira, Keiichiro; Shoda, Takuji; Omura, Risa; Ohoka, Nobumichi; Hattori, Takayuki; Shibata, Norihito; Demizu, Yosuke; Sugihara, Ryo; Ichino, Asato; Kawahara, Haruka; Itoh, Yukihiro; Ishikawa, Minoru; Hashimoto, Yuichi; Kurihara, Masaaki; Itoh, Susumu; Saito, Hiroyuki; Naito, Mikihiko

    2017-03-01

    Development of novel small molecules that selectively degrade pathogenic proteins would provide an important advance in targeted therapy. Recently, we have devised a series of hybrid small molecules named SNIPER (specific and nongenetic IAP-dependent protein ERaser) that induces the degradation of target proteins via the ubiquitin-proteasome system. To understand the localization of proteins that can be targeted by this protein knockdown technology, we examined whether SNIPER molecules are able to induce degradation of cellular retinoic acid binding protein II (CRABP-II) proteins localized in subcellular compartments of cells. CRABP-II is genetically fused with subcellular localization signals, and they are expressed in the cells. SNIPER(CRABP) with different IAP-ligands, SNIPER(CRABP)-4 with bestatin and SNIPER(CRABP)-11 with MV1 compound, induce the proteasomal degradation of wild-type (WT), cytosolic, nuclear, and membrane-localized CRABP-II proteins, whereas only SNIPER(CRABP)-11 displayed degradation activity toward the mitochondrial CRABP-II protein. The small interfering RNA-mediated silencing of cIAP1 expression attenuated the knockdown activity of SNIPER(CRABP) against WT and cytosolic CRABP-II proteins, indicating that cIAP1 is the E3 ligase responsible for degradation of these proteins. Against membrane-localized CRABP-II protein, cIAP1 is also a primary E3 ligase in the cells, but another E3 ligase distinct from cIAP2 and X-linked inhibitor of apoptosis protein (XIAP) could also be involved in the SNIPER(CRABP)-11-induced degradation. However, for the degradation of nuclear and mitochondrial CRABP-II proteins, E3 ligases other than cIAP1, cIAP2, and XIAP play a role in the SNIPER-mediated protein knockdown. These results indicate that SNIPER can target cytosolic, nuclear, membrane-localized, and mitochondrial proteins for degradation, but the responsible E3 ligase is different, depending on the localization of the target protein. Copyright © 2017 by

  20. mLASSO-Hum: A LASSO-based interpretable human-protein subcellular localization predictor.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2015-10-07

    Knowing the subcellular compartments of human proteins is essential to shed light on the mechanisms of a broad range of human diseases. In computational methods for protein subcellular localization, knowledge-based methods (especially gene ontology (GO) based methods) are known to perform better than sequence-based methods. However, existing GO-based predictors often lack interpretability and suffer from overfitting due to the high dimensionality of feature vectors. To address these problems, this paper proposes an interpretable multi-label predictor, namely mLASSO-Hum, which can yield sparse and interpretable solutions for large-scale prediction of human protein subcellular localization. By using the one-vs-rest LASSO-based classifiers, 87 out of more than 8000 GO terms are found to play more significant roles in determining the subcellular localization. Based on these 87 essential GO terms, we can decide not only where a protein resides within a cell, but also why it is located there. To further exploit information from the remaining GO terms, a method based on the GO hierarchical information derived from the depth distance of GO terms is proposed. Experimental results show that mLASSO-Hum performs significantly better than state-of-the-art predictors. We also found that in addition to the GO terms from the cellular component category, GO terms from the other two categories also play important roles in the final classification decisions. For readers' convenience, the mLASSO-Hum server is available online at http://bioinfo.eie.polyu.edu.hk/mLASSOHumServer/. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Sparse regressions for predicting and interpreting subcellular localization of multi-label proteins.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2016-02-24

    Predicting protein subcellular localization is indispensable for inferring protein functions. Recent studies have been focusing on predicting not only single-location proteins, but also multi-location proteins. Almost all of the high performing predictors proposed recently use gene ontology (GO) terms to construct feature vectors for classification. Despite their high performance, their prediction decisions are difficult to interpret because of the large number of GO terms involved. This paper proposes using sparse regressions to exploit GO information for both predicting and interpreting subcellular localization of single- and multi-location proteins. Specifically, we compared two multi-label sparse regression algorithms, namely multi-label LASSO (mLASSO) and multi-label elastic net (mEN), for large-scale predictions of protein subcellular localization. Both algorithms can yield sparse and interpretable solutions. By using the one-vs-rest strategy, mLASSO and mEN identified 87 and 429 out of more than 8,000 GO terms, respectively, which play essential roles in determining subcellular localization. More interestingly, many of the GO terms selected by mEN are from the biological process and molecular function categories, suggesting that the GO terms of these categories also play vital roles in the prediction. With these essential GO terms, not only where a protein locates can be decided, but also why it resides there can be revealed. Experimental results show that the output of both mEN and mLASSO are interpretable and they perform significantly better than existing state-of-the-art predictors. Moreover, mEN selects more features and performs better than mLASSO on a stringent human benchmark dataset. For readers' convenience, an online server called SpaPredictor for both mLASSO and mEN is available at http://bioinfo.eie.polyu.edu.hk/SpaPredictorServer/.

  2. Subcellular Localization of HIV-1 gag-pol mRNAs Regulates Sites of Virion Assembly

    PubMed Central

    Becker, Jordan T.

    2017-01-01

    ABSTRACT Full-length unspliced human immunodeficiency virus type 1 (HIV-1) RNAs serve dual roles in the cytoplasm as mRNAs encoding the Gag and Gag-Pol capsid proteins as well as genomic RNAs (gRNAs) packaged by Gag into virions undergoing assembly at the plasma membrane (PM). Because Gag is sufficient to drive the assembly of virus-like particles even in the absence of gRNA binding, whether viral RNA trafficking plays an active role in the native assembly pathway is unknown. In this study, we tested the effects of modulating the cytoplasmic abundance or distribution of full-length viral RNAs on Gag trafficking and assembly in the context of single cells. Increasing full-length viral RNA abundance or distribution had little-to-no net effect on Gag assembly competency when provided in trans. In contrast, artificially tethering full-length viral RNAs or surrogate gag-pol mRNAs competent for Gag synthesis to non-PM membranes or the actin cytoskeleton severely reduced net virus particle production. These effects were explained, in large part, by RNA-directed changes to Gag's distribution in the cytoplasm, yielding aberrant subcellular sites of virion assembly. Interestingly, RNA-dependent disruption of Gag trafficking required either of two cis-acting RNA regulatory elements: the 5′ packaging signal (Psi) bound by Gag during genome encapsidation or, unexpectedly, the Rev response element (RRE), which regulates the nuclear export of gRNAs and other intron-retaining viral RNAs. Taken together, these data support a model for native infection wherein structural features of the gag-pol mRNA actively compartmentalize Gag to preferred sites within the cytoplasm and/or PM. IMPORTANCE The spatial distribution of viral mRNAs within the cytoplasm can be a crucial determinant of efficient translation and successful virion production. Here we provide direct evidence that mRNA subcellular trafficking plays an important role in regulating the assembly of human immunodeficiency

  3. Subcellular Localization of HIV-1 gag-pol mRNAs Regulates Sites of Virion Assembly.

    PubMed

    Becker, Jordan T; Sherer, Nathan M

    2017-03-15

    Full-length unspliced human immunodeficiency virus type 1 (HIV-1) RNAs serve dual roles in the cytoplasm as mRNAs encoding the Gag and Gag-Pol capsid proteins as well as genomic RNAs (gRNAs) packaged by Gag into virions undergoing assembly at the plasma membrane (PM). Because Gag is sufficient to drive the assembly of virus-like particles even in the absence of gRNA binding, whether viral RNA trafficking plays an active role in the native assembly pathway is unknown. In this study, we tested the effects of modulating the cytoplasmic abundance or distribution of full-length viral RNAs on Gag trafficking and assembly in the context of single cells. Increasing full-length viral RNA abundance or distribution had little-to-no net effect on Gag assembly competency when provided in trans In contrast, artificially tethering full-length viral RNAs or surrogate gag-pol mRNAs competent for Gag synthesis to non-PM membranes or the actin cytoskeleton severely reduced net virus particle production. These effects were explained, in large part, by RNA-directed changes to Gag's distribution in the cytoplasm, yielding aberrant subcellular sites of virion assembly. Interestingly, RNA-dependent disruption of Gag trafficking required either of two cis -acting RNA regulatory elements: the 5' packaging signal (Psi) bound by Gag during genome encapsidation or, unexpectedly, the Rev response element (RRE), which regulates the nuclear export of gRNAs and other intron-retaining viral RNAs. Taken together, these data support a model for native infection wherein structural features of the gag-pol mRNA actively compartmentalize Gag to preferred sites within the cytoplasm and/or PM. IMPORTANCE The spatial distribution of viral mRNAs within the cytoplasm can be a crucial determinant of efficient translation and successful virion production. Here we provide direct evidence that mRNA subcellular trafficking plays an important role in regulating the assembly of human immunodeficiency virus type 1

  4. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.

    PubMed

    Li, Min; Li, Wenkai; Wu, Fang-Xiang; Pan, Yi; Wang, Jianxin

    2018-06-14

    Essential proteins are important participants in various life activities and play a vital role in the survival and reproduction of living organisms. Identification of essential proteins from protein-protein interaction (PPI) networks has great significance to facilitate the study of human complex diseases, the design of drugs and the development of bioinformatics and computational science. Studies have shown that highly connected proteins in a PPI network tend to be essential. A series of computational methods have been proposed to identify essential proteins by analyzing topological structures of PPI networks. However, the high noise in the PPI data can degrade the accuracy of essential protein prediction. Moreover, proteins must be located in the appropriate subcellular localization to perform their functions, and only when the proteins are located in the same subcellular localization, it is possible that they can interact with each other. In this paper, we propose a new network-based essential protein discovery method based on sub-network partition and prioritization by integrating subcellular localization information, named SPP. The proposed method SPP was tested on two different yeast PPI networks obtained from DIP database and BioGRID database. The experimental results show that SPP can effectively reduce the effect of false positives in PPI networks and predict essential proteins more accurately compared with other existing computational methods DC, BC, CC, SC, EC, IC, NC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Inter-kingdom prediction certainty evaluation of protein subcellular localization tools: microbial pathogenesis approach for deciphering host microbe interaction.

    PubMed

    Khan, Abdul Arif; Khan, Zakir; Kalam, Mohd Abul; Khan, Azmat Ali

    2018-01-01

    Microbial pathogenesis involves several aspects of host-pathogen interactions, including microbial proteins targeting host subcellular compartments and subsequent effects on host physiology. Such studies are supported by experimental data, but recent detection of bacterial proteins localization through computational eukaryotic subcellular protein targeting prediction tools has also come into practice. We evaluated inter-kingdom prediction certainty of these tools. The bacterial proteins experimentally known to target host subcellular compartments were predicted with eukaryotic subcellular targeting prediction tools, and prediction certainty was assessed. The results indicate that these tools alone are not sufficient for inter-kingdom protein targeting prediction. The correct prediction of pathogen's protein subcellular targeting depends on several factors, including presence of localization signal, transmembrane domain and molecular weight, etc., in addition to approach for subcellular targeting prediction. The detection of protein targeting in endomembrane system is comparatively difficult, as the proteins in this location are channelized to different compartments. In addition, the high specificity of training data set also creates low inter-kingdom prediction accuracy. Current data can help to suggest strategy for correct prediction of bacterial protein's subcellular localization in host cell. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Dynamic Fluctuations in Subcellular Localization of the Hippo Pathway Effector Yorkie In Vivo.

    PubMed

    Manning, Samuel A; Dent, Lucas G; Kondo, Shu; Zhao, Ziqing W; Plachta, Nicolas; Harvey, Kieran F

    2018-05-21

    The Hippo pathway is an evolutionarily conserved signaling network that integrates diverse cues to control organ size and cell fate. The central downstream pathway protein in Drosophila is the transcriptional co-activator Yorkie (YAP and TAZ in humans), which regulates gene expression with the Scalloped/TEA domain family member (TEAD) transcription factors [1-8]. A central regulatory step in the Hippo pathway is phosphorylation of Yorkie by the NDR family kinase Warts, which promotes Yorkie cytoplasmic localization by stimulating association with 14-3-3 proteins [9-12]. Numerous reports have purported a static model of Hippo signaling whereby, upon Hippo activation, Yorkie/YAP/TAZ become cytoplasmic and therefore inactive, and upon Hippo repression, Yorkie/YAP/TAZ transit to the nucleus and are active. However, we have little appreciation for the dynamics of Yorkie/YAP/TAZ subcellular localization because most studies have been performed in fixed cells and tissues. To address this, we used live multiphoton microscopy to investigate the dynamics of an endogenously tagged Yorkie-Venus protein in growing epithelial organs. We found that the majority of Yorkie rapidly traffics between the cytoplasm and nucleus, rather than being statically localized in either compartment. In addition, discrete cell populations within the same organ display different rates of Yorkie nucleo-cytoplasmic shuttling. By assessing Yorkie dynamics in warts mutant tissue, we found that the Hippo pathway regulates Yorkie subcellular distribution by regulating its rate of nuclear import. Furthermore, Yorkie's localization fluctuates dramatically throughout the cell cycle, being predominantly cytoplasmic during interphase and, unexpectedly, chromatin enriched during mitosis. Yorkie's association with mitotic chromatin is Scalloped dependent, suggesting a potential role in mitotic bookmarking. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Tuning the Catalytic Activity of Subcellular Nanoreactors.

    PubMed

    Jakobson, Christopher M; Chen, Yiqun; Slininger, Marilyn F; Valdivia, Elias; Kim, Edward Y; Tullman-Ercek, Danielle

    2016-07-31

    Bacterial microcompartments are naturally occurring subcellular organelles of bacteria and serve as a promising scaffold for the organization of heterologous biosynthetic pathways. A critical element in the design of custom biosynthetic organelles is quantitative control over the loading of heterologous enzymes to the interior of the organelles. We demonstrate that the loading of heterologous proteins to the 1,2-propanediol utilization microcompartment of Salmonella enterica can be controlled using two strategies: by modulating the transcriptional activation of the microcompartment container and by coordinating the expression of the microcompartment container and the heterologous cargo. These strategies allow general control over the loading of heterologous proteins localized by two different N-terminal targeting peptides and represent an important step toward tuning the catalytic activity of bacterial microcompartments for increased biosynthetic productivity. Copyright © 2016. Published by Elsevier Ltd.

  8. Mono- and Dinuclear Phosphorescent Rhenium(I) Complexes: Impact of Subcellular Localization on Anticancer Mechanisms.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Chen, Mu-He; Hao, Liang; Ji, Liang-Nian; Mao, Zong-Wan

    2016-06-01

    Elucidation of relationship among chemical structure, cellular uptake, localization, and biological activity of anticancer metal complexes is important for the understanding of their mechanisms of action. Organometallic rhenium(I) tricarbonyl compounds have emerged as potential multifunctional anticancer drug candidates that can integrate therapeutic and imaging capabilities in a single molecule. Herein, two mononuclear phosphorescent rhenium(I) complexes (Re1 and Re2), along with their corresponding dinuclear complexes (Re3 and Re4), were designed and synthesized as potent anticancer agents. The subcellular accumulation of Re1-Re4 was conveniently analyzed by confocal microscopy in situ in live cells by utilizing their intrinsic phosphorescence. We found that increased lipophilicity of the bidentate ligands could enhance their cellular uptake, leading to improved anticancer efficacy. The dinuclear complexes were more potent than the mononuclear counterparts. The molecular anticancer mechanisms of action evoked by Re3 and Re4 were explored in detail. Re3 with a lower lipophilicity localizes to lysosomes and induces caspase-independent apoptosis, whereas Re4 with higher lipophilicity specially accumulates in mitochondria and induces caspase-independent paraptosis in cancer cells. Our study demonstrates that subcellular localization is crucial for the anticancer mechanisms of these phosphorescent rhenium(I) complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. CellMap visualizes protein-protein interactions and subcellular localization

    PubMed Central

    Dallago, Christian; Goldberg, Tatyana; Andrade-Navarro, Miguel Angel; Alanis-Lobato, Gregorio; Rost, Burkhard

    2018-01-01

    Many tools visualize protein-protein interaction (PPI) networks. The tool introduced here, CellMap, adds one crucial novelty by visualizing PPI networks in the context of subcellular localization, i.e. the location in the cell or cellular component in which a PPI happens. Users can upload images of cells and define areas of interest against which PPIs for selected proteins are displayed (by default on a cartoon of a cell). Annotations of localization are provided by the user or through our in-house database. The visualizer and server are written in JavaScript, making CellMap easy to customize and to extend by researchers and developers. PMID:29497493

  10. Enhancing membrane protein subcellular localization prediction by parallel fusion of multi-view features.

    PubMed

    Yu, Dongjun; Wu, Xiaowei; Shen, Hongbin; Yang, Jian; Tang, Zhenmin; Qi, Yong; Yang, Jingyu

    2012-12-01

    Membrane proteins are encoded by ~ 30% in the genome and function importantly in the living organisms. Previous studies have revealed that membrane proteins' structures and functions show obvious cell organelle-specific properties. Hence, it is highly desired to predict membrane protein's subcellular location from the primary sequence considering the extreme difficulties of membrane protein wet-lab studies. Although many models have been developed for predicting protein subcellular locations, only a few are specific to membrane proteins. Existing prediction approaches were constructed based on statistical machine learning algorithms with serial combination of multi-view features, i.e., different feature vectors are simply serially combined to form a super feature vector. However, such simple combination of features will simultaneously increase the information redundancy that could, in turn, deteriorate the final prediction accuracy. That's why it was often found that prediction success rates in the serial super space were even lower than those in a single-view space. The purpose of this paper is investigation of a proper method for fusing multiple multi-view protein sequential features for subcellular location predictions. Instead of serial strategy, we propose a novel parallel framework for fusing multiple membrane protein multi-view attributes that will represent protein samples in complex spaces. We also proposed generalized principle component analysis (GPCA) for feature reduction purpose in the complex geometry. All the experimental results through different machine learning algorithms on benchmark membrane protein subcellular localization datasets demonstrate that the newly proposed parallel strategy outperforms the traditional serial approach. We also demonstrate the efficacy of the parallel strategy on a soluble protein subcellular localization dataset indicating the parallel technique is flexible to suite for other computational biology problems. The

  11. Sub-cellular mRNA localization modulates the regulation of gene expression by small RNAs in bacteria

    NASA Astrophysics Data System (ADS)

    Teimouri, Hamid; Korkmazhan, Elgin; Stavans, Joel; Levine, Erel

    2017-10-01

    Small non-coding RNAs can exert significant regulatory activity on gene expression in bacteria. In recent years, substantial progress has been made in understanding bacterial gene expression by sRNAs. However, recent findings that demonstrate that families of mRNAs show non-trivial sub-cellular distributions raise the question of how localization may affect the regulatory activity of sRNAs. Here we address this question within a simple mathematical model. We show that the non-uniform spatial distributions of mRNA can alter the threshold-linear response that characterizes sRNAs that act stoichiometrically, and modulate the hierarchy among targets co-regulated by the same sRNA. We also identify conditions where the sub-cellular organization of cofactors in the sRNA pathway can induce spatial heterogeneity on sRNA targets. Our results suggest that under certain conditions, interpretation and modeling of natural and synthetic gene regulatory circuits need to take into account the spatial organization of the transcripts of participating genes.

  12. Vaccinia-related kinase 3 (VRK3) sets the circadian period and amplitude by affecting the subcellular localization of clock proteins in mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Nayoung; Department of Brain Science, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, Kyunggi-do, 16499; Song, Jieun

    In the eukaryotic circadian clock machinery, negative feedback repression of CLOCK (CLK) and BMAL1 transcriptional activity by PERIOD (PER) and CRYPTOCHROME (CRY) underlies the basis for 24 h rhythmic gene expression. Thus, precise regulation of the time-dependent nuclear entry of circadian repressors is crucial to generating normal circadian rhythms. Here, we sought to identify novel kinase(s) that regulate nuclear entry of mammalian CRY1 (mCRY1) with an unbiased screening using red fluorescent protein (RFP)-tagged human kinome expression plasmids in mammalian cells. Transient expression of human vaccinia-related kinase 3 (hVRK3) reduced the nuclear presence of mCRY1. hVRK3 expression also induced alterations in themore » subcellular localization of other core clock proteins, including mCRY2, mPER2, and BMAL1. In contrast, the subcellular localization of mCLK was not changed. Given that singly expressed mCLK mostly resides in the cytoplasm and that nuclear localization sequence (NLS) mutation of hVRK3 attenuated the effect of hVRK3 co-expression on subcellular localization, ectopically expressed hVRK3 presumably reduces the retention of proteins in the nucleus. Finally, downregulation of hvrk3 using siRNA reduced the amplitude and lengthened the period of the cellular bioluminescence rhythm. Taken together, these data suggest that VRK3 plays a role in setting the amplitude and period length of circadian rhythms in mammalian cells. - Highlights: • Screening was performed to identify kinases that regulate CRY1 subcellular localization. • VRK3 alters the subcellular localization of CRY1, CRY2, PER2, and BMAL1. • VRK3 knock-down alters the circadian bioluminescence rhythm in mammalian cells.« less

  13. Subcellular localization of full-length human myeloid leukemia factor 1 (MLF1) is independent of 14-3-3 proteins.

    PubMed

    Molzan, Manuela; Ottmann, Christian

    2013-03-01

    Myeloid leukemia factor 1 (MLF1) is associated with the development of leukemic diseases such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, information on the physiological function of MLF1 is limited and mostly derived from studies identifying MLF1 interaction partners like CSN3, MLF1IP, MADM, Manp and the 14-3-3 proteins. The 14-3-3-binding site surrounding S34 is one of the only known functional features of the MLF1 sequence, along with one nuclear export sequence (NES) and two nuclear localization sequences (NLS). It was recently shown that the subcellular localization of mouse MLF1 is dependent on 14-3-3 proteins. Based on these findings, we investigated whether the subcellular localization of human MLF1 was also directly 14-3-3-dependent. Live cell imaging with GFP-fused human MLF1 was used to study the effects of mutations and deletions on its subcellular localization. Surprisingly, we found that the subcellular localization of full-length human MLF1 is 14-3-3-independent, and is probably regulated by other as-yet-unknown proteins.

  14. Cell- and virus-mediated regulation of the barrier-to-autointegration factor's phosphorylation state controls its DNA binding, dimerization, subcellular localization, and antipoxviral activity.

    PubMed

    Jamin, Augusta; Wicklund, April; Wiebe, Matthew S

    2014-05-01

    Barrier-to-autointegration factor (BAF) is a DNA binding protein with multiple cellular functions, including the ability to act as a potent defense against vaccinia virus infection. This antiviral function involves BAF's ability to condense double-stranded DNA and subsequently prevent viral DNA replication. In recent years, it has become increasingly evident that dynamic phosphorylation involving the vaccinia virus B1 kinase and cellular enzymes is likely a key regulator of multiple BAF functions; however, the precise mechanisms are poorly understood. Here we analyzed how phosphorylation impacts BAF's DNA binding, subcellular localization, dimerization, and antipoxviral activity through the characterization of BAF phosphomimetic and unphosphorylatable mutants. Our studies demonstrate that increased phosphorylation enhances BAF's mobilization from the nucleus to the cytosol, while dephosphorylation restricts BAF to the nucleus. Phosphorylation also impairs both BAF's dimerization and its DNA binding activity. Furthermore, our studies of BAF's antiviral activity revealed that hyperphosphorylated BAF is unable to suppress viral DNA replication or virus production. Interestingly, the unphosphorylatable BAF mutant, which is capable of binding DNA but localizes predominantly to the nucleus, was also incapable of suppressing viral replication. Thus, both DNA binding and localization are important determinants of BAF's antiviral function. Finally, our examination of how phosphatases are involved in regulating BAF revealed that PP2A dephosphorylates BAF during vaccinia infection, thus counterbalancing the activity of the B1 kinase. Altogether, these data demonstrate that phosphoregulation of BAF by viral and cellular enzymes modulates this protein at multiple molecular levels, thus determining its effectiveness as an antiviral factor and likely other functions as well. The barrier-to-autointegration factor (BAF) contributes to cellular genomic integrity in multiple ways

  15. SMYD3 interacts with HTLV-1 Tax and regulates subcellular localization of Tax.

    PubMed

    Yamamoto, Keiyu; Ishida, Takaomi; Nakano, Kazumi; Yamagishi, Makoto; Yamochi, Tadanori; Tanaka, Yuetsu; Furukawa, Yoichi; Nakamura, Yusuke; Watanabe, Toshiki

    2011-01-01

    HTLV-1 Tax deregulates signal transduction pathways, transcription of genes, and cell cycle regulation of host cells, which is mainly mediated by its protein-protein interactions with host cellular factors. We previously reported an interaction of Tax with a histone methyltransferase (HMTase), SUV39H1. As the interaction was mediated by the SUV39H1 SET domain that is shared among HMTases, we examined the possibility of Tax interaction with another HMTase, SMYD3, which methylates histone H3 lysine 4 and activates transcription of genes, and studied the functional effects. Expression of endogenous SMYD3 in T cell lines and primary T cells was confirmed by immunoblotting analysis. Co-immuno-precipitaion assays and in vitro pull-down assay indicated interaction between Tax and SMYD3. The interaction was largely dependent on the C-terminal 180 amino acids of SMYD3, whereas the interacting domain of Tax was not clearly defined, although the N-terminal 108 amino acids were dispensable for the interaction. In the cotransfected cells, colocalization of Tax and SMYD3 was indicated in the cytoplasm or nuclei. Studies using mutants of Tax and SMYD3 suggested that SMYD3 dominates the subcellular localization of Tax. Reporter gene assays showed that nuclear factor-κB activation promoted by cytoplasmic Tax was enhanced by the presence of SMYD3, and attenuated by shRNA-mediated knockdown of SMYD3, suggesting an increased level of Tax localization in the cytoplasm by SMYD3. Our study revealed for the first time Tax-SMYD3 direct interaction, as well as apparent tethering of Tax by SMYD3, influencing the subcellular localization of Tax. Results suggested that SMYD3-mediated nucleocytoplasmic shuttling of Tax provides one base for the pleiotropic effects of Tax, which are mediated by the interaction of cellular proteins localized in the cytoplasm or nucleus. © 2010 Japanese Cancer Association.

  16. Expression, subcellular localization, and regulation of sigma receptor in retinal muller cells.

    PubMed

    Jiang, Guoliang; Mysona, Barbara; Dun, Ying; Gnana-Prakasam, Jaya P; Pabla, Navjotsin; Li, Weiguo; Dong, Zheng; Ganapathy, Vadivel; Smith, Sylvia B

    2006-12-01

    Sigma receptors (sigmaRs) are nonopioid, nonphencyclidine binding sites with robust neuroprotective properties. Type 1 sigmaR1 (sigmaR1) is expressed in brain oligodendrocytes, but its expression and binding capacity have not been analyzed in retinal glial cells. This study examined the expression, subcellular localization, binding activity, and regulation of sigmaR1 in retinal Müller cells. Primary mouse Müller cells (MCs) were analyzed by RT-PCR, immunoblotting, and immunocytochemistry for the expression of sigmaR1, and data were compared with those of the rat Müller cell line (rMC-1) and the rat ganglion cell line (RGC-5). Confocal microscopy was used to determine the subcellular sigmaR1 location in primary mouse MCs. Membranes prepared from these cells were used for binding assays with [3H]-pentazocine (PTZ). The kinetics of binding, the ability of various sigmaR1 ligands to compete with sigmaR1 binding, and the effects of donated nitric oxide (NO) and reactive oxygen species (ROS) on binding were examined. sigmaR1 is expressed in primary mouse MCs and is localized to the nuclear and endoplasmic reticulum membranes. Binding assays showed that in primary mouse MCs, rMC-1, and RGC-5, the binding of PTZ was saturable. [3H]-PTZ bound with high affinity in RGC-5 and rMC-1 cells, and the binding was similarly robust in primary mouse MCs. Competition studies showed marked inhibition of [3H]-PTZ binding in the presence of sigmaR1-specific ligands. Incubation of cells with NO and ROS donors markedly increased sigmaR1 binding activity. MCs express sigmaR1 and demonstrate robust sigmaR1 binding activity, which is inhibited by sigmaR1 ligands and is stimulated during oxidative stress. The potential of Müller cells to bind sigmaR1 ligands may prove beneficial in retinal degenerative diseases such as diabetic retinopathy.

  17. A novel representation for apoptosis protein subcellular localization prediction using support vector machine.

    PubMed

    Zhang, Li; Liao, Bo; Li, Dachao; Zhu, Wen

    2009-07-21

    Apoptosis, or programmed cell death, plays an important role in development of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful to understand the apoptosis mechanism. In this paper, based on the concept that the position distribution information of amino acids is closely related with the structure and function of proteins, we introduce the concept of distance frequency [Matsuda, S., Vert, J.P., Ueda, N., Toh, H., Akutsu, T., 2005. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 14, 2804-2813] and propose a novel way to calculate distance frequencies. In order to calculate the local features, each protein sequence is separated into p parts with the same length in our paper. Then we use the novel representation of protein sequences and adopt support vector machine to predict subcellular location. The overall prediction accuracy is significantly improved by jackknife test.

  18. Stress-activated MAPKs and CRM1 regulate the subcellular localization of Net1A to control cell motility and invasion.

    PubMed

    Ulu, Arzu; Oh, Wonkyung; Zuo, Yan; Frost, Jeffrey A

    2018-02-01

    The neuroepithelial cell transforming gene 1A (Net1A, an isoform of Net1) is a RhoA subfamily guanine nucleotide exchange factor (GEF) that localizes to the nucleus in the absence of stimulation, preventing it from activating RhoA. Once relocalized in the cytosol, Net1A stimulates cell motility and extracellular matrix invasion. In the present work, we investigated mechanisms responsible for the cytosolic relocalization of Net1A. We demonstrate that inhibition of MAPK pathways blocks Net1A relocalization, with cells being most sensitive to JNK pathway inhibition. Moreover, activation of the JNK or p38 MAPK family pathway is sufficient to elicit Net1A cytosolic localization. Net1A relocalization stimulated by EGF or JNK activation requires nuclear export mediated by CRM1. JNK1 (also known as MAPK8) phosphorylates Net1A on serine 52, and alanine substitution at this site prevents Net1A relocalization caused by EGF or JNK activation. Glutamic acid substitution at this site is sufficient for Net1A relocalization and results in elevated RhoA signaling to stimulate myosin light chain 2 (MLC2, also known as MYL2) phosphorylation and F-actin accumulation. Net1A S52E expression stimulates cell motility, enables Matrigel invasion and promotes invadopodia formation. These data highlight a novel mechanism for controlling the subcellular localization of Net1A to regulate RhoA activation, cell motility, and invasion. © 2018. Published by The Company of Biologists Ltd.

  19. Global, quantitative and dynamic mapping of protein subcellular localization.

    PubMed

    Itzhak, Daniel N; Tyanova, Stefka; Cox, Jürgen; Borner, Georg Hh

    2016-06-09

    Subcellular localization critically influences protein function, and cells control protein localization to regulate biological processes. We have developed and applied Dynamic Organellar Maps, a proteomic method that allows global mapping of protein translocation events. We initially used maps statically to generate a database with localization and absolute copy number information for over 8700 proteins from HeLa cells, approaching comprehensive coverage. All major organelles were resolved, with exceptional prediction accuracy (estimated at >92%). Combining spatial and abundance information yielded an unprecedented quantitative view of HeLa cell anatomy and organellar composition, at the protein level. We subsequently demonstrated the dynamic capabilities of the approach by capturing translocation events following EGF stimulation, which we integrated into a quantitative model. Dynamic Organellar Maps enable the proteome-wide analysis of physiological protein movements, without requiring any reagents specific to the investigated process, and will thus be widely applicable in cell biology.

  20. Tau regulates the subcellular localization of calmodulin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barreda, Elena Gomez de; Avila, Jesus, E-mail: javila@cbm.uam.es; CIBER de Enfermedades Neurodegenerativas, 28031 Madrid

    Highlights: {yields} In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in amore » change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.« less

  1. Synthesis, characterization, and subcellular localization studies of amino acid-substituted porphyrinic pigments

    NASA Astrophysics Data System (ADS)

    van Diggelen, Lisa; Khin, Hnin; Conner, Kip; Shao, Jenny; Sweezy, Margaretta; Jung, Anna H.; Isaac, Meden; Simonis, Ursula

    2009-06-01

    Stopping cancer in its path occurs when photosensitizers (PSs) induce apoptotic cell death after their exposure to light and the subsequent formation of reactive oxygen species. In pursuit of our hypothesis that mitochondrial localizing PSs will enhance the efficacy of the photosensitizing process in photodynamic therapy, since they provoke cell death by inducing apoptosis, we synthesized and characterized tetraphenylporphyrins (TPPs) that are substituted at the paraphenyl positions by two amino acids and two fluoro or hydroxyl groups, respectively. They were prepared according to the Lindsey-modified Adler-Longo methodology using trifluoromethanesulfonylchloride (CF3SO2Cl) as a catalyst instead of trifluoroacetic acid. The use of CF3SO2Cl yielded cleaner products in significantly higher yields. During the synthesis, not only the yields and work-up procedure of the TPPs were improved by using CF3SO2Cl as a catalyst, but also a better means of synthesizing the precursor dipyrromethanes was tested by using indium(III) chloride. Column chromatography, HPLC, and NMR spectroscopy were used to separate and characterize the di-amino acid-dihydroxy, or difluoro-substituted porphyrins and to ascertain their purity before subcellular localization studies were carried out. Studies using androgen-sensitive human prostate adenocarcinoma cells LNCaP revealed that certain amino acid substituted porphyrins that are positively charged in the slightly acidic medium of cancer cells are very useful in shedding light on the targets of TPPs in subcellular organelles of cancer cells. Although some of these compounds have properties of promising photosensitizers by revealing increased water solubility, acidic properties, and innate ability to provoke cell death by apoptosis, the cell killing efficacy of these TPPs is low. This correlates with their subcellular localization. The di-amino acid, di-hydroxy substituted TPPs localize mainly to the lysosomes, whereas the di

  2. Geary autocorrelation and DCCA coefficient: Application to predict apoptosis protein subcellular localization via PSSM

    NASA Astrophysics Data System (ADS)

    Liang, Yunyun; Liu, Sanyang; Zhang, Shengli

    2017-02-01

    Apoptosis is a fundamental process controlling normal tissue homeostasis by regulating a balance between cell proliferation and death. Predicting subcellular location of apoptosis proteins is very helpful for understanding its mechanism of programmed cell death. Prediction of apoptosis protein subcellular location is still a challenging and complicated task, and existing methods mainly based on protein primary sequences. In this paper, we propose a new position-specific scoring matrix (PSSM)-based model by using Geary autocorrelation function and detrended cross-correlation coefficient (DCCA coefficient). Then a 270-dimensional (270D) feature vector is constructed on three widely used datasets: ZD98, ZW225 and CL317, and support vector machine is adopted as classifier. The overall prediction accuracies are significantly improved by rigorous jackknife test. The results show that our model offers a reliable and effective PSSM-based tool for prediction of apoptosis protein subcellular localization.

  3. Global, quantitative and dynamic mapping of protein subcellular localization

    PubMed Central

    Itzhak, Daniel N; Tyanova, Stefka; Cox, Jürgen; Borner, Georg HH

    2016-01-01

    Subcellular localization critically influences protein function, and cells control protein localization to regulate biological processes. We have developed and applied Dynamic Organellar Maps, a proteomic method that allows global mapping of protein translocation events. We initially used maps statically to generate a database with localization and absolute copy number information for over 8700 proteins from HeLa cells, approaching comprehensive coverage. All major organelles were resolved, with exceptional prediction accuracy (estimated at >92%). Combining spatial and abundance information yielded an unprecedented quantitative view of HeLa cell anatomy and organellar composition, at the protein level. We subsequently demonstrated the dynamic capabilities of the approach by capturing translocation events following EGF stimulation, which we integrated into a quantitative model. Dynamic Organellar Maps enable the proteome-wide analysis of physiological protein movements, without requiring any reagents specific to the investigated process, and will thus be widely applicable in cell biology. DOI: http://dx.doi.org/10.7554/eLife.16950.001 PMID:27278775

  4. Subcellular localization of transiently expressed fluorescent fusion proteins.

    PubMed

    Collings, David A

    2013-01-01

    The recent and massive expansion in plant genomics data has generated a large number of gene sequences for which two seemingly simple questions need to be answered: where do the proteins encoded by these genes localize in cells, and what do they do? One widespread approach to answering the localization question has been to use particle bombardment to transiently express unknown proteins tagged with green fluorescent protein (GFP) or its numerous derivatives. Confocal fluorescence microscopy is then used to monitor the localization of the fluorescent protein as it hitches a ride through the cell. The subcellular localization of the fusion protein, if not immediately apparent, can then be determined by comparison to localizations generated by fluorescent protein fusions to known signalling sequences and proteins, or by direct comparison with fluorescent dyes. This review aims to be a tour guide for researchers wanting to travel this hitch-hiker's path, and for reviewers and readers who wish to understand their travel reports. It will describe some of the technology available for visualizing protein localizations, and some of the experimental approaches for optimizing and confirming localizations generated by particle bombardment in onion epidermal cells, the most commonly used experimental system. As the non-conservation of signal sequences in heterologous expression systems such as onion, and consequent mis-targeting of fusion proteins, is always a potential problem, the epidermal cells of the Argenteum mutant of pea are proposed as a model system.

  5. Mutations in the C-terminal region affect subcellular localization of crucian carp herpesvirus (CaHV) GPCR.

    PubMed

    Wang, Jun; Gui, Lang; Chen, Zong-Yan; Zhang, Qi-Ya

    2016-08-01

    G protein-coupled receptors (GPCRs) are known as seven transmembrane domain receptors and consequently can mediate diverse biological functions via regulation of their subcellular localization. Crucian carp herpesvirus (CaHV) was recently isolated from infected fish with acute gill hemorrhage. CaHV GPCR of 349 amino acids (aa) was identified based on amino acid identity. A series of variants with truncation/deletion/substitution mutation in the C-terminal (aa 315-349) were constructed and expressed in fathead minnow (FHM) cells. The roles of three key C-terminal regions in subcellular localization of CaHV GPCR were determined. Lysine-315 (K-315) directed the aggregation of the protein preferentially at the nuclear side. Predicted N-myristoylation site (GGGWTR, aa 335-340) was responsible for punctate distribution in periplasm or throughout the cytoplasm. Predicted phosphorylation site (SSR, aa 327-329) and GGGWTR together determined the punctate distribution in cytoplasm. Detection of organelles localization by specific markers showed that the protein retaining K-315 colocalized with the Golgi apparatus. These experiments provided first evidence that different mutations of CaHV GPCR C-terminals have different affects on the subcellular localization of fish herpesvirus-encoded GPCRs. The study provided valuable information and new insights into the precise interactions between herpesvirus and fish cells, and could also provide useful targets for antiviral agents in aquaculture.

  6. Characterization of two geraniol synthases from Valeriana officinalis and Lippia dulcis: similar activity but difference in subcellular localization.

    PubMed

    Dong, Lemeng; Miettinen, Karel; Goedbloed, Miriam; Verstappen, Francel W A; Voster, Alessandra; Jongsma, Maarten A; Memelink, Johan; van der Krol, Sander; Bouwmeester, Harro J

    2013-11-01

    Two geraniol synthases (GES), from Valeriana officinalis (VoGES) and Lippia dulcis (LdGES), were isolated and were shown to have geraniol biosynthetic activity with Km values of 32 µM and 51 µM for GPP, respectively, upon expression in Escherichia coli. The in planta enzymatic activity and sub-cellular localization of VoGES and LdGES were characterized in stable transformed tobacco and using transient expression in Nicotiana benthamiana. Transgenic tobacco expressing VoGES or LdGES accumulate geraniol, oxidized geraniol compounds like geranial, geranic acid and hexose conjugates of these compounds to similar levels. Geraniol emission of leaves was lower than that of flowers, which could be related to higher levels of competing geraniol-conjugating activities in leaves. GFP-fusions of the two GES proteins show that VoGES resides (as expected) predominantly in the plastids, while LdGES import into to the plastid is clearly impaired compared to that of VoGES, resulting in both cytosolic and plastidic localization. Geraniol production by VoGES and LdGES in N. benthamiana was nonetheless very similar. Expression of a truncated version of VoGES or LdGES (cytosolic targeting) resulted in the accumulation of 30% less geraniol glycosides than with the plastid targeted VoGES and LdGES, suggesting that the substrate geranyl diphosphate is readily available, both in the plastids as well as in the cytosol. The potential role of GES in the engineering of the TIA pathway in heterologous hosts is discussed. © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Subcellular localization, mobility, and kinetic activity of glucokinase in glucose-responsive insulin-secreting cells.

    PubMed

    Stubbs, M; Aiston, S; Agius, L

    2000-12-01

    We investigated the subcellular localization, mobility, and activity of glucokinase in MIN6 cells, a glucose-responsive insulin-secreting beta-cell line. Glucokinase is present in the cytoplasm and a vesicular/granule compartment that is partially colocalized with insulin granules. The granular staining of glucokinase is preserved after permeabilization of the cells with digitonin. There was no evidence for changes in distribution of glucokinase between the cytoplasm and the granule compartment during incubation of the cells with glucose. The rate of release of glucokinase and of phosphoglucoisomerase from digitonin-permeabilized cells was slower when cells were incubated at an elevated glucose concentration (S0.5 approximately 15 mmol/l). This effect of glucose was counteracted by competitive inhibitors of glucokinase (5-thioglucose and mannoheptulose) but was unaffected by fructose analogs and may be due to changes in cell shape or conformation of the cytoskeleton that are secondary to glucose metabolism. Based on the similar release of glucokinase and phosphoglucoisomerase, we found no evidence for specific binding of cytoplasmic digitonin-extractable glucokinase. The affinity of beta-cells for glucose is slightly lower than that in cell extracts and, unlike that in hepatocytes, is unaffected by fructose, tagatose, or a high-K+ medium, which is consistent with the lack of change in glucokinase distribution or release. We conclude that glucokinase is present in two locations, cytoplasm and the granular compartment, and that it does not translocate between them. This conclusion is consistent with the lack of adaptive changes in the glucose phosphorylation affinity. The glucokinase activity associated with the insulin granules may have a role in either direct or indirect coupling between glucose phosphorylation and insulin secretion.

  8. Expression, subcellular localization and regulation of sigma receptor in retinal Müller cells

    PubMed Central

    Jiang, Guoliang; Mysona, Barbara; Dun, Ying; Gnana-Prakasam, Jaya P.; Pabla, Navjotsin; Li, Weiguo; Dong, Zheng; Ganapathy, Vadivel; Smith, Sylvia B.

    2013-01-01

    Purpose Sigma receptors (σR) are non-opioid, non-phencyclidine binding sites with robust neuroprotective properties. σR1 is expressed in brain oligodendrocytes, but its expression and binding capacity have not been analyzed in retinal glial cells. This study examined the expression, subcellular localization, binding activity and regulation of σR1 in retinal Müller cells. Methods Primary mouse Müller cells (1°MC) were analyzed by RT-PCR, immunoblotting and immunocytochemistry for the expression of σR1 and data were compared to the rat Müller cell line, rMC-1 and rat ganglion cell line, RGC-5. Confocal microscopy was used to determine the subcellular σR1 location in 1°MC. Membranes prepared from these cells were used for binding assays using [3H]-pentazocine (PTZ). The kinetics of binding, the ability of various σR1 ligands to compete with σR1 binding and the effects of nitric oxide (NO) and reactive oxygen species (ROS) donors on binding were examined. Results σR1 is expressed in 1°MC and is localized to the nuclear and endoplasmic reticulum membranes. Binding assays showed that in 1°MCs, rMC-1 and RGC-5 cells, the binding of PTZ was saturable. [3H]-PTZ bound with high affinity in RGC-5 and rMC-1 cells and the binding was similarly robust in 1°MC. Competition studies showed marked inhibition of [3H]-PTZ binding in the presence of σR1-specific ligands. Incubation of cells with NO and ROS donors markedly increased σR1 binding activity. Conclusions Müller cells express σR1 and demonstrate robust σR1 binding activity, which is inhibited by σR1 ligands and is stimulated during oxidative stress. The potential of Müller cells to bind σR1 ligands may prove beneficial in retinal degenerative diseases such as diabetic retinopathy. PMID:17122151

  9. Expression and sub-cellular localization of an epigenetic regulator, co-activator arginine methyltransferase 1 (CARM1), is associated with specific breast cancer subtypes and ethnicity

    PubMed Central

    2013-01-01

    Background Co-Activator Arginine Methyltransferase 1(CARM1) is an Estrogen Receptor (ER) cofactor that remodels chromatin for gene regulation via methylation of Histone3. We investigated CARM1 levels and localization across breast cancer tumors in a cohort of patients of either European or African ancestry. Methods We analyzed CARM1 levels using tissue microarrays with over 800 histological samples from 549 female cancer patients from the US and Nigeria, Africa. We assessed associations between CARM1 expression localized to the nucleus and cytoplasm for 11 distinct variables, including; ER status, Progesterone Receptor status, molecular subtypes, ethnicity, HER2+ status, other clinical variables and survival. Results We found that levels of cytoplasmic CARM1 are distinct among tumor sub-types and increased levels are associated with ER-negative (ER-) status. Higher nuclear CARM1 levels are associated with HER2 receptor status. EGFR expression also correlates with localization of CARM1 into the cytoplasm. This suggests there are distinct functions of CARM1 among molecular tumor types. Our data reveals a basal-like subtype association with CARM1, possibly due to expression of Epidermal Growth Factor Receptor (EGFR). Lastly, increased cytoplasmic CARM1, relative to nuclear levels, appear to be associated with self-identified African ethnicity and this result is being further investigated using quantified genetic ancestry measures. Conclusions Although it is known to be an ER cofactor in breast cancer, CARM1 expression levels are independent of ER. CARM1 has distinct functions among molecular subtypes, as is indicative of its sub-cellular localization and it may function in subtype etiology. These sub-cellular localization patterns, indicate a novel role beyond its ER cofactor function in breast cancer. Differential localization among ethnic groups may be due to ancestry-specific polymorphisms which alter the gene product. PMID:23663560

  10. pLoc_bal-mGpos: Predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC.

    PubMed

    Xiao, Xuan; Cheng, Xiang; Chen, Genqiang; Mao, Qi; Chou, Kuo-Chen

    2018-05-26

    Knowledge of protein subcellular localization is vitally important for both basic research and drug development. With the avalanche of protein sequences emerging in the post-genomic age, it is highly desired to develop computational tools for timely and effectively identifying their subcellular localization purely based on the sequence information alone. Recently, a predictor called "pLoc-mGpos" was developed for identifying the subcellular localization of Gram-positive bacterial proteins. Its performance is overwhelmingly better than that of the other predictors for the same purpose, particularly in dealing with multi-label systems in which some proteins, called "multiplex proteins", may simultaneously occur in two or more subcellular locations. Although it is indeed a very powerful predictor, more efforts are definitely needed to further improve it. This is because pLoc-mGpos was trained by an extremely skewed dataset in which some subset (subcellular location) was over 11 times the size of the other subsets. Accordingly, it cannot avoid the bias consequence caused by such an uneven training dataset. To alleviate such bias consequence, we have developed a new and bias-reducing predictor called pLoc_bal-mGpos by quasi-balancing the training dataset. Rigorous target jackknife tests on exactly the same experiment-confirmed dataset have indicated that the proposed new predictor is remarkably superior to pLoc-mGpos, the existing state-of-the-art predictor in identifying the subcellular localization of Gram-positive bacterial proteins. To maximize the convenience for most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc_bal-mGpos/, by which users can easily get their desired results without the need to go through the detailed mathematics. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Protein Subcellular Localization with Gaussian Kernel Discriminant Analysis and Its Kernel Parameter Selection.

    PubMed

    Wang, Shunfang; Nie, Bing; Yue, Kun; Fei, Yu; Li, Wenjia; Xu, Dongshu

    2017-12-15

    Kernel discriminant analysis (KDA) is a dimension reduction and classification algorithm based on nonlinear kernel trick, which can be novelly used to treat high-dimensional and complex biological data before undergoing classification processes such as protein subcellular localization. Kernel parameters make a great impact on the performance of the KDA model. Specifically, for KDA with the popular Gaussian kernel, to select the scale parameter is still a challenging problem. Thus, this paper introduces the KDA method and proposes a new method for Gaussian kernel parameter selection depending on the fact that the differences between reconstruction errors of edge normal samples and those of interior normal samples should be maximized for certain suitable kernel parameters. Experiments with various standard data sets of protein subcellular localization show that the overall accuracy of protein classification prediction with KDA is much higher than that without KDA. Meanwhile, the kernel parameter of KDA has a great impact on the efficiency, and the proposed method can produce an optimum parameter, which makes the new algorithm not only perform as effectively as the traditional ones, but also reduce the computational time and thus improve efficiency.

  12. Specific primary sequence requirements for Aurora B kinase-mediated phosphorylation and subcellular localization of TMAP during mitosis.

    PubMed

    Kim, Hyun-Jun; Kwon, Hye-Rim; Bae, Chang-Dae; Park, Joobae; Hong, Kyung U

    2010-05-15

    During mitosis, regulation of protein structures and functions by phosphorylation plays critical roles in orchestrating a series of complex events essential for the cell division process. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a novel player in spindle assembly and chromosome segregation. We have previously reported that TMAP is phosphorylated at multiple residues specifically during mitosis. However, the mechanisms and functional importance of phosphorylation at most of the sites identified are currently unknown. Here, we report that TMAP is a novel substrate of the Aurora B kinase. Ser627 of TMAP was specifically phosphorylated by Aurora B both in vitro and in vivo. Ser627 and neighboring conserved residues were strictly required for efficient phosphorylation of TMAP by Aurora B, as even minor amino acid substitutions of the phosphorylation motif significantly diminished the efficiency of the substrate phosphorylation. Nearly all mutations at the phosphorylation motif had dramatic effects on the subcellular localization of TMAP. Instead of being localized to the chromosome region during late mitosis, the mutants remained associated with microtubules and centrosomes throughout mitosis. However, the changes in the subcellular localization of these mutants could not be completely explained by the phosphorylation status on Ser627. Our findings suggest that the motif surrounding Ser627 ((625) RRSRRL (630)) is a critical part of a functionally important sequence motif which not only governs the kinase-substrate recognition, but also regulates the subcellular localization of TMAP during mitosis.

  13. Different Subcellular Localization of ALCAM Molecules in Neuroblastoma: Association with Relapse

    PubMed Central

    Corrias, Maria Valeria; Gambini, Claudio; Gregorio, Andrea; Croce, Michela; Barisione, Gaia; Cossu, Claudia; Rossello, Armando; Ferrini, Silvano; Fabbi, Marina

    2010-01-01

    Background: The Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD), involved in nervous system development, has been linked to tumor progression and metastasis in several tumors. No information is available on ALCAM expression in neuroblastoma, a childhood neoplasia originating from the sympathetic nervous system. Methods: ALCAM expression was analysed by immunofluorescence and immunohistochemistry on differentiated neuroblastoma cell lines and on archival specimens of stroma-poor, not MYCN amplified, resectable neuroblastoma tumors, respectively. Results: ALCAM is variously expressed in neuroblastoma cell lines, is shed by metalloproteases and is cleaved by ADAM17/TACE in vitro. ALCAM is expressed in neuroblastoma primary tumors with diverse patterns of subcellular localization and is highly expressed in the neuropil area in a subgroup of cases. Tumor specimens showing high expression of ALCAM at the membrane of the neuroblast body or low levels in the neuropil area are associated with relapse (P = 0.044 and P < 0.0001, respectively). In vitro differentiated neuroblastoma cells show strong ALCAM expression on neurites, suggesting that ALCAM expression in the neuropil is related to a differentiated phenotype. Conclusions: Assessment of ALCAM localization by immunohistochemistry may help to identify patients who, in the absence of negative prognostic factors, are at risk of relapse and require a more careful follow-up. PMID:20208136

  14. Correlation of N-myc downstream-regulated gene 1 subcellular localization and lymph node metastases of colorectal neoplasms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yan; Lv, Liyang; Du, Juan

    2013-09-20

    Highlights: •We clarified NDRG1 subcellular location in colorectal cancer. •We found the changes of NDRG1 distribution during colorectal cancer progression. •We clarified the correlation between NDRG1 distribution and lymph node metastasis. •It is possible that NDRG1 subcellular localization may determine its function. •Maybe NDRG1 is valuable early diagnostic markers for metastasis. -- Abstract: In colorectal neoplasms, N-myc downstream-regulated gene 1 (NDRG1) is a primarily cytoplasmic protein, but it is also expressed on the cell membrane and in the nucleus. NDRG1 is involved in various stages of tumor development in colorectal cancer, and it is possible that the different subcellular localizationsmore » may determine the function of NDRG1 protein. Here, we attempt to clarify the characteristics of NDRG1 protein subcellular localization during the progression of colorectal cancer. We examined NDRG1 expression in 49 colorectal cancer patients in cancerous, non-cancerous, and corresponding lymph node tissues. Cytoplasmic and membrane NDRG1 expression was higher in the lymph nodes with metastases than in those without metastases (P < 0.01). Nuclear NDRG1 expression in colorectal neoplasms was significantly higher than in the normal colorectal mucosa, and yet the normal colorectal mucosa showed no nuclear expression. Furthermore, our results showed higher cytoplasmic NDRG1 expression was better for differentiation, and higher membrane NDRG1 expression resulted in a greater possibility of lymph node metastasis. These data indicate that a certain relationship between the cytoplasmic and membrane expression of NDRG1 in lymph nodes exists with lymph node metastasis. NDRG1 expression may translocate from the membrane of the colorectal cancer cells to the nucleus, where it is involved in lymph node metastasis. Combination analysis of NDRG1 subcellular expression and clinical variables will help predict the incidence of lymph node metastasis.« less

  15. Dynamic Subcellular Localization of Iron during Embryo Development in Brassicaceae Seeds

    PubMed Central

    Ibeas, Miguel A.; Grant-Grant, Susana; Navarro, Nathalia; Perez, M. F.; Roschzttardtz, Hannetz

    2017-01-01

    Iron is an essential micronutrient for plants. Little is know about how iron is loaded in embryo during seed development. In this article we used Perls/DAB staining in order to reveal iron localization at the cellular and subcellular levels in different Brassicaceae seed species. In dry seeds of Brassica napus, Nasturtium officinale, Lepidium sativum, Camelina sativa, and Brassica oleracea iron localizes in vacuoles of cells surrounding provasculature in cotyledons and hypocotyl. Using B. napus and N. officinale as model plants we determined where iron localizes during seed development. Our results indicate that iron is not detectable by Perls/DAB staining in heart stage embryo cells. Interestingly, at torpedo development stage iron localizes in nuclei of different cells type, including integument, free cell endosperm and almost all embryo cells. Later, iron is detected in cytoplasmic structures in different embryo cell types. Our results indicate that iron accumulates in nuclei in specific stages of embryo maturation before to be localized in vacuoles of cells surrounding provasculature in mature seeds. PMID:29312417

  16. Astrocyte-neuron crosstalk regulates the expression and subcellular localization of carbohydrate metabolism enzymes.

    PubMed

    Mamczur, Piotr; Borsuk, Borys; Paszko, Jadwiga; Sas, Zuzanna; Mozrzymas, Jerzy; Wiśniewski, Jacek R; Gizak, Agnieszka; Rakus, Dariusz

    2015-02-01

    Astrocytes releasing glucose- and/or glycogen-derived lactate and glutamine play a crucial role in shaping neuronal function and plasticity. Little is known, however, how metabolic functions of astrocytes, e.g., their ability to degrade glucosyl units, are affected by the presence of neurons. To address this issue we carried out experiments which demonstrated that co-culturing of rat hippocampal astrocytes with neurons significantly elevates the level of mRNA and protein for crucial enzymes of glycolysis (phosphofructokinase, aldolase, and pyruvate kinase), glycogen metabolism (glycogen synthase and glycogen phosphorylase), and glutamine synthetase in astrocytes. Simultaneously, the decrease of the capability of neurons to metabolize glucose and glutamine is observed. We provide evidence that neurons alter the expression of astrocytic enzymes by secretion of as yet unknown molecule(s) into the extracellular fluid. Moreover, our data demonstrate that almost all studied enzymes may localize in astrocytic nuclei and this localization is affected by the co-culturing with neurons which also reduces proliferative activity of astrocytes. Our results provide the first experimental evidence that the astrocyte-neuron crosstalk substantially affects the expression of basal metabolic enzymes in the both types of cells and influences their subcellular localization in astrocytes. © 2014 Wiley Periodicals, Inc.

  17. Subcellular localization of the Snf1 kinase is regulated by specific β subunits and a novel glucose signaling mechanism

    PubMed Central

    Vincent, Olivier; Townley, Robert; Kuchin, Sergei; Carlson, Marian

    2001-01-01

    The Snf1/AMP-activated protein kinase family has broad roles in transcriptional, metabolic, and developmental regulation in response to stress. In Saccharomyces cerevisiae, Snf1 is required for the response to glucose limitation. Snf1 kinase complexes contain the α (catalytic) subunit Snf1, one of the three related β subunits Gal83, Sip1, or Sip2, and the γ subunit Snf4. We present evidence that the β subunits regulate the subcellular localization of the Snf1 kinase. Green fluorescent protein fusions to Gal83, Sip1, and Sip2 show different patterns of localization to the nucleus, vacuole, and/or cytoplasm. We show that Gal83 directs Snf1 to the nucleus in a glucose-regulated manner. We further identify a novel signaling pathway that controls this nuclear localization in response to glucose phosphorylation. This pathway is distinct from the glucose signaling pathway that inhibits Snf1 kinase activity and responds not only to glucose but also to galactose and sucrose. Such independent regulation of the localization and the activity of the Snf1 kinase, combined with the distinct localization of kinases containing different β subunits, affords versatility in regulating physiological responses. PMID:11331606

  18. Proteome-wide identification of predominant subcellular protein localizations in a bacterial model organism.

    PubMed

    Stekhoven, Daniel J; Omasits, Ulrich; Quebatte, Maxime; Dehio, Christoph; Ahrens, Christian H

    2014-03-17

    Proteomics data provide unique insights into biological systems, including the predominant subcellular localization (SCL) of proteins, which can reveal important clues about their functions. Here we analyzed data of a complete prokaryotic proteome expressed under two conditions mimicking interaction of the emerging pathogen Bartonella henselae with its mammalian host. Normalized spectral count data from cytoplasmic, total membrane, inner and outer membrane fractions allowed us to identify the predominant SCL for 82% of the identified proteins. The spectral count proportion of total membrane versus cytoplasmic fractions indicated the propensity of cytoplasmic proteins to co-fractionate with the inner membrane, and enabled us to distinguish cytoplasmic, peripheral inner membrane and bona fide inner membrane proteins. Principal component analysis and k-nearest neighbor classification training on selected marker proteins or predominantly localized proteins, allowed us to determine an extensive catalog of at least 74 expressed outer membrane proteins, and to extend the SCL assignment to 94% of the identified proteins, including 18% where in silico methods gave no prediction. Suitable experimental proteomics data combined with straightforward computational approaches can thus identify the predominant SCL on a proteome-wide scale. Finally, we present a conceptual approach to identify proteins potentially changing their SCL in a condition-dependent fashion. The work presented here describes the first prokaryotic proteome-wide subcellular localization (SCL) dataset for the emerging pathogen B. henselae (Bhen). The study indicates that suitable subcellular fractionation experiments combined with straight-forward computational analysis approaches assessing the proportion of spectral counts observed in different subcellular fractions are powerful for determining the predominant SCL of a large percentage of the experimentally observed proteins. This includes numerous cases

  19. Studies on the turnover and subcellular localization of membrane gangliosides in cultured neuroblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, J.T.; Cook, H.W.; Spence, M.W.

    1985-03-01

    To compare the subcellular distribution of endogenously synthesized and exogenous gangliosides, cultured murine neuroblastoma cells (N1E-115) were incubated in suspension for 22 h in the presence of D-(1-/sup 3/H)galactose or (/sup 3/H)GM1 ganglioside, transferred to culture medium containing no radioisotope for periods of up to 72 hr, and then subjected to subcellular fractionation and analysis of lipid-sialic acid and radiolabeled ganglioside levels. The results indicated that GM2 and GM3 were the principal gangliosides in the cells with only traces of GM1 and small amounts of disialogangliosides present. About 50% of the endogenously synthesized radiolabelled ganglioside in the four major subcellularmore » membrane fractions studied was recovered from plasma membrane and only 10-15% from the crude mitochondrial membrane fraction. In contrast, 45% of the exogenous (/sup 3/H)GM1 taken up into the same subcellular membrane fractions was recovered from the crude mitochondrial fraction; less than 15% was localized in the plasma membrane fraction. The results are similar to those obtained from previously reported studies on membrane phospholipid turnover. They suggest that exogenous GM1 ganglioside, like exogenous phosphatidylcholine, does not intermix freely with any quantitatively major pool of endogenous membrane lipid.« less

  20. Quantitative Analysis of Subcellular Distribution of the SUMO Conjugation System by Confocal Microscopy Imaging.

    PubMed

    Mas, Abraham; Amenós, Montse; Lois, L Maria

    2016-01-01

    Different studies point to an enrichment in SUMO conjugation in the cell nucleus, although non-nuclear SUMO targets also exist. In general, the study of subcellular localization of proteins is essential for understanding their function within a cell. Fluorescence microscopy is a powerful tool for studying subcellular protein partitioning in living cells, since fluorescent proteins can be fused to proteins of interest to determine their localization. Subcellular distribution of proteins can be influenced by binding to other biomolecules and by posttranslational modifications. Sometimes these changes affect only a portion of the protein pool or have a partial effect, and a quantitative evaluation of fluorescence images is required to identify protein redistribution among subcellular compartments. In order to obtain accurate data about the relative subcellular distribution of SUMO conjugation machinery members, and to identify the molecular determinants involved in their localization, we have applied quantitative confocal microscopy imaging. In this chapter, we will describe the fluorescent protein fusions used in these experiments, and how to measure, evaluate, and compare average fluorescence intensities in cellular compartments by image-based analysis. We show the distribution of some components of the Arabidopsis SUMOylation machinery in epidermal onion cells and how they change their distribution in the presence of interacting partners or even when its activity is affected.

  1. Bioimaging techniques for subcellular localization of plant hemoglobins and measurement of hemoglobin-dependent nitric oxide scavenging in planta.

    PubMed

    Hebelstrup, Kim H; Østergaard-Jensen, Erik; Hill, Robert D

    2008-01-01

    Plant hemoglobins are ubiquitous in all plant families. They are expressed at low levels in specific tissues. Several studies have established that plant hemoglobins are scavengers of nitric oxide (NO) and that varying the endogenous level of hemoglobin in plant cells negatively modulates bioactivity of NO generated under hypoxic conditions or during cellular signaling. Earlier methods for determination of hemoglobin-dependent scavenging in planta were based on measuring activity in whole plants or organs. Plant hemoglobins do not contain specific organelle localization signals; however, earlier reports on plant hemoglobin have demonstrated either cytosolic or nuclear localization, depending on the method or cell type investigated. We have developed two bioimaging techniques: one for visualization of hemoglobin-catalyzed scavenging of NO in specific cells and another for visualization of subcellular localization of green fluorescent protein-tagged plant hemoglobins in transformed Arabidopsis thaliana plants.

  2. Subcellular localization and expression pattern of the neurofibromatosis type 2 protein merlin/schwannomin.

    PubMed

    Schmucker, B; Ballhausen, W G; Kressel, M

    1997-01-01

    To elucidate the physiological function of the neurofibromatosis type 2 (NF2) tumor suppressor protein merlin/schwannomin, we studied the expression pattern and subcellular localization in human fibroblasts by Western blot analyses and immunofluorescence using a polyclonal antibody raised against the C-terminus of merlin. Three of the six merlin isoforms identified in this study (75 kDa, 58 kDa, 45 kDa) have been reported earlier and can be explained by alternative splicing. In addition, we detected higher molecular weight bands of about 110 kDa, 100 kDa and 84 kDa. Although the merlin bands of 100 kDa and 110 kDa may represent homo- or heterodimers, oligomerization due to formation of disulfide bonds was excluded. Furthermore, the isoforms of 84 kDa and 58 kDa were quantitatively extractable in Lubrol WX, indicating a localization in or close to the plasma membrane. The 45 kDa band, however, was not soluble in Lubrol WX compatible with a localization of this NF2 isoform in the endoplasmic reticulum. Applying confocal laser scanning microscopy, merlin was shown to be located in four subcellular compartments: (i) perinuclear in a compartment resembling endoplasmic reticulum, (ii) in ruffling membranes and at the leading edges, (iii) in filopodia, and (iv) at cell/substrate adhesion points. Codistribution of merlin and F-actin filaments was found in filopodia, ruffling membranes and at the insertion points of stress fibers at cell/substrate adhesion junctions as shown by phalloidin-rhodamine staining. Double immunofluorescence analyses of merlin and moesin revealed a colocalization in filopodia and ruffling membranes. The localization of merlin in the actin-rich cortical cytoskeleton corresponds to the ezrin-radixin-moesin family of proteins suggesting the NF2 protein to contribute to the regulation of cell growth by interaction with cytoskeleton-associated proteins.

  3. LOCSVMPSI: a web server for subcellular localization of eukaryotic proteins using SVM and profile of PSI-BLAST

    PubMed Central

    Xie, Dan; Li, Ao; Wang, Minghui; Fan, Zhewen; Feng, Huanqing

    2005-01-01

    Subcellular location of a protein is one of the key functional characters as proteins must be localized correctly at the subcellular level to have normal biological function. In this paper, a novel method named LOCSVMPSI has been introduced, which is based on the support vector machine (SVM) and the position-specific scoring matrix generated from profiles of PSI-BLAST. With a jackknife test on the RH2427 data set, LOCSVMPSI achieved a high overall prediction accuracy of 90.2%, which is higher than the prediction results by SubLoc and ESLpred on this data set. In addition, prediction performance of LOCSVMPSI was evaluated with 5-fold cross validation test on the PK7579 data set and the prediction results were consistently better than the previous method based on several SVMs using composition of both amino acids and amino acid pairs. Further test on the SWISSPROT new-unique data set showed that LOCSVMPSI also performed better than some widely used prediction methods, such as PSORTII, TargetP and LOCnet. All these results indicate that LOCSVMPSI is a powerful tool for the prediction of eukaryotic protein subcellular localization. An online web server (current version is 1.3) based on this method has been developed and is freely available to both academic and commercial users, which can be accessed by at . PMID:15980436

  4. Subcellular localization of the Hpa RxLR effector repertoire identifies a tonoplast-associated protein HaRxL17 that confers enhanced plant susceptibility.

    PubMed

    Caillaud, Marie-Cécile; Piquerez, Sophie J M; Fabro, Georgina; Steinbrenner, Jens; Ishaque, Naveed; Beynon, Jim; Jones, Jonathan D G

    2012-01-01

    Filamentous phytopathogens form sophisticated intracellular feeding structures called haustoria in plant cells. Pathogen effectors are likely to play a role in the establishment and maintenance of haustoria in addition to their better-characterized role in suppressing plant defence. However, the specific mechanisms by which these effectors promote virulence remain unclear. To address this question, we examined changes in subcellular architecture using live-cell imaging during the compatible interaction between the oomycete Hyaloperonospora arabidopsidis (Hpa) and its host Arabidopsis. We monitored host-cell restructuring of subcellular compartments within plant mesophyll cells during haustoria ontogenesis. Live-cell imaging highlighted rearrangements in plant cell membranes upon infection, in particular to the tonoplast, which was located close to the extra-haustorial membrane surrounding the haustorium. We also investigated the subcellular localization patterns of Hpa RxLR effector candidates (HaRxLs) in planta. We identified two major classes of HaRxL effector based on localization: nuclear-localized effectors and membrane-localized effectors. Further, we identified a single effector, HaRxL17, that associated with the tonoplast in uninfected cells and with membranes around haustoria, probably the extra-haustorial membrane, in infected cells. Functional analysis of selected effector candidates in planta revealed that HaRxL17 enhances plant susceptibility. The roles of subcellular changes and effector localization, with specific reference to the potential role of HaRxL17 in plant cell membrane trafficking, are discussed with respect to Hpa virulence. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  5. The SubCons webserver: A user friendly web interface for state-of-the-art subcellular localization prediction.

    PubMed

    Salvatore, M; Shu, N; Elofsson, A

    2018-01-01

    SubCons is a recently developed method that predicts the subcellular localization of a protein. It combines predictions from four predictors using a Random Forest classifier. Here, we present the user-friendly web-interface implementation of SubCons. Starting from a protein sequence, the server rapidly predicts the subcellular localizations of an individual protein. In addition, the server accepts the submission of sets of proteins either by uploading the files or programmatically by using command line WSDL API scripts. This makes SubCons ideal for proteome wide analyses allowing the user to scan a whole proteome in few days. From the web page, it is also possible to download precalculated predictions for several eukaryotic organisms. To evaluate the performance of SubCons we present a benchmark of LocTree3 and SubCons using two recent mass-spectrometry based datasets of mouse and drosophila proteins. The server is available at http://subcons.bioinfo.se/. © 2017 The Protein Society.

  6. Systemic distribution, subcellular localization and differential expression of sphingosine-1-phosphate receptors in benign and malignant human tissues

    PubMed Central

    Wang, Chunyi; Mao, Jinghe; Redfield, Samantha; Mo, Yinyuan; Lage, Janice M.; Zhou, Xinchun

    2014-01-01

    Aims Five sphingosine-1-phosphate receptors (S1PR): S1PR1, S1PR2, S1PR3, S1PR4 and S1PR5 (S1PR1-5) have been shown to be involved in the proliferation and progression of various cancers. However, none of the S1PRs have been systemically investigated. In this study, we performed immunohistochemistry (IHC) for S1PR1-S1PR5 on different tissues, in order to simultaneously determine the systemic distribution, subcellular localization and expression level of all five S1PRs. Methods We constructed tissue microarrays (TMAs) from 384 formalin-fixed paraffin-embedded (FFPE) blocks containing 183 benign and 201 malignant tissues from 34 human organs/systems. Then we performed IHC for all five S1PRs simultaneously on these TMA slides. The distribution, subcellular localization and expression of each S1PR were determined for each tissue. The data were then compared in benign and malignant tissues from the same organ/tissue using the student t-test. In order to reconfirm the subcellular localization of each S1PR as determined by IHC, immunocytochemistry (ICC) was performed on several malignant cell lines. Results We found that all five S1PRs are widely distributed in multiple human organs/systems. All S1PRs are expressed in both the cytoplasm and nucleus, except S1PR3, whose IHC signals are only seen in the nucleus. Interestingly, the S1PRs are rarely expressed on cellular membranes. Each S1PR is unique in its organ distribution, subcellular localization and expression level in benign and malignant tissues. Among the five S1PRs, S1PR5 has the highest expression level (either in nucleus or cytoplasm), with S1PR1, 3, 2 and 4 following in descending order. Strong nuclear expression was seen for S1PR1, S1PR3 and S1PR5, whereas S1PR2 and S1PR4 show only weak staining. Four organs/tissues (adrenal gland, liver, brain and colon) show significant differences in IHC scores for the multiple S1PRs (nuclear and/or cytoplasmic), nine (stomach, lymphoid tissues, lung, ovary, cervix, pancreas

  7. Src family kinase expression and subcellular localization in macrophages: implications for their role in CSF-1-induced macrophage migration.

    PubMed

    Dwyer, Amy R; Mouchemore, Kellie A; Steer, James H; Sunderland, Andrew J; Sampaio, Natalia G; Greenland, Eloise L; Joyce, David A; Pixley, Fiona J

    2016-07-01

    A major role of colony-stimulating factor-1 is to stimulate the differentiation of mononuclear phagocytic lineage cells into adherent, motile, mature macrophages. The colony-stimulating factor-1 receptor transduces colony-stimulating factor-1 signaling, and we have shown previously that phosphatidylinositol 3-kinase p110δ is a critical mediator of colony-stimulating factor-1-stimulated motility through the colony-stimulating factor-1 receptor pY721 motif. Src family kinases are also implicated in the regulation of macrophage motility and in colony-stimulating factor-1 receptor signaling, although functional redundancy of the multiple SFKs expressed in macrophages makes it challenging to delineate their specific functions. We report a comprehensive analysis of individual Src family kinase expression in macrophage cell lines and primary macrophages and demonstrate colony-stimulating factor-1-induced changes in Src family kinase subcellular localization, which provides clues to their distinct and redundant functions in macrophages. Moreover, expression of individual Src family kinases is both species specific and dependent on colony-stimulating factor-1-induced macrophage differentiation. Hck associated with the activated colony-stimulating factor-1 receptor, whereas Lyn associated with the receptor in a constitutive manner. Consistent with this, inhibitor studies revealed that Src family kinases were important for both colony-stimulating factor-1 receptor activation and colony-stimulating factor-1-induced macrophage spreading, motility, and invasion. Distinct colony-stimulating factor-1-induced changes in the subcellular localization of individual SFKs suggest specific roles for these Src family kinases in the macrophage response to colony-stimulating factor-1. © Society for Leukocyte Biology.

  8. HybridGO-Loc: mining hybrid features on gene ontology for predicting subcellular localization of multi-location proteins.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2014-01-01

    Protein subcellular localization prediction, as an essential step to elucidate the functions in vivo of proteins and identify drugs targets, has been extensively studied in previous decades. Instead of only determining subcellular localization of single-label proteins, recent studies have focused on predicting both single- and multi-location proteins. Computational methods based on Gene Ontology (GO) have been demonstrated to be superior to methods based on other features. However, existing GO-based methods focus on the occurrences of GO terms and disregard their relationships. This paper proposes a multi-label subcellular-localization predictor, namely HybridGO-Loc, that leverages not only the GO term occurrences but also the inter-term relationships. This is achieved by hybridizing the GO frequencies of occurrences and the semantic similarity between GO terms. Given a protein, a set of GO terms are retrieved by searching against the gene ontology database, using the accession numbers of homologous proteins obtained via BLAST search as the keys. The frequency of GO occurrences and semantic similarity (SS) between GO terms are used to formulate frequency vectors and semantic similarity vectors, respectively, which are subsequently hybridized to construct fusion vectors. An adaptive-decision based multi-label support vector machine (SVM) classifier is proposed to classify the fusion vectors. Experimental results based on recent benchmark datasets and a new dataset containing novel proteins show that the proposed hybrid-feature predictor significantly outperforms predictors based on individual GO features as well as other state-of-the-art predictors. For readers' convenience, the HybridGO-Loc server, which is for predicting virus or plant proteins, is available online at http://bioinfo.eie.polyu.edu.hk/HybridGoServer/.

  9. Prognostic Subcellular Notch2, Notch3 and Jagged1 Localization Patterns in Early Triple-negative Breast Cancer.

    PubMed

    Strati, Titika-Marina; Kotoula, Vassiliki; Kostopoulos, Ioannis; Manousou, Kyriaki; Papadimitriou, Christos; Lazaridis, Georgios; Lakis, Sotiris; Pentheroudakis, George; Pectasides, Dimitrios; Pazarli, Elissavet; Christodoulou, Christos; Razis, Evangelia; Pavlakis, Kitty; Magkou, Christina; Chrisafi, Sofia; Aravantinos, Gerasimos; Bafaloukos, Dimitrios; Papakostas, Pavlos; Gogas, Helen; Kalogeras, Konstantine T; Fountzilas, George

    2017-05-01

    The Notch pathway has been implicated in triple-negative breast cancer (TNBC). Herein, we studied the subcellular localization of the less investigated Notch2 and Notch3 and that of the Jagged1 (Jag1) ligand in patients with operable TNBC. We applied immunohistochemistry for Notch2, Notch3 and Jag1 in 333 tumors from TNBC patients treated with adjuvant anthracycline-based chemotherapy. We evaluated cytoplasmic (c), membranous (m) and nuclear (n) protein localization. c-Notch2 (35% positive tumors), c-Notch3 (63%), c-Jag1 (43%), m-Notch3 (23%) and n-Jag1 (17%) were analyzed individually and by using hierarchical clustering for prognostic evaluation. Upon multivariate analysis, compared to high m-Notch3 in the absence of n-Jag1 (cluster 4), all other marker combinations (clusters 1, 2, 3) conferred significantly higher risk for relapse (p<0.05). Specific Notch3 and Jag1 subcellular localization patterns may provide clues for the behavior of the tumors and potentially for Jag1 targeting in TNBC patients. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Critical behavior of subcellular density organization during neutrophil activation and migration.

    PubMed

    Baker-Groberg, Sandra M; Phillips, Kevin G; Healy, Laura D; Itakura, Asako; Porter, Juliana E; Newton, Paul K; Nan, Xiaolin; McCarty, Owen J T

    2015-12-01

    Physical theories of active matter continue to provide a quantitative understanding of dynamic cellular phenomena, including cell locomotion. Although various investigations of the rheology of cells have identified important viscoelastic and traction force parameters for use in these theoretical approaches, a key variable has remained elusive both in theoretical and experimental approaches: the spatiotemporal behavior of the subcellular density. The evolution of the subcellular density has been qualitatively observed for decades as it provides the source of image contrast in label-free imaging modalities (e.g., differential interference contrast, phase contrast) used to investigate cellular specimens. While these modalities directly visualize cell structure, they do not provide quantitative access to the structures being visualized. We present an established quantitative imaging approach, non-interferometric quantitative phase microscopy, to elucidate the subcellular density dynamics in neutrophils undergoing chemokinesis following uniform bacterial peptide stimulation. Through this approach, we identify a power law dependence of the neutrophil mean density on time with a critical point, suggesting a critical density is required for motility on 2D substrates. Next we elucidate a continuum law relating mean cell density, area, and total mass that is conserved during neutrophil polarization and migration. Together, our approach and quantitative findings will enable investigators to define the physics coupling cytoskeletal dynamics with subcellular density dynamics during cell migration.

  11. Critical behavior of subcellular density organization during neutrophil activation and migration

    PubMed Central

    Baker-Groberg, Sandra M.; Phillips, Kevin G.; Healy, Laura D.; Itakura, Asako; Porter, Juliana E.; Newton, Paul K.; Nan, Xiaolin; McCarty, Owen J.T.

    2015-01-01

    Physical theories of active matter continue to provide a quantitative understanding of dynamic cellular phenomena, including cell locomotion. Although various investigations of the rheology of cells have identified important viscoelastic and traction force parameters for use in these theoretical approaches, a key variable has remained elusive both in theoretical and experimental approaches: the spatiotemporal behavior of the subcellular density. The evolution of the subcellular density has been qualitatively observed for decades as it provides the source of image contrast in label-free imaging modalities (e.g., differential interference contrast, phase contrast) used to investigate cellular specimens. While these modalities directly visualize cell structure, they do not provide quantitative access to the structures being visualized. We present an established quantitative imaging approach, non-interferometric quantitative phase microscopy, to elucidate the subcellular density dynamics in neutrophils undergoing chemokinesis following uniform bacterial peptide stimulation. Through this approach, we identify a power law dependence of the neutrophil mean density on time with a critical point, suggesting a critical density is required for motility on 2D substrates. Next we elucidate a continuum law relating mean cell density, area, and total mass that is conserved during neutrophil polarization and migration. Together, our approach and quantitative findings will enable investigators to define the physics coupling cytoskeletal dynamics with subcellular density dynamics during cell migration. PMID:26640599

  12. Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type

    PubMed Central

    Nielsen, Joachim; Holmberg, Hans-Christer; Schrøder, Henrik D; Saltin, Bengt; Ørtenblad, Niels

    2011-01-01

    Abstract Although glycogen is known to be heterogeneously distributed within skeletal muscle cells, there is presently little information available about the role of fibre types, utilization and resynthesis during and after exercise with respect to glycogen localization. Here, we tested the hypothesis that utilization of glycogen with different subcellular localizations during exhaustive arm and leg exercise differs and examined the influence of fibre type and carbohydrate availability on its subsequent resynthesis. When 10 elite endurance athletes (22 ± 1 years, = 68 ± 5 ml kg−1 min−1, mean ± SD) performed one hour of exhaustive arm and leg exercise, transmission electron microscopy revealed more pronounced depletion of intramyofibrillar than of intermyofibrillar and subsarcolemmal glycogen. This phenomenon was the same for type I and II fibres, although at rest prior to exercise, the former contained more intramyofibrillar and subsarcolemmal glycogen than the latter. In highly glycogen-depleted fibres, the remaining small intermyofibrillar and subsarcolemmal glycogen particles were often found to cluster in groupings. In the recovery period, when the athletes received either a carbohydrate-rich meal or only water the impaired resynthesis of glycogen with water alone was associated primarily with intramyofibrillar glycogen. In conclusion, after prolonged high-intensity exercise the depletion of glycogen is dependent on subcellular localization. In addition, the localization of glycogen appears to be influenced by fibre type prior to exercise, as well as carbohydrate availability during the subsequent period of recovery. These findings provide insight into the significance of fibre type-specific compartmentalization of glycogen metabolism in skeletal muscle during exercise and subsequent recovery. PMID:21486810

  13. Identification, characterization and subcellular localization of TcPDE1, a novel cAMP-specific phosphodiesterase from Trypanosoma cruzi.

    PubMed Central

    D'Angelo, Maximiliano A; Sanguineti, Santiago; Reece, Jeffrey M; Birnbaumer, Lutz; Torres, Héctor N; Flawiá, Mirtha M

    2004-01-01

    Compartmentalization of cAMP phosphodiesterases plays a key role in the regulation of cAMP signalling in mammals. In the present paper, we report the characterization and subcellular localization of TcPDE1, the first cAMP-specific phosphodiesterase to be identified from Trypanosoma cruzi. TcPDE1 is part of a small gene family and encodes a 929-amino-acid protein that can complement a heat-shock-sensitive yeast mutant deficient in phospho-diesterase genes. Recombinant TcPDE1 strongly associates with membranes and cannot be released with NaCl or sodium cholate, suggesting that it is an integral membrane protein. This enzyme is specific for cAMP and its activity is not affected by cGMP, Ca2+, calmodulin or fenotiazinic inhibitors. TcPDE1 is sensitive to the phosphodiesterase inhibitor dipyridamole but is resistant to 3-isobutyl-1-methylxanthine, theophylline, rolipram and zaprinast. Papaverine, erythro-9-(2-hydroxy-3-nonyl)-adenine hydrochloride, and vinpocetine are poor inhibitors of this enzyme. Confocal laser scanning of T. cruzi epimastigotes showed that TcPDE1 is associated with the plasma membrane and concentrated in the flagellum of the parasite. The association of TcPDE1 with this organelle was confirmed by subcellular fractionation and cell-disruption treatments. The localization of this enzyme is a unique feature that distinguishes it from all the trypanosomatid phosphodiesterases described so far and indicates that compartmentalization of cAMP phosphodiesterases could also be important in these parasites. PMID:14556647

  14. The influence of differential processing of procathepsin H on its aminopeptidase activity, secretion and subcellular localization in human cell lines.

    PubMed

    Rojnik, Matija; Jevnikar, Zala R; Doljak, Bojan; Turk, Samo; Zidar, Nace; Kos, Janko

    2012-10-01

    Cathepsin H is a unique member of the cysteine cathepsins that acts primarily as an aminopeptidase. Like other cysteine cathepsins, it is synthesized as an inactive precursor and activated by proteolytic removal of its propeptide. Here we demonstrate that, in human cells, the processing of the propeptide is an autocatalytic, multistep process proceeding from an inactive 41kDa pro-form, through a 30kDa intermediate form, to the 28kDa mature form. Tyr87P and Gly90P were identified as the two major endopeptidase cleavage sites, converting the 30kDa form into the mature 28kDa form. The level of processing differs significantly in different human cell lines. In monocyte-derived macrophages U937 and prostate cancer cells PC-3, the 28kDa form is predominant, whereas in osteoblasts HOS the processing from the 30kDa form to the 28kDa form is significantly lower. The aminopeptidase activity of the enzyme and its subcellular localization are independent of the product, however the 30kDa form was not secreted in HOS cells. The activity of the resulting cathepsin H in U937 cells was significantly lower than that in HOS cells, presumably due to the high levels of endogenous cysteine protease inhibitor cystatin F present specifically in this cell line. These results provide an insight into the dependence of human cathepsin H processing and regulation on cell type. Copyright © 2012 Elsevier GmbH. All rights reserved.

  15. RNA deep sequencing as a tool for selection of cell lines for systematic subcellular localization of all human proteins.

    PubMed

    Danielsson, Frida; Wiking, Mikaela; Mahdessian, Diana; Skogs, Marie; Ait Blal, Hammou; Hjelmare, Martin; Stadler, Charlotte; Uhlén, Mathias; Lundberg, Emma

    2013-01-04

    One of the major challenges of a chromosome-centric proteome project is to explore in a systematic manner the potential proteins identified from the chromosomal genome sequence, but not yet characterized on a protein level. Here, we describe the use of RNA deep sequencing to screen human cell lines for RNA profiles and to use this information to select cell lines suitable for characterization of the corresponding gene product. In this manner, the subcellular localization of proteins can be analyzed systematically using antibody-based confocal microscopy. We demonstrate the usefulness of selecting cell lines with high expression levels of RNA transcripts to increase the likelihood of high quality immunofluorescence staining and subsequent successful subcellular localization of the corresponding protein. The results show a path to combine transcriptomics with affinity proteomics to characterize the proteins in a gene- or chromosome-centric manner.

  16. Spatio-temporal manipulation of small GTPase activity at subcellular level and on timescale of seconds in living cells.

    PubMed

    DeRose, Robert; Pohlmeyer, Christopher; Umeda, Nobuhiro; Ueno, Tasuku; Nagano, Tetsuo; Kuo, Scot; Inoue, Takanari

    2012-03-09

    Dynamic regulation of the Rho family of small guanosine triphosphatases (GTPases) with great spatiotemporal precision is essential for various cellular functions and events(1, 2). Their spatiotemporally dynamic nature has been revealed by visualization of their activity and localization in real time(3). In order to gain deeper understanding of their roles in diverse cellular functions at the molecular level, the next step should be perturbation of protein activities at a precise subcellular location and timing. To achieve this goal, we have developed a method for light-induced, spatio-temporally controlled activation of small GTPases by combining two techniques: (1) rapamycin-induced FKBP-FRB heterodimerization and (2) a photo-caging method of rapamycin. With the use of rapamycin-mediated FKBP-FRB heterodimerization, we have developed a method for rapidly inducible activation or inactivation of small GTPases including Rac(4), Cdc42(4), RhoA(4) and Ras(5), in which rapamycin induces translocation of FKBP-fused GTPases, or their activators, to the plasma membrane where FRB is anchored. For coupling with this heterodimerization system, we have also developed a photo-caging system of rapamycin analogs. A photo-caged compound is a small molecule whose activity is suppressed with a photocleavable protecting group known as a caging group. To suppress heterodimerization activity completely, we designed a caged rapamycin that is tethered to a macromolecule such that the resulting large complex cannot cross the plasma membrane, leading to virtually no background activity as a chemical dimerizer inside cells(6). Figure 1 illustrates a scheme of our system. With the combination of these two systems, we locally recruited a Rac activator to the plasma membrane on a timescale of seconds and achieved light-induced Rac activation at the subcellular level(6).

  17. Dynamic changes to survivin subcellular localization are initiated by DNA damage

    PubMed Central

    Asumen, Maritess Gay; Ifeacho, Tochukwu V; Cockerham, Luke; Pfandl, Christina; Wall, Nathan R

    2010-01-01

    Subcellular distribution of the apoptosis inhibitor survivin and its ability to relocalize as a result of cell cycle phase or therapeutic insult has led to the hypothesis that these subcellular pools may coincide with different survivin functions. The PIK kinases (ATM, ATR and DNA-PK) phosphorylate a variety of effector substrates that propagate DNA damage signals, resulting in various biological outputs. Here we demonstrate that subcellular repartitioning of survivin in MCF-7 cells as a result of UV light-mediated DNA damage is dependent upon DNA damage-sensing proteins as treatment with the pan PIK kinase inhibitor wortmannin repartitioned survivin in the mitochondria and diminished it from the cytosol and nucleus. Mitochondrial redistribution of survivin, such as was recorded after wortmannin treatment, occurred in cells lacking any one of the three DNA damage sensing protein kinases: DNA-PK, ATM or ATR. However, failed survivin redistribution from the mitochondria in response to low-dose UV occurred only in the cells lacking ATM, implying that ATM may be the primary kinase involved in this process. Taken together, this data implicates survivian’s subcellular distribution is a dynamic physiological process that appears responsive to UV light-initiated DNA damage and that its distribution may be responsible for its multifunctionality. PMID:20856848

  18. Accounting for Protein Subcellular Localization: A Compartmental Map of the Rat Liver Proteome*

    PubMed Central

    Jadot, Michel; Boonen, Marielle; Thirion, Jaqueline; Wang, Nan; Xing, Jinchuan; Zhao, Caifeng; Tannous, Abla; Qian, Meiqian; Zheng, Haiyan; Everett, John K.; Moore, Dirk F.; Sleat, David E.; Lobel, Peter

    2017-01-01

    Accurate knowledge of the intracellular location of proteins is important for numerous areas of biomedical research including assessing fidelity of putative protein-protein interactions, modeling cellular processes at a system-wide level and investigating metabolic and disease pathways. Many proteins have not been localized, or have been incompletely localized, partly because most studies do not account for entire subcellular distribution. Thus, proteins are frequently assigned to one organelle whereas a significant fraction may reside elsewhere. As a step toward a comprehensive cellular map, we used subcellular fractionation with classic balance sheet analysis and isobaric labeling/quantitative mass spectrometry to assign locations to >6000 rat liver proteins. We provide quantitative data and error estimates describing the distribution of each protein among the eight major cellular compartments: nucleus, mitochondria, lysosomes, peroxisomes, endoplasmic reticulum, Golgi, plasma membrane and cytosol. Accounting for total intracellular distribution improves quality of organelle assignments and assigns proteins with multiple locations. Protein assignments and supporting data are available online through the Prolocate website (http://prolocate.cabm.rutgers.edu). As an example of the utility of this data set, we have used organelle assignments to help analyze whole exome sequencing data from an infant dying at 6 months of age from a suspected neurodegenerative lysosomal storage disorder of unknown etiology. Sequencing data was prioritized using lists of lysosomal proteins comprising well-established residents of this organelle as well as novel candidates identified in this study. The latter included copper transporter 1, encoded by SLC31A1, which we localized to both the plasma membrane and lysosome. The patient harbors two predicted loss of function mutations in SLC31A1, suggesting that this may represent a heretofore undescribed recessive lysosomal storage disease

  19. Accounting for Protein Subcellular Localization: A Compartmental Map of the Rat Liver Proteome.

    PubMed

    Jadot, Michel; Boonen, Marielle; Thirion, Jaqueline; Wang, Nan; Xing, Jinchuan; Zhao, Caifeng; Tannous, Abla; Qian, Meiqian; Zheng, Haiyan; Everett, John K; Moore, Dirk F; Sleat, David E; Lobel, Peter

    2017-02-01

    Accurate knowledge of the intracellular location of proteins is important for numerous areas of biomedical research including assessing fidelity of putative protein-protein interactions, modeling cellular processes at a system-wide level and investigating metabolic and disease pathways. Many proteins have not been localized, or have been incompletely localized, partly because most studies do not account for entire subcellular distribution. Thus, proteins are frequently assigned to one organelle whereas a significant fraction may reside elsewhere. As a step toward a comprehensive cellular map, we used subcellular fractionation with classic balance sheet analysis and isobaric labeling/quantitative mass spectrometry to assign locations to >6000 rat liver proteins. We provide quantitative data and error estimates describing the distribution of each protein among the eight major cellular compartments: nucleus, mitochondria, lysosomes, peroxisomes, endoplasmic reticulum, Golgi, plasma membrane and cytosol. Accounting for total intracellular distribution improves quality of organelle assignments and assigns proteins with multiple locations. Protein assignments and supporting data are available online through the Prolocate website (http://prolocate.cabm.rutgers.edu). As an example of the utility of this data set, we have used organelle assignments to help analyze whole exome sequencing data from an infant dying at 6 months of age from a suspected neurodegenerative lysosomal storage disorder of unknown etiology. Sequencing data was prioritized using lists of lysosomal proteins comprising well-established residents of this organelle as well as novel candidates identified in this study. The latter included copper transporter 1, encoded by SLC31A1, which we localized to both the plasma membrane and lysosome. The patient harbors two predicted loss of function mutations in SLC31A1, suggesting that this may represent a heretofore undescribed recessive lysosomal storage disease

  20. Subcellular Localized Chemical Imaging of Benthic Algal Nutritional Content via HgCdTe Array FT-IR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetzel, D.; Murdock, J; Dodds, W

    2008-01-01

    Algae respond rapidly and uniquely to changes in nutrient availability by adjusting pigment, storage product, and organelle content and quality. Cellular and subcellular variability of the relative abundance of macromolecular pools (e.g. protein, lipid, carbohydrate, and phosphodiesters) within the benthic (bottom dwelling) alga Cladophora glomerata (a common nuisance species in fresh and saline waters) was revealed by FT-IR microspectroscopic imaging. Nutrient heterogeneity was compared at the filament, cellular, and subcellular level, and localized nutrient uptake kinetics were studied by detecting the gradual incorporation of isotopically labeled nitrogen (N) (as K15NO3) from surrounding water into cellular proteins. Nutritional content differed substantiallymore » among filament cells, with differences driven by protein and lipid abundance. Whole cell imaging showed high subcellular macromolecular variability in all cells, including adjacent cells on a filament that developed clonally. N uptake was also very heterogeneous, both within and among cells, and did not appear to coincide with subcellular protein distribution. Despite high intercellular variability, some patterns emerged. Cells acquired more 15N the further they were away from the filament attachment point, and 15N incorporation was more closely correlated with phosphodiester content than protein, lipid, or carbohydrate content. Benthic algae are subject to substantial environmental heterogeneity induced by microscale hydrodynamic factors and spatial variability in nutrient availability. Species specific responses to nutrient heterogeneity are central to understanding this key component of aquatic ecosystems. FT-IR microspectroscopy, modified for benthic algae, allows determination of algal physiological responses at scales not available using current techniques.« less

  1. The in vitro sub-cellular localization and in vivo efficacy of novel chitosan/GMO nanostructures containing paclitaxel.

    PubMed

    Trickler, W J; Nagvekar, A A; Dash, A K

    2009-08-01

    To determine the in vitro sub-cellular localization and in vivo efficacy of chitosan/GMO nanostructures containing paclitaxel (PTX) compared to a conventional PTX treatment (Taxol). The sub-cellular localization of coumarin-6 labeled chitosan/GMO nanostructures was determined by confocal microscopy in MDA-MB-231 cells. The antitumor efficacy was evaluated in two separate studies using FOX-Chase (CB17) SCID Female-Mice MDA-MB-231 xenograph model. Treatments consisted of intravenous Taxol or chitosan/GMO nanostructures with or without PTX, local intra-tumor bolus of Taxol or chitosan/GMO nanostructures with or without PTX. The tumor diameter and animal weight was monitored at various intervals. Histopathological changes were evaluated in end-point tumors. The tumor diameter increased at a constant rate for all the groups between days 7-14. After a single intratumoral bolus dose of chitosan/GMO containing PTX showed significant reduction in tumor diameter on day 15 when compared to control, placebo and intravenous PTX administration. The tumor diameter reached a maximal decrease (4-fold) by day 18, and the difference was reduced to approximately 2-fold by day 21. Qualitatively similar results were observed in a separate study containing PTX when administered intravenously. Chitosan/GMO nanostructures containing PTX are safe and effective administered locally or intravenously. Partially supported by DOD Award BC045664.

  2. Systemic distribution, subcellular localization and differential expression of sphingosine-1-phosphate receptors in benign and malignant human tissues.

    PubMed

    Wang, Chunyi; Mao, Jinghe; Redfield, Samantha; Mo, Yinyuan; Lage, Janice M; Zhou, Xinchun

    2014-10-01

    Five sphingosine-1-phosphate receptors (S1PR): S1PR1, S1PR2, S1PR3, S1PR4 and S1PR5 (S1PR1-5) have been shown to be involved in the proliferation and progression of various cancers. However, none of the S1PRs have been systemically investigated. In this study, we performed immunohistochemistry (IHC) for S1PR1-S1PR5 on different tissues, in order to simultaneously determine the systemic distribution, subcellular localization and expression level of all five S1PRs. We constructed tissue microarrays (TMAs) from 384 formalin-fixed paraffin-embedded (FFPE) blocks containing 183 benign and 201 malignant tissues from 34 human organs/systems. Then we performed IHC for all five S1PRs simultaneously on these TMA slides. The distribution, subcellular localization and expression of each S1PR were determined for each tissue. The data in benign and malignant tissues from the same organ/tissue were then compared using the Student's t-test. In order to reconfirm the subcellular localization of each S1PR as determined by IHC, immunocytochemistry (ICC) was performed on several malignant cell lines. We found that all five S1PRs are widely distributed in multiple human organs/systems. All S1PRs are expressed in both the cytoplasm and nucleus, except S1PR3, whose IHC signals are only seen in the nucleus. Interestingly, the S1PRs are rarely expressed on cellular membranes. Each S1PR is unique in its organ distribution, subcellular localization and expression level in benign and malignant tissues. Among the five S1PRs, S1PR5 has the highest expression level (in either the nucleus or cytoplasm), with S1PR1, 3, 2 and 4 following in descending order. Strong nuclear expression was seen for S1PR1, S1PR3 and S1PR5, whereas S1PR2 and S1PR4 show only weak staining. Four organs/tissues (adrenal gland, liver, brain and colon) show significant differences in IHC scores for the multiple S1PRs (nuclear and/or cytoplasmic), nine (stomach, lymphoid tissues, lung, ovary, cervix, pancreas, skin, soft

  3. Subcellular localization of rice acyl-CoA-binding proteins (ACBPs) indicates that OsACBP6::GFP is targeted to the peroxisomes.

    PubMed

    Meng, Wei; Hsiao, An-Shan; Gao, Caiji; Jiang, Liwen; Chye, Mee-Len

    2014-07-01

    Acyl-CoA-binding proteins (ACBPs) show conservation at the acyl-CoA-binding (ACB) domain which facilitates binding to acyl-CoA esters. In Arabidopsis thaliana, six ACBPs participate in development and stress responses. Rice (Oryza sativa) also contains six genes encoding ACBPs. We investigated differences in subcellular localization between monocot rice and eudicot A. thaliana ACBPs. The subcellular localization of the six OsACBPs was achieved via transient expression of green fluorescence protein (GFP) fusions in tobacco (Nicotiana tabacum) epidermal cells, and stable transformation of A. thaliana. As plant ACBPs had not been reported in the peroxisomes, OsACBP6::GFP localization was confirmed by transient expression in rice sheath cells. The function of OsACBP6 was investigated by overexpressing 35S::OsACBP6 in the peroxisomal abc transporter1 (pxa1) mutant defective in peroxisomal fatty acid β-oxidation. As predicted, OsACBP1::GFP and OsACBP2::GFP were localized to the cytosol, and OsACBP4::GFP and OsACBP5::GFP to the endoplasmic reticulum (ER). However, OsACBP3::GFP displayed subcellular multi-localization while OsACBP6::GFP was localized to the peroxisomes. 35S::OsACBP6-OE/pxa1 lines showed recovery in indole-3-butyric acid (IBA) peroxisomal β-oxidation, wound-induced VEGETATIVE STORAGE PROTEIN1 (VSP1) expression and jasmonic acid (JA) accumulation. These findings indicate a role for OsACBP6 in peroxisomal β-oxidation, and suggest that rice ACBPs are involved in lipid degradation in addition to lipid biosynthesis. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  4. PF-4/CXCL4 and CXCL4L1 exhibit distinct subcellular localization and a differentially regulated mechanism of secretion.

    PubMed

    Lasagni, Laura; Grepin, Renaud; Mazzinghi, Benedetta; Lazzeri, Elena; Meini, Claudia; Sagrinati, Costanza; Liotta, Francesco; Frosali, Francesca; Ronconi, Elisa; Alain-Courtois, Nathalie; Ballerini, Lara; Netti, Giuseppe Stefano; Maggi, Enrico; Annunziato, Francesco; Serio, Mario; Romagnani, Sergio; Bikfalvi, Andreas; Romagnani, Paola

    2007-05-15

    PF-4/CXCL4 is a member of the CXC chemokine family, which is mainly produced by platelets and known for its pleiotropic biological functions. Recently, the proteic product of a nonallelic variant gene of CXCL4 was isolated from human platelets and named as CXCL4L1. CXCL4L1 shows only 4.3% amino acid divergence in the mature protein, but exhibits a 38% amino acid divergence in the signal peptide region. We hypothesized that this may imply a difference in the cell type in which CXCL4L1 is expressed or a difference in its mode of secretion. In different types of transfected cells, CXCL4 and CXCL4L1 exhibited a distinct subcellular localization and a differential regulation of secretion, CXCL4 being stored in secretory granules and released in response to protein kinase C activation, whereas CXCL4L1 was continuously synthesized and secreted through a constitutive pathway. A protein kinase C-regulated CXCL4 secretion was observed also in lymphocytes, a cell type expressing mainly CXCL4 mRNA, whereas smooth muscle cells, which preferentially expressed CXCL4L1, exhibited a constitutive pathway of secretion. These results demonstrate that CXCL4 and CXCL4L1 exhibit a distinct subcellular localization and are secreted in a differentially regulated manner, suggesting distinct roles in inflammatory or homeostatic processes.

  5. Pathways and Subcellular Compartmentation of NAD Biosynthesis in Human Cells

    PubMed Central

    Nikiforov, Andrey; Dölle, Christian; Niere, Marc; Ziegler, Mathias

    2011-01-01

    NAD is a vital redox carrier, and its degradation is a key element of important regulatory pathways. NAD-mediated functions are compartmentalized and have to be fueled by specific biosynthetic routes. However, little is known about the different pathways, their subcellular distribution, and regulation in human cells. In particular, the route(s) to generate mitochondrial NAD, the largest subcellular pool, is still unknown. To visualize organellar NAD changes in cells, we targeted poly(ADP-ribose) polymerase activity into the mitochondrial matrix. This activity synthesized immunodetectable poly(ADP-ribose) depending on mitochondrial NAD availability. Based on this novel detector system, detailed subcellular enzyme localizations, and pharmacological inhibitors, we identified extracellular NAD precursors, their cytosolic conversions, and the pathway of mitochondrial NAD generation. Our results demonstrate that, besides nicotinamide and nicotinic acid, only the corresponding nucleosides readily enter the cells. Nucleotides (e.g. NAD and NMN) undergo extracellular degradation resulting in the formation of permeable precursors. These precursors can all be converted to cytosolic and mitochondrial NAD. For mitochondrial NAD synthesis, precursors are converted to NMN in the cytosol. When taken up into the organelles, NMN (together with ATP) serves as substrate of NMNAT3 to form NAD. NMNAT3 was conclusively localized to the mitochondrial matrix and is the only known enzyme of NAD synthesis residing within these organelles. We thus present a comprehensive dissection of mammalian NAD biosynthesis, the groundwork to understand regulation of NAD-mediated processes, and the organismal homeostasis of this fundamental molecule. PMID:21504897

  6. An ADP-Ribosylation Factor GTPase-activating Protein Git2-short/KIAA0148 Is Involved in Subcellular Localization of Paxillin and Actin Cytoskeletal Organization

    PubMed Central

    Mazaki, Yuichi; Hashimoto, Shigeru; Okawa, Katsuya; Tsubouchi, Asako; Nakamura, Kuniaki; Yagi, Ryohei; Yano, Hajime; Kondo, Akiko; Iwamatsu, Akihiro; Mizoguchi, Akira; Sabe, Hisataka

    2001-01-01

    Paxillin acts as an adaptor protein in integrin signaling. We have shown that paxillin exists in a relatively large cytoplasmic pool, including perinuclear areas, in addition to focal complexes formed at the cell periphery and focal adhesions formed underneath the cell. Several ADP-ribosylation factor (ARF) GTPase-activating proteins (GAPs; ARFGAPs) have been shown to associate with paxillin. We report here that Git2-short/KIAA0148 exhibits properties of a paxillin-associated ARFGAP and appears to be colocalized with paxillin, primarily at perinuclear areas. A fraction of Git2-short was also localized to actin-rich structures at the cell periphery. Unlike paxillin, however, Git2-short did not accumulate at focal adhesions underneath the cell. Git2-short is a short isoform of Git2, which is highly homologous to p95PKL, another paxillin-binding protein, and showed a weaker binding affinity toward paxillin than that of Git2. The ARFGAP activities of Git2 and Git2-short have been previously demonstrated in vitro, and we provided evidence that at least one ARF isoform, ARF1, is an intracellular substrate for the GAP activity of Git2-short. We also showed that Git2-short could antagonize several known ARF1-mediated phenotypes: overexpression of Git2-short, but not its GAP-inactive mutant, caused the redistribution of Golgi protein β-COP and reduced the amounts of paxillin-containing focal adhesions and actin stress fibers. Perinuclear localization of paxillin, which was sensitive to ARF inactivation, was also affected by Git2-short overexpression. On the other hand, paxillin localization to focal complexes at the cell periphery was unaffected or even augmented by Git2-short overexpression. Therefore, an ARFGAP protein weakly interacting with paxillin, Git2-short, exhibits pleiotropic functions involving the regulation of Golgi organization, actin cytoskeletal organization, and subcellular localization of paxillin, all of which need to be coordinately regulated during

  7. Emergent cell and tissue dynamics from subcellular modeling of active biomechanical processes

    NASA Astrophysics Data System (ADS)

    Sandersius, S. A.; Weijer, C. J.; Newman, T. J.

    2011-08-01

    Cells and the tissues they form are not passive material bodies. Cells change their behavior in response to external biochemical and biomechanical cues. Behavioral changes, such as morphological deformation, proliferation and migration, are striking in many multicellular processes such as morphogenesis, wound healing and cancer progression. Cell-based modeling of these phenomena requires algorithms that can capture active cell behavior and their emergent tissue-level phenotypes. In this paper, we report on extensions of the subcellular element model to model active biomechanical subcellular processes. These processes lead to emergent cell and tissue level phenotypes at larger scales, including (i) adaptive shape deformations in cells responding to slow stretching, (ii) viscous flow of embryonic tissues, and (iii) streaming patterns of chemotactic cells in epithelial-like sheets. In each case, we connect our simulation results to recent experiments.

  8. Heat shock modulates the subcellular localization, stability, and activity of HIPK2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Mamta; Bhadauriya, Pratibha; Ganesh, Subramaniam, E-mail: sganesh@iitk.ac.in

    2016-04-15

    The homeodomain-interacting protein kinase-2 (HIPK2) is a highly conserved serine/threonine kinase and is involved in transcriptional regulation. HIPK2 is a highly unstable protein, and is kept at a low level under normal physiological conditions. However, exposure of cells to physiological stress – such as hypoxia, oxidative stress, or UV damage – is known to stabilize HIPK2, leading to the HIPK2-dependent activation of p53 and the cell death pathway. Therefore HIPK2 is also known as a stress kinase and as a stress-activated pro-apoptotic factor. We demonstrate here that exposure of cells to heat shock results in the stabilization of HIPK2 andmore » the stabilization is mediated via K63-linked ubiquitination. Intriguingly, a sub-lethal heat shock (42 °C, 1 h) results in the cytoplasmic localization of HIPK2, while a lethal heat shock (45 °C, 1 h) results in its nuclear localization. Cells exposed to the lethal heat shock showed significantly higher levels of the p53 activity than those exposed to the sub-lethal thermal stress, suggesting that both the level and the nuclear localization are essential for the pro-apoptotic activity of HIPK2 and that the lethal heat shock could retain the HIPK2 in the nucleus to promote the cell death. Taken together our study underscores the importance of HIPK2 in stress mediated cell death, and that the HIPK2 is a generic stress kinase that gets activated by diverse set of physiological stressors.« less

  9. Subcellular Localization of Rice Leaf Aryl Acylamidase Activity 1

    PubMed Central

    Gaynor, John J.; Still, Cecil C.

    1983-01-01

    The intracellular localization of aryl acylamidase (aryl-acylamide amidohydrolase, EC 3.5.1.13) in rice (Oryza sativa L. var Starbonnet) leaves was investigated. The enzyme hydrolyzes and detoxifies the herbicide propanil (3,4-dichloropropionanilide) thereby accounting for immunity of the rice plant to herbicidal action. Fractionation of mesophyll protoplasts by differential centrifugation yielded the highest specific activity of amidase in the crude mitochondrial fraction. Further separation of density gradients of the silica sol Percoll also indicated that this enzyme was mitochondrial. By the use of biochemical markers, the purified mitochondrial fraction was shown to be substantially free of contamination from nuclei, chloroplasts, golgi, and plasma membranes. Subfractionation of the purified mitochondria suggests that this enzyme is located on the outer membrane. PMID:16662987

  10. Regulating Set-β's Subcellular Localization Toggles Its Function between Inhibiting and Promoting Axon Growth and Regeneration

    PubMed Central

    Wang, Yan; Morkin, Melina I.; Fernandez, Stephanie G.; Mlacker, Gregory M.; Shechter, Jesse M.; Liu, Xiongfei; Patel, Karan H.; Lapins, Allison; Yang, Steven; Dombrowski, Susan M.

    2014-01-01

    The failure of the CNS neurons to regenerate axons after injury or stroke is a major clinical problem. Transcriptional regulators like Set-β are well positioned to regulate intrinsic axon regeneration capacity, which declines developmentally in maturing CNS neurons. Set-β also functions at cellular membranes and its subcellular localization is disrupted in Alzheimer's disease, but many of its biological mechanisms have not been explored in neurons. We found that Set-β was upregulated postnatally in CNS neurons, and was primarily localized to the nucleus but was also detected in the cytoplasm and adjacent to the plasma membrane. Remarkably, nuclear Set-β suppressed, whereas Set-β localized to cytoplasmic membranes promoted neurite growth in rodent retinal ganglion cells and hippocampal neurons. Mimicking serine 9 phosphorylation, as found in Alzheimer's disease brains, delayed nuclear import and furthermore blocked the ability of nuclear Set-β to suppress neurite growth. We also present data on gene regulation and protein binding partner recruitment by Set-β in primary neurons, raising the hypothesis that nuclear Set-β may preferentially regulate gene expression whereas Set-β at cytoplasmic membranes may regulate unique cofactors, including PP2A, which we show also regulates axon growth in vitro. Finally, increasing recruitment of Set-β to cellular membranes promoted adult rat optic nerve axon regeneration after injury in vivo. Thus, Set-β differentially regulates axon growth and regeneration depending on subcellular localization and phosphorylation. PMID:24849368

  11. Age distribution patterns of human gene families: divergent for Gene Ontology categories and concordant between different subcellular localizations.

    PubMed

    Liu, Gangbiao; Zou, Yangyun; Cheng, Qiqun; Zeng, Yanwu; Gu, Xun; Su, Zhixi

    2014-04-01

    The age distribution of gene duplication events within the human genome exhibits two waves of duplications along with an ancient component. However, because of functional constraint differences, genes in different functional categories might show dissimilar retention patterns after duplication. It is known that genes in some functional categories are highly duplicated in the early stage of vertebrate evolution. However, the correlations of the age distribution pattern of gene duplication between the different functional categories are still unknown. To investigate this issue, we developed a robust pipeline to date the gene duplication events in the human genome. We successfully estimated about three-quarters of the duplication events within the human genome, along with the age distribution pattern in each Gene Ontology (GO) slim category. We found that some GO slim categories show different distribution patterns when compared to the whole genome. Further hierarchical clustering of the GO slim functional categories enabled grouping into two main clusters. We found that human genes located in the duplicated copy number variant regions, whose duplicate genes have not been fixed in the human population, were mainly enriched in the groups with a high proportion of recently duplicated genes. Moreover, we used a phylogenetic tree-based method to date the age of duplications in three signaling-related gene superfamilies: transcription factors, protein kinases and G-protein coupled receptors. These superfamilies were expressed in different subcellular localizations. They showed a similar age distribution as the signaling-related GO slim categories. We also compared the differences between the age distributions of gene duplications in multiple subcellular localizations. We found that the distribution patterns of the major subcellular localizations were similar to that of the whole genome. This study revealed the whole picture of the evolution patterns of gene functional

  12. A set of GFP-based organelle marker lines combined with DsRed-based gateway vectors for subcellular localization study in rice (Oryza sativa L.).

    PubMed

    Wu, Tsung-Meng; Lin, Ke-Chun; Liau, Wei-Shiang; Chao, Yun-Yang; Yang, Ling-Hung; Chen, Szu-Yun; Lu, Chung-An; Hong, Chwan-Yang

    2016-01-01

    In the post-genomic era, many useful tools have been developed to accelerate the investigation of gene functions. Fluorescent proteins have been widely used as protein tags for studying the subcellular localization of proteins in plants. Several fluorescent organelle marker lines have been generated in dicot plants; however, useful and reliable fluorescent organelle marker lines are lacking in the monocot model rice. Here, we developed eight different GFP-based organelle markers in transgenic rice and created a set of DsRed-based gateway vectors for combining with the marker lines. Two mitochondrial-localized rice ascorbate peroxidase genes fused to DsRed and successfully co-localized with mitochondrial-targeted marker lines verified the practical use of this system. The co-localization of GFP-fusion marker lines and DsRed-fusion proteins provide a convenient platform for in vivo or in vitro analysis of subcellular localization of rice proteins.

  13. Cellular and Subcellular Immunohistochemical Localization and Quantification of Cadmium Ions in Wheat (Triticum aestivum).

    PubMed

    Gao, Wei; Nan, Tiegui; Tan, Guiyu; Zhao, Hongwei; Tan, Weiming; Meng, Fanyun; Li, Zhaohu; Li, Qing X; Wang, Baomin

    2015-01-01

    The distribution of metallic ions in plant tissues is associated with their toxicity and is important for understanding mechanisms of toxicity tolerance. A quantitative histochemical method can help advance knowledge of cellular and subcellular localization and distribution of heavy metals in plant tissues. An immunohistochemical (IHC) imaging method for cadmium ions (Cd2+) was developed for the first time for the wheat Triticum aestivum grown in Cd2+-fortified soils. Also, 1-(4-Isothiocyanobenzyl)-ethylenediamine-N,N,N,N-tetraacetic acid (ITCB-EDTA) was used to chelate the mobile Cd2+. The ITCB-EDTA/Cd2+ complex was fixed with proteins in situ via the isothiocyano group. A new Cd2+-EDTA specific monoclonal antibody, 4F3B6D9A1, was used to locate the Cd2+-EDTA protein complex. After staining, the fluorescence intensities of sections of Cd2+-positive roots were compared with those of Cd2+-negative roots under a laser confocal scanning microscope, and the location of colloidal gold particles was determined with a transmission electron microscope. The results enable quantification of the Cd2+ content in plant tissues and illustrate Cd2+ translocation and cellular and subcellular responses of T. aestivum to Cd2+ stress. Compared to the conventional metal-S coprecipitation histochemical method, this new IHC method is quantitative, more specific and has less background interference. The subcellular location of Cd2+ was also confirmed with energy-dispersive X-ray microanalysis. The IHC method is suitable for locating and quantifying Cd2+ in plant tissues and can be extended to other heavy metallic ions.

  14. Prediction of rat protein subcellular localization with pseudo amino acid composition based on multiple sequential features.

    PubMed

    Shi, Ruijia; Xu, Cunshuan

    2011-06-01

    The study of rat proteins is an indispensable task in experimental medicine and drug development. The function of a rat protein is closely related to its subcellular location. Based on the above concept, we construct the benchmark rat proteins dataset and develop a combined approach for predicting the subcellular localization of rat proteins. From protein primary sequence, the multiple sequential features are obtained by using of discrete Fourier analysis, position conservation scoring function and increment of diversity, and these sequential features are selected as input parameters of the support vector machine. By the jackknife test, the overall success rate of prediction is 95.6% on the rat proteins dataset. Our method are performed on the apoptosis proteins dataset and the Gram-negative bacterial proteins dataset with the jackknife test, the overall success rates are 89.9% and 96.4%, respectively. The above results indicate that our proposed method is quite promising and may play a complementary role to the existing predictors in this area.

  15. Subcellular localization of acyl-CoA binding protein in Aspergillus oryzae is regulated by autophagy machinery.

    PubMed

    Kawaguchi, Kouhei; Kikuma, Takashi; Higuchi, Yujiro; Takegawa, Kaoru; Kitamoto, Katsuhiko

    2016-11-04

    In eukaryotic cells, acyl-CoA binding protein (ACBP) is important for cellular activities, such as in lipid metabolism. In the industrially important fungus Aspergillus oryzae, the ACBP, known as AoACBP, has been biochemically characterized, but its physiological function is not known. In the present study, although we could not find any phenotype of AoACBP disruptants in the normal growth conditions, we examined the subcellular localization of AoACBP to understand its physiological function. Using an enhanced green fluorescent protein (EGFP)-tagged AoACBP construct we showed that AoACBP localized to punctate structures in the cytoplasm, some of which moved inside the cells in a microtubule-dependent manner. Further microscopic analyses showed that AoACBP-EGFP co-localized with the autophagy marker protein AoAtg8 tagged with red fluorescent protein (mDsRed). Expression of AoACBP-EGFP in disruptants of autophagy-related genes revealed aggregation of AoACBP-EGFP fluorescence in the cytoplasm of Aoatg1, Aoatg4 and Aoatg8 disruptant cells. However, in cells harboring disruption of Aoatg15, which encodes a lipase for autophagic body, puncta of AoACBP-EGFP fluorescence accumulated in vacuoles, indicating that AoACBP is transported to vacuoles via the autophagy machinery. Collectively, these results suggest the existence of a regulatory mechanism between AoACBP localization and autophagy. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC.

    PubMed

    Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen

    2017-10-06

    Information of the proteins' subcellular localization is crucially important for revealing their biological functions in a cell, the basic unit of life. With the avalanche of protein sequences generated in the postgenomic age, it is highly desired to develop computational tools for timely identifying their subcellular locations based on the sequence information alone. The current study is focused on the Gram-negative bacterial proteins. Although considerable efforts have been made in protein subcellular prediction, the problem is far from being solved yet. This is because mounting evidences have indicated that many Gram-negative bacterial proteins exist in two or more location sites. Unfortunately, most existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions important for both basic research and drug design. In this study, by using the multi-label theory, we developed a new predictor called "pLoc-mGneg" for predicting the subcellular localization of Gram-negative bacterial proteins with both single and multiple locations. Rigorous cross-validation on a high quality benchmark dataset indicated that the proposed predictor is remarkably superior to "iLoc-Gneg", the state-of-the-art predictor for the same purpose. For the convenience of most experimental scientists, a user-friendly web-server for the novel predictor has been established at http://www.jci-bioinfo.cn/pLoc-mGneg/, by which users can easily get their desired results without the need to go through the complicated mathematics involved. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. CerebralWeb: a Cytoscape.js plug-in to visualize networks stratified by subcellular localization.

    PubMed

    Frias, Silvia; Bryan, Kenneth; Brinkman, Fiona S L; Lynn, David J

    2015-01-01

    CerebralWeb is a light-weight JavaScript plug-in that extends Cytoscape.js to enable fast and interactive visualization of molecular interaction networks stratified based on subcellular localization or other user-supplied annotation. The application is designed to be easily integrated into any website and is configurable to support customized network visualization. CerebralWeb also supports the automatic retrieval of Cerebral-compatible localizations for human, mouse and bovine genes via a web service and enables the automated parsing of Cytoscape compatible XGMML network files. CerebralWeb currently supports embedded network visualization on the InnateDB (www.innatedb.com) and Allergy and Asthma Portal (allergen.innatedb.com) database and analysis resources. Database tool URL: http://www.innatedb.com/CerebralWeb © The Author(s) 2015. Published by Oxford University Press.

  18. A Comprehensive Subcellular Proteomic Survey of Salmonella Grown under Phagosome-Mimicking versus Standard Laboratory Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Roslyn N.; Sanford, James A.; Park, Jea H.

    Towards developing a systems-level pathobiological understanding of Salmonella enterica, we performed a subcellular proteomic analysis of this pathogen grown under standard laboratory and infection-mimicking conditions in vitro. Analysis of proteins from cytoplasmic, inner membrane, periplasmic, and outer membrane fractions yielded coverage of over 30% of the theoretical proteome. Confident subcellular location could be assigned to over 1000 proteins, with good agreement between experimentally observed location and predicted/known protein properties. Comparison of protein location under the different environmental conditions provided insight into dynamic protein localization and possible moonlighting (multiple function) activities. Notable examples of dynamic localization were the response regulators ofmore » two-component regulatory systems (e.g., ArcB, PhoQ). The DNA-binding protein Dps that is generally regarded as cytoplasmic was significantly enriched in the outer membrane for all growth conditions examined, suggestive of moonlighting activities. These observations imply the existence of unknown transport mechanisms and novel functions for a subset of Salmonella proteins. Overall, this work provides a catalog of experimentally verified subcellular protein location for Salmonella and a framework for further investigations using computational modeling.« less

  19. Substrate specificity and subcellular localization of the aldehyde-alcohol redox-coupling reaction in carp cones.

    PubMed

    Sato, Shinya; Fukagawa, Takashi; Tachibanaki, Shuji; Yamano, Yumiko; Wada, Akimori; Kawamura, Satoru

    2013-12-20

    Our previous study suggested the presence of a novel cone-specific redox reaction that generates 11-cis-retinal from 11-cis-retinol in the carp retina. This reaction is unique in that 1) both 11-cis-retinol and all-trans-retinal were required to produce 11-cis-retinal; 2) together with 11-cis-retinal, all-trans-retinol was produced at a 1:1 ratio; and 3) the addition of enzyme cofactors such as NADP(H) was not necessary. This reaction is probably part of the reactions in a cone-specific retinoid cycle required for cone visual pigment regeneration with the use of 11-cis-retinol supplied from Müller cells. In this study, using purified carp cone membrane preparations, we first confirmed that the reaction is a redox-coupling reaction between retinals and retinols. We further examined the substrate specificity, reaction mechanism, and subcellular localization of this reaction. Oxidation was specific for 11-cis-retinol and 9-cis-retinol. In contrast, reduction showed low specificity: many aldehydes, including all-trans-, 9-cis-, 11-cis-, and 13-cis-retinals and even benzaldehyde, supported the reaction. On the basis of kinetic studies of this reaction (aldehyde-alcohol redox-coupling reaction), we found that formation of a ternary complex of a retinol, an aldehyde, and a postulated enzyme seemed to be necessary, which suggested the presence of both the retinol- and aldehyde-binding sites in this enzyme. A subcellular fractionation study showed that the activity is present almost exclusively in the cone inner segment. These results suggest the presence of an effective production mechanism of 11-cis-retinal in the cone inner segment to regenerate visual pigment.

  20. Uncoupling of acetylation from phosphorylation regulates FoxO1 function independent of its subcellular localization.

    PubMed

    Qiang, Li; Banks, Alexander S; Accili, Domenico

    2010-08-27

    The activity of transcription factor FoxO1 is regulated by phosphorylation-dependent nuclear exclusion and deacetylation-dependent nuclear retention. It is unclear whether and how these two post-translational modifications affect each other. To answer this question, we expressed FoxO1 cDNAs with combined mutations of phosphorylation and acetylation sites in HEK-293 cells and analyzed their subcellular localization patterns. We show that mutations mimicking the acetylated state (KQ series) render FoxO1 more sensitive to Akt-mediated phosphorylation and nuclear exclusion and can reverse the constitutively nuclear localization of phosphorylation-defective FoxO1. Conversely, mutations mimicking the deacetylated state (KR series) promote FoxO1 nuclear retention. Oxidative stress and the Sirt1 activator resveratrol are thought to promote FoxO1 deacetylation and nuclear retention, thus increasing its activity. Accordingly, FoxO1 deacetylation was required for the effect of oxidative stress (induced by H(2)O(2)) to retain FoxO1 in the nucleus. H(2)O(2) also inhibited FoxO1 phosphorylation on Ser-253 and Thr-24, the key insulin-regulated sites, irrespective of its acetylation. In contrast, the effect of resveratrol was independent of FoxO1 acetylation and its phosphorylation on Ser-253 and Thr-24, suggesting that resveratrol acts on FoxO1 in a Sirt1- and Akt-independent manner. The dissociation of deacetylation from dephosphorylation in H(2)O(2)-treated cells indicates that the two modifications can occur independently of each other. It can be envisaged that FoxO1 exists in multiple nuclear forms with distinct activities depending on the balance of acetylation and phosphorylation.

  1. Cellular and subcellular localization of uncoupling protein 2 in the human kidney.

    PubMed

    Nigro, Michelangelo; De Sanctis, Claudia; Formisano, Pietro; Stanzione, Rosita; Forte, Maurizio; Capasso, Giovambattista; Gigliotti, Giuseppe; Rubattu, Speranza; Viggiano, Davide

    2018-06-23

    The uncoupling protein-2 (UCP2) is an anion transporter that plays a key role in the control of intracellular oxidative stress. In animal models UCP2 downregulation has several pathological sequelae, particularly affecting the vasculature and the kidney. Specifically, in these models kidney damage is highly favored in the absence of UCP2 in the context of experimental hypertension. Confirmations of these data in humans awaits further information, as no data are yet available concerning the cell-type and subcellular expression in the human kidney. In the present study, we aimed to characterize the UCP2 protein distribution in human kidney biopsies. In humans UCP2 is mainly localized in proximal convoluted tubule cells, with an intracytoplasmic punctate staining. UCP2 positive puncta are often localized at the interface between the endoplasmic reticulum and the mitochondria. Glomerular structures do not express UCP2 at detectable levels. The expression of UCP2 in proximal tubular cells may explain their relative propensity to damage in pathological conditions including the hypertensive disease.

  2. Determination of the Subcellular Distribution of Liposomes Using Confocal Microscopy.

    PubMed

    Solomon, Melani A

    2017-01-01

    It is being increasingly recognized that therapeutics need to be delivered to specific organelle targets within cells. Liposomes are versatile lipid-based drug delivery vehicles that can be surface-modified to deliver the loaded cargo to specific subcellular locations within the cell. Hence, the development of such technology requires a means of measuring the subcellular distribution possibly by utilizing imaging techniques that can visualize and quantitate the extent of this subcellular localization. The apparent increase of resolution along the Z-axis offered by confocal microscopy makes this technique suitable for such studies. In this chapter, we describe the application of confocal laser scanning microscopy (CLSM) to determine the subcellular distribution of fluorescently labeled mitochondriotropic liposomes.

  3. Status epilepticus-induced changes in the subcellular distribution and activity of calcineurin in rat forebrain.

    PubMed

    Kurz, Jonathan E; Rana, Annu; Parsons, J Travis; Churn, Severn B

    2003-12-01

    This study was performed to determine the effect of prolonged status epilepticus on the activity and subcellular location of a neuronally enriched, calcium-regulated enzyme, calcineurin. Brain fractions isolated from control animals and rats subjected to pilocarpine-induced status epilepticus were subjected to differential centrifugation. Specific subcellular fractions were tested for both calcineurin activity and enzyme content. Significant, status epilepticus-induced increases in calcineurin activity were found in homogenates, nuclear fractions, and crude synaptic membrane-enriched fractions isolated from both cortex and hippocampus. Additionally, significant increases in enzyme levels were observed in crude synaptic fractions as measured by Western analysis. Immunohistochemical studies revealed a status epilepticus-induced increase in calcineurin immunoreactivity in dendritic structures of pyramidal neurons of the hippocampus. The data demonstrate a status epilepticus-induced increase in calcineurin activity and concentration in the postsynaptic region of forebrain pyramidal neurons.

  4. Virus-PLoc: a fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells.

    PubMed

    Shen, Hong-Bin; Chou, Kuo-Chen

    2007-02-15

    Viruses can reproduce their progenies only within a host cell, and their actions depend both on its destructive tendencies toward a specific host cell and on environmental conditions. Therefore, knowledge of the subcellular localization of viral proteins in a host cell or virus-infected cell is very useful for in-depth studying of their functions and mechanisms as well as designing antiviral drugs. An analysis on the Swiss-Prot database (version 50.0, released on May 30, 2006) indicates that only 23.5% of viral protein entries are annotated for their subcellular locations in this regard. As for the gene ontology database, the corresponding percentage is 23.8%. Such a gap calls for the development of high throughput tools for timely annotating the localization of viral proteins within host and virus-infected cells. In this article, a predictor called "Virus-PLoc" has been developed that is featured by fusing many basic classifiers with each engineered according to the K-nearest neighbor rule. The overall jackknife success rate obtained by Virus-PLoc in identifying the subcellular compartments of viral proteins was 80% for a benchmark dataset in which none of proteins has more than 25% sequence identity to any other in a same location site. Virus-PLoc will be freely available as a web-server at http://202.120.37.186/bioinf/virus for the public usage. Furthermore, Virus-PLoc has been used to provide large-scale predictions of all viral protein entries in Swiss-Prot database that do not have subcellular location annotations or are annotated as being uncertain. The results thus obtained have been deposited in a downloadable file prepared with Microsoft Excel and named "Tab_Virus-PLoc.xls." This file is available at the same website and will be updated twice a year to include the new entries of viral proteins and reflect the continuous development of Virus-PLoc. 2006 Wiley Periodicals, Inc.

  5. Subcellular characteristics of functional intracellular renin–angiotensin systems☆

    PubMed Central

    Abadir, Peter M.; Walston, Jeremy D.; Carey, Robert M.

    2013-01-01

    The renin–angio tensin system (RAS) is now regarded as an integral component in not only the development of hypertension, but also in physiologic and pathophysiologic mechanisms in multiple tissues and chronic disease states. While many of the endocrine (circulating), paracrine (cell-to-different cell) and autacrine (cell-to-same cell) effects of the RAS are believed to be mediated through the canonical extracellular RAS, a complete, independent and differentially regulated intracellular RAS (iRAS) has also been proposed. Angiotensinogen, the enzymes renin and angiotensin-converting enzyme (ACE) and the angiotensin peptides can all be synthesized and retained intracellularly. Angiotensin receptors (types I and 2) are also abundant intracellularly mainly at the nuclear and mitochondrial levels. The aim of this review is to focus on the most recent information concerning the subcellular localization, distribution and functions of the iRAS and to discuss the potential consequences of activation of the subcellular RAS on different organ systems. PMID:23032352

  6. Approaches for Studying the Subcellular Localization, Interactions, and Regulation of Histone Deacetylase 5 (HDAC5)

    PubMed Central

    Guise, Amanda J.; Cristea, Ileana M.

    2017-01-01

    As a member of the class IIa family of histone deacetylases, the histone deacetylase 5 (HDAC5) is known to undergo nuclear–cytoplasmic shuttling and to be a critical transcriptional regulator. Its misregulation has been linked to prominent human diseases, including cardiac diseases and tumorigenesis. In this chapter, we describe several experimental methods that have proven effective for studying the functions and regulatory features of HDAC5. We present methods for assessing the subcellular localization, protein interactions, posttranslational modifications (PTMs), and activity of HDAC5 from the standpoint of investigating either the endogenous protein or tagged protein forms in human cells. Specifically, given that at the heart of HDAC5 regulation lie its dynamic localization, interactions, and PTMs, we present methods for assessing HDAC5 localization in fixed and live cells, for isolating HDAC5-containing protein complexes to identify its interactions and modifications, and for determining how these PTMs map to predicted HDAC5 structural motifs. Lastly, we provide examples of approaches for studying HDAC5 functions with a focus on its regulation during cell-cycle progression. These methods can readily be adapted for the study of other HDACs or non-HDAC-proteins of interest. Individually, these techniques capture temporal and spatial snapshots of HDAC5 functions; yet together, these approaches provide powerful tools for investigating both the regulation and regulatory roles of HDAC5 in different cell contexts relevant to health and disease. PMID:27246208

  7. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes.

    PubMed

    Yu, Nancy Y; Wagner, James R; Laird, Matthew R; Melli, Gabor; Rey, Sébastien; Lo, Raymond; Dao, Phuong; Sahinalp, S Cenk; Ester, Martin; Foster, Leonard J; Brinkman, Fiona S L

    2010-07-01

    PSORTb has remained the most precise bacterial protein subcellular localization (SCL) predictor since it was first made available in 2003. However, the recall needs to be improved and no accurate SCL predictors yet make predictions for archaea, nor differentiate important localization subcategories, such as proteins targeted to a host cell or bacterial hyperstructures/organelles. Such improvements should preferably be encompassed in a freely available web-based predictor that can also be used as a standalone program. We developed PSORTb version 3.0 with improved recall, higher proteome-scale prediction coverage, and new refined localization subcategories. It is the first SCL predictor specifically geared for all prokaryotes, including archaea and bacteria with atypical membrane/cell wall topologies. It features an improved standalone program, with a new batch results delivery system complementing its web interface. We evaluated the most accurate SCL predictors using 5-fold cross validation plus we performed an independent proteomics analysis, showing that PSORTb 3.0 is the most accurate but can benefit from being complemented by Proteome Analyst predictions. http://www.psort.org/psortb (download open source software or use the web interface). psort-mail@sfu.ca Supplementary data are available at Bioinformatics online.

  8. Divisome-dependent subcellular localization of cell-cell joining protein SepJ in the filamentous cyanobacterium Anabaena.

    PubMed

    Ramos-León, Félix; Mariscal, Vicente; Frías, José E; Flores, Enrique; Herrero, Antonia

    2015-05-01

    Heterocyst-forming cyanobacteria are multicellular organisms that grow as filaments that can be hundreds of cells long. Septal junction complexes, of which SepJ is a possible component, appear to join the cells in the filament. SepJ is a cytoplasmic membrane protein that contains a long predicted periplasmic section and localizes not only to the cell poles in the intercellular septa but also to a position similar to a Z ring when cell division starts suggesting a relation with the divisome. Here, we created a mutant of Anabaena sp. strain PCC 7120 in which the essential divisome gene ftsZ is expressed from a synthetic NtcA-dependent promoter, whose activity depends on the nitrogen source. In the presence of ammonium, low levels of FtsZ were produced, and the subcellular localization of SepJ, which was investigated by immunofluorescence, was impaired. Possible interactions of SepJ with itself and with divisome proteins FtsZ, FtsQ and FtsW were investigated using the bacterial two-hybrid system. We found SepJ self-interaction and a specific interaction with FtsQ, confirmed by co-purification and involving parts of the SepJ and FtsQ periplasmic sections. Therefore, SepJ can form multimers, and in Anabaena, the divisome has a role beyond cell division, localizing a septal protein essential for multicellularity. © 2015 John Wiley & Sons Ltd.

  9. Accurate prediction of subcellular location of apoptosis proteins combining Chou's PseAAC and PsePSSM based on wavelet denoising.

    PubMed

    Yu, Bin; Li, Shan; Qiu, Wen-Ying; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Wang, Ming-Hui; Zhang, Yan

    2017-12-08

    Apoptosis proteins subcellular localization information are very important for understanding the mechanism of programmed cell death and the development of drugs. The prediction of subcellular localization of an apoptosis protein is still a challenging task because the prediction of apoptosis proteins subcellular localization can help to understand their function and the role of metabolic processes. In this paper, we propose a novel method for protein subcellular localization prediction. Firstly, the features of the protein sequence are extracted by combining Chou's pseudo amino acid composition (PseAAC) and pseudo-position specific scoring matrix (PsePSSM), then the feature information of the extracted is denoised by two-dimensional (2-D) wavelet denoising. Finally, the optimal feature vectors are input to the SVM classifier to predict subcellular location of apoptosis proteins. Quite promising predictions are obtained using the jackknife test on three widely used datasets and compared with other state-of-the-art methods. The results indicate that the method proposed in this paper can remarkably improve the prediction accuracy of apoptosis protein subcellular localization, which will be a supplementary tool for future proteomics research.

  10. Comparative studies of a new subfamily of human Ste20-like kinases: homodimerization, subcellular localization, and selective activation of MKK3 and p38.

    PubMed

    Yustein, Jason T; Xia, Liang; Kahlenburg, J Michelle; Robinson, Dan; Templeton, Dennis; Kung, Hsing-Jien

    2003-09-18

    The Sterile-20 or Ste20 family of serine/threonine kinases is a group of signaling molecules whose physiological roles within mammalian cells are just starting to be elucidated. Here, in this report we present the characterization of three human Ste20-like kinases with greater than 90% similarity within their catalytic domains that define a novel subfamily of Ste20s. Members of this kinase family include rat thousand and one (TAO1) and chicken KFC (kinase from chicken). For the lack of a consensus nomenclature in the literature, in this report, we shall call this family hKFC (for their homology to chicken KFC) and the three members hKFC-A, hKFC-B, and hKFC-C, respectively. These kinases have many similarities including an aminoterminal kinase domain, a serine-rich region, and a coiled-coil configuration within the C-terminus. All three kinases are able to activate the p38 MAP kinase pathway through the specific activation of the upstream MKK3 kinase. We also offer evidence, both theoretical and biochemical, showing that these kinases can undergo self-association. Despite these similarities, these kinases differ in tissue distribution, apparent subcellular localization, and feature structural differences largely within the carboxyl-terminal sequence.

  11. Subcellular localization of leptin and leptin receptor in breast cancer detected in an electron microscopic study.

    PubMed

    Al-Shibli, Saad M; Amjad, Nasser M; Al-Kubaisi, Muna K; Mizan, Shaikh

    2017-01-22

    Leptin (LEP) and leptin receptor (LEPR) have long been found associated with breast cancer. So far no high-resolution method such as electron microscopy has been used to investigate the subcellular localization of leptin and leptin receptor in breast cancer. We collected cancer and non-cancer breast tissues from 51 women with invasive ductal breast cancer. Leptin and leptin receptor in the tissues were estimated using immunohistochemistry (IHC). LEP and LEPR were localized at subcellular level by immunocytochemistry (ICC) using ultra-fine gold particle conjugated antibody, and visualized with transmission electron microscopy (TEM). IHC showed high presence of LEP and LEPR in 65% and 67% respectively of the breast cancer samples, 100% and 0% respectively of the adipose tissue samples, and no high presence in the non-cancer breast tissue samples. On TEM views both LEP and LEPR were found highly concentrated within the nucleus of the cancer cells, indicating that nucleus is the principal seat of action. However, presence of high concentration of LEP does not necessarily prove its over-expression, as often concluded, because LEP could be internalized from outside by LEPR in the cells. In contrast, LEPR is definitely over-expressed in the ductal breast cancer cells. Therefore, we hypothesize that over-expression of LEPR, rather than that of LEP has a fundamental role in breast carcinogenesis in particular, and probably for LEP-LEPR associated tumors in general. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Distinct domains within the NITROGEN LIMITATION ADAPTATION protein mediate its subcellular localization and function in the nitrate-dependent phosphate homeostasis pathway

    USDA-ARS?s Scientific Manuscript database

    The NITROGEN LIMITATION ADAPTATION (NLA) protein is a RING-type E3 ubiquitin ligase that plays an essential role in the regulation of nitrogen and phosphate homeostasis. NLA is localized to two distinct subcellular sites, the plasma membrane and nucleus, and contains four distinct domains: i) a RING...

  13. Determining the Localization of Carbohydrate Active Enzymes Within Gram-Negative Bacteria.

    PubMed

    McLean, Richard; Inglis, G Douglas; Mosimann, Steven C; Uwiera, Richard R E; Abbott, D Wade

    2017-01-01

    Investigating the subcellular location of secreted proteins is valuable for illuminating their biological function. Although several bioinformatics programs currently exist to predict the destination of a trafficked protein using its signal peptide sequence, these programs have limited accuracy and often require experimental validation. Here, we present a systematic method to fractionate gram-negative cells and characterize the subcellular localization of secreted carbohydrate active enzymes (CAZymes). This method involves four parallel approaches that reveal the relative abundance of protein within the cytoplasm, periplasm, outer membrane, and extracellular environment. Cytoplasmic and periplasmic proteins are fractionated by lysis and osmotic shock, respectively. Outer membrane bound proteins are determined by comparing cells before and after exoproteolytic digestion. Extracellularly secreted proteins are collected from the media and concentrated. These four different fractionations can then be probed for the presence and quantity of target proteins using immunochemical methods such as Western blots and ELISAs, or enzyme activity assays.

  14. Thyroid states regulate subcellular glucose phosphorylation activity in male mice

    PubMed Central

    Martins Peçanha, Flavia Letícia; dos Santos, Reinaldo Sousa

    2017-01-01

    The thyroid hormones (THs), triiodothyronine (T3) and thyroxine (T4), are very important in organism metabolism and regulate glucose utilization. Hexokinase (HK) is responsible for the first step of glycolysis, catalyzing the conversion of glucose to glucose 6-phosphate. HK has been found in different cellular compartments, and new functions have been attributed to this enzyme. The effects of hyperthyroidism on subcellular glucose phosphorylation in mouse tissues were examined. Tissues were removed, subcellular fractions were isolated from eu- and hyperthyroid (T3, 0.25 µg/g, i.p. during 21 days) mice and HK activity was assayed. Glucose phosphorylation was increased in the particulate fraction in soleus (312.4% ± 67.1, n = 10), gastrocnemius (369.2% ± 112.4, n = 10) and heart (142.2% ± 13.6, n = 10) muscle in the hyperthyroid group compared to the control group. Hexokinase activity was not affected in brain or liver. No relevant changes were observed in HK activity in the soluble fraction for all tissues investigated. Acute T3 administration (single dose of T3, 1.25 µg/g, i.p.) did not modulate HK activity. Interestingly, HK mRNA levels remained unchanged and HK bound to mitochondria was increased by T3 treatment, suggesting a posttranscriptional mechanism. Analysis of the AKT pathway showed a 2.5-fold increase in AKT and GSK3B phosphorylation in the gastrocnemius muscle in the hyperthyroid group compared to the euthyroid group. Taken together, we show for the first time that THs modulate HK activity specifically in particulate fractions and that this action seems to be under the control of the AKT and GSK3B pathways. PMID:28483784

  15. Subcellular Redox Signaling.

    PubMed

    Zhu, Liping; Lu, Yankai; Zhang, Jiwei; Hu, Qinghua

    2017-01-01

    Oxidative and antioxidative system of cells and tissues maintains a balanced state under physiological conditions. A disruption in this balance of redox status has been associated with numerous pathological processes. Reactive oxygen species (ROS) as a major redox signaling generates in a spatiotemporally dependent manner. Subcellular organelles such as mitochondria, endoplasmic reticulum, plasma membrane and nuclei contribute to the production of ROS. In addition to downstream effects of ROS signaling regulated by average ROS changes in cytoplasm, whether subcelluar ROS mediate biological effect(s) has drawn greater attentions. With the advance in redox-sensitive probes targeted to different subcellular compartments, the investigation of subcellular ROS signaling and its associated cellular function has become feasible. In this review, we discuss the subcellular ROS signaling, with particular focus on mechanisms of subcellular ROS production and its downstream effects.

  16. Plant subcellular proteomics: Application for exploring optimal cell function in soybean.

    PubMed

    Wang, Xin; Komatsu, Setsuko

    2016-06-30

    Plants have evolved complicated responses to developmental changes and stressful environmental conditions. Subcellular proteomics has the potential to elucidate localized cellular responses and investigate communications among subcellular compartments during plant development and in response to biotic and abiotic stresses. Soybean, which is a valuable legume crop rich in protein and vegetable oil, can grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. To date, numerous proteomic studies have been performed in soybean to examine the specific protein profiles of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum. In this review, methods for the purification and purity assessment of subcellular organelles from soybean are summarized. In addition, the findings from subcellular proteomic analyses of soybean during development and under stresses, particularly flooding stress, are presented and the proteins regulated among subcellular compartments are discussed. Continued advances in subcellular proteomics are expected to greatly contribute to the understanding of the responses and interactions that occur within and among subcellular compartments during development and under stressful environmental conditions. Subcellular proteomics has the potential to investigate the cellular events and interactions among subcellular compartments in response to development and stresses in plants. Soybean could grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. Numerous proteomics of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum was carried out to investigate the respecting proteins and their functions in soybean during development or under stresses. In this review, methods of subcellular-organelle enrichment and purity assessment are summarized. In addition, previous findings of

  17. Subcellular localization of the five members of the human steroid 5α-reductase family.

    PubMed

    Scaglione, Antonella; Montemiglio, Linda Celeste; Parisi, Giacomo; Asteriti, Italia Anna; Bruni, Renato; Cerutti, Gabriele; Testi, Claudia; Savino, Carmelinda; Mancia, Filippo; Lavia, Patrizia; Vallone, Beatrice

    2017-06-01

    In humans the steroid 5alpha-reductase (SRD5A) family comprises five integral membrane enzymes that carry out reduction of a double bond in lipidic substrates: Δ 4 -3-keto steroids, polyprenol and trans-enoyl CoA. The best-characterized reaction is the conversion of testosterone into the more potent dihydrotestosterone carried out by SRD5A1-2. Some controversy exists on their possible nuclear or endoplasmic reticulum localization. We report the cloning and transient expression in HeLa cells of the five members of the human steroid 5α-reductase family as both N- and C-terminus green fluorescent protein tagged protein constructs. Following the intrinsic fluorescence of the tag, we have determined that the subcellular localization of these enzymes is in the endoplasmic reticulum, upon expression in HeLa cells. The presence of the tag at either end of the polypeptide chain can affect protein expression and, in the case of trans enoyl-CoA reductase, it induces the formation of protein aggregates.

  18. The intricacies of p21 phosphorylation: protein/protein interactions, subcellular localization and stability.

    PubMed

    Child, Emma S; Mann, David J

    2006-06-01

    p21 was originally described as functioning as a cell cycle regulator via inhibition of both cyclin-dependent kinases and processive DNA replication. Nowadays it is recognized to play other fundamental roles including transcriptional regulation and the modulation of apoptosis. Each of these functions of p21 is achieved through direct p21/protein interactions and the subcellular localization of p21 plays an important part in dictating the binding partners to which p21 is exposed. Over recent years, a number of phosphorylation sites in p21 have been identified, these being targeted by several important intracellular signalling protein kinases. Here we review the state of our knowledge of p21 phosphorylation with respect to the kinases involved and the molecular biological effects of each phosphorylation event.

  19. Robust prediction of protein subcellular localization combining PCA and WSVMs.

    PubMed

    Tian, Jiang; Gu, Hong; Liu, Wenqi; Gao, Chiyang

    2011-08-01

    Automated prediction of protein subcellular localization is an important tool for genome annotation and drug discovery, and Support Vector Machines (SVMs) can effectively solve this problem in a supervised manner. However, the datasets obtained from real experiments are likely to contain outliers or noises, which can lead to poor generalization ability and classification accuracy. To explore this problem, we adopt strategies to lower the effect of outliers. First we design a method based on Weighted SVMs, different weights are assigned to different data points, so the training algorithm will learn the decision boundary according to the relative importance of the data points. Second we analyse the influence of Principal Component Analysis (PCA) on WSVM classification, propose a hybrid classifier combining merits of both PCA and WSVM. After performing dimension reduction operations on the datasets, kernel-based possibilistic c-means algorithm can generate more suitable weights for the training, as PCA transforms the data into a new coordinate system with largest variances affected greatly by the outliers. Experiments on benchmark datasets show promising results, which confirms the effectiveness of the proposed method in terms of prediction accuracy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Expression and subcellular localization of ORC1 in Leishmania major

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Diwakar; Mukherji, Agnideep; Saha, Swati

    2008-10-10

    The mechanism of DNA replication is highly conserved in eukaryotes, with the process being preceded by the ordered assembly of pre-replication complexes (pre-RCs). Pre-RC formation is triggered by the association of the origin replication complex (ORC) with chromatin. Leishmania major appears to have only one ORC ortholog, ORC1. ORC1 in other eukaryotes is the largest of the ORC subunits and is believed to play a significant role in modulating replication initiation. Here we report for the first time, the cloning of ORC1 from L. major, and the analysis of its expression in L. major promastigotes. In human cells ORC1 levelsmore » have been found to be upregulated in G1 and subsequently degraded, thus playing a role in controlling replication initiation. We examine the subcellular localization of L. major ORC1 in relation to the different stages of the cell cycle. Our results show that, unlike what is widely believed to be the case with ORC1 in human cells, ORC1 in L. major is nuclear at all stages of the cell cycle.« less

  1. Multi-location gram-positive and gram-negative bacterial protein subcellular localization using gene ontology and multi-label classifier ensemble.

    PubMed

    Wang, Xiao; Zhang, Jun; Li, Guo-Zheng

    2015-01-01

    It has become a very important and full of challenge task to predict bacterial protein subcellular locations using computational methods. Although there exist a lot of prediction methods for bacterial proteins, the majority of these methods can only deal with single-location proteins. But unfortunately many multi-location proteins are located in the bacterial cells. Moreover, multi-location proteins have special biological functions capable of helping the development of new drugs. So it is necessary to develop new computational methods for accurately predicting subcellular locations of multi-location bacterial proteins. In this article, two efficient multi-label predictors, Gpos-ECC-mPLoc and Gneg-ECC-mPLoc, are developed to predict the subcellular locations of multi-label gram-positive and gram-negative bacterial proteins respectively. The two multi-label predictors construct the GO vectors by using the GO terms of homologous proteins of query proteins and then adopt a powerful multi-label ensemble classifier to make the final multi-label prediction. The two multi-label predictors have the following advantages: (1) they improve the prediction performance of multi-label proteins by taking the correlations among different labels into account; (2) they ensemble multiple CC classifiers and further generate better prediction results by ensemble learning; and (3) they construct the GO vectors by using the frequency of occurrences of GO terms in the typical homologous set instead of using 0/1 values. Experimental results show that Gpos-ECC-mPLoc and Gneg-ECC-mPLoc can efficiently predict the subcellular locations of multi-label gram-positive and gram-negative bacterial proteins respectively. Gpos-ECC-mPLoc and Gneg-ECC-mPLoc can efficiently improve prediction accuracy of subcellular localization of multi-location gram-positive and gram-negative bacterial proteins respectively. The online web servers for Gpos-ECC-mPLoc and Gneg-ECC-mPLoc predictors are freely accessible

  2. Multilabel learning via random label selection for protein subcellular multilocations prediction.

    PubMed

    Wang, Xiao; Li, Guo-Zheng

    2013-01-01

    Prediction of protein subcellular localization is an important but challenging problem, particularly when proteins may simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing protein subcellular localization methods are only used to deal with the single-location proteins. In the past few years, only a few methods have been proposed to tackle proteins with multiple locations. However, they only adopt a simple strategy, that is, transforming the multilocation proteins to multiple proteins with single location, which does not take correlations among different subcellular locations into account. In this paper, a novel method named random label selection (RALS) (multilabel learning via RALS), which extends the simple binary relevance (BR) method, is proposed to learn from multilocation proteins in an effective and efficient way. RALS does not explicitly find the correlations among labels, but rather implicitly attempts to learn the label correlations from data by augmenting original feature space with randomly selected labels as its additional input features. Through the fivefold cross-validation test on a benchmark data set, we demonstrate our proposed method with consideration of label correlations obviously outperforms the baseline BR method without consideration of label correlations, indicating correlations among different subcellular locations really exist and contribute to improvement of prediction performance. Experimental results on two benchmark data sets also show that our proposed methods achieve significantly higher performance than some other state-of-the-art methods in predicting subcellular multilocations of proteins. The prediction web server is available at >http://levis.tongji.edu.cn:8080/bioinfo/MLPred-Euk/ for the public usage.

  3. Accurate prediction of subcellular location of apoptosis proteins combining Chou’s PseAAC and PsePSSM based on wavelet denoising

    PubMed Central

    Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Wang, Ming-Hui; Zhang, Yan

    2017-01-01

    Apoptosis proteins subcellular localization information are very important for understanding the mechanism of programmed cell death and the development of drugs. The prediction of subcellular localization of an apoptosis protein is still a challenging task because the prediction of apoptosis proteins subcellular localization can help to understand their function and the role of metabolic processes. In this paper, we propose a novel method for protein subcellular localization prediction. Firstly, the features of the protein sequence are extracted by combining Chou's pseudo amino acid composition (PseAAC) and pseudo-position specific scoring matrix (PsePSSM), then the feature information of the extracted is denoised by two-dimensional (2-D) wavelet denoising. Finally, the optimal feature vectors are input to the SVM classifier to predict subcellular location of apoptosis proteins. Quite promising predictions are obtained using the jackknife test on three widely used datasets and compared with other state-of-the-art methods. The results indicate that the method proposed in this paper can remarkably improve the prediction accuracy of apoptosis protein subcellular localization, which will be a supplementary tool for future proteomics research. PMID:29296195

  4. Nano-fEM: protein localization using photo-activated localization microscopy and electron microscopy.

    PubMed

    Watanabe, Shigeki; Richards, Jackson; Hollopeter, Gunther; Hobson, Robert J; Davis, Wayne M; Jorgensen, Erik M

    2012-12-03

    Mapping the distribution of proteins is essential for understanding the function of proteins in a cell. Fluorescence microscopy is extensively used for protein localization, but subcellular context is often absent in fluorescence images. Immuno-electron microscopy, on the other hand, can localize proteins, but the technique is limited by a lack of compatible antibodies, poor preservation of morphology and because most antigens are not exposed to the specimen surface. Correlative approaches can acquire the fluorescence image from a whole cell first, either from immuno-fluorescence or genetically tagged proteins. The sample is then fixed and embedded for electron microscopy, and the images are correlated (1-3). However, the low-resolution fluorescence image and the lack of fiducial markers preclude the precise localization of proteins. Alternatively, fluorescence imaging can be done after preserving the specimen in plastic. In this approach, the block is sectioned, and fluorescence images and electron micrographs of the same section are correlated (4-7). However, the diffraction limit of light in the correlated image obscures the locations of individual molecules, and the fluorescence often extends beyond the boundary of the cell. Nano-resolution fluorescence electron microscopy (nano-fEM) is designed to localize proteins at nano-scale by imaging the same sections using photo-activated localization microscopy (PALM) and electron microscopy. PALM overcomes the diffraction limit by imaging individual fluorescent proteins and subsequently mapping the centroid of each fluorescent spot (8-10). We outline the nano-fEM technique in five steps. First, the sample is fixed and embedded using conditions that preserve the fluorescence of tagged proteins. Second, the resin blocks are sectioned into ultrathin segments (70-80 nm) that are mounted on a cover glass. Third, fluorescence is imaged in these sections using the Zeiss PALM microscope. Fourth, electron dense structures are

  5. Using fluorescence lifetime microscopy to study the subcellular localization of anthocyanins.

    PubMed

    Chanoca, Alexandra; Burkel, Brian; Kovinich, Nik; Grotewold, Erich; Eliceiri, Kevin W; Otegui, Marisa S

    2016-12-01

    Anthocyanins are flavonoid pigments that accumulate in most seed plants. They are synthesized in the cytoplasm but accumulate inside the vacuoles. Anthocyanins are pigmented at the lower vacuolar pH, but in the cytoplasm they can be visualized based on their fluorescence properties. Thus, anthocyanins provide an ideal system for the development of new methods to investigate cytoplasmic pools and association with other molecular components. We have analyzed the fluorescence decay of anthocyanins by fluorescence lifetime imaging microscopy (FLIM), in both in vitro and in vivo conditions, using wild-type and mutant Arabidopsis thaliana seedlings. Within plant cells, the amplitude-weighted mean fluorescence lifetime (τ m ) correlated with distinct subcellular localizations of anthocyanins. The vacuolar pool of anthocyanins exhibited shorter τ m than the cytoplasmic pool. Consistently, lowering the pH of anthocyanins in solution shortened their fluorescence decay. We propose that FLIM is a useful tool for understanding the trafficking of anthocyanins and, potentially, for estimating vacuolar pH inside intact plant cells. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  6. Calcium signaling in mammalian egg activation and embryo development: Influence of subcellular localization

    PubMed Central

    Miao, Yi-Liang; Williams, Carmen J.

    2012-01-01

    Calcium (Ca2+) signals drive the fundamental events surrounding fertilization and the activation of development in all species examined to date. Initial studies of Ca2+ signaling at fertilization in marine animals were tightly linked to new discoveries of bioluminescent proteins and their use as fluorescent Ca2+ sensors. Since that time, there has been rapid progress in our understanding of the key functions for Ca2+ in many cell types and the impact of cellular localization on Ca2+ signaling pathways. In this review, which focuses on mammalian egg activation, we consider how Ca2+ is regulated and stored at different stages of oocyte development and examine the functions of molecules that serve as both regulators of Ca2+ release and effectors of Ca2+ signals. We then summarize studies exploring how Ca2+ directs downstream effectors mediating both egg activation and later signaling events required for successful preimplantation embryo development. Throughout this review, we focus attention on how localization of Ca2+ signals influences downstream signaling events, and attempt to highlight gaps in our knowledge that are ripe areas for future research. PMID:22888043

  7. Determining the distribution of probes between different subcellular locations through automated unmixing of subcellular patterns.

    PubMed

    Peng, Tao; Bonamy, Ghislain M C; Glory-Afshar, Estelle; Rines, Daniel R; Chanda, Sumit K; Murphy, Robert F

    2010-02-16

    Many proteins or other biological macromolecules are localized to more than one subcellular structure. The fraction of a protein in different cellular compartments is often measured by colocalization with organelle-specific fluorescent markers, requiring availability of fluorescent probes for each compartment and acquisition of images for each in conjunction with the macromolecule of interest. Alternatively, tailored algorithms allow finding particular regions in images and quantifying the amount of fluorescence they contain. Unfortunately, this approach requires extensive hand-tuning of algorithms and is often cell type-dependent. Here we describe a machine-learning approach for estimating the amount of fluorescent signal in different subcellular compartments without hand tuning, requiring only the acquisition of separate training images of markers for each compartment. In testing on images of cells stained with mixtures of probes for different organelles, we achieved a 93% correlation between estimated and expected amounts of probes in each compartment. We also demonstrated that the method can be used to quantify drug-dependent protein translocations. The method enables automated and unbiased determination of the distributions of protein across cellular compartments, and will significantly improve imaging-based high-throughput assays and facilitate proteome-scale localization efforts.

  8. Genome-wide identification of the subcellular localization of the Escherichia coli B proteome using experimental and computational methods.

    PubMed

    Han, Mee-Jung; Yun, Hongseok; Lee, Jeong Wook; Lee, Yu Hyun; Lee, Sang Yup; Yoo, Jong-Shin; Kim, Jin Young; Kim, Jihyun F; Hur, Cheol-Goo

    2011-04-01

    Escherichia coli K-12 and B strains have most widely been employed for scientific studies as well as industrial applications. Recently, the complete genome sequences of two representative descendants of E. coli B strains, REL606 and BL21(DE3), have been determined. Here, we report the subproteome reference maps of E. coli B REL606 by analyzing cytoplasmic, periplasmic, inner and outer membrane, and extracellular proteomes based on the genome information using experimental and computational approaches. Among the total of 3487 spots, 651 proteins including 410 non-redundant proteins were identified and characterized by 2-DE and LC-MS/MS; they include 440 cytoplasmic, 45 periplasmic, 50 inner membrane, 61 outer membrane, and 55 extracellular proteins. In addition, subcellular localizations of all 4205 ORFs of E. coli B were predicted by combined computational prediction methods. The subcellular localizations of 1812 (43.09%) proteins of currently unknown function were newly assigned. The results of computational prediction were also compared with the experimental results, showing that overall precision and recall were 92.16 and 92.16%, respectively. This work represents the most comprehensive analyses of the subproteomes of E. coli B, and will be useful as a reference for proteome profiling studies under various conditions. The complete proteome data are available online (http://ecolib.kaist.ac.kr). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information.

    PubMed

    Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen

    2018-05-01

    For in-depth understanding the functions of proteins in a cell, the knowledge of their subcellular localization is indispensable. The current study is focused on human protein subcellular location prediction based on the sequence information alone. Although considerable efforts have been made in this regard, the problem is far from being solved yet. Most existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions that are particularly important for both basic research and drug design. Using the multi-label theory, we present a new predictor called 'pLoc-mHum' by extracting the crucial GO (Gene Ontology) information into the general PseAAC (Pseudo Amino Acid Composition). Rigorous cross-validations on a same stringent benchmark dataset have indicated that the proposed pLoc-mHum predictor is remarkably superior to iLoc-Hum, the state-of-the-art method in predicting the human protein subcellular localization. To maximize the convenience of most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc-mHum/, by which users can easily get their desired results without the need to go through the complicated mathematics involved. xcheng@gordonlifescience.org. Supplementary data are available at Bioinformatics online.

  10. Multi-Label Learning via Random Label Selection for Protein Subcellular Multi-Locations Prediction.

    PubMed

    Wang, Xiao; Li, Guo-Zheng

    2013-03-12

    Prediction of protein subcellular localization is an important but challenging problem, particularly when proteins may simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing protein subcellular localization methods are only used to deal with the single-location proteins. In the past few years, only a few methods have been proposed to tackle proteins with multiple locations. However, they only adopt a simple strategy, that is, transforming the multi-location proteins to multiple proteins with single location, which doesn't take correlations among different subcellular locations into account. In this paper, a novel method named RALS (multi-label learning via RAndom Label Selection), is proposed to learn from multi-location proteins in an effective and efficient way. Through five-fold cross validation test on a benchmark dataset, we demonstrate our proposed method with consideration of label correlations obviously outperforms the baseline BR method without consideration of label correlations, indicating correlations among different subcellular locations really exist and contribute to improvement of prediction performance. Experimental results on two benchmark datasets also show that our proposed methods achieve significantly higher performance than some other state-of-the-art methods in predicting subcellular multi-locations of proteins. The prediction web server is available at http://levis.tongji.edu.cn:8080/bioinfo/MLPred-Euk/ for the public usage.

  11. Subcellular localization and photodynamic activity of Photodithazine (glucosamine salt of chlorin e6) in murine melanoma B16-F10: an in vitro and in vivo study

    NASA Astrophysics Data System (ADS)

    Ono, Bruno Andrade; Pires, Layla; Nogueira, Marcelo Saito; Kurachi, Cristina; Pratavieira, Sebastião.

    2018-02-01

    Photodynamic therapy (PDT) is already a good option for the clinical treatment of several lesions, including mainly nonmelanoma skin cancers. However, cutaneous melanoma treatment remains a challenge when using PDT. One of the reasons for its reduced efficacy is the high pigmentation of melanoma cells. The object of our study is to evaluate the feasibility of the Photodithazine as a photosensitizer for melanoma. Photodithazine is already used in some malignant tumors with satisfactory results and has significant absorption band around 660 nm where the absorption of melanin is low. In this study, we measured the subcellular localization and photodynamic activity of Photodithazine (PDZ) in murine melanoma B16-F10 cell culture. Additionally, a PDT procedure was applied in an animal melanoma model. This first result demonstrates that Photodithazine is more localized at mitochondria in B16F10 cell culture and the cell viability is reduced to less than 90% using 1 µg/mL (PDZ) and 2 J/cm2. We also noticed a rapid PDZ (less than one hour) accumulation in a murine melanoma model. The treatment of melanoma resulted in 20 % more animal survival after one session of PDT compared with the control group. More studies are required to evaluate the cytotoxic effects of Photodithazine at human melanoma.

  12. System dynamics of subcellular transport.

    PubMed

    Chen, Vivien Y; Khersonsky, Sonya M; Shedden, Kerby; Chang, Young Tae; Rosania, Gus R

    2004-01-01

    In pharmacokinetic experiments, interpretations often hinge on treating cells as a "black box": a single, lumped compartment or boundary. Here, a combinatorial library of fluorescent small molecules was used to visualize subcellular transport pathways in living cells, using a kinetic, high content imaging system to monitor spatiotemporal variations of intracellular probe distribution. Most probes accumulate in cytoplasmic vesicles and probe kinetics conform to a nested, two-compartment dynamical system. At steady state, probes preferentially partition from the extracellular medium to the cytosol, and from the cytosol to cytoplasmic vesicles, with hydrophobic molecules favoring sequestration. Altogether, these results point to a general organizing principle underlying the system dynamics of subcellular, small molecule transport. In addition to plasma membrane permeability, subcellular transport phenomena can determine the active concentration of small molecules in the cytosol and the efflux of small molecules from cells. Fundamentally, direct observation of intracellular probe distribution challenges the simple boundary model of classical pharmacokinetics, which considers cells as static permeability barriers.

  13. Subcellular Distribution of O-Acetylserine(thiol)lyase in Cauliflower (Brassica oleracea L.) Inflorescence.

    PubMed

    Rolland, N; Droux, M; Douce, R

    1992-03-01

    The subcellular localization of O-acetyiserine(thiol)lyase (EC 4.2.99.8) in nongreen tissue from higher plants has been studied using purified proplastids, mitochondria, and protoplasts from cauliflower (Brassica oleracea L.) buds as a source of subcellular fractions. O-Acetylserine(thiol)lyase has been detected in both organelles (proplastids and mitochondria) and a cytosolic extract obtained by protoplast fractionation. We confirmed these observations, demonstrating that a form of the enzyme different in global charge and separated from others by anion-exchange chromatography corresponded to each subcellular location. Our observations are consistent with the need for cysteine biosynthesis in each subcellular compartment where the synthesis of proteins occurs.

  14. WegoLoc: accurate prediction of protein subcellular localization using weighted Gene Ontology terms.

    PubMed

    Chi, Sang-Mun; Nam, Dougu

    2012-04-01

    We present an accurate and fast web server, WegoLoc for predicting subcellular localization of proteins based on sequence similarity and weighted Gene Ontology (GO) information. A term weighting method in the text categorization process is applied to GO terms for a support vector machine classifier. As a result, WegoLoc surpasses the state-of-the-art methods for previously used test datasets. WegoLoc supports three eukaryotic kingdoms (animals, fungi and plants) and provides human-specific analysis, and covers several sets of cellular locations. In addition, WegoLoc provides (i) multiple possible localizations of input protein(s) as well as their corresponding probability scores, (ii) weights of GO terms representing the contribution of each GO term in the prediction, and (iii) a BLAST E-value for the best hit with GO terms. If the similarity score does not meet a given threshold, an amino acid composition-based prediction is applied as a backup method. WegoLoc and User's guide are freely available at the website http://www.btool.org/WegoLoc smchiks@ks.ac.kr; dougnam@unist.ac.kr Supplementary data is available at http://www.btool.org/WegoLoc.

  15. Structure, kinetic characterization and subcellular localization of the two ribulose 5-phosphate epimerase isoenzymes from Trypanosoma cruzi

    PubMed Central

    Gonzalez, Soledad Natalia; Valsecchi, Wanda Mariela; Maugeri, Dante; Delfino, José María; Cazzulo, Juan José

    2017-01-01

    The enzyme of the pentose phosphate pathway (PPP) ribulose-5-phosphate-epimerase (RPE) is encoded by two genes present in the genome of Trypanosoma cruzi CL Brener clone: TcRPE1 and TcRPE2. Despite high sequence similarity at the amino acid residue level, the recombinant isoenzymes show a strikingly different kinetics. Whereas TcRPE2 follows a typical michaelian behavior, TcRPE1 shows a complex kinetic pattern, displaying a biphasic curve, suggesting the coexistence of -at least- two kinetically different molecular forms. Regarding the subcellular localization in epimastigotes, whereas TcRPE1 is a cytosolic enzyme, TcRPE2 is localized in glycosomes. To our knowledge, TcRPE2 is the first PPP isoenzyme that is exclusively localized in glycosomes. Over-expression of TcRPE1, but not of TcRPE2, significantly reduces the parasite doubling time in vitro, as compared with wild type epimastigotes. Both TcRPEs represent single domain proteins exhibiting the classical α/β TIM-barrel fold, as expected for enzymes with this activity. With regard to the architecture of the active site, all the important amino acid residues for catalysis -with the exception of M58- are also present in both TcRPEs models. The superimposition of the binding pocket of both isoenzyme models shows that they adopt essentially identical positions in the active site with a residue specific RMSD < 2Å, with the sole exception of S12, which displays a large deviation (residue specific RMSD: 11.07 Å). Studies on the quaternary arrangement of these isoenzymes reveal that both are present in a mixture of various oligomeric species made up of an even number of molecules, probably pointing to the dimer as their minimal functional unit. This multiplicity of oligomeric species has not been reported for any of the other RPEs studied so far and it might bear implications for the regulation of TcRPEs activity, although further investigation will be necessary to unravel the physiological significance of these

  16. Structure, kinetic characterization and subcellular localization of the two ribulose 5-phosphate epimerase isoenzymes from Trypanosoma cruzi.

    PubMed

    Gonzalez, Soledad Natalia; Valsecchi, Wanda Mariela; Maugeri, Dante; Delfino, José María; Cazzulo, Juan José

    2017-01-01

    The enzyme of the pentose phosphate pathway (PPP) ribulose-5-phosphate-epimerase (RPE) is encoded by two genes present in the genome of Trypanosoma cruzi CL Brener clone: TcRPE1 and TcRPE2. Despite high sequence similarity at the amino acid residue level, the recombinant isoenzymes show a strikingly different kinetics. Whereas TcRPE2 follows a typical michaelian behavior, TcRPE1 shows a complex kinetic pattern, displaying a biphasic curve, suggesting the coexistence of -at least- two kinetically different molecular forms. Regarding the subcellular localization in epimastigotes, whereas TcRPE1 is a cytosolic enzyme, TcRPE2 is localized in glycosomes. To our knowledge, TcRPE2 is the first PPP isoenzyme that is exclusively localized in glycosomes. Over-expression of TcRPE1, but not of TcRPE2, significantly reduces the parasite doubling time in vitro, as compared with wild type epimastigotes. Both TcRPEs represent single domain proteins exhibiting the classical α/β TIM-barrel fold, as expected for enzymes with this activity. With regard to the architecture of the active site, all the important amino acid residues for catalysis -with the exception of M58- are also present in both TcRPEs models. The superimposition of the binding pocket of both isoenzyme models shows that they adopt essentially identical positions in the active site with a residue specific RMSD < 2Å, with the sole exception of S12, which displays a large deviation (residue specific RMSD: 11.07 Å). Studies on the quaternary arrangement of these isoenzymes reveal that both are present in a mixture of various oligomeric species made up of an even number of molecules, probably pointing to the dimer as their minimal functional unit. This multiplicity of oligomeric species has not been reported for any of the other RPEs studied so far and it might bear implications for the regulation of TcRPEs activity, although further investigation will be necessary to unravel the physiological significance of these

  17. Subcellular Distribution of O-Acetylserine(thiol)lyase in Cauliflower (Brassica oleracea L.) Inflorescence

    PubMed Central

    Rolland, Norbert; Droux, Michel; Douce, Roland

    1992-01-01

    The subcellular localization of O-acetyiserine(thiol)lyase (EC 4.2.99.8) in nongreen tissue from higher plants has been studied using purified proplastids, mitochondria, and protoplasts from cauliflower (Brassica oleracea L.) buds as a source of subcellular fractions. O-Acetylserine(thiol)lyase has been detected in both organelles (proplastids and mitochondria) and a cytosolic extract obtained by protoplast fractionation. We confirmed these observations, demonstrating that a form of the enzyme different in global charge and separated from others by anion-exchange chromatography corresponded to each subcellular location. Our observations are consistent with the need for cysteine biosynthesis in each subcellular compartment where the synthesis of proteins occurs. ImagesFigure 1 PMID:16668766

  18. MultiP-Apo: A Multilabel Predictor for Identifying Subcellular Locations of Apoptosis Proteins

    PubMed Central

    Li, Hui; Wang, Rong; Gan, Yong

    2017-01-01

    Apoptosis proteins play an important role in the mechanism of programmed cell death. Predicting subcellular localization of apoptosis proteins is an essential step to understand their functions and identify drugs target. Many computational prediction methods have been developed for apoptosis protein subcellular localization. However, these existing works only focus on the proteins that have one location; proteins with multiple locations are either not considered or assumed as not existing when constructing prediction models, so that they cannot completely predict all the locations of the apoptosis proteins with multiple locations. To address this problem, this paper proposes a novel multilabel predictor named MultiP-Apo, which can predict not only apoptosis proteins with single subcellular location but also those with multiple subcellular locations. Specifically, given a query protein, GO-based feature extraction method is used to extract its feature vector. Subsequently, the GO feature vector is classified by a new multilabel classifier based on the label-specific features. It is the first multilabel predictor ever established for identifying subcellular locations of multilocation apoptosis proteins. As an initial study, MultiP-Apo achieves an overall accuracy of 58.49% by jackknife test, which indicates that our proposed predictor may become a very useful high-throughput tool in this area. PMID:28744305

  19. MultiP-Apo: A Multilabel Predictor for Identifying Subcellular Locations of Apoptosis Proteins.

    PubMed

    Wang, Xiao; Li, Hui; Wang, Rong; Zhang, Qiuwen; Zhang, Weiwei; Gan, Yong

    2017-01-01

    Apoptosis proteins play an important role in the mechanism of programmed cell death. Predicting subcellular localization of apoptosis proteins is an essential step to understand their functions and identify drugs target. Many computational prediction methods have been developed for apoptosis protein subcellular localization. However, these existing works only focus on the proteins that have one location; proteins with multiple locations are either not considered or assumed as not existing when constructing prediction models, so that they cannot completely predict all the locations of the apoptosis proteins with multiple locations. To address this problem, this paper proposes a novel multilabel predictor named MultiP-Apo, which can predict not only apoptosis proteins with single subcellular location but also those with multiple subcellular locations. Specifically, given a query protein, GO-based feature extraction method is used to extract its feature vector. Subsequently, the GO feature vector is classified by a new multilabel classifier based on the label-specific features. It is the first multilabel predictor ever established for identifying subcellular locations of multilocation apoptosis proteins. As an initial study, MultiP-Apo achieves an overall accuracy of 58.49% by jackknife test, which indicates that our proposed predictor may become a very useful high-throughput tool in this area.

  20. Tissue distribution and subcellular localizations determine in vivo functional relationship among prostasin, matriptase, HAI-1, and HAI-2 in human skin.

    PubMed

    Lee, Shiao-Pieng; Kao, Chen-Yu; Chang, Shun-Cheng; Chiu, Yi-Lin; Chen, Yen-Ju; Chen, Ming-Hsing G; Chang, Chun-Chia; Lin, Yu-Wen; Chiang, Chien-Ping; Wang, Jehng-Kang; Lin, Chen-Yong; Johnson, Michael D

    2018-01-01

    The membrane-bound serine proteases prostasin and matriptase and the Kunitz-type protease inhibitors HAI-1 and HAI-2 are all expressed in human skin and may form a tightly regulated proteolysis network, contributing to skin pathophysiology. Evidence from other systems, however, suggests that the relationship between matriptase and prostasin and between the proteases and the inhibitors can be context-dependent. In this study the in vivo zymogen activation and protease inhibition status of matriptase and prostasin were investigated in the human skin. Immunohistochemistry detected high levels of activated prostasin in the granular layer, but only low levels of activated matriptase restricted to the basal layer. Immunoblot analysis of foreskin lysates confirmed this in vivo zymogen activation status and further revealed that HAI-1 but not HAI-2 is the prominent inhibitor for prostasin and matriptase in skin. The zymogen activation status and location of the proteases does not support a close functional relation between matriptase and prostasin in the human skin. The limited role for HAI-2 in the inhibition of matriptase and prostasin is the result of its primarily intracellular localization in basal and spinous layer keratinocytes, which probably prevents the Kunitz inhibitor from interacting with active prostasin or matriptase. In contrast, the cell surface expression of HAI-1 in all viable epidermal layers renders it an effective regulator for matriptase and prostasin. Collectively, our study suggests the importance of tissue distribution and subcellular localization in the functional relationship between proteases and protease inhibitors.

  1. Local structure of subcellular input retinotopy in an identified visual interneuron

    NASA Astrophysics Data System (ADS)

    Zhu, Ying; Gabbiani, Fabrizio; Fabrizio Gabbiani's lab Team

    2015-03-01

    How does the spatial layout of the projections that a neuron receives impact its synaptic integration and computation? What is the mapping topography of subcellular wiring at the single neuron level? The LGMD (lobula giant movement detector) neuron in the locust is an identified neuron that responds preferentially to objects approaching on a collision course. It receives excitatory inputs from the entire visual hemifield through calcium-permeable nicotinic acetylcholine receptors. Previous work showed that the projection from the locust compound eye to the LGMD preserved retinotopy down to the level of a single ommatidium (facet) by employing in vivo widefield calcium imaging. Because widefield imaging relies on global excitation of the preparation and has a relatively low resolution, previous work could not investigate this retinotopic mapping at the level of individual thin dendritic branches. Our current work employs a custom-built two-photon microscope with sub-micron resolution in conjunction with a single-facet stimulation setup that provides visual stimuli to the single ommatidium of locust adequate to explore the local structure of this retinotopy at a finer level. We would thank NIMH for funding this research.

  2. Grouping annotations on the subcellular layered interactome demonstrates enhanced autophagy activity in a recurrent experimental autoimmune uveitis T cell line.

    PubMed

    Jia, Xiuzhi; Li, Jingbo; Shi, Dejing; Zhao, Yu; Dong, Yucui; Ju, Huanyu; Yang, Jinfeng; Sun, Jianhua; Li, Xia; Ren, Huan

    2014-01-01

    Human uveitis is a type of T cell-mediated autoimmune disease that often shows relapse-remitting courses affecting multiple biological processes. As a cytoplasmic process, autophagy has been seen as an adaptive response to cell death and survival, yet the link between autophagy and T cell-mediated autoimmunity is not certain. In this study, based on the differentially expressed genes (GSE19652) between the recurrent versus monophasic T cell lines, whose adoptive transfer to susceptible animals may result in respective recurrent or monophasic uveitis, we proposed grouping annotations on a subcellular layered interactome framework to analyze the specific bioprocesses that are linked to the recurrence of T cell autoimmunity. That is, the subcellular layered interactome was established by the Cytoscape and Cerebral plugin based on differential expression, global interactome, and subcellular localization information. Then, the layered interactomes were grouping annotated by the ClueGO plugin based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. The analysis showed that significant bioprocesses with autophagy were orchestrated in the cytoplasmic layered interactome and that mTOR may have a regulatory role in it. Furthermore, by setting up recurrent and monophasic uveitis in Lewis rats, we confirmed by transmission electron microscopy that, in comparison to the monophasic disease, recurrent uveitis in vivo showed significantly increased autophagy activity and extended lymphocyte infiltration to the affected retina. In summary, our framework methodology is a useful tool to disclose specific bioprocesses and molecular targets that can be attributed to a certain disease. Our results indicated that targeted inhibition of autophagy pathways may perturb the recurrence of uveitis.

  3. Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing.

    PubMed

    Shen, Yanting; Liang, Lijia; Zhang, Shuqin; Huang, Dianshuai; Zhang, Jing; Xu, Shuping; Liang, Chongyang; Xu, Weiqing

    2018-01-25

    The pH value of subcellular organelles in living cells is a significant parameter in the physiological activities of cells. Its abnormal fluctuations are commonly believed to be associated with cancers and other diseases. Herein, a series of surface-enhanced Raman scattering (SERS) nanosensors with high sensitivity and targeting function was prepared for the quantification and monitoring of pH values in mitochondria, nucleus, and lysosome. The nanosensors were composed of gold nanorods (AuNRs) functionalized with a pH-responsive molecule (4-mercaptopyridine, MPy) and peptides that could specifically deliver the AuNRs to the targeting subcellular organelles. The localization of our prepared nanoprobes in specific organelles was confirmed by super-high resolution fluorescence imaging and bio-transmission electron microscopy (TEM) methods. By the targeting ability, the pH values of the specific organelles can be determined by monitoring the vibrational spectral changes of MPy with different pH values. Compared to the cases of reported lysosome and cytoplasm SERS pH sensors, more accurate pH values of mitochondria and nucleus, which could be two additional intracellular tracers for subcellular microenvironments, were disclosed by this SERS approach, further improving the accuracy of discrimination of related diseases. Our sensitive SERS strategy can also be employed to explore crucial physiological and biological processes that are related to subcellular pH fluctuations.

  4. Prognostic value of loss of heterozygosity and sub-cellular localization of SMAD4 varies with tumor stage in colorectal cancer.

    PubMed

    Jia, Xu; Shanmugam, Chandrakumar; Paluri, Ravi K; Jhala, Nirag C; Behring, Michael P; Katkoori, Venkat R; Sugandha, Shajan P; Bae, Sejong; Samuel, Temesgen; Manne, Upender

    2017-03-21

    Although loss of heterozygosity (LOH) at chromosome location 18q21 and decreased expression of SMAD4 in invasive colorectal cancers (CRCs) correlate with poor patient survival, the prognostic value of LOH at 18q21 and sub-cellular localization of SMAD4 have not been evaluated in relation to tumor stage. Genomic DNA samples from 209 formalin-fixed, paraffin-embedded sporadic CRC tissues and their matching controls were analyzed for 18q21 LOH, and corresponding tissue sections were evaluated by immunohistochemistry for expression of SMAD4 and assessed for its sub-cellular localization (nuclear vs. cytoplasmic). In addition, 53 frozen CRCs and their matching control tissues were analyzed for their mutational status and mRNA expression of SMAD4. The phenotypic expression pattern and LOH status were evaluated for correlation with patient survival by the use of Kaplan-Meier and Cox regression models. LOH of 18q21 was detected in 61% of the informative cases. In 8% of the cases, missense point mutations were detected in Smad4. In CRCs, relative to controls, there was increased SMAD4 staining in the cytoplasm (74%) and decreased staining in the nuclei (37%). LOH of 18q21 and high cytoplasmic localization of SMAD4 were associated with shortened overall survival of Stage II patients, whereas low nuclear expression of SMAD4 was associated with worse survival, but only for patients with Stage III CRCs. LOH of 18q21 and high cytoplasmic localization of SMAD4 in Stage II CRCs and low nuclear SMAD4 in Stage III CRCs are predictors of shortened patient survival.

  5. Prognostic value of loss of heterozygosity and sub-cellular localization of SMAD4 varies with tumor stage in colorectal cancer

    PubMed Central

    Jia, Xu; Shanmugam, Chandrakumar; Paluri, Ravi K.; Jhala, Nirag C.; Behring, Michael P.; Katkoori, Venkat R.; Sugandha, Shajan P.; Bae, Sejong; Samuel, Temesgen; Manne, Upender

    2017-01-01

    Background Although loss of heterozygosity (LOH) at chromosome location 18q21 and decreased expression of SMAD4 in invasive colorectal cancers (CRCs) correlate with poor patient survival, the prognostic value of LOH at 18q21 and sub-cellular localization of SMAD4 have not been evaluated in relation to tumor stage. Methods Genomic DNA samples from 209 formalin-fixed, paraffin-embedded sporadic CRC tissues and their matching controls were analyzed for 18q21 LOH, and corresponding tissue sections were evaluated by immunohistochemistry for expression of SMAD4 and assessed for its sub-cellular localization (nuclear vs. cytoplasmic). In addition, 53 frozen CRCs and their matching control tissues were analyzed for their mutational status and mRNA expression of SMAD4. The phenotypic expression pattern and LOH status were evaluated for correlation with patient survival by the use of Kaplan-Meier and Cox regression models. Results LOH of 18q21 was detected in 61% of the informative cases. In 8% of the cases, missense point mutations were detected in Smad4. In CRCs, relative to controls, there was increased SMAD4 staining in the cytoplasm (74%) and decreased staining in the nuclei (37%). LOH of 18q21 and high cytoplasmic localization of SMAD4 were associated with shortened overall survival of Stage II patients, whereas low nuclear expression of SMAD4 was associated with worse survival, but only for patients with Stage III CRCs. Conclusions LOH of 18q21 and high cytoplasmic localization of SMAD4 in Stage II CRCs and low nuclear SMAD4 in Stage III CRCs are predictors of shortened patient survival. PMID:28423626

  6. Proteome-wide identification of predominant subcellular protein localizations in a bacterial model organism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stekhoven, Daniel J.; Omasits, Ulrich; Quebatte, Maxime

    2014-03-01

    Proteomics data provide unique insights into biological systems, including the predominant subcellular localization (SCL) of proteins, which can reveal important clues about their functions. Here we analyzed data of a complete prokaryotic proteome expressed under two conditions mimicking interaction of the emerging pathogen Bartonella henselae with its mammalian host. Normalized spectral count data from cytoplasmic, total membrane, inner and outer membrane fractions allowed us to identify the predominant SCL for 82% of the identified proteins. The spectral count proportion of total membrane versus cytoplasmic fractions indicated the propensity of cytoplasmic proteins to co-fractionate with the inner membrane, and enabled usmore » to distinguish cytoplasmic, peripheral innermembrane and bona fide inner membrane proteins. Principal component analysis and k-nearest neighbor classification training on selected marker proteins or predominantly localized proteins, allowed us to determine an extensive catalog of at least 74 expressed outer membrane proteins, and to extend the SCL assignment to 94% of the identified proteins, including 18% where in silico methods gave no prediction. Suitable experimental proteomics data combined with straightforward computational approaches can thus identify the predominant SCL on a proteome-wide scale. Finally, we present a conceptual approach to identify proteins potentially changing their SCL in a condition-dependent fashion.« less

  7. Isoform-specific antibodies reveal distinct subcellular localizations of C9orf72 in amyotrophic lateral sclerosis.

    PubMed

    Xiao, Shangxi; MacNair, Laura; McGoldrick, Philip; McKeever, Paul M; McLean, Jesse R; Zhang, Ming; Keith, Julia; Zinman, Lorne; Rogaeva, Ekaterina; Robertson, Janice

    2015-10-01

    A noncoding hexanucleotide repeat expansion in C9orf72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). It has been reported that the repeat expansion causes a downregulation of C9orf72 transcripts, suggesting that haploinsufficiency may contribute to disease pathogenesis. Two protein isoforms are generated from three alternatively spliced transcripts of C9orf72; a long form (C9-L) and a short form (C9-S), and their function(s) are largely unknown owing to lack of specific antibodies. To investigate C9orf72 protein properties, we developed novel antibodies that recognize either C9-L or C9-S. Multiple techniques, including Western blot, immunohistochemistry, and coimmunoprecipitation, were used to determine the expression levels and subcellular localizations of C9-L and C9-S. Investigation of expression of C9-L and C9-S demonstrated distinct biochemical profiles, region-specific changes, and distinct subcellular localizations in ALS tissues. In particular, C9-L antibody exhibited a diffuse cytoplasmic staining in neurons and labeled large speckles in cerebellar Purkinje cells. In contrast, C9-S antibody gave very specific labeling of the nuclear membrane in healthy neurons, with apparent relocalization to the plasma membrane of diseased motor neurons in ALS. Coimmunoprecipitation experiments revealed an interaction of the C9-isoforms with both Importin β1 and Ran-GTPase, components of the nuclear pore complex. Using these antibodies, we have shown that C9orf72 may be involved in nucleocytoplasmic shuttling and this may have relevance to pathophysiology of ALS/FTLD. Our antibodies have provided improved detection of C9orf72 protein isoforms, which will help elucidate its physiological function and role in ALS/FTLD. © 2015 The Authors Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.

  8. Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites.

    PubMed

    He, Jianjun; Gu, Hong; Liu, Wenqi

    2012-01-01

    It is well known that an important step toward understanding the functions of a protein is to determine its subcellular location. Although numerous prediction algorithms have been developed, most of them typically focused on the proteins with only one location. In recent years, researchers have begun to pay attention to the subcellular localization prediction of the proteins with multiple sites. However, almost all the existing approaches have failed to take into account the correlations among the locations caused by the proteins with multiple sites, which may be the important information for improving the prediction accuracy of the proteins with multiple sites. In this paper, a new algorithm which can effectively exploit the correlations among the locations is proposed by using gaussian process model. Besides, the algorithm also can realize optimal linear combination of various feature extraction technologies and could be robust to the imbalanced data set. Experimental results on a human protein data set show that the proposed algorithm is valid and can achieve better performance than the existing approaches.

  9. Interaction of HSP20 with a viral RdRp changes its sub-cellular localization and distribution pattern in plants.

    PubMed

    Li, Jing; Xiang, Cong-Ying; Yang, Jian; Chen, Jian-Ping; Zhang, Heng-Mu

    2015-09-11

    Small heat shock proteins (sHSPs) perform a fundamental role in protecting cells against a wide array of stresses but their biological function during viral infection remains unknown. Rice stripe virus (RSV) causes a severe disease of rice in Eastern Asia. OsHSP20 and its homologue (NbHSP20) were used as baits in yeast two-hybrid (YTH) assays to screen an RSV cDNA library and were found to interact with the viral RNA-dependent RNA polymerase (RdRp) of RSV. Interactions were confirmed by pull-down and BiFC assays. Further analysis showed that the N-terminus (residues 1-296) of the RdRp was crucial for the interaction between the HSP20s and viral RdRp and responsible for the alteration of the sub-cellular localization and distribution pattern of HSP20s in protoplasts of rice and epidermal cells of Nicotiana benthamiana. This is the first report that a plant virus or a viral protein alters the expression pattern or sub-cellular distribution of sHSPs.

  10. Protein localization as a principal feature of the etiology and comorbidity of genetic diseases

    PubMed Central

    Park, Solip; Yang, Jae-Seong; Shin, Young-Eun; Park, Juyong; Jang, Sung Key; Kim, Sanguk

    2011-01-01

    Proteins targeting the same subcellular localization tend to participate in mutual protein–protein interactions (PPIs) and are often functionally associated. Here, we investigated the relationship between disease-associated proteins and their subcellular localizations, based on the assumption that protein pairs associated with phenotypically similar diseases are more likely to be connected via subcellular localization. The spatial constraints from subcellular localization significantly strengthened the disease associations of the proteins connected by subcellular localizations. In particular, certain disease types were more prevalent in specific subcellular localizations. We analyzed the enrichment of disease phenotypes within subcellular localizations, and found that there exists a significant correlation between disease classes and subcellular localizations. Furthermore, we found that two diseases displayed high comorbidity when disease-associated proteins were connected via subcellular localization. We newly explained 7584 disease pairs by using the context of protein subcellular localization, which had not been identified using shared genes or PPIs only. Our result establishes a direct correlation between protein subcellular localization and disease association, and helps to understand the mechanism of human disease progression. PMID:21613983

  11. mPLR-Loc: an adaptive decision multi-label classifier based on penalized logistic regression for protein subcellular localization prediction.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2015-03-15

    Proteins located in appropriate cellular compartments are of paramount importance to exert their biological functions. Prediction of protein subcellular localization by computational methods is required in the post-genomic era. Recent studies have been focusing on predicting not only single-location proteins but also multi-location proteins. However, most of the existing predictors are far from effective for tackling the challenges of multi-label proteins. This article proposes an efficient multi-label predictor, namely mPLR-Loc, based on penalized logistic regression and adaptive decisions for predicting both single- and multi-location proteins. Specifically, for each query protein, mPLR-Loc exploits the information from the Gene Ontology (GO) database by using its accession number (AC) or the ACs of its homologs obtained via BLAST. The frequencies of GO occurrences are used to construct feature vectors, which are then classified by an adaptive decision-based multi-label penalized logistic regression classifier. Experimental results based on two recent stringent benchmark datasets (virus and plant) show that mPLR-Loc remarkably outperforms existing state-of-the-art multi-label predictors. In addition to being able to rapidly and accurately predict subcellular localization of single- and multi-label proteins, mPLR-Loc can also provide probabilistic confidence scores for the prediction decisions. For readers' convenience, the mPLR-Loc server is available online (http://bioinfo.eie.polyu.edu.hk/mPLRLocServer). Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Subcellular localization and functional characterization of a fish IRF9 from crucian carp Carassius auratus.

    PubMed

    Shi, Jun; Zhang, Yi-Bing; Liu, Ting-Kai; Sun, Fan; Gui, Jian-Fang

    2012-08-01

    Mammalian interferon (IFN) regulatory factor 9 (IRF-9) has long been recognized as the DNA sequence recognition subunit of IFN-stimulated gene factor 3 (ISGF3) complex, which is critical for type I IFN to induce the expression of IFN-stimulated genes (ISGs) against viral infection. Recent studies have shown that fish IFN exerts antiviral effects by induction of a number of ISGs and also of itself; however, little is known about the role of fish IRF9 in IFN signaling. Here we identify a fish IRF9 orthologue (CaIRF9) from IFN-producing cell line, crucian carp Carassius auratus blastulae embryonic (CAB) cells. Analysis of subcellular distribution of CaIRF9-green fluorescent protein indicates that CaIRF9 is constitutively present in the nucleus, which is driven by two nuclear localization signals (NLS), one locating within DNA-binding domain (DBD) of CaIRF9 and the other immediately behind DBD, although human IRF9 contains only one NLS analogous to the former of CaIRF9. Overexpression of CaIRF9 together with CaSTAT2 not only activates ISRE-containing promoter but also upregulates the expression of fish ISGs. Strikingly, CaIRF9 together with CaSTAT2 also exhibits an ability to activate crucian carp IFN promoter, and blockade of cellular CaIRF9 attenuates IFN itself-induced activation of crucian carp IFN promoter. Taken together, these data suggest that crucian carp IFN induces the expression of ISGs and also of itself possibly by the JAK-STAT signaling pathway that is conserved from fish to mammals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features.

    PubMed

    Zhou, Hang; Yang, Yang; Shen, Hong-Bin

    2017-03-15

    Protein subcellular localization prediction has been an important research topic in computational biology over the last decade. Various automatic methods have been proposed to predict locations for large scale protein datasets, where statistical machine learning algorithms are widely used for model construction. A key step in these predictors is encoding the amino acid sequences into feature vectors. Many studies have shown that features extracted from biological domains, such as gene ontology and functional domains, can be very useful for improving the prediction accuracy. However, domain knowledge usually results in redundant features and high-dimensional feature spaces, which may degenerate the performance of machine learning models. In this paper, we propose a new amino acid sequence-based human protein subcellular location prediction approach Hum-mPLoc 3.0, which covers 12 human subcellular localizations. The sequences are represented by multi-view complementary features, i.e. context vocabulary annotation-based gene ontology (GO) terms, peptide-based functional domains, and residue-based statistical features. To systematically reflect the structural hierarchy of the domain knowledge bases, we propose a novel feature representation protocol denoted as HCM (Hidden Correlation Modeling), which will create more compact and discriminative feature vectors by modeling the hidden correlations between annotation terms. Experimental results on four benchmark datasets show that HCM improves prediction accuracy by 5-11% and F 1 by 8-19% compared with conventional GO-based methods. A large-scale application of Hum-mPLoc 3.0 on the whole human proteome reveals proteins co-localization preferences in the cell. www.csbio.sjtu.edu.cn/bioinf/Hum-mPLoc3/. hbshen@sjtu.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  14. Expression and subcellular localization of a novel nuclear acetylcholinesterase protein.

    PubMed

    Santos, Susana Constantino Rosa; Vala, Inês; Miguel, Cláudia; Barata, João T; Garção, Pedro; Agostinho, Paula; Mendes, Marta; Coelho, Ana V; Calado, Angelo; Oliveira, Catarina R; e Silva, João Martins; Saldanha, Carlota

    2007-08-31

    Acetylcholine is found in the nervous system and also in other cell types (endothelium, lymphocytes, and epithelial and blood cells), which are globally termed the non-neuronal cholinergic system. In this study we investigated the expression and subcellular localization of acetylcholinesterase (AChE) in endothelial cells. Our results show the expression of the 70-kDa AChE in both cytoplasmic and nuclear compartments. We also describe, for the first time, a nuclear and cytoskeleton-bound AChE isoform with approximately 55 kDa detected in endothelial cells. This novel isoform is decreased in response to vascular endothelial growth factor via the proteosomes pathway, and it is down-regulated in human leukemic T-cells as compared with normal T-cells, suggesting that the decreased expression of the 55-kDa AChE protein may contribute to an angiogenic response and associate with tumorigenesis. Importantly, we show that its nuclear expression is not endothelial cell-specific but also evidenced in non-neuronal and neuronal cells. Concerning neuronal cells, we can distinguish an exclusively nuclear expression in postnatal neurons in contrast to a cytoplasmic and nuclear expression in embryonic neurons, suggesting that the cell compartmentalization of this new AChE isoform is changed during the development of nervous system. Overall, our studies suggest that the 55-kDa AChE may be involved in different biological processes such as neural development, tumor progression, and angiogenesis.

  15. Prediction of subcellular localization of eukaryotic proteins using position-specific profiles and neural network with weighted inputs.

    PubMed

    Zou, Lingyun; Wang, Zhengzhi; Huang, Jiaomin

    2007-12-01

    Subcellular location is one of the key biological characteristics of proteins. Position-specific profiles (PSP) have been introduced as important characteristics of proteins in this article. In this study, to obtain position-specific profiles, the Position Specific Iterative-Basic Local Alignment Search Tool (PSI-BLAST) has been used to search for protein sequences in a database. Position-specific scoring matrices are extracted from the profiles as one class of characteristics. Four-part amino acid compositions and 1st-7th order dipeptide compositions have also been calculated as the other two classes of characteristics. Therefore, twelve characteristic vectors are extracted from each of the protein sequences. Next, the characteristic vectors are weighed by a simple weighing function and inputted into a BP neural network predictor named PSP-Weighted Neural Network (PSP-WNN). The Levenberg-Marquardt algorithm is employed to adjust the weight matrices and thresholds during the network training instead of the error back propagation algorithm. With a jackknife test on the RH2427 dataset, PSP-WNN has achieved a higher overall prediction accuracy of 88.4% rather than the prediction results by the general BP neural network, Markov model, and fuzzy k-nearest neighbors algorithm on this dataset. In addition, the prediction performance of PSP-WNN has been evaluated with a five-fold cross validation test on the PK7579 dataset and the prediction results have been consistently better than those of the previous method on the basis of several support vector machines, using compositions of both amino acids and amino acid pairs. These results indicate that PSP-WNN is a powerful tool for subcellular localization prediction. At the end of the article, influences on prediction accuracy using different weighting proportions among three characteristic vector categories have been discussed. An appropriate proportion is considered by increasing the prediction accuracy.

  16. Altered Subcellular Localization of a Tobacco Membrane Raft-Associated Remorin Protein by Tobamovirus Infection and Transient Expression of Viral Replication and Movement Proteins

    PubMed Central

    Sasaki, Nobumitsu; Takashima, Eita; Nyunoya, Hiroshi

    2018-01-01

    Remorins are plant specific proteins found in plasma membrane microdomains (termed lipid or membrane rafts) and plasmodesmata. A potato remorin is reported to be involved in negatively regulating potexvirus movement and plasmodesmal permeability. In this study, we isolated cDNAs of tobacco remorins (NtREMs) and examined roles of an NtREM in infection by tomato mosaic virus (ToMV). Subcellular localization analysis using fluorescently tagged NtREM, ToMV, and viral replication and movement proteins (MPs) indicated that virus infection and transient expression of the viral proteins promoted the formation of NtREM aggregates by altering the subcellular distribution of NtREM, which was localized uniformly on the plasma membrane under normal conditions. NtREM aggregates were often observed associated closely with endoplasmic reticulum networks and bodies of the 126K replication and MPs. The bimolecular fluorescence complementation assay indicated that NtREM might interact directly with the MP on the plasma membrane and around plasmodesmata. In addition, transient overexpression of NtREM facilitated ToMV cell-to-cell movement. Based on these results, we discuss possible roles of the tobacco remorin in tobamovirus movement. PMID:29868075

  17. Extra Large G-Protein Interactome Reveals Multiple Stress Response Function and Partner-Dependent XLG Subcellular Localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Ying; Gao, Yajun; Jones, Alan M.

    The three-member family of Arabidopsis extra-large G proteins (XLG1-3) defines the prototype of an atypical Ga subunit in the heterotrimeric G protein complex. Some recent evidence indicate that XLG subunits operate along with its Gbg dimer in root morphology, stress responsiveness, and cytokinin induced development, however downstream targets of activated XLG proteins in the stress pathways are rarely known. In order to assemble a set of candidate XLG-targeted proteins, a yeast two-hybrid complementation-based screen was performed using XLG protein baits to query interactions between XLG and partner protein found in glucose-treated seedlings, roots, and Arabidopsis cells in culture. Seventy twomore » interactors were identified and >60% of a test set displayed in vivo interaction with XLG proteins. Gene co-expression analysis shows that >70% of the interactors are positively correlated with the corresponding XLG partners. Gene Ontology enrichment for all the candidates indicates stress responses and posits a molecular mechanism involving a specific set of transcription factor partners to XLG. Genes encoding two of these transcription factors, SZF1 and 2, require XLG proteins for full NaCl-induced expression. Furthermore, the subcellular localization of the XLG proteins in the nucleus, endosome, and plasma membrane is dependent on the specific interacting partner.« less

  18. Extra Large G-Protein Interactome Reveals Multiple Stress Response Function and Partner-Dependent XLG Subcellular Localization

    DOE PAGES

    Liang, Ying; Gao, Yajun; Jones, Alan M.

    2017-06-13

    The three-member family of Arabidopsis extra-large G proteins (XLG1-3) defines the prototype of an atypical Ga subunit in the heterotrimeric G protein complex. Some recent evidence indicate that XLG subunits operate along with its Gbg dimer in root morphology, stress responsiveness, and cytokinin induced development, however downstream targets of activated XLG proteins in the stress pathways are rarely known. In order to assemble a set of candidate XLG-targeted proteins, a yeast two-hybrid complementation-based screen was performed using XLG protein baits to query interactions between XLG and partner protein found in glucose-treated seedlings, roots, and Arabidopsis cells in culture. Seventy twomore » interactors were identified and >60% of a test set displayed in vivo interaction with XLG proteins. Gene co-expression analysis shows that >70% of the interactors are positively correlated with the corresponding XLG partners. Gene Ontology enrichment for all the candidates indicates stress responses and posits a molecular mechanism involving a specific set of transcription factor partners to XLG. Genes encoding two of these transcription factors, SZF1 and 2, require XLG proteins for full NaCl-induced expression. Furthermore, the subcellular localization of the XLG proteins in the nucleus, endosome, and plasma membrane is dependent on the specific interacting partner.« less

  19. Functional Implications of the Subcellular Localization of Ethylene-Induced Chitinase and [beta]-1,3-Glucanase in Bean Leaves.

    PubMed Central

    Mauch, F.; Staehelin, L. A.

    1989-01-01

    Plants respond to an attack by potentially pathogenic organisms and to the plant stress hormone ethylene with an increased synthesis of hydrolases such as chitinase and [beta]-1,3-glucanase. We have studied the subcellular localization of these two enzymes in ethylene-treated bean leaves by immunogold cytochemistry and by biochemical fractionation techniques. Our micrographs indicate that chitinase and [beta]-1,3-glucanase accumulate in the vacuole of ethylene-treated leaf cells. Within the vacuole label was found predominantly over ethylene-induced electron dense protein aggregates. A second, minor site of accumulation of [beta]-1,3-glucanase was the cell wall, where label was present nearly exclusively over the middle lamella surrounding intercellular air spaces. Both kinds of antibodies labeled Golgi cisternae of ethylene-treated tissue, suggesting that the newly synthesized chitinase and [beta]-1,3-glucanase are processed in the Golgi apparatus. Biochemical fractionation studies confirmed the accumulation in high concentrations of both chitinase and [beta]-1,3-glucanase in isolated vacuoles, and demonstrated that only [beta]-1,3-glucanase, but not chitinase, was present in intercellular washing fluids collected from ethylene-treated leaves. Based on these results and earlier studies, we propose a model in which the vacuole-localized chitinase and [beta]-1,3-glucanase are used as a last line of defense to be released when the attacked host cells lyse. The cell wall-localized [beta]-1,3-glucanase, on the other hand, would be involved in recognition processes, releasing defense activating signaling molecules from the walls of invading pathogens. PMID:12359894

  20. PhosphoregDB: The tissue and sub-cellular distribution of mammalian protein kinases and phosphatases

    PubMed Central

    Forrest, Alistair RR; Taylor, Darrin F; Fink, J Lynn; Gongora, M Milena; Flegg, Cameron; Teasdale, Rohan D; Suzuki, Harukazu; Kanamori, Mutsumi; Kai, Chikatoshi; Hayashizaki, Yoshihide; Grimmond, Sean M

    2006-01-01

    Background Protein kinases and protein phosphatases are the fundamental components of phosphorylation dependent protein regulatory systems. We have created a database for the protein kinase-like and phosphatase-like loci of mouse that integrates protein sequence, interaction, classification and pathway information with the results of a systematic screen of their sub-cellular localization and tissue specific expression data mined from the GNF tissue atlas of mouse. Results The database lets users query where a specific kinase or phosphatase is expressed at both the tissue and sub-cellular levels. Similarly the interface allows the user to query by tissue, pathway or sub-cellular localization, to reveal which components are co-expressed or co-localized. A review of their expression reveals 30% of these components are detected in all tissues tested while 70% show some level of tissue restriction. Hierarchical clustering of the expression data reveals that expression of these genes can be used to separate the samples into tissues of related lineage, including 3 larger clusters of nervous tissue, developing embryo and cells of the immune system. By overlaying the expression, sub-cellular localization and classification data we examine correlations between class, specificity and tissue restriction and show that tyrosine kinases are more generally expressed in fewer tissues than serine/threonine kinases. Conclusion Together these data demonstrate that cell type specific systems exist to regulate protein phosphorylation and that for accurate modelling and for determination of enzyme substrate relationships the co-location of components needs to be considered. PMID:16504016

  1. Nanodiamond Landmarks for Subcellular Multimodal Optical and Electron Imaging

    PubMed Central

    Zurbuchen, Mark A.; Lake, Michael P.; Kohan, Sirus A.; Leung, Belinda; Bouchard, Louis-S.

    2013-01-01

    There is a growing need for biolabels that can be used in both optical and electron microscopies, are non-cytotoxic, and do not photobleach. Such biolabels could enable targeted nanoscale imaging of sub-cellular structures, and help to establish correlations between conjugation-delivered biomolecules and function. Here we demonstrate a sub-cellular multi-modal imaging methodology that enables localization of inert particulate probes, consisting of nanodiamonds having fluorescent nitrogen-vacancy centers. These are functionalized to target specific structures, and are observable by both optical and electron microscopies. Nanodiamonds targeted to the nuclear pore complex are rapidly localized in electron-microscopy diffraction mode to enable “zooming-in” to regions of interest for detailed structural investigations. Optical microscopies reveal nanodiamonds for in-vitro tracking or uptake-confirmation. The approach is general, works down to the single nanodiamond level, and can leverage the unique capabilities of nanodiamonds, such as biocompatibility, sensitive magnetometry, and gene and drug delivery. PMID:24036840

  2. [L-arginine metabolism enzyme activities in rat liver subcellular fractions under condition of protein deprivation].

    PubMed

    Kopyl'chuk, G P; Buchkovskaia, I M

    2014-01-01

    The features of arginase and NO-synthase pathways of arginine's metabolism have been studied in rat liver subcellular fractions under condition of protein deprivation. During the experimental period (28 days) albino male rats were kept on semi synthetic casein diet AIN-93. The protein deprivation conditions were designed as total absence of protein in the diet and consumption of the diet partially deprived with 1/2 of the casein amount compared to in the regular diet. Daily diet consumption was regulated according to the pair feeding approach. It has been shown that the changes of enzyme activities, involved in L-arginine metabolism, were characterized by 1.4-1.7 fold decrease in arginase activity, accompanied with unchanged NO-synthase activity in cytosol. In mitochondrial fraction the unchanged arginase activity was accompanied by 3-5 fold increase of NO-synthase activity. At the terminal stages of the experiment the monodirectional dynamics in the studied activities have been observed in the mitochondrial and cytosolfractions in both experimental groups. In the studied subcellular fractions arginase activity decreased (2.4-2.7 fold with no protein in the diet and 1.5 fold with partly supplied protein) and was accompanied by NO-synthase activity increase by 3.8 fold in cytosole fraction, by 7.2 fold in mitochondrial fraction in the group with no protein in the diet and by 2.2 and 3.5 fold in the group partialy supplied with protein respectively. The observed tendency is presumably caused by the switch of L-arginine metabolism from arginase into oxidizing NO-synthase parthway.

  3. Prequels to Synthetic Biology: From Candidate Gene Identification and Validation to Enzyme Subcellular Localization in Plant and Yeast Cells.

    PubMed

    Foureau, E; Carqueijeiro, I; Dugé de Bernonville, T; Melin, C; Lafontaine, F; Besseau, S; Lanoue, A; Papon, N; Oudin, A; Glévarec, G; Clastre, M; St-Pierre, B; Giglioli-Guivarc'h, N; Courdavault, V

    2016-01-01

    Natural compounds extracted from microorganisms or plants constitute an inexhaustible source of valuable molecules whose supply can be potentially challenged by limitations in biological sourcing. The recent progress in synthetic biology combined to the increasing access to extensive transcriptomics and genomics data now provide new alternatives to produce these molecules by transferring their whole biosynthetic pathway in heterologous production platforms such as yeasts or bacteria. While the generation of high titer producing strains remains per se an arduous field of investigation, elucidation of the biosynthetic pathways as well as characterization of their complex subcellular organization are essential prequels to the efficient development of such bioengineering approaches. Using examples from plants and yeasts as a framework, we describe potent methods to rationalize the study of partially characterized pathways, including the basics of computational applications to identify candidate genes in transcriptomics data and the validation of their function by an improved procedure of virus-induced gene silencing mediated by direct DNA transfer to get around possible resistance to Agrobacterium-delivery of viral vectors. To identify potential alterations of biosynthetic fluxes resulting from enzyme mislocalizations in reconstituted pathways, we also detail protocols aiming at characterizing subcellular localizations of protein in plant cells by expression of fluorescent protein fusions through biolistic-mediated transient transformation, and localization of transferred enzymes in yeast using similar fluorescence procedures. Albeit initially developed for the Madagascar periwinkle, these methods may be applied to other plant species or organisms in order to establish synthetic biology platform. © 2016 Elsevier Inc. All rights reserved.

  4. Subcellular localization of anthracyclines in cultured rat cardiomyoblasts as possible predictors of cardiotoxicity.

    PubMed

    Studzian, Kazimierz; Kik, Krzysztof; Lukawska, Malgorzata; Oszczapowicz, Irena; Strek, Malgorzata; Szmigiero, Leszek

    2015-10-01

    In this study, we compared the cellular uptake, intracellular localization and cytotoxicity of two groups of anthracycline derivatives in cultured H9c2(2-1) rat cardiomyoblasts. The first group consisted of doxorubicin (DOX) and two of its derivatives containing a formamidino group (-N = CH-N<) at the C-3' position with a morpholine (DOXM) or a hexamethyleneimine (DOXH) ring. The second group consisted of daunorubicin (DRB) and its derivatives containing a morpholine (DRBM) or a hexamethyleneimine (DRBH) ring. DOXH and DRBH were taken up by cardiomyoblasts more efficiently than estimated for other tested anthracyclines. The cellular uptakes of DOXM and DRBM were reduced compared to those of the parent compounds. Applied structural modifications of DOX and DRB influenced the subcellular localization of the tested derivatives. DOX and DOXH were localized primarily in nuclei, whereas the other anthracyclines were found in the nuclei and cytoplasm. The percentages of the compounds that accumulated in the nuclei were 80.2 and 54.2 % for DOX and DOXH, respectively. The lowest nuclear accumulation values were observed for DRBM (19.9 %), DRBH (21.9 %) and DOXM (23.7 %). The ability of anthracyclines to accumulate in the nuclei correlated with their DNA binding constants (r = 0.858, P = 0.029). A correlation was found between the accumulation of the tested anthracyclines in the nuclei of cardiomyoblasts and their cardiotoxicity in vivo, which was observed in our previous study. We suggest that cytotoxicity and the anthracycline accumulation level in the nuclei of cultured cardiomyoblasts could be used for early prediction of their cardiotoxicity.

  5. Influence of conversion of penicillin G into a basic derivative on its accumulation and subcellular localization in cultured macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renard, C.; Vanderhaeghe, H.J.; Claes, P.J.

    beta-Lactam antibiotics do not accumulate in phagocytes, probably because of their acidic character. We therefore synthesized a basic derivative of penicillin G, namely, /sup 14/C-labeled N-(3-dimethylamino-propyl)benzylpenicillinamide (ABP), and studied its uptake and subcellular localization in J774 macrophages compared with that of /sup 14/C-labeled penicillin G. Whereas the intracellular concentration (Ci) of penicillin G remained lower than its extracellular concentration (Ce), ABP reached a Ci/Ce ratio of 4 to 5. Moreover, approximately 50% of intracellular ABP was found associated with lysosomes after isopycnic centrifugation of cell homogenates in isoosmotic Percoll or hyperosmotic sucrose gradients. The behavior of ABP was thus partlymore » consistent with the model of de Duve et al., in which they described the intralysosomal accumulation of weak organic bases in lysosomes. Although ABP is microbiologically inactive, our results show that beta-lactam antibiotics can be driven into cells by appropriate modification. Further efforts therefore may be warranted in the design of active compounds or prodrugs that may prove useful in the chemotherapy of intracellular infections.« less

  6. Role of NH{sub 2}-terminal hydrophobic motif in the subcellular localization of ATP-binding cassette protein subfamily D: Common features in eukaryotic organisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Asaka; Asahina, Kota; Okamoto, Takumi

    Highlights: • ABCD proteins classifies based on with or without NH{sub 2}-terminal hydrophobic segment. • The ABCD proteins with the segment are targeted peroxisomes. • The ABCD proteins without the segment are targeted to the endoplasmic reticulum. • The role of the segment in organelle targeting is conserved in eukaryotic organisms. - Abstract: In mammals, four ATP-binding cassette (ABC) proteins belonging to subfamily D have been identified. ABCD1–3 possesses the NH{sub 2}-terminal hydrophobic region and are targeted to peroxisomes, while ABCD4 lacking the region is targeted to the endoplasmic reticulum (ER). Based on hydropathy plot analysis, we found that severalmore » eukaryotes have ABCD protein homologs lacking the NH{sub 2}-terminal hydrophobic segment (H0 motif). To investigate whether the role of the NH{sub 2}-terminal H0 motif in subcellular localization is conserved across species, we expressed ABCD proteins from several species (metazoan, plant and fungi) in fusion with GFP in CHO cells and examined their subcellular localization. ABCD proteins possessing the NH{sub 2}-terminal H0 motif were localized to peroxisomes, while ABCD proteins lacking this region lost this capacity. In addition, the deletion of the NH{sub 2}-terminal H0 motif of ABCD protein resulted in their localization to the ER. These results suggest that the role of the NH{sub 2}-terminal H0 motif in organelle targeting is widely conserved in living organisms.« less

  7. Role of regulatory subunits and protein kinase inhibitor (PKI) in determining nuclear localization and activity of the catalytic subunit of protein kinase A.

    PubMed

    Wiley, J C; Wailes, L A; Idzerda, R L; McKnight, G S

    1999-03-05

    Regulation of protein kinase A by subcellular localization may be critical to target catalytic subunits to specific substrates. We employed epitope-tagged catalytic subunit to correlate subcellular localization and gene-inducing activity in the presence of regulatory subunit or protein kinase inhibitor (PKI). Transiently expressed catalytic subunit distributed throughout the cell and induced gene expression. Co-expression of regulatory subunit or PKI blocked gene induction and prevented nuclear accumulation. A mutant PKI lacking the nuclear export signal blocked gene induction but not nuclear accumulation, demonstrating that nuclear export is not essential to inhibit gene induction. When the catalytic subunit was targeted to the nucleus with a nuclear localization signal, it was not sequestered in the cytoplasm by regulatory subunit, although its activity was completely inhibited. PKI redistributed the nuclear catalytic subunit to the cytoplasm and blocked gene induction, demonstrating that the nuclear export signal of PKI can override a strong nuclear localization signal. With increasing PKI, the export process appeared to saturate, resulting in the return of catalytic subunit to the nucleus. These results demonstrate that both the regulatory subunit and PKI are able to completely inhibit the gene-inducing activity of the catalytic subunit even when the catalytic subunit is forced to concentrate in the nuclear compartment.

  8. Expression and subcellular localization of NHE3 in the human gallbladder epithelium

    PubMed Central

    Chen, Yongsheng; Kong, Jing; Wu, Shuodong

    2014-01-01

    Background: Enhanced gallbladder concentrating function is an important factor for the pathogenesis of cholesterol gallstone disease (CGD), but the mechanism is unknown. Potential candidates for regulation of gallbladder ion absorption are suggested to be Na+/H+ exchanger isoform 3 (NHE3). In this study, we investigated the expression and subcellular localization of NHE3 in both acalculous and calculous human gallbladders. Methods: Adult human gallbladder tissue was obtained from 23 patients (7 men, 16 women) who had undergone cholecystectomy. The patients were divided into two groups: Group A (acalculous group) and Group B (calculous group). Gene expression of NHE3 was quantitatively estimated by real-time PCR. Protein expression was studied by Western blotting assays. Furthermore, expression of immunoreactive NHE3 was investigated by immunohistochemistry. Results: There was no significant difference in the NHE3 mRNA expression between calculous and acalculous human gallbladders. NHE3 protein expression in gallbladders from patients with cholelithiasis is increased compared to those without gallstones. Immunohistochemistry studies prove that NHE3 is located both on the apical plasma membrane and in the intracellular pool in human GBECs. Conclusions: NHE3 may play a role in the pathogenesis of human CGD. Additional studies are required to further delineate the underlying mechanisms. PMID:25674247

  9. pLoc-mPlant: predict subcellular localization of multi-location plant proteins by incorporating the optimal GO information into general PseAAC.

    PubMed

    Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen

    2017-08-22

    One of the fundamental goals in cellular biochemistry is to identify the functions of proteins in the context of compartments that organize them in the cellular environment. To realize this, it is indispensable to develop an automated method for fast and accurate identification of the subcellular locations of uncharacterized proteins. The current study is focused on plant protein subcellular location prediction based on the sequence information alone. Although considerable efforts have been made in this regard, the problem is far from being solved yet. Most of the existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions. This kind of multiplex protein is particularly important for both basic research and drug design. Using the multi-label theory, we present a new predictor called "pLoc-mPlant" by extracting the optimal GO (Gene Ontology) information into the Chou's general PseAAC (Pseudo Amino Acid Composition). Rigorous cross-validation on the same stringent benchmark dataset indicated that the proposed pLoc-mPlant predictor is remarkably superior to iLoc-Plant, the state-of-the-art method for predicting plant protein subcellular localization. To maximize the convenience of most experimental scientists, a user-friendly web-server for the new predictor has been established at , by which users can easily get their desired results without the need to go through the complicated mathematics involved.

  10. pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC.

    PubMed

    Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen

    2017-09-10

    Knowledge of subcellular locations of proteins is crucially important for in-depth understanding their functions in a cell. With the explosive growth of protein sequences generated in the postgenomic age, it is highly demanded to develop computational tools for timely annotating their subcellular locations based on the sequence information alone. The current study is focused on virus proteins. Although considerable efforts have been made in this regard, the problem is far from being solved yet. Most existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions. This kind of multiplex proteins is particularly important for both basic research and drug design. Using the multi-label theory, we present a new predictor called "pLoc-mVirus" by extracting the optimal GO (Gene Ontology) information into the general PseAAC (Pseudo Amino Acid Composition). Rigorous cross-validation on a same stringent benchmark dataset indicated that the proposed pLoc-mVirus predictor is remarkably superior to iLoc-Virus, the state-of-the-art method in predicting virus protein subcellular localization. To maximize the convenience of most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc-mVirus/, by which users can easily get their desired results without the need to go through the complicated mathematics involved. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. [Cloning, subcellular localization, and heterologous expression of ApNAC1 gene from Andrographis paniculata].

    PubMed

    Wang, Jian; Qi, Meng-Die; Guo, Juan; Shen, Ye; Lin, Hui-Xin; Huang, Lu-Qi

    2017-03-01

    Andrographis paniculata is widely used as medicinal herb in China for a long time and andrographolide is its main medicinal constituent. To investigate the underlying andrographolide biosynthesis mechanisms, RNA-seq for A. paniculata leaves with MeJA treatment was performed. In A. paniculata transcriptomic data, the expression pattern of one member of NAC transcription factor family (ApNAC1) matched with andrographolide accumulation. The coding sequence of ApNAC1 was cloned by RT-PCR, and GenBank accession number was KY196416. The analysis of bioinformatics showed that the gene encodes a peptide of 323 amino acids, with a predicted relative molecular weight of 35.9 kDa and isoelectric point of 6.14. To confirm the subcellular localization, ApNAC1-GFP was transiently expressed in A. paniculata protoplast. The results indicated that ApNAC1 is a nucleus-localized protein. The analysis of real-time quantitative PCR revealed that ApNAC1 gene predominantly expresses in leaves. Compared with control sample, its expression abundance sharply increased with methyl jasmonate treatment. Based on its expression pattern, ApNAC1 gene might involve in andrographolide biosynthesis. ApNAC1 was heterologously expressed in Escherichia coli and recombinant protein was purified by Ni-NTA agarose. Further study will help us to understand the function of ApNAC1 in andrographolide biosynthesis. Copyright© by the Chinese Pharmaceutical Association.

  12. iLoc-Animal: a multi-label learning classifier for predicting subcellular localization of animal proteins.

    PubMed

    Lin, Wei-Zhong; Fang, Jian-An; Xiao, Xuan; Chou, Kuo-Chen

    2013-04-05

    Predicting protein subcellular localization is a challenging problem, particularly when query proteins have multi-label features meaning that they may simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing methods can only be used to deal with the single-label proteins. Actually, multi-label proteins should not be ignored because they usually bear some special function worthy of in-depth studies. By introducing the "multi-label learning" approach, a new predictor, called iLoc-Animal, has been developed that can be used to deal with the systems containing both single- and multi-label animal (metazoan except human) proteins. Meanwhile, to measure the prediction quality of a multi-label system in a rigorous way, five indices were introduced; they are "Absolute-True", "Absolute-False" (or Hamming-Loss"), "Accuracy", "Precision", and "Recall". As a demonstration, the jackknife cross-validation was performed with iLoc-Animal on a benchmark dataset of animal proteins classified into the following 20 location sites: (1) acrosome, (2) cell membrane, (3) centriole, (4) centrosome, (5) cell cortex, (6) cytoplasm, (7) cytoskeleton, (8) endoplasmic reticulum, (9) endosome, (10) extracellular, (11) Golgi apparatus, (12) lysosome, (13) mitochondrion, (14) melanosome, (15) microsome, (16) nucleus, (17) peroxisome, (18) plasma membrane, (19) spindle, and (20) synapse, where many proteins belong to two or more locations. For such a complicated system, the outcomes achieved by iLoc-Animal for all the aforementioned five indices were quite encouraging, indicating that the predictor may become a useful tool in this area. It has not escaped our notice that the multi-label approach and the rigorous measurement metrics can also be used to investigate many other multi-label problems in molecular biology. As a user-friendly web-server, iLoc-Animal is freely accessible to the public at the web-site .

  13. Subcellular storage compartments of bacteriopheophorbide sensitizers

    NASA Astrophysics Data System (ADS)

    Moser, Joerg G.; Dembeck, U.; Hubert, M.; Spengler, Bernhard; Bayer, Rainer; Wagner, Birgit

    1994-03-01

    Fluorescence colocalization with the Golgi specific stain, NBD-ceramide, and the mitochondrial localizing stain, Rhodamine 123, confirmed the earlier assumption that the Golgi apparatus is one of the prominent storage compartments for bacteriopheophorbide esters in OAT 75 SCLC cells and several amelanotic melanoma cell lines (A375, Melur SP18, SkAMel 25). Furthermore, a diffuse staining of mitochondria, of non-structured cytoplasm, and an additional storage in melanine vesicles of the amelanotic melanoma cells suggests further storage compartments with quantitatively different contributions to the phototoxicity of bacteriochlorophyll-derived photosensitizers. Independent observations of early phototoxic effects on microfilamentous networks, enzymatic activities (succinate dehydrogenase, lactate dehydrogenase), and redistribution phenomena following primary uptake of the sensitizers let us assume that only a part of the 108 molecules taken up by a cell contribute directly to phototoxicity. Thus it may be asked if a proper subcellular positioning of only a few sensitizer molecules may have similar phototoxic effects as the huge amounts stored at apparently ineffective sites.

  14. Molecular basis of the specific subcellular localization of the C2-like domain of 5-lipoxygenase.

    PubMed

    Kulkarni, Shilpa; Das, Sudipto; Funk, Colin D; Murray, Diana; Cho, Wonhwa

    2002-04-12

    The activation of 5-lipoxygenase (5-LO) involves its calcium-dependent translocation to the nuclear envelope, where it catalyzes the two-step transformation of arachidonic acid into leukotriene A(4), leading to the synthesis of various leukotrienes. To understand the mechanism by which 5-LO is specifically targeted to the nuclear envelope, we studied the membrane binding properties of the amino-terminal domain of 5-LO, which has been proposed to have a C2 domain-like structure. The model building, electrostatic potential calculation, and in vitro membrane binding studies of the isolated C2-like domain of 5-LO and selected mutants show that this Ca(2+)-dependent domain selectively binds zwitterionic phosphatidylcholine, which is conferred by tryptophan residues (Trp(13), Trp(75), and Trp(102)) located in the putative Ca(2+)-binding loops. The spatiotemporal dynamics of the enhanced green fluorescence protein-tagged C2-like domain of 5-LO and mutants in living cells also show that the phosphatidylcholine selectivity of the C2-like domain accounts for the specific targeting of 5-LO to the nuclear envelope. Together, these results show that the C2-like domain of 5-LO is a genuine Ca(2+)-dependent membrane-targeting domain and that the subcellular localization of the domain is governed in large part by its membrane binding properties.

  15. Monoterpene biosynthesis potential of plant subcellular compartments.

    PubMed

    Dong, Lemeng; Jongedijk, Esmer; Bouwmeester, Harro; Van Der Krol, Alexander

    2016-01-01

    Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana benthamiana indicated local GDP availability for each compartment but resulted in different product levels. A GDP synthase from Picea abies (PaGDPS1) was shown to boost GDP production. PaGDPS1 was also targeted to plastids, cytosol or mitochondria and PaGDPS1 and GES were coexpressed in all possible combinations. Geraniol and geraniol-derived products were analyzed by GC-MS and LC-MS, respectively. GES product levels were highest for plastid-targeted GES, followed by mitochondrial- and then cytosolic-targeted GES. For each compartment local boosting of GDP biosynthesis increased GES product levels. GDP exchange between compartments is not equal: while no GDP is exchanged from the cytosol to the plastids, 100% of GDP in mitochondria can be exchanged to plastids, while only 7% of GDP from plastids is available for mitochondria. This suggests a direct exchange mechanism for GDP between plastids and mitochondria. Cytosolic PaGDPS1 competes with plastidial GES activity, suggesting an effective drain of isopentenyl diphosphate from the plastids to the cytosol. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Displacement correlations between a single mesenchymal-like cell and its nucleus effectively link subcellular activities and motility in cell migration analysis

    NASA Astrophysics Data System (ADS)

    Lan, Tian; Cheng, Kai; Ren, Tina; Arce, Stephen Hugo; Tseng, Yiider

    2016-09-01

    Cell migration is an essential process in organism development and physiological maintenance. Although current methods permit accurate comparisons of the effects of molecular manipulations and drug applications on cell motility, effects of alterations in subcellular activities on motility cannot be fully elucidated from those methods. Here, we develop a strategy termed cell-nuclear (CN) correlation to parameterize represented dynamic subcellular activities and to quantify their contributions in mesenchymal-like migration. Based on the biophysical meaning of the CN correlation, we propose a cell migration potential index (CMPI) to measure cell motility. When the effectiveness of CMPI was evaluated with respect to one of the most popular cell migration analysis methods, Persistent Random Walk, we found that the cell motility estimates among six cell lines used in this study were highly consistent between these two approaches. Further evaluations indicated that CMPI can be determined using a shorter time period and smaller cell sample size, and it possesses excellent reliability and applicability, even in the presence of a wide range of noise, as might be generated from individual imaging acquisition systems. The novel approach outlined here introduces a robust strategy through an analysis of subcellular locomotion activities for single cell migration assessment.

  17. Xuhuai goat H-FABP gene clone, subcellular localization of expression products and the preparation of transgenic mice.

    PubMed

    Yin, Yan-hui; Li, Bi-chun; Wei, Guang-hui; Zhu, Cai-ye; Li, Wei; Zhang, Ya-ni; Du, Li-xin; Cao, Wen-guang

    2012-05-01

    The aim of this study was to clone the heart-type fatty acid binding protein (H-FABP) gene of Xuhuai goat, to explore it bioinformatically, and analyze the subcellular localization using enhanced green fluorescent protein (EGFP). The results showed that the coding sequence (CDS) length of Xuhuai goat H-FABP gene was 402 bp, encoding 133 amino acids (GenBank accession number AY466498.1). The H-FABP cDNA coding sequence was compared with the corresponding region of human, chicken, brown rat, cow, wild boar, donkey, and zebrafish. The similarity were 89%, 76%, 85%, 84%, 93%, 91%, 70%, respectively. For the corresponding amino acid sequences, the similarity were 90%, 79%, 88%, 97%, 95%, 94%, 72%, respectively. This study did not find the signal peptide region in the H-FABP protein; it revealed that H-FABP protein might be a nonsecreted protein. H-FABP expression was detected in vitro by reverse transcription-polymerase chain reaction (RT-PCR), and the EGFP-H-FABP fusion protein was localized to the cytoplasm. The gene could also be transiently and permanently expressed in mice.

  18. Deconvolution of subcellular protrusion heterogeneity and the underlying actin regulator dynamics from live cell imaging.

    PubMed

    Wang, Chuangqi; Choi, Hee June; Kim, Sung-Jin; Desai, Aesha; Lee, Namgyu; Kim, Dohoon; Bae, Yongho; Lee, Kwonmoo

    2018-04-27

    Cell protrusion is morphodynamically heterogeneous at the subcellular level. However, the mechanism of cell protrusion has been understood based on the ensemble average of actin regulator dynamics. Here, we establish a computational framework called HACKS (deconvolution of heterogeneous activity in coordination of cytoskeleton at the subcellular level) to deconvolve the subcellular heterogeneity of lamellipodial protrusion from live cell imaging. HACKS identifies distinct subcellular protrusion phenotypes based on machine-learning algorithms and reveals their underlying actin regulator dynamics at the leading edge. Using our method, we discover "accelerating protrusion", which is driven by the temporally ordered coordination of Arp2/3 and VASP activities. We validate our finding by pharmacological perturbations and further identify the fine regulation of Arp2/3 and VASP recruitment associated with accelerating protrusion. Our study suggests HACKS can identify specific subcellular protrusion phenotypes susceptible to pharmacological perturbation and reveal how actin regulator dynamics are changed by the perturbation.

  19. Subcellular localization and logistics of integral membrane protein biogenesis in Escherichia coli.

    PubMed

    Bogdanov, Mikhail; Aboulwafa, Mohammad; Saier, Milton H

    2013-01-01

    Transporters catalyze entry and exit of molecules into and out of cells and organelles, and protein-lipid interactions influence their activities. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) catalyzes transport-coupled sugar phosphorylation as well as nonvectorial sugar phosphorylation in the cytoplasm. The vectorial process is much more sensitive to the lipid environment than the nonvectorial process. Moreover, cytoplasmic micellar forms of these enzyme-porters have been identified, and non-PTS permeases have similarly been shown to exist in 'soluble' forms. The latter porters exhibit lipid-dependent activities and can adopt altered topologies by simply changing the lipid composition. Finally, intracellular membranes and vesicles exist in Escherichia coli leading to the following unanswered questions: (1) what determines whether a PTS permease catalyzes vectorial or nonvectorial sugar phosphorylation? (2) How do phospholipids influence relative amounts of the plasma membrane, intracellular membrane, inner membrane-derived vesicles and cytoplasmic micelles? (3) What regulates the route(s) of permease insertion and transfer into and between the different subcellular sites? (4) Do these various membranous forms have distinct physiological functions? (5) What methods should be utilized to study the biogenesis and interconversion of these membranous structures? While research concerning these questions is still in its infancy, answers will greatly enhance our understanding of protein-lipid interactions and how they control the activities, conformations, cellular locations and biogenesis of integral membrane proteins. Copyright © 2013 S. Karger AG, Basel.

  20. Skeletal muscle glycogen synthase subcellular localization: effects of insulin and PPAR-alpha agonist (K-111) administration in rhesus monkeys.

    PubMed

    Ortmeyer, Heidi K; Adall, Yohannes; Marciani, Karina R; Katsiaras, Andreas; Ryan, Alice S; Bodkin, Noni L; Hansen, Barbara C

    2005-06-01

    Insulin covalently and allosterically regulates glycogen synthase (GS) and may also cause the translocation of GS from glycogen-poor to glycogen-rich locations. We examined the possible role of subcellular localization of GS and glycogen in insulin activation of GS in skeletal muscle of six obese monkeys and determined whether 1) insulin stimulation during a hyperinsulinemic euglycemic clamp and/or peroxisome proliferator-activated receptor (PPAR)-alpha agonist treatment (K-111, 3 mg.kg(-1).day(-1); Kowa) induced translocation of GS and 2) translocation of GS was associated with insulin activation of GS. GS and glycogen were present in all fractions obtained by differential centrifugation, except for the cytosolic fraction, under both basal and insulin-stimulated conditions. We found no evidence for translocation of GS by insulin. GS total (GST) activity was strongly associated with glycogen content (r = 0.70, P < 0.001). Six weeks of treatment with K-111 increased GST activity in all fractions, except the cytosolic fraction, and mean GST activity, GS independent activity, and glycogen content were significantly higher in the insulin-stimulated samples compared with basal samples, effects not seen with vehicle. The increase in GST activity was strongly related to the increase in glycogen content during the hyperinsulinemic euglycemic clamp after K-111 administration (r = 0.74, P < 0.001). Neither GS protein expression nor GS gene expression was affected by insulin or by K-111 treatment. We conclude that 1) in vivo insulin does not cause translocation of GS from a glycogen-poor to a glycogen-rich location in primate skeletal muscle and 2) the mechanism of action of K-111 to improve insulin sensitivity includes an increase in GST activity without an increase in GS gene or protein expression.

  1. A maize database resource that captures tissue-specific and subcellular-localized gene expression, via fluorescent tags and confocal imaging (Maize Cell Genomics Database).

    PubMed

    Krishnakumar, Vivek; Choi, Yongwook; Beck, Erin; Wu, Qingyu; Luo, Anding; Sylvester, Anne; Jackson, David; Chan, Agnes P

    2015-01-01

    Maize is a global crop and a powerful system among grain crops for genetic and genomic studies. However, the development of novel biological tools and resources to aid in the functional identification of gene sequences is greatly needed. Towards this goal, we have developed a collection of maize marker lines for studying native gene expression in specific cell types and subcellular compartments using fluorescent proteins (FPs). To catalog FP expression, we have developed a public repository, the Maize Cell Genomics (MCG) Database, (http://maize.jcvi.org/cellgenomics), to organize a large data set of confocal images generated from the maize marker lines. To date, the collection represents major subcellular structures and also developmentally important progenitor cell populations. The resource is available to the research community, for example to study protein localization or interactions under various experimental conditions or mutant backgrounds. A subset of the marker lines can also be used to induce misexpression of target genes through a transactivation system. For future directions, the image repository can be expanded to accept new image submissions from the research community, and to perform customized large-scale computational image analysis. This community resource will provide a suite of new tools for gaining biological insights by following the dynamics of protein expression at the subcellular, cellular and tissue levels. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. In Planta Functional Analysis and Subcellular Localization of the Oomycete Pathogen Plasmopara viticola Candidate RXLR Effector Repertoire

    PubMed Central

    Liu, Yunxiao; Lan, Xia; Song, Shiren; Yin, Ling; Dry, Ian B.; Qu, Junjie; Xiang, Jiang; Lu, Jiang

    2018-01-01

    Downy mildew is one of the most destructive diseases of grapevine, causing tremendous economic loss in the grape and wine industry. The disease agent Plasmopara viticola is an obligate biotrophic oomycete, from which over 100 candidate RXLR effectors have been identified. In this study, 83 candidate RXLR effector genes (PvRXLRs) were cloned from the P. viticola isolate “JL-7-2” genome. The results of the yeast signal sequence trap assay indicated that most of the candidate effectors are secretory proteins. The biological activities and subcellular localizations of all the 83 effectors were analyzed via a heterologous Agrobacterium-mediated Nicotiana benthamiana expression system. Results showed that 52 effectors could completely suppress cell death triggered by elicitin, 10 effectors could partially suppress cell death, 11 effectors were unable to suppress cell death, and 10 effectors themselves triggered cell death. Live-cell imaging showed that the majority of the effectors (76 of 83) could be observed with informative fluorescence signals in plant cells, among which 34 effectors were found to be targeted to both the nucleus and cytosol, 29 effectors were specifically localized in the nucleus, and 9 effectors were targeted to plant membrane system. Interestingly, three effectors PvRXLR61, 86 and 161 were targeted to chloroplasts, and one effector PvRXLR54 was dually targeted to chloroplasts and mitochondria. However, western blot analysis suggested that only PvRXLR86 carried a cleavable N-terminal transit peptide and underwent processing in planta. Many effectors have previously been predicted to target organelles, however, to the best of our knowledge, this is the first study to provide experimental evidence of oomycete effectors targeted to chloroplasts and mitochondria. PMID:29706971

  3. Perkinsus marinus superoxide dismutase 2 (PmSOD2) localizes to single-membrane subcellular compartments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez-Robledo, Jose A.; Schott, Eric J.; Vasta, Gerardo R.

    2008-10-17

    Perkinsus marinus (Phylum Perkinsozoa), a protozoan parasite of oysters, is considered one of the earliest diverging groups of the lineage leading to dinoflagellates. Perkinsus trophozoites are phagocytosed by oyster hemocytes, where they are likely exposed to reactive oxygen species. As part of its reactive oxygen detoxifying pathway, P. marinus possesses two iron-cofactored SOD (PmSOD1 and PmSOD2). Immunoflourescence analysis of P. marinus trophozoites and gene complementation in yeast revealed that PmSOD1 is targeted to the mitochondria. Surprisingly, although PmSOD2 is characterized by a bipartite N-terminus extension typical of plastid targeting, in preliminary immunofluorescence studies it was visualized as punctuate regions inmore » the cytoplasm that could not be assigned to any organelle. Here, we used immunogold electron microscopy to examine the subcellular localization PmSOD2 in P. marinus trophozoites. Gold grains were mostly associated with single-membrane vesicle-like structures, and eventually, localized to electron-dense, apparently amorphous material present in the lumen of a larger, unique compartment. The images suggested that PmSOD2 is targeted to small vesicles that fuse and/or discharge their content into a larger compartment, possibly the large vacuole typical of the mature trophozoites. In light of the in silico targeting prediction, the association of PmSOD2 with single-membrane compartments raises interesting questions regarding its organellar targeting, and the nature of a putative relic plastid in Perkinsus species.« less

  4. Subcellular localization of proflavine derivative and induction of oxidative stress--in vitro studies.

    PubMed

    Ipóthová, Z; Paulíková, H; Cižeková, L; Hunáková, L; Labudová, M; Grolmusová, A; Janovec, L; Imrich, J

    2013-11-01

    Acridines have been studied for several decades because of their numerous biological effects, especially anticancer activity. Recently, cytotoxicity of novel acridine derivatives, 3,6-bis((1-alkyl-5-oxo-imidazolidin-2-yliden)imino)acridine hydrochlorides (AcrDIMs), was confirmed for leukemic cell lines [Bioorg. Med. Chem.2011, 19, 1790]. The mechanism of action of the most cytotoxic hexyl-AcrDIM was studied in this paper focusing attention on a subcellular distribution of the drug. Accumulation of hexyl-AcrDIM in mitochondria was confirmed after labeling mitochondria with MitoRED using ImageStream Imaging Flow Cytometer. The derivative significantly decreased intracellular ATP level (reduction of ATP level was decreased by vitamin E), and induced oxidative stress (ROS production detected by DHE assay) as well as cell cycle arrest in the S-phase (flow cytometry analysis) already after short-time incubation and induction of apoptosis. Cytotoxicity of hexyl-AcrDIM is closely connected with induction of oxidative stress in cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Subcellular localization and characterization of G protein-coupled receptor homolog from lymphocystis disease virus isolated in China.

    PubMed

    Huang, Youhua; Huang, Xiaohong; Zhang, Jing; Gui, Jianfang; Zhang, Qiya

    2007-01-01

    G protein-coupled receptors (GPCRs) constitute a large superfamily involved in various types of signal transduction pathways, and play an important role in coordinating the activation and migration of leukocytes to sites of infection and inflammation. Viral GPCRs, on the other hand, can help the virus to escape from host immune surveillance and contribute to viral pathogenesis. Lymphocystis disease virus isolated in China (LCDV-C) contains a putative homolog of cellular GPCRs, LCDV-C GPCR. In this paper, LCDV-C GPCR was cloned, and the subcellular localization and characterization of GPCR protein were investigated in fish cells. LCDV-C GPCR encoded a 325 amino acid peptide, containing a typical seven-transmembrane domain characteristic of the chemokine receptors and a conserved DRY motif that is usually essential for receptor activation. Transient transfection of GPCR-EGFP in fathead minnow (FHM) cells and epithelioma papulosum cyprini (EPC) cells indicated that LCDV-C GPCR was expressed abundantly in both the cytoplasm and nucleoplasm. Transient overexpression of GPCR in these two cells cannot induce obvious apoptosis. FHM cells stably expressing GPCR showed enhanced cell proliferation and significant anchorage-independent growth. The effects of GPCR protein on external apoptotic stimuli were examined. Few apoptotic bodies were observed in cells expressing GPCR treated with actinomycin D (ActD). Quantitative analysis of apoptotic cells indicated that a considerable decrease in the apoptotic fraction of cells expressing GPCR, compared with the control cells, was detected after exposure to ActD and cycloheximide. These data suggest that LCDV-C GPCR may inhibit apoptosis as part of its potential mechanism in mediating cellular transformation.

  6. Activity and subcellular compartmentalization of peroxisome proliferator-activated receptor alpha are altered by the centrosome-associated protein CAP350.

    PubMed

    Patel, Hansa; Truant, Ray; Rachubinski, Richard A; Capone, John P

    2005-01-01

    Peroxisome proliferator-activated nuclear hormone receptors (PPAR) are ligand-activated transcription factors that play pivotal roles in governing metabolic homeostasis and cell growth. PPARs are primarily in the nucleus but, under certain circumstances, can be found in the cytoplasm. We show here that PPAR(alpha) interacts with the centrosome-associated protein CAP350. CAP350 also interacts with PPAR(delta), PPAR(gamma) and liver-X-receptor alpha, but not with the 9-cis retinoic acid receptor, RXR(alpha). Immunofluorescence analysis indicated that PPAR(alpha) is diffusely distributed in the nucleus and excluded from the cytoplasm. However, in the presence of coexpressed CAP350, PPAR(alpha) colocalizes with CAP350 to discrete nuclear foci and to the centrosome, perinuclear region and intermediate filaments. In contrast, the subcellular distribution of RXR(alpha) or of thyroid hormone receptor alpha was not altered by coexpression of CAP350. An amino-terminal fragment of CAP350 was localized exclusively to nuclear foci and was sufficient to recruit PPAR(alpha) to these sites. Mutation of the single putative nuclear hormone receptor interacting signature motif LXXLL present in this fragment had no effect on its subnuclear localization but abrogated recruitment of PPAR(alpha) to nuclear foci. Surprisingly, mutation of the LXXLL motif in this CAP350 subfragment did not prevent its binding to PPAR(alpha) in vitro, suggesting that this motif serves some function other than PPAR(alpha) binding in recruiting PPAR(alpha) to nuclear spots. CAP350 inhibited PPAR(alpha)-mediated transactivation in an LXXLL-dependent manner, suggesting that CAP350 represses PPAR(alpha) function. Our findings implicate CAP350 in a dynamic process that recruits PPAR(alpha) to discrete nuclear and cytoplasmic compartments and suggest that altered intracellular compartmentalization represents a regulatory process that modulates PPAR function.

  7. Live-cell Imaging of Fungal Cells to Investigate Modes of Entry and Subcellular Localization of Antifungal Plant Defensins.

    PubMed

    Islam, Kazi T; Shah, Dilip M; El-Mounadi, Kaoutar

    2017-12-24

    Small cysteine-rich defensins are one of the largest groups of host defense peptides present in all plants. Many plant defensins exhibit potent in vitro antifungal activity against a broad-spectrum of fungal pathogens and therefore have the potential to be used as antifungal agents in transgenic crops. In order to harness the full potential of plant defensins for diseases control, it is crucial to elucidate their mechanisms of action (MOA). With the advent of advanced microscopy techniques, live-cell imaging has become a powerful tool for understanding the dynamics of the antifungal MOA of plant defensins. Here, a confocal microscopy based live-cell imaging method is described using two fluorescently labeled plant defensins (MtDef4 and MtDef5) in combination with vital fluorescent dyes. This technique enables real-time visualization and analysis of the dynamic events of MtDef4 and MtDef5 internalization into fungal cells. Importantly, this assay generates a wealth of information including internalization kinetics, mode of entry and subcellular localization of these peptides. Along with other cell biological tools, these methods have provided critical insights into the dynamics and complexity of the MOA of these peptides. These tools can also be used to compare the MOA of these peptides against different fungi.

  8. pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites.

    PubMed

    Cheng, Xiang; Zhao, Shu-Guang; Lin, Wei-Zhong; Xiao, Xuan; Chou, Kuo-Chen

    2017-11-15

    Cells are deemed the basic unit of life. However, many important functions of cells as well as their growth and reproduction are performed via the protein molecules located at their different organelles or locations. Facing explosive growth of protein sequences, we are challenged to develop fast and effective method to annotate their subcellular localization. However, this is by no means an easy task. Particularly, mounting evidences have indicated proteins have multi-label feature meaning that they may simultaneously exist at, or move between, two or more different subcellular location sites. Unfortunately, most of the existing computational methods can only be used to deal with the single-label proteins. Although the 'iLoc-Animal' predictor developed recently is quite powerful that can be used to deal with the animal proteins with multiple locations as well, its prediction quality needs to be improved, particularly in enhancing the absolute true rate and reducing the absolute false rate. Here we propose a new predictor called 'pLoc-mAnimal', which is superior to iLoc-Animal as shown by the compelling facts. When tested by the most rigorous cross-validation on the same high-quality benchmark dataset, the absolute true success rate achieved by the new predictor is 37% higher and the absolute false rate is four times lower in comparison with the state-of-the-art predictor. To maximize the convenience of most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc-mAnimal/, by which users can easily get their desired results without the need to go through the complicated mathematics involved. xxiao@gordonlifescience.org or kcchou@gordonlifescience.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  9. Subcellular localization of glycolytic enzymes and characterization of intermediary metabolism of Trypanosoma rangeli.

    PubMed

    Rondón-Mercado, Rocío; Acosta, Héctor; Cáceres, Ana J; Quiñones, Wilfredo; Concepción, Juan Luis

    2017-09-01

    Trypanosoma rangeli is a hemoflagellate protist that infects wild and domestic mammals as well as humans in Central and South America. Although this parasite is not pathogenic for human, it is being studied because it shares with Trypanosoma cruzi, the etiological agent of Chagas' disease, biological characteristics, geographic distribution, vectors and vertebrate hosts. Several metabolic studies have been performed with T. cruzi epimastigotes, however little is known about the metabolism of T. rangeli. In this work we present the subcellular distribution of the T. rangeli enzymes responsible for the conversion of glucose to pyruvate, as determined by epifluorescense immunomicroscopy and subcellular fractionation involving either selective membrane permeabilization with digitonin or differential and isopycnic centrifugation. We found that in T. rangeli epimastigotes the first six enzymes of the glycolytic pathway, involved in the conversion of glucose to 1,3-bisphosphoglycerate are located within glycosomes, while the last four steps occur in the cytosol. In contrast with T. cruzi, where three isoenzymes (one cytosolic and two glycosomal) of phosphoglycerate kinase are expressed simultaneously, only one enzyme with this activity is detected in T. rangeli epimastigotes, in the cytosol. Consistent with this latter result, we found enzymes involved in auxiliary pathways to glycolysis needed to maintain adenine nucleotide and redox balances within glycosomes such as phosphoenolpyruvate carboxykinase, malate dehydrogenase, fumarate reductase, pyruvate phosphate dikinase and glycerol-3-phosphate dehydrogenase. Glucokinase, galactokinase and the first enzyme of the pentose-phosphate pathway, glucose-6-phosphate dehydrogenase, were also located inside glycosomes. Furthermore, we demonstrate that T. rangeli epimastigotes growing in LIT medium only consume glucose and do not excrete ammonium; moreover, they are unable to survive in partially-depleted glucose medium. The

  10. Expression, purification, characterization and subcellular localization of the goose parvovirus rep1 protein.

    PubMed

    Chen, Zongyan; Li, Chuanfeng; Peng, Gaojing; Liu, Guangqing

    2013-07-01

    The goose parvovirus (GPV) Rep1 protein is both essential for viral replication and a potential target for GPV diagnosis, but its protein characterization and intracellular localization is not clear. We constructed a recombinant plasmid, pET28a/GPV-Rep1, and expressed the Rep1 gene in BL21 (DE3) Escherichia coli. A protein approximately 75 kDa in size was obtained from lysates of E. coli cells expressing the recombinant plasmid. SDS-PAGE analysis showed that after induction with 0.6 mM isopropyl β-D-thiogalactosidase (IPTG) at 30°C for 5 h, the Rep1 protein was highly overexpressed. Two methods used to purify proteins, a salinity-gradient elution and Ni-NTA affinity chromatography, were performed. The amount of Rep1 protein obtained by Ni-NTA affinity chromatography was 41.23 mg, while 119.9 mg of Rep1 protein was obtained by a salinity-gradient elution from a 1 L E. coli BL21 (DE3) culture. An immunogenicity analysis showed that the protein could significantly elicit a specific antibody response in immunized goslings compared to control groups. Antibody titers peaked to 1:5120 (optical density (OD) 450 = 3.9) on day 28 after immunization but had mean titers of 1:10,240 (OD450 = 4.2) in gosling groups immunized with a commercially available GPV-attenuated vaccine strain. Experiments examining subcellular localization showed that the Rep1 protein appeared to associate predominantly with the nuclear membrane, especially during later times of infection. This work provides a basis for biochemical and structural studies on the GPV Rep1 protein.

  11. Subcellular Fractionation and Localization Studies Reveal a Direct Interaction of the Fragile X Mental Retardation Protein (FMRP) with Nucleolin

    PubMed Central

    Taha, Mohamed S.; Nouri, Kazem; Milroy, Lech G.; Moll, Jens M.; Herrmann, Christian; Brunsveld, Luc; Piekorz, Roland P.; Ahmadian, Mohammad R.

    2014-01-01

    Fragile X mental Retardation Protein (FMRP) is a well-known regulator of local translation of its mRNA targets in neurons. However, despite its ubiquitous expression, the role of FMRP remains ill-defined in other cell types. In this study we investigated the subcellular distribution of FMRP and its protein complexes in HeLa cells using confocal imaging as well as detergent-free fractionation and size exclusion protocols. We found FMRP localized exclusively to solid compartments, including cytosolic heavy and light membranes, mitochondria, nuclear membrane and nucleoli. Interestingly, FMRP was associated with nucleolin in both a high molecular weight ribosomal and translation-associated complex (≥6 MDa) in the cytosol, and a low molecular weight complex (∼200 kDa) in the nucleoli. Consistently, we identified two functional nucleolar localization signals (NoLSs) in FMRP that are responsible for a strong nucleolar colocalization of the C-terminus of FMRP with nucleolin, and a direct interaction of the N-terminus of FMRP with the arginine-glycine-glycine (RGG) domain of nucleolin. Taken together, we propose a novel mechanism by which a transient nucleolar localization of FMRP underlies a strong nucleocytoplasmic translocation, most likely in a complex with nucleolin and possibly ribosomes, in order to regulate translation of its target mRNAs. PMID:24658146

  12. Proteome-wide Subcellular Topologies of E. coli Polypeptides Database (STEPdb)*

    PubMed Central

    Orfanoudaki, Georgia; Economou, Anastassios

    2014-01-01

    Cell compartmentalization serves both the isolation and the specialization of cell functions. After synthesis in the cytoplasm, over a third of all proteins are targeted to other subcellular compartments. Knowing how proteins are distributed within the cell and how they interact is a prerequisite for understanding it as a whole. Surface and secreted proteins are important pathogenicity determinants. Here we present the STEP database (STEPdb) that contains a comprehensive characterization of subcellular localization and topology of the complete proteome of Escherichia coli. Two widely used E. coli proteomes (K-12 and BL21) are presented organized into thirteen subcellular classes. STEPdb exploits the wealth of genetic, proteomic, biochemical, and functional information on protein localization, secretion, and targeting in E. coli, one of the best understood model organisms. Subcellular annotations were derived from a combination of bioinformatics prediction, proteomic, biochemical, functional, topological data and extensive literature re-examination that were refined through manual curation. Strong experimental support for the location of 1553 out of 4303 proteins was based on 426 articles and some experimental indications for another 526. Annotations were provided for another 320 proteins based on firm bioinformatic predictions. STEPdb is the first database that contains an extensive set of peripheral IM proteins (PIM proteins) and includes their graphical visualization into complexes, cellular functions, and interactions. It also summarizes all currently known protein export machineries of E. coli K-12 and pairs them, where available, with the secretory proteins that use them. It catalogs the Sec- and TAT-utilizing secretomes and summarizes their topological features such as signal peptides and transmembrane regions, transmembrane topologies and orientations. It also catalogs physicochemical and structural features that influence topology such as abundance

  13. Molecular cloning, subcellular localization and characterization of two adenylate kinases from cassava, Manihot esculenta Crantz cv. KU50.

    PubMed

    Boonrueng, Channarong; Tangpranomkorn, Surachat; Yazhisai, Uthaman; Sirikantaramas, Supaart

    2016-10-01

    Adenylate kinase (ADK) is a phosphotransferase that plays an important role in cellular energy homeostasis. Many isozymes located in different subcellular compartments have been reported. In this study, we focus on the characterization of cassava (Manihot esculenta) ADKs. We found 15 ADKs that are publicly available in the African cassava genome database. We cloned two ADKs, namely MeADK1 and MeADK2, which are phylogenetically grouped together with the plastidial ADK in potato. Both MeADK1 and MeADK2 showed 66% identity in the amino acid sequences with plastidial ADK in potato. However, we demonstrated that they are localized to mitochondria using GFP fusions of MeADK1 and MeADK2. The Escherichia coli-produced recombinant MeADK1 and MeADK2 preferred forward reactions that produce ATP. They exhibited similar specific activities. The semi-quantitative RT-PCR analysis showed that MeADK1 and MeADK2 in 2-month-old leaves have similar expression patterns under a diurnal light-dark cycle. However, MeADK2 transcripts were expressed at much higher levels than MeADK1 in 5-month-old leaves and roots. Thus, we conclude that MeADK2 might play a vital role in energy homeostasis in cassava mitochondria. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. In silico cloning, expression of Rieske-like apoprotein gene and protein subcellular localization in the Pacific oyster, Crassostrea gigas.

    PubMed

    He, Xiaocui; Zhang, Yang; Yu, Ziniu

    2010-10-01

    Rieske protein gene in the Pacific oyster Crassostrea gigas was obtained by in silico cloning for the first time, and its expression profiles and subcellular localization were determined, respectively. The full-length cDNA of Cgisp is 985 bp in length and contains a 5'- and 3'-untranslated regions of 35 and 161 bp, respectively, with an open reading frame of 786 bp encoding a protein of 262 amino acids. The predicted molecular weight of 30 kDa of Cgisp protein was verified by prokaryotic expression. Conserved Rieske [2Fe-2S] cluster binding sites and highly matched-pair tertiary structure with 3CWB_E (Gallus gallus) were revealed by homologous analysis and molecular modeling. Eleven putative SNP sites and two conserved hexapeptide sequences, box I (THLGC) and II (PCHGS), were detected by multiple alignments. Real-time PCR analysis showed that Cgisp is expressed in a wide range of tissues, with adductor muscle exhibiting the top expression level, suggesting its biological function of energy transduction. The GFP tagging Cgisp indicated a mitochondrial localization, further confirming its physiological function.

  15. Regulation of NT-PGC-1alpha subcellular localization and function by protein kinase A-dependent modulation of nuclear export by CRM1.

    PubMed

    Chang, Ji Suk; Huypens, Peter; Zhang, Yubin; Black, Chelsea; Kralli, Anastasia; Gettys, Thomas W

    2010-06-04

    Peroxisome proliferator-activated receptor gamma co-activator-1alpha (PGC-1alpha) plays a central role in the regulation of cellular energy metabolism and metabolic adaptation to environmental and nutritional stimuli. We recently described a novel, biologically active splice variant of PGC-1alpha (NT-PGC-1alpha, amino acids 1-270) that retains the ability to interact with and transactivate nuclear hormone receptors through its N-terminal transactivation domain. Whereas PGC-1alpha is an unstable nuclear protein sensitive to ubiquitin-mediated targeting to the proteasome, NT-PGC-1alpha is relatively stable and predominantly cytoplasmic, suggesting that its ability to interact with and activate nuclear receptors and transcription factors is dependent upon regulated access to the nucleus. We provide evidence that NT-PGC-1alpha interacts with the nuclear exportin, CRM1, through a specific leucine-rich domain (nuclear export sequence) that regulates its export to the cytoplasm. The nuclear export of NT-PGC-1alpha is inhibited by protein kinase A-dependent phosphorylation of Ser-194, Ser-241, and Thr-256 on NT-PGC-1alpha, which effectively increases its nuclear concentration. Using site-directed mutagenesis to prevent or mimic phosphorylation at these sites, we show that the transcriptional activity of NT-PGC-1alpha is regulated in part through regulation of its subcellular localization. These findings suggest that the function of NT-PGC-1alpha as a transcriptional co-activator is regulated by protein kinase A-dependent inhibition of CRM1-mediated export from the nucleus.

  16. ClubSub-P: Cluster-Based Subcellular Localization Prediction for Gram-Negative Bacteria and Archaea

    PubMed Central

    Paramasivam, Nagarajan; Linke, Dirk

    2011-01-01

    The subcellular localization (SCL) of proteins provides important clues to their function in a cell. In our efforts to predict useful vaccine targets against Gram-negative bacteria, we noticed that misannotated start codons frequently lead to wrongly assigned SCLs. This and other problems in SCL prediction, such as the relatively high false-positive and false-negative rates of some tools, can be avoided by applying multiple prediction tools to groups of homologous proteins. Here we present ClubSub-P, an online database that combines existing SCL prediction tools into a consensus pipeline from more than 600 proteomes of fully sequenced microorganisms. On top of the consensus prediction at the level of single sequences, the tool uses clusters of homologous proteins from Gram-negative bacteria and from Archaea to eliminate false-positive and false-negative predictions. ClubSub-P can assign the SCL of proteins from Gram-negative bacteria and Archaea with high precision. The database is searchable, and can easily be expanded using either new bacterial genomes or new prediction tools as they become available. This will further improve the performance of the SCL prediction, as well as the detection of misannotated start codons and other annotation errors. ClubSub-P is available online at http://toolkit.tuebingen.mpg.de/clubsubp/ PMID:22073040

  17. Using distant supervised learning to identify protein subcellular localizations from full-text scientific articles.

    PubMed

    Zheng, Wu; Blake, Catherine

    2015-10-01

    Databases of curated biomedical knowledge, such as the protein-locations reflected in the UniProtKB database, provide an accurate and useful resource to researchers and decision makers. Our goal is to augment the manual efforts currently used to curate knowledge bases with automated approaches that leverage the increased availability of full-text scientific articles. This paper describes experiments that use distant supervised learning to identify protein subcellular localizations, which are important to understand protein function and to identify candidate drug targets. Experiments consider Swiss-Prot, the manually annotated subset of the UniProtKB protein knowledge base, and 43,000 full-text articles from the Journal of Biological Chemistry that contain just under 11.5 million sentences. The system achieves 0.81 precision and 0.49 recall at sentence level and an accuracy of 57% on held-out instances in a test set. Moreover, the approach identifies 8210 instances that are not in the UniProtKB knowledge base. Manual inspection of the 50 most likely relations showed that 41 (82%) were valid. These results have immediate benefit to researchers interested in protein function, and suggest that distant supervision should be explored to complement other manual data curation efforts. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Differential subcellular membrane recruitment of Src may specify its downstream signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diesbach, Philippe de; Medts, Thierry; Carpentier, Sarah

    2008-04-15

    Most Src family members are diacylated and constitutively associate with membrane 'lipid rafts' that coordinate signalling. Whether the monoacylated Src, frequently hyperactive in carcinomas, also localizes at 'rafts' remains controversial. Using polarized MDCK cells expressing the thermosensitive v-Src/tsLA31 variant, we here addressed how Src tyrosine-kinase activation may impact on its (i) membrane recruitment, in particular to 'lipid rafts'; (ii) subcellular localization; and (iii) signalling. The kinetics of Src-kinase thermoactivation correlated with its recruitment from the cytosol to sedimentable membranes where Src largely resisted solubilisation by non-ionic detergents at 4 deg. C and floated into sucrose density gradients like caveolin-1 andmore » flotillin-2, i.e. 'lipid rafts'. By immunofluorescence, activated Src showed a dual localization, at apical endosomes/macropinosomes and at the apical plasma membrane. The plasma membrane Src pool did not colocalize with caveolin-1 and flotillin-2, but extensively overlapped GM1 labelling by cholera toxin. Severe ({approx} 70%) cholesterol extraction with methyl-{beta}-cyclodextrin (M{beta}CD) did not abolish 'rafts' floatation, but strongly decreased Src association with floating 'rafts' and abolished its localization at the apical plasma membrane. Src activation independently activated first the MAP-kinase - ERK1/2 pathway, then the PI3-kinase - Akt pathway. MAP-kinase - ERK1/2 activation was insensitive to M{beta}CD, which suppressed Akt phosphorylation and apical endocytosis induced by Src, both depending on the PI3-kinase pathway. We therefore suggest that activated Src is recruited at two membrane compartments, allowing differential signalling, first via ERK1/2 at 'non-raft' domains on endosomes, then via PI3-kinase-Akt on a distinct set of 'rafts' at the apical plasma membrane. Whether this model is applicable to c-Src remains to be examined.« less

  19. Effect of molecular characteristics on cellular uptake, subcellular localization, and phototoxicity of Zn(II) N-alkylpyridylporphyrins.

    PubMed

    Ezzeddine, Rima; Al-Banaw, Anwar; Tovmasyan, Artak; Craik, James D; Batinic-Haberle, Ines; Benov, Ludmil T

    2013-12-20

    Tetra-cationic Zn(II) meso-tetrakis(N-alkylpyridinium-2 (or -3 or -4)-yl)porphyrins (ZnPs) with progressively increased lipophilicity were synthesized to investigate how the tri-dimensional shape and lipophilicity of the photosensitizer (PS) affect cellular uptake, subcellular distribution, and photodynamic efficacy. The effect of the tri-dimensional shape of the molecule was studied by shifting the N-alkyl substituent attached to the pyridyl nitrogen from ortho to meta and para positions. Progressive increase of lipophilicity from shorter hydrophilic (methyl) to longer amphiphilic (hexyl) alkyl chains increased the phototoxicity of the ZnP PSs. PS efficacy was also increased for all derivatives when the alkyl substituents were shifted from ortho to meta, and from meta to para positions. Both cellular uptake and subcellular distribution of the PSs were affected by the lipophilicity and the position of the alkyl chains on the periphery of the porphyrin ring. Whereas the hydrophilic ZnPs demonstrated mostly lysosomal distribution, the amphiphilic hexyl derivatives were associated with mitochondria, endoplasmic reticulum, and plasma membrane. A comparison of hexyl isomers revealed that cellular uptake and partition into membranes followed the order para > meta > ortho. Varying the position and length of the alkyl substituents affects (i) the exposure of cationic charges for electrostatic interactions with anionic biomolecules and (ii) the lipophilicity of the molecule. The charge, lipophilicity, and the tri-dimensional shape of the PS are the major factors that determine cellular uptake, subcellular distribution, and as a consequence, the phototoxicity of the PSs.

  20. Effect of Molecular Characteristics on Cellular Uptake, Subcellular Localization, and Phototoxicity of Zn(II) N-Alkylpyridylporphyrins*

    PubMed Central

    Ezzeddine, Rima; Al-Banaw, Anwar; Tovmasyan, Artak; Craik, James D.; Batinic-Haberle, Ines; Benov, Ludmil T.

    2013-01-01

    Tetra-cationic Zn(II) meso-tetrakis(N-alkylpyridinium-2 (or -3 or -4)-yl)porphyrins (ZnPs) with progressively increased lipophilicity were synthesized to investigate how the tri-dimensional shape and lipophilicity of the photosensitizer (PS) affect cellular uptake, subcellular distribution, and photodynamic efficacy. The effect of the tri-dimensional shape of the molecule was studied by shifting the N-alkyl substituent attached to the pyridyl nitrogen from ortho to meta and para positions. Progressive increase of lipophilicity from shorter hydrophilic (methyl) to longer amphiphilic (hexyl) alkyl chains increased the phototoxicity of the ZnP PSs. PS efficacy was also increased for all derivatives when the alkyl substituents were shifted from ortho to meta, and from meta to para positions. Both cellular uptake and subcellular distribution of the PSs were affected by the lipophilicity and the position of the alkyl chains on the periphery of the porphyrin ring. Whereas the hydrophilic ZnPs demonstrated mostly lysosomal distribution, the amphiphilic hexyl derivatives were associated with mitochondria, endoplasmic reticulum, and plasma membrane. A comparison of hexyl isomers revealed that cellular uptake and partition into membranes followed the order para > meta > ortho. Varying the position and length of the alkyl substituents affects (i) the exposure of cationic charges for electrostatic interactions with anionic biomolecules and (ii) the lipophilicity of the molecule. The charge, lipophilicity, and the tri-dimensional shape of the PS are the major factors that determine cellular uptake, subcellular distribution, and as a consequence, the phototoxicity of the PSs. PMID:24214973

  1. Motion compensation for in vivo subcellular optical microscopy.

    PubMed

    Lucotte, B; Balaban, R S

    2014-04-01

    In this review, we focus on the impact of tissue motion on attempting to conduct subcellular resolution optical microscopy, in vivo. Our position is that tissue motion is one of the major barriers in conducting these studies along with light induced damage, optical probe loading as well as absorbing and scattering effects on the excitation point spread function and collection of emitted light. Recent developments in the speed of image acquisition have reached the limit, in most cases, where the signal from a subcellular voxel limits the speed and not the scanning rate of the microscope. Different schemes for compensating for tissue displacements due to rigid body and deformation are presented from tissue restriction, gating, adaptive gating and active tissue tracking. We argue that methods that minimally impact the natural physiological motion of the tissue are desirable because the major reason to perform in vivo studies is to evaluate normal physiological functions. Towards this goal, active tracking using the optical imaging data itself to monitor tissue displacement and either prospectively or retrospectively correct for the motion without affecting physiological processes is desirable. Critical for this development was the implementation of near real time image processing in conjunction with the control of the microscope imaging parameters. Clearly, the continuing development of methods of motion compensation as well as significant technological solutions to the other barriers to tissue subcellular optical imaging in vivo, including optical aberrations and overall signal-to-noise ratio, will make major contributions to the understanding of cell biology within the body.

  2. Fundamental studies of adrenal retinoid-X-receptor: Protein isoform, tissue expression, subcellular distribution, and ligand availability.

    PubMed

    Cheng, Behling; Al-Shammari, Fatema H; Ghader, Isra'a A; Sequeira, Fatima; Thakkar, Jitendra; Mathew, Thazhumpal C

    2017-07-01

    Adrenal gland reportedly expresses many nuclear receptors that are known to heterodimerize with retinoid-X-receptor (RXR) for functions, but the information regarding the glandular RXR is not adequate. Studies of rat adrenal homogenate by Western blotting revealed three RXR proteins: RXRα (55kDa), RXRβ (47kDa) and RXR (56kDa). RXRγ was not detectable. After fractionation, RXRα was almost exclusively localized in the nuclear fraction. In comparison, substantial portions of RXRβ and RXR were found in both nuclear and post-nuclear particle fractions, suggesting genomic and non-genomic functions. Cells immunostained for RXRα were primarily localized in zona fasciculata (ZF) and medulla, although some stained cells were found in zona glomerulosa (ZG) and zona reticularis (ZR). In contrast, cells immunostained for RXRβ were concentrated principally in ZG, although some stained cells were seen in ZR, ZF, and medulla (in descending order, qualitatively). Analysis of adrenal lipid extracts by LC/MS did not detect 9-cis-retinoic acid (a potent RXR-ligand) but identified all-trans retinoic acid. Since C20 and C22 polyunsaturated fatty acids (PUFAs) can also activate RXR, subcellular availabilities of unesterified fatty acids were investigated by GC/MS. As results, arachidonic acid (C20:4), adrenic acid (C22:4), docosapentaenoic acid (C22:5), and cervonic acid (C22:6) were detected in the lipids extracted from each subcellular fraction. Thus, the RXR-agonizing PUFAs are available in all the main subcellular compartments considerably. The present findings not only shed light on the adrenal network of RXRs but also provide baseline information for further investigations of RXR heterodimers in the regulation of adrenal steroidogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The protein domains of the Dictyostelium microprocessor that are required for correct subcellular localization and for microRNA maturation.

    PubMed

    Kruse, Janis; Meier, Doreen; Zenk, Fides; Rehders, Maren; Nellen, Wolfgang; Hammann, Christian

    2016-10-02

    The maturation pathways of microRNAs (miRNAs) have been delineated for plants and several animals, belonging to the evolutionary supergroups of Archaeplastida and Opisthokonta, respectively. Recently, we reported the discovery of the microprocessor complex in Dictyostelium discoideum of the Amoebozoa supergroup. The complex is composed of the Dicer DrnB and the dsRBD (double-stranded RNA binding domain) containing protein RbdB. Both proteins localize at nucleoli, where they physically interact, and both are required for miRNA maturation. Here we show that the miRNA phenotype of a ΔdrnB gene deletion strain can be rescued by ectopic expression of a series of DrnB GFP fusion proteins, which consistently showed punctate perinucleolar localization in fluorescence microscopy. These punctate foci appear surprisingly stable, as they persist both disintegration of nucleoli and degradation of cellular nucleic acids. We observed that DrnB expression levels influence the number of microprocessor foci and alter RbdB accumulation. An investigation of DrnB variants revealed that its newly identified nuclear localization signal is necessary, but not sufficient for the perinucleolar localization. Biogenesis of miRNAs, which are RNA Pol II transcripts, is correlated with that localization. Besides its bidentate RNase III domains, DrnB contains only a dsRBD, which surprisingly is dispensable for miRNA maturation. This dsRBD can, however, functionally replace the homologous domain in RbdB. Based on the unique setup of the Dictyostelium microprocessor with a subcellular localization similar to plants, but a protein domain composition similar to animals, we propose a model for the evolutionary origin of RNase III proteins acting in miRNA maturation.

  4. PLPD: reliable protein localization prediction from imbalanced and overlapped datasets

    PubMed Central

    Lee, KiYoung; Kim, Dae-Won; Na, DoKyun; Lee, Kwang H.; Lee, Doheon

    2006-01-01

    Subcellular localization is one of the key functional characteristics of proteins. An automatic and efficient prediction method for the protein subcellular localization is highly required owing to the need for large-scale genome analysis. From a machine learning point of view, a dataset of protein localization has several characteristics: the dataset has too many classes (there are more than 10 localizations in a cell), it is a multi-label dataset (a protein may occur in several different subcellular locations), and it is too imbalanced (the number of proteins in each localization is remarkably different). Even though many previous works have been done for the prediction of protein subcellular localization, none of them tackles effectively these characteristics at the same time. Thus, a new computational method for protein localization is eventually needed for more reliable outcomes. To address the issue, we present a protein localization predictor based on D-SVDD (PLPD) for the prediction of protein localization, which can find the likelihood of a specific localization of a protein more easily and more correctly. Moreover, we introduce three measurements for the more precise evaluation of a protein localization predictor. As the results of various datasets which are made from the experiments of Huh et al. (2003), the proposed PLPD method represents a different approach that might play a complimentary role to the existing methods, such as Nearest Neighbor method and discriminate covariant method. Finally, after finding a good boundary for each localization using the 5184 classified proteins as training data, we predicted 138 proteins whose subcellular localizations could not be clearly observed by the experiments of Huh et al. (2003). PMID:16966337

  5. Subcellular Localization of a Plant Catalase-Phenol Oxidase, AcCATPO, from Amaranthus and Identification of a Non-canonical Peroxisome Targeting Signal

    PubMed Central

    Chen, Ning; Teng, Xiao-Lu; Xiao, Xing-Guo

    2017-01-01

    AcCATPO is a plant catalase-phenol oxidase recently identified from red amaranth. Its physiological function remains unexplored. As the starting step of functional analysis, here we report its subcellular localization and a non-canonical targeting signal. Commonly used bioinformatics programs predicted a peroxisomal localization for AcCATPO, but failed in identification of canonical peroxisomal targeting signals (PTS). The C-terminal GFP tagging led the fusion protein AcCATPO-GFP to the cytosol and the nucleus, but N-terminal tagging directed the GFP-AcCATPO to peroxisomes and nuclei, in transgenic tobacco. Deleting the tripeptide (PTM) at the extreme C-terminus almost ruled out the peroxisomal localization of GFP-AcCATPOΔ3, and removing the C-terminal decapeptide completely excluded peroxisomes as the residence of GFP-AcCATPOΔ10. Furthermore, this decapeptide as a targeting signal could import GFP-10aa to the peroxisome exclusively. Taken together, these results demonstrate that AcCATPO is localized to the peroxisome and the nucleus, and its peroxisomal localization is attributed to a non-canonical PTS1, the C-terminal decapeptide which contains an internal SRL motif and a conserved tripeptide P-S/T-I/M at the extreme of C-terminus. This work may further the study as to the physiological function of AcCATPO, especially clarify its involvement in betalain biosynthesis, and provide a clue to elucidate more non-canonic PTS. PMID:28824680

  6. Subcellular Localization of a Plant Catalase-Phenol Oxidase, AcCATPO, from Amaranthus and Identification of a Non-canonical Peroxisome Targeting Signal.

    PubMed

    Chen, Ning; Teng, Xiao-Lu; Xiao, Xing-Guo

    2017-01-01

    AcCATPO is a plant catalase-phenol oxidase recently identified from red amaranth. Its physiological function remains unexplored. As the starting step of functional analysis, here we report its subcellular localization and a non-canonical targeting signal. Commonly used bioinformatics programs predicted a peroxisomal localization for AcCATPO, but failed in identification of canonical peroxisomal targeting signals (PTS). The C-terminal GFP tagging led the fusion protein AcCATPO-GFP to the cytosol and the nucleus, but N-terminal tagging directed the GFP-AcCATPO to peroxisomes and nuclei, in transgenic tobacco. Deleting the tripeptide (PTM) at the extreme C-terminus almost ruled out the peroxisomal localization of GFP-AcCATPOΔ3, and removing the C-terminal decapeptide completely excluded peroxisomes as the residence of GFP-AcCATPOΔ10. Furthermore, this decapeptide as a targeting signal could import GFP-10aa to the peroxisome exclusively. Taken together, these results demonstrate that AcCATPO is localized to the peroxisome and the nucleus, and its peroxisomal localization is attributed to a non-canonical PTS1, the C-terminal decapeptide which contains an internal SRL motif and a conserved tripeptide P-S/T-I/M at the extreme of C-terminus. This work may further the study as to the physiological function of AcCATPO, especially clarify its involvement in betalain biosynthesis, and provide a clue to elucidate more non-canonic PTS.

  7. Protein kinase C ϵ stabilizes β-catenin and regulates its subcellular localization in podocytes.

    PubMed

    Duong, Michelle; Yu, Xuejiao; Teng, Beina; Schroder, Patricia; Haller, Hermann; Eschenburg, Susanne; Schiffer, Mario

    2017-07-21

    Kidney disease has been linked to dysregulated signaling via PKC in kidney cells such as podocytes. PKCα is a conventional isoform of PKC and a well-known binding partner of β-catenin, which promotes its degradation. β-Catenin is the main effector of the canonical Wnt pathway and is critical in cell adhesion. However, whether other PKC isoforms interact with β-catenin has not been studied systematically. Here we demonstrate that PKCϵ-deficient mice, which develop proteinuria and glomerulosclerosis, display lower β-catenin expression compared with PKC wild-type mice, consistent with an altered phenotype of podocytes in culture. Remarkably, β-catenin showed a reversed subcellular localization pattern: Although β-catenin exhibited a perinuclear pattern in undifferentiated wild-type cells, it predominantly localized to the nucleus in PKCϵ knockout cells. Phorbol 12-myristate 13-acetate stimulation of both cell types revealed that PKCϵ positively regulates β-catenin expression and stabilization in a glycogen synthase kinase 3β-independent manner. Further, β-catenin overexpression in PKCϵ-deficient podocytes could restore the wild-type phenotype, similar to rescue with a PKCϵ construct. This effect was mediated by up-regulation of P-cadherin and the β-catenin downstream target fascin1. Zebrafish studies indicated three PKCϵ-specific phosphorylation sites in β-catenin that are required for full β-catenin function. Co-immunoprecipitation and pulldown assays confirmed PKCϵ and β-catenin as binding partners and revealed that ablation of the three PKCϵ phosphorylation sites weakens their interaction. In summary, we identified a novel pathway for regulation of β-catenin levels and define PKCϵ as an important β-catenin interaction partner and signaling opponent of other PKC isoforms in podocytes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. A homolog of teleostean signal transducer and activator of transcription 3 (STAT3) from rock bream, Oplegnathus fasciatus: Structural insights, transcriptional modulation, and subcellular localization.

    PubMed

    Bathige, S D N K; Thulasitha, William Shanthakumar; Umasuthan, Navaneethaiyer; Jayasinghe, J D H E; Wan, Qiang; Nam, Bo-Hye; Lee, Jehee

    2017-04-01

    heart cells upon recombinant rock bream IL-10 (rRbIL-10) treatment. Subcellular localization and nuclear translocation of rock bream STAT3 following poly (I:C) treatment were also demonstrated. Taken together, the results of the current study provide important evidence for potential roles of rock bream STAT3 in the immune system and wound healing processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Differential subcellular distribution of ion channels and the diversity of neuronal function.

    PubMed

    Nusser, Zoltan

    2012-06-01

    Following the astonishing molecular diversity of voltage-gated ion channels that was revealed in the past few decades, the ion channel repertoire expressed by neurons has been implicated as the major factor governing their functional heterogeneity. Although the molecular structure of ion channels is a key determinant of their biophysical properties, their subcellular distribution and densities on the surface of nerve cells are just as important for fulfilling functional requirements. Recent results obtained with high resolution quantitative localization techniques revealed complex, subcellular compartment-specific distribution patterns of distinct ion channels. Here I suggest that within a given neuron type every ion channel has a unique cell surface distribution pattern, with the functional consequence that this dramatically increases the computational power of nerve cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Subcellular targeting of p33ING1b by phosphorylation-dependent 14-3-3 binding regulates p21WAF1 expression.

    PubMed

    Gong, Wei; Russell, Michael; Suzuki, Keiko; Riabowol, Karl

    2006-04-01

    ING1 is a type II tumor suppressor that affects cell growth, stress signaling, apoptosis, and DNA repair by altering chromatin structure and regulating transcription. Decreased ING1 expression is seen in several human cancers, and mislocalization has been noted in diverse types of cancer cells. Aberrant targeting may, therefore, functionally inactivate ING1. Bioinformatics analysis identified a sequence between the nuclear localization sequence and plant homeodomain domains of ING1 that closely matched the binding motif of 14-3-3 proteins that target cargo proteins to specific subcellular locales. We find that the widely expressed p33(ING1b) splicing isoform of ING1 interacts with members of the 14-3-3 family of proteins and that this interaction is regulated by the phosphorylation status of ING1. 14-3-3 binding resulted in significant amounts of p33(ING1b) protein being tethered in the cytoplasm. As shown previously, ectopic expression of p33(ING1b) increased levels of the p21(Waf1) cyclin-dependent kinase inhibitor upon UV-induced DNA damage. Overexpression of 14-3-3 inhibited the up-regulation of p21(Waf1) by p33(ING1b), consistent with the idea that mislocalization blocks at least one of ING1's biological activities. These data support the idea that the 14-3-3 proteins play a crucial role in regulating the activity of p33(ING1b) by directing its subcellular localization.

  11. Enhancing a Pathway-Genome Database (PGDB) to capture subcellular localization of metabolites and enzymes: the nucleotide-sugar biosynthetic pathways of Populus trichocarpa.

    PubMed

    Nag, Ambarish; Karpinets, Tatiana V; Chang, Christopher H; Bar-Peled, Maor

    2012-01-01

    Understanding how cellular metabolism works and is regulated requires that the underlying biochemical pathways be adequately represented and integrated with large metabolomic data sets to establish a robust network model. Genetically engineering energy crops to be less recalcitrant to saccharification requires detailed knowledge of plant polysaccharide structures and a thorough understanding of the metabolic pathways involved in forming and regulating cell-wall synthesis. Nucleotide-sugars are building blocks for synthesis of cell wall polysaccharides. The biosynthesis of nucleotide-sugars is catalyzed by a multitude of enzymes that reside in different subcellular organelles, and precise representation of these pathways requires accurate capture of this biological compartmentalization. The lack of simple localization cues in genomic sequence data and annotations however leads to missing compartmentalization information for eukaryotes in automatically generated databases, such as the Pathway-Genome Databases (PGDBs) of the SRI Pathway Tools software that drives much biochemical knowledge representation on the internet. In this report, we provide an informal mechanism using the existing Pathway Tools framework to integrate protein and metabolite sub-cellular localization data with the existing representation of the nucleotide-sugar metabolic pathways in a prototype PGDB for Populus trichocarpa. The enhanced pathway representations have been successfully used to map SNP abundance data to individual nucleotide-sugar biosynthetic genes in the PGDB. The manually curated pathway representations are more conducive to the construction of a computational platform that will allow the simulation of natural and engineered nucleotide-sugar precursor fluxes into specific recalcitrant polysaccharide(s). Database URL: The curated Populus PGDB is available in the BESC public portal at http://cricket.ornl.gov/cgi-bin/beocyc_home.cgi and the nucleotide-sugar biosynthetic pathways can

  12. Enhancing a Pathway-Genome Database (PGDB) to capture subcellular localization of metabolites and enzymes: the nucleotide-sugar biosynthetic pathways of Populus trichocarpa

    PubMed Central

    Nag, Ambarish; Karpinets, Tatiana V.; Chang, Christopher H.; Bar-Peled, Maor

    2012-01-01

    Understanding how cellular metabolism works and is regulated requires that the underlying biochemical pathways be adequately represented and integrated with large metabolomic data sets to establish a robust network model. Genetically engineering energy crops to be less recalcitrant to saccharification requires detailed knowledge of plant polysaccharide structures and a thorough understanding of the metabolic pathways involved in forming and regulating cell-wall synthesis. Nucleotide-sugars are building blocks for synthesis of cell wall polysaccharides. The biosynthesis of nucleotide-sugars is catalyzed by a multitude of enzymes that reside in different subcellular organelles, and precise representation of these pathways requires accurate capture of this biological compartmentalization. The lack of simple localization cues in genomic sequence data and annotations however leads to missing compartmentalization information for eukaryotes in automatically generated databases, such as the Pathway-Genome Databases (PGDBs) of the SRI Pathway Tools software that drives much biochemical knowledge representation on the internet. In this report, we provide an informal mechanism using the existing Pathway Tools framework to integrate protein and metabolite sub-cellular localization data with the existing representation of the nucleotide-sugar metabolic pathways in a prototype PGDB for Populus trichocarpa. The enhanced pathway representations have been successfully used to map SNP abundance data to individual nucleotide-sugar biosynthetic genes in the PGDB. The manually curated pathway representations are more conducive to the construction of a computational platform that will allow the simulation of natural and engineered nucleotide-sugar precursor fluxes into specific recalcitrant polysaccharide(s). Database URL: The curated Populus PGDB is available in the BESC public portal at http://cricket.ornl.gov/cgi-bin/beocyc_home.cgi and the nucleotide-sugar biosynthetic pathways can

  13. The role of endomembrane-localized VHA-c in plant growth.

    PubMed

    Zhou, Aimin; Takano, Tetsuo; Liu, Shenkui

    2018-01-02

    In plant cells, the vacuolar-type H + -ATPase (V-ATPase), a large multis`ubunit endomembrane proton pump, plays an important role in acidification of subcellular organelles, pH and ion homeostasis, and endocytic and secretory trafficking. V-ATPase subunit c (VHA-c) is essential for V-ATPase assembly, and is directly responsible for binding and transmembrane transport of protons. In previous studies, we identified a PutVHA-c gene from Puccinellia tenuiflora, and investigated its function in plant growth. Subcellular localization revealed that PutVHA-c is mainly localized in endosomal compartments. Overexpression of PutVHA-c enhanced V-ATPase activity and promoted plant growth in transgenic Arabidopsis. Furthermore, the activity of V-ATPase affected intracellular transport of the Golgi-derived endosomes. Our results showed that endomembrane localized-VHA-c contributes to plant growth by influencing V-ATPase-dependent endosomal trafficking. Here, we discuss these recent findings and speculate on the VHA-c mediated molecular mechanisms involved in plant growth, providing a better understanding of the functions of VHA-c and V-ATPase.

  14. Subcellular Distribution and Chemical Forms of Pb in Corn: Strategies Underlying Tolerance in Pb Stress.

    PubMed

    Sun, Jianling; Luo, Liqiang

    2018-06-22

    Studying the accumulation position and forms of heavy metals (HMs) in organisms and cells is helpful to understand the transport process and detoxification mechanism. As typical HMs, lead (Pb) subcellular content, localization, and speciation of corn subcellular fractions were studied by a series of technologies, including transmission electron microscopy, inductively coupled plasma mass spectrometry, and X-ray absorption near edge structure. The results revealed that the electrodense granules of Pb were localized in the cell wall, intercellular space, and plasma membranes. About 71% Pb was localized at the cell wall and soluble fraction. In cell walls, the total amount of pyromorphite and Pb carbonate was about 80% and the remaining was Pb stearate. In the nuclear and chloroplast fraction, which demonstrated significant changes, major speciations were Pb sulfide (72%), basic Pb carbonate (16%), and Pb stearate (12%). Pb is blocked by cell walls as pyromorphite and Pb carbonate sediments and compartmentalized by vacuoles, which both play an inportant role in cell detoxification. Besides, sulfur-containing compounds form inside the cells.

  15. Subcellular distribution of raffinose oligosaccharides and other metabolites in summer and winter leaves of Ajuga reptans (Lamiaceae).

    PubMed

    Findling, Sarah; Zanger, Klaus; Krueger, Stephan; Lohaus, Gertrud

    2015-01-01

    In Ajuga reptans, raffinose oligosaccharides accumulated during winter. Stachyose, verbascose, and higher RFO oligomers were exclusively found in the vacuole whereas one-fourth of raffinose was localized in the stroma. The evergreen labiate Ajuga reptans L. can grow at low temperature. The carbohydrate metabolism changes during the cold phase, e.g., raffinose family oligosaccharides (RFOs) accumulate. Additionally, A. reptans translocates RFOs in the phloem. In the present study, subcellular concentrations of metabolites were studied in summer and winter leaves of A. reptans to gain further insight into regulatory instances involved in the cold acclimation process and into the function of RFOs. Subcellular metabolite concentrations were determined by non-aqueous fractionation. Volumes of the subcellular compartments of summer and winter leaves were analyzed by morphometric measurements. The metabolite content varied strongly between summer and winter leaves. Soluble metabolites increased up to tenfold during winter whereas the starch content was decreased. In winter leaves, the subcellular distribution showed a shift of carbohydrates from cytoplasm to vacuole and chloroplast. Despite this, the metabolite concentration was higher in all compartments in winter leaves compared to summer leaves because of the much higher total metabolite content in winter leaves. The different oligosaccharides did show different compartmentations. Stachyose, verbascose, and higher RFO oligomers were almost exclusively found in the vacuole whereas one-fourth of raffinose was localized in the stroma. Apparently, the subcellular distribution of the RFOs differs because they fulfill different functions in plant metabolism during winter. Raffinose might function in protecting chloroplast membranes during freezing, whereas higher RFO oligomers may exert protective effects on vacuolar membranes. In addition, the high content of RFOs in winter leaves may also result from reduced consumption of

  16. Internalization and Subcellular Trafficking of Poly-l-lysine Dendrimers Are Impacted by the Site of Fluorophore Conjugation.

    PubMed

    Avaritt, Brittany R; Swaan, Peter W

    2015-06-01

    Internalization and intracellular trafficking of dendrimer-drug conjugates play an important role in achieving successful drug delivery. In this study, we aimed to elucidate the endocytosis mechanisms and subcellular localization of poly-l-lysine (PLL) dendrimers in Caco-2 cells. We also investigated the impact of fluorophore conjugation on cytotoxicity, uptake, and transepithelial transport. Oregon green 514 (OG) was conjugated to PLL G3 at either the dendrimer periphery or the core. Chemical inhibitors of clathrin-, caveolin-, cholesterol-, and dynamin-mediated endocytosis pathways and macropinocytosis were employed to establish internalization mechanisms, while colocalization with subcellular markers was used to determine dendrimer trafficking. Cell viability, internalization, and uptake were all influenced by the site of fluorophore conjugation. Uptake was found to be highly dependent on cholesterol- and dynamin-mediated endocytosis as well as macropinocytosis. Dendrimers were trafficked to endosomes and lysosomes, and subcellular localization was impacted by the fluorophore conjugation site. The results of this study indicate that PLL dendrimers exploit multiple pathways for cellular entry, and internalization and trafficking can be impacted by conjugation. Therefore, design of dendrimer-drug conjugates requires careful consideration to achieve successful drug delivery.

  17. Different subcellular localization of neurotensin-receptor and neurotensin-acceptor sites in the rat brain dopaminergic system.

    PubMed

    Schotte, A; Rostène, W; Laduron, P M

    1988-04-01

    The subcellular localization of neurotensin-receptor sites (NT2 sites) and neurotensin-acceptor sites (NT1 sites) was studied in rat caudate-putamen by isopycnic centrifugation in sucrose density gradients. [3H]Neurotensin binding to NT2 sites occurred as a major peak at higher sucrose densities, colocalized with [3H]dopamine uptake, and as a small peak at a lower density; whereas binding to NT1 sites occurred as a single large peak at an intermediate density. 6-Hydroxydopamine lesions of the median forebrain bundle resulted in a total loss of NT2 sites in the caudate-putamen but did not affect NT2 sites in the nucleus accumbens and the olfactory tubercle. NT1 sites were not affected. Kainic acid injections into the rat caudate-putamen led to a partial decrease of NT1 sites in this region 5 days later. After a few weeks they returned to normal. Therefore NT2 sites are probably associated with presynaptic nigrostriatal dopaminergic terminals in the caudate-putamen but not in the nucleus accumbens and the olfactory tubercle. A possible association of NT1 sites with glial cells is suggested.

  18. Arginine Decarboxylase Is Localized in Chloroplasts.

    PubMed Central

    Borrell, A.; Culianez-Macia, F. A.; Altabella, T.; Besford, R. T.; Flores, D.; Tiburcio, A. F.

    1995-01-01

    Plants, unlike animals, can use either ornithine decarboxylase or arginine decarboxylase (ADC) to produce the polyamine precursor putrescine. Lack of knowledge of the exact cellular and subcellular location of these enzymes has been one of the main obstacles to our understanding of the biological role of polyamines in plants. We have generated polyclonal antibodies to oat (Avena sativa L.) ADC to study the spatial distribution and subcellular localization of ADC protein in different oat tissues. By immunoblotting and immunocytochemistry, we show that ADC is organ specific. By cell fractionation and immunoblotting, we show that ADC is localized in chloroplasts associated with the thylakoid membrane. The results also show that increased levels of ADC protein are correlated with high levels of ADC activity and putrescine in osmotically stressed oat leaves. A model of compartmentalization for the arginine pathway and putrescine biosynthesis in active photosynthetic tissues has been proposed. In the context of endosymbiote-driven metabolic evolution in plants, the location of ADC in the chloroplast compartment may have major evolutionary significance, since it explains (a) why plants can use two alternative pathways for putrescine biosynthesis and (b) why animals do not possess ADC. PMID:12228631

  19. In vivo subcellular localization of Mal de Rio Cuarto virus (MRCV) non-structural proteins in insect cells reveals their putative functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maroniche, Guillermo A.; Mongelli, Vanesa C.; Llauger, Gabriela

    2012-09-01

    The in vivo subcellular localization of Mal de Rio Cuarto virus (MRCV, Fijivirus, Reoviridae) non-structural proteins fused to GFP was analyzed by confocal microscopy. P5-1 showed a cytoplasmic vesicular-like distribution that was lost upon deleting its PDZ binding TKF motif, suggesting that P5-1 interacts with cellular PDZ proteins. P5-2 located at the nucleus and its nuclear import was affected by the deletion of its basic C-termini. P7-1 and P7-2 also entered the nucleus and therefore, along with P5-2, could function as regulators of host gene expression. P6 located in the cytoplasm and in perinuclear cloud-like inclusions, was driven to P9-1more » viroplasm-like structures and co-localized with P7-2, P10 and {alpha}-tubulin, suggesting its involvement in viroplasm formation and viral intracellular movement. Finally, P9-2 was N-glycosylated and located at the plasma membrane in association with filopodia-like protrusions containing actin, suggesting a possible role in virus cell-to-cell movement and spread.« less

  20. Mapping the subcellular localization of Fe3O4@TiO2 nanoparticles by X-ray Fluorescence Microscopy.

    PubMed

    Yuan, Y; Chen, S; Gleber, S C; Lai, B; Brister, K; Flachenecker, C; Wanzer, B; Paunesku, T; Vogt, S; Woloschak, G E

    The targeted delivery of Fe 3 O 4 @TiO2 nanoparticles to cancer cells is an important step in their development as nanomedicines. We have synthesized nanoparticles that can bind the Epidermal Growth Factor Receptor, a cell surface protein that is overexpressed in many epithelial type cancers. In order to study the subcellular distribution of these nanoparticles, we have utilized the sub-micron resolution of X-ray Fluorescence Microscopy to map the locationof Fe 3 O4@TiO 2 NPs and other trace metal elements within HeLa cervical cancer cells. Here we demonstrate how the higher resolution of the newly installed Bionanoprobe at the Advanced Photon Source at Argonne National Laboratory can greatly improve our ability to distinguish intracellular nanoparticles and their spatial relationship with subcellular compartments.

  1. Distinct subcellular patterns of neprilysin protein and activity in the brains of Alzheimer’s disease patients, transgenic mice and cultured human neuronal cells

    PubMed Central

    Zhou, Li; Wei, Chunsheng; Huang, Wei; Bennett, David A; Dickson, Dennis W; Wang, Rui; Wang, Dengshun

    2013-01-01

    We investigated the subcellular distribution of NEP protein and activity in brains of human individuals with no cognitive impairment (NCI), mild cognitive impairment (MCI) and AD dementia, as well as double transgenic mice and human neuronal cell line treated with Aβ and 4-hydroxy-2-nonenal (HNE). Total cortical neuronal-related NEP was significantly increased in MCI compared to NCI brains. NeuN was decreased in both MCI and AD, consistent with neuronal loss occurring in MCI and AD. Negative relationship between NEP protein and NeuN in MCI brains, and positive correlation between NEP and pan-cadherin in NCI and MCI brains, suggesting the increased NEP expression in NCI and MCI might be due to membrane associated NEP in non-neuronal cells. In subcellular extracts, NEP protein decreased in cytoplasmic fractions in MCI and AD, but increased in membrane fractions, with a significant increase in the membrane/cytoplasmic ratio of NEP protein in AD brains. By contrast, NEP activity was decreased in AD. Similar results were observed in AD-mimic transgenic mice. Studies of SH-SY5Y neuroblastoma showed an up-regulation of NEP protein in the cytoplasmic compartment induced by HNE and Aβ; however, NEP activity decreased in cytoplasmic fractions. Activity of NEP in membrane fractions increased at 48 hours and then significantly decreased after treatment with HNE and Aβ. The cytoplasmic/membrane ratio of NEP protein increased at 24 hours and then decreased in both HNE and Aβ treated cells. Both HNE and Aβ up-regulate NEP expression, but NEP enzyme activity did not show the same increase, possibly indicating immature cytoplasmic NEP is less active than membrane associated NEP. These observations indicate that modulation of NEP protein levels and its subcellular location influence the net proteolytic activity and this complex association might participate in deficiency of Aβ degradation that is associated with amyloid deposition in AD. PMID:24093058

  2. Unsupervised Clustering of Subcellular Protein Expression Patterns in High-Throughput Microscopy Images Reveals Protein Complexes and Functional Relationships between Proteins

    PubMed Central

    Handfield, Louis-François; Chong, Yolanda T.; Simmons, Jibril; Andrews, Brenda J.; Moses, Alan M.

    2013-01-01

    Protein subcellular localization has been systematically characterized in budding yeast using fluorescently tagged proteins. Based on the fluorescence microscopy images, subcellular localization of many proteins can be classified automatically using supervised machine learning approaches that have been trained to recognize predefined image classes based on statistical features. Here, we present an unsupervised analysis of protein expression patterns in a set of high-resolution, high-throughput microscope images. Our analysis is based on 7 biologically interpretable features which are evaluated on automatically identified cells, and whose cell-stage dependency is captured by a continuous model for cell growth. We show that it is possible to identify most previously identified localization patterns in a cluster analysis based on these features and that similarities between the inferred expression patterns contain more information about protein function than can be explained by a previous manual categorization of subcellular localization. Furthermore, the inferred cell-stage associated to each fluorescence measurement allows us to visualize large groups of proteins entering the bud at specific stages of bud growth. These correspond to proteins localized to organelles, revealing that the organelles must be entering the bud in a stereotypical order. We also identify and organize a smaller group of proteins that show subtle differences in the way they move around the bud during growth. Our results suggest that biologically interpretable features based on explicit models of cell morphology will yield unprecedented power for pattern discovery in high-resolution, high-throughput microscopy images. PMID:23785265

  3. Remote Control of Gene Function by Local Translation

    PubMed Central

    Jung, Hosung; Gkogkas, Christos G.; Sonenberg, Nahum; Holt, Christine E.

    2014-01-01

    The subcellular position of a protein is a key determinant of its function. Mounting evidence indicates that RNA localization, where specific mRNAs are transported subcellularly and subsequently translated in response to localized signals, is an evolutionarily conserved mechanism to control protein localization. On-site synthesis confers novel signaling properties to a protein and helps to maintain local proteome homeostasis. Local translation plays particularly important roles in distal neuronal compartments, and dysregulated RNA localization and translation cause defects in neuronal wiring and survival. Here, we discuss key findings in this area and possible implications of this adaptable and swift mechanism for spatial control of gene function. PMID:24679524

  4. Subcellular Localization Screening of Colletotrichum higginsianum Effector Candidates Identifies Fungal Proteins Targeted to Plant Peroxisomes, Golgi Bodies, and Microtubules.

    PubMed

    Robin, Guillaume P; Kleemann, Jochen; Neumann, Ulla; Cabre, Lisa; Dallery, Jean-Félix; Lapalu, Nicolas; O'Connell, Richard J

    2018-01-01

    The genome of the hemibiotrophic anthracnose fungus, Colletotrichum higginsianum , encodes a large inventory of putative secreted effector proteins that are sequentially expressed at different stages of plant infection, namely appressorium-mediated penetration, biotrophy and necrotrophy. However, the destinations to which these proteins are addressed inside plant cells are unknown. In the present study, we selected 61 putative effector genes that are highly induced in appressoria and/or biotrophic hyphae. We then used Agrobacterium -mediated transformation to transiently express them as N -terminal fusions with fluorescent proteins in cells of Nicotiana benthamiana for imaging by confocal microscopy. Plant compartments labeled by the fusion proteins in N. benthamiana were validated by co-localization with specific organelle markers, by transient expression of the proteins in the true host plant, Arabidopsis thaliana , and by transmission electron microscopy-immunogold labeling. Among those proteins for which specific subcellular localizations could be verified, nine were imported into plant nuclei, three were imported into the matrix of peroxisomes, three decorated cortical microtubule arrays and one labeled Golgi stacks. Two peroxisome-targeted proteins harbored canonical C -terminal tripeptide signals for peroxisome import via the PTS1 (peroxisomal targeting signal 1) pathway, and we showed that these signals are essential for their peroxisome localization. Our findings provide valuable information about which host processes are potentially manipulated by this pathogen, and also reveal plant peroxisomes, microtubules, and Golgi as novel targets for fungal effectors.

  5. Polycaprolactone/maltodextrin nanocarrier for intracellular drug delivery: formulation, uptake mechanism, internalization kinetics, and subcellular localization.

    PubMed

    Korang-Yeboah, Maxwell; Gorantla, Yamini; Paulos, Simon A; Sharma, Pankaj; Chaudhary, Jaideep; Palaniappan, Ravi

    2015-01-01

    Prostate cancer (PCa) disease progression is associated with significant changes in intracellular and extracellular proteins, intracellular signaling mechanism, and cancer cell phenotype. These changes may have direct impact on the cellular interactions with nanocarriers; hence, there is the need for a much-detailed understanding, as nanocarrier cellular internalization and intracellular sorting mechanism correlate directly with bioavailability and clinical efficacy. In this study, we report the differences in the rate and mechanism of cellular internalization of a biocompatible polycaprolactone (PCL)/maltodextrin (MD) nanocarrier system for intracellular drug delivery in LNCaP, PC3, and DU145 PCa cell lines. PCL/MD nanocarriers were designed and characterized. PCL/MD nanocarriers significantly increased the intracellular concentration of coumarin-6 and fluorescein isothiocyanate-labeled bovine serum albumin, a model hydrophobic and large molecule, respectively. Fluorescence microscopy and flow cytometry analysis revealed rapid internalization of the nanocarrier. The extent of nanocarrier cellular internalization correlated directly with cell line aggressiveness. PCL/MD internalization was highest in PC3 followed by DU145 and LNCaP, respectively. Uptake in all PCa cell lines was metabolically dependent. Extraction of endogenous cholesterol by methyl-β-cyclodextrin reduced uptake by 75%±4.53% in PC3, 64%±6.01% in LNCaP, and 50%±4.50% in DU145, indicating the involvement of endogenous cholesterol in cellular internalization. Internalization of the nanocarrier in LNCaP was mediated mainly by macropinocytosis and clathrin-independent pathways, while internalization in PC3 and DU145 involved clathrin-mediated endocytosis, clathrin-independent pathways, and macropinocytosis. Fluorescence microscopy showed a very diffused and non-compartmentalized subcellular localization of the PCL/MD nanocarriers with possible intranuclear localization and minor colocalization in

  6. Subcellular localization of calcium and Ca-ATPase activity during nuclear maturation in Bufo arenarum oocytes.

    PubMed

    Ramos, Inés; Cisint, Susana B; Crespo, Claudia A; Medina, Marcela F; Fernández, Silvia N

    2009-08-01

    The localization of calcium and Ca-ATPase activity in Bufo arenarum oocytes was investigated by ultracytochemical techniques during progesterone-induced nuclear maturation, under in vitro conditions. No Ca2+ deposits were detected in either control oocytes or progesterone-treated ones for 1-2 h. At the time when nuclear migration started, electron dense deposits of Ca2+ were visible in vesicles, endoplasmic reticulum cisternae and in the space between the annulate lamellae membranes. Furthermore, Ca-ATPase activity was also detected in these membrane structures. As maturation progressed, the cation deposits were observed in the cytomembrane structures, which underwent an important reorganization and redistribution. Thus, they moved from the subcortex and became located predominantly in the oocyte cortex area when nuclear maturation ended. Ca2+ stores were observed in vesicles surrounding or between the cortical granules, which are aligned close to the plasma membrane. The positive Ca-ATPase reaction in these membrane structures could indicate that the calcium deposit is an ATP-dependent process. Our results suggest that during oocyte maturation calcium would be stored in membrane structures where it remains available for release at the time of fertilization. Data obtained under our experimental conditions indicate that calcium from the extracellular medium would be important for the oocyte maturation process.

  7. Chronic alcohol exposure differentially affects activation of female locus coeruleus neurons and the subcellular distribution of corticotropin releasing factor receptors.

    PubMed

    Retson, T A; Reyes, B A; Van Bockstaele, E J

    2015-01-02

    Understanding the neurobiological bases for sex differences in alcohol dependence is needed to help guide the development of individualized therapies for alcohol abuse disorders. In the present study, alcohol-induced adaptations in (1) anxiety-like behavior, (2) patterns of c-Fos activation and (3) subcellular distribution of corticotropin releasing factor receptor in locus coeruleus (LC) neurons was investigated in male and female Sprague-Dawley rats that were chronically exposed to ethanol using a liquid diet. Results confirm and extend reports by others showing that chronic ethanol exposure produces an anxiogenic-like response in both male and female subjects. Ethanol-induced sex differences were observed with increased c-Fos expression in LC neurons of female ethanol-treated subjects compared to controls or male subjects. Results also reveal sex differences in the subcellular distribution of the CRFr in LC-noradrenergic neurons with female subjects exposed to ethanol exhibiting a higher frequency of plasmalemmal CRFrs. These adaptations have implications for LC neuronal activity and its neural targets across the sexes. Considering the important role of the LC in ethanol-induced activation of the hypothalamo-pituitary-adrenal (HPA) axis, the present results indicate important sex differences in feed-forward regulation of the HPA axis that may render alcohol dependent females more vulnerable to subsequent stress exposure. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Molecular cloning, transcriptional profiling, and subcellular localization of signal transducer and activator of transcription 2 (STAT2) ortholog from rock bream, Oplegnathus fasciatus.

    PubMed

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Priyathilaka, Thanthrige Thiunuwan; Thulasitha, William Shanthakumar; Jayasinghe, J D H E; Wan, Qiang; Nam, Bo-Hye; Lee, Jehee

    2017-08-30

    Signal transducer and activator of transcription 2 (STAT2) is a key element that transduces signals from the cell membrane to the nucleus via the type I interferon-signaling pathway. Although the structural and functional aspects of STAT proteins are well studied in mammals, information on teleostean STATs is very limited. In this study, a STAT paralog, which is highly homologous to the STAT2 members, was identified from a commercially important fish species called rock bream and designated as RbSTAT2. The RbSTAT2 gene was characterized at complementary DNA (cDNA) and genomic sequence levels, and was found to possess structural features common with its mammalian counterparts. The complete cDNA sequence was distributed into 24 exons in the genomic sequence. The promoter proximal region was analyzed and found to contain potential transcription factor binding sites to regulate the transcription of RbSTAT2. Phylogenetic studies and comparative genomic structure organization revealed the distinguishable evolution for fish and other vertebrate STAT2 orthologs. Transcriptional quantification was performed by SYBR Green quantitative real-time PCR (qPCR) and the ubiquitous expression of RbSTAT2 transcripts was observed in all tissues analyzed from healthy fish, with a remarkably high expression in blood cells. Significantly (P<0.05) altered transcription of RbSTAT2 was detected after immune challenge experiments with viral (rock bream irido virus; RBIV), bacterial (Edwardsiella tarda and Streptococcus iniae), and immune stimulants (poly I:C and LPS). Antiviral potential was further confirmed by WST-1 assay, by measuring the viability of rock bream heart cells treated with RBIV. In addition, results of an in vitro challenge experiment signified the influence of rock bream interleukin-10 (RbIL-10) on transcription of RbSTAT2. Subcellular localization studies by transfection of pEGFP-N1/RbSTAT2 into rock bream heart cells revealed that the RbSTAT2 was usually located in the

  9. Subcellular Localization and Rolling Circle Replication of Peach Latent Mosaic Viroid: Hallmarks of Group A Viroids

    PubMed Central

    Bussière, F.; Lehoux, J.; Thompson, D. A.; Skrzeczkowski, L. J.; Perreault, J.-P.

    1999-01-01

    We characterized the peach latent mosaic viroid (PLMVd) replication intermediates that accumulate in infected peach leaves and determined the tissue and subcellular localization of the RNA species. Using in situ hybridization, we showed that PLMVd strands of both plus and minus polarities concentrate in the cells forming the palisade parenchyma. At the cellular level, PLMVd was found to accumulate predominantly in chloroplasts. Northern blot analyses demonstrated that PLMVd replicates via a symmetric mode involving the accumulation of both circular and linear monomeric strands of both polarities. No multimeric conformer was detected, indicating that both strands self-cleave efficiently via their hammerhead sequences. Dot blot hybridizations revealed that PLMVd strands of both polarities accumulate equally but that the relative concentrations vary by more than 50-fold between peach cultivars. Taken together these results establish two hallmarks for the classification of viroids. Group A viroids (e.g., PLMVd), which possess hammerhead structures, replicate in the chloroplasts via the symmetric mode. By contrast, group B viroids, which share a conserved central region, replicate in the nucleus via an asymmetric mechanism. This is an important difference between self-cleaving and non-self-cleaving viroids, and the implications for the evolutionary origin and replication are discussed. PMID:10400727

  10. Inflammation-induced abnormalities in the subcellular localization and trafficking of the neurokinin 1 receptor in the enteric nervous system

    PubMed Central

    Lieu, TinaMarie; Pelayo, Juan Carlos; Eriksson, Emily M.; Veldhuis, Nicholas A.; Bunnett, Nigel W.

    2015-01-01

    Activated G protein-coupled receptors traffic to endosomes and are sorted to recycling or degradative pathways. Endosomes are also a site of receptor signaling of sustained and pathophysiologically important processes, including inflammation. However, the mechanisms of endosomal sorting of receptors and the impact of disease on trafficking have not been fully defined. We examined the effects of inflammation on the subcellular distribution and trafficking of the substance P (SP) neurokinin 1 receptor (NK1R) in enteric neurons. We studied NK1R trafficking in enteric neurons of the mouse colon using immunofluorescence and confocal microscopy. The impact of inflammation was studied in IL10−/−-piroxicam and trinitrobenzenesulfonic acid colitis models. NK1R was localized to the plasma membrane of myenteric and submucosal neurons of the uninflamed colon. SP evoked NK1R endocytosis and recycling. Deletion of β-arrestin2, which associates with the activated NK1R, accelerated recycling. Inhibition of endothelin-converting enzyme-1 (ECE-1), which degrades endosomal SP, prevented recycling. Inflammation was associated with NK1R endocytosis in myenteric but not submucosal neurons. Whereas the NK1R in uninflamed neurons recycled within 60 min, NK1R recycling in inflamed neurons was delayed for >120 min, suggesting defective recycling machinery. Inflammation was associated with β-arrestin2 upregulation and ECE-1 downregulation, which may contribute to the defective NK1R recycling. We conclude that inflammation evokes redistribution of NK1R from the plasma membrane to endosomes of myenteric neurons through enhanced SP release and defective NK1R recycling. Defective recycling may be secondary to upregulation of β-arrestin2 and downregulation of ECE-1. Internalized NK1R may generate sustained proinflammatory signals that disrupt normal neuronal functions. PMID:26138465

  11. Rice DB: an Oryza Information Portal linking annotation, subcellular location, function, expression, regulation, and evolutionary information for rice and Arabidopsis

    PubMed Central

    Narsai, Reena; Devenish, James; Castleden, Ian; Narsai, Kabir; Xu, Lin; Shou, Huixia; Whelan, James

    2013-01-01

    Omics research in Oryza sativa (rice) relies on the use of multiple databases to obtain different types of information to define gene function. We present Rice DB, an Oryza information portal that is a functional genomics database, linking gene loci to comprehensive annotations, expression data and the subcellular location of encoded proteins. Rice DB has been designed to integrate the direct comparison of rice with Arabidopsis (Arabidopsis thaliana), based on orthology or ‘expressology’, thus using and combining available information from two pre-eminent plant models. To establish Rice DB, gene identifiers (more than 40 types) and annotations from a variety of sources were compiled, functional information based on large-scale and individual studies was manually collated, hundreds of microarrays were analysed to generate expression annotations, and the occurrences of potential functional regulatory motifs in promoter regions were calculated. A range of computational subcellular localization predictions were also run for all putative proteins encoded in the rice genome, and experimentally confirmed protein localizations have been collated, curated and linked to functional studies in rice. A single search box allows anything from gene identifiers (for rice and/or Arabidopsis), motif sequences, subcellular location, to keyword searches to be entered, with the capability of Boolean searches (such as AND/OR). To demonstrate the utility of Rice DB, several examples are presented including a rice mitochondrial proteome, which draws on a variety of sources for subcellular location data within Rice DB. Comparisons of subcellular location, functional annotations, as well as transcript expression in parallel with Arabidopsis reveals examples of conservation between rice and Arabidopsis, using Rice DB (http://ricedb.plantenergy.uwa.edu.au). PMID:24147765

  12. Determination of elemental distribution in green micro-algae using synchrotron radiation nano X-ray fluorescence (SR-nXRF) and electron microscopy techniques--subcellular localization and quantitative imaging of silver and cobalt uptake by Coccomyxa actinabiotis.

    PubMed

    Leonardo, T; Farhi, E; Boisson, A-M; Vial, J; Cloetens, P; Bohic, S; Rivasseau, C

    2014-02-01

    The newly discovered unicellular micro-alga Coccomyxa actinabiotis proves to be highly radio-tolerant and strongly concentrates radionuclides, as well as large amounts of toxic metals. This study helps in the understanding of the mechanisms involved in the accumulation and detoxification of silver and cobalt. Elemental distribution inside Coccomyxa actinabiotis cells was determined using synchrotron nano X-ray fluorescence spectroscopy at the ID22 nano fluorescence imaging beamline of the European Synchrotron Radiation Facility. The high resolution and high sensitivity of this technique enabled the assessment of elemental associations and exclusions in subcellular micro-algae compartments. A quantitative treatment of the scans was implemented to yield absolute concentrations of each endogenous and exogenous element with a spatial resolution of 100 nm and compared to the macroscopic content in cobalt and silver determined using inductively coupled plasma-mass spectrometry. The nano X-ray fluorescence imaging was complemented by transmission electron microscopy coupled to X-ray microanalysis (TEM-EDS), yielding differential silver distribution in the cell wall, cytosol, nucleus, chloroplast and mitochondria with unique resolution. The analysis of endogenous elements in control cells revealed that iron had a unique distribution; zinc, potassium, manganese, molybdenum, and phosphate had their maxima co-localized in the same area; and sulfur, copper and chlorine were almost homogeneously distributed among the whole cell. The subcellular distribution and quantification of cobalt and silver in micro-alga, assessed after controlled exposure to various concentrations, revealed that exogenous metals were mainly sequestered inside the cell rather than on mucilage or the cell wall, with preferential compartmentalization. Cobalt was homogeneously distributed outside of the chloroplast. Silver was localized in the cytosol at low concentration and in the whole cell excluding the

  13. Rice DB: an Oryza Information Portal linking annotation, subcellular location, function, expression, regulation, and evolutionary information for rice and Arabidopsis.

    PubMed

    Narsai, Reena; Devenish, James; Castleden, Ian; Narsai, Kabir; Xu, Lin; Shou, Huixia; Whelan, James

    2013-12-01

    Omics research in Oryza sativa (rice) relies on the use of multiple databases to obtain different types of information to define gene function. We present Rice DB, an Oryza information portal that is a functional genomics database, linking gene loci to comprehensive annotations, expression data and the subcellular location of encoded proteins. Rice DB has been designed to integrate the direct comparison of rice with Arabidopsis (Arabidopsis thaliana), based on orthology or 'expressology', thus using and combining available information from two pre-eminent plant models. To establish Rice DB, gene identifiers (more than 40 types) and annotations from a variety of sources were compiled, functional information based on large-scale and individual studies was manually collated, hundreds of microarrays were analysed to generate expression annotations, and the occurrences of potential functional regulatory motifs in promoter regions were calculated. A range of computational subcellular localization predictions were also run for all putative proteins encoded in the rice genome, and experimentally confirmed protein localizations have been collated, curated and linked to functional studies in rice. A single search box allows anything from gene identifiers (for rice and/or Arabidopsis), motif sequences, subcellular location, to keyword searches to be entered, with the capability of Boolean searches (such as AND/OR). To demonstrate the utility of Rice DB, several examples are presented including a rice mitochondrial proteome, which draws on a variety of sources for subcellular location data within Rice DB. Comparisons of subcellular location, functional annotations, as well as transcript expression in parallel with Arabidopsis reveals examples of conservation between rice and Arabidopsis, using Rice DB (http://ricedb.plantenergy.uwa.edu.au). © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  14. Genomic organization of the human mi-er1 gene and characterization of alternatively spliced isoforms: regulated use of a facultative intron determines subcellular localization.

    PubMed

    Paterno, Gary D; Ding, Zhihu; Lew, Yuan-Y; Nash, Gord W; Mercer, F Corinne; Gillespie, Laura L

    2002-07-24

    mi-er1 (previously called er1) is a fibroblast growth factor-inducible early response gene activated during mesoderm induction in Xenopus embryos and encoding a nuclear protein that functions as a transcriptional activator. The human orthologue of mi-er1 was shown to be upregulated in breast carcinoma cell lines and breast tumours when compared to normal breast cells. In this report, we investigate the structure of the human mi-er1 (hmi-er1) gene and characterize the alternatively spliced transcripts and protein isoforms. hmi-er1 is a single copy gene located at 1p31.2 and spanning 63 kb. It contains 17 exons and includes one skipped exon, a facultative intron and three polyadenylation signals to produce 12 transcripts encoding six distinct proteins. hmi-er1 transcripts were expressed at very low levels in most human adult tissues and the mRNA isoform pattern varied with the tissue. The 12 transcripts encode proteins containing a common internal sequence with variable N- and C-termini. Three distinct N- and two distinct C-termini were identified, giving rise to six protein isoforms. The two C-termini differ significantly in size and sequence and arise from alternate use of a facultative intron to produce hMI-ER1alpha and hMI-ER1beta. In all tissues except testis, transcripts encoding the beta isoform were predominant. hMI-ER1alpha lacks the predicted nuclear localization signal and transfection assays revealed that, unlike hMI-ER1beta, it is not a nuclear protein, but remains in the cytoplasm. Our results demonstrate that alternate use of a facultative intron regulates the subcellular localization of hMI-ER1 proteins and this may have important implications for hMI-ER1 function.

  15. Subcellular controls of mercury trophic transfer to a marine fish.

    PubMed

    Dang, Fei; Wang, Wen-Xiong

    2010-09-15

    Different behaviors of inorganic mercury [Hg(II)] and methylmercury (MeHg) during trophic transfer along the marine food chain have been widely reported, but the mechanisms are not fully understood. The bioavailability of ingested mercury, quantified by assimilation efficiency (AE), was investigated in a marine fish, the grunt Terapon jarbua, based on mercury subcellular partitioning in prey and purified subcellular fractions of prey tissues. The subcellular distribution of Hg(II) differed substantially among prey types, with cellular debris being a major (49-57% in bivalves) or secondary (14-19% in other prey) binding pool. However, MeHg distribution varied little among prey types, with most MeHg (43-79%) in heat-stable protein (HSP) fraction. The greater AEs measured for MeHg (90-94%) than for Hg(II) (23-43%) confirmed the findings of previous studies. Bioavailability of each purified subcellular fraction rather than the proposed trophically available metal (TAM) fraction could better elucidate mercury assimilation difference. Hg(II) associated with insoluble fraction (e.g. cellular debris) was less bioavailable than that in soluble fraction (e.g. HSP). However, subcellular distribution was shown to be less important for MeHg, with each fraction having comparable MeHg bioavailability. Subcellular distribution in prey should be an important consideration in mercury trophic transfer studies. 2010 Elsevier B.V. All rights reserved.

  16. Quantitative protein localization signatures reveal an association between spatial and functional divergences of proteins.

    PubMed

    Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling

    2014-03-01

    Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein

  17. Quantitative Protein Localization Signatures Reveal an Association between Spatial and Functional Divergences of Proteins

    PubMed Central

    Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling

    2014-01-01

    Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein

  18. Molecular assembly and subcellular distribution of ATP-sensitive potassium channel proteins in rat hearts.

    PubMed

    Kuniyasu, Akihiko; Kaneko, Kazuyoshi; Kawahara, Kohichi; Nakayama, Hitoshi

    2003-09-25

    Cardiac ATP-sensitive K(+) (K(ATP)) channels are proposed to contribute to cardio-protection and ischemic preconditioning. Although mRNAs for all subunits of K(ATP) channels (Kir6.0 and sulfonylurea receptors SURs) were detected in hearts, subcellular localization of their proteins and the subunit combination are not well elucidated. We address these questions in rat hearts, using anti-peptide antibodies raised against each subunit. By immunoblot analysis, all of the subunits were detected in microsomal fractions including sarcolemmal membranes, while they were not detected in mitochondrial fractions at all. Immunoprecipitation and sucrose gradient sedimentation of the digitonin-solubilized microsomes indicated that Kir6.2 exclusively assembled with SUR2A. The molecular mass of the Kir6.2-SUR2A complex estimated by sucrose sedimentation was 1150 kDa, significantly larger than the calculated value for (Kir6.2)(4)-(SUR2A)(4), suggesting a potential formation of micellar complex with digitonin but no indication of hybrid channel formation under the conditions. These findings provide additional information on the structural and functional relationships of cardiac K(ATP) channel proteins involving subcellular localization and roles for cardioprotection and ischemic preconditioning.

  19. Zea mays Taxilin Protein Negatively Regulates Opaque-2 Transcriptional Activity by Causing a Change in Its Sub-Cellular Distribution

    PubMed Central

    Zhang, Nan; Qiao, Zhenyi; Liang, Zheng; Mei, Bing; Xu, Zhengkai; Song, Rentao

    2012-01-01

    Zea mays (maize) Opaque-2 (ZmO2) protein is an important bZIP transcription factor that regulates the expression of major storage proteins (22-kD zeins) and other important genes during maize seed development. ZmO2 is subject to functional regulation through protein-protein interactions. To unveil the potential regulatory network associated with ZmO2, a protein-protein interaction study was carried out using the truncated version of ZmO2 (O2-2) as bait in a yeast two-hybrid screen with a maize seed cDNA library. A protein with homology to Taxilin was found to have stable interaction with ZmO2 in yeast and was designated as ZmTaxilin. Sequence analysis indicated that ZmTaxilin has a long coiled-coil domain containing three conserved zipper motifs. Each of the three zipper motifs is individually able to interact with ZmO2 in yeast. A GST pull-down assay demonstrated the interaction between GST-fused ZmTaxilin and ZmO2 extracted from developing maize seeds. Using onion epidermal cells as in vivo assay system, we found that ZmTaxilin could change the sub-cellular distribution of ZmO2. We also demonstrated that this change significantly repressed the transcriptional activity of ZmO2 on the 22-kD zein promoter. Our study suggests that a Taxilin-mediated change in sub-cellular distribution of ZmO2 may have important functional consequences for ZmO2 activity. PMID:22937104

  20. Functional relationship between CABIT, SAM and 14-3-3 binding domains of GAREM1 that play a role in its subcellular localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishino, Tasuku; Matsunaga, Ryota; Konishi, Hiroaki, E-mail: hkonishi@pu-hiroshima.ac.jp

    2015-08-21

    GAREM1 (Grb2-associated regulator of Erk/MAPK1) is an adaptor protein that is involved in the epidermal growth factor (EGF) pathway. The nuclear localization of GAREM1 depends on the nuclear localization sequence (NLS), which is located at the N-terminal CABIT (cysteine-containing, all in Themis) domain. Here, we identified 14-3-3ε as a GAREM-binding protein, and its binding site is closely located to the NLS. This 14-3-3 binding site was of the atypical type and independent of GAREM phosphorylation. Moreover, the binding of 14-3-3 had an effect on the nuclear localization of GAREM1. Unexpectedly, we observed that the CABIT domain had intramolecular association withmore » the C-terminal SAM (sterile alpha motif) domain. This association might be inhibited by binding of 14-3-3 at the CABIT domain. Our results demonstrate that the mechanism underlying the nuclear localization of GAREM1 depends on its NLS in the CABIT domain, which is controlled by the binding of 14-3-3 and the C-terminal SAM domain. We suggest that the interplay between 14-3-3, SAM domain and CABIT domain might be responsible for the distribution of GAREM1 in mammalian cells. - Highlights: • 14-3-3ε regulated the nuclear localization of GAREM1 as its binding partner. • The atypical 14-3-3 binding site of GAREM1 is located near the NLS in CABIT domain. • The CABIT domain had intramolecular association with the SAM domain in GAREM1. • Subcellular localization of GAREM1 is affected with its CABIT-SAM interaction.« less

  1. Quantification of non-coding RNA target localization diversity and its application in cancers.

    PubMed

    Cheng, Lixin; Leung, Kwong-Sak

    2018-04-01

    Subcellular localization is pivotal for RNAs and proteins to implement biological functions. The localization diversity of protein interactions has been studied as a crucial feature of proteins, considering that the protein-protein interactions take place in various subcellular locations. Nevertheless, the localization diversity of non-coding RNA (ncRNA) target proteins has not been systematically studied, especially its characteristics in cancers. In this study, we provide a new algorithm, non-coding RNA target localization coefficient (ncTALENT), to quantify the target localization diversity of ncRNAs based on the ncRNA-protein interaction and protein subcellular localization data. ncTALENT can be used to calculate the target localization coefficient of ncRNAs and measure how diversely their targets are distributed among the subcellular locations in various scenarios. We focus our study on long non-coding RNAs (lncRNAs), and our observations reveal that the target localization diversity is a primary characteristic of lncRNAs in different biotypes. Moreover, we found that lncRNAs in multiple cancers, differentially expressed cancer lncRNAs, and lncRNAs with multiple cancer target proteins are prone to have high target localization diversity. Furthermore, the analysis of gastric cancer helps us to obtain a better understanding that the target localization diversity of lncRNAs is an important feature closely related to clinical prognosis. Overall, we systematically studied the target localization diversity of the lncRNAs and uncovered its association with cancer.

  2. Finding the Subcellular Location of Barley, Wheat, Rice and Maize Proteins: The Compendium of Crop Proteins with Annotated Locations (cropPAL).

    PubMed

    Hooper, Cornelia M; Castleden, Ian R; Aryamanesh, Nader; Jacoby, Richard P; Millar, A Harvey

    2016-01-01

    Barley, wheat, rice and maize provide the bulk of human nutrition and have extensive industrial use as agricultural products. The genomes of these crops each contains >40,000 genes encoding proteins; however, the major genome databases for these species lack annotation information of protein subcellular location for >80% of these gene products. We address this gap, by constructing the compendium of crop protein subcellular locations called crop Proteins with Annotated Locations (cropPAL). Subcellular location is most commonly determined by fluorescent protein tagging of live cells or mass spectrometry detection in subcellular purifications, but can also be predicted from amino acid sequence or protein expression patterns. The cropPAL database collates 556 published studies, from >300 research institutes in >30 countries that have been previously published, as well as compiling eight pre-computed subcellular predictions for all Hordeum vulgare, Triticum aestivum, Oryza sativa and Zea mays protein sequences. The data collection including metadata for proteins and published studies can be accessed through a search portal http://crop-PAL.org. The subcellular localization information housed in cropPAL helps to depict plant cells as compartmentalized protein networks that can be investigated for improving crop yield and quality, and developing new biotechnological solutions to agricultural challenges. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Sub-cellular force microscopy in single normal and cancer cells.

    PubMed

    Babahosseini, H; Carmichael, B; Strobl, J S; Mahmoodi, S N; Agah, M

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Nucleolar localization of cirhin, the protein mutated in North American Indian childhood cirrhosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Bin; Mitchell, Grant A.; Richter, Andrea

    2005-12-10

    Cirhin (NP{sub 1}16219), the product of the CIRH1A gene is mutated in North American Indian childhood cirrhosis (NAIC/CIRH1A, OMIM 604901), a severe autosomal recessive intrahepatic cholestasis. It is a 686-amino-acid WD40-repeat containing protein of unknown function that is predicted to contain multiple targeting signals, including an N-terminal mitochondrial targeting signal, a C-terminal monopartite nuclear localization signal (NLS) and a bipartite nuclear localization signal (BNLS). We performed the direct determination of subcellular localization of cirhin as a crucial first step in unraveling its biological function. Using EGFP and His-tagged cirhin fusion proteins expressed in HeLa and HepG2, cells we show thatmore » cirhin is a nucleolar protein and that the R565W mutation, for which all NAIC patients are homozygous, has no effect on subcellular localization. Cirhin has an active C-terminal monopartite nuclear localization signal (NLS) and a unique nucleolar localization signal (NrLS) between residues 315 and 432. The nucleolus is not known to be important specifically for intrahepatic cholestasis. These observations provide a new dimension in the study of hereditary cholestasis.« less

  5. Distinct Cellular and Subcellular Distributions of G Protein-Coupled Receptor Kinase and Arrestin Isoforms in the Striatum

    PubMed Central

    Bychkov, Evgeny; Zurkovsky, Lilia; Garret, Mika B.; Ahmed, Mohamed R.; Gurevich, Eugenia V.

    2012-01-01

    G protein-coupled receptor kinases (GRKs) and arrestins mediate desensitization of G protein-coupled receptors (GPCR). Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling. PMID:23139825

  6. Distinct cellular and subcellular distributions of G protein-coupled receptor kinase and arrestin isoforms in the striatum.

    PubMed

    Bychkov, Evgeny; Zurkovsky, Lilia; Garret, Mika B; Ahmed, Mohamed R; Gurevich, Eugenia V

    2012-01-01

    G protein-coupled receptor kinases (GRKs) and arrestins mediate desensitization of G protein-coupled receptors (GPCR). Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling.

  7. Subcellular localization of celery mannitol dehydrogenase. A cytosolic metabolic enzyme in nuclei.

    PubMed Central

    Yamamoto, Y T; Zamski, E; Williamson, J D; Conkling, M A; Pharr, D M

    1997-01-01

    Mannitol dehydrogenase (MTD) is the first enzyme in mannitol catabolism in celery (Apium graveolens L. var dulce [Mill] Pers. cv Florida 638). Mannitol is an important photoassimilate, as well as providing plants with resistance to salt and osmotic stress. Previous work has shown that expression of the celery Mtd gene is regulated by many factors, such as hexose sugars, salt and osmotic stress, and salicylic acid. Furthermore, MTD is present in cells of sink organs, phloem cells, and mannitol-grown suspension cultures. Immunogold localization and biochemical analyses presented here demonstrate that celery MTD is localized in the cytosol and nuclei. Although the cellular density of MTD varies among different cell types, densities of nuclear and cytosolic MTD in a given cell are approximately equal. Biochemical analyses of nuclear extracts from mannitol-grown cultured cells confirmed that the nuclear-localized MTD is enzymatically active. The function(s) of nuclear-localized MTD is unknown. PMID:9414553

  8. Imaging Subcellular Structures in the Living Zebrafish Embryo.

    PubMed

    Engerer, Peter; Plucinska, Gabriela; Thong, Rachel; Trovò, Laura; Paquet, Dominik; Godinho, Leanne

    2016-04-02

    In vivo imaging provides unprecedented access to the dynamic behavior of cellular and subcellular structures in their natural context. Performing such imaging experiments in higher vertebrates such as mammals generally requires surgical access to the system under study. The optical accessibility of embryonic and larval zebrafish allows such invasive procedures to be circumvented and permits imaging in the intact organism. Indeed the zebrafish is now a well-established model to visualize dynamic cellular behaviors using in vivo microscopy in a wide range of developmental contexts from proliferation to migration and differentiation. A more recent development is the increasing use of zebrafish to study subcellular events including mitochondrial trafficking and centrosome dynamics. The relative ease with which these subcellular structures can be genetically labeled by fluorescent proteins and the use of light microscopy techniques to image them is transforming the zebrafish into an in vivo model of cell biology. Here we describe methods to generate genetic constructs that fluorescently label organelles, highlighting mitochondria and centrosomes as specific examples. We use the bipartite Gal4-UAS system in multiple configurations to restrict expression to specific cell-types and provide protocols to generate transiently expressing and stable transgenic fish. Finally, we provide guidelines for choosing light microscopy methods that are most suitable for imaging subcellular dynamics.

  9. A catechol oxidase AcPPO from cherimoya (Annona cherimola Mill.) is localized to the Golgi apparatus.

    PubMed

    Olmedo, Patricio; Moreno, Adrián A; Sanhueza, Dayan; Balic, Iván; Silva-Sanzana, Christian; Zepeda, Baltasar; Verdonk, Julian C; Arriagada, César; Meneses, Claudio; Campos-Vargas, Reinaldo

    2018-01-01

    Cherimoya (Annona cherimola) is an exotic fruit with attractive organoleptic characteristics. However, it is highly perishable and susceptible to postharvest browning. In fresh fruit, browning is primarily caused by the polyphenol oxidase (PPO) enzyme catalyzing the oxidation of o-diphenols to quinones, which polymerize to form brown melanin pigment. There is no consensus in the literature regarding a specific role of PPO, and its subcellular localization in different plant species is mainly described within plastids. The present work determined the subcellular localization of a PPO protein from cherimoya (AcPPO). The obtained results revealed that the AcPPO- green fluorescent protein co-localized with a Golgi apparatus marker, and AcPPO activity was present in Golgi apparatus-enriched fractions. Likewise, transient expression assays revealed that AcPPO remained active in Golgi apparatus-enriched fractions obtained from tobacco leaves. These results suggest a putative function of AcPPO in the Golgi apparatus of cherimoya, providing new perspectives on PPO functionality in the secretory pathway, its effects on cherimoya physiology, and the evolution of this enzyme. Copyright © 2017. Published by Elsevier B.V.

  10. Activated Cdc42 kinase regulates Dock localization in male germ cells during Drosophila spermatogenesis.

    PubMed

    Abdallah, Abbas M; Zhou, Xin; Kim, Christine; Shah, Kushani K; Hogden, Christopher; Schoenherr, Jessica A; Clemens, James C; Chang, Henry C

    2013-06-15

    Deregulation of the non-receptor tyrosine kinase ACK1 (Activated Cdc42-associated kinase) correlates with poor prognosis in cancers and has been implicated in promoting metastasis. To further understand its in vivo function, we have characterized the developmental defects of a null mutation in Drosophila Ack, which bears a high degree of sequence similarity to mammalian ACK1 but lacks a CRIB domain. We show that Ack, while not essential for viability, is critical for sperm formation. This function depends on Ack tyrosine kinase activity and is required cell autonomously in differentiating male germ cells at or after the spermatocyte stage. Ack associates predominantly with endocytic clathrin sites in spermatocytes, but disruption of Ack function has no apparent effect on clathrin localization and receptor-mediated internalization of Boss (Bride of sevenless) protein in eye discs. Instead, Ack is required for the subcellular distribution of Dock (dreadlocks), the Drosophila homolog of the SH2- and SH3-containing adaptor protein Nck. Moreover, Dock forms a complex with Ack, and the localization of Dock in male germ cells depends on its SH2 domain. Together, our results suggest that Ack-dependent tyrosine phosphorylation recruits Dock to promote sperm differentiation. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. LocSigDB: a database of protein localization signals

    PubMed Central

    Negi, Simarjeet; Pandey, Sanjit; Srinivasan, Satish M.; Mohammed, Akram; Guda, Chittibabu

    2015-01-01

    LocSigDB (http://genome.unmc.edu/LocSigDB/) is a manually curated database of experimental protein localization signals for eight distinct subcellular locations; primarily in a eukaryotic cell with brief coverage of bacterial proteins. Proteins must be localized at their appropriate subcellular compartment to perform their desired function. Mislocalization of proteins to unintended locations is a causative factor for many human diseases; therefore, collection of known sorting signals will help support many important areas of biomedical research. By performing an extensive literature study, we compiled a collection of 533 experimentally determined localization signals, along with the proteins that harbor such signals. Each signal in the LocSigDB is annotated with its localization, source, PubMed references and is linked to the proteins in UniProt database along with the organism information that contain the same amino acid pattern as the given signal. From LocSigDB webserver, users can download the whole database or browse/search for data using an intuitive query interface. To date, LocSigDB is the most comprehensive compendium of protein localization signals for eight distinct subcellular locations. Database URL: http://genome.unmc.edu/LocSigDB/ PMID:25725059

  12. Activation-dependent mitochondrial translocation of Foxp3 in human hepatocytes.

    PubMed

    Rojas, Joselyn; Teran-Angel, Guillermo; Barbosa, Luisa; Peterson, Darrell L; Berrueta, Lisbeth; Salmen, Siham

    2016-05-01

    Foxp3 is considered to be the master regulator for the development and function of regulatory T cells (Treg). Recently Foxp3, has been detected in extra lymphoid tissue, and in hepatocytes and has been associated with hepatocellular carcinoma (HCC), although its role has not been defined. Since it is expected that there is a relationship between protein localization, activity and cellular function, the aim of this study was to explore the subcellular localization of Foxp3 in resting and stimulated human hepatocytes. Foxp3 expression was measured by flow cytometry, subcellular fractioning, and immunofluorescence, and this data was used to track the shuttling of Foxp3 in different subcellular compartments in hepatocytes (HepG2 cell line), stimulated by using the PKC activators (PMA), core and preS1/2 antigen from hepatitis B virus (HBV). Our data shows that besides the nuclear location, mitochondrial translocation was detected after stimulation with PMA and at to a lesser extent, with preS1/2. In addition, Foxp3 is localizes at outer mitochondrial membrane. These results suggest a non-canonical role of Foxp3 in the mitochondrial compartment in human hepatocytes, and opens a new field about their role in liver damages during HBV infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Characterization and subcellular localization of aminopeptidases in senescing barley leaves

    NASA Technical Reports Server (NTRS)

    Thayer, S. S.; Choe, H. T.; Rausser, S.; Huffaker, R. C.

    1988-01-01

    Four aminopeptidases (APs) were separated using native polyacrylamide gel electrophoresis of cell-free extracts and the stromal fractions of isolated chloroplasts prepared from primary barley (Hordeum vulgare L., var Numar) leaves. Activities were identified using a series of aminoacyl-beta-naphthylamide derivatives as substrates. AP1, 2, and 3 were found in the stromal fraction of isolated chloroplasts with respective molecular masses of 66.7, 56.5, and 54.6 kilodaltons. AP4 was found only in the cytoplasmic fraction. No AP activity was found in vacuoles of these leaves. It was found that 50% of the L-Leu-beta-naphthylamide and 25% of the L-Arg-beta-naphthylamide activities were localized in the chloroplasts. Several AP activities were associated with the membranes of the thylakoid fraction of isolated chloroplasts. AP1, 2, and 4 reacted against a broad range of substrates, whereas AP3 hydrolyzed only L-Arg-beta-naphthylamide. Only AP2 hydrolyzed L-Val-beta-naphthylamide. Since AP2 and AP3 were the only ones reacting against Val-beta-naphthylamide and Arg-beta-naphthylamide, respectively, several protease inhibitors were tested against these substrates using a stromal fraction from isolated chloroplasts as the source of the two APs. Both APs were sensitive to both metallo and sulfhydryl type inhibitors. Although AP activity decreased as leaves senesced, no new APs appeared on gels during senescence and none disappeared.

  14. Subcellular SIMS imaging of isotopically labeled amino acids in cryogenically prepared cells

    NASA Astrophysics Data System (ADS)

    Chandra, Subhash

    2004-06-01

    Ion microscopy is a potentially powerful technique for localization of isotopically labeled molecules. In this study, L-arginine and phenylalanine amino acids labeled with stable isotopes 13C and 15N were localized in cultured cells with the ion microscope at 500 nm spatial resolution. Cells were exposed to the labeled amino acids and cryogenically prepared. SIMS analyses were made in fractured freeze-dried cells. A dynamic distribution was observed from labeled arginine-treated LLC-PK 1 kidney cells at mass 28 ( 13C15N) in negative secondaries, revealing cell-to-cell heterogeneity and preferential accumulation of the amino acid (or its metabolite) in the nucleus and nucleolus of some cells. The smaller nucleolus inside the nucleus was clearly resolved in SIMS images and confirmed by correlative light microscopy. The distribution of labeled phenylalanine contrasted with arginine as it was rather homogeneously distributed in T98G human glioblastoma cells. Images of 39K, 23Na and 40Ca were also recorded to confirm the reliability of sample preparation and authenticity of the observed amino acid distributions. These observations indicate that SIMS techniques can provide a valuable technology for subcellular localization of nitrogen-containing molecules in proteomics since nitrogen does not have a radionuclide tracer isotope. Amino acids labeled with stable isotopes can be used as tracers for studying their transport and metabolism in distinct subcellular compartments with SIMS. Further studies of phenylalanine uptake in human glioblastoma cells may have special significance in boron neutron capture therapy (BNCT) as a boron analogue of phenylalanine, boronophenylalanine is a clinically approved compound for the treatment of brain tumors.

  15. Rho-associated protein kinase regulates subcellular localisation of Angiomotin and Hippo-signalling during preimplantation mouse embryo development.

    PubMed

    Mihajlović, Aleksandar I; Bruce, Alexander W

    2016-09-01

    The differential activity of the Hippo-signalling pathway between the outer- and inner-cell populations of the developing preimplantation mouse embryo directs appropriate formation of trophectoderm and inner cell mass (ICM) lineages. Such distinct signalling activity is under control of intracellular polarization, whereby Hippo-signalling is either supressed in polarized outer cells or activated in apolar inner cells. The central role of apical-basolateral polarization to such differential Hippo-signalling regulation prompted us to reinvestigate the role of potential upstream molecular regulators affecting apical-basolateral polarity. This study reports that the chemical inhibition of Rho-associated kinase (Rock) is associated with failure to form morphologically distinct blastocysts, indicative of compromised trophectoderm differentiation, and defects in the localization of both apical and basolateral polarity factors associated with malformation of tight junctions. Moreover, Rock-inhibition mediates mislocalization of the Hippo-signalling activator Angiomotin (Amot), to the basolateral regions of outer cells and is concomitant with aberrant activation of the pathway. The Rock-inhibition phenotype is mediated by Amot, as RNAi-based Amot knockdown totally rescues the normal suppression of Hippo-signalling in outer cells. In conclusion, Rock, via regulating appropriate apical-basolateral polarization in outer cells, regulates the appropriate activity of the Hippo-signalling pathway, by ensuring correct subcellular localization of Amot protein in outer cells. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  16. Techniques for the Cellular and Subcellular Localization of Endocannabinoid Receptors and Enzymes in the Mammalian Brain.

    PubMed

    Cristino, Luigia; Imperatore, Roberta; Di Marzo, Vincenzo

    2017-01-01

    This chapter attempts to piece together knowledge about new advanced microscopy techniques to study the neuroanatomical distribution of endocannabinoid receptors and enzymes at the level of cellular and subcellular structures and organelles in the brain. Techniques ranging from light to electron microscopy up to the new advanced LBM, PALM, and STORM super-resolution microscopy will be discussed in the context of their contribution to define the spatial distribution and organization of receptors and enzymes of the endocannabinoid system (ECS), and to better understand ECS brain functions. © 2017 Elsevier Inc. All rights reserved.

  17. Estrogen receptor α activation enhances its cell surface localization and improves myocardial redox status in ovariectomized rats.

    PubMed

    Steagall, Rebecca J; Yao, Fanrong; Shaikh, Saame Raza; Abdel-Rahman, Abdel A

    2017-08-01

    Little is known about the role of subcellular trafficking of estrogen receptor (ER) subtypes in the acute estrogen (E 2 )-mediated alleviation of oxidative stress. We tested the hypothesis that ERα migration to the cardiac myocyte membrane mediates the acute E 2 -dependent improvement of cellular redox status. Myocardial distribution of subcellular ERα, ERβ and G-protein coupled estrogen receptor (GPER) was determined in proestrus sham-operated (SO) and in ovariectomized (OVX) rats, acutely treated with E 2 (1μg/kg) or a selective ERα (PPT), ERβ (DPN) or GPER (G1) agonist (10μg/kg), by immunofluorescence and Western blot. We measured ROS and malondialdehyde (MDA) levels, and catalase and superoxide dismutase (SOD) activities to evaluate myocardial antioxidant/redox status. Compared with SO, OVX rats exhibited higher myocardial ROS and MDA levels, reduced catalase and SOD activities, along with diminished ERα, and enhanced ERβ and GPER, localization at cardiomyocyte membrane. Acute E 2 or an ERα (PPT), but not ERβ (DPN) or GPER (G1), agonist reversed these responses in OVX rats and resulted in higher ERα/ERβ and ERα/GPER ratios at the cardiomyocytes membrane. PPT or DPN enhanced myocardial Akt phosphorylation. We present the first evidence that preferential aggregation of ERα at the cardiomyocytes plasma membrane is ERα-dependent, and underlies E 2 -mediated reduction in oxidative stress, at least partly, via the enhancements of myocardial catalase and SOD activities in OVX rats. The findings highlight ERα agonists as potential therapeutics for restoring the myocardial redox status following E 2 depletion in postmenopausal women. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites.

    PubMed

    Chou, Kuo-Chen; Shen, Hong-Bin

    2007-05-01

    One of the critical challenges in predicting protein subcellular localization is how to deal with the case of multiple location sites. Unfortunately, so far, no efforts have been made in this regard except for the one focused on the proteins in budding yeast only. For most existing predictors, the multiple-site proteins are either excluded from consideration or assumed even not existing. Actually, proteins may simultaneously exist at, or move between, two or more different subcellular locations. For instance, according to the Swiss-Prot database (version 50.7, released 19-Sept-2006), among the 33,925 eukaryotic protein entries that have experimentally observed subcellular location annotations, 2715 have multiple location sites, meaning about 8% bearing the multiplex feature. Proteins with multiple locations or dynamic feature of this kind are particularly interesting because they may have some very special biological functions intriguing to investigators in both basic research and drug discovery. Meanwhile, according to the same Swiss-Prot database, the number of total eukaryotic protein entries (except those annotated with "fragment" or those with less than 50 amino acids) is 90,909, meaning a gap of (90,909-33,925) = 56,984 entries for which no knowledge is available about their subcellular locations. Although one can use the computational approach to predict the desired information for the blank, so far, all the existing methods for predicting eukaryotic protein subcellular localization are limited in the case of single location site only. To overcome such a barrier, a new ensemble classifier, named Euk-mPLoc, was developed that can be used to deal with the case of multiple location sites as well. Euk-mPLoc is freely accessible to the public as a Web server at http://202.120.37.186/bioinf/euk-multi. Meanwhile, to support the people working in the relevant areas, Euk-mPLoc has been used to identify all eukaryotic protein entries in the Swiss-Prot database that do

  19. Subcellular Localizations of RIG-I, TRIM25, and MAVS Complexes

    PubMed Central

    Sánchez-Aparicio, M. T.; Ayllón, J.; Leo-Macias, A.; Wolff, T.

    2016-01-01

    ABSTRACT The retinoic acid-inducible gene 1 (RIG-I) signaling pathway is essential for the recognition of viruses and the initiation of host interferon (IFN)-mediated antiviral responses. Once activated, RIG-I interacts with polyubiquitin chains generated by TRIM25 and binds mitochondrial antiviral signaling protein (MAVS), leading to the production of type I IFN. We now show specific interactions among these key partners in the RLR pathway through the use of bimolecular fluorescence complementation (BiFC) and super-resolution microscopy. Dimers of RIG-I, TRIM25, and MAVS localize into different compartments. Upon activation, we show that TRIM25 is redistributed into cytoplasmic dots associated with stress granules, while RIG-I associates with TRIM25/stress granules and with mitochondrial MAVS. In addition, MAVS competes with TRIM25 for RIG-I binding, and this suggests that upon TRIM25-mediated activation of RIG-I, RIG-I moves away from TRIM25 to interact with MAVS at the mitochondria. For the first time, the distribution of these three proteins was analyzed at the same time in virus-infected cells. We also investigated how specific viral proteins modify some of the protein complexes in the pathway. The protease NS3/4A from hepatitis C virus redistributes the complexes RIG-I/MAVS and MAVS/MAVS but not RIG-I/TRIM25. In contrast, the influenza A virus NS1 protein interacts with RIG-I and TRIM25 in specific areas in the cell cytoplasm and inhibits the formation of TRIM25 homocomplexes but not the formation of RIG-I/TRIM25 heterocomplexes, preventing the formation of RIG-I/MAVS complexes. Thus, we have localized spatially in the cell different complexes formed between RIG-I, TRIM25, and MAVS, in the presence or absence of two viral IFN antagonistic proteins. IMPORTANCE The first line of defense against viral infections is the innate immune response. Viruses are recognized by pathogen recognition receptors, such as the RIG-I like receptor family, that activate a

  20. Subcellular Localizations of RIG-I, TRIM25, and MAVS Complexes.

    PubMed

    Sánchez-Aparicio, M T; Ayllón, J; Leo-Macias, A; Wolff, T; García-Sastre, A

    2017-01-15

    The retinoic acid-inducible gene 1 (RIG-I) signaling pathway is essential for the recognition of viruses and the initiation of host interferon (IFN)-mediated antiviral responses. Once activated, RIG-I interacts with polyubiquitin chains generated by TRIM25 and binds mitochondrial antiviral signaling protein (MAVS), leading to the production of type I IFN. We now show specific interactions among these key partners in the RLR pathway through the use of bimolecular fluorescence complementation (BiFC) and super-resolution microscopy. Dimers of RIG-I, TRIM25, and MAVS localize into different compartments. Upon activation, we show that TRIM25 is redistributed into cytoplasmic dots associated with stress granules, while RIG-I associates with TRIM25/stress granules and with mitochondrial MAVS. In addition, MAVS competes with TRIM25 for RIG-I binding, and this suggests that upon TRIM25-mediated activation of RIG-I, RIG-I moves away from TRIM25 to interact with MAVS at the mitochondria. For the first time, the distribution of these three proteins was analyzed at the same time in virus-infected cells. We also investigated how specific viral proteins modify some of the protein complexes in the pathway. The protease NS3/4A from hepatitis C virus redistributes the complexes RIG-I/MAVS and MAVS/MAVS but not RIG-I/TRIM25. In contrast, the influenza A virus NS1 protein interacts with RIG-I and TRIM25 in specific areas in the cell cytoplasm and inhibits the formation of TRIM25 homocomplexes but not the formation of RIG-I/TRIM25 heterocomplexes, preventing the formation of RIG-I/MAVS complexes. Thus, we have localized spatially in the cell different complexes formed between RIG-I, TRIM25, and MAVS, in the presence or absence of two viral IFN antagonistic proteins. The first line of defense against viral infections is the innate immune response. Viruses are recognized by pathogen recognition receptors, such as the RIG-I like receptor family, that activate a signaling cascade that

  1. Localization and function of GABA transporters in the globus pallidus of parkinsonian monkeys

    PubMed Central

    Galvan, Adriana; Hu, Xing; Smith, Yoland; Wichmann, Thomas

    2010-01-01

    The GABA transporters GAT-1 and GAT-3 are abundant in the external and internal segments of the globus pallidus (GPe and GPi, respectively). We have shown that pharmacological blockade of either of these transporters results in decreased neuronal firing, and in elevated levels of extracellular GABA in normal monkeys. We now studied whether the electrophysiologic and biochemical effects of local intra-pallidal injections of GAT-1 and GAT-3 blockers, or the subcellular localization of these transporters, are altered in monkeys rendered parkinsonian by the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The subcellular localization of the transporters in GPe and GPi, studied with electron microscopy immunoperoxidase, was similar to that found in normal animals: i.e., GAT-3 immunoreactivity was mostly confined to glial processes, while GAT-1 labeling was expressed in unmyelinated axons and glial processes. A combined injection/recording device was used to record extracellular activity of single neurons in GPe and GPi, before, during and after administration of small volumes (1 μl) of either the GAT-1 inhibitor, SKF-89976A hydrochloride (720 ng), or the GAT-3 inhibitor, (S)-SNAP-5114 (500 ng). In GPe, the effects of GAT-1 or GAT-3 blockade were similar to those seen in normal monkeys. However, unlike the findings in the normal state, the firing of most neurons was not affected by blockade of either transporter in GPi. These results suggest that, after dopaminergic depletion, the functions of GABA transporters are altered in GPi; without major changes in their subcellular localization. PMID:20138865

  2. Structure and function of yeast glutaredoxin 2 depend on postranslational processing and are related to subcellular distribution.

    PubMed

    Porras, Pablo; McDonagh, Brian; Pedrajas, Jose Rafael; Bárcena, J Antonio; Padilla, C Alicia

    2010-04-01

    We have previously shown that glutaredoxin 2 (Grx2) from Saccharomyces cerevisiae localizes at 3 different subcellular compartments, cytosol, mitochondrial matrix and outer membrane, as the result of different postranslational processing of one single gene. Having set the mechanism responsible for this remarkable phenomenon, we have now aimed at defining whether this diversity of subcellular localizations correlates with differences in structure and function of the Grx2 isoforms. We have determined the N-terminal sequence of the soluble mitochondrial matrix Grx2 by mass spectrometry and have determined the exact cleavage site by Mitochondrial Processing Peptidase (MPP). As a consequence of this cleavage, the mitochondrial matrix Grx2 isoform possesses a basic tetrapeptide extension at the N-terminus compared to the cytosolic form. A functional relationship to this structural difference is that mitochondrial Grx2 displays a markedly higher activity in the catalysis of GSSG reduction by the mitochondrial dithiol dihydrolipoamide. We have prepared Grx2 mutants affected on key residues inside the presequence to direct the protein to one single cellular compartment; either the cytosol, the mitochondrial membrane or the matrix and have analyzed their functional phenotypes. Strains expressing Grx2 only in the cytosol are equally sensitive to H(2)O(2) as strains lacking the gene, whereas those expressing Grx2 exclusively in the mitochondrial matrix are more resistant. Mutations on key basic residues drastically affect the cellular fate of the protein, showing that evolutionary diversification of Grx2 structural and functional properties are strictly dependent on the sequence of the targeting signal peptide. Copyright 2009 Elsevier B.V. All rights reserved.

  3. Subcellular distribution of human RDM1 protein isoforms and their nucleolar accumulation in response to heat shock and proteotoxic stress.

    PubMed

    Messaoudi, Lydia; Yang, Yun-Gui; Kinomura, Aiko; Stavreva, Diana A; Yan, Gonghong; Bortolin-Cavaillé, Marie-Line; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Hainaut, Pierre; Cavaillé, Jérome; Takata, Minoru; Van Dyck, Eric

    2007-01-01

    The RDM1 gene encodes a RNA recognition motif (RRM)-containing protein involved in the cellular response to the anti-cancer drug cisplatin in vertebrates. We previously reported a cDNA encoding the full-length human RDM1 protein. Here, we describe the identification of 11 human cDNAs encoding RDM1 protein isoforms. This repertoire is generated by alternative pre-mRNA splicing and differential usage of two translational start sites, resulting in proteins with long or short N-terminus and a great diversity in the exonic composition of their C-terminus. By using tagged proteins and fluorescent microscopy, we examined the subcellular distribution of full-length RDM1 (renamed RDM1alpha), and other RDM1 isoforms. We show that RDM1alpha undergoes subcellular redistribution and nucleolar accumulation in response to proteotoxic stress and mild heat shock. In unstressed cells, the long N-terminal isoforms displayed distinct subcellular distribution patterns, ranging from a predominantly cytoplasmic to almost exclusive nuclear localization, suggesting functional differences among the RDM1 proteins. However, all isoforms underwent stress-induced nucleolar accumulation. We identified nuclear and nucleolar localization determinants as well as domains conferring cytoplasmic retention to the RDM1 proteins. Finally, RDM1 null chicken DT40 cells displayed an increased sensitivity to heat shock, compared to wild-type (wt) cells, suggesting a function for RDM1 in the heat-shock response.

  4. AGO3 Slicer activity regulates mitochondria-nuage localization of Armitage and piRNA amplification.

    PubMed

    Huang, Haidong; Li, Yujing; Szulwach, Keith E; Zhang, Guoqiang; Jin, Peng; Chen, Dahua

    2014-07-21

    In Drosophila melanogaster the reciprocal "Ping-Pong" cycle of PIWI-interacting RNA (piRNA)-directed RNA cleavage catalyzed by the endonuclease (or "Slicer") activities of the PIWI proteins Aubergine (Aub) and Argonaute3 (AGO3) has been proposed to expand the secondary piRNA population. However, the role of AGO3/Aub Slicer activity in piRNA amplification remains to be explored. We show that AGO3 Slicer activity is essential for piRNA amplification and that AGO3 inhibits the homotypic Aub:Aub Ping-Pong process in a Slicer-independent manner. We also find that expression of an AGO3 Slicer mutant causes ectopic accumulation of Armitage, a key component in the primary piRNA pathway, in the Drosophila melanogaster germline granules known as nuage. AGO3 also coexists and interacts with Armitage in the mitochondrial fraction. Furthermore, AGO3 acts in conjunction with the mitochondria-associated protein Zucchini to control the dynamic subcellular localization of Armitage between mitochondria and nuage in a Slicer-dependent fashion. Collectively, our findings uncover a new mechanism that couples mitochondria with nuage to regulate secondary piRNA amplification. © 2014 Huang et al.

  5. Subcellular localization and compartmentation of thiamine derivatives in rat brain.

    PubMed

    Bettendorff, L; Wins, P; Lesourd, M

    1994-05-26

    The subcellular distribution of thiamine derivatives in rat brain was studied. Thiamine diphosphate content was highest in the mitochondrial and synaptosomal fractions, and lowest in microsomal, myelin and cytosolic fractions. Only 3-5% of total thiamine diphosphate was bound to transketolase, a cytosolic enzyme. Thiamine triphosphate was barely detectable in the microsomal and cytosolic fraction, but synaptosomes were slightly enriched in this compound compared to the crude homogenate. Both myelin and mitochondrial fractions contained significant amounts of thiamine triphosphate. In order to estimate the relative turnover rates of these compounds, the animals received an intraperitoneal injection of either [14C]thiamine or [14C]sulbutiamine (isobutyrylthiamine disulfide) 1 h before decapitation. The specific radioactivities of thiamine compounds found in the brain decreased in the order: thiamine > thiamine triphosphate > thiamine monophosphate > thiamine diphosphate. Incorporation of radioactivity into thiamine triphosphate was more marked with [14C]sulbutiamine than with [14C]thiamine. The highest specific radioactivity of thiamine diphosphate was found in the cytosolic fraction of the brain, though this pool represents less than 10% of total thiamine diphosphate. Cytosolic thiamine diphosphate had a twice higher specific radioactivity when [14C]sulbutiamine was used as precursor compared with thiamine though no significant differences were found in the other cellular compartments. Our results suggest the existence of two thiamine diphosphate pools: the bound cofactor pool is essentially mitochondrial and has a low turnover; a much smaller cytosolic pool (6-7% of total TDP) of high turnover is the likely precursor of thiamine triphosphate.

  6. Prediction of protein subcellular locations by GO-FunD-PseAA predictor.

    PubMed

    Chou, Kuo-Chen; Cai, Yu-Dong

    2004-08-06

    The localization of a protein in a cell is closely correlated with its biological function. With the explosion of protein sequences entering into DataBanks, it is highly desired to develop an automated method that can fast identify their subcellular location. This will expedite the annotation process, providing timely useful information for both basic research and industrial application. In view of this, a powerful predictor has been developed by hybridizing the gene ontology approach [Nat. Genet. 25 (2000) 25], functional domain composition approach [J. Biol. Chem. 277 (2002) 45765], and the pseudo-amino acid composition approach [Proteins Struct. Funct. Genet. 43 (2001) 246; Erratum: ibid. 44 (2001) 60]. As a showcase, the recently constructed dataset [Bioinformatics 19 (2003) 1656] was used for demonstration. The dataset contains 7589 proteins classified into 12 subcellular locations: chloroplast, cytoplasmic, cytoskeleton, endoplasmic reticulum, extracellular, Golgi apparatus, lysosomal, mitochondrial, nuclear, peroxisomal, plasma membrane, and vacuolar. The overall success rate of prediction obtained by the jackknife cross-validation was 92%. This is so far the highest success rate performed on this dataset by following an objective and rigorous cross-validation procedure.

  7. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  8. Histidine residues in the Na+-coupled ascorbic acid transporter-2 (SVCT2) are central regulators of SVCT2 function, modulating pH sensitivity, transporter kinetics, Na+ cooperativity, conformational stability, and subcellular localization.

    PubMed

    Ormazabal, Valeska; Zuñiga, Felipe A; Escobar, Elizabeth; Aylwin, Carlos; Salas-Burgos, Alexis; Godoy, Alejandro; Reyes, Alejandro M; Vera, Juan Carlos; Rivas, Coralia I

    2010-11-19

    Na(+)-coupled ascorbic acid transporter-2 (SVCT2) activity is impaired at acid pH, but little is known about the molecular determinants that define the transporter pH sensitivity. SVCT2 contains six histidine residues in its primary sequence, three of which are exofacial in the transporter secondary structure model. We used site-directed mutagenesis and treatment with diethylpyrocarbonate to identify histidine residues responsible for SVCT2 pH sensitivity. We conclude that five histidine residues, His(109), His(203), His(206), His(269), and His(413), are central regulators of SVCT2 function, participating to different degrees in modulating pH sensitivity, transporter kinetics, Na(+) cooperativity, conformational stability, and subcellular localization. Our results are compatible with a model in which (i) a single exofacial histidine residue, His(413), localized in the exofacial loop IV that connects transmembrane helices VII-VIII defines the pH sensitivity of SVCT2 through a mechanism involving a marked attenuation of the activation by Na(+) and loss of Na(+) cooperativity, which leads to a decreased V(max) without altering the transport K(m); (ii) exofacial histidine residues His(203), His(206), and His(413) may be involved in maintaining a functional interaction between exofacial loops II and IV and influence the general folding of the transporter; (iii) histidines 203, 206, 269, and 413 affect the transporter kinetics by modulating the apparent transport K(m); and (iv) histidine 109, localized at the center of transmembrane helix I, might be fundamental for the interaction of SVCT2 with the transported substrate ascorbic acid. Thus, histidine residues are central regulators of SVCT2 function.

  9. Localization of beta-D-glucosidase activity and glucovanillin in vanilla bean (Vanilla planifolia Andrews).

    PubMed

    Odoux, E; Escoute, J; Verdeil, J-L; Brillouet, J-M

    2003-09-01

    The morphology, anatomy and histology of mature green vanilla beans were examined by light and transmission electron microscopy. Beans have a triangular cross-section with a central cavity containing seeds. Each angle is lined with tubular cells, or papillae, while the cavity sides consist of placental laminae. The epicarp and endocarp are formed by one or two layers of very small cells, while the mesocarp contains large, highly vacuolarized cells, the cytoplasm being restricted to a thin layer along the cell walls. The radial distributions of glucovanillin and beta-glucosidase activity, measured on p-nitrophenyl-beta-glucopyranoside and glucovanillin, are superimposable and show how beta-glucosidase activity increases from the epicarp towards the placental zone, whereas glucovanillin is exclusively located in the placentae and papillae. Subcellular localization of beta-glucosidase activity was achieved by incubating sections of vanilla beans in a buffer containing 5-bromo-4-chloro-3-indolyl-beta-d-glucopyranoside as a substrate. Activity was observed in the cytoplasm (and/or the periplasm) of mesocarp and endocarp cells, with a more diffuse pattern observed in the papillae. A possible mechanism for the hydrolysis of glucovanillin and release of the aromatic aglycon vanillin involves the decompartmentation of cytoplasmic (and/or periplasmic) beta-glucosidase and vacuolar glucovanillin.

  10. Localization of β-d-Glucosidase Activity and Glucovanillin in Vanilla Bean (Vanilla planifolia Andrews)

    PubMed Central

    ODOUX, E.; ESCOUTE, J.; VERDEIL, J. -L.; BRILLOUET, J. -M.

    2003-01-01

    The morphology, anatomy and histology of mature green vanilla beans were examined by light and transmission electron microscopy. Beans have a triangular cross-section with a central cavity containing seeds. Each angle is lined with tubular cells, or papillae, while the cavity sides consist of placental laminae. The epicarp and endocarp are formed by one or two layers of very small cells, while the mesocarp contains large, highly vacuolarized cells, the cytoplasm being restricted to a thin layer along the cell walls. The radial distributions of glucovanillin and β-glucosidase activity, measured on p-nitrophenyl-β-glucopyranoside and glucovanillin, are superimposable and show how β-glucosidase activity increases from the epicarp towards the placental zone, whereas glucovanillin is exclusively located in the placentae and papillae. Subcellular localization of β-glucosidase activity was achieved by incubating sections of vanilla beans in a buffer containing 5-bromo-4-chloro-3-indolyl-β-d-glucopyranoside as a substrate. Activity was observed in the cytoplasm (and/or the periplasm) of mesocarp and endocarp cells, with a more diffuse pattern observed in the papillae. A possible mechanism for the hydrolysis of glucovanillin and release of the aromatic aglycon vanillin involves the decompartmentation of cytoplasmic (and/or periplasmic) β-glucosidase and vacuolar glucovanillin. PMID:12871846

  11. Evaluation on subcellular partitioning and biodynamics of pulse copper toxicity in tilapia reveals impacts of a major environmental disturbance.

    PubMed

    Ju, Yun-Ru; Yang, Ying-Fei; Tsai, Jeng-Wei; Cheng, Yi-Hsien; Chen, Wei-Yu; Liao, Chung-Min

    2017-07-01

    Fluctuation exposure of trace metal copper (Cu) is ubiquitous in aquatic environments. The purpose of this study was to investigate the impacts of chronically pulsed exposure on biodynamics and subcellular partitioning of Cu in freshwater tilapia (Oreochromis mossambicus). Long-term 28-day pulsed Cu exposure experiments were performed to explore subcellular partitioning and toxicokinetics/toxicodynamics of Cu in tilapia. Subcellular partitioning linking with a metal influx scheme was used to estimate detoxification and elimination rates. A biotic ligand model-based damage assessment model was used to take into account environmental effects and biological mechanisms of Cu toxicity. We demonstrated that the probability causing 50% of susceptibility risk in response to pulse Cu exposure in generic Taiwan aquaculture ponds was ~33% of Cu in adverse physiologically associated, metabolically active pool, implicating no significant susceptibility risk for tilapia. We suggest that our integrated ecotoxicological models linking chronic exposure measurements with subcellular partitioning can facilitate a risk assessment framework that provides a predictive tool for preventive susceptibility reduction strategies for freshwater fish exposed to pulse metal stressors.

  12. Sub-cellular force microscopy in single normal and cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babahosseini, H.; Carmichael, B.; Strobl, J.S.

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer andmore » significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain.« less

  13. Multiple-Localization and Hub Proteins

    PubMed Central

    Ota, Motonori; Gonja, Hideki; Koike, Ryotaro; Fukuchi, Satoshi

    2016-01-01

    Protein-protein interactions are fundamental for all biological phenomena, and protein-protein interaction networks provide a global view of the interactions. The hub proteins, with many interaction partners, play vital roles in the networks. We investigated the subcellular localizations of proteins in the human network, and found that the ones localized in multiple subcellular compartments, especially the nucleus/cytoplasm proteins (NCP), the cytoplasm/cell membrane proteins (CMP), and the nucleus/cytoplasm/cell membrane proteins (NCMP), tend to be hubs. Examinations of keywords suggested that among NCP, those related to post-translational modifications and transcription functions are the major contributors to the large number of interactions. These types of proteins are characterized by a multi-domain architecture and intrinsic disorder. A survey of the typical hub proteins with prominent numbers of interaction partners in the type revealed that most are either transcription factors or co-regulators involved in signaling pathways. They translocate from the cytoplasm to the nucleus, triggered by the phosphorylation and/or ubiquitination of intrinsically disordered regions. Among CMP and NCMP, the contributors to the numerous interactions are related to either kinase or ubiquitin ligase activity. Many of them reside on the cytoplasmic side of the cell membrane, and act as the upstream regulators of signaling pathways. Overall, these hub proteins function to transfer external signals to the nucleus, through the cell membrane and the cytoplasm. Our analysis suggests that multiple-localization is a crucial concept to characterize groups of hub proteins and their biological functions in cellular information processing. PMID:27285823

  14. Dynamic subcellular partitioning of the nucleolar transcription factor TIF-IA under ribotoxic stress.

    PubMed

    Szymański, Jedrzej; Mayer, Christine; Hoffmann-Rohrer, Urs; Kalla, Claudia; Grummt, Ingrid; Weiss, Matthias

    2009-07-01

    TIF-IA is a basal transcription factor of RNA polymerase I (Pol I) that is a major target of the JNK2 signaling pathway in response to ribotoxic stress. Using advanced fluorescence microscopy and kinetic modeling we elucidated the subcellular localization of TIF-IA and its exchange dynamics between the nucleolus, nucleoplasm and cytoplasm upon ribotoxic stress. In steady state, the majority of (GFP-tagged) TIF-IA was in the cytoplasm and the nucleus, a minor portion (7%) localizing to the nucleoli. We observed a rapid shuttling of GFP-TIF-IA between the different cellular compartments with a mean residence time of approximately 130 s in the nucleus and only approximately 30 s in the nucleoli. The import rate from the cytoplasm to the nucleus was approximately 3-fold larger than the export rate, suggesting an importin/exportin-mediated transport rather than a passive diffusion. Upon ribotoxic stress, GFP-TIF-IA was released from the nucleoli with a half-time of approximately 24 min. Oxidative stress and inhibition of protein synthesis led to a relocation of GFP-TIF-IA with slower kinetics while osmotic stress had no effect. The observed relocation was much slower than the nucleo-cytoplasmic and nucleus-nucleolus exchange rates of GFP-TIF-IA, indicating a time-limiting step upstream of the JNK2 pathway. In support of this, time-course experiments on the activity of JNK2 revealed the activation of the JNK kinase as the rate-limiting step.

  15. Drosophila Pelle phosphorylates Dichaete protein and influences its subcellular distribution in developing oocytes.

    PubMed

    Mutsuddi, Mousumi; Mukherjee, Ashim; Shen, Baohe; Manley, James L; Nambu, John R

    2010-01-01

    The Drosophila Dichaete gene encodes a member of the Sox family of high mobility group (HMG) domain proteins that have crucial gene regulatory functions in diverse developmental processes. The subcellular localization and transcriptional regulatory activities of Sox proteins can be regulated by several post-translational modifications. To identify genes that functionally interact with Dichaete, we undertook a genetic modifier screen based on a Dichaete gain-of-function phenotype in the adult eye. Mutations in several genes, including decapentaplegic, engrailed and pelle, behaved as dominant modifiers of this eye phenotype. Further analysis of pelle mutants revealed that loss of pelle function results in alterations in the distinctive cytoplasmic distribution of Dichaete protein within the developing oocyte, as well as defects in the elaboration of individual egg chambers. The death domain-containing region of the Pelle protein kinase was found to associate with both Dichaete and mouse Sox2 proteins, and Pelle can phosphorylate Dichaete protein in vitro. Overall, these findings reveal that maternal functions of pelle are essential for proper localization of Dichaete protein in the oocyte and normal egg chamber formation. Dichaete appears to be a novel phosphorylation substrate for Pelle and may function in a Pelle-dependent signaling pathway during oogenesis.

  16. Subcellular mechanism of Escherichia coli inactivation during electrochemical disinfection with boron-doped diamond anode: A comparative study of three electrolytes.

    PubMed

    Long, Yujiao; Ni, Jinren; Wang, Zuhui

    2015-11-01

    Although the identification of effective oxidant species has been extensively studied, yet the subcellular mechanism of bacterial inactivation has never been clearly elucidated in electrochemical disinfection processes. In this study, subcellular mechanism of Escherichia coli inactivation during electrochemical disinfection was revealed in terms of comprehensive factors such as cell morphology, total organic components, K(+) leakage, membrane permeability, lipid peroxidation, membrane potential, membrane proteins, intracellular enzyme, cellular ATP level and DNA. The electrolysis was conducted with boron-doped diamond anode in three electrolytes including chloride, sulfate and phosphate. Results demonstrated that cell inactivation was mainly attributed to damage to the intracellular enzymatic systems in chloride solution. In sulfate solution, certain essential membrane proteins like the K(+) ion transport systems were eliminated. Thus, the pronounced K(+) leakage from cytosol resulted in gradual collapse of the membrane potential, which would hinder the subcellular localization of cell division-related proteins as well as ATP synthesis and thereby lead to the bacterial inactivation. Remarkable lipid peroxidation was observed, while the intracellular damage was negligible. In phosphate solution, the cells sequentially underwent overall destruction as a whole cell with no captured intermediate state, during which the organic components of the cells were mostly subjected to mineralization. This study provided a thorough insight into the bacterial inactivation mechanism on the subcellular level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Systematic Analysis of Arabidopsis Organelles and a Protein Localization Database for Facilitating Fluorescent Tagging of Full-Length Arabidopsis Proteins1[W

    PubMed Central

    Li, Shijun; Ehrhardt, David W.; Rhee, Seung Y.

    2006-01-01

    Cells are organized into a complex network of subcellular compartments that are specialized for various biological functions. Subcellular location is an important attribute of protein function. To facilitate systematic elucidation of protein subcellular location, we analyzed experimentally verified protein localization data of 1,300 Arabidopsis (Arabidopsis thaliana) proteins. The 1,300 experimentally verified proteins are distributed among 40 different compartments, with most of the proteins localized to four compartments: mitochondria (36%), nucleus (28%), plastid (17%), and cytosol (13.3%). About 19% of the proteins are found in multiple compartments, in which a high proportion (36.4%) is localized to both cytosol and nucleus. Characterization of the overrepresented Gene Ontology molecular functions and biological processes suggests that the Golgi apparatus and peroxisome may play more diverse functions but are involved in more specialized processes than other compartments. To support systematic empirical determination of protein subcellular localization using a technology called fluorescent tagging of full-length proteins, we developed a database and Web application to provide preselected green fluorescent protein insertion position and primer sequences for all Arabidopsis proteins to study their subcellular localization and to store experimentally verified protein localization images, videos, and their annotations of proteins generated using the fluorescent tagging of full-length proteins technology. The database can be searched, browsed, and downloaded using a Web browser at http://aztec.stanford.edu/gfp/. The software can also be downloaded from the same Web site for local installation. PMID:16617091

  18. Kinetics, subcellular localization, and contribution to parasite virulence of a Trypanosoma cruzi hybrid type A heme peroxidase (TcAPx-CcP)

    PubMed Central

    Hugo, Martín; Martínez, Alejandra; Trujillo, Madia; Estrada, Damián; Mastrogiovanni, Mauricio; Linares, Edlaine; Augusto, Ohara; Issoglio, Federico; Zeida, Ari; Estrín, Darío A.; Heijnen, Harry F. G.; Piacenza, Lucía; Radi, Rafael

    2017-01-01

    The Trypanosoma cruzi ascorbate peroxidase is, by sequence analysis, a hybrid type A member of class I heme peroxidases [TcAPx-cytochrome c peroxidase (CcP)], suggesting both ascorbate (Asc) and cytochrome c (Cc) peroxidase activity. Here, we show that the enzyme reacts fast with H2O2 (k = 2.9 × 107 M−1⋅s−1) and catalytically decomposes H2O2 using Cc as the reducing substrate with higher efficiency than Asc (kcat/Km = 2.1 × 105 versus 3.5 × 104 M−1⋅s−1, respectively). Visible-absorption spectra of purified recombinant TcAPx-CcP after H2O2 reaction denote the formation of a compound I-like product, characteristic of the generation of a tryptophanyl radical-cation (Trp233•+). Mutation of Trp233 to phenylalanine (W233F) completely abolishes the Cc-dependent peroxidase activity. In addition to Trp233•+, a Cys222-derived radical was identified by electron paramagnetic resonance spin trapping, immunospin trapping, and MS analysis after equimolar H2O2 addition, supporting an alternative electron transfer (ET) pathway from the heme. Molecular dynamics studies revealed that ET between Trp233 and Cys222 is possible and likely to participate in the catalytic cycle. Recognizing the ability of TcAPx-CcP to use alternative reducing substrates, we searched for its subcellular localization in the infective parasite stages (intracellular amastigotes and extracellular trypomastigotes). TcAPx-CcP was found closely associated with mitochondrial membranes and, most interestingly, with the outer leaflet of the plasma membrane, suggesting a role at the host–parasite interface. TcAPx-CcP overexpressers were significantly more infective to macrophages and cardiomyocytes, as well as in the mouse model of Chagas disease, supporting the involvement of TcAPx-CcP in pathogen virulence as part of the parasite antioxidant armamentarium. PMID:28179568

  19. A20 Functional Domains Regulate Subcellular Localization and NF-Kappa B Activation

    DTIC Science & Technology

    2013-08-15

    that the first function to be described for A20 was that of an anti -apoptotic protein (55). They based their choice of experiments and preliminary...mediated apoptosis (55). After positive selection of the resulting clones with neomycin and verification of A20 expression, they compared the...Karposi sarcoma herpesvirus (KSHV) mediated cell transformation (72). K13 can directly activate NF-κB by interacting with the IKK complex and is

  20. Divergent N-Terminal Sequences Target an Inducible Testis Deubiquitinating Enzyme to Distinct Subcellular Structures

    PubMed Central

    Lin, Haijiang; Keriel, Anne; Morales, Carlos R.; Bedard, Nathalie; Zhao, Qing; Hingamp, Pascal; Lefrançois, Stephane; Combaret, Lydie; Wing, Simon S.

    2000-01-01

    Ubiquitin-specific processing proteases (UBPs) presently form the largest enzyme family in the ubiquitin system, characterized by a core region containing conserved motifs surrounded by divergent sequences, most commonly at the N-terminal end. The functions of these divergent sequences remain unclear. We identified two isoforms of a novel testis-specific UBP, UBP-t1 and UBP-t2, which contain identical core regions but distinct N termini, thereby permitting dissection of the functions of these two regions. Both isoforms were germ cell specific and developmentally regulated. Immunocytochemistry revealed that UBP-t1 was induced in step 16 to 19 spermatids while UBP-t2 was expressed in step 18 to 19 spermatids. Immunoelectron microscopy showed that UBP-t1 was found in the nucleus while UBP-t2 was extranuclear and was found in residual bodies. For the first time, we show that the differential subcellular localization was due to the distinct N-terminal sequences. When transfected into COS-7 cells, the core region was expressed throughout the cell but the UBP-t1 and UBP-t2 isoforms were concentrated in the nucleus and the perinuclear region, respectively. Fusions of each N-terminal end with green fluorescent protein yielded the same subcellular localization as the native proteins, indicating that the N-terminal ends were sufficient for determining differential localization. Interestingly, UBP-t2 colocalized with anti-γ-tubulin immunoreactivity, indicating that like several other components of the ubiquitin system, a deubiquitinating enzyme is associated with the centrosome. Regulated expression and alternative N termini can confer specificity of UBP function by restricting its temporal and spatial loci of action. PMID:10938131

  1. Multiple marker abundance profiling: combining selected reaction monitoring and data-dependent acquisition for rapid estimation of organelle abundance in subcellular samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Cornelia M.; Stevens, Tim J.; Saukkonen, Anna

    Measuring changes in protein or organelle abundance in the cell is an essential, but challenging aspect of cell biology. Frequently-used methods for determining organelle abundance typically rely on detection of a very few marker proteins, so are unsatisfactory. In silico estimates of protein abundances from publicly available protein spectra can provide useful standard abundance values but contain only data from tissue proteomes, and are not coupled to organelle localization data. A new protein abundance score, the normalized protein abundance scale (NPAS), expands on the number of scored proteins and the scoring accuracy of lower-abundance proteins in Arabidopsis. NPAS was combinedmore » with subcellular protein localization data, facilitating quantitative estimations of organelle abundance during routine experimental procedures. A suite of targeted proteomics markers for subcellular compartment markers was developed, enabling independent verification of in silico estimates for relative organelle abundance. Estimation of relative organelle abundance was found to be reproducible and consistent over a range of tissues and growth conditions. In silico abundance estimations and localization data have been combined into an online tool, multiple marker abundance profiling, available in the SUBA4 toolbox (http://suba.live).« less

  2. Multiple marker abundance profiling: combining selected reaction monitoring and data-dependent acquisition for rapid estimation of organelle abundance in subcellular samples

    DOE PAGES

    Hooper, Cornelia M.; Stevens, Tim J.; Saukkonen, Anna; ...

    2017-10-12

    Measuring changes in protein or organelle abundance in the cell is an essential, but challenging aspect of cell biology. Frequently-used methods for determining organelle abundance typically rely on detection of a very few marker proteins, so are unsatisfactory. In silico estimates of protein abundances from publicly available protein spectra can provide useful standard abundance values but contain only data from tissue proteomes, and are not coupled to organelle localization data. A new protein abundance score, the normalized protein abundance scale (NPAS), expands on the number of scored proteins and the scoring accuracy of lower-abundance proteins in Arabidopsis. NPAS was combinedmore » with subcellular protein localization data, facilitating quantitative estimations of organelle abundance during routine experimental procedures. A suite of targeted proteomics markers for subcellular compartment markers was developed, enabling independent verification of in silico estimates for relative organelle abundance. Estimation of relative organelle abundance was found to be reproducible and consistent over a range of tissues and growth conditions. In silico abundance estimations and localization data have been combined into an online tool, multiple marker abundance profiling, available in the SUBA4 toolbox (http://suba.live).« less

  3. Subcellular distribution and activation by non-ionic detergents of guanylate cyclase in cerebral cortex of rat.

    PubMed

    Deguchi, T; Amano, E; Nakane, M

    1976-11-01

    Non-ionic detergents stimulated particulate guanylate cyclase activity in cerebral cortex of rat 8- to 12-fold while stimulation of soluble enzyme was 1.3- to 2.5-fold. Among various detergents, Lubrol PX was the most effective one. The subcellular distribution of guanylate cyclase activity was examined with or without 0.5% Lubrol PX. Without Lubrol PX two-thirds of the enzyme activity was detected in the soluble fraction. In the presence of Lubrol PX, however, two-thirds of guanylate cyclase activity was recovered in the crude mitochondrial fraction. Further fractionation revealed that most of the particulate guanylate cyclase activity was associated with synaptosomes. The sedimentation characteristic of the particulate guanylate cyclase activity was very close to those of choline acetyltransferase and acetylcholine esterase activities, two synaptosomal enzymes. When the crude mitochondrial fraction was subfractionated after osmotic shock, most of guanylate cyclase activity as assayed in the absence of Lubrol PX was released into the soluble fraction while the rest of the enzyme activity was tightly bound to synaptic membrane fractions. The total guanylate cyclase activity recovered in the synaptosomal soluble fraction was 6 to 7 times higher than that of the starting material. The specific enzyme activity reached more than 1000 pmol per min per mg protein, which was 35-fold higher than that of the starting material. The membrane bound guanylate cyclase activity was markedly stimulated by Lubrol PX. Guanylate cyclase activity in the synaptosomal soluble fraction, in contrast, was suppressed by the addition of Lubrol PX. The observation that most of guanylate cyclase activity was detected in synaptosomes, some of which was tightly bound to the synaptic membrane fraction upon hypoosmotic treatment, is consistent with the concept that cyclic GMP is involved in neural transmission.

  4. Structural requirements of oleosin domains for subcellular targeting to the oil body.

    PubMed Central

    van Rooijen, G J; Moloney, M M

    1995-01-01

    We have investigated the protein domains responsible for the correct subcellular targeting of plant seed oleosins. We have attempted to study this targeting in vivo using "tagged" oleosins in transgenic plants. Different constructs were prepared lacking gene sequences encoding one of three structural domains of natural oleosins. Each was fused in frame to the Escherichia coli uid A gene encoding beta-glucuronidase (GUS). These constructs were introduced into Brassica napus using Agrobacterium-mediated transformation. GUS activity was measured in washed oil bodies and in the soluble protein fraction of the transgenic seeds. It was found that complete Arabidopsis oleosin-GUS fusions undergo correct subcellular targeting in transgenic Brassica seeds. Removal of the C-terminal domain of the Arabidopsis oleosin comprising the last 48 amino acids had no effect on overall subcellular targeting. In contrast, loss of the first 47 amino acids (N terminus) or amino acids 48 to 113 (which make up a lipophilic core) resulted in impaired targeting of the fusion protein to the oil bodies and greatly reduced accumulation of the fusion protein. Northern blotting revealed that this reduction is not due to differences in mRNA accumulation. Results from these measurements indicated that both the N-terminal and central oleosin domain are important for targeting to the oil body and show that there is a direct correlation between the inability to target to the oil body and protein stability. PMID:8539295

  5. Estimating the magnitude of near-membrane PDE4 activity in living cells.

    PubMed

    Xin, Wenkuan; Feinstein, Wei P; Britain, Andrea L; Ochoa, Cristhiaan D; Zhu, Bing; Richter, Wito; Leavesley, Silas J; Rich, Thomas C

    2015-09-15

    Recent studies have demonstrated that functionally discrete pools of phosphodiesterase (PDE) activity regulate distinct cellular functions. While the importance of localized pools of enzyme activity has become apparent, few studies have estimated enzyme activity within discrete subcellular compartments. Here we present an approach to estimate near-membrane PDE activity. First, total PDE activity is measured using traditional PDE activity assays. Second, known cAMP concentrations are dialyzed into single cells and the spatial spread of cAMP is monitored using cyclic nucleotide-gated channels. Third, mathematical models are used to estimate the spatial distribution of PDE activity within cells. Using this three-tiered approach, we observed two pharmacologically distinct pools of PDE activity, a rolipram-sensitive pool and an 8-methoxymethyl IBMX (8MM-IBMX)-sensitive pool. We observed that the rolipram-sensitive PDE (PDE4) was primarily responsible for cAMP hydrolysis near the plasma membrane. Finally, we observed that PDE4 was capable of blunting cAMP levels near the plasma membrane even when 100 μM cAMP were introduced into the cell via a patch pipette. Two compartment models predict that PDE activity near the plasma membrane, near cyclic nucleotide-gated channels, was significantly lower than total cellular PDE activity and that a slow spatial spread of cAMP allowed PDE activity to effectively hydrolyze near-membrane cAMP. These results imply that cAMP levels near the plasma membrane are distinct from those in other subcellular compartments; PDE activity is not uniform within cells; and localized pools of AC and PDE activities are responsible for controlling cAMP levels within distinct subcellular compartments. Copyright © 2015 the American Physiological Society.

  6. Estimating the magnitude of near-membrane PDE4 activity in living cells

    PubMed Central

    Xin, Wenkuan; Feinstein, Wei P.; Britain, Andrea L.; Ochoa, Cristhiaan D.; Zhu, Bing; Richter, Wito; Leavesley, Silas J.

    2015-01-01

    Recent studies have demonstrated that functionally discrete pools of phosphodiesterase (PDE) activity regulate distinct cellular functions. While the importance of localized pools of enzyme activity has become apparent, few studies have estimated enzyme activity within discrete subcellular compartments. Here we present an approach to estimate near-membrane PDE activity. First, total PDE activity is measured using traditional PDE activity assays. Second, known cAMP concentrations are dialyzed into single cells and the spatial spread of cAMP is monitored using cyclic nucleotide-gated channels. Third, mathematical models are used to estimate the spatial distribution of PDE activity within cells. Using this three-tiered approach, we observed two pharmacologically distinct pools of PDE activity, a rolipram-sensitive pool and an 8-methoxymethyl IBMX (8MM-IBMX)-sensitive pool. We observed that the rolipram-sensitive PDE (PDE4) was primarily responsible for cAMP hydrolysis near the plasma membrane. Finally, we observed that PDE4 was capable of blunting cAMP levels near the plasma membrane even when 100 μM cAMP were introduced into the cell via a patch pipette. Two compartment models predict that PDE activity near the plasma membrane, near cyclic nucleotide-gated channels, was significantly lower than total cellular PDE activity and that a slow spatial spread of cAMP allowed PDE activity to effectively hydrolyze near-membrane cAMP. These results imply that cAMP levels near the plasma membrane are distinct from those in other subcellular compartments; PDE activity is not uniform within cells; and localized pools of AC and PDE activities are responsible for controlling cAMP levels within distinct subcellular compartments. PMID:26201952

  7. Identification of novel nuclear localization signals of Drosophila myeloid leukemia factor.

    PubMed

    Sugano, Wakana; Yamaguchi, Masamitsu

    2007-01-01

    Myeloid leukemia factor 1 (MLF1) was first identified as part of a leukemic fusion protein produced by a chromosomal translocation, and MLF family proteins are present in many animals. In mammalian cells, MLF1 has been described as mainly cytoplasmic, but in Drosophila, one of the dMLF isoforms (dMLFA) localized mainly in the nucleus while the other isoform (dMLFB), that appears to be produced by the alternative splicing, displays both nuclear and cytoplasmic localization. To investigate the difference in subcellular localization between MLF family members, we examined the subcellular localization of deletion mutants of dMLFA isoform. The analyses showed that the C-terminal 40 amino acid region of dMLFA is necessary and sufficient for nuclear localization. Based on amino acid sequences, we hypothesized that two nuclear localization signals (NLSs) are present within the region. Site-directed mutagenesis of critical residues within the two putative NLSs leads to loss of nuclear localization, suggesting that both NLS motifs are necessary for nuclear localization.

  8. Intracellular Mannose Binding Lectin Mediates Subcellular Trafficking of HIV-1 gp120 in Neurons

    PubMed Central

    Teodorof, C; Divakar, S; Soontornniyomkij, B; Achim, CL; Kaul, M; Singh, KK

    2014-01-01

    Human immunodeficiency virus -1 (HIV-1) enters the brain early during infection and leads to severe neuronal damage and central nervous system impairment. HIV-1 envelope glycoprotein 120 (gp120), a neurotoxin, undergoes intracellular trafficking and transport across neurons; however mechanisms of gp120 trafficking in neurons are unclear. Our results show that mannose binding lectin (MBL) that binds to the N-linked mannose residues on gp120, participates in intravesicular packaging of gp120 in neuronal subcellular organelles and also in subcellular trafficking of these vesicles in neuronal cells. Perinuclear MBL:gp120 vesicular complexes were observed and MBL facilitated the subcellular trafficking of gp120 via the endoplasmic reticulum (ER) and Golgi vesicles. The functional carbohydrate recognition domain of MBL was required for perinuclear organization, distribution and subcellular trafficking of MBL:gp120 vesicular complexes. Nocodazole, an agent that depolymerizes the microtubule network, abolished the trafficking of MBL:gp120 vesicles, suggesting that these vesicular complexes were transported along the microtubule network. Live cell imaging confirmed the association of the MBL:gp120 complexes with dynamic subcellular vesicles that underwent trafficking in neuronal soma and along the neurites. Thus, our findings suggest that intracellular MBL mediates subcellular trafficking and transport of viral glycoproteins in a microtubule-dependent mechanism in the neurons. PMID:24825317

  9. RNA Transport and Local Control of Translation

    PubMed Central

    Kindler, Stefan; Wang, Huidong; Richter, Dietmar; Tiedge, Henri

    2007-01-01

    In eukaryotes, the entwined pathways of RNA transport and local translational regulation are key determinants in the spatio-temporal articulation of gene expression. One of the main advantages of this mechanism over transcriptional control in the nucleus lies in the fact that it endows local sites with independent decision-making authority, a consideration that is of particular relevance in cells with complex cellular architecture such as neurons. Localized RNAs typically contain codes, expressed within cis-acting elements, that specify subcellular targeting. Such codes are recognized by trans-acting factors, adaptors that mediate translocation along cytoskeletal elements by molecular motors. Most transported mRNAs are assumed translationally dormant while en route. In some cell types, especially in neurons, it is considered crucial that translation remains repressed after arrival at the destination site (e.g., a postsynaptic microdomain) until an appropriate activation signal is received. Several candidate mechanisms have been suggested to participate in the local implementation of translational repression and activation, and such mechanisms may target translation at the level of initiation and/or elongation. Recent data indicate that untranslated RNAs may play important roles in the local control of translation. PMID:16212494

  10. Subcellular trafficking of FGF controls tracheal invasion of Drosophila flight muscle

    PubMed Central

    Peterson, Soren J.; Krasnow, Mark A.

    2015-01-01

    SUMMARY To meet the extreme oxygen demand of insect flight muscle, tracheal (respiratory) tubes ramify not only on its surface, as in other tissues, but also within T-tubules and ultimately surrounding every mitochondrion. Although this remarkable physiological specialization has long been recognized, its cellular and molecular basis is unknown. Here we show that Drosophila tracheoles invade flight muscle T-tubules through transient surface openings. Like other tracheal branching events, invasion requires the Branchless FGF pathway. However, localization of the FGF chemoattractant changes from all muscle membranes to T-tubules as invasion begins. Core regulators of epithelial basolateral membrane identity localize to T-tubules, and knockdown of AP-1γ, required for basolateral trafficking, redirects FGF from T-tubules to surface, increasing tracheal surface ramification and preventing invasion. We propose that tracheal invasion is controlled by an AP-1-dependent switch in FGF trafficking. Thus, subcellular targeting of a chemoattractant can direct outgrowth to specific domains including inside the cell. PMID:25557078

  11. HPSLPred: An Ensemble Multi-Label Classifier for Human Protein Subcellular Location Prediction with Imbalanced Source.

    PubMed

    Wan, Shixiang; Duan, Yucong; Zou, Quan

    2017-09-01

    Predicting the subcellular localization of proteins is an important and challenging problem. Traditional experimental approaches are often expensive and time-consuming. Consequently, a growing number of research efforts employ a series of machine learning approaches to predict the subcellular location of proteins. There are two main challenges among the state-of-the-art prediction methods. First, most of the existing techniques are designed to deal with multi-class rather than multi-label classification, which ignores connections between multiple labels. In reality, multiple locations of particular proteins imply that there are vital and unique biological significances that deserve special focus and cannot be ignored. Second, techniques for handling imbalanced data in multi-label classification problems are necessary, but never employed. For solving these two issues, we have developed an ensemble multi-label classifier called HPSLPred, which can be applied for multi-label classification with an imbalanced protein source. For convenience, a user-friendly webserver has been established at http://server.malab.cn/HPSLPred. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hum-mPLoc: an ensemble classifier for large-scale human protein subcellular location prediction by incorporating samples with multiple sites.

    PubMed

    Shen, Hong-Bin; Chou, Kuo-Chen

    2007-04-20

    Proteins may simultaneously exist at, or move between, two or more different subcellular locations. Proteins with multiple locations or dynamic feature of this kind are particularly interesting because they may have some very special biological functions intriguing to investigators in both basic research and drug discovery. For instance, among the 6408 human protein entries that have experimentally observed subcellular location annotations in the Swiss-Prot database (version 50.7, released 19-Sept-2006), 973 ( approximately 15%) have multiple location sites. The number of total human protein entries (except those annotated with "fragment" or those with less than 50 amino acids) in the same database is 14,370, meaning a gap of (14,370-6408)=7962 entries for which no knowledge is available about their subcellular locations. Although one can use the computational approach to predict the desired information for the gap, so far all the existing methods for predicting human protein subcellular localization are limited in the case of single location site only. To overcome such a barrier, a new ensemble classifier, named Hum-mPLoc, was developed that can be used to deal with the case of multiple location sites as well. Hum-mPLoc is freely accessible to the public as a web server at http://202.120.37.186/bioinf/hum-multi. Meanwhile, for the convenience of people working in the relevant areas, Hum-mPLoc has been used to identify all human protein entries in the Swiss-Prot database that do not have subcellular location annotations or are annotated as being uncertain. The large-scale results thus obtained have been deposited in a downloadable file prepared with Microsoft Excel and named "Tab_Hum-mPLoc.xls". This file is available at the same website and will be updated twice a year to include new entries of human proteins and reflect the continuous development of Hum-mPLoc.

  13. Intracellular mannose binding lectin mediates subcellular trafficking of HIV-1 gp120 in neurons.

    PubMed

    Teodorof, C; Divakar, S; Soontornniyomkij, B; Achim, C L; Kaul, M; Singh, K K

    2014-09-01

    Human immunodeficiency virus-1 (HIV-1) enters the brain early during infection and leads to severe neuronal damage and central nervous system impairment. HIV-1 envelope glycoprotein 120 (gp120), a neurotoxin, undergoes intracellular trafficking and transport across neurons; however mechanisms of gp120 trafficking in neurons are unclear. Our results show that mannose binding lectin (MBL) that binds to the N-linked mannose residues on gp120, participates in intravesicular packaging of gp120 in neuronal subcellular organelles and also in subcellular trafficking of these vesicles in neuronal cells. Perinuclear MBL:gp120 vesicular complexes were observed and MBL facilitated the subcellular trafficking of gp120 via the endoplasmic reticulum (ER) and Golgi vesicles. The functional carbohydrate recognition domain of MBL was required for perinuclear organization, distribution and subcellular trafficking of MBL:gp120 vesicular complexes. Nocodazole, an agent that depolymerizes the microtubule network, abolished the trafficking of MBL:gp120 vesicles, suggesting that these vesicular complexes were transported along the microtubule network. Live cell imaging confirmed the association of the MBL:gp120 complexes with dynamic subcellular vesicles that underwent trafficking in neuronal soma and along the neurites. Thus, our findings suggest that intracellular MBL mediates subcellular trafficking and transport of viral glycoproteins in a microtubule-dependent mechanism in the neurons. Published by Elsevier Inc.

  14. Studying Coxiella burnetii Type IV Substrates in the Yeast Saccharomyces cerevisiae: Focus on Subcellular Localization and Protein Aggregation.

    PubMed

    Rodríguez-Escudero, María; Cid, Víctor J; Molina, María; Schulze-Luehrmann, Jan; Lührmann, Anja; Rodríguez-Escudero, Isabel

    2016-01-01

    Coxiella burnetii is a Gram-negative obligate parasitic bacterium that causes the disease Q-fever in humans. To establish its intracellular niche, it utilizes the Icm/Dot type IVB secretion system (T4BSS) to inject protein effectors into the host cell cytoplasm. The host targets of most cognate and candidate T4BSS-translocated effectors remain obscure. We used the yeast Saccharomyces cerevisiae as a model to express and study six C. burnetii effectors, namely AnkA, AnkB, AnkF, CBU0077, CaeA and CaeB, in search for clues about their role in C. burnetii virulence. When ectopically expressed in HeLa cells, these effectors displayed distinct subcellular localizations. Accordingly, GFP fusions of these proteins produced in yeast also decorated distinct compartments, and most of them altered cell growth. CaeA was ubiquitinated both in yeast and mammalian cells and, in S. cerevisiae, accumulated at juxtanuclear quality-control compartments (JUNQs) and insoluble protein deposits (IPODs), characteristic of aggregative or misfolded proteins. AnkA, which was not ubiquitinated, accumulated exclusively at the IPOD. CaeA, but not AnkA or the other effectors, caused oxidative damage in yeast. We discuss that CaeA and AnkA behavior in yeast may rather reflect misfolding than recognition of conserved targets in the heterologous system. In contrast, CBU0077 accumulated at vacuolar membranes and abnormal ER extensions, suggesting that it interferes with vesicular traffic, whereas AnkB associated with the yeast nucleolus. Both effectors shared common localization features in HeLa and yeast cells. Our results support the idea that C. burnetii T4BSS effectors manipulate multiple host cell targets, which can be conserved in higher and lower eukaryotic cells. However, the behavior of CaeA and AnkA prompt us to conclude that heterologous protein aggregation and proteostatic stress can be a limitation to be considered when using the yeast model to assess the function of bacterial effectors.

  15. Studying Coxiella burnetii Type IV Substrates in the Yeast Saccharomyces cerevisiae: Focus on Subcellular Localization and Protein Aggregation

    PubMed Central

    Rodríguez-Escudero, María; Cid, Víctor J.; Molina, María; Schulze-Luehrmann, Jan; Lührmann, Anja; Rodríguez-Escudero, Isabel

    2016-01-01

    Coxiella burnetii is a Gram-negative obligate parasitic bacterium that causes the disease Q-fever in humans. To establish its intracellular niche, it utilizes the Icm/Dot type IVB secretion system (T4BSS) to inject protein effectors into the host cell cytoplasm. The host targets of most cognate and candidate T4BSS-translocated effectors remain obscure. We used the yeast Saccharomyces cerevisiae as a model to express and study six C. burnetii effectors, namely AnkA, AnkB, AnkF, CBU0077, CaeA and CaeB, in search for clues about their role in C. burnetii virulence. When ectopically expressed in HeLa cells, these effectors displayed distinct subcellular localizations. Accordingly, GFP fusions of these proteins produced in yeast also decorated distinct compartments, and most of them altered cell growth. CaeA was ubiquitinated both in yeast and mammalian cells and, in S. cerevisiae, accumulated at juxtanuclear quality-control compartments (JUNQs) and insoluble protein deposits (IPODs), characteristic of aggregative or misfolded proteins. AnkA, which was not ubiquitinated, accumulated exclusively at the IPOD. CaeA, but not AnkA or the other effectors, caused oxidative damage in yeast. We discuss that CaeA and AnkA behavior in yeast may rather reflect misfolding than recognition of conserved targets in the heterologous system. In contrast, CBU0077 accumulated at vacuolar membranes and abnormal ER extensions, suggesting that it interferes with vesicular traffic, whereas AnkB associated with the yeast nucleolus. Both effectors shared common localization features in HeLa and yeast cells. Our results support the idea that C. burnetii T4BSS effectors manipulate multiple host cell targets, which can be conserved in higher and lower eukaryotic cells. However, the behavior of CaeA and AnkA prompt us to conclude that heterologous protein aggregation and proteostatic stress can be a limitation to be considered when using the yeast model to assess the function of bacterial effectors

  16. Nonreceptor Protein-Tyrosine Kinases in Neutrophil Activation

    PubMed

    Welch; Mauran; Maridonneau-Parini

    1996-06-01

    Nonreceptor protein-tyrosine kinases are involved in the regulation of almost all neutrophil responses such as adhesion, chemotaxis, priming, oxidative burst, and degranulation. Here, we show that phagocytosis is also regulated by protein-tyrosine kinase activity. Using various protein-tyrosine kinase inhibitors, we further demonstrate that opsonized zymosan-induced degranulation of specific and azurophil granules is regulated by protein-tyrosine kinase activity, whereas phorbol ester-induced degranulation is not. Several of the nonreceptor protein-tyrosine kinases involving in neutrophil signal transduction are known, including Fgr, Hck, Lyn, Yes, and Syk. Among these, Hck and Fgr are localized on the azurophil and specific granules, suggesting the involvement of these two protein-tyrosine kinases in the regulation of degranulation. In this report, we characterize some of the molecular properties of Hck and Fgr. We discuss the methods generally used for the measurement of protein-tyrosine kinase activities in neutrophils highlighting precautions against proteolysis. In addition, we show that in subcellular fractions of retinoic acid-differentiated neutrophil-like NB4 cells, the 59- and 61-kDa forms of Hck are attached to the membranes of their respective compartments by different mechanisms. Finally, we discuss the functional roles of protein-tyrosine kinases in the regulation of neutrophil activation and speculate on the importance of their subcellular localization.

  17. Challenges of biological sample preparation for SIMS imaging of elements and molecules at subcellular resolution

    NASA Astrophysics Data System (ADS)

    Chandra, Subhash

    2008-12-01

    Secondary ion mass spectrometry (SIMS) based imaging techniques capable of subcellular resolution characterization of elements and molecules are becoming valuable tools in many areas of biology and medicine. Due to high vacuum requirements of SIMS, the live cells cannot be analyzed directly in the instrument. The sample preparation, therefore, plays a critical role in preserving the native chemical composition for SIMS analysis. This work focuses on the evaluation of frozen-hydrated and frozen freeze-dried sample preparations for SIMS studies of cultured cells with a CAMECA IMS-3f dynamic SIMS ion microscope instrument capable of producing SIMS images with a spatial resolution of 500 nm. The sandwich freeze-fracture method was used for fracturing the cells. The complimentary fracture planes in the plasma membrane were characterized by field-emission secondary electron microscopy (FESEM) in the frozen-hydrated state. The cells fractured at the dorsal surface were used for SIMS analysis. The frozen-hydrated SIMS analysis of individual cells under dynamic primary ion beam (O 2+) revealed local secondary ion signal enhancements correlated with the water image signals of 19(H 3O) +. A preferential removal of water from the frozen cell matrix in the Z-axis was also observed. These complications render the frozen-hydrated sample type less desirable for subcellular dynamic SIMS studies. The freeze-drying of frozen-hydrated cells, either inside the instrument or externally in a freeze-drier, allowed SIMS imaging of subcellular chemical composition. Morphological evaluations of fractured freeze-dried cells with SEM and confocal laser scanning microscopy (CLSM) revealed well-preserved mitochondria, Golgi apparatus, and stress fibers. SIMS analysis of fractured freeze-dried cells revealed well-preserved chemical composition of even the most highly diffusible ions like K + and Na + in physiologically relevant concentrations. The high K-low Na signature in individual cells

  18. Transcriptional Analysis and Subcellular Protein Localization Reveal Specific Features of the Essential WalKR System in Staphylococcus aureus

    PubMed Central

    Poupel, Olivier; Moyat, Mati; Groizeleau, Julie; Antunes, Luísa C. S.; Gribaldo, Simonetta; Msadek, Tarek; Dubrac, Sarah

    2016-01-01

    The WalKR two-component system, controlling cell wall metabolism, is highly conserved among Bacilli and essential for cell viability. In Staphylococcus aureus, walR and walK are followed by three genes of unknown function: walH, walI and walJ. Sequence analysis and transcript mapping revealed a unique genetic structure for this locus in S. aureus: the last gene of the locus, walJ, is transcribed independently, whereas transcription of the tetra-cistronic walRKHI operon occurred from two independent promoters located upstream from walR. Protein topology analysis and protein-protein interactions in E. coli as well as subcellular localization in S. aureus allowed us to show that WalH and WalI are membrane-bound proteins, which associate with WalK to form a complex at the cell division septum. While these interactions suggest that WalH and WalI play a role in activity of the WalKR regulatory pathway, deletion of walH and/or walI did not have a major effect on genes whose expression is strongly dependent on WalKR or on associated phenotypes. No effect of WalH or WalI was seen on tightly controlled WalKR regulon genes such as sle1 or saouhsc_00773, which encodes a CHAP-domain amidase. Of the genes encoding the two major S. aureus autolysins, AtlA and Sle1, only transcription of atlA was increased in the ΔwalH or ΔwalI mutants. Likewise, bacterial autolysis was not increased in the absence of WalH and/or WalI and biofilm formation was lowered rather than increased. Our results suggest that contrary to their major role as WalK inhibitors in B. subtilis, the WalH and WalI proteins have evolved a different function in S. aureus, where they are more accessory. A phylogenomic analysis shows a striking conservation of the 5 gene wal cluster along the evolutionary history of Bacilli, supporting the key importance of this signal transduction system, and indicating that the walH and walI genes were lost in the ancestor of Streptococcaceae, leading to their atypical 3 wal gene

  19. Transcriptional Analysis and Subcellular Protein Localization Reveal Specific Features of the Essential WalKR System in Staphylococcus aureus.

    PubMed

    Poupel, Olivier; Moyat, Mati; Groizeleau, Julie; Antunes, Luísa C S; Gribaldo, Simonetta; Msadek, Tarek; Dubrac, Sarah

    2016-01-01

    The WalKR two-component system, controlling cell wall metabolism, is highly conserved among Bacilli and essential for cell viability. In Staphylococcus aureus, walR and walK are followed by three genes of unknown function: walH, walI and walJ. Sequence analysis and transcript mapping revealed a unique genetic structure for this locus in S. aureus: the last gene of the locus, walJ, is transcribed independently, whereas transcription of the tetra-cistronic walRKHI operon occurred from two independent promoters located upstream from walR. Protein topology analysis and protein-protein interactions in E. coli as well as subcellular localization in S. aureus allowed us to show that WalH and WalI are membrane-bound proteins, which associate with WalK to form a complex at the cell division septum. While these interactions suggest that WalH and WalI play a role in activity of the WalKR regulatory pathway, deletion of walH and/or walI did not have a major effect on genes whose expression is strongly dependent on WalKR or on associated phenotypes. No effect of WalH or WalI was seen on tightly controlled WalKR regulon genes such as sle1 or saouhsc_00773, which encodes a CHAP-domain amidase. Of the genes encoding the two major S. aureus autolysins, AtlA and Sle1, only transcription of atlA was increased in the ΔwalH or ΔwalI mutants. Likewise, bacterial autolysis was not increased in the absence of WalH and/or WalI and biofilm formation was lowered rather than increased. Our results suggest that contrary to their major role as WalK inhibitors in B. subtilis, the WalH and WalI proteins have evolved a different function in S. aureus, where they are more accessory. A phylogenomic analysis shows a striking conservation of the 5 gene wal cluster along the evolutionary history of Bacilli, supporting the key importance of this signal transduction system, and indicating that the walH and walI genes were lost in the ancestor of Streptococcaceae, leading to their atypical 3 wal gene

  20. High Speed Size Sorting of Subcellular Organelles by Flow Field-Flow Fractionation.

    PubMed

    Yang, Joon Seon; Lee, Ju Yong; Moon, Myeong Hee

    2015-06-16

    Separation/isolation of subcellular species, such as mitochondria, lysosomes, peroxisomes, Golgi apparatus, and others, from cells is important for gaining an understanding of the cellular functions performed by specific organelles. This study introduces a high speed, semipreparative scale, biocompatible size sorting method for the isolation of subcellular organelle species from homogenate mixtures of HEK 293T cells using flow field-flow fractionation (FlFFF). Separation of organelles was achieved using asymmetrical FlFFF (AF4) channel system at the steric/hyperlayer mode in which nuclei, lysosomes, mitochondria, and peroxisomes were separated in a decreasing order of hydrodynamic diameter without complicated preprocessing steps. Fractions in which organelles were not clearly separated were reinjected to AF4 for a finer separation using the normal mode, in which smaller sized species can be well fractionated by an increasing order of diameter. The subcellular species contained in collected AF4 fractions were examined with scanning electron microscopy to evaluate their size and morphology, Western blot analysis using organelle specific markers was used for organelle confirmation, and proteomic analysis was performed with nanoflow liquid chromatography-tandem mass spectrometry (nLC-ESI-MS/MS). Since FlFFF operates with biocompatible buffer solutions, it offers great flexibility in handling subcellular components without relying on a high concentration sucrose solution for centrifugation or affinity- or fluorescence tag-based sorting methods. Consequently, the current study provides an alternative, competitive method for the isolation/purification of subcellular organelle species in their intact states.

  1. Enhanced Glycogen Storage of a Subcellular Hot Spot in Human Skeletal Muscle during Early Recovery from Eccentric Contractions

    PubMed Central

    Nielsen, Joachim; Farup, Jean; Rahbek, Stine Klejs; de Paoli, Frank Vincenzo; Vissing, Kristian

    2015-01-01

    Unaccustomed eccentric exercise is accompanied by muscle damage and impaired glucose uptake and glycogen synthesis during subsequent recovery. Recently, it was shown that the role and regulation of glycogen in skeletal muscle are dependent on its subcellular localization, and that glycogen synthesis, as described by the product of glycogen particle size and number, is dependent on the time course of recovery after exercise and carbohydrate availability. In the present study, we investigated the subcellular distribution of glycogen in fibers with high (type I) and low (type II) mitochondrial content during post-exercise recovery from eccentric contractions. Analysis was completed on five male subjects performing an exercise bout consisting of 15 x 10 maximal eccentric contractions. Carbohydrate-rich drinks were subsequently ingested throughout a 48 h recovery period and muscle biopsies for analysis included time points 3, 24 and 48 h post exercise from the exercising leg, whereas biopsies corresponding to prior to and at 48 h after the exercise bout were collected from the non-exercising, control leg. Quantitative imaging by transmission electron microscopy revealed an early (post 3 and 24 h) enhanced storage of intramyofibrillar glycogen (defined as glycogen particles located within the myofibrils) of type I fibers, which was associated with an increase in the number of particles. In contrast, late in recovery (post 48 h), intermyofibrillar, intramyofibrillar and subsarcolemmal glycogen in both type I and II fibers were lower in the exercise leg compared with the control leg, and this was associated with a smaller size of the glycogen particles. We conclude that in the carbohydrate-supplemented state, the effect of eccentric contractions on glycogen metabolism depends on the subcellular localization, muscle fiber’s oxidative capacity, and the time course of recovery. The early enhanced storage of intramyofibrillar glycogen after the eccentric contractions may

  2. Subcellular Nanoparticle Distribution from Light Transmission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Deatsch, Alison; Sun, Nan; Johnson, Jeffrey; Stack, Sharon; Tanner, Carol; Ruggiero, Steven

    We have measured the particle-size distribution (PSD) of subcellular structures in plant and animal cells. We have employed a new technique developed by our group, Light Transmission Spectroscopy-combined with cell fractionation-to accurately measure PSDs over a wide size range: from 10 nm to 3000nm, which includes objects from the size of individual proteins to organelles. To date our experiments have included cultured human oral cells and spinach cells. These results show a power-law dependence of particle density with particle diameter, implying a universality of the packing distribution. We discuss modeling the cell as a self-similar (fractal) body comprised of spheres on all size scales. This goal of this work is to obtain a better understanding of the fundamental nature of particle packing within cells in order to enrich our knowledge of the structure, function, and interactions of sub-cellular nanostructures across cell types.

  3. Dynamic full field OCT: metabolic contrast at subcellular level (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Apelian, Clement; Harms, Fabrice; Thouvenin, Olivier; Boccara, Claude A.

    2016-03-01

    Cells shape or density is an important marker of tissues pathology. However, individual cells are difficult to observe in thick tissues frequently presenting highly scattering structures such as collagen fibers. Endogenous techniques struggle to image cells in these conditions. Moreover, exogenous contrast agents like dyes, fluorophores or nanoparticles cannot always be used, especially if non-invasive imaging is required. Scatterers motion happening down to the millisecond scale, much faster than the still and highly scattering structures (global motion of the tissue), allowed us to develop a new approach based on the time dependence of the FF-OCT signals. This method reveals hidden cells after a spatiotemporal analysis based on singular value decomposition and wavelet analysis concepts. It does also give us access to local dynamics of imaged scatterers. This dynamic information is linked with the local metabolic activity that drives these scatterers. Our technique can explore subcellular scales with micrometric resolution and dynamics ranging from the millisecond to seconds. By this mean we studied a wide range of tissues, animal and human in both normal and pathological conditions (cancer, ischemia, osmotic shock…) in different organs such as liver, kidney, and brain among others. Different cells, undetectable with FF-OCT, were identified (erythrocytes, hepatocytes…). Different scatterers clusters express different characteristic times and thus can be related to different mechanisms that we identify with metabolic functions. We are confident that the D-FFOCT, by accessing to a new spatiotemporal metabolic contrast, will be a leading technique on tissue imaging and for better medical diagnosis.

  4. Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chains.

    PubMed

    Bulashevska, Alla; Eils, Roland

    2006-06-14

    The subcellular location of a protein is closely related to its function. It would be worthwhile to develop a method to predict the subcellular location for a given protein when only the amino acid sequence of the protein is known. Although many efforts have been made to predict subcellular location from sequence information only, there is the need for further research to improve the accuracy of prediction. A novel method called HensBC is introduced to predict protein subcellular location. HensBC is a recursive algorithm which constructs a hierarchical ensemble of classifiers. The classifiers used are Bayesian classifiers based on Markov chain models. We tested our method on six various datasets; among them are Gram-negative bacteria dataset, data for discriminating outer membrane proteins and apoptosis proteins dataset. We observed that our method can predict the subcellular location with high accuracy. Another advantage of the proposed method is that it can improve the accuracy of the prediction of some classes with few sequences in training and is therefore useful for datasets with imbalanced distribution of classes. This study introduces an algorithm which uses only the primary sequence of a protein to predict its subcellular location. The proposed recursive scheme represents an interesting methodology for learning and combining classifiers. The method is computationally efficient and competitive with the previously reported approaches in terms of prediction accuracies as empirical results indicate. The code for the software is available upon request.

  5. Studies on proinsulin and proglucagon biosynthesis and conversion at the subcellular level: I. Fractionation procedure and characterization of the subcellular fractions

    PubMed Central

    Noe, BD; Baste, CA; Bauer, GE

    1977-01-01

    Anglerfish islets were homogenized in 0.25 M sucrose and separated into seven separate subcellular fractions by differential and discontinuous density gradient centrifugation. The objective was to isolate microsomes and secretory granules in a highly purified state. The fractions were characterized by electron microscopy and chemical analyses. Each fraction was assayed for its content of protein, RNA, DNA, immunoreactive insulin (IRI), and immunoreactive glucagon (IRG). Ultrastructural examination showed that two of the seven subcellular fractions contain primarily mitochondria, and that two others consist almost exclusively of secretory granules. A fifth fraction contains rough and smooth microsomal vesicles. The remaining two fractions are the cell supernate and the nuclei and cell debris. The content of DNA and RNA in all fractions is consistent with the observed ultrastructure. More than 82 percent of the total cellular IRI and 89(percent) of the total cellular IRG are found in the fractions of secretory granules. The combined fractions of secretory granules and microsomes consistently yield >93 percent of the total IRG. These results indicate that the fractionation procedure employed yields fractions of microsomes and secretory granules that contain nearly all the immunoassayable insulin and glucagons found in whole islet tissue. These fractions are thus considered suitable for study of proinsulin and proglucagon biosynthesis and their metabolic conversion at the subcellular level. PMID:328517

  6. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents.

    PubMed

    Benoit, Stephen C; Kemp, Christopher J; Elias, Carol F; Abplanalp, William; Herman, James P; Migrenne, Stephanie; Lefevre, Anne-Laure; Cruciani-Guglielmacci, Céline; Magnan, Christophe; Yu, Fang; Niswender, Kevin; Irani, Boman G; Holland, William L; Clegg, Deborah J

    2009-09-01

    Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-theta, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybridization and immunohistochemistry, we found that PKC-theta was expressed in discrete neuronal populations of the arcuate nucleus, specifically the neuropeptide Y/agouti-related protein neurons and the dorsal medial nucleus in the hypothalamus. CNS exposure to palmitic acid via direct infusion or by oral gavage increased the localization of PKC-theta to cell membranes in the hypothalamus, which was associated with impaired hypothalamic insulin and leptin signaling. This finding was specific for palmitic acid, as the monounsaturated fatty acid, oleic acid, neither increased membrane localization of PKC-theta nor induced insulin resistance. Finally, arcuate-specific knockdown of PKC-theta attenuated diet-induced obesity and improved insulin signaling. These results suggest that many of the deleterious effects of high-fat diets, specifically those enriched with palmitic acid, are CNS mediated via PKC-theta activation, resulting in reduced insulin activity.

  7. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-θ subcellular localization in rodents

    PubMed Central

    Benoit, Stephen C.; Kemp, Christopher J.; Elias, Carol F.; Abplanalp, William; Herman, James P.; Migrenne, Stephanie; Lefevre, Anne-Laure; Cruciani-Guglielmacci, Céline; Magnan, Christophe; Yu, Fang; Niswender, Kevin; Irani, Boman G.; Holland, William L.; Clegg, Deborah J.

    2009-01-01

    Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-θ, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybridization and immunohistochemistry, we found that PKC-θ was expressed in discrete neuronal populations of the arcuate nucleus, specifically the neuropeptide Y/agouti-related protein neurons and the dorsal medial nucleus in the hypothalamus. CNS exposure to palmitic acid via direct infusion or by oral gavage increased the localization of PKC-θ to cell membranes in the hypothalamus, which was associated with impaired hypothalamic insulin and leptin signaling. This finding was specific for palmitic acid, as the monounsaturated fatty acid, oleic acid, neither increased membrane localization of PKC-θ nor induced insulin resistance. Finally, arcuate-specific knockdown of PKC-θ attenuated diet-induced obesity and improved insulin signaling. These results suggest that many of the deleterious effects of high-fat diets, specifically those enriched with palmitic acid, are CNS mediated via PKC-θ activation, resulting in reduced insulin activity. PMID:19726875

  8. Biochemical localization of a protein involved in Gluconacetobacter hansenii cellulose synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Prashanti R; Catchmark, Jeffrey M; Brown, Nicole Robitaille

    2011-02-08

    Using subcellular fractionation and Western blot methods, we have shown that AcsD, one of the proteins encoded by the Acetobacter cellulose synthase (acs) operon, is localized in the periplasmic region of the cell. AcsD protein was heterologously expressed in Escherichia coli and purified using histidine tag affinity methods. The purified protein was used to obtain rabbit polyclonal antibodies. The purity of the subcellular fractions was assessed by marker enzyme assays.

  9. Characterization of monocarboxylate transporters (MCTs) expression in soft tissue sarcomas: distinct prognostic impact of MCT1 sub-cellular localization.

    PubMed

    Pinheiro, Céline; Penna, Valter; Morais-Santos, Filipa; Abrahão-Machado, Lucas F; Ribeiro, Guilherme; Curcelli, Emílio C; Olivieri, Marcus V; Morini, Sandra; Valença, Isabel; Ribeiro, Daniela; Schmitt, Fernando C; Reis, Rui M; Baltazar, Fátima

    2014-05-09

    Soft tissue sarcomas (STSs) are a group of neoplasms, which, despite current therapeutic advances, still confer a poor outcome to half of the patients. As other solid tumors, STSs exhibit high glucose consumption rates, associated with worse prognosis and therapeutic response. As highly glycolytic tumors, we hypothesized that sarcomas should present an increased expression of lactate transporters (MCTs). Immunohistochemical expression of MCT1, MCT2, MCT4 and CD147 was assessed in a series of 86 STSs and the expression profiles were associated with patients' clinical-pathological parameters. MCT1, MCT4 and CD147 were mainly observed in the plasma membrane of cancer cells (around 60% for MCTs and 40% for CD147), while MCT2 was conspicuously found in the cytoplasm (94.2%). Importantly, we observed MCT1 nuclear expression (32.6%). MCT1 and MCT4, alone or co-expressed with CD147 in the plasma membrane, were associated with poor prognostic variables including high tumor grade, disease progression and shorter overall survival. Conversely, we found MCT1 nuclear expression to be associated with low grade tumors and longer overall survival. The present work represents the first report of MCTs characterization in STSs. We showed the original finding of MCT1 expression in the nucleus. Importantly, opposite biological roles should be behind the dual sub-cellular localization of MCT1, as plasma membrane expression of MCT1 is associated with worse patients' prognosis, while nuclear expression is associated with better prognosis.

  10. The asparagine residue in the FRNK box of potyviral helper-component protease is critical for its small RNA binding and subcellular localization.

    PubMed

    Sahana, Nandita; Kaur, Harpreet; Jain, R K; Palukaitis, Peter; Canto, Tomas; Praveen, Shelly

    2014-05-01

    The multifunctional potyviral helper-component protease (HcPro) contains variable regions with some functionally conserved domains, such as the FRNK box. Natural variants occur at the FRNK box, a conserved central domain, known for its role in RNA binding and RNAi suppression activities, although no dominant natural variants for the N(182) residue are known to occur. Here, a mutant at HcPro(N182L) was developed to investigate its role in natural populations. Using in vitro studies, we found an increase in the small RNA (sRNA) binding potential of HcPro(N182L) without affecting its protein-protein interaction properties, suggesting that the presence of N(182) is critical to maintain threshold levels of sRNAs, but does not interfere in the self-interaction of HcPro. Furthermore, we found that expression of HcPro(N182L) in Nicotiana benthamiana affected plant growth. Transient expression of HcPro(N182L) induced reporter gene expression in 16c GFP transgenic plants more than HcPro did, suggesting that replacement of asparagine in the FRNK box favours RNA silencing suppression. HcPro was found to be distributed in the nucleus and cytoplasm, whereas HcPro(N182L) was observed only in cytoplasmic inclusion bodies in N. benthamiana leaves, when fused to a GFP tag and expressed by agro-infiltration, suggesting mutation favours oligomerization of HcPro. These findings suggest that amino acid N(182) of the conserved FRNK box may regulate RNA silencing mechanisms, and is required for maintenance of the subcellular localization of the protein for its multi-functionality. Hence, the N(182) residue of the FRNK box seems to be indispensable for potyvirus infection during evolution.

  11. Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation.

    PubMed

    Karimpour, Shervin; Lou, Junyang; Lin, Lilie L; Rene, Luis M; Lagunas, Lucio; Ma, Xinrong; Karra, Sreenivasu; Bradbury, C Matthew; Markovina, Stephanie; Goswami, Prabhat C; Spitz, Douglas R; Hirota, Kiichi; Kalvakolanu, Dhananjaya V; Yodoi, Junji; Gius, David

    2002-09-12

    A recently identified class of signaling factors uses critical cysteine motif(s) that act as redox-sensitive 'sulfhydryl switches' to reversibly modulate specific signal transduction cascades regulating downstream proteins with similar redox-sensitive sites. For example, signaling factors such as redox factor-1 (Ref-1) and transcription factors such as the AP-1 complex both contain redox-sensitive cysteine motifs that regulate activity in response to oxidative stress. The mammalian thioredoxin reductase-1 (TR) is an oxidoreductase selenocysteine-containing flavoprotein that also appears to regulate multiple downstream intracellular redox-sensitive proteins. Since ionizing radiation (IR) induces oxidative stress as well as increases AP-1 DNA-binding activity via the activation of Ref-1, the potential roles of TR and thioredoxin (TRX) in the regulation of AP-1 activity in response to IR were investigated. Permanently transfected cell lines that overexpress wild type TR demonstrated constitutive increases in AP-1 DNA-binding activity as well as AP-1-dependent reporter gene expression, relative to vector control cells. In contrast, permanently transfected cell lines expressing a TR gene with the active site cysteine motif deleted were unable to induce AP-1 activity or reporter gene expression in response to IR. Transient genetic overexpression of either the TR wild type or dominant-negative genes demonstrated similar results using a transient assay system. One mechanism through which TR regulates AP-1 activity appears to involve TRX sub-cellular localization, with no change in the total TRX content of the cell. These results identify a novel function of the TR enzyme as a signaling factor in the regulation of AP-1 activity via a cysteine motif located in the protein.

  12. Expanding the Interactome of TES by Exploiting TES Modules with Different Subcellular Localizations.

    PubMed

    Sala, Stefano; Van Troys, Marleen; Medves, Sandrine; Catillon, Marie; Timmerman, Evy; Staes, An; Schaffner-Reckinger, Elisabeth; Gevaert, Kris; Ampe, Christophe

    2017-05-05

    The multimodular nature of many eukaryotic proteins underlies their temporal or spatial engagement in a range of protein cocomplexes. Using the multimodule protein testin (TES), we here report a proteomics approach to increase insight in cocomplex diversity. The LIM-domain containing and tumor suppressor protein TES is present at different actin cytoskeleton adhesion structures in cells and influences cell migration, adhesion and spreading. TES module accessibility has been proposed to vary due to conformational switching and variants of TES lacking specific domains target to different subcellular locations. By applying iMixPro AP-MS ("intelligent Mixing of Proteomes"-affinity purification-mass spectrometry) to a set of tagged-TES modular variants, we identified proteins residing in module-specific cocomplexes. The obtained distinct module-specific interactomes combine to a global TES interactome that becomes more extensive and richer in information. Applying pathway analysis to the module interactomes revealed expected actin-related canonical pathways and also less expected pathways. We validated two new TES cocomplex partners: TGFB1I1 and a short form of the glucocorticoid receptor. TES and TGFB1I1 are shown to oppositely affect cell spreading providing biological validity for their copresence in complexes since they act in similar processes.

  13. The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Abdeljelil, Nawel; Rochette, Pierre-Alexandre; Pearson, Angela, E-mail: angela.pearson@iaf.inrs.ca

    2013-09-15

    Mutations in UL24 of herpes simplex virus type 1 can lead to a syncytial phenotype. We hypothesized that UL24 affects the sub-cellular distribution of viral glycoproteins involved in fusion. In non-immortalized human foreskin fibroblasts (HFFs) we detected viral glycoproteins B (gB), gD, gH and gL present in extended blotches throughout the cytoplasm with limited nuclear membrane staining; however, in HFFs infected with a UL24-deficient virus (UL24X), staining for the viral glycoproteins appeared as long, thin streaks running across the cell. Interestingly, there was a decrease in co-localized staining of gB and gD with F-actin at late times in UL24X-infected HFFs.more » Treatment with chemical agents that perturbed the actin cytoskeleton hindered the formation of UL24X-induced syncytia in these cells. These data support a model whereby the UL24 syncytial phenotype results from a mislocalization of viral glycoproteins late in infection. - Highlights: • UL24 affects the sub-cellular distribution of viral glycoproteins required for fusion. • Sub-cellular distribution of viral glycoproteins varies in cell-type dependent manner. • Drugs targeting actin microfilaments affect formation of UL24-related syncytia in HFFs.« less

  14. Decipher the dynamic coordination between enzymatic activity and structural modulation at focal adhesions in living cells

    NASA Astrophysics Data System (ADS)

    Lu, Shaoying; Seong, Jihye; Wang, Yi; Chang, Shiou-Chi; Eichorst, John Paul; Ouyang, Mingxing; Li, Julie Y.-S.; Chien, Shu; Wang, Yingxiao

    2014-07-01

    Focal adhesions (FAs) are dynamic subcellular structures crucial for cell adhesion, migration and differentiation. It remains an enigma how enzymatic activities in these local complexes regulate their structural remodeling in live cells. Utilizing biosensors based on fluorescence resonance energy transfer (FRET), we developed a correlative FRET imaging microscopy (CFIM) approach to quantitatively analyze the subcellular coordination between the enzymatic Src activation and the structural FA disassembly. CFIM reveals that the Src kinase activity only within the microdomain of lipid rafts at the plasma membrane is coupled with FA dynamics. FA disassembly at cell periphery was linearly dependent on this raft-localized Src activity, although cells displayed heterogeneous levels of response to stimulation. Within lipid rafts, the time delay between Src activation and FA disassembly was 1.2 min in cells seeded on low fibronectin concentration ([FN]) and 4.3 min in cells on high [FN]. CFIM further showed that the level of Src-FA coupling, as well as the time delay, was regulated by cell-matrix interactions, as a tight enzyme-structure coupling occurred in FA populations mediated by integrin αvβ3, but not in those by integrin α5β1. Therefore, different FA subpopulations have distinctive regulation mechanisms between their local kinase activity and structural FA dynamics.

  15. Role of ion channels and subcellular Ca2+ signaling in arachidonic acid-induced dilation of pressurized retinal arterioles.

    PubMed

    Kur, Joanna; McGahon, Mary K; Fernández, Jose A; Scholfield, C Norman; McGeown, J Graham; Curtis, Tim M

    2014-05-02

    To investigate the mechanisms responsible for the dilatation of rat retinal arterioles in response to arachidonic acid (AA). Changes in the diameter of isolated, pressurized rat retinal arterioles were measured in the presence of AA alone and following pre-incubation with pharmacologic agents inhibiting Ca(2+) sparks and oscillations and K(+) channels. Subcellular Ca(2+) signals were recorded in arteriolar myocytes using Fluo-4-based confocal imaging. The effects of AA on membrane currents of retinal arteriolar myocytes were studied using whole-cell perforated patch clamp recording. Arachidonic acid dilated pressurized retinal arterioles under conditions of myogenic tone. Eicosatetraynoic acid (ETYA) exerted a similar effect, but unlike AA, its effects were rapidly reversible. Arachidonic acid-induced dilation was associated with an inhibition of subcellular Ca(2+) signals. Interventions known to block Ca(2+) sparks and oscillations in retinal arterioles caused dilatation and inhibited AA-induced vasodilator responses. Arachidonic acid accelerated the rate of inactivation of the A-type Kv current and the voltage dependence of inactivation was shifted to more negative membrane potentials. It also enhanced voltage-activated and spontaneous large-conductance calcium-activated K(+) (BK) currents, but only at positive membrane potentials. Pharmacologic inhibition of A-type Kv and BK currents failed to block AA-induced vasodilator responses. Arachidonic acid suppressed L-type Ca(2+) currents. These results suggest that AA induces retinal arteriolar vasodilation by inhibiting subcellular Ca(2+)-signaling activity in retinal arteriolar myocytes, most likely through a mechanism involving the inhibition of L-type Ca(2+)-channel activity. Arachidonic acid actions on K(+) currents are inconsistent with a model in which K(+) channels contribute to the vasodilator effects of AA.

  16. Subcellular trafficking of FGF controls tracheal invasion of Drosophila flight muscle.

    PubMed

    Peterson, Soren J; Krasnow, Mark A

    2015-01-15

    To meet the extreme oxygen demand of insect flight muscle, tracheal (respiratory) tubes ramify not only on its surface, as in other tissues, but also within T-tubules and ultimately surrounding every mitochondrion. Although this remarkable physiological specialization has long been recognized, its cellular and molecular basis is unknown. Here, we show that Drosophila tracheoles invade flight muscle T-tubules through transient surface openings. Like other tracheal branching events, invasion requires the Branchless FGF pathway. However, localization of the FGF chemoattractant changes from all muscle membranes to T-tubules as invasion begins. Core regulators of epithelial basolateral membrane identity localize to T-tubules, and knockdown of AP-1γ, required for basolateral trafficking, redirects FGF from T-tubules to surface, increasing tracheal surface ramification and preventing invasion. We propose that tracheal invasion is controlled by an AP-1-dependent switch in FGF trafficking. Thus, subcellular targeting of a chemoattractant can direct outgrowth to specific domains, including inside the cell. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Intracellular And Subcellular Partitioning Of Nickel In Aureococcus Anophagefferens

    NASA Astrophysics Data System (ADS)

    Wang, B.; Axe, L.; Wei, L.; Bagheri, S.; Michalopoulou, Z.

    2008-12-01

    Brown tides are caused by Aureococcus anophagefferens, a species of Pelagophyceae, and have been observed in NY/NJ waterways effecting ecosystems by attenuating light, changing water color, reducing eelgrass beds, decreasing shellfisheries, and further impacting the food web by reducing phytoplankton. Although the impact of macronutrients and iron on A. anophagefferens has been well studied, contaminants, and specifically trace metals have not. In long-term experiments designed to investigate the growth and toxicity, Cd, Cu, Ni, and Zn exposure was evaluated over 10-13 to 10-7 M for the free metal ion. While growth was inhibited or terminated from exposure to Cd and Cu, nickel addition ([Ni2+]: 10-11.23 to 10-10.23 M) promoted A. anophagefferens growth. Short-term experiments are being conducted to better understand mechanistically nickel speciation and distribution. Both total intracellular and subcellular metal concentrations are being assessed with radio-labeled 63Ni. Subcellular fractions are defined as metal-sensitive fractions (MSF) constituting organelles, cell debris, and heat-denatured protein [HDP] and biologically detoxified metal comprising heat-stabilized protein [HSP] and metal-rich granules [MRG]. Based on subcellular distribution, aqueous [Ni2+] concentrations, and A. anophagefferens growth rates, potential reaction pathways promoting A. anophagefferens growth can be addressed.

  18. Reversible Oxidation of a Conserved Methionine in the Nuclear Export Sequence Determines Subcellular Distribution and Activity of the Fungal Nitrate Regulator NirA.

    PubMed

    Gallmetzer, Andreas; Silvestrini, Lucia; Schinko, Thorsten; Gesslbauer, Bernd; Hortschansky, Peter; Dattenböck, Christoph; Muro-Pastor, María Isabel; Kungl, Andreas; Brakhage, Axel A; Scazzocchio, Claudio; Strauss, Joseph

    2015-07-01

    The assimilation of nitrate, a most important soil nitrogen source, is tightly regulated in microorganisms and plants. In Aspergillus nidulans, during the transcriptional activation process of nitrate assimilatory genes, the interaction between the pathway-specific transcription factor NirA and the exportin KapK/CRM1 is disrupted, and this leads to rapid nuclear accumulation and transcriptional activity of NirA. In this work by mass spectrometry, we found that in the absence of nitrate, when NirA is inactive and predominantly cytosolic, methionine 169 in the nuclear export sequence (NES) is oxidized to methionine sulfoxide (Metox169). This oxidation depends on FmoB, a flavin-containing monooxygenase which in vitro uses methionine and cysteine, but not glutathione, as oxidation substrates. The function of FmoB cannot be replaced by alternative Fmo proteins present in A. nidulans. Exposure of A. nidulans cells to nitrate led to rapid reduction of NirA-Metox169 to Met169; this reduction being independent from thioredoxin and classical methionine sulfoxide reductases. Replacement of Met169 by isoleucine, a sterically similar but not oxidizable residue, led to partial loss of NirA activity and insensitivity to FmoB-mediated nuclear export. In contrast, replacement of Met169 by alanine transformed the protein into a permanently nuclear and active transcription factor. Co-immunoprecipitation analysis of NirA-KapK interactions and subcellular localization studies of NirA mutants lacking different parts of the protein provided evidence that Met169 oxidation leads to a change in NirA conformation. Based on these results we propose that in the presence of nitrate the activation domain is exposed, but the NES is masked by a central portion of the protein (termed nitrate responsive domain, NiRD), thus restricting active NirA molecules to the nucleus. In the absence of nitrate, Met169 in the NES is oxidized by an FmoB-dependent process leading to loss of protection by the Ni

  19. Prolactin-induced Subcellular Targeting of GLUT1 Glucose Transporter in Living Mammary Epithelial Cells

    PubMed Central

    Riskin, Arieh; Mond, Yehudit

    2015-01-01

    Background Studying the biological pathways involved in mammalian milk production during lactation could have many clinical implications. The mammary gland is unique in its requirement for transport of free glucose into the cell for the synthesis of lactose, the primary carbohydrate in milk. Objective To study GLUT1 trafficking and subcellular targeting in living mammary epithelial cells (MEC) in culture. Methods Immunocytochemistry was used to study GLUT1 hormonally regulated subcellular targeting in human MEC (HMEC). To study GLUT1 targeting and recycling in living mouse MEC (MMEC) in culture, we constructed fusion proteins of GLUT1 and green fluorescent protein (GFP) and expressed them in CIT3 MMEC. Cells were maintained in growth medium (GM), or exposed to secretion medium (SM), containing prolactin. Results GLUT1 in HMEC localized primarily to the plasma membrane in GM. After exposure to prolactin for 4 days, GLUT1 was targeted intracellularly and demonstrated a perinuclear distribution, co-localizing with lactose synthetase. The dynamic trafficking of GFP-GLUT1 fusion proteins in CIT3 MMEC suggested a basal constitutive GLUT1 recycling pathway between an intracellular pool and the cell surface that targets most GLUT1 to the plasma membrane in GM. Upon exposure to prolactin in SM, GLUT1 was specifically targeted intracellularly within 90–110 minutes. Conclusions Our studies suggest intracellular targeting of GLUT1 to the central vesicular transport system upon exposure to prolactin. The existence of a dynamic prolactin-induced sorting machinery for GLUT1 could be important for transport of free glucose into the Golgi for lactose synthesis during lactation. PMID:26886772

  20. Detection of focal adhesion kinase activation at membrane microdomains by fluorescence resonance energy transfer.

    PubMed

    Seong, Jihye; Ouyang, Mingxing; Kim, Taejin; Sun, Jie; Wen, Po-Chao; Lu, Shaoying; Zhuo, Yue; Llewellyn, Nicholas M; Schlaepfer, David D; Guan, Jun-Lin; Chien, Shu; Wang, Yingxiao

    2011-07-26

    Proper subcellular localization of focal adhesion kinase (FAK) is crucial for many cellular processes. It remains, however, unclear how FAK activity is regulated at subcellular compartments. To visualize the FAK activity at different membrane microdomains, we develop a fluorescence resonance energy transfer (FRET)-based FAK biosensor, and target it into or outside of detergent-resistant membrane (DRM) regions at the plasma membrane. Here we show that, on cell adhesion to extracellular matrix proteins or stimulation by platelet-derived growth factor (PDGF), the FRET responses of DRM-targeting FAK biosensor are stronger than that at non-DRM regions, suggesting that FAK activation can occur at DRM microdomains. Further experiments reveal that the PDGF-induced FAK activation is mediated and maintained by Src activity, whereas FAK activation on cell adhesion is independent of, and in fact essential for the Src activation. Therefore, FAK is activated at membrane microdomains with distinct activation mechanisms in response to different physiological stimuli. © 2011 Macmillan Publishers Limited. All rights reserved.

  1. Capillary electrophoretic analysis reveals subcellular binding between individual mitochondria and cytoskeleton

    PubMed Central

    Kostal, Vratislav; Arriaga, Edgar A.

    2011-01-01

    Interactions between the cytoskeleton and mitochondria are essential for normal cellular function. An assessment of such interactions is commonly based on bulk analysis of mitochondrial and cytoskeletal markers present in a given sample, which assumes complete binding between these two organelle types. Such measurements are biased because they rarely account for non-bound ‘free’ subcellular species. Here we report on the use of capillary electrophoresis with dual laser induced fluorescence detection (CE-LIF) to identify, classify, count and quantify properties of individual binding events of mitochondria and cytoskeleton. Mitochondria were fluorescently labeled with DsRed2 while F-actin, a major cytoskeletal component, was fluorescently labeled with Alexa488-phalloidin. In a typical subcellular fraction of L6 myoblasts, 79% of mitochondrial events did not have detectable levels of F-actin, while the rest had on average ~2 zeptomole F-actin, which theoretically represents a ~ 2.5-μm long network of actin filaments per event. Trypsin treatment of L6 subcellular fractions prior to analysis decreased the fraction of mitochondrial events with detectable levels of F-actin, which is expected from digestion of cytoskeletal proteins on the surface of mitochondria. The electrophoretic mobility distributions of the individual events were also used to further distinguish between cytoskeleton-bound from cytoskeleton-free mitochondrial events. The CE-LIF approach described here could be further developed to explore cytoskeleton interactions with other subcellular structures, the effects of cytoskeleton destabilizing drugs, and the progression of viral infections. PMID:21309532

  2. Phosphorylation of Tat-interactive protein 60 kDa by protein kinase C epsilon is important for its subcellular localisation.

    PubMed

    Sapountzi, Vasileia; Logan, Ian R; Nelson, Glyn; Cook, Susan; Robson, Craig N

    2008-01-01

    Tat-interactive protein 60 kDa is a nuclear acetyltransferase that both coactivates and corepresses transcription factors and has a definitive function in the DNA damage response. Here, we provide evidence that Tat-interactive protein 60 kDa is phosphorylated by protein kinase C epsilon. In vitro, protein kinase C epsilon phosphorylates Tat-interactive protein 60 kDa on at least two sites within the acetyltransferase domain. In whole cells, activation of protein kinase C increases the levels of phosphorylated Tat-interactive protein 60 kDa and the interaction of Tat-interactive protein 60 kDa with protein kinase C epsilon. A phosphomimetic mutant Tat-interactive protein 60 kDa has distinct subcellular localisation compared to the wild-type protein in whole cells. Taken together, these findings suggest that the protein kinase C epsilon phosphorylation sites on Tat-interactive protein 60 kDa are important for its subcellular localisation. Regulation of the subcellular localisation of Tat-interactive protein 60 kDa via phosphorylation provides a novel means of controlling Tat-interactive protein 60 kDa function.

  3. Effect of Content of Sulfate Groups in Seaweed Polysaccharides on Antioxidant Activity and Repair Effect of Subcellular Organelles in Injured HK-2 Cells

    PubMed Central

    Ma, Xiao-Tao; Sun, Xin-Yuan; Yu, Kai; Gui, Qin

    2017-01-01

    This study aims to investigate the repair effect of subcellular structure injuries of the HK-2 cells of four degraded seaweed polysaccharides (DSPs), namely, the degraded Porphyra yezoensis, Gracilaria lemaneiformis, Sargassum fusiform, and Undaria pinnatifida polysaccharides. The four DSPs have similar molecular weight, but with different content of sulfate groups (i.e., 17.9%, 13.3%, 8.2%, and 5.5%, resp.). The damaged model was established using 2.8 mmol/L oxalate to injure HK-2 cells, and 60 μg/mL of various DSPs was used to repair the damaged cells. With the increase of sulfate group content in DSPs, the scavenging activity of radicals and their reducing power were all improved. Four kinds of DSPs have repair effect on the subcellular organelles of damaged HK-2 cells. After being repaired by DSPs, the release amount of lactate dehydrogenase was decreased, the integrity of cell membrane and lysosome increased, the Δψm increased, the cell of G1 phase arrest was inhibited, the proportion of S phase increased, and cell apoptotic and necrosis rates were significantly reduced. The greater the content of sulfate group is, the stronger is the repair ability of the polysaccharide. These DSPs, particularly the polysaccharide with higher sulfate group content, may be a potential drug for the prevention and cure of kidney stones. PMID:28785372

  4. Co-localization of fluorescent labeled lipid nanoparticles with specifically tagged subcellular compartments by single particle tracking at low nanoparticle to cell ratios.

    PubMed

    Tiffany, Matthew; Szoka, Francis C

    2016-11-01

    We utilized quantitative high-resolution single particle tracking to study the internalization and endosomal sorting of lipid nanoparticles (LNPs) by HeLa cells in vitro to gain a better understanding of how cells process LNPs that are used for siRNA delivery. We compared the trafficking of three formulations that have been demonstrated to deliver siRNA into cells. They were composed of either a tritratable anionic lipid, formulation of cholesterol hemisuccinate (CHEMS), or a titratatable cationic lipid formulation of 1,2-dilinoleyloxy-3-dimethylaminopropane (DLinDMA) or a non-titratable cationic formulation lipid formulation of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). They also contained either a substantial percentage of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or cholesterol and 5 mole percent 1,2-dimyristoyl-sn-glycerol-[methoxy(polyethylene glycol)-2000 (PEG-DMG). We optically measured the endosomal pH experienced by individual LNPs, observed the internalization pathways used and tracked the particles as they co-localized with fluorescent protein tags on compartment-specific proteins, during endosomal sorting to the lysosome. The data revealed significant differences in the accumulation in subcellular compartments among the three formulations, which help to explain the observed effects LNP composition exerts on in vitro delivery efficiency.

  5. A moving view: subcellular trafficking processes in pattern recognition receptor-triggered plant immunity.

    PubMed

    Ben Khaled, Sara; Postma, Jelle; Robatzek, Silke

    2015-01-01

    A significant challenge for plants is to induce localized defense responses at sites of pathogen attack. Therefore, host subcellular trafficking processes enable accumulation and exchange of defense compounds, which contributes to the plant on-site defenses in response to pathogen perception. This review summarizes our current understanding of the transport processes that facilitate immunity, the significance of which is highlighted by pathogens reprogramming membrane trafficking through host cell translocated effectors. Prominent immune-related cargos of plant trafficking pathways are the pattern recognition receptors (PRRs), which must be present at the plasma membrane to sense microbes in the apoplast. We focus on the dynamic localization of the FLS2 receptor and discuss the pathways that regulate receptor transport within the cell and their link to FLS2-mediated immunity. One emerging theme is that ligand-induced late endocytic trafficking is conserved across different PRR protein families as well as across different plant species.

  6. Characterization of monocarboxylate transporters (MCTs) expression in soft tissue sarcomas: distinct prognostic impact of MCT1 sub-cellular localization

    PubMed Central

    2014-01-01

    Background Soft tissue sarcomas (STSs) are a group of neoplasms, which, despite current therapeutic advances, still confer a poor outcome to half of the patients. As other solid tumors, STSs exhibit high glucose consumption rates, associated with worse prognosis and therapeutic response. As highly glycolytic tumors, we hypothesized that sarcomas should present an increased expression of lactate transporters (MCTs). Methods Immunohistochemical expression of MCT1, MCT2, MCT4 and CD147 was assessed in a series of 86 STSs and the expression profiles were associated with patients’ clinical-pathological parameters. Results MCT1, MCT4 and CD147 were mainly observed in the plasma membrane of cancer cells (around 60% for MCTs and 40% for CD147), while MCT2 was conspicuously found in the cytoplasm (94.2%). Importantly, we observed MCT1 nuclear expression (32.6%). MCT1 and MCT4, alone or co-expressed with CD147 in the plasma membrane, were associated with poor prognostic variables including high tumor grade, disease progression and shorter overall survival. Conversely, we found MCT1 nuclear expression to be associated with low grade tumors and longer overall survival. Conclusions The present work represents the first report of MCTs characterization in STSs. We showed the original finding of MCT1 expression in the nucleus. Importantly, opposite biological roles should be behind the dual sub-cellular localization of MCT1, as plasma membrane expression of MCT1 is associated with worse patients’ prognosis, while nuclear expression is associated with better prognosis. PMID:24885736

  7. Abnormal subcellular localization of AQP5 and downregulated AQP5 protein in parotid glands of streptozotocin-induced diabetic rats.

    PubMed

    Wang, Di; Yuan, Zhenfang; Inoue, Noriko; Cho, Gota; Shono, Masayuki; Ishikawa, Yasuko

    2011-05-01

    The mechanisms underlying diabetic xerostomia have not been clarified in relation with aquaporin-5 (AQP5) subcellular localization in salivary glands. Western blotting, real-time PCR, and immunocytochemistry were used to analyse AQP5 protein levels and mRNA expression. AQP5 protein levels were measured in the apical plasma membrane (APM) and detergent-insoluble fraction prepared from streptozotocin-diabetic rat parotid glands. Despite an increase in AQP5 mRNA, AQP5 protein levels were decreased in diabetic parotid glands compared with controls. Immunohistochemical studies indicated that AQP5, under unstimulated conditions, colocalised with flotillin-2 and GM1 with a diffuse pattern in the apical cytoplasm of acinar and duct cells in both control and diabetic rats. Ten minutes after intravenous injection of muscarinic agonist cevimeline, AQP5 was dramatically increased together with flotillin-2 and GM1 in the APM of parotid acinar and duct cells of control but not diabetic rats. Sixty minutes after injection, AQP5 was located in a diffuse pattern in the apical cytoplasm in both rats. Treatment of the parotid tissues with cevimeline for 10min increased the Triton X-100 solubility of AQP5 in control but not diabetic rats. Administration of insulin to diabetic rats tended to restore the cevimeline-induced translocation of AQP5. Lack of AQP5 translocation in the salivary gland in response to a muscarinic agonist and downregulation of AQP5 protein might lead to diabetic xerostomia. Cevimeline is useful to cure diabetic xerostomia under insulin administration. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  8. Subcellular Localization of Large Yellow Croaker ( Larimichthys crocea) TLR21 and Expression Profiling of Its Gene in Immune Response

    NASA Astrophysics Data System (ADS)

    Sun, Qingxue; Fan, Zejun; Yao, Cuiluan

    2018-04-01

    Toll-like receptor 21 (TLR21) is a non-mammalian type TLR, and plays an important role in innate immune response in fish. In this paper, the full-length cDNA sequence of TLR21 gene was identified and characterized from large yellow croaker, Larimichthys crocea and was termed as LcTLR21. It consists of 3365 bp, including a 5'-terminal untranslated region (UTR) of 97 bp, a 3'-terminal UTR of 331 bp, and an open reading frame (ORF) of 2937 bp encoding a polypeptide of 978 amino acid residues. The deduced LcTLR21 contains a signal peptide domain at N-terminal, 12 leucine-rich repeats (LRRs) at the extracellular region, a transmembrane domain and a cytoplasmic toll-interleukin-1 receptor (TIR) domain at the C-terminal. Subcellular localization analysis revealed that the LcTLR21-GFP was constitutively expressed in cytoplasm. Tissue expression analysis indicated that LcTLR21 gene broadly expressed in most of the examined tissues, with the most predominant abundance in spleen, followed by head-kidney and liver, while the weakest expression was detected in brain. The expression level of LcTLR21 after LPS, poly I:C and Vibrio parahaemolyticus challenges was investigated in spleen, head-kidney and liver. LcTLR21 gene transcripts increased significantly in all examined tissues after the challenges, and the highest expression level was detected in liver at 24 h after poly I:C stimulation ( P < 0.05), suggesting that LcTLR21 might play a crucial role in fish resistance to viral and bacterial infections.

  9. A photocleavable rapamycin conjugate for spatiotemporal control of small GTPase activity.

    PubMed

    Umeda, Nobuhiro; Ueno, Tasuku; Pohlmeyer, Christopher; Nagano, Tetsuo; Inoue, Takanari

    2011-01-12

    We developed a novel method to spatiotemporally control the activity of signaling molecules. A newly synthesized photocaged rapamycin derivative induced rapid dimerization of FKBP (FK-506 binding protein) and FRB (FKBP-rapamycin binding protein) upon UV irradiation. With this system and the spatially confined UV irradiation, we achieved subcellularly localized activation of Rac, a member of small GTPases. Our technique offers a powerful approach to studies of dynamic intracellular signaling events.

  10. Smartphone-based imaging of the corneal endothelium at sub-cellular resolution

    NASA Astrophysics Data System (ADS)

    Toslak, Devrim; Thapa, Damber; Erol, Muhammet Kazim; Chen, Yanjun; Yao, Xincheng

    2017-07-01

    This aim of this study was to test the feasibility of smartphone-based specular microscopy of the corneal endothelium at a sub-cellular resolution. Quantitative examination of endothelial cells is essential for evaluating corneal disease such as determining a diagnosis, monitoring progression and assessing treatment. Smartphone-based technology promises a new opportunity to develop affordable devices to foster quantitative examination of endothelial cells in rural and underserved areas. In our study, we incorporated an iPhone 6 and a slit lamp to demonstrate the feasibility of smartphone-based microscopy of the corneal endothelium at a sub-cellular resolution. The sub-cellular resolution images allowed quantitative calculation of the endothelial cell density. Comparative measurements revealed a normal endothelial cell density of 2978 cells/mm2 in the healthy cornea, and a significantly reduced cell density of 1466 cells/mm2 in the diseased cornea with Fuchs' dystrophy. Our ultimate goal is to develop a smartphone-based telemedicine device for low-cost examination of the corneal endothelium, which can benefit patients in rural areas and underdeveloped countries to reduce health care disparities.

  11. Subcellular partitioning of metals in Aporrectodea caliginosa along a gradient of metal exposure in 31 field-contaminated soils.

    PubMed

    Beaumelle, Léa; Gimbert, Frédéric; Hedde, Mickaël; Guérin, Annie; Lamy, Isabelle

    2015-07-01

    Subcellular fractionation of metals in organisms was proposed as a better way to characterize metal bioaccumulation. Here we report the impact of a laboratory exposure to a wide range of field-metal contaminated soils on the subcellular partitioning of metals in the earthworm Aporrectodea caliginosa. Soils moderately contaminated were chosen to create a gradient of soil metal availability; covering ranges of both soil metal contents and of several soil parameters. Following exposure, Cd, Pb and Zn concentrations were determined both in total earthworm body and in three subcellular compartments: cytosolic, granular and debris fractions. Three distinct proxies of soil metal availability were investigated: CaCl2-extractable content dissolved content predicted by a semi-mechanistic model and free ion concentration predicted by a geochemical speciation model. Subcellular partitionings of Cd and Pb were modified along the gradient of metal exposure, while stable Zn partitioning reflected regulation processes. Cd subcellular distribution responded more strongly to increasing soil Cd concentration than the total internal content, when Pb subcellular distribution and total internal content were similarly affected. Free ion concentrations were better descriptors of Cd and Pb subcellular distribution than CaCl2 extractable and dissolved metal concentrations. However, free ion concentrations and soil total metal contents were equivalent descriptors of the subcellular partitioning of Cd and Pb because they were highly correlated. Considering lowly contaminated soils, our results raise the question of the added value of three proxies of metal availability compared to soil total metal content in the assessment of metal bioavailability to earthworm. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Localization and Functionality of the Inflammasome in Neutrophils*

    PubMed Central

    Bakele, Martina; Joos, Melanie; Burdi, Sofia; Allgaier, Nicolas; Pöschel, Simone; Fehrenbacher, Birgit; Schaller, Martin; Marcos, Veronica; Kümmerle-Deschner, Jasmin; Rieber, Nikolaus; Borregaard, Niels; Yazdi, Amir; Hector, Andreas; Hartl, Dominik

    2014-01-01

    Neutrophils represent the major fraction of circulating immune cells and are rapidly recruited to sites of infection and inflammation. The inflammasome is a multiprotein complex that regulates the generation of IL-1 family proteins. The precise subcellular localization and functionality of the inflammasome in human neutrophils are poorly defined. Here we demonstrate that highly purified human neutrophils express key components of the NOD-like receptor family, pyrin domain containing 3 (NLRP3), and absent in melanoma 2 (AIM2) inflammasomes, particularly apoptosis-associated speck-like protein containing a CARD (ASC), AIM2, and caspase-1. Subcellular fractionation and microscopic analyses further showed that inflammasome components were localized in the cytoplasm and also noncanonically in secretory vesicle and tertiary granule compartments. Whereas IL-1β and IL-18 were expressed at the mRNA level and released as protein, highly purified neutrophils neither expressed nor released IL-1α at baseline or upon stimulation. Upon inflammasome activation, highly purified neutrophils released substantially lower levels of IL-1β protein compared with partially purified neutrophils. Serine proteases and caspases were differentially involved in IL-1β release, depending on the stimulus. Spontaneous activation of the NLRP3 inflammasome in neutrophils in vivo affected IL-1β, but not IL-18 release. In summary, these studies show that human neutrophils express key components of the inflammasome machinery in distinct intracellular compartments and release IL-1β and IL-18, but not IL-1α or IL-33 protein. Targeting the neutrophil inflammasome may represent a future therapeutic strategy to modulate neutrophilic inflammatory diseases, such as cystic fibrosis, rheumatoid arthritis, or sepsis. PMID:24398679

  13. Subcellular distribution of delta 5-3 beta-hydroxy steroid dehydrogenase in the granulosa cells of the domestic fowl (Gallus domesticus).

    PubMed Central

    Armstrong, D G

    1979-01-01

    1. The distribution of 3 beta-hydroxy steroid dehydrogenase was examined in the subcellular fractions of granulosa cells collected from the ovary of the domestic fowl. 2. 3 beta-hydroxy steroid dehydrogenase activity was observed in the mitochondrial (4000g for 20min) and microsomal (105 000g for 120min) fractions. 3. Approximately three times more 3 beta-hydroxy steroid dehydrogenase activity was associated with the cytochrome oxidase activity (a mitochondrial marker enzyme) in anteovulatory-follicle granulosa cells than with that of the postovulatory follicle. 4. Comparison of the latent properties of mitochondrial 3 beta-hydroxy steroid dehydrogenase with those of cytochrome oxidase and isocitrate dehydrogenase indicated that 3 beta-hydroxy steroid dehydrogenase is located extramitochondrially. 5. This apparent distribution of 3 beta-hydroxy steroid dehydrogenase is explained on the basis that the mitochondrial activity is either an artefact caused by a redistribution in the subcellular location of the enzyme, occurring during homogenization, or by the existence of a functionally heterogeneous endoplasmic reticulum that yields particles of widely differing sedimentation properties. PMID:518548

  14. Mercury speciation and subcellular distribution in experimentally dosed and wild birds.

    PubMed

    Perkins, Marie; Barst, Benjamin D; Hadrava, Justine; Basu, Niladri

    2017-12-01

    Many bird species are exposed to methylmercury (MeHg) at levels shown to cause sublethal effects. Although MeHg sensitivity and assimilation can vary among species and developmental stages, the underlying reasons (such as MeHg toxicokinetics) are poorly understood. We investigated Hg distribution at the tissue and cellular levels in birds by examining Hg speciation in blood, brain, and liver and Hg subcellular distribution in liver. We used MeHg egg injection of white leghorn chicken (Gallus gallus domesticus), sampled at 3 early developmental stages, and embryonic ring-billed gulls (Larus delawarensis) exposed to maternally deposited MeHg. The percentage of MeHg (relative to total Hg [THg]) in blood, brain, and liver ranged from 94 to 121%, indicating little MeHg demethylation. A liver subcellular partitioning procedure was used to determine how THg was distributed between potentially sensitive and detoxified compartments. The distributions of THg among subcellular fractions were similar among chicken time points, and between embryonic chicken and ring-billed gulls. A greater proportion of THg was associated with metal-sensitive fractions than detoxified fractions. Within the sensitive compartment, THg was found predominately in heat-denatured proteins (∼42-46%), followed by mitochondria (∼15-18%). A low rate of MeHg demethylation and high proportion of THg in metal-sensitive subcellular fractions further indicates that embryonic and hatchling time points are Hg-sensitive developmental stages, although further work is needed across a range of additional species and life stages. Environ Toxicol Chem 2017;36:3289-3298. © 2017 SETAC. © 2017 SETAC.

  15. Subcellular targeting and interactions among the Potato virus X TGB proteins.

    PubMed

    Samuels, Timmy D; Ju, Ho-Jong; Ye, Chang-Ming; Motes, Christy M; Blancaflor, Elison B; Verchot-Lubicz, Jeanmarie

    2007-10-25

    Potato virus X (PVX) encodes three proteins named TGBp1, TGBp2, and TGBp3 which are required for virus cell-to-cell movement. To determine whether PVX TGB proteins interact during virus cell-cell movement, GFP was fused to each TGB coding sequence within the viral genome. Confocal microscopy was used to study subcellular accumulation of each protein in virus-infected plants and protoplasts. GFP:TGBp2 and TGBp3:GFP were both seen in the ER, ER-associated granular vesicles, and perinuclear X-bodies suggesting that these proteins interact in the same subdomains of the endomembrane network. When plasmids expressing CFP:TGBp2 and TGBp3:GFP were co-delivered to tobacco leaf epidermal cells, the fluorescent signals overlapped in ER-associated granular vesicles indicating that these proteins colocalize in this subcellular compartment. GFP:TGBp1 was seen in the nucleus, cytoplasm, rod-like inclusion bodies, and in punctate sites embedded in the cell wall. The puncta were reminiscent of previous reports showing viral proteins in plasmodesmata. Experiments using CFP:TGBp1 and YFP:TGBp2 or TGBp3:GFP showed CFP:TGBp1 remained in the cytoplasm surrounding the endomembrane network. There was no evidence that the granular vesicles contained TGBp1. Yeast two hybrid experiments showed TGBp1 self associates but failed to detect interactions between TGBp1 and TGBp2 or TGBp3. These experiments indicate that the PVX TGB proteins have complex subcellular accumulation patterns and likely cooperate across subcellular compartments to promote virus infection.

  16. Specific serine-proline phosphorylation and glycogen synthase kinase 3β-directed subcellular targeting of stathmin 3/Sclip in neurons.

    PubMed

    Devaux, Sara; Poulain, Fabienne E; Devignot, Véronique; Lachkar, Sylvie; Irinopoulou, Theano; Sobel, André

    2012-06-22

    During nervous system development, neuronal growth, migration, and functional morphogenesis rely on the appropriate control of the subcellular cytoskeleton including microtubule dynamics. Stathmin family proteins play major roles during the various stages of neuronal differentiation, including axonal growth and branching, or dendritic development. We have shown previously that stathmins 2 (SCG10) and 3 (SCLIP) fulfill distinct, independent and complementary regulatory roles in axonal morphogenesis. Although the two proteins have been proposed to display the four conserved phosphorylation sites originally identified in stathmin 1, we show here that they possess distinct phosphorylation sites within their specific proline-rich domains (PRDs) that are differentially regulated by phosphorylation by proline-directed kinases involved in the control of neuronal differentiation. ERK2 or CDK5 phosphorylate the two proteins but with different site specificities. We also show for the first time that, unlike stathmin 2, stathmin 3 is a substrate for glycogen synthase kinase (GSK) 3β both in vitro and in vivo. Interestingly, stathmin 3 phosphorylated at its GSK-3β target site displays a specific subcellular localization at neuritic tips and within the actin-rich peripheral zone of the growth cone of differentiating hippocampal neurons in culture. Finally, pharmacological inhibition of GSK-3β induces a redistribution of stathmin 3, but not stathmin 2, from the periphery toward the Golgi region of neurons. Stathmin proteins can thus be either regulated locally or locally targeted by specific phosphorylation, each phosphoprotein of the stathmin family fulfilling distinct and specific roles in the control of neuronal differentiation.

  17. The potato-specific apyrase is apoplastically localized and has influence on gene expression, growth, and development.

    PubMed

    Riewe, David; Grosman, Lukasz; Fernie, Alisdair R; Wucke, Cornelia; Geigenberger, Peter

    2008-07-01

    Apyrases hydrolyze nucleoside triphosphates and diphosphates and are found in all eukaryotes and a few prokaryotes. Although their enzymatic properties have been well characterized, relatively little is known regarding their subcellular localization and physiological function in plants. In this study, we used reverse genetic and biochemical approaches to investigate the role of potato (Solanum tuberosum)-specific apyrase. Silencing of the apyrase gene family with RNA interference constructs under the control of the constitutive 35S promoter led to a strong decrease in apyrase activity to below 10% of the wild-type level. This decreased activity led to phenotypic changes in the transgenic lines, including a general retardation in growth, an increase in tuber number per plant, and differences in tuber morphology. Silencing of apyrase under the control of a tuber-specific promoter led to similar changes in tuber morphology; however, there were no direct effects of apyrase inhibition on tuber metabolism. DNA microarrays revealed that decreased expression of apyrase leads to increased levels of transcripts coding for cell wall proteins involved in growth and genes involved in energy transfer and starch synthesis. To place these results in context, we determined the subcellular localization of the potato-specific apyrase. Using a combination of approaches, we were able to demonstrate that this enzyme is localized to the apoplast. We describe the evidence that underlies both this fact and that potato-specific apyrase has a crucial role in regulating growth and development.

  18. Subcellular Redox Targeting: Bridging in Vitro and in Vivo Chemical Biology.

    PubMed

    Long, Marcus J C; Poganik, Jesse R; Ghosh, Souradyuti; Aye, Yimon

    2017-03-17

    Networks of redox sensor proteins within discrete microdomains regulate the flow of redox signaling. Yet, the inherent reactivity of redox signals complicates the study of specific redox events and pathways by traditional methods. Herein, we review designer chemistries capable of measuring flux and/or mimicking subcellular redox signaling at the cellular and organismal level. Such efforts have begun to decipher the logic underlying organelle-, site-, and target-specific redox signaling in vitro and in vivo. These data highlight chemical biology as a perfect gateway to interrogate how nature choreographs subcellular redox chemistry to drive precision redox biology.

  19. Subcellular glucose exposure biases the spatial distribution of insulin granules in single pancreatic beta cells.

    PubMed

    Terao, Kyohei; Gel, Murat; Okonogi, Atsuhito; Fuke, Ariko; Okitsu, Teru; Tada, Takashi; Suzuki, Takaaki; Nagamatsu, Shinya; Washizu, Masao; Kotera, Hidetoshi

    2014-02-18

    In living tissues, a cell is exposed to chemical substances delivered partially to its surface. Such a heterogeneous chemical environment potentially induces cell polarity. To evaluate this effect, we developed a microfluidic device that realizes spatially confined delivery of chemical substances at subcellular resolution. Our microfluidic device allows simple setup and stable operation for over 4 h to deliver chemicals partially to a single cell. Using the device, we showed that subcellular glucose exposure triggers an intracellular [Ca(2+)] change in the β-cells. In addition, the imaging of a cell expressing GFP-tagged insulin showed that continuous subcellular exposure to glucose biased the spatial distribution of insulin granules toward the site where the glucose was delivered. Our approach illustrates an experimental technique that will be applicable to many biological experiments for imaging the response to subcellular chemical exposure and will also provide new insights about the development of polarity of β-cells.

  20. Subcellular glucose exposure biases the spatial distribution of insulin granules in single pancreatic beta cells

    PubMed Central

    Terao, Kyohei; Gel, Murat; Okonogi, Atsuhito; Fuke, Ariko; Okitsu, Teru; Tada, Takashi; Suzuki, Takaaki; Nagamatsu, Shinya; Washizu, Masao; Kotera, Hidetoshi

    2014-01-01

    In living tissues, a cell is exposed to chemical substances delivered partially to its surface. Such a heterogeneous chemical environment potentially induces cell polarity. To evaluate this effect, we developed a microfluidic device that realizes spatially confined delivery of chemical substances at subcellular resolution. Our microfluidic device allows simple setup and stable operation for over 4 h to deliver chemicals partially to a single cell. Using the device, we showed that subcellular glucose exposure triggers an intracellular [Ca2+] change in the β-cells. In addition, the imaging of a cell expressing GFP-tagged insulin showed that continuous subcellular exposure to glucose biased the spatial distribution of insulin granules toward the site where the glucose was delivered. Our approach illustrates an experimental technique that will be applicable to many biological experiments for imaging the response to subcellular chemical exposure and will also provide new insights about the development of polarity of β-cells. PMID:24535122

  1. Identification of mycobacterial surface proteins released into subcellular compartments of infected macrophages.

    PubMed

    Beatty, W L; Russell, D G

    2000-12-01

    Considerable effort has focused on the identification of proteins secreted from Mycobacterium spp. that contribute to the development of protective immunity. Little is known, however, about the release of mycobacterial proteins from the bacterial phagosome and the potential role of these molecules in chronically infected macrophages. In the present study, the release of mycobacterial surface proteins from the bacterial phagosome into subcellular compartments of infected macrophages was analyzed. Mycobacterium bovis BCG was surface labeled with fluorescein-tagged succinimidyl ester, an amine-reactive probe. The fluorescein tag was then used as a marker for the release of bacterial proteins in infected macrophages. Fractionation studies revealed bacterial proteins within subcellular compartments distinct from mycobacteria and mycobacterial phagosomes. To identify these proteins, subcellular fractions free of bacteria were probed with mycobacterium-specific antibodies. The fibronectin attachment protein and proteins of the antigen 85-kDa complex were identified among the mycobacterial proteins released from the bacterial phagosome.

  2. Identification of Mycobacterial Surface Proteins Released into Subcellular Compartments of Infected Macrophages

    PubMed Central

    Beatty, Wandy L.; Russell, David G.

    2000-01-01

    Considerable effort has focused on the identification of proteins secreted from Mycobacterium spp. that contribute to the development of protective immunity. Little is known, however, about the release of mycobacterial proteins from the bacterial phagosome and the potential role of these molecules in chronically infected macrophages. In the present study, the release of mycobacterial surface proteins from the bacterial phagosome into subcellular compartments of infected macrophages was analyzed. Mycobacterium bovis BCG was surface labeled with fluorescein-tagged succinimidyl ester, an amine-reactive probe. The fluorescein tag was then used as a marker for the release of bacterial proteins in infected macrophages. Fractionation studies revealed bacterial proteins within subcellular compartments distinct from mycobacteria and mycobacterial phagosomes. To identify these proteins, subcellular fractions free of bacteria were probed with mycobacterium-specific antibodies. The fibronectin attachment protein and proteins of the antigen 85-kDa complex were identified among the mycobacterial proteins released from the bacterial phagosome. PMID:11083824

  3. Subcellular Targeting of Methylmercury Lyase Enhances Its Specific Activity for Organic Mercury Detoxification in Plants1

    PubMed Central

    Bizily, Scott P.; Kim, Tehryung; Kandasamy, Muthugapatti K.; Meagher, Richard B.

    2003-01-01

    Methylmercury is an environmental pollutant that biomagnifies in the aquatic food chain with severe consequences for humans and other animals. In an effort to remove this toxin in situ, we have been engineering plants that express the bacterial mercury resistance enzymes organomercurial lyase MerB and mercuric ion reductase MerA. In vivo kinetics experiments suggest that the diffusion of hydrophobic organic mercury to MerB limits the rate of the coupled reaction with MerA (Bizily et al., 2000). To optimize reaction kinetics for organic mercury compounds, the merB gene was engineered to target MerB for accumulation in the endoplasmic reticulum and for secretion to the cell wall. Plants expressing the targeted MerB proteins and cytoplasmic MerA are highly resistant to organic mercury and degrade organic mercury at 10 to 70 times higher specific activity than plants with the cytoplasmically distributed wild-type MerB enzyme. MerB protein in endoplasmic reticulum-targeted plants appears to accumulate in large vesicular structures that can be visualized in immunolabeled plant cells. These results suggest that the toxic effects of organic mercury are focused in microenvironments of the secretory pathway, that these hydrophobic compartments provide more favorable reaction conditions for MerB activity, and that moderate increases in targeted MerB expression will lead to significant gains in detoxification. In summary, to maximize phytoremediation efficiency of hydrophobic pollutants in plants, it may be beneficial to target enzymes to specific subcellular environments. PMID:12586871

  4. A Novel Mutation of Human Liver Alanine:Glyoxylate Aminotransferase Causes Primary Hyperoxaluria Type 1: Immunohistochemical Quantification and Subcellular Distribution

    PubMed Central

    Kawai, Chikage; Minatogawa, Yohsuke; Akiyoshi, Hidetaka; Hirose, Shinichi; Suehiro, Tsunatoshi; Tone, Shigenobu

    2012-01-01

    A novel alanine:glyoxylate aminotransferase (AGT) mutation involved in primary hyperoxaluria type 1 (PH1) was studied in Japanese patients. Two mutations in exon 7, c.751T>A and c.752G>A, lead to a W251K amino acid substitution. Proband 1 (patient 1) was homozygous for the W251K mutation allele (DDBJ Accession No. AB292648), and AGT-specific activity in the patient’s liver was very low. To reveal the cause of the low enzymatic activity, the intracellular localization of AGT (W251K) was studied using immunohistochemistry and immunoelectron microscopy. The latter analysis showed that patient 2 had only one-fifth of the normal AGT expression per catalase, suggesting impairment of AGT (W251K) dependent transport into peroxisomes. Peroxisomal transport of human AGT is believed to be dependent on the presence of the type 1 peroxisomal targeting sequence. The C-terminal tripeptide of AGT, KKL is necessary for peroxisomal targeting. In cultured cells, EGFP-AGT (W251K) localized both in the peroxisome and cytosol. These results were consistent with the data obtained from liver analysis of patient 2. The subcellular distribution of AGT (W251K) and the results from a random mutagenesis study suggest that KKL is necessary for peroxisomal targeting of human AGT, but additional signal other than KKL may be necessary. PMID:22685354

  5. Immunogold labeling reveals subcellular localisation of silica nanoparticles in a human blood-brain barrier model

    NASA Astrophysics Data System (ADS)

    Ye, Dong; Anguissola, Sergio; O'Neill, Tiina; Dawson, Kenneth A.

    2015-05-01

    Subcellular location of nanoparticles has been widely investigated with fluorescence microscopy, via fluorescently labeled antibodies to visualise target antigens in cells. However, fluorescence microscopy, such as confocal or live cell imaging, has generally limited 3D spatial resolution. Conventional electron microscopy can be useful in bridging resolution gap, but still not ideal in resolving subcellular organelle identities. Using the pre-embedding immunogold electron microscopic imaging, we performed accurate examination of the intracellular trafficking and gathered further evidence of transport mechanisms of silica nanoparticles across a human in vitro blood-brain barrier model. Our approach can effectively immunolocalise a variety of intracellular compartments and provide new insights into the uptake and subcellular transport of nanoparticles.Subcellular location of nanoparticles has been widely investigated with fluorescence microscopy, via fluorescently labeled antibodies to visualise target antigens in cells. However, fluorescence microscopy, such as confocal or live cell imaging, has generally limited 3D spatial resolution. Conventional electron microscopy can be useful in bridging resolution gap, but still not ideal in resolving subcellular organelle identities. Using the pre-embedding immunogold electron microscopic imaging, we performed accurate examination of the intracellular trafficking and gathered further evidence of transport mechanisms of silica nanoparticles across a human in vitro blood-brain barrier model. Our approach can effectively immunolocalise a variety of intracellular compartments and provide new insights into the uptake and subcellular transport of nanoparticles. Electronic supplementary information (ESI) available: Nanoparticle characterisation data, preservation of cellular structures, staining controls, optimisation of size amplification via the silver enhancement, and more imaging results from anti-clathrin and anti-caveolin 1

  6. Phosphatidic acid (PA) binds PP2AA1 to regulate PP2A activity and PIN1 polar localization.

    PubMed

    Gao, Hong-Bo; Chu, Yu-Jia; Xue, Hong-Wei

    2013-09-01

    Phospholipase D (PLD) exerts broad biological functions in eukaryotes through regulating downstream effectors by its product, phosphatidic acid (PA). Protein kinases and phosphatases, such as mammalian target of rapamycin (mTOR), Protein Phosphatase 1 (PP1) and Protein Phosphatase 2C (PP2C), are PA-binding proteins that execute crucial regulatory functions in both animals and plants. PA participates in many signaling pathways by modulating the enzymatic activity and/or subcellular localization of bound proteins. In this study, we demonstrated that PLD-derived PA interacts with the scaffolding A1 subunit of Protein Phosphatase 2A (PP2A) and regulates PP2A-mediated PIN1 dephosphorylation in Arabidopsis. Genetic and pharmacological studies showed that both PA and PP2A participate in the regulation of auxin distribution. In addition, both the phosphorylation status and polar localization of PIN1 protein were affected by PLD inhibitors. Exogenous PA triggered the membrane accumulation of PP2AA1 and enhanced the PP2A activity at membrane, while PLD inhibition resulted in the reduced endosomal localization and perinuclear aggregation of PP2AA1. These results demonstrate the important role of PLD-derived PA in normal PP2A-mediated PIN dephosphorylation and reveal a novel mechanism, in which PA recruits PP2AA1 to the membrane system and regulates PP2A function on membrane-targeted proteins. As PA and PP2A are conserved among eukaryotes, other organisms might use similar mechanisms to mediate multiple biological processes.

  7. Dual-channel (green and red) fluorescence microendoscope with subcellular resolution

    NASA Astrophysics Data System (ADS)

    de Paula D'Almeida, Camila; Fortunato, Thereza Cury; Teixeira Rosa, Ramon Gabriel; Romano, Renan Arnon; Moriyama, Lilian Tan; Pratavieira, Sebastião.

    2018-02-01

    Usually, tissue images at cellular level need biopsies to be done. Considering this, diagnostic devices, such as microendoscopes, have been developed with the purpose of do not be invasive. This study goal is the development of a dual-channel microendoscope, using two fluorescent labels: proflavine and protoporphyrin IX (PpIX), both approved by Food and Drug Administration. This system, with the potential to perform a microscopic diagnosis and to monitor a photodynamic therapy (PDT) session, uses a halogen lamp and an image fiber bundle to perform subcellular image. Proflavine fluorescence indicates the nuclei of the cell, which is the reference for PpIX localization on image tissue. Preliminary results indicate the efficacy of this optical technique to detect abnormal tissues and to improve the PDT dosimetry. This was the first time, up to our knowledge, that PpIX fluorescence was microscopically observed in vivo, in real time, combined to other fluorescent marker (Proflavine), which allowed to simultaneously observe the spatial localization of the PpIX in the mucosal tissue. We believe this system is very promising tool to monitor PDT in mucosa as it happens. Further experiments have to be performed in order to validate the system for PDT monitoring.

  8. Geometric modeling of subcellular structures, organelles, and multiprotein complexes

    PubMed Central

    Feng, Xin; Xia, Kelin; Tong, Yiying; Wei, Guo-Wei

    2013-01-01

    SUMMARY Recently, the structure, function, stability, and dynamics of subcellular structures, organelles, and multi-protein complexes have emerged as a leading interest in structural biology. Geometric modeling not only provides visualizations of shapes for large biomolecular complexes but also fills the gap between structural information and theoretical modeling, and enables the understanding of function, stability, and dynamics. This paper introduces a suite of computational tools for volumetric data processing, information extraction, surface mesh rendering, geometric measurement, and curvature estimation of biomolecular complexes. Particular emphasis is given to the modeling of cryo-electron microscopy data. Lagrangian-triangle meshes are employed for the surface presentation. On the basis of this representation, algorithms are developed for surface area and surface-enclosed volume calculation, and curvature estimation. Methods for volumetric meshing have also been presented. Because the technological development in computer science and mathematics has led to multiple choices at each stage of the geometric modeling, we discuss the rationales in the design and selection of various algorithms. Analytical models are designed to test the computational accuracy and convergence of proposed algorithms. Finally, we select a set of six cryo-electron microscopy data representing typical subcellular complexes to demonstrate the efficacy of the proposed algorithms in handling biomolecular surfaces and explore their capability of geometric characterization of binding targets. This paper offers a comprehensive protocol for the geometric modeling of subcellular structures, organelles, and multiprotein complexes. PMID:23212797

  9. Biomechanics of subcellular structures by non-invasive Brillouin microscopy

    NASA Astrophysics Data System (ADS)

    Antonacci, Giuseppe; Braakman, Sietse

    2016-11-01

    Cellular biomechanics play a pivotal role in the pathophysiology of several diseases. Unfortunately, current methods to measure biomechanical properties are invasive and mostly limited to the surface of a cell. As a result, the mechanical behaviour of subcellular structures and organelles remains poorly characterised. Here, we show three-dimensional biomechanical images of single cells obtained with non-invasive, non-destructive Brillouin microscopy with an unprecedented spatial resolution. Our results quantify the longitudinal elastic modulus of subcellular structures. In particular, we found the nucleoli to be stiffer than both the nuclear envelope (p < 0.0001) and the surrounding cytoplasm (p < 0.0001). Moreover, we demonstrate the mechanical response of cells to Latrunculin-A, a drug that reduces cell stiffness by preventing cytoskeletal assembly. Our technique can therefore generate valuable insights into cellular biomechanics and its role in pathophysiology.

  10. A comparative proteomic strategy for subcellular proteome research: ICAT approach coupled with bioinformatics prediction to ascertain rat liver mitochondrial proteins and indication of mitochondrial localization for catalase.

    PubMed

    Jiang, Xiao-Sheng; Dai, Jie; Sheng, Quan-Hu; Zhang, Lei; Xia, Qi-Chang; Wu, Jia-Rui; Zeng, Rong

    2005-01-01

    Subcellular proteomics, as an important step to functional proteomics, has been a focus in proteomic research. However, the co-purification of "contaminating" proteins has been the major problem in all the subcellular proteomic research including all kinds of mitochondrial proteome research. It is often difficult to conclude whether these "contaminants" represent true endogenous partners or artificial associations induced by cell disruption or incomplete purification. To solve such a problem, we applied a high-throughput comparative proteome experimental strategy, ICAT approach performed with two-dimensional LC-MS/MS analysis, coupled with combinational usage of different bioinformatics tools, to study the proteome of rat liver mitochondria prepared with traditional centrifugation (CM) or further purified with a Nycodenz gradient (PM). A total of 169 proteins were identified and quantified convincingly in the ICAT analysis, in which 90 proteins have an ICAT ratio of PM:CM>1.0, while another 79 proteins have an ICAT ratio of PM:CM<1.0. Almost all the proteins annotated as mitochondrial according to Swiss-Prot annotation, bioinformatics prediction, and literature reports have a ratio of PM:CM>1.0, while proteins annotated as extracellular or secreted, cytoplasmic, endoplasmic reticulum, ribosomal, and so on have a ratio of PM:CM<1.0. Catalase and AP endonuclease 1, which have been known as peroxisomal and nuclear, respectively, have shown a ratio of PM:CM>1.0, confirming the reports about their mitochondrial location. Moreover, the 125 proteins with subcellular location annotation have been used as a testing dataset to evaluate the efficiency for ascertaining mitochondrial proteins by ICAT analysis and the bioinformatics tools such as PSORT, TargetP, SubLoc, MitoProt, and Predotar. The results indicated that ICAT analysis coupled with combinational usage of different bioinformatics tools could effectively ascertain mitochondrial proteins and distinguish contaminant

  11. Spreading the news: subcellular and organellar reactive oxygen species production and signalling.

    PubMed

    Mignolet-Spruyt, Lorin; Xu, Enjun; Idänheimo, Niina; Hoeberichts, Frank A; Mühlenbock, Per; Brosché, Mikael; Van Breusegem, Frank; Kangasjärvi, Jaakko

    2016-06-01

    As plants are sessile organisms that have to attune their physiology and morphology continuously to varying environmental challenges in order to survive and reproduce, they have evolved complex and integrated environment-cell, cell-cell, and cell-organelle signalling circuits that regulate and trigger the required adjustments (such as alteration of gene expression). Although reactive oxygen species (ROS) are essential components of this network, their pathways are not yet completely unravelled. In addition to the intrinsic chemical properties that define the array of interaction partners, mobility, and stability, ROS signalling specificity is obtained via the spatiotemporal control of production and scavenging at different organellar and subcellular locations (e.g. chloroplasts, mitochondria, peroxisomes, and apoplast). Furthermore, these cellular compartments may crosstalk to relay and further fine-tune the ROS message. Hence, plant cells might locally and systemically react upon environmental or developmental challenges by generating spatiotemporally controlled dosages of certain ROS types, each with specific chemical properties and interaction targets, that are influenced by interorganellar communication and by the subcellular location and distribution of the involved organelles, to trigger the suitable acclimation responses in association with other well-established cellular signalling components (e.g. reactive nitrogen species, phytohormones, and calcium ions). Further characterization of this comprehensive ROS signalling matrix may result in the identification of new targets and key regulators of ROS signalling, which might be excellent candidates for engineering or breeding stress-tolerant plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis

    NASA Technical Reports Server (NTRS)

    Dammann, Christian; Ichida, Audrey; Hong, Bimei; Romanowsky, Shawn M.; Hrabak, Estelle M.; Harmon, Alice C.; Pickard, Barbara G.; Harper, Jeffrey F.; Evans, M. L. (Principal Investigator)

    2003-01-01

    Calcium-dependent protein kinases (CDPKs) are specific to plants and some protists. Their activation by calcium makes them important switches for the transduction of intracellular calcium signals. Here, we identify the subcellular targeting potentials for nine CDPK isoforms from Arabidopsis, as determined by expression of green fluorescent protein (GFP) fusions in transgenic plants. Subcellular locations were determined by fluorescence microscopy in cells near the root tip. Isoforms AtCPK3-GFP and AtCPK4-GFP showed a nuclear and cytosolic distribution similar to that of free GFP. Membrane fractionation experiments confirmed that these isoforms were primarily soluble. A membrane association was observed for AtCPKs 1, 7, 8, 9, 16, 21, and 28, based on imaging and membrane fractionation experiments. This correlates with the presence of potential N-terminal acylation sites, consistent with acylation as an important factor in membrane association. All but one of the membrane-associated isoforms targeted exclusively to the plasma membrane. The exception was AtCPK1-GFP, which targeted to peroxisomes, as determined by covisualization with a peroxisome marker. Peroxisome targeting of AtCPK1-GFP was disrupted by a deletion of two potential N-terminal acylation sites. The observation of a peroxisome-located CDPK suggests a mechanism for calcium regulation of peroxisomal functions involved in oxidative stress and lipid metabolism.

  13. Engineering an effective Mn-binding MRI reporter protein by subcellular targeting

    PubMed Central

    Bartelle, Benjamin B.; Mana, Miyeko D.; Suero-Abreu, Giselle A.; Rodriguez, Joe J.; Turnbull, Daniel H.

    2014-01-01

    Purpose Manganese (Mn) is an effective contrast agent and biologically active metal, which has been widely utilized for Mn-enhanced MRI (MEMRI). The purpose of this study was to develop and test a Mn binding protein for use as an genetic reporter for MEMRI. Methods The bacterial Mn-binding protein, MntR was identified as a candidate reporter protein. MntR was engineered for expression in mammalian cells, and targeted to different subcellular organelles, including the Golgi Apparatus where cellular Mn is enriched. Transfected HEK293 cells and B16 melanoma cells were tested in vitro and in vivo, using immunocytochemistry and MR imaging and relaxometry. Results Subcellular targeting of MntR to the cytosol, endoplasmic reticulum and Golgi apparatus was verified with immunocytochemistry. After targeting to the Golgi, MntR expression produced robust R1 changes and T1 contrast in cells, in vitro and in vivo. Co-expression with the divalent metal transporter DMT1, a previously described Mn-based reporter, further enhanced contrast in B16 cells in culture, but in the in vivo B16 tumor model tested was not significantly better than MntR alone. Conclusion This second-generation reporter system both expands the capabilities of genetically-encoded reporters for imaging with MEMRI and provides important insights into the mechanisms of Mn biology which create endogenous MEMRI contrast. PMID:25522343

  14. Regulated Norepinephrine Transporter Interaction with the Neurokinin-1 Receptor Establishes Transporter Subcellular Localization*

    PubMed Central

    Arapulisamy, Obulakshmi; Mannangatti, Padmanabhan; Jayanthi, Lankupalle D.

    2013-01-01

    Neurokinin-1 receptor (NK1R) mediates down-regulation of human norepinephrine (NE) transporter (hNET) via protein kinase C (PKC). However, native NET regulation by NK1R and the mechanism by which NK1R targets NET among other potential effectors are unknown. Effect of NK1R activation on native NET regulation and NET/NK1R interaction were studied using rat brain synaptosomes expressing native NET and NK1R as well as human placental trophoblast (HTR) cells coexpressing WT-hNET or NK1R/PKC-resistant hNET-T258A,S259A double mutant (NET-DM) and hNK1R. The selective NK1R agonist, GR73632, and Substance-P (SP) inhibited NE transport and reduced plasma membrane expression of NET and NK1R. Pretreatment with the NK1R antagonist, EMEND (aprepitant) prevented these NK1R-mediated effects. Immunoprecipitation experiments showed that NET forms stable complexes with NK1R. In HTR cells, combined biotinylation and immunoprecipitation studies revealed plasma membrane localization of NET·NK1R complexes. Receptor activation resulted in the internalization of NET·NK1R complexes. Lipid raft and immunoprecipitation analyses revealed the presence of NET·NK1R complexes exclusively in non-raft membrane fractions under basal/unstimulated conditions. However, NK1R activation led to translocation of NET·NK1R complexes to raft-rich membrane fractions. Importantly, PKCα was found in association with raft-localized NET following SP treatment. Similar to WT-NET, PKC-resistant NET-DM was found in association with NK1R exclusively in non-raft fractions. However, SP treatment failed to translocate NET-DM·NK1R complexes from non-raft fractions to raft fractions. Collectively, these results suggest that NK1R forms physical complexes with NET and that the receptor-mediated Thr258 + Ser259 motif-dependent translocation of NET·NK1R complexes into raft-rich microdomains facilitates NET/NK1R interaction with PKCα to coordinate spatially restricted NET regulation. PMID:23979140

  15. Regulated norepinephrine transporter interaction with the neurokinin-1 receptor establishes transporter subcellular localization.

    PubMed

    Arapulisamy, Obulakshmi; Mannangatti, Padmanabhan; Jayanthi, Lankupalle D

    2013-10-04

    Neurokinin-1 receptor (NK1R) mediates down-regulation of human norepinephrine (NE) transporter (hNET) via protein kinase C (PKC). However, native NET regulation by NK1R and the mechanism by which NK1R targets NET among other potential effectors are unknown. Effect of NK1R activation on native NET regulation and NET/NK1R interaction were studied using rat brain synaptosomes expressing native NET and NK1R as well as human placental trophoblast (HTR) cells coexpressing WT-hNET or NK1R/PKC-resistant hNET-T258A,S259A double mutant (NET-DM) and hNK1R. The selective NK1R agonist, GR73632, and Substance-P (SP) inhibited NE transport and reduced plasma membrane expression of NET and NK1R. Pretreatment with the NK1R antagonist, EMEND (aprepitant) prevented these NK1R-mediated effects. Immunoprecipitation experiments showed that NET forms stable complexes with NK1R. In HTR cells, combined biotinylation and immunoprecipitation studies revealed plasma membrane localization of NET·NK1R complexes. Receptor activation resulted in the internalization of NET·NK1R complexes. Lipid raft and immunoprecipitation analyses revealed the presence of NET·NK1R complexes exclusively in non-raft membrane fractions under basal/unstimulated conditions. However, NK1R activation led to translocation of NET·NK1R complexes to raft-rich membrane fractions. Importantly, PKCα was found in association with raft-localized NET following SP treatment. Similar to WT-NET, PKC-resistant NET-DM was found in association with NK1R exclusively in non-raft fractions. However, SP treatment failed to translocate NET-DM·NK1R complexes from non-raft fractions to raft fractions. Collectively, these results suggest that NK1R forms physical complexes with NET and that the receptor-mediated Thr(258) + Ser(259) motif-dependent translocation of NET·NK1R complexes into raft-rich microdomains facilitates NET/NK1R interaction with PKCα to coordinate spatially restricted NET regulation.

  16. AMP-activated kinase in human spermatozoa: identification, intracellular localization, and key function in the regulation of sperm motility.

    PubMed

    Calle-Guisado, Violeta; de Llera, Ana Hurtado; Martin-Hidalgo, David; Mijares, Jose; Gil, Maria C; Alvarez, Ignacio S; Bragado, Maria J; Garcia-Marin, Luis J

    2017-01-01

    AMP-activated kinase (AMPK), a protein that regulates energy balance and metabolism, has recently been identified in boar spermatozoa where regulates key functional sperm processes essential for fertilization. This work's aims are AMPK identification, intracellular localization, and their role in human spermatozoa function. Semen was obtained from healthy human donors. Sperm AMPK and phospho-Thr172-AMPK were analyzed by Western blotting and indirect immunofluorescence. High- and low-quality sperm populations were separated by a 40%-80% density gradient. Human spermatozoa motility was evaluated by an Integrated Semen Analysis System (ISAS) in the presence or absence of the AMPK inhibitor compound C (CC). AMPK is localized along the human spermatozoa, at the entire acrosome, midpiece and tail with variable intensity, whereas its active form, phospho-Thr172-AMPK, shows a prominent staining at the acrosome and sperm tail with a weaker staining in the midpiece and the postacrosomal region. Interestingly, spermatozoa bearing an excess residual cytoplasm show strong AMPK staining in this subcellular compartment. Both AMPK and phospho-Thr172-AMPK human spermatozoa contents exhibit important individual variations. Moreover, active AMPK is predominant in the high motility sperm population, where shows a stronger intensity compared with the low motility sperm population. Inhibition of AMPK activity in human spermatozoa by CC treatment leads to a significant reduction in any sperm motility parameter analyzed: percent of motile sperm, sperm velocities, progressivity, and other motility coefficients. This work identifies and points out AMPK as a new molecular mechanism involved in human spermatozoa motility. Further AMPK implications in the clinical efficiency of assisted reproduction and in other reproductive areas need to be studied.

  17. AMP-activated kinase in human spermatozoa: identification, intracellular localization, and key function in the regulation of sperm motility

    PubMed Central

    Calle-Guisado, Violeta; de Llera, Ana Hurtado; Martin-Hidalgo, David; Mijares, Jose; Gil, Maria C; Alvarez, Ignacio S; Bragado, Maria J; Garcia-Marin, Luis J

    2017-01-01

    AMP-activated kinase (AMPK), a protein that regulates energy balance and metabolism, has recently been identified in boar spermatozoa where regulates key functional sperm processes essential for fertilization. This work's aims are AMPK identification, intracellular localization, and their role in human spermatozoa function. Semen was obtained from healthy human donors. Sperm AMPK and phospho-Thr172-AMPK were analyzed by Western blotting and indirect immunofluorescence. High- and low-quality sperm populations were separated by a 40%–80% density gradient. Human spermatozoa motility was evaluated by an Integrated Semen Analysis System (ISAS) in the presence or absence of the AMPK inhibitor compound C (CC). AMPK is localized along the human spermatozoa, at the entire acrosome, midpiece and tail with variable intensity, whereas its active form, phospho-Thr172-AMPK, shows a prominent staining at the acrosome and sperm tail with a weaker staining in the midpiece and the postacrosomal region. Interestingly, spermatozoa bearing an excess residual cytoplasm show strong AMPK staining in this subcellular compartment. Both AMPK and phospho-Thr172-AMPK human spermatozoa contents exhibit important individual variations. Moreover, active AMPK is predominant in the high motility sperm population, where shows a stronger intensity compared with the low motility sperm population. Inhibition of AMPK activity in human spermatozoa by CC treatment leads to a significant reduction in any sperm motility parameter analyzed: percent of motile sperm, sperm velocities, progressivity, and other motility coefficients. This work identifies and points out AMPK as a new molecular mechanism involved in human spermatozoa motility. Further AMPK implications in the clinical efficiency of assisted reproduction and in other reproductive areas need to be studied. PMID:27678462

  18. The vacuolar ATPase from Entamoeba histolytica: molecular cloning of the gene encoding for the B subunit and subcellular localization of the protein.

    PubMed

    Meléndez-Hernández, Mayra Gisela; Barrios, María Luisa Labra; Orozco, Esther; Luna-Arias, Juan Pedro

    2008-12-23

    Entamoeba histolytica is a professional phagocytic cell where the vacuolar ATPase plays a key role. This enzyme is a multisubunit complex that regulates pH in many subcellular compartments, even in those that are not measurably acidic. It participates in a wide variety of cellular processes such as endocytosis, intracellular transport and membrane fusion. The presence of a vacuolar type H+-ATPase in E. histolytica trophozoites has been inferred previously from inhibition assays of its activity, the isolation of the Ehvma1 and Ehvma3 genes, and by proteomic analysis of purified phagosomes. We report the isolation and characterization of the Ehvma2 gene, which encodes for the subunit B of the vacuolar ATPase. This polypeptide is a 55.3 kDa highly conserved protein with 34 to 80% identity to orthologous proteins from other species. Particularly, in silico studies showed that EhV-ATPase subunit B displays 78% identity and 90% similarity to its Dictyostelium ortholog. A 462 bp DNA fragment of the Ehvma2 gene was expressed in bacteria and recombinant polypeptide was used to raise mouse polyclonal antibodies. EhV-ATPase subunit B antibodies detected a 55 kDa band in whole cell extracts and in an enriched fraction of DNA-containing organelles named EhkOs. The V-ATPase subunit B was located by immunofluorescence and confocal microscopy in many vesicles, in phagosomes, plasma membrane and in EhkOs. We also identified the genes encoding for the majority of the V-ATPase subunits in the E. histolytica genome, and proposed a putative model for this proton pump. We have isolated the Ehvma2 gene which encodes for the V-ATPase subunit B from the E. histolytica clone A. This gene has a 154 bp intron and encodes for a highly conserved polypeptide. Specific antibodies localized EhV-ATPase subunit B in many vesicles, phagosomes, plasma membrane and in EhkOs. Most of the orthologous genes encoding for the EhV-ATPase subunits were found in the E. histolytica genome, indicating the

  19. Differential Subcellular Localization of the Glucocorticoid Receptor in Distinct Neural Stem and Progenitor Populations of the Mouse Telencephalon In Vivo

    PubMed Central

    Tsiarli, Maria A.; Monaghan, A. Paula; DeFranco, Donald B.

    2013-01-01

    Glucocorticoids are given to pregnant women at risk for premature delivery to promote lung maturation. Despite reports of detrimental effects of glucocorticoids on telencephalic neural stem/progenitor cells (NSPCs), the regional and cellular expression of the glucocorticoid receptor (GR) in various NSPC populations in the intact brain has not been thoroughly assessed. Therefore in this study we performed a detailed analysis of GR protein expression in the developing mouse ventral and dorsal telencephalon in vivo. At embryonic day 11.5 (E11.5), the majority of Pax6-positive radial glial cells (RGCs) and Tbr2-positive intermediate progenitor cells (IPCs) expressed nuclear GR, while a small number of RGCs on the apical ventricular zone (aVZ), expressed cytoplasmic GR. However, on E13.5, the latter population of RGCs increased in size, whereas abventricular NSPCs and especially neurons of the cortical plate, expressed nuclear GR. In IPCs, GR was always nuclear. A similar expression profile was observed throughout the ventral telencephalon, hippocampus and olfactory bulb, with NSPCs of the aVZ primarily expressing cytoplasmic GR, while abventricular NSPCs and mature cells primarily expressed nuclear GR. Close to birth, nuclear GR accumulated within specific cortical areas such as layer V, the subplate and CA1 area of the hippocampus. In summary, our data show that GR protein is present in early NSPCs of the dorsal and ventral telencephalon at E11.5 and primarily occupies the nucleus. Moreover, our study suggests that the subcellular localization of the receptor may be subjected to region and neurodevelopmental stage-specific regulation. PMID:23751362

  20. PHISTc protein family members localize to different subcellular organelles and bind Plasmodium falciparum major virulence factor PfEMP-1.

    PubMed

    Kumar, Vikash; Kaur, Jasweer; Singh, Amrit P; Singh, Vineeta; Bisht, Anjali; Panda, Jiban J; Mishra, Prakash C; Hora, Rachna

    2018-01-01

    Plasmodium falciparum encodes a novel repertoire of the Plasmodium helical interspersed subtelomeric (PHIST) family of exported proteins, which play diverse roles in infected red blood cells, contributing to malaria pathogenesis. PHIST proteins are central to parasite biology and modify human erythrocytes by interacting with parasite and host proteins. Here, we have attempted to understand the localization and function of two unexplored proteins of the PHISTc subfamily, PFD1140w and PF11_0503, and compared these with a well-characterized member, PFI1780w. We demonstrate that Phist domains assume different oligomeric states owing to a distinct array of subunit interface residues. Colocalization of a Maurer's cleft signature protein, P. falciparum skeleton-binding protein-1 (PfSBP-1), and P. falciparum erythrocyte membrane protein-1 (PfEMP-1) revealed different subcellular destinations for these PHIST members. We further show the binding of recombinant PHIST proteins to the cytoplasmic tail of PfEMP-1 and a novel interaction with PfSBP-1. Interestingly, PFD1140w interacts with PfEMP-1 and PfSBP-1 simultaneously in vitro leading to formation of a complex. These two distant PHISTc members also bind PfEMP-1 on distinct sites, despite sharing the Phist domain. Our data re-emphasize a supportive role for PHIST proteins in cytoadhesion, and identify a new binding partner, PfSBP-1, for members of this family. This information therefore adds another chapter to the understanding of P. falciparum biology and highlights the significance of the unexplored PHIST family. © 2017 Federation of European Biochemical Societies.

  1. Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.)

    PubMed Central

    2010-01-01

    Background Because of the increasing quantity and high toxicity to humans of polycyclic aromatic hydrocarbons (PAHs) in the environment, several bioremediation mechanisms and protocols have been investigated to restore PAH-contaminated sites. The transport of organic contaminants among plant cells via tissues and their partition in roots, stalks, and leaves resulting from transpiration and lipid content have been extensively investigated. However, information about PAH distributions in intracellular tissues is lacking, thus limiting the further development of a mechanism-based phytoremediation strategy to improve treatment efficiency. Results Pyrene exhibited higher uptake and was more recalcitrant to metabolism in ryegrass roots than was phenanthrene. The kinetic processes of uptake from ryegrass culture medium revealed that these two PAHs were first adsorbed onto root cell walls, and they then penetrated cell membranes and were distributed in intracellular organelle fractions. At the beginning of uptake (< 50 h), adsorption to cell walls dominated the subcellular partitioning of the PAHs. After 96 h of uptake, the subcellular partition of PAHs approached a stable state in the plant water system, with the proportion of PAH distributed in subcellular fractions being controlled by the lipid contents of each component. Phenanthrene and pyrene primarily accumulated in plant root cell walls and organelles, with about 45% of PAHs in each of these two fractions, and the remainder was retained in the dissolved fraction of the cells. Because of its higher lipophilicity, pyrene displayed greater accumulation factors in subcellular walls and organelle fractions than did phenanthrene. Conclusions Transpiration and the lipid content of root cell fractions are the main drivers of the subcellular partition of PAHs in roots. Initially, PAHs adsorb to plant cell walls, and they then gradually diffuse into subcellular fractions of tissues. The lipid content of intracellular

  2. Gold nanoparticle-assisted all optical localized stimulation and monitoring of Ca2+ signaling in neurons

    PubMed Central

    Lavoie-Cardinal, Flavie; Salesse, Charleen; Bergeron, Éric; Meunier, Michel; De Koninck, Paul

    2016-01-01

    Light-assisted manipulation of cells to control membrane activity or intracellular signaling has become a major avenue in life sciences. However, the ability to perform subcellular light stimulation to investigate localized signaling has been limited. Here, we introduce an all optical method for the stimulation and the monitoring of localized Ca2+ signaling in neurons that takes advantage of plasmonic excitation of gold nanoparticles (AuNPs). We show with confocal microscopy that 800 nm laser pulse application onto a neuron decorated with a few AuNPs triggers a transient increase in free Ca2+, measured optically with GCaMP6s. We show that action potentials, measured electrophysiologically, can be induced with this approach. We demonstrate activation of local Ca2+ transients and Ca2+ signaling via CaMKII in dendritic domains, by illuminating a single or few functionalized AuNPs specifically targeting genetically-modified neurons. This NP-Assisted Localized Optical Stimulation (NALOS) provides a new complement to light-dependent methods for controlling neuronal activity and cell signaling. PMID:26857748

  3. Localization and regulation of the N terminal splice variant of PGC-1α in adult skeletal muscle fibers.

    PubMed

    Shen, Tiansheng; Liu, Yewei; Schneider, Martin F

    2012-01-01

    The transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) regulates expression of genes for metabolism and muscle fiber type. Recently, a novel splice variant of PGC-1α (NT-PGC-1α, amino acids 1-270) was cloned and found to be expressed in muscle. Here we use Flag-tagged NT-PGC-1α to examine the subcellular localization and regulation of NT-PGC-1α in skeletal muscle fibers. Flag-NT-PGC-1α is located predominantly in the myoplasm. Nuclear NT-PGC-1α can be increased by activation of protein kinase A. Activation of p38 MAPK by muscle activity or of AMPK had no effect on the subcellular distribution of NT-PGC-1α. Inhibition of CRM1-mediated export only caused relatively slow nuclear accumulation of NT-PGC-1α, indicating that nuclear export of NT-PGC-1α may be mediated by both CRM1-dependent and -independent pathways. Together these results suggest that the regulation of NT-PGC-1α in muscle fibers may be very different from that of the full-length PGC-1α, which is exclusively nuclear.

  4. Hematoporphyrin derivative induced photodamage to brain tumor cells: Alterations in subcellular membranes

    NASA Astrophysics Data System (ADS)

    Sreenivasan, Rajesh; Joshi, Preeti G.; Joshi, Nanda B.

    1997-01-01

    Photoinduced structural and functional changes were studied in the subcellular membranes isolated from HpD treated cells. Changes in the limiting anisotropy of lipid specific probes 1,6,Diphenyl-1,3,5,hexatriene (DPH) and 1-(4-Trimethyl ammonium 1,6 diphenyl)-1,3,5,hexatriene toulene sulphonate (TMA-DPH) incorporated into the membrane were used to assess the structural alterations while changes in the activity of the marker enzymes were used to assess the functional alterations. Our results suggest that damage to the endoplasmic reticulum may play an important role in the photosensitization of brain tumor cells.

  5. Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh.

    PubMed

    Rizk, Aurélien; Paul, Grégory; Incardona, Pietro; Bugarski, Milica; Mansouri, Maysam; Niemann, Axel; Ziegler, Urs; Berger, Philipp; Sbalzarini, Ivo F

    2014-03-01

    Detection and quantification of fluorescently labeled molecules in subcellular compartments is a key step in the analysis of many cell biological processes. Pixel-wise colocalization analyses, however, are not always suitable, because they do not provide object-specific information, and they are vulnerable to noise and background fluorescence. Here we present a versatile protocol for a method named 'Squassh' (segmentation and quantification of subcellular shapes), which is used for detecting, delineating and quantifying subcellular structures in fluorescence microscopy images. The workflow is implemented in freely available, user-friendly software. It works on both 2D and 3D images, accounts for the microscope optics and for uneven image background, computes cell masks and provides subpixel accuracy. The Squassh software enables both colocalization and shape analyses. The protocol can be applied in batch, on desktop computers or computer clusters, and it usually requires <1 min and <5 min for 2D and 3D images, respectively. Basic computer-user skills and some experience with fluorescence microscopy are recommended to successfully use the protocol.

  6. Reversal of subcellular remodelling by losartan in heart failure due to myocardial infarction

    PubMed Central

    Babick, Andrea; Chapman, Donald; Zieroth, Shelley; Elimban, Vijayan; Dhalla, Naranjan S

    2012-01-01

    This study tested the reversal of subcellular remodelling in heart failure due to myocardial infarction (MI) upon treatment with losartan, an angiotensin II receptor antagonist. Twelve weeks after inducing MI, rats were treated with or without losartan (20 mg/kg; daily) for 8 weeks and assessed for cardiac function, cardiac remodelling, subcellular alterations and plasma catecholamines. Cardiac hypertrophy and lung congestion in 20 weeks MI-induced heart failure were associated with increases in plasma catecholamine levels. Haemodynamic examination revealed depressed cardiac function, whereas echocardiographic analysis showed impaired cardiac performance and marked increases in left ventricle wall thickness and chamber dilatation at 20 weeks of inducing MI. These changes in cardiac function, cardiac remodelling and plasma dopamine levels in heart failure were partially or fully reversed by losartan. Sarcoplasmic reticular (SR) Ca2+-pump activity and protein expression, protein and gene expression for phospholamban, as well as myofibrillar (MF) Ca2+-stimulated ATPase activity and α-myosin heavy chain mRNA levels were depressed, whereas β-myosin heavy chain expression was increased in failing hearts; these alterations were partially reversed by losartan. Although SR Ca2+-release activity and mRNA levels for SR Ca2+-pump were decreased in failing heart, these changes were not reversed upon losartan treatment; no changes in mRNA levels for SR Ca2+-release channels were observed in untreated or treated heart failure. These results suggest that the partial improvement of cardiac performance in heart failure due to MI by losartan treatment is associated with partial reversal of cardiac remodelling as well as partial recovery of SR and MF functions. PMID:22947202

  7. Glutamate and GABA receptors and transporters in the basal ganglia: What does their subsynaptic localization reveal about their function?

    PubMed Central

    Galvan, Adriana; Kuwajima, Masaaki; Smith, Yoland

    2006-01-01

    GABA and glutamate, the main transmitters in the basal ganglia, exert their effects through ionotropic and metabotropic receptors. The dynamic activation of these receptors in response to released neurotransmitter depends, among other factors, on their precise localization in relation to corresponding synapses. The use of high resolution quantitative electron microscope immunocytochemical techniques has provided in-depth description of the subcellular and subsynaptic localization of these receptors in the CNS. In this article, we review recent findings on the ultrastructural localization of GABA and glutamate receptors and transporters in the basal ganglia, at synaptic, extrasynaptic and presynaptic sites. The anatomical evidence supports numerous potential locations for receptor-neurotransmitter interactions, and raises important questions regarding mechanisms of activation and function of synaptic versus extrasynaptic receptors in the basal ganglia. PMID:17059868

  8. Temporal redistribution of inhibition over neuronal subcellular domains underlies state-dependent rhythmic change of excitability in the hippocampus

    PubMed Central

    Somogyi, Peter; Katona, Linda; Klausberger, Thomas; Lasztóczi, Bálint; Viney, Tim J.

    2014-01-01

    The behaviour-contingent rhythmic synchronization of neuronal activity is reported by local field potential oscillations in the theta, gamma and sharp wave-related ripple (SWR) frequency ranges. In the hippocampus, pyramidal cell assemblies representing temporal sequences are coordinated by GABAergic interneurons selectively innervating specific postsynaptic domains, and discharging phase locked to network oscillations. We compare the cellular network dynamics in the CA1 and CA3 areas recorded with or without anaesthesia. All parts of pyramidal cells, except the axon initial segment, receive GABA from multiple interneuron types, each with distinct firing dynamics. The axon initial segment is exclusively innervated by axo-axonic cells, preferentially firing after the peak of the pyramidal layer theta cycle, when pyramidal cells are least active. Axo-axonic cells are inhibited during SWRs, when many pyramidal cells fire synchronously. This dual inverse correlation demonstrates the key inhibitory role of axo-axonic cells. Parvalbumin-expressing basket cells fire phase locked to field gamma activity in both CA1 and CA3, and also strongly increase firing during SWRs, together with dendrite-innervating bistratified cells, phasing pyramidal cell discharge. Subcellular domain-specific GABAergic innervation probably developed for the coordination of multiple glutamatergic inputs on different parts of pyramidal cells through the temporally distinct activity of GABAergic interneurons, which differentially change their firing during different network states. PMID:24366131

  9. Unique subcellular distribution of phosphorylated Plk1 (Ser137 and Thr210) in mouse oocytes during meiotic division and pPlk1(Ser137) involvement in spindle formation and REC8 cleavage.

    PubMed

    Du, Juan; Cao, Yan; Wang, Qian; Zhang, Nana; Liu, Xiaoyu; Chen, Dandan; Liu, Xiaoyun; Xu, Qunyuan; Ma, Wei

    2015-01-01

    Polo-like kinase 1 (Plk1) is pivotal for proper mitotic progression, its targeting activity is regulated by precise subcellular positioning and phosphorylation. Here we assessed the protein expression, subcellular localization and possible functions of phosphorylated Plk1 (pPlk1(Ser137) and pPlk1(Thr210)) in mouse oocytes during meiotic division. Western blot analysis revealed a peptide of pPlk1(Ser137) with high and stable expression from germinal vesicle (GV) until metaphase II (MII), while pPlk1(Thr210) was detected as one large single band at GV stage and 2 small bands after germinal vesicle breakdown (GVBD), which maintained stable up to MII. Immunofluorescence analysis showed pPlk1(Ser137) was colocalized with microtubule organizing center (MTOC) proteins, γ-tubulin and pericentrin, on spindle poles, concomitantly with persistent concentration at centromeres and dynamic aggregation between chromosome arms. Differently, pPlk1(Thr210) was persistently distributed across the whole body of chromosomes after meiotic resumption. The specific Plk1 inhibitor, BI2536, repressed pPlk1(Ser137) accumulation at MTOCs and between chromosome arms, consequently disturbed γ-tubulin and pericentrin recruiting to MTOCs, destroyed meiotic spindle formation, and delayed REC8 cleavage, therefore arresting oocytes at metaphase I (MI) with chromosome misalignment. BI2536 completely reversed the premature degradation of REC8 and precocious segregation of chromosomes induced with okadaic acid (OA), an inhibitor to protein phosphatase 2A. Additionally, the protein levels of pPlk1(Ser137) and pPlk1(Thr210), as well as the subcellular distribution of pPlk1(Thr210), were not affected by BI2536. Taken together, our results demonstrate that Plk1 activity is required for meiotic spindle assembly and REC8 cleavage, with pPlk1(Ser137) is the action executor, in mouse oocytes during meiotic division.

  10. Subcellular distribution of cyclin-dependent kinase-like 5 (CDKL5) is regulated through phosphorylation by dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oi, Ami; Katayama, Syouichi; Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, 525-8577

    Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase primarily expressed in the central nervous system and is known to cause X-linked neurodevelopmental disorders such as Rett syndrome. However, the mechanisms regulating CDKL5 have not yet been fully clarified. Therefore, in this study, we investigated the protein kinase that directly phosphorylates CDKL5, identifying it as dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), an enzyme binding to and phosphorylating CDKL5. We showed that subcellular distribution of CDKL5 was regulated by its phosphorylation by DYRK1A. In mouse neuroblastoma Neuro2a cells, CDKL5 was localized in both the cytosol and nucleus, whereas DYRK1A showed amore » typical nuclear localization. When CDKL5 and DYRK1A were co-expressed, the cytosolic localization of CDKL5 was significantly increased. Results of site-directed mutagenesis revealed that the phosphorylation site was Ser-308, in the vicinity of the nuclear localization signal. A mutation mimicking the phosphorylated serine residue by aspartate substitution (S308D) changed CDKL5 localization to the cytosol, whereas the corresponding alanine-substituted analog, CDKL5(S308A), was primarily localized to the nucleus. Taken together, these results strongly suggested that DYRK1A bound to CDKL5 and phosphorylated it on Ser-308, thus interfering with its nuclear localization. - Highlights: • We investigated the mechanism regulating subcellular localization of CDKL5. • DYRK1A was identified as an enzyme that bound to and phosphorylated CDKL5. • The phosphorylation site of CDKL5 was Ser-308, in the vicinity of the NLS. • When DYRK1A was co-expressed, the cytosolic CDKL5 was significantly increased. • In conclusion, DYRK1A regulates CDKL5 localization via phosphorylation on Ser-308.« less

  11. Unique nuclear localization of Nile tilapia (Oreochromis niloticus) Neu4 sialidase is regulated by nuclear transport receptor importin α/β.

    PubMed

    Honda, Akinobu; Chigwechokha, Petros Kingstone; Kamada-Futagami, Yuko; Komatsu, Masaharu; Shiozaki, Kazuhiro

    2018-06-01

    Sialidase catalyzes the removal of sialic acids from glycoconjugates. Different from Neu1 and Neu3 sialidases, Neu4 enzymatic properties such as substrate specificity and subcellular localization are not well-conserved among vertebrates. In fish only zebrafish and medaka neu4 genes have been cloned and their polypeptides have been characterized so far. Thus, characterization of Neu4 from other fish species is necessary to evaluate Neu4 physiological functions. Here, Nile tilapia was chosen for the characterization of Neu4 polypeptide considering that it is one of the major cultured fish all over the world and that its genomic sequences are now available. Coding DNA sequence of tilapia Neu4 was identified as 1,497 bp and its recombinant protein showed broad substrate specificity and optimal sialidase enzyme activity pH at 4.0. Neu4 activity was sustained even in neutral and alkali pH. Interestingly, immunofluorescence analysis revealed that major subcellular localization of tilapia Neu4 was nuclear, quite distinct from zebrafish (ER) and medaka Neu4 (lysosome). Bioinformatic analysis showed the existence of putative nuclear localization signal (NLS) in tilapia Neu4. In general, it is known that importin families bind to several proteins via NLS and transfer them into nucleus. Therefore, to determine the involvement of putative NLS in Neu4 nuclear localization, Neu4 mutant deleting NLS was constructed and expressed in cultured cells. As a result, NLS deletion significantly diminished the nuclear localization. Furthermore, treatment of importazole, interrupter of binding importin β and RanGTP, significantly suppressed Neu4 nuclear localization. In summary, tilapia Neu4 is a unique sialidase localized at nucleus and its transport system into nucleus is regulated by importin. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  12. Mechanosensitive subcellular rheostasis drives emergent single-cell mechanical homeostasis

    NASA Astrophysics Data System (ADS)

    Weng, Shinuo; Shao, Yue; Chen, Weiqiang; Fu, Jianping

    2016-09-01

    Mechanical homeostasis--a fundamental process by which cells maintain stable states under environmental perturbations--is regulated by two subcellular mechanotransducers: cytoskeleton tension and integrin-mediated focal adhesions (FAs). Here, we show that single-cell mechanical homeostasis is collectively driven by the distinct, graduated dynamics (rheostasis) of subcellular cytoskeleton tension and FAs. Such rheostasis involves a mechanosensitive pattern wherein ground states of cytoskeleton tension and FA determine their distinct reactive paths through either relaxation or reinforcement. Pharmacological perturbations of the cytoskeleton and molecularly modulated integrin catch-slip bonds biased the rheostasis and induced non-homeostasis of FAs, but not of cytoskeleton tension, suggesting a unique sensitivity of FAs in regulating homeostasis. Theoretical modelling revealed myosin-mediated cytoskeleton contractility and catch-slip-bond-like behaviours in FAs and the cytoskeleton as sufficient and necessary mechanisms for quantitatively recapitulating mechanosensitive rheostasis. Our findings highlight the previously underappreciated physical nature of the mechanical homeostasis of cells.

  13. Quantitative Multispectral Analysis Of Discrete Subcellular Particles By Digital Imaging Fluorescence Microscopy (DIFM)

    NASA Astrophysics Data System (ADS)

    Dorey, C. K.; Ebenstein, David B.

    1988-10-01

    Subcellular localization of multiple biochemical markers is readily achieved through their characteristic autofluorescence or through use of appropriately labelled antibodies. Recent development of specific probes has permitted elegant studies in calcium and pH in living cells. However, each of these methods measured fluorescence at one wavelength; precise quantitation of multiple fluorophores at individual sites within a cell has not been possible. Using DIFM, we have achieved spectral analysis of discrete subcellular particles 1-2 gm in diameter. The fluorescence emission is broken into narrow bands by an interference monochromator and visualized through the combined use of a silicon intensified target (SIT) camera, a microcomputer based framegrabber with 8 bit resolution, and a color video monitor. Image acquisition, processing, analysis and display are under software control. The digitized image can be corrected for the spectral distortions induced by the wavelength dependent sensitivity of the camera, and the displayed image can be enhanced or presented in pseudocolor to facilitate discrimination of variation in pixel intensity of individual particles. For rapid comparison of the fluorophore composition of granules, a ratio image is produced by dividing the image captured at one wavelength by that captured at another. In the resultant ratio image, a granule which has a fluorophore composition different from the majority is selectively colored. This powerful system has been utilized to obtain spectra of endogenous autofluorescent compounds in discrete cellular organelles of human retinal pigment epithelium, and to measure immunohistochemically labelled components of the extracellular matrix associated with the human optic nerve.

  14. Regulation of subcellular localization of the Aryl Hydrocarbon Receptor (AhR)

    USGS Publications Warehouse

    Richter, Catherine A.; Tillitt, Donald E.; Hannink, Mark

    2001-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the toxicity of dioxin and other xenobiotics. In the absence of exogenous ligand, AhR is cytosolic. We investigated how AhR is retained in the cytosol and how dioxin induces AhR to move to the nucleus. Disruption of nuclear export of AhR by the nuclear export inhibitor leptomycin B (LMB) or by mutation of the AhR nuclear export signal resulted in nuclear accumulation of AhR in the absence of exogenous ligand. Mutation of the AhR nuclear localization signal resulted in defects in nuclear import of AhR in both the presence and the absence of exogenous ligand. Dioxin treatment caused a more rapid accumulation of AhR in the nucleus than LMB treatment. In the presence of both dioxin and LMB, nuclear accumulation of AhR was more rapid than in the presence of dioxin alone. Our results show that AhR shuttles between the nucleus and the cytosol in the absence of exogenous ligand. Binding of ligand induces an increase in the rate of nuclear import of AhR but does not eliminate nuclear export of AhR.

  15. Targeted nanodiamonds for identification of subcellular protein assemblies in mammalian cells

    PubMed Central

    Lake, Michael P.; Bouchard, Louis-S.

    2017-01-01

    Transmission electron microscopy (TEM) can be used to successfully determine the structures of proteins. However, such studies are typically done ex situ after extraction of the protein from the cellular environment. Here we describe an application for nanodiamonds as targeted intensity contrast labels in biological TEM, using the nuclear pore complex (NPC) as a model macroassembly. We demonstrate that delivery of antibody-conjugated nanodiamonds to live mammalian cells using maltotriose-conjugated polypropylenimine dendrimers results in efficient localization of nanodiamonds to the intended cellular target. We further identify signatures of nanodiamonds under TEM that allow for unambiguous identification of individual nanodiamonds from a resin-embedded, OsO4-stained environment. This is the first demonstration of nanodiamonds as labels for nanoscale TEM-based identification of subcellular protein assemblies. These results, combined with the unique fluorescence properties and biocompatibility of nanodiamonds, represent an important step toward the use of nanodiamonds as markers for correlated optical/electron bioimaging. PMID:28636640

  16. Characterization and subcellular compartmentation of recombinant 4-hydroxyphenylpyruvate dioxygenase from Arabidopsis in transgenic tobacco.

    PubMed

    Garcia, I; Rodgers, M; Pepin, R; Hsieh, T F; Matringe, M

    1999-04-01

    4-Hydroxyphenylpyruvate dioxygenase (4HPPD) catalyzes the formation of homogentisate (2,5-dihydroxyphenylacetate) from p-hydroxyphenylpyruvate and molecular oxygen. In plants this enzyme activity is involved in two distinct metabolic processes, the biosynthesis of prenylquinones and the catabolism of tyrosine. We report here the molecular and biochemical characterization of an Arabidopsis 4HPPD and the compartmentation of the recombinant protein in chlorophyllous tissues. We isolated a 1508-bp cDNA with one large open reading frame of 1338 bp. Southern analysis strongly suggested that this Arabidopsis 4HPPD is encoded by a single-copy gene. We investigated the biochemical characteristics of this 4HPPD by overproducing the recombinant protein in Escherichia coli JM105. The subcellular localization of the recombinant 4HPPD in chlorophyllous tissues was examined by overexpressing its complete coding sequence in transgenic tobacco (Nicotiana tabacum), using Agrobacterium tumefaciens transformation. We performed western analyses for the immunodetection of protein extracts from purified chloroplasts and total leaf extracts and for the immunocytochemistry on tissue sections. These analyses clearly revealed that 4HPPD was confined to the cytosol compartment, not targeted to the chloroplast. Western analyses confirmed the presence of a cytosolic form of 4HPPD in cultured green Arabidopsis cells.

  17. Differential subcellular localization of the glucocorticoid receptor in distinct neural stem and progenitor populations of the mouse telencephalon in vivo.

    PubMed

    Tsiarli, Maria A; Paula Monaghan, A; Defranco, Donald B

    2013-07-26

    Glucocorticoids are given to pregnant women at risk for premature delivery to promote lung maturation. Despite reports of detrimental effects of glucocorticoids on telencephalic neural stem/progenitor cells (NSPCs), the regional and cellular expressions of the glucocorticoid receptor (GR) in various NSPC populations in the intact brain have not been thoroughly assessed. Therefore in this study we performed a detailed analysis of GR protein expression in the developing mouse ventral and dorsal telencephalon in vivo. At embryonic day 11.5 (E11.5), the majority of Pax6-positive radial glial cells (RGCs) and Tbr2-positive intermediate progenitor cells (IPCs) expressed nuclear GR, while a small number of RGCs on the apical ventricular zone (aVZ), expressed cytoplasmic GR. However, on E13.5, the latter population of RGCs increased in size, whereas abventricular NSPCs and especially neurons of the cortical plate, expressed nuclear GR. In IPCs, GR was always nuclear. A similar expression profile was observed throughout the ventral telencephalon, hippocampus and olfactory bulb, with NSPCs of the aVZ primarily expressing cytoplasmic GR, while abventricular NSPCs and mature cells primarily expressed nuclear GR. Close to birth, nuclear GR accumulated within specific cortical areas such as layer V, the subplate and CA1 area of the hippocampus. In summary, our data show that GR protein is present in early NSPCs of the dorsal and ventral telencephalon at E11.5 and primarily occupies the nucleus. Moreover, our study suggests that the subcellular localization of the receptor may be subjected to region and neurodevelopmental stage-specific regulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Cdk2 Phosphorylation on Threonine39 by AKT and Its Implication on Cyclin Binding, Cellular Localization, and Cell Cycle Progression

    DTIC Science & Technology

    2008-10-01

    cell cycle progression in most cell types. Mouse embryos develop normally until mid gestation without all interphase Cdks 28. Pertinent to the...Ciemerych and P. Sicinski, "Cell cycle in mouse development ," 24(17), 2877 (2005). Ref Type: Journal 5 K. Coulonval, et al., "Phosphorylations of...34 Development 135(20), 3389 (2008). Ref Type: Journal 30 J. P. Tassan, et al., "Cell cycle analysis of the activity, subcellular localization, and subunit

  19. SUBCELLULAR PHARMACOKINETICS AND ITS POTENTIAL FOR LIBRARY FOCUSING (R826652)

    EPA Science Inventory

    Abstract

    Subcellular pharmacokinetics (SP) optimizes biology-related factors in the design of libraries for high throughput screening by defining comparatively narrow ranges of properties (lipophilicity, amphiphilicity, acidity, reactivity, 3D-structural features) of t...

  20. Investigation of subcellular localization and dynamics of membrane proteins in living bacteria by combining optical micromanipulation and high-resolution microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Barroso Peña, Álvaro; Nieves, Marcos; Teper, Konrad; Wedlich-Soldner, Roland; Denz, Cornelia

    2016-09-01

    The plasma membrane serves as protective interface between cells and their environment. It also constitutes a hub for selective nutrient uptake and signal transduction. Increasing evidence over the last years indicates that, similar to eukaryotic cells, lateral membrane organization plays an important role in the regulation of prokaryotic signaling pathways. However, the mechanisms underlying this phenomenon are still poorly understood. Spatiotemporal characterization of bacterial signal transduction demands very sensitive high-resolution microscopy techniques due to the low expression levels of most signaling proteins and the small size of bacterial cells. In addition, direct study of subcellular confinement and dynamics of bacterial signaling proteins during the different stages of the signal transduction also requires immobilization in order to avoid cell displacement caused by Brownian motion, local fluid flows and bacterial self-propulsion. In this work we present a novel approach based on the combination of high resolution imaging and optical manipulation that enables the investigation of the distribution and dynamics of proteins at the bacterial plasma membrane. For this purpose, we combine the versatility of holographic optical tweezers (HOT) with the sensitivity and resolution of total internal reflection fluorescence (TIRF) microscopy. Furthermore, we discuss the implementation of microfluidic devices in our integrated HOT+TIRF system for the control of growth conditions of bacterial cells. The capabilities of our workstation provides thus new valuable insights into the fundamental cellular and physical mechanisms underlying the regulation of bacterial signal transduction.

  1. G protein-coupled receptor 30 localizes to the endoplasmic reticulum and is not activated by estradiol.

    PubMed

    Otto, Christiane; Rohde-Schulz, Beate; Schwarz, Gilda; Fuchs, Iris; Klewer, Mario; Brittain, Dominic; Langer, Gernot; Bader, Benjamin; Prelle, Katja; Nubbemeyer, Reinhard; Fritzemeier, Karl-Heinrich

    2008-10-01

    The classical estrogen receptor (ER) mediates genomic as well as rapid nongenomic estradiol responses. In case of genomic responses, the ER acts as a ligand-dependent transcription factor that regulates gene expression in estrogen target tissues. In contrast, nongenomic effects are initiated at the plasma membrane and lead to rapid activation of cytoplasmic signal transduction pathways. Recently, an orphan G protein-coupled receptor, GPR30, has been claimed to bind to and to signal in response to estradiol. GPR30 therefore might mediate some of the nongenomic estradiol effects. The present study was performed to clarify the controversy about the subcellular localization of GPR30 and to gain insight into the in vivo function of this receptor. In transiently transfected cells as well as cells endogenously expressing GPR30, we confirmed that the receptor localized to the endoplasmic reticulum. However, using radioactive estradiol, we observed only saturable, specific binding to the classical ER but not to GPR30. Estradiol stimulation of cells expressing GPR30 had no impact on intracellular cAMP or calcium levels. To elucidate the physiological role of GPR30, we performed in vivo experiments with estradiol and G1, a compound that has been claimed to act as selective GPR30 agonist. In two classical estrogen target organs, the uterus and the mammary gland, G1 did not show any estrogenic effect. Taken together, we draw the conclusion that GPR30 is still an orphan receptor.

  2. Subcellular localization based comparative study on radioresistant bacteria: A novel approach to mine proteins involve in radioresistance.

    PubMed

    Vishambra, Divya; Srivastava, Malay; Dev, Kamal; Jaiswal, Varun

    2017-08-01

    Radioresistant bacteria (RRB) are among the most radioresistant organisms and has a unique role in evolution. Along with the evolutionary role, radioresistant organisms play important role in paper industries, bioremediation, vaccine development and possibility in anti-aging and anti-cancer treatment. The study of radiation resistance in RRB was mainly focused on cytosolic mechanisms such as DNA repair mechanism, cell cleansing activity and high antioxidant activity. Although it was known that protein localized on outer areas of cell play role in resistance towards extreme condition but the mechanisms/proteins localized on the outer area of cells are not studied for radioresistance. Considering the fact that outer part of cell is more exposed to radiations and proteins present in outer area of the cell may have role in radioresistance. Localization based comparative study of proteome from RRB and non-radio resistant bacteria was carried out. In RRB 20 unique proteins have been identified. Further domain, structural, and pathway analysis of selected proteins were carried out. Out of 20 proteins, 8 proteins were direct involvement in radioresistance and literature study strengthens this, however, 1 proteins had assumed relation in radioresistance. Selected radioresistant proteins may be helpful for optimal use of RRB in industry and health care. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The sub-cellular fate of mercury in the liver of wild mullets (Liza aurata)--Contribution to the understanding of metal-induced cellular toxicity.

    PubMed

    Araújo, Olinda; Pereira, Patrícia; Cesário, Rute; Pacheco, Mário; Raimundo, Joana

    2015-06-15

    Mercury is a recognized harmful pollutant in aquatic systems but still little is known about its sub-cellular partitioning in wild fish. Mercury concentrations in liver homogenate (whole organ load) and in six sub-cellular compartments were determined in wild Liza aurata from two areas - contaminated (LAR) and reference. Water and sediment contamination was also assessed. Fish from LAR displayed higher total mercury (tHg) organ load as well as in sub-cellular compartments than those from the reference area, reflecting environmental differences. However, spatial differences in percentage of tHg were only observed for mitochondria (Mit) and lysosomes plus microsomes (Lys+Mic). At LAR, Lys+Mic exhibited higher levels of tHg than the other fractions. Interestingly, tHg in Mit, granules (Gran) and heat-denaturable proteins was linearly correlated with the whole organ. Low tHg concentrations in heat stable proteins and Gran suggests that accumulated levels might be below the physiological threshold to activate those detoxification fractions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Imaging cells and sub-cellular structures with ultrahigh resolution full-field X-ray microscopy.

    PubMed

    Chien, C C; Tseng, P Y; Chen, H H; Hua, T E; Chen, S T; Chen, Y Y; Leng, W H; Wang, C H; Hwu, Y; Yin, G C; Liang, K S; Chen, F R; Chu, Y S; Yeh, H I; Yang, Y C; Yang, C S; Zhang, G L; Je, J H; Margaritondo, G

    2013-01-01

    Our experimental results demonstrate that full-field hard-X-ray microscopy is finally able to investigate the internal structure of cells in tissues. This result was made possible by three main factors: the use of a coherent (synchrotron) source of X-rays, the exploitation of contrast mechanisms based on the real part of the refractive index and the magnification provided by high-resolution Fresnel zone-plate objectives. We specifically obtained high-quality microradiographs of human and mouse cells with 29 nm Rayleigh spatial resolution and verified that tomographic reconstruction could be implemented with a final resolution level suitable for subcellular features. We also demonstrated that a phase retrieval method based on a wave propagation algorithm could yield good subcellular images starting from a series of defocused microradiographs. The concluding discussion compares cellular and subcellular hard-X-ray microradiology with other techniques and evaluates its potential impact on biomedical research. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. A Meloidogyne incognita effector is imported into the nucleus and exhibits transcriptional activation activity in planta.

    PubMed

    Zhang, Lei; Davies, Laura J; Elling, Axel A

    2015-01-01

    Root-knot nematodes are sedentary biotrophic endoparasites that maintain a complex interaction with their host plants. Nematode effector proteins are synthesized in the oesophageal glands of nematodes and secreted into plant tissue through a needle-like stylet. Effectors characterized to date have been shown to mediate processes essential for nematode pathogenesis. To gain an insight into their site of action and putative function, the subcellular localization of 13 previously isolated Meloidogyne incognita effectors was determined. Translational fusions were created between effectors and EGFP-GUS (enhanced green fluorescent protein-β-glucuronidase) reporter genes, which were transiently expressed in tobacco leaf cells. The majority of effectors localized to the cytoplasm, with one effector, 7H08, imported into the nuclei of plant cells. Deletion analysis revealed that the nuclear localization of 7H08 was mediated by two novel independent nuclear localization domains. As a result of the nuclear localization of the effector, 7H08 was tested for the ability to activate gene transcription. 7H08 was found to activate the expression of reporter genes in both yeast and plant systems. This is the first report of a plant-parasitic nematode effector with transcriptional activation activity. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  6. Subcellular SIMS imaging of gadolinium isotopes in human glioblastoma cells treated with a gadolinium containing MRI agent

    NASA Astrophysics Data System (ADS)

    Smith, Duane R.; Lorey, Daniel R.; Chandra, Subhash

    2004-06-01

    Neutron capture therapy is an experimental binary radiotherapeutic modality for the treatment of brain tumors such as glioblastoma multiforme. Recently, neutron capture therapy with gadolinium-157 has gained attention, and techniques for studying the subcellular distribution of gadolinium-157 are needed. In this preliminary study, we have been able to image the subcellular distribution of gadolinium-157, as well as the other six naturally abundant isotopes of gadolinium, with SIMS ion microscopy. T98G human glioblastoma cells were treated for 24 h with 25 mg/ml of the metal ion complex diethylenetriaminepentaacetic acid Gd(III) dihydrogen salt hydrate (Gd-DTPA). Gd-DTPA is a contrast enhancing agent used for MRI of brain tumors, blood-brain barrier impairment, diseases of the central nervous system, etc. A highly heterogeneous subcellular distribution was observed for gadolinium-157. The nuclei in each cell were distinctly lower in gadolinium-157 than in the cytoplasm. Even within the cytoplasm the gadolinium-157 was heterogeneously distributed. The other six naturally abundant isotopes of gadolinium were imaged from the same cells and exhibited a subcellular distribution consistent with that observed for gadolinium-157. These observations indicate that SIMS ion microscopy may be a viable approach for subcellular studies of gadolinium containing neutron capture therapy drugs and may even play a major role in the development and validation of new gadolinium contrast enhancing agents for diagnostic MRI applications.

  7. Differential Regulation of Disheveled in a Novel Vegetal Cortical Domain in Sea Urchin Eggs and Embryos: Implications for the Localized Activation of Canonical Wnt Signaling

    PubMed Central

    Peng, ChiehFu Jeff; Wikramanayake, Athula H.

    2013-01-01

    Pattern formation along the animal-vegetal (AV) axis in sea urchin embryos is initiated when canonical Wnt (cWnt) signaling is activated in vegetal blastomeres. The mechanisms that restrict cWnt signaling to vegetal blastomeres are not well understood, but there is increasing evidence that the egg’s vegetal cortex plays a critical role in this process by mediating localized “activation” of Disheveled (Dsh). To investigate how Dsh activity is regulated along the AV axis, sea urchin-specific Dsh antibodies were used to examine expression, subcellular localization, and post-translational modification of Dsh during development. Dsh is broadly expressed during early sea urchin development, but immunolocalization studies revealed that this protein is enriched in a punctate pattern in a novel vegetal cortical domain (VCD) in the egg. Vegetal blastomeres inherit this VCD during embryogenesis, and at the 60-cell stage Dsh puncta are seen in all cells that display nuclear β-catenin. Analysis of Dsh post-translational modification using two-dimensional Western blot analysis revealed that compared to Dsh pools in the bulk cytoplasm, this protein is differentially modified in the VCD and in the 16-cell stage micromeres that partially inherit this domain. Dsh localization to the VCD is not directly affected by disruption of microfilaments and microtubules, but unexpectedly, microfilament disruption led to degradation of all the Dsh pools in unfertilized eggs over a period of incubation suggesting that microfilament integrity is required for maintaining Dsh stability. These results demonstrate that a pool of differentially modified Dsh in the VCD is selectively inherited by the vegetal blastomeres that activate cWnt signaling in early embryos, and suggests that this domain functions as a scaffold for localized Dsh activation. Localized cWnt activation regulates AV axis patterning in many metazoan embryos. Hence, it is possible that the VCD is an evolutionarily conserved

  8. Protein subcellular location pattern classification in cellular images using latent discriminative models.

    PubMed

    Li, Jieyue; Xiong, Liang; Schneider, Jeff; Murphy, Robert F

    2012-06-15

    Knowledge of the subcellular location of a protein is crucial for understanding its functions. The subcellular pattern of a protein is typically represented as the set of cellular components in which it is located, and an important task is to determine this set from microscope images. In this article, we address this classification problem using confocal immunofluorescence images from the Human Protein Atlas (HPA) project. The HPA contains images of cells stained for many proteins; each is also stained for three reference components, but there are many other components that are invisible. Given one such cell, the task is to classify the pattern type of the stained protein. We first randomly select local image regions within the cells, and then extract various carefully designed features from these regions. This region-based approach enables us to explicitly study the relationship between proteins and different cell components, as well as the interactions between these components. To achieve these two goals, we propose two discriminative models that extend logistic regression with structured latent variables. The first model allows the same protein pattern class to be expressed differently according to the underlying components in different regions. The second model further captures the spatial dependencies between the components within the same cell so that we can better infer these components. To learn these models, we propose a fast approximate algorithm for inference, and then use gradient-based methods to maximize the data likelihood. In the experiments, we show that the proposed models help improve the classification accuracies on synthetic data and real cellular images. The best overall accuracy we report in this article for classifying 942 proteins into 13 classes of patterns is about 84.6%, which to our knowledge is the best so far. In addition, the dependencies learned are consistent with prior knowledge of cell organization. http://murphylab.web.cmu.edu/software/.

  9. Subcellular metabolic contrast in living tissue using dynamic full field OCT (D-FFOCT) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Apelian, Clement; Harms, Fabrice; Thouvenin, Olivier; Boccara, Claude A.

    2016-03-01

    Cells shape or density is an important marker of tissues pathology. However, individual cells are difficult to observe in thick tissues frequently presenting highly scattering structures such as collagen fibers. Endogenous techniques struggle to image cells in these conditions. Moreover, exogenous contrast agents like dyes, fluorophores or nanoparticles cannot always be used, especially if non-invasive imaging is required. Scatterers motion happening down to the millisecond scale, much faster than the fix and highly scattering structures (global motion of the tissue), allowed us to develop a new approach based on the time dependence of the FF-OCT signals. This method reveals hidden cells after a spatiotemporal analysis based on singular value decomposition and wavelet analysis concepts. It does also give us access to local dynamics of imaged scatterers. This dynamic information is linked with the local metabolic activity that drives these scatterers. Our technique can explore subcellular scales with micrometric resolution and dynamics ranging from the millisecond to seconds. By this mean we studied a wide range of tissues, animal and human in both normal and pathological conditions (cancer, ischemia, osmotic shock…) in different organs such as liver, kidney, and brain among others. Different cells, undetectable with FF-OCT, were identified (erythrocytes, hepatocytes…). Different scatterer clusters express different characteristic times and thus can be related to different mechanisms that we identify with metabolic functions. We are confident that the D-FFOCT, by accessing to a new spatiotemporal metabolic contrast, will be a leading technique on tissue imaging and could lead to better medical diagnosis.

  10. Distribution of physostigmine and metabolites in brain subcellular fractions of the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, B.F.; Somani, S.M.

    1987-10-26

    The distribution of /sup 3/H-physostigmine (Phy) has been studied in the rat brain subcellular fractions at various time intervals following i.v. injection. /sup 3/H-Phy or its metabolites rapidly accumulate into the cytoplasm of cells and penetrates the intracellular compartments. Kinetic studies of the subcellular distribution of radioactivity (RA) per gm of rat brain following i.v. injection of /sup 3/H-Phy show peak concentrations at 30 min in all subcellular fractions with the exception of mitochondria. In the mitochondrial fraction the RA levels continue to rise from 4682 +/- 875 DPM/gm at 5 min to 27,474 +/- 2825 DPM/gm at 60 minmore » (P < .05). The cytosol contains the highest RA: 223,341 +/- 21,044 DPM/gm at 30 min which declined to 53,475 +/- 3756 DPM/gm at 60 min. RA in synaptosome, microsomes and myelin increases from 5 to 30 min, and declines at 60 min. In vitro studies did not show a greater uptake of RA by the mitochondrial or synaptosomal fractions. The finding of relatively high concentrations of RA in the mitochondrial fraction at 60 min increases the likelihood that Phy or its metabolites could interfere with the physiological function of the organelle. 21 references, 1 figure, 2 tables.« less

  11. Host–virus dynamics and subcellular controls of cell fate in a natural coccolithophore population

    PubMed Central

    Vardi, Assaf; Haramaty, Liti; Van Mooy, Benjamin A. S.; Fredricks, Helen F.; Kimmance, Susan A.; Larsen, Aud; Bidle, Kay D.

    2012-01-01

    Marine viruses are major evolutionary and biogeochemical drivers in marine microbial foodwebs. However, an in-depth understanding of the cellular mechanisms and the signal transduction pathways mediating host–virus interactions during natural bloom dynamics has remained elusive. We used field-based mesocosms to examine the “arms race” between natural populations of the coccolithophore Emiliania huxleyi and its double-stranded DNA-containing coccolithoviruses (EhVs). Specifically, we examined the dynamics of EhV infection and its regulation of cell fate over the course of bloom development and demise using a diverse suite of molecular tools and in situ fluorescent staining to target different levels of subcellular resolution. We demonstrate the concomitant induction of reactive oxygen species, caspase-specific activity, metacaspase expression, and programmed cell death in response to the accumulation of virus-derived glycosphingolipids upon infection of natural E. huxleyi populations. These subcellular responses to viral infection simultaneously resulted in the enhanced production of transparent exopolymer particles, which can facilitate aggregation and stimulate carbon flux. Our results not only corroborate the critical role for glycosphingolipids and programmed cell death in regulating E. huxleyi–EhV interactions, but also elucidate promising molecular biomarkers and lipid-based proxies for phytoplankton host–virus interactions in natural systems. PMID:23134731

  12. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles.

    PubMed

    Asati, Atul; Santra, Santimukul; Kaittanis, Charalambos; Perez, J Manuel

    2010-09-28

    Cerium oxide nanoparticles (nanoceria) have shown great potential as antioxidant and radioprotective agents for applications in cancer therapy. Recently, various polymer-coated nanoceria preparations have been developed to improve their aqueous solubility and allow for surface functionalization of these nanoparticles. However, the interaction of polymer-coated nanoceria with cells, their uptake mechanism, and subcellular localization are poorly understood. Herein, we engineered polymer-coated cerium oxide nanoparticles with different surface charges (positive, negative, and neutral) and studied their internalization and toxicity in normal and cancer cell lines. The results showed that nanoceria with a positive or neutral charge enters most of the cell lines studied, while nanoceria with a negative charge internalizes mostly in the cancer cell lines. Moreover, upon entry into the cells, nanoceria is localized to different cell compartments (e.g., cytoplasm and lysosomes) depending on the nanoparticle's surface charge. The internalization and subcellular localization of nanoceria plays a key role in the nanoparticles' cytotoxicity profile, exhibiting significant toxicity when they localize in the lysosomes of the cancer cells. In contrast, minimal toxicity is observed when they localize into the cytoplasm or do not enter the cells. Taken together, these results indicate that the differential surface-charge-dependent localization of nanoceria in normal and cancer cells plays a critical role in the nanoparticles' toxicity profile.

  13. Geometric approach to segmentation and protein localization in cell culture assays.

    PubMed

    Raman, S; Maxwell, C A; Barcellos-Hoff, M H; Parvin, B

    2007-01-01

    Cell-based fluorescence imaging assays are heterogeneous and require the collection of a large number of images for detailed quantitative analysis. Complexities arise as a result of variation in spatial nonuniformity, shape, overlapping compartments and scale (size). A new technique and methodology has been developed and tested for delineating subcellular morphology and partitioning overlapping compartments at multiple scales. This system is packaged as an integrated software platform for quantifying images that are obtained through fluorescence microscopy. Proposed methods are model based, leveraging geometric shape properties of subcellular compartments and corresponding protein localization. From the morphological perspective, convexity constraint is imposed to delineate and partition nuclear compartments. From the protein localization perspective, radial symmetry is imposed to localize punctate protein events at submicron resolution. Convexity constraint is imposed against boundary information, which are extracted through a combination of zero-crossing and gradient operator. If the convexity constraint fails for the boundary then positive curvature maxima are localized along the contour and the entire blob is partitioned into disjointed convex objects representing individual nuclear compartment, by enforcing geometric constraints. Nuclear compartments provide the context for protein localization, which may be diffuse or punctate. Punctate signal are localized through iterative voting and radial symmetries for improved reliability and robustness. The technique has been tested against 196 images that were generated to study centrosome abnormalities. Corresponding computed representations are compared against manual counts for validation.

  14. Multiscale Investigation from Subcellular to Tissue Scale of Onion Epidermal Plant Cell Wall Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Zamil, Mohammad Shafayet

    The physical and mechanical properties of cell walls, their shape, how they are arranged and interact with each other determine the architecture of plant organs and how they mechanically respond to different environmental and loading conditions. Due to the distinctive hierarchy from subcellular to tissue scale, plant materials can exhibit remarkably different mechanical properties. To date, how the subcellular scale arrangement and the mechanical properties of plant cell wall structural constituents give rise to macro or tissue scale mechanical responses is not yet well understood. Although the tissue scale plant cell wall samples are easy to prepare and put to different types of mechanical tests, the hierarchical features that emerge when moving towards a higher scale make it complicated to link the macro scale results to micro or subcellular scale structural components. On the other hand, the microscale size of cell brings formidable challenges to prepare and grip samples and carry mechanical tests under tensile loading at subcellular scale. This study attempted to develop a set of test protocols based on microelectromechanical system (MEMS) tensile testing devices for characterizing plant cell wall materials at different length scales. For the ease of sample preparation and well established database of the composition and conformation of its structural constituents, onion epidermal cell wall profile was chosen as the study material. Based on the results and findings of multiscale mechanical characterization, a framework of architecture-based finite element method (FEM) computational model was developed. The computational model laid the foundation of bridging the subcellular or microscale to the tissue or macroscale mechanical properties. This study suggests that there are important insights of cell wall mechanics and structural features that can only be investigated by carrying tensile characterization of samples not confounded by extracellular parameters. To

  15. Subcellular Responses to Narrowband and Wideband Radiofrequency Radiation

    DTIC Science & Technology

    2008-02-15

    nanosecond pulses. This release is most likely also due to subcellular electromanipulation. Platelets are rich in alpha granule growth factors (i.e. platelet ... platelets (for advanced wound healing), and e) has opened the possibility of using antennas with intense electrical pulses in the subnanosecond range...development. The results of this study show that an increase in plasma membrane conductivity occurs within a few nanoseconds (less than the temporal

  16. Changes in subcellular distribution and antioxidant compounds involved in Pb accumulation and detoxification in Neyraudia reynaudiana.

    PubMed

    Zhou, Chuifan; Huang, Meiying; Li, Ying; Luo, Jiewen; Cai, Li Ping

    2016-11-01

    The effects of increasing concentrations of lead (Pb) on Pb accumulation, subcellular distribution, ultrastructure, photosynthetic characteristics, antioxidative enzyme activity, malondialdehyde content, and phytochelatin contents were investigated in Neyraudia reynaudiana seedlings after a 21-day exposure. A Pb analysis at the subcellular level showed that the majority of Pb in the roots was associated with the cell wall fraction, followed by the soluble fraction. In contrast, the majority of the Pb in the leaves was located in the soluble fraction based on transmission electron microscopy and energy dispersive X-ray analyses. Furthermore, high Pb concentrations adversely affected N. reynaudiana cellular structure. The changes in enzyme activity suggested that the antioxidant system plays an important role in eliminating or alleviating Pb toxicity, both in the roots and leaves of N. reynaudiana. Additionally, the phytochelatin contents in the roots and leaves differed significantly between Pb-spiked treatments and control plants. Our results provide strong evidence that cell walls restrict Pb uptake into the protoplasm and establish an important protective barrier. Subsequent vacuolar compartmentalization in leaves could isolate Pb from other substances in the cell and minimize Pb toxicity in other organelles over time. These results also demonstrated that the levels of antioxidant enzymes and phytochelatin in leaves and roots are correlated with Pb toxicity. These detoxification mechanisms promote Pb tolerance in N. reynaudiana.

  17. Signaling efficiency of Gαq through its effectors p63RhoGEF and GEFT depends on their subcellular location.

    PubMed

    Goedhart, Joachim; van Unen, Jakobus; Adjobo-Hermans, Merel J W; Gadella, Theodorus W J

    2013-01-01

    The p63RhoGEF and GEFT proteins are encoded by the same gene and both members of the Dbl family of guanine nucleotide exchange factors. These proteins can be activated by the heterotrimeric G-protein subunit Gαq. We show that p63RhoGEF is located at the plasma membrane, whereas GEFT is confined to the cytoplasm. Live-cell imaging studies yielded quantitative information on diffusion coefficients, association rates and encounter times of GEFT and p63RhoGEF. Calcium signaling was examined as a measure of the signal transmission, revealing more efficient signaling through the membrane-associated p63RhoGEF. A rapamycin dependent recruitment system was used to dynamically alter the subcellular location and concentration of GEFT, showing efficient signaling through GEFT only upon membrane recruitment. Together, our results show efficient signal transmission through membrane located effectors, and highlight a role for increased concentration rather than increased encounter times due to membrane localization in the Gαq mediated pathways to p63RhoGEF and PLCβ.

  18. Imaging trace element distributions in single organelles and subcellular features

    NASA Astrophysics Data System (ADS)

    Kashiv, Yoav; Austin, Jotham R.; Lai, Barry; Rose, Volker; Vogt, Stefan; El-Muayed, Malek

    2016-02-01

    The distributions of chemical elements within cells are of prime importance in a wide range of basic and applied biochemical research. An example is the role of the subcellular Zn distribution in Zn homeostasis in insulin producing pancreatic beta cells and the development of type 2 diabetes mellitus. We combined transmission electron microscopy with micro- and nano-synchrotron X-ray fluorescence to image unequivocally for the first time, to the best of our knowledge, the natural elemental distributions, including those of trace elements, in single organelles and other subcellular features. Detected elements include Cl, K, Ca, Co, Ni, Cu, Zn and Cd (which some cells were supplemented with). Cell samples were prepared by a technique that minimally affects the natural elemental concentrations and distributions, and without using fluorescent indicators. It could likely be applied to all cell types and provide new biochemical insights at the single organelle level not available from organelle population level studies.

  19. Imaging trace element distributions in single organelles and subcellular features

    DOE PAGES

    Kashiv, Yoav; Austin, Jotham R.; Lai, Barry; ...

    2016-02-25

    The distributions of chemical elements within cells are of prime importance in a wide range of basic and applied biochemical research. An example is the role of the subcellular Zn distribution in Zn homeostasis in insulin producing pancreatic beta cells and the development of type 2 diabetes mellitus. We combined transmission electron microscopy with micro-and nano-synchrotron X-ray fluorescence to image unequivocally for the first time, to the best of our knowledge, the natural elemental distributions, including those of trace elements, in single organelles and other subcellular features. Detected elements include Cl, K, Ca, Co, Ni, Cu, Zn and Cd (whichmore » some cells were supplemented with). Cell samples were prepared by a technique that minimally affects the natural elemental concentrations and distributions, and without using fluorescent indicators. In conclusion, it could likely be applied to all cell types and provide new biochemical insights at the single organelle level not available from organelle population level studies.« less

  20. Targeted Multiplex Imaging Mass Spectrometry in Transmission Geometry for Subcellular Spatial Resolution

    PubMed Central

    Lavenant, Gwendoline Thiery; Zavalin, Andrey I.; Caprioli, Richard M.

    2013-01-01

    Targeted multiplex Imaging Mass Spectrometry utilizes several different antigen-specific primary antibodies, each directly labeled with a unique photocleavable mass tag, to detect multiple antigens in a single tissue section. Each photocleavable mass tag bound to an antibody has a unique molecular weight and can be readily ionized by laser desorption ionization mass spectrometry. This manuscript describes a mass spectrometry method that allows imaging of targeted single cells within tissue using transmission geometry laser desorption ionization mass spectrometry. Transmission geometry focuses the laser beam on the back side of the tissue placed on a glass slide, providing a 2 μm diameter laser spot irradiating the biological specimen. This matrix-free method enables simultaneous localization at the sub-cellular level of multiple antigens using specific tagged antibodies. We have used this technology to visualize the co-expression of synaptophysin and two major hormones peptides, insulin and somatostatin, in duplex assays in beta and delta cells contained in a human pancreatic islet. PMID:23397138

  1. Targeted Multiplex Imaging Mass Spectrometry in Transmission Geometry for Subcellular Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Thiery-Lavenant, Gwendoline; Zavalin, Andre I.; Caprioli, Richard M.

    2013-04-01

    Targeted multiplex imaging mass spectrometry utilizes several different antigen-specific primary antibodies, each directly labeled with a unique photocleavable mass tag, to detect multiple antigens in a single tissue section. Each photocleavable mass tag bound to an antibody has a unique molecular weight and can be readily ionized by laser desorption ionization mass spectrometry. This article describes a mass spectrometry method that allows imaging of targeted single cells within tissue using transmission geometry laser desorption ionization mass spectrometry. Transmission geometry focuses the laser beam on the back side of the tissue placed on a glass slide, providing a 2 μm diameter laser spot irradiating the biological specimen. This matrix-free method enables simultaneous localization at the sub-cellular level of multiple antigens using specific tagged antibodies. We have used this technology to visualize the co-expression of synaptophysin and two major hormones peptides, insulin and somatostatin, in duplex assays in beta and delta cells contained in a human pancreatic islet.

  2. Comparison of cadmium absorption, translocation, subcellular distribution and chemical forms between two radish cultivars (Raphanus sativus L.).

    PubMed

    Xin, Juan; Zhao, Xiaohu; Tan, Qiling; Sun, Xuecheng; Hu, Chengxiao

    2017-11-01

    Cadmium (Cd) absorption and accumulation vary greatly not only among plant species but also among cultivars within the same species. In order to better understand the mechanisms of Cd absorption, transportation and distribution, we examined the differences of Cd absorption, translocation, subcellular distribution and chemical forms between L19, a Cd-tolerant genotype, and H4, a Cd-sensitive genotype, using kinetic analysis and soil culture experiment. Kinetic assays showed that the different Cd concentrations between the two cultivars might be ascribed to root absorption and translocation from root to shoot. The investigations of subcellular distribution and chemical forms verified that Cd concentrations of all subcellular fractions in H4 were all higher than in L19. Meanwhile, most of the Cd was associated with cell walls in the root of H4, but the Cd in the root of L19 and leaf of the two cultivars was mainly stored in soluble fraction, which could be one possible mechanism of tolerance to Cd toxicity. In addition, Cd fractions extracted by 1M NaCl and 2% HAC were predominant in root and leaf of both cultivars and the concentrations and proportions extracted by water and 80% ethanol in root and 1M NaCl in leaf were all higher in H4 than in L19. These results indicate that the Cd in H4 is more active than L19, which could be responsible for the sensitivity of H4 to Cd damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Two MATE Transporters with Different Subcellular Localization are Involved in Al Tolerance in Buckwheat.

    PubMed

    Lei, Gui Jie; Yokosho, Kengo; Yamaji, Naoki; Ma, Jian Feng

    2017-12-01

    Buckwheat (Fagopyrum esculentum) shows high tolerance to aluminum (Al) toxicity, but the molecular mechanisms responsible for this high Al tolerance are still poorly understood. Here, we investigated the involvement of two MATE (multi-drug and toxic compound extrusion) genes in Al tolerance. Both FeMATE1 and FeMATE2 showed efflux transport activity for citrate, but not for oxalate when expressed in Xenopus oocytes. A transient assay with buckwheat leaf protoplasts using green fluorescent protein (GFP) fusion showed that FeMATE1 was mainly localized to the plasma membrane, whereas FeMATE2 was localized to the trans-Golgi and Golgi. The expression of FeMATE1 was induced by Al only in the roots, but that of FeMATE2 was up-regulated in both the roots and leaves. Furthermore, the expression of both genes only responded to Al toxicity, but not to other stresses including low pH, cadmium (Cd) and lanthanum (La). Heterologous expression of FeMATE1 or FeMATE2 in the Arabidopsis mutant atmate partially rescued its Al tolerance. Expression of FeMATE1 also partially recovered the Al-induced secretion of citrate in the transgenic lines, whereas expression of FeMATE2 did not complement the citrate secretion. Further physiological analysis showed that buckwheat roots also secreted citrate in addition to oxalate in response to Al in a dose-responsive manner. Taken together, our results indicate that FeMATE1 is involved in the Al-activated citrate secretion in the roots, while FeMATE2 is probably responsible for transporting citrate into the Golgi system for the internal detoxification of Al in the roots and leaves of buckwheat. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Identification of two internal signal peptide sequences: critical for classical swine fever virus non-structural protein 2 to trans-localize to the endoplasmic reticulum.

    PubMed

    Guo, Kang-kang; Tang, Qing-hai; Zhang, Yan-ming; Kang, Kai; He, Lei

    2011-05-18

    The membrane topology and molecular mechanisms for endoplasmic reticulum (ER) localization of classical swine fever virus (CSFV) non-structural 2 (NS2) protien is unclear. We attempted to elucidate the subcellular localization, and the molecular mechanisms responsible for the localization of this protein in our study. The NS2 gene was amplified by reverse transcription polymerase chain reaction, with the transmembrane region and hydrophilicity of the NS2 protein was predicted by bioinformatics analysis. Twelve cDNAs of the NS2 gene were amplified by the PCR deletion method and cloned into a eukaryotic expression vector, which was transfected into a swine umbilical vein endothelial cell line (SUVEC). Subcellular localization of the NS2 protein was characterized by confocal microscopy, and western blots were carried out to analyze protein expression. Our results showed that the -NH2 terminal of the CSFV NS2 protein was highly hydrophobic and the protein localized in the ER. At least four transmembrane regions and two internal signal peptide sequences (amino acids103-138 and 220-262) were identified and thought to be critical for its trans-localization to the ER. This is the first study to identify the internal signal peptide sequences of the CSFV NS2 protein and its subcellular localization, providing the foundation for further exploration of this protein's function of this protein and its role in CSFV pathogenesis.

  5. Primary structure and subcellular localization of two fimbrial subunit-like proteins involved in the biosynthesis of K99 fibrillae.

    PubMed

    Roosendaal, E; Jacobs, A A; Rathman, P; Sondermeyer, C; Stegehuis, F; Oudega, B; de Graaf, F K

    1987-09-01

    Analysis of the nucleotide sequence of the distal part of the fan gene cluster encoding the proteins involved in the biosynthesis of the fibrillar adhesin, K99, revealed the presence of two structural genes, fanG and fanH. The amino acid sequence of the gene products (FanG and FanH) showed significant homology to the amino acid sequence of the fibrillar subunit protein (FanC). Introduction of a site-specific frameshift mutation in fanG or fanH resulted in a simultaneous decrease in fibrillae production and adhesive capacity. Analysis of subcellular fractions showed that, in contrast to the K99 fibrillar subunit (FanC), both the FanH and the FanG protein were loosely associated with the outer membrane, possibly on the periplasmic side, but were not components of the fimbriae themselves.

  6. Predicting subcellular location of apoptosis proteins based on wavelet transform and support vector machine.

    PubMed

    Qiu, Jian-Ding; Luo, San-Hua; Huang, Jian-Hua; Sun, Xing-Yu; Liang, Ru-Ping

    2010-04-01

    Apoptosis proteins have a central role in the development and homeostasis of an organism. These proteins are very important for understanding the mechanism of programmed cell death. As a result of genome and other sequencing projects, the gap between the number of known apoptosis protein sequences and the number of known apoptosis protein structures is widening rapidly. Because of this extremely unbalanced state, it would be worthwhile to develop a fast and reliable method to identify their subcellular locations so as to gain better insight into their biological functions. In view of this, a new method, in which the support vector machine combines with discrete wavelet transform, has been developed to predict the subcellular location of apoptosis proteins. The results obtained by the jackknife test were quite promising, and indicated that the proposed method can remarkably improve the prediction accuracy of subcellular locations, and might also become a useful high-throughput tool in characterizing other attributes of proteins, such as enzyme class, membrane protein type, and nuclear receptor subfamily according to their sequences.

  7. Subcellular RNA profiling links splicing and nuclear DICER1 to alternative cleavage and polyadenylation

    PubMed Central

    Neve, Jonathan; Burger, Kaspar; Li, Wencheng; Hoque, Mainul; Patel, Radhika; Tian, Bin; Gullerova, Monika; Furger, Andre

    2016-01-01

    Alternative cleavage and polyadenylation (APA) plays a crucial role in the regulation of gene expression across eukaryotes. Although APA is extensively studied, its regulation within cellular compartments and its physiological impact remains largely enigmatic. Here, we used a rigorous subcellular fractionation approach to compare APA profiles of cytoplasmic and nuclear RNA fractions from human cell lines. This approach allowed us to extract APA isoforms that are subjected to differential regulation and provided us with a platform to interrogate the molecular regulatory pathways that shape APA profiles in different subcellular locations. Here, we show that APA isoforms with shorter 3′ UTRs tend to be overrepresented in the cytoplasm and appear to be cell-type–specific events. Nuclear retention of longer APA isoforms occurs and is partly a result of incomplete splicing contributing to the observed cytoplasmic bias of transcripts with shorter 3′ UTRs. We demonstrate that the endoribonuclease III, DICER1, contributes to the establishment of subcellular APA profiles not only by expected cytoplasmic miRNA-mediated destabilization of APA mRNA isoforms, but also by affecting polyadenylation site choice. PMID:26546131

  8. Deep-Sea Bacterium Shewanella piezotolerans WP3 Has Two Dimethyl Sulfoxide Reductases in Distinct Subcellular Locations

    PubMed Central

    Xiong, Lei; Jian, Huahua

    2017-01-01

    ABSTRACT Dimethyl sulfoxide (DMSO) acts as a substantial sink for dimethyl sulfide (DMS) in deep waters and is therefore considered a potential electron acceptor supporting abyssal ecosystems. Shewanella piezotolerans WP3 was isolated from west Pacific deep-sea sediments, and two functional DMSO respiratory subsystems are essential for maximum growth of WP3 under in situ conditions (4°C/20 MPa). However, the relationship between these two subsystems and the electron transport pathway underlying DMSO reduction by WP3 remain unknown. In this study, both DMSO reductases (type I and type VI) in WP3 were found to be functionally independent despite their close evolutionary relationship. Moreover, immunogold labeling of DMSO reductase subunits revealed that the type I DMSO reductase was localized on the outer leaflet of the outer membrane, whereas the type VI DMSO reductase was located within the periplasmic space. CymA, a cytoplasmic membrane-bound tetraheme c-type cytochrome, served as a preferential electron transport protein for the type I and type VI DMSO reductases, in which type VI accepted electrons from CymA in a DmsE- and DmsF-independent manner. Based on these results, we proposed a core electron transport model of DMSO reduction in the deep-sea bacterium S. piezotolerans WP3. These results collectively suggest that the possession of two sets of DMSO reductases with distinct subcellular localizations may be an adaptive strategy for WP3 to achieve maximum DMSO utilization in deep-sea environments. IMPORTANCE As the dominant methylated sulfur compound in deep oceanic water, dimethyl sulfoxide (DMSO) has been suggested to play an important role in the marine biogeochemical cycle of the volatile anti-greenhouse gas dimethyl sulfide (DMS). Two sets of DMSO respiratory systems in the deep-sea bacterium Shewanella piezotolerans WP3 have previously been identified to mediate DMSO reduction under in situ conditions (4°C/20 MPa). Here, we report that the two DMSO

  9. Measurement of subcellular texture by optical Gabor-like filtering with a digital micromirror device

    PubMed Central

    Pasternack, Robert M.; Qian, Zhen; Zheng, Jing-Yi; Metaxas, Dimitris N.; White, Eileen; Boustany, Nada N.

    2010-01-01

    We demonstrate an optical Fourier processing method to quantify object texture arising from subcellular feature orientation within unstained living cells. Using a digital micromirror device as a Fourier spatial filter, we measured cellular responses to two-dimensional optical Gabor-like filters optimized to sense orientation of nonspherical particles, such as mitochondria, with a width around 0.45 μm. Our method showed significantly rounder structures within apoptosis-defective cells lacking the proapoptotic mitochondrial effectors Bax and Bak, when compared with Bax/Bak expressing cells functional for apoptosis, consistent with reported differences in mitochondrial shape in these cells. By decoupling spatial frequency resolution from image resolution, this method enables rapid analysis of nonspherical submicrometer scatterers in an under-sampled large field of view and yields spatially localized morphometric parameters that improve the quantitative assessment of biological function. PMID:18830354

  10. Metabolic Mapping: Quantitative Enzyme Cytochemistry and Histochemistry to Determine the Activity of Dehydrogenases in Cells and Tissues.

    PubMed

    Molenaar, Remco J; Khurshed, Mohammed; Hira, Vashendriya V V; Van Noorden, Cornelis J F

    2018-05-26

    Altered cellular metabolism is a hallmark of many diseases, including cancer, cardiovascular diseases and infection. The metabolic motor units of cells are enzymes and their activity is heavily regulated at many levels, including the transcriptional, mRNA stability, translational, post-translational and functional level. This complex regulation means that conventional quantitative or imaging assays, such as quantitative mRNA experiments, Western Blots and immunohistochemistry, yield incomplete information regarding the ultimate activity of enzymes, their function and/or their subcellular localization. Quantitative enzyme cytochemistry and histochemistry (i.e., metabolic mapping) show in-depth information on in situ enzymatic activity and its kinetics, function and subcellular localization in an almost true-to-nature situation. We describe a protocol to detect the activity of dehydrogenases, which are enzymes that perform redox reactions to reduce cofactors such as NAD(P) + and FAD. Cells and tissue sections are incubated in a medium that is specific for the enzymatic activity of one dehydrogenase. Subsequently, the dehydrogenase that is the subject of investigation performs its enzymatic activity in its subcellular site. In a chemical reaction with the reaction medium, this ultimately generates blue-colored formazan at the site of the dehydrogenase's activity. The formazan's absorbance is therefore a direct measure of the dehydrogenase's activity and can be quantified using monochromatic light microscopy and image analysis. The quantitative aspect of this protocol enables researchers to draw statistical conclusions from these assays. Besides observational studies, this technique can be used for inhibition studies of specific enzymes. In this context, studies benefit from the true-to-nature advantages of metabolic mapping, giving in situ results that may be physiologically more relevant than in vitro enzyme inhibition studies. In all, metabolic mapping is an

  11. 21 CFR 346.10 - Local anesthetic active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Local anesthetic active ingredients. 346.10... (CONTINUED) DRUGS FOR HUMAN USE ANORECTAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 346.10 Local anesthetic active ingredients. The active ingredient of the product consists of any of...

  12. 21 CFR 346.10 - Local anesthetic active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Local anesthetic active ingredients. 346.10... (CONTINUED) DRUGS FOR HUMAN USE ANORECTAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 346.10 Local anesthetic active ingredients. The active ingredient of the product consists of any of...

  13. 21 CFR 346.10 - Local anesthetic active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Local anesthetic active ingredients. 346.10... (CONTINUED) DRUGS FOR HUMAN USE ANORECTAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 346.10 Local anesthetic active ingredients. The active ingredient of the product consists of any of...

  14. Subcellular localization and vacuolar targeting of sorbitol dehydrogenase in apple seed.

    PubMed

    Wang, Xiu-Ling; Hu, Zi-Ying; You, Chun-Xiang; Kong, Xiu-Zhen; Shi, Xiao-Pu

    2013-09-01

    Sorbitol is the primary photosynthate and translocated carbohydrate in fruit trees of the Rosaceae family. NAD(+)-dependent sorbitol dehydrogenase (NAD-SDH, EC 1.1.1.14), which mainly catalyzes the oxidation of sorbitol to fructose, plays a key role in regulating sink strength in apple. In this study, we found that apple NAD-SDH was ubiquitously distributed in epidermis, parenchyma, and vascular bundle in developing cotyledon. NAD-SDH was localized in the cytosol, the membranes of endoplasmic reticulum and vesicles, and the vacuolar lumen in the cotyledon at the middle stage of seed development. In contrast, NAD-SDH was mainly distributed in the protein storage vacuoles in cotyledon at the late stage of seed development. Sequence analysis revealed there is a putative signal peptide (SP), also being predicated to be a transmembrane domain, in the middle of proteins of apple NAD-SDH isoforms. To investigate whether the putative internal SP functions in the vacuolar targeting of NAD-SDH, we analyzed the localization of the SP-deletion mutants of MdSDH5 and MdSDH6 (two NAD-SDH isoforms in apple) by the transient expression system in Arabidopsis protoplasts. MdSDH5 and MdSDH6 were not localized in the vacuoles after their SPs were deleted, suggesting the internal SP functions in the vacuolar targeting of apple NAD-SDH. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. New intracellular activities of matrix metalloproteinases shine in the moonlight.

    PubMed

    Jobin, Parker G; Butler, Georgina S; Overall, Christopher M

    2017-11-01

    Adaption of a single protein to perform multiple independent functions facilitates functional plasticity of the proteome allowing a limited number of protein-coding genes to perform a multitude of cellular processes. Multifunctionality is achievable by post-translational modifications and by modulating subcellular localization. Matrix metalloproteinases (MMPs), classically viewed as degraders of the extracellular matrix (ECM) responsible for matrix protein turnover, are more recently recognized as regulators of a range of extracellular bioactive molecules including chemokines, cytokines, and their binders. However, growing evidence has convincingly identified select MMPs in intracellular compartments with unexpected physiological and pathological roles. Intracellular MMPs have both proteolytic and non-proteolytic functions, including signal transduction and transcription factor activity thereby challenging their traditional designation as extracellular proteases. This review highlights current knowledge of subcellular location and activity of these "moonlighting" MMPs. Intracellular roles herald a new era of MMP research, rejuvenating interest in targeting these proteases in therapeutic strategies. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. L-Ilf3 and L-NF90 Traffic to the Nucleolus Granular Component: Alternatively-Spliced Exon 3 Encodes a Nucleolar Localization Motif

    PubMed Central

    Viranaicken, Wildriss; Gasmi, Laila; Chaumet, Alexandre; Durieux, Christiane; Georget, Virginie; Denoulet, Philippe; Larcher, Jean-Christophe

    2011-01-01

    Ilf3 and NF90, two proteins containing double-stranded RNA-binding domains, are generated by alternative splicing and involved in several functions. Their heterogeneity results from posttranscriptional and posttranslational modifications. Alternative splicing of exon 3, coding for a 13 aa N-terminal motif, generates for each protein a long and short isoforms. Subcellular fractionation and localization of recombinant proteins showed that this motif acts as a nucleolar localization signal. Deletion and substitution mutants identified four arginines, essential for nucleolar targeting, and three histidines to stabilize the proteins within the nucleolus. The short isoforms are never found in the nucleoli, whereas the long isoforms are present in the nucleoplasm and the nucleoli. For Ilf3, only the posttranslationally-unmodified long isoform is nucleolar, suggesting that this nucleolar targeting is abrogated by posttranslational modifications. Confocal microscopy and FRAP experiments have shown that the long Ilf3 isoform localizes to the granular component of the nucleolus, and that L-Ilf3 and L-NF90 exchange rapidly between nucleoli. The presence of this 13 aminoacid motif, combined with posttranslational modifications, is responsible for the differences in Ilf3 and NF90 isoforms subcellular localizations. The protein polymorphism of Ilf3/NF90 and the various subcellular localizations of their isoforms may partially explain the various functions previously reported for these proteins. PMID:21811582

  17. Alterations in the characteristic size distributions of subcellular scatterers at the onset of apoptosis: effect of Bcl-xL and Bax/Bak

    NASA Astrophysics Data System (ADS)

    Zheng, Jing-Yi; Boustany, Nada N.

    2010-07-01

    Optical scatter imaging is used to estimate organelle size distributions in immortalized baby mouse kidney cells treated with 0.4 μM staurosporine to induce apoptosis. The study comprises apoptosis competent iBMK cells (W2) expressing the proapoptotic proteins Bax/Bak, apoptosis resistant Bax/Bak null cells (D3), and W2 and D3 cells expressing yellow fluorescent protein (YFP) or YFP fused to the antiapoptotic protein Bcl-xL (YFP-Bcl-xL). YFP expression is diffuse within the transfected cells, while YFP-Bcl-xL is localized to the mitochondria. Our results show a significant increase in the mean subcellular particle size from approximately 1.1 to 1.4 μm in both Bax/Bak expressing and Bax/Bak null cells after 60 min of STS treatment compared to DMSO-treated control cells. This dynamic is blocked by overexpression of YFP-Bcl-xL in Bax/Bak expressing cells, but is less significantly inhibited by YFP-Bcl-xL in Bax/Bak null cells. Our data suggest that the increase in subcellular particle size at the onset of apoptosis is modulated by Bcl-xL in the presence of Bax/Bak, but it occurs upstream of the final commitment to programmed cell death. Mitochondrial localization of YFP-Bcl-xL and the finding that micron-sized particles give rise to the scattering signal further suggest that alterations in mitochondrial morphology may underlie the observed changes in light scattering.

  18. Prion subcellular fractionation reveals infectivity spectrum, with a high titre-low PrPres level disparity

    PubMed Central

    2012-01-01

    Background Prion disease transmission and pathogenesis are linked to misfolded, typically protease resistant (PrPres) conformers of the normal cellular prion protein (PrPC), with the former posited to be the principal constituent of the infectious 'prion'. Unexplained discrepancies observed between detectable PrPres and infectivity levels exemplify the complexity in deciphering the exact biophysical nature of prions and those host cell factors, if any, which contribute to transmission efficiency. In order to improve our understanding of these important issues, this study utilized a bioassay validated cell culture model of prion infection to investigate discordance between PrPres levels and infectivity titres at a subcellular resolution. Findings Subcellular fractions enriched in lipid rafts or endoplasmic reticulum/mitochondrial marker proteins were equally highly efficient at prion transmission, despite lipid raft fractions containing up to eight times the levels of detectable PrPres. Brain homogenate infectivity was not differentially enhanced by subcellular fraction-specific co-factors, and proteinase K pre-treatment of selected fractions modestly, but equally reduced infectivity. Only lipid raft associated infectivity was enhanced by sonication. Conclusions This study authenticates a subcellular disparity in PrPres and infectivity levels, and eliminates simultaneous divergence of prion strains as the explanation for this phenomenon. On balance, the results align best with the concept that transmission efficiency is influenced more by intrinsic characteristics of the infectious prion, rather than cellular microenvironment conditions or absolute PrPres levels. PMID:22534096

  19. Isolation of potential probiotic Bacillus spp. and assessment of their subcellular components to induce immune responses in Labeo rohita against Aeromonas hydrophila.

    PubMed

    Ramesh, Dharmaraj; Vinothkanna, Annadurai; Rai, Amit Kumar; Vignesh, Venkada Subramanian

    2015-08-01

    Bacillus species isolated from the gut of healthy Labeo rohita (Hamilton) were screened for antibacterial activity against selected fish pathogens. Among the isolates, KADR5 and KADR6 showed antibacterial activity, tolerated low pH and high bile concentrations and were susceptibility to various antibiotics. Based on morphological and biochemical tests and 16S rRNA gene analysis the probiotic strains KADR5 and KADR6 were identified as Bacillus licheniformis and Bacillus pumilus, respectively. The immune stimulatory effect of subcellular components of probiotic Bacillus licheniformis KADR5 and Bacillus pumilus KADR6 in L. rohita against Aeromonas hydrophila infection was studied. Fish were immunized intraperitoneally in case of subcellular components [cell wall proteins (CWPs), extracellular proteins (ECPs), whole cell proteins (WCPs)] and orally in case of live cells (10(8) CFU/g of feed). After 14th day of administration, fishes from each group were challenged intraperitoneally with 0.1 ml of A. hydrophila cell suspension in PBS (10(5) cells ml(-1)). Groups immunized with subcellular components and live cells had significantly lower mortalities of 20-40% and 23-33%, respectively in comparison to control (80% mortality). The non specific immune factors in the cellular components and viable cells of the probiotics increased the expression of lysozyme and respiratory burst. Use of WCPs and CWPs resulted in better protection against A. hydrophila in L. rohita. Our results clearly reflect the potential of cellular components of the probiotics Bacillus species for the protection of fish against A. hydrophila infection by enhancing the immune response. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Localization of A-type K+ channel subunit Kv4.2 in rat brain.

    PubMed

    Tsaur, M L; Wu, Y L; Huang, F L; Shih, Y H

    2001-09-30

    Kv4.2, a voltage-gated K+ (Kv) channel subunit, has been suggested to be the key component of the subthreshold A-type K+ currents (I(SA)s) recorded from the specific subcellular compartments of certain CNS neurons. To correlate Kv4.2 localization with the I(SA)s detected, immunohistochemistry will be useful. Although the Kv4.2 immunostaining pattern in the hippocampus and cerebellum has been reported, the Kv4.2 antibody used was not specific. Furthermore, Kv4.2 localization in other brain regions remains unclear. In this report, we first demonstrated the specificity of a new Kv4.2 antibody, and then used it to examine Kv4.2 localization throughout adult rat brain by immunohistochemistry. At the cellular level, Kv4.2 was found in neurons but not glias. At the subcellular level, Kv4.2 was localized in the somatodendritic compartment of most neurons examined. Nevertheless, our preliminary data indicated that Kv4.2 might be also present in the axon/terminal compartment. At the functional level, our data indicates that Kv4.2 localization and I(SA) correlate quite well in some CNS neurons, supporting that Kv4.2 is the key component of some I(SA)s recorded in vivo.

  1. In-situ coupling between kinase activities and protein dynamics within single focal adhesions

    NASA Astrophysics Data System (ADS)

    Wu, Yiqian; Zhang, Kaiwen; Seong, Jihye; Fan, Jason; Chien, Shu; Wang, Yingxiao; Lu, Shaoying

    2016-07-01

    The dynamic activation of oncogenic kinases and regulation of focal adhesions (FAs) are crucial molecular events modulating cell adhesion in cancer metastasis. However, it remains unclear how these events are temporally coordinated at single FA sites. Therefore, we targeted fluorescence resonance energy transfer (FRET)-based biosensors toward subcellular FAs to report local molecular events during cancer cell adhesion. Employing single FA tracking and cross-correlation analysis, we quantified the dynamic coupling characteristics between biochemical kinase activities and structural FA within single FAs. We show that kinase activations and FA assembly are strongly and sequentially correlated, with the concurrent FA assembly and Src activation leading focal adhesion kinase (FAK) activation by 42.6 ± 12.6 sec. Strikingly, the temporal coupling between kinase activation and individual FA assembly reflects the fate of FAs at later stages. The FAs with a tight coupling tend to grow and mature, while the less coupled FAs likely disassemble. During FA disassembly, however, kinase activations lead the disassembly, with FAK being activated earlier than Src. Therefore, by integrating subcellularly targeted FRET biosensors and computational analysis, our study reveals intricate interplays between Src and FAK in regulating the dynamic life of single FAs in cancer cells.

  2. Identification and subcellular localization of porcine deltacoronavirus accessory protein NS6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Puxian; Fang, Liurong; Liu, Xiaorong

    Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus. Accessory proteins are genus-specific for coronavirus, and two putative accessory proteins, NS6 and NS7, are predicted to be encoded by PDCoV; however, this remains to be confirmed experimentally. Here, we identified the leader-body junction sites of NS6 subgenomic RNA (sgRNA) and found that the actual transcription regulatory sequence (TRS) utilized by NS6 is non-canonical and is located upstream of the predicted TRS. Using the purified NS6 from an Escherichia coli expression system, we obtained two anti-NS6 monoclonal antibodies that could detect the predicted NS6 in cells infected with PDCoV or transfectedmore » with NS6-expressing plasmids. Further studies revealed that NS6 is always localized in the cytoplasm of PDCoV-infected cells, mainly co-localizing with the endoplasmic reticulum (ER) and ER-Golgi intermediate compartments, as well as partially with the Golgi apparatus. Together, our results identify the NS6 sgRNA and demonstrate its expression in PDCoV-infected cells. -- Highlights: •The leader-body fusion site of NS6 sgRNA is identified. •NS6 sgRNA uses a non-canonical transcription regulatory sequence (TRS). •NS6 can be expressed in PDCoV-infected cell. •NS6 predominantly localize to the ER complex and ER-Golgi intermediate compartment.« less

  3. Subcellular Localization and Polymorphism of Bovine FABP4 in Bovine Intramuscular Adipocytes.

    PubMed

    Yonekura, Shinichi; Hirota, Shohei; Miyazaki, Honami; Tokutake, Yukako

    2016-01-01

    Fatty acid binding protein 4 (FABP4) I74 V, a gene polymorphism associated with unsaturated fatty acid contents, was discovered in Japanese Black cattle. Individuals with FABP4 I/I genotype contain a significantly high level of palmitoleic acid compared to those with FABP4 V/V genotype. It remains unknown how the FABP4 polymorphism leads to different palmitoleic acid contents. We overexpressed FABP4 of different genotypes in bovine intramuscular preadipocytes and examined whether the intracellular localization of FABP4 and the expression levels of lipid metabolism-related genes were different among cells expressing different genotypes. Nuclear localization was observed for the FABP4 V/V, while the FABP4 I/I almost did not. The cells expressing FABP4 of different genotypes were comparable in terms of the expression levels of genes involved in lipid metabolism. FABP4 I/I was localized in most of the lipid droplets 4 days after differentiation induction, whereas approximately 25% lipid droplet co-localized with FABP4 in cells expressing FABP4 V/V. The lipid droplet size increased when palmitoleic acid was added compared to the size observed when palmitic acid was added. These results suggest that lipid droplet enlargement caused by palmitoleic acid and genotype-dependent differences in the fatty acid transporting capacity underlie variations in palmitoleic acid content among FABP4 polymorphisms.

  4. Subcellular distribution and potential detoxification mechanisms of mercury in the liver of the Javan mongoose (Herpestes javanicus) in Amamioshima Island, Japan.

    PubMed

    Horai, Sawako; Furukawa, Tatsuhiko; Ando, Tetsuo; Akiba, Suminori; Takeda, Yasuo; Yamada, Katsushi; Kuno, Katsuji; Abe, Shintaro; Watanabe, Izumi

    2008-06-01

    In a previous study, we showed that Hg accumulated to high levels in the liver of the Javan mongoose (Herpestes javanicus), a terrestrial mammal that lives on Amamioshima Island, Japan. This suggests a sophisticated mechanism of hepatic Hg detoxication. Assay of the subcellular localization of Hg and the expression of protective enzymes provides important clues for elucidating the mechanism of Hg detoxication. In the present study, the concentrations of 11 elements (Mg, Cr, Mn, Fe, Cu, Zn, Se, Rb, Cd, total Hg [T-Hg] and organic Hg [O-Hg], and Pb) were determined in the liver and in five liver subcellular fractions (plasma membrane, mitochondria, nuclei, microsome, and cytosol) of this species. As the T-Hg level increased, T-Hg markedly distributed to the plasma membrane. The T-Hg levels in all subcellular fractions correlated with Se levels. Although the T-Hg level in the microsomal fraction was relatively low, the ratio of O-Hg to T-Hg was significantly lower in the microsomes than in the other fractions. Significant positive correlations were found between the level of glutathione-S-transferase-pi, a marker of oxidative stress, and the O-Hg and T-Hg levels, but the correlation was better with O-Hg than with T-Hg. Western blot analysis of thioredoxin reductase 2 (TrxR2), a protein involved in protecting cells from mitochondrial oxidative stress, showed that the level of TrxR2 correlated with that of T-Hg. High TrxR2 levels may be one mechanism by which the Javan mongoose attenuates the toxicity of the high Hg levels present in the liver.

  5. Sub-cellular localisation studies may spuriously detect the Yes-associated protein, YAP, in nucleoli leading to potentially invalid conclusions of its function.

    PubMed

    Finch, Megan L; Passman, Adam M; Strauss, Robyn P; Yeoh, George C; Callus, Bernard A

    2015-01-01

    The Yes-associated protein (YAP) is a potent transcriptional co-activator that functions as a nuclear effector of the Hippo signaling pathway. YAP is oncogenic and its activity is linked to its cellular abundance and nuclear localisation. Activation of the Hippo pathway restricts YAP nuclear entry via its phosphorylation by Lats kinases and consequent cytoplasmic retention bound to 14-3-3 proteins. We examined YAP expression in liver progenitor cells (LPCs) and surprisingly found that transformed LPCs did not show an increase in YAP abundance compared to the non-transformed LPCs from which they were derived. We then sought to ascertain whether nuclear YAP was more abundant in transformed LPCs. We used an antibody that we confirmed was specific for YAP by immunoblotting to determine YAP's sub-cellular localisation by immunofluorescence. This antibody showed diffuse staining for YAP within the cytosol and nuclei, but, noticeably, it showed intense staining of the nucleoli of LPCs. This staining was non-specific, as shRNA treatment of cells abolished YAP expression to undetectable levels by Western blot yet the nucleolar staining remained. Similar spurious YAP nucleolar staining was also seen in mouse embryonic fibroblasts and mouse liver tissue, indicating that this antibody is unsuitable for immunological applications to determine YAP sub-cellular localisation in mouse cells or tissues. Interestingly nucleolar staining was not evident in D645 cells suggesting the antibody may be suitable for use in human cells. Given the large body of published work on YAP in recent years, many of which utilise this antibody, this study raises concerns regarding its use for determining sub-cellular localisation. From a broader perspective, it serves as a timely reminder of the need to perform appropriate controls to ensure the validity of published data.

  6. Sub-Cellular Localisation Studies May Spuriously Detect the Yes-Associated Protein, YAP, in Nucleoli Leading to Potentially Invalid Conclusions of Its Function

    PubMed Central

    Finch, Megan L.; Passman, Adam M.; Strauss, Robyn P.; Yeoh, George C.; Callus, Bernard A.

    2015-01-01

    The Yes-associated protein (YAP) is a potent transcriptional co-activator that functions as a nuclear effector of the Hippo signaling pathway. YAP is oncogenic and its activity is linked to its cellular abundance and nuclear localisation. Activation of the Hippo pathway restricts YAP nuclear entry via its phosphorylation by Lats kinases and consequent cytoplasmic retention bound to 14-3-3 proteins. We examined YAP expression in liver progenitor cells (LPCs) and surprisingly found that transformed LPCs did not show an increase in YAP abundance compared to the non-transformed LPCs from which they were derived. We then sought to ascertain whether nuclear YAP was more abundant in transformed LPCs. We used an antibody that we confirmed was specific for YAP by immunoblotting to determine YAP’s sub-cellular localisation by immunofluorescence. This antibody showed diffuse staining for YAP within the cytosol and nuclei, but, noticeably, it showed intense staining of the nucleoli of LPCs. This staining was non-specific, as shRNA treatment of cells abolished YAP expression to undetectable levels by Western blot yet the nucleolar staining remained. Similar spurious YAP nucleolar staining was also seen in mouse embryonic fibroblasts and mouse liver tissue, indicating that this antibody is unsuitable for immunological applications to determine YAP sub-cellular localisation in mouse cells or tissues. Interestingly nucleolar staining was not evident in D645 cells suggesting the antibody may be suitable for use in human cells. Given the large body of published work on YAP in recent years, many of which utilise this antibody, this study raises concerns regarding its use for determining sub-cellular localisation. From a broader perspective, it serves as a timely reminder of the need to perform appropriate controls to ensure the validity of published data. PMID:25658431

  7. Activity-Dependent Subcellular Cotrafficking of the Small GTPase Rem2 and Ca2+/CaM-Dependent Protein Kinase IIα

    PubMed Central

    Flynn, Robyn; Labrie-Dion, Etienne; Bernier, Nikolas; Colicos, Michael A.; De Koninck, Paul; Zamponi, Gerald W.

    2012-01-01

    Background Rem2 is a small monomeric GTP-binding protein of the RGK family, whose known functions are modulation of calcium channel currents and alterations of cytoskeletal architecture. Rem2 is the only RGK protein found predominantly in the brain, where it has been linked to synaptic development. We wished to determine the effect of neuronal activity on the subcellular distribution of Rem2 and its interacting partners. Results We show that Rem2 undergoes activity-and N-Methyl-D-Aspartate Receptor (NMDAR)-dependent translocation in rat hippocampal neurons. This redistribution of Rem2, from a diffuse pattern to one that is highly punctate, is dependent on Ca2+ influx, on binding to calmodulin (CaM), and also involves an auto-inhibitory domain within the Rem2 distal C-terminus region. We found that Rem2 can bind to Ca2+/CaM-dependent protein kinase IIα (CaMKII) a in Ca2+/CaM-dependent manner. Furthermore, our data reveal a spatial and temporal correlation between NMDAR-dependent clustering of Rem2 and CaMKII in neurons, indicating co-assembly and co-trafficking in neurons. Finally, we show that inhibiting CaMKII aggregation in neurons and HEK cells reduces Rem2 clustering, and that Rem2 affects the baseline distribution of CaMKII in HEK cells. Conclusions Our data suggest a novel function for Rem2 in co-trafficking with CaMKII, and thus potentially expose a role in neuronal plasticity. PMID:22815963

  8. Analysis of Subcellular Prefoldin 1 Redistribution During Rabies Virus Infection

    PubMed Central

    Zhang, Jinyang; Han, Qinqin; Song, Yuzhu; Chen, Qiang; Xia, Xueshan

    2015-01-01

    Background: Rabies virus (RABV) is one of the old deadly zoonotic viruses. It attacks the central nervous system and causes acute encephalitis in humans and animals. Host factors are known to be essential for virus infection and replication in cells. The identification of the key host factors required for RABV infection may provide important information on RABV replication and may provide new potential targets for RABV drug discovery. Objectives: This study aimed to investigate the change in the subcellular distribution and expression of the host protein Prefoldin subunit 1 (PFDN1) in RABV-infected cells and the viral expression of plasmids in the transfected cells. Materials and Methods: Mouse Neuro-2a (N2a) cells were infected by RABV or transfected with the plasmids of the nucleoprotein (N) and/or phosphoprotein (P) gene of RABV. The subcellular distribution of PFDN1 was analyzed by confocal microscopy, and the transcription levels of PFDN1 in the N and/or P gene of the RABV-transfected or RABV-infected N2a cells were assessed via real-time quantitative polymerase chain reaction. Results: Confocal microscopy showed that PFDN1 was colocalized with the N protein of RABV in the infected N2a cells and was mainly recruited to the characteristic Negri-Body-Like (NBL) structures in the cytoplasm, as well as the cotransfection of the N and P genes of RABV. The transcription of PFDN1 in the RABV-infected N2a cells was upregulated, whereas the transfection of the N and/or P genes did not result in the upregulation of PFDN1. Conclusions: The results of this work demonstrated that the subcellular distribution of PFDN1 was altered in the RABV-infected N2a cells and colocalized with the N protein of RABV in the NBL structures. PMID:26421138

  9. Subcellular Distribution of Glutathione Precursors in Arabidopsis thaliana

    PubMed Central

    Koffler, Barbara Eva; Maier, Romana; Zechmann, Bernd

    2011-01-01

    Abstract Glutathione is an important antioxidant and has many important functions in plant development, growth and defense. Glutathione synthesis and degradation is highly compartment-specific and relies on the subcellular availability of its precursors, cysteine, glutamate, glycine and γ-glutamylcysteine especially in plastids and the cytosol which are considered as the main centers for glutathione synthesis. The availability of glutathione precursors within these cell compartments is therefore of great importance for successful plant development and defense. The aim of this study was to investigate the compartment-specific importance of glutathione precursors in Arabidopsis thaliana. The subcellular distribution was compared between wild type plants (Col-0), plants with impaired glutathione synthesis (glutathione deficient pad2-1 mutant, wild type plants treated with buthionine sulfoximine), and one complemented line (OE3) with restored glutathione synthesis. Immunocytohistochemistry revealed that the inhibition of glutathione synthesis induced the accumulation of the glutathione precursors cysteine, glutamate and glycine in most cell compartments including plastids and the cytosol. A strong decrease could be observed in γ-glutamylcysteine (γ-EC) contents in these cell compartments. These experiments demonstrated that the inhibition of γ-glutamylcysteine synthetase (GSH1) – the first enzyme of glutathione synthesis – causes a reduction of γ-EC levels and an accumulation of all other glutathione precursors within the cells. PMID:22050910

  10. Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity.

    PubMed

    Henry, Elizabeth; Yadeta, Koste A; Coaker, Gitta

    2013-09-01

    Bacterial pathogens can cause multiple plant diseases and plants rely on their innate immune system to recognize and actively respond to these microbes. The plant innate immune system comprises extracellular pattern recognition receptors that recognize conserved microbial patterns and intracellular nucleotide binding leucine-rich repeat (NLR) proteins that recognize specific bacterial effectors delivered into host cells. Plants lack the adaptive immune branch present in animals, but still afford flexibility to pathogen attack through systemic and transgenerational resistance. Here, we focus on current research in plant immune responses against bacterial pathogens. Recent studies shed light onto the activation and inactivation of pattern recognition receptors and systemic acquired resistance. New research has also uncovered additional layers of complexity surrounding NLR immune receptor activation, cooperation and sub-cellular localizations. Taken together, these recent advances bring us closer to understanding the web of molecular interactions responsible for coordinating defense responses and ultimately resistance. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  11. 21 CFR 346.10 - Local anesthetic active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Local anesthetic active ingredients. 346.10 Section 346.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 346.10 Local anesthetic active ingredients. The active ingredient of the product consists of any of...

  12. 21 CFR 346.10 - Local anesthetic active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Local anesthetic active ingredients. 346.10 Section 346.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 346.10 Local anesthetic active ingredients. The active ingredient of the product consists of any of...

  13. Immunocytochemical analysis of the subcellular distribution of ferritin in Imperata cylindrica (L.) Raeuschel, an iron hyperaccumulator plant.

    PubMed

    de la Fuente, Vicenta; Rodríguez, Nuria; Amils, Ricardo

    2012-05-01

    Ferritin is of interest at the structural and functional level not only as storage for iron, a critical element, but also as a means to prevent cell damage produced by oxidative stress. The main objective of this work was to confirm by immunocytochemistry the presence and the subcellular distribution of the ferritin detected by Mösbauer spectroscopy in Imperata cylindrica, a plant which accumulates large amounts of iron. The localization of ferritin was performed in epidermal, parenchymal and vascular tissues of shoots and leaves of I. cylindrica. The highest density of immunolabeling in shoots appeared in the intracellular space of cell tissues, near the cell walls and in the cytoplasm. In leaves, ferritin was detected in the proximity of the dense network of the middle lamella of cell walls, following a similar path to that observed in shoots. Immunolabeling was also localized in chloroplasts. The abundance of immunogold labelling in mitochondria for I. cylindrica was rather low, probably because the study dealt with tissues from old plants. These results further expand the localization of ferritin in cell components other than chloroplasts and mitochondria in plants. Copyright © 2011 Elsevier GmbH. All rights reserved.

  14. In Situ Spatiotemporal Mapping of Flow Fields around Seeded Stem Cells at the Subcellular Length Scale

    PubMed Central

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L.

    2010-01-01

    A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV) for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD) predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms. PMID:20862249

  15. AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion

    PubMed Central

    Cunniff, Brian; McKenzie, Andrew J.; Heintz, Nicholas H.; Howe, Alan K.

    2016-01-01

    Cell migration is a complex behavior involving many energy-expensive biochemical events that iteratively alter cell shape and location. Mitochondria, the principal producers of cellular ATP, are dynamic organelles that fuse, divide, and relocate to respond to cellular metabolic demands. Using ovarian cancer cells as a model, we show that mitochondria actively infiltrate leading edge lamellipodia, thereby increasing local mitochondrial mass and relative ATP concentration and supporting a localized reversal of the Warburg shift toward aerobic glycolysis. This correlates with increased pseudopodial activity of the AMP-activated protein kinase (AMPK), a critically important cellular energy sensor and metabolic regulator. Furthermore, localized pharmacological activation of AMPK increases leading edge mitochondrial flux, ATP content, and cytoskeletal dynamics, whereas optogenetic inhibition of AMPK halts mitochondrial trafficking during both migration and the invasion of three-dimensional extracellular matrix. These observations indicate that AMPK couples local energy demands to subcellular targeting of mitochondria during cell migration and invasion. PMID:27385336

  16. Conserved developmental alternative splicing of muscleblind-like (MBNL) transcripts regulates MBNL localization and activity.

    PubMed

    Terenzi, Fulvia; Ladd, Andrea N

    2010-01-01

    Muscleblind-like (MBNL) proteins have been shown to regulate pre-mRNA alternative splicing, and MBNL1 has been implicated in regulating fetal-to-adult transitions in alternative splicing in the heart. MBNL1 is highly conserved, exhibiting more than 95% identity at the amino acid level between birds and mammals. To investigate MBNL1 expression during embryonic heart development, we examined MBNL1 transcript and protein expression in the embryonic chicken heart from the formation of the primitive heart tube through cardiac morphogenesis (embryonic days 1.5 through 8). MBNL1 transcript levels remained steady throughout these stages, whereas MBNL1 protein levels increased and exhibited a shift in isoforms. MBNL1 has several alternatively spliced exons. Using RT-PCR, we determined that the inclusion of one of these, exon 5, decreases dramatically during cardiac morphogenesis. This developmental transition is conserved in mice. Functional analyses of MBNL1 isoforms containing or lacking exon 5-encoded sequences revealed that exon 5 is important for the regulation of the subcellular localization, RNA binding affinity, and alternative splicing activity of MBNL1 proteins. A second MBNL protein, MBNL2, is also expressed in the embryonic heart. We found that MBNL2 exon 5, which is paralogous to MBNL1 exon 5, is similarly regulated during embryonic heart development. Analysis of MBNL1 and MBNL2 transcripts in several embryonic tissues in chicken and mouse indicate that exon 5 alternative splicing is highly conserved and tissue-specific. Thus, we propose that conserved developmental stage- and tissue-specific alternative splicing of MBNL transcripts is an important mechanism by which MBNL activity is regulated during embryonic development.

  17. Pseudomonas oleovorans Strain KBPF-004 Culture Supernatants Reduced Seed Transmission of Cucumber green mottle mosaic virus and Pepper mild mottle virus, and Remodeled Aggregation of 126 kDa and Subcellular Localization of Movement Protein of Pepper mild mottle virus

    PubMed Central

    Kim, Nam-Gyu; Seo, Eun-Young; Han, Sang-Hyuk; Gong, Jun-Su; Park, Cheol-Nam; Park, Ho-Seop; Domier, Leslie L; Hammond, John; Lim, Hyoun-Sub

    2017-01-01

    Efforts to control viral diseases in crop production include several types of physical or chemical treatments; antiviral extracts of a number of plants have also been examined to inhibit plant viral infection. However, treatments utilizing naturally selected microorganisms with activity against plant viruses are poorly documented. Here we report isolation of a soil inhabiting bacterium, Pseudomonas oleovorans strain KBPF-004 (developmental code KNF2016) which showed antiviral activity against mechanical transmission of tobamoviruses. Antiviral activity was also evaluated in seed transmission of two tobamoviruses, Pepper mild mottle virus (PMMoV) and Cucumber green mottle mosaic virus (CGMMV), by treatment of seed collected from infected pepper and watermelon, respectively. Pepper and watermelon seeds were treated with culture supernatant of P. oleovorans strain KBPF-004 or control strain ATCC 8062 before planting. Seeds germinated after treatment with water or ATCC 8062 yielded about 60% CGMMV or PMMoV positive plants, whereas < 20% of KBPF-004-treated seeds were virus-infected, a significantly reduced seed transmission rate. Furthermore, supernatant of P. oleovorans strain KBPF-004 remodeled aggregation of PMMoV 126 kDa protein and subcellular localization of movement protein in Nicotiana benthamiana, diminishing aggregation of the 126 kDa protein and essentially abolishing association of the movement protein with the microtubule network. In leaves agroinfiltrated with constructs expressing the coat protein (CP) of either PMMoV or CGMMV, less full-size CP was detected in the presence of supernatant of P. oleovorans strain KBPF-004. These changes may contribute to the antiviral effects of P. oleovorans strain KBPF-004. PMID:28811756

  18. Parvovirus interference with intracellular signalling: mechanism of PKCeta activation in MVM-infected A9 fibroblasts.

    PubMed

    Lachmann, Sylvie; Bär, Severine; Rommelaere, Jean; Nüesch, Jürg P F

    2008-03-01

    Autonomous parvoviruses are strongly dependent on the phosphorylation of the major non-structural protein NS1 by members of the protein kinase C (PKC) family. Besides being accompanied with changes in the overall phosphorylation pattern of NS1 and acquiring new modifications at consensus PKC sites, ongoing minute virus of mice (MVM) infections lead to the appearance of new phosphorylated cellular protein species. This prompted us to investigate whether MVM actively interferes with phosphoinositol-dependent kinase (PDK)/PKC signalling. The activity, subcellular localization and phosphorylation status of the protein kinases PDK1, PKCeta and PKClambda were measured in A9 cells in the presence or absence of MVM infection. Parvovirus infection was found to result in activation of both PDK1 and PKCeta, as evidenced by changes in their subcellular distribution and overall (auto)phosphorylation. We show evidence that activation of PKCeta by PDK1 is driven by atypical PKClambda. By modifying the hydrophobic motif of PKCeta, PKClambda appeared to control docking and consecutive phosphorylation of PKCeta's activation-loop by PDK1, a process that was inhibited in vivo in the presence of a dominant-negative PKClambda mutant.

  19. RABA Members Act in Distinct Steps of Subcellular Trafficking of the FLAGELLIN SENSING2 Receptor[W

    PubMed Central

    Choi, Seung-won; Tamaki, Takayuki; Ebine, Kazuo; Uemura, Tomohiro; Ueda, Takashi; Nakano, Akihiko

    2013-01-01

    Cell surface proteins play critical roles in the perception of environmental stimuli at the plasma membrane (PM) and ensuing signal transduction. Intracellular localization of such proteins must be strictly regulated, which requires elaborate integration of exocytic and endocytic trafficking pathways. Subcellular localization of Arabidopsis thaliana FLAGELLIN SENSING2 (FLS2), a receptor that recognizes bacterial flagellin, also depends on membrane trafficking. However, our understanding about the mechanisms involved is still limited. In this study, we visualized ligand-induced endocytosis of FLS2 using green fluorescent protein (GFP)-tagged FLS2 expressed in Nicotiana benthamiana. Upon treatment with the flg22 peptide, internalized FLS2-GFP from the PM was transported to a compartment with properties intermediate between the trans-Golgi network (TGN) and the multivesicular endosome. This compartment gradually discarded the TGN characteristics as it continued along the trafficking pathway. We further found that FLS2 endocytosis involves distinct RABA/RAB11 subgroups at different steps. Moreover, we demonstrated that transport of de novo–synthesized FLS2 to the PM also involves a distinct RABA/RAB11 subgroup. Our results demonstrate the complex regulatory system for properly localizing FLS2 and functional differentiation in RABA members in endo- and exocytosis. PMID:23532067

  20. Sensitivity of tumor cells towards CIGB-300 anticancer peptide relies on its nucleolar localization.

    PubMed

    Perera, Yasser; Costales, Heydi C; Diaz, Yakelin; Reyes, Osvaldo; Farina, Hernan G; Mendez, Lissandra; Gómez, Roberto E; Acevedo, Boris E; Gomez, Daniel E; Alonso, Daniel F; Perea, Silvio E

    2012-04-01

    CIGB-300 is a novel anticancer peptide that impairs the casein kinase 2-mediated phosphorylation by direct binding to the conserved phosphoacceptor site on their substrates. Previous findings indicated that CIGB-300 inhibits tumor cell proliferation in vitro and induces tumor growth delay in vivo in cancer animal models. Interestingly, we had previously demonstrated that the putative oncogene B23/nucleophosmin (NPM) is the major intracellular target for CIGB-300 in a sensitive human lung cancer cell line. However, the ability of this peptide to target B23/NPM in cancer cells with differential CIGB-300 response phenotype remained to be determined. Interestingly, in this work, we evidenced that CIGB-300's antiproliferative activity on tumor cells strongly correlates with its nucleolar localization, the main subcellular localization of the previously identified B23/NPM target. Likewise, using CIGB-300 equipotent doses (concentration that inhibits 50% of proliferation), we demonstrated that this peptide interacts and inhibits B23/NPM phosphorylation in different cancer cell lines as evidenced by in vivo pull-down and metabolic labeling experiments. Moreover, such inhibition was followed by a fast apoptosis on CIGB-300-treated cells and also an impairment of cell cycle progression mainly after 5 h of treatment. Altogether, our data not only validates B23/NPM as a main target for CIGB-300 in cancer cells but also provides the first experimental clues to explain their differential antiproliferative response. Importantly, our findings suggest that further improvements to this cell penetrating peptide-based drug should entail its more efficient intracellular delivery at such subcellular localization. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.

  1. Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif.

    PubMed

    Hernández-Sánchez, Itzell E; Maruri-López, Israel; Ferrando, Alejandro; Carbonell, Juan; Graether, Steffen P; Jiménez-Bremont, Juan F

    2015-01-01

    The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA) proteins, which accumulate during the late stages of embryogenesis and in response to abiotic stresses. Herein, we present the in vivo OpsDHN1 subcellular localization by N-terminal GFP translational fusion; our results revealed a cytoplasmic and nuclear localization of the GFP::OpsDHN1 protein in Nicotiana benthamiana epidermal cells. In addition, dimer assembly of OpsDHN1 in planta using a Bimolecular Fluorescence Complementation (BiFC) approach was demonstrated. In order to understand the in vivo role of the histidine-rich motif, the OpsDHN1-ΔHis version was produced and assayed for its subcellular localization and dimer capability by GFP fusion and BiFC assays, respectively. We found that deletion of the OpsDHN1 histidine-rich motif restricted its localization to cytoplasm, but did not affect dimer formation. In addition, the deletion of the S-segment in the OpsDHN1 protein affected its nuclear localization. Our data suggest that the deletion of histidine-rich motif and S-segment show similar effects, preventing OpsDHN1 from getting into the nucleus. Based on these results, the histidine-rich motif is proposed as a targeting element for OpsDHN1 nuclear localization.

  2. Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif

    PubMed Central

    Hernández-Sánchez, Itzell E.; Maruri-López, Israel; Ferrando, Alejandro; Carbonell, Juan; Graether, Steffen P.; Jiménez-Bremont, Juan F.

    2015-01-01

    The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA) proteins, which accumulate during the late stages of embryogenesis and in response to abiotic stresses. Herein, we present the in vivo OpsDHN1 subcellular localization by N-terminal GFP translational fusion; our results revealed a cytoplasmic and nuclear localization of the GFP::OpsDHN1 protein in Nicotiana benthamiana epidermal cells. In addition, dimer assembly of OpsDHN1 in planta using a Bimolecular Fluorescence Complementation (BiFC) approach was demonstrated. In order to understand the in vivo role of the histidine-rich motif, the OpsDHN1-ΔHis version was produced and assayed for its subcellular localization and dimer capability by GFP fusion and BiFC assays, respectively. We found that deletion of the OpsDHN1 histidine-rich motif restricted its localization to cytoplasm, but did not affect dimer formation. In addition, the deletion of the S-segment in the OpsDHN1 protein affected its nuclear localization. Our data suggest that the deletion of histidine-rich motif and S-segment show similar effects, preventing OpsDHN1 from getting into the nucleus. Based on these results, the histidine-rich motif is proposed as a targeting element for OpsDHN1 nuclear localization. PMID:26442018

  3. Fine and distributed subcellular retinotopy of excitatory inputs to the dendritic tree of a collision-detecting neuron

    PubMed Central

    Zhu, Ying

    2016-01-01

    Individual neurons in several sensory systems receive synaptic inputs organized according to subcellular topographic maps, yet the fine structure of this topographic organization and its relation to dendritic morphology have not been studied in detail. Subcellular topography is expected to play a role in dendritic integration, particularly when dendrites are extended and active. The lobula giant movement detector (LGMD) neuron in the locust visual system is known to receive topographic excitatory inputs on part of its dendritic tree. The LGMD responds preferentially to objects approaching on a collision course and is thought to implement several interesting dendritic computations. To study the fine retinotopic mapping of visual inputs onto the excitatory dendrites of the LGMD, we designed a custom microscope allowing visual stimulation at the native sampling resolution of the locust compound eye while simultaneously performing two-photon calcium imaging on excitatory dendrites. We show that the LGMD receives a distributed, fine retinotopic projection from the eye facets and that adjacent facets activate overlapping portions of the same dendritic branches. We also demonstrate that adjacent retinal inputs most likely make independent synapses on the excitatory dendrites of the LGMD. Finally, we show that the fine topographic mapping can be studied using dynamic visual stimuli. Our results reveal the detailed structure of the dendritic input originating from individual facets on the eye and their relation to that of adjacent facets. The mapping of visual space onto the LGMD's dendrites is expected to have implications for dendritic computation. PMID:27009157

  4. Apparatus and method for measuring single cell and sub-cellular photosynthetic efficiency

    DOEpatents

    Davis, Ryan Wesley; Singh, Seema; Wu, Huawen

    2013-07-09

    Devices for measuring single cell changes in photosynthetic efficiency in algal aquaculture are disclosed that include a combination of modulated LED trans-illumination of different intensities with synchronized through objective laser illumination and confocal detection. Synchronization and intensity modulation of a dual illumination scheme were provided using a custom microcontroller for a laser beam block and constant current LED driver. Therefore, single whole cell photosynthetic efficiency, and subcellular (diffraction limited) photosynthetic efficiency measurement modes are permitted. Wide field rapid light scanning actinic illumination is provided for both by an intensity modulated 470 nm LED. For the whole cell photosynthetic efficiency measurement, the same LED provides saturating pulses for generating photosynthetic induction curves. For the subcellular photosynthetic efficiency measurement, a switched through objective 488 nm laser provides saturating pulses for generating photosynthetic induction curves. A second near IR LED is employed to generate dark adapted states in the system under study.

  5. Functional subcellular distribution of β1- and β2-adrenergic receptors in rat ventricular cardiac myocytes

    PubMed Central

    Cros, Caroline; Brette, Fabien

    2013-01-01

    β-adrenergic stimulation is a key regulator of cardiac function. The localization of major cardiac adrenergic receptors (β1 and β2) has been investigated using biochemical and biophysical approaches and has led to contradictory results. This study investigates the functional subcellular localization of β1- and β2-adrenergic receptors in rat ventricular myocytes using a physiological approach. Ventricular myocytes were isolated from the hearts of rat and detubulated using formamide. Physiological cardiac function was measured as Ca2+ transient using Fura-2-AM and cell shortening. Selective activation of β1- and β2-adrenergic receptors was induced with isoproterenol (0.1 μmol/L) and ICI-118,551 (0.1 μmol/L); and with salbutamol (10 μmol/L) and atenolol (1 μmol/L), respectively. β1- and β2-adrenergic stimulations induced a significant increase in Ca2+ transient amplitude and cell shortening in intact rat ventricular myocytes (i.e., surface sarcolemma and t-tubules) and in detubulated cells (depleted from t-tubules, surface sarcolemma only). Both β1- and β2-adrenergic receptors stimulation caused a greater effect on Ca2+ transient and cell shortening in detubulated myocytes than in control myocytes. Quantitative analysis indicates that β1-adrenergic stimulation is ∼3 times more effective at surface sarcolemma compared to t-tubules, whereas β2- adrenergic stimulation occurs almost exclusively at surface sarcolemma (∼100 times more effective). These physiological data demonstrate that in rat ventricular myocytes, β1-adrenergic receptors are functionally present at surface sarcolemma and t-tubules, while β2-adrenergic receptors stimulation occurs only at surface sarcolemma of cardiac cells. PMID:24303124

  6. Amyloid is essential but insufficient for Alzheimer causation: addition of subcellular cofactors is required for dementia.

    PubMed

    Fessel, Jeffrey

    2018-01-01

    The aim of this study is to examine the hypotheses stating the importance of amyloid or of its oligomers in the pathogenesis of Alzheimer's disease (AD). Published studies were examined. The importance of amyloid in the pathogenesis of AD is well established, yet accepting it as the main cause for AD is problematic, because amyloid-centric treatments have provided no clinical benefit and about one-third of cognitively normal, older persons have cerebral amyloid plaques. Also problematic is the alternative hypothesis that, instead of amyloid plaques, it is oligomers of amyloid precursor protein that cause AD.Evidence is presented suggesting amyloid/oligomers as necessary but insufficient causes of the dementia and that, for dementia to develop, requires the addition of cofactors known to be associated with AD. Those cofactors include several subcellular processes: mitochondrial impairments; the Wnt signaling system; the unfolded protein response; the ubiquitin proteasome system; the Notch signaling system; and tau, calcium, and oxidative damage. A modified amyloid/oligomer hypothesis for the pathogenesis of AD is that activation of one or more of the aforementioned cofactors creates a burden of functional impairments that, in conjunction with amyloid/oligomers, now crosses a threshold of dysfunction that results in clinical dementia. Of considerable importance, several treatments that might reverse the activation of some of the subcellular processes are available, for example, lithium, pioglitazone, erythropoietin, and prazosin; they should be given in combination in a clinical trial to test their safety and efficacy. © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Subcellular localization of FOXO3a as a potential biomarker of response to combined treatment with inhibitors of PI3K and autophagy in PIK3CA-mutant cancer cells.

    PubMed

    Kim, Hyun-Jung; Lee, Soo Yoon; Kim, Chan Young; Kim, Yun Hwan; Ju, Woong; Kim, Seung Cheol

    2017-01-24

    Autophagy is the process of lysosome-mediated degradation and recycling that functions as an adaptive survival mechanism during anti-cancer therapy. Aberrant activation of the phosphoinositide-3-kinase (PI3K) pathway frequently occurs in solid tumors, including cervical cancer. However, single-agent PI3K inhibitors show modest anti-tumor efficacy in clinics. To see whether autophagy inhibition improves the efficacy of PI3K inhibitor in PIK3CA-mutant cancer cells, cells were treated with BKM120, a pan-PI3K inhibitor, and the autophagy inhibitor hydroxychloroquine (HCQ). Autophagy inhibition augmented the efficacy of BKM120 depending on PIK3CA-mutant cancer cell type. BKM120 treatment led to the nuclear accumulation of forkhead box O3 (FOXO3a) in Caski and T47D cells, which showed a synergistic effect of BKM120 and HCQ and the strong induction of autophagy. However, most FOXO3a remained in cytoplasm in C33A and ME180 cells, which did not exhibit synergy. These data suggest that BKM120-induced nuclear translocation of FOXO3a might elicit autophagy and be a critical factor determining the synergistic activity of BKM120 and HCQ in PIK3CA-mutant cancer cells. The release of FOXO3a from 14-3-3 by BV02 or 14-3-3 knockdown induced autophagy by BKM120 in C33A cells and sensitized the cells to the combined BKM120 and HCQ treatment, suggesting that cytoplasmic retention of FOXO3a by 14-3-3 even in the presence of BKM120 inhibit autophagy induction and synergistic effect of BKM120 and HCQ combination. Taken together, our study shows that subcellular localization of FOXO3a might be a potential biomarker for predicting response to the combination treatment with PI3K and autophagy inhibitors in PIK3CA-mutant cervical cancer patients.

  8. Sub-cellular distribution and translocation of TRP channels.

    PubMed

    Toro, Carlos A; Arias, Luis A; Brauchi, Sebastian

    2011-01-01

    Cellular electrical activity is the result of a highly complex processes that involve the activation of ion channel proteins. Ion channels make pores on cell membranes that rapidly transit between conductive and non-conductive states, allowing different ions to flow down their electrochemical gradients across cell membranes. In the case of neuronal cells, ion channel activity orchestrates action potentials traveling through axons, enabling electrical communication between cells in distant parts of the body. Somatic sensation -our ability to feel touch, temperature and noxious stimuli- require ion channels able to sense and respond to our peripheral environment. Sensory integration involves the summing of various environmental cues and their conversion into electrical signals. Members of the Transient Receptor Potential (TRP) family of ion channels have emerged as important mediators of both cellular sensing and sensory integration. The regulation of the spatial and temporal distribution of membrane receptors is recognized as an important mechanism for controlling the magnitude of the cellular response and the time scale on which cellular signaling occurs. Several studies have shown that this mechanism is also used by TRP channels to modulate cellular response and ultimately fulfill their physiological function as sensors. However, the inner-working of this mode of control for TRP channels remains poorly understood. The question of whether TRPs intrinsically regulate their own vesicular trafficking or weather the dynamic regulation of TRP channel residence on the cell surface is caused by extrinsic changes in the rates of vesicle insertion or retrieval remain open. This review will examine the evidence that sub-cellular redistribution of TRP channels plays an important role in regulating their activity and explore the mechanisms that control the trafficking of vesicles containing TRP channels.

  9. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete - Part II: Subcellular distribution following sediment exposure

    USGS Publications Warehouse

    Thit, Amalie; Ramskov, Tina; Croteau, Marie-Noele; Selck, Henriette

    2016-01-01

    The use and likely incidental release of metal nanoparticles (NPs) is steadily increasing. Despite the increasing amount of published literature on metal NP toxicity in the aquatic environment, very little is known about the biological fate of NPs after sediment exposures. Here, we compare the bioavailability and subcellular distribution of copper oxide (CuO) NPs and aqueous Cu (Cu-Aq) in the sediment-dwelling worm Lumbriculus variegatus. Ten days (d) sediment exposure resulted in marginal Cu bioaccumulation in L. variegatus for both forms of Cu. Bioaccumulation was detected because isotopically enriched 65Cu was used as a tracer. Neither burrowing behavior or survival was affected by the exposure. Once incorporated into tissue, Cu loss was negligible over 10 d of elimination in clean sediment (Cu elimination rate constants were not different from zero). With the exception of day 10, differences in bioaccumulation and subcellular distribution between Cu forms were either not detectable or marginal. After 10 d of exposure to Cu-Aq, the accumulated Cu was primarily partitioned in the subcellular fraction containing metallothionein-like proteins (MTLP, ≈40%) and cellular debris (CD, ≈30%). Cu concentrations in these fractions were significantly higher than in controls. For worms exposed to CuO NPs for 10 d, most of the accumulated Cu was partitioned in the CD fraction (≈40%), which was the only subcellular fraction where the Cu concentration was significantly higher than for the control group. Our results indicate that L. variegatus handle the two Cu forms differently. However, longer-term exposures are suggested in order to clearly highlight differences in the subcellular distribution of these two Cu forms.

  10. Direct measurement of local material properties within living embryonic tissues

    NASA Astrophysics Data System (ADS)

    Serwane, Friedhelm; Mongera, Alessandro; Rowghanian, Payam; Kealhofer, David; Lucio, Adam; Hockenbery, Zachary; Campàs, Otger

    The shaping of biological matter requires the control of its mechanical properties across multiple scales, ranging from single molecules to cells and tissues. Despite their relevance, measurements of the mechanical properties of sub-cellular, cellular and supra-cellular structures within living embryos pose severe challenges to existing techniques. We have developed a technique that uses magnetic droplets to measure the mechanical properties of complex fluids, including in situ and in vivo measurements within living embryos ,across multiple length and time scales. By actuating the droplets with magnetic fields and recording their deformation we probe the local mechanical properties, at any length scale we choose by varying the droplets' diameter. We use the technique to determine the subcellular mechanics of individual blastomeres of zebrafish embryos, and bridge the gap to the tissue scale by measuring the local viscosity and elasticity of zebrafish embryonic tissues. Using this technique, we show that embryonic zebrafish tissues are viscoelastic with a fluid-like behavior at long time scales. This technique will enable mechanobiology and mechano-transduction studies in vivo, including the study of diseases correlated with tissue stiffness, such as cancer.

  11. Subcellular localisations of the CPTI collection of YFP-tagged proteins in Drosophila embryos

    PubMed Central

    Lye, Claire M.; Naylor, Huw W.; Sanson, Bénédicte

    2014-01-01

    A key challenge in the post-genomic area is to identify the function of the genes discovered, with many still uncharacterised in all metazoans. A first step is transcription pattern characterisation, for which we now have near whole-genome coverage in Drosophila. However, we have much more limited information about the expression and subcellular localisation of the corresponding proteins. The Cambridge Protein Trap Consortium generated, via piggyBac transposition, over 600 novel YFP-trap proteins tagging just under 400 Drosophila loci. Here, we characterise the subcellular localisations and expression patterns of these insertions, called the CPTI lines, in Drosophila embryos. We have systematically analysed subcellular localisations at cellularisation (stage 5) and recorded expression patterns at stage 5, at mid-embryogenesis (stage 11) and at late embryogenesis (stages 15-17). At stage 5, 31% of the nuclear lines (41) and 26% of the cytoplasmic lines (67) show discrete localisations that provide clues on the function of the protein and markers for organelles or regions, including nucleoli, the nuclear envelope, nuclear speckles, centrosomes, mitochondria, the endoplasmic reticulum, Golgi, lysosomes and peroxisomes. We characterised the membranous/cortical lines (102) throughout stage 5 to 10 during epithelial morphogenesis, documenting their apico-basal position and identifying those secreted in the extracellular space. We identified the tricellular vertices as a specialized membrane domain marked by the integral membrane protein Sidekick. Finally, we categorised the localisation of the membranous/cortical proteins during cytokinesis. PMID:25294944

  12. Multi-label learning with fuzzy hypergraph regularization for protein subcellular location prediction.

    PubMed

    Chen, Jing; Tang, Yuan Yan; Chen, C L Philip; Fang, Bin; Lin, Yuewei; Shang, Zhaowei

    2014-12-01

    Protein subcellular location prediction aims to predict the location where a protein resides within a cell using computational methods. Considering the main limitations of the existing methods, we propose a hierarchical multi-label learning model FHML for both single-location proteins and multi-location proteins. The latent concepts are extracted through feature space decomposition and label space decomposition under the nonnegative data factorization framework. The extracted latent concepts are used as the codebook to indirectly connect the protein features to their annotations. We construct dual fuzzy hypergraphs to capture the intrinsic high-order relations embedded in not only feature space, but also label space. Finally, the subcellular location annotation information is propagated from the labeled proteins to the unlabeled proteins by performing dual fuzzy hypergraph Laplacian regularization. The experimental results on the six protein benchmark datasets demonstrate the superiority of our proposed method by comparing it with the state-of-the-art methods, and illustrate the benefit of exploiting both feature correlations and label correlations.

  13. Nuclear localization signal regulates porcine circovirus type 2 capsid protein nuclear export through phosphorylation.

    PubMed

    Hou, Qiang; Hou, Shaohua; Chen, Qing; Jia, Hong; Xin, Ting; Jiang, Yitong; Guo, Xiaoyu; Zhu, Hongfei

    2018-02-15

    The open reading frame 2 (ORF2) of Porcine circovirus type 2 (PCV2) encodes the major Capsid (Cap) protein, which self-assembles into virus-like particle (VLP) of similar morphology to the PCV2 virion and accumulates in the nucleus through the N-terminal arginine-rich nuclear localization signal (NLS). In this study, PCV2 Cap protein and its derivates were expressed via the baculovirus expression system, and the cellular localization of the recombinant proteins were investigated using anti-Cap mAb by imaging flow cytometry. Analysis of subcellular localization of Cap protein and its variants demonstrated that NLS mediated Cap protein nuclear export as well as nuclear import, and a phosphorylation site (S17) was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the NLS domain to regulate Cap protein nuclear export. Phosphorylation of NLS regulating the PCV2 Cap protein nuclear export was also demonstrated in PK15 cells by fluorescence microscopy. Moreover, the influence of Rep and Rep' protein on Cap protein subcellular localization was investigated in PK15 cells. Phosphorylation of NLS regulating Cap protein nuclear export provides more detailed knowledge of the PCV2 viral life cycle. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Localized electrical stimulation of in vitro neurons using an array of sub-cellular sized electrodes.

    PubMed

    Braeken, Dries; Huys, Roeland; Loo, Josine; Bartic, Carmen; Borghs, Gustaaf; Callewaert, Geert; Eberle, Wolfgang

    2010-12-15

    The investigation of single-neuron parameters is of great interest because many aspects in the behavior and communication of neuronal networks still remain unidentified. However, the present available techniques for single-cell measurements are slow and do not allow for a high-throughput approach. We present here a CMOS compatible microelectrode array with 84 electrodes (with diameters ranging from 1.2 to 4.2 μm) that are smaller than the size of cell, thereby supporting single-cell addressability. We show controllable electroporation of a single cell by an underlying electrode while monitoring changes in the intracellular membrane potential. Further, by applying a localized electrical field between two electrodes close to a neuron while recording changes in the intracellular calcium concentration, we demonstrate activation of a single cell (∼270%, DF/F(0)), followed by a network response of the neighboring cells. The technology can be easily scaled up to larger electrode arrays (theoretically up to 137,000 electrodes/mm(2)) with active CMOS electronics integration able to perform high-throughput measurements on single cells. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Limited Efficiency of Drug Delivery to Specific Intracellular Organelles Using Subcellularly "Targeted" Drug Delivery Systems.

    PubMed

    Maity, Amit Ranjan; Stepensky, David

    2016-01-04

    Many drugs have been designed to act on intracellular targets and to affect intracellular processes inside target cells. For the desired effects to be exerted, these drugs should permeate target cells and reach specific intracellular organelles. This subcellular drug targeting approach has been proposed for enhancement of accumulation of these drugs in target organelles and improved efficiency. This approach is based on drug encapsulation in drug delivery systems (DDSs) and/or their decoration with specific targeting moieties that are intended to enhance the drug/DDS accumulation in the intracellular organelle of interest. During recent years, there has been a constant increase in interest in DDSs targeted to specific intracellular organelles, and many different approaches have been proposed for attaining efficient drug delivery to specific organelles of interest. However, it appears that in many studies insufficient efforts have been devoted to quantitative analysis of the major formulation parameters of the DDSs disposition (efficiency of DDS endocytosis and endosomal escape, intracellular trafficking, and efficiency of DDS delivery to the target organelle) and of the resulting pharmacological effects. Thus, in many cases, claims regarding efficient delivery of drug/DDS to a specific organelle and efficient subcellular targeting appear to be exaggerated. On the basis of the available experimental data, it appears that drugs/DDS decoration with specific targeting residues can affect their intracellular fate and result in preferential drug accumulation within an organelle of interest. However, it is not clear whether these approaches will be efficient in in vivo settings and be translated into preclinical and clinical applications. Studies that quantitatively assess the mechanisms, barriers, and efficiencies of subcellular drug delivery and of the associated toxic effects are required to determine the therapeutic potential of subcellular DDS targeting.

  16. Transient Expression and Cellular Localization of Recombinant Proteins in Cultured Insect Cells.

    PubMed

    Fabrick, Jeffrey A; Hull, J Joe

    2017-04-20

    Heterologous protein expression systems are used for the production of recombinant proteins, the interpretation of cellular trafficking/localization, and the determination of the biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for protein production in numerous biotechnological, pharmaceutical, and industrial applications, nonlytic systems that do not involve viral infection have clear benefits but are often overlooked and underutilized. Here, we describe a method for generating nonlytic expression vectors and transient recombinant protein expression. This protocol allows for the efficient cellular localization of recombinant proteins and can be used to rapidly discern protein trafficking within the cell. We show the expression of four recombinant proteins in a commercially available insect cell line, including two aquaporin proteins from the insect Bemisia tabaci, as well as subcellular marker proteins specific for the cell plasma membrane and for intracellular lysosomes. All recombinant proteins were produced as chimeras with fluorescent protein markers at their carboxyl termini, which allows for the direct detection of the recombinant proteins. The double transfection of cells with plasmids harboring constructs for the genes of interest and a known subcellular marker allows for live cell imaging and improved validation of cellular protein localization.

  17. Subcellular Biological Effects of Nanosecond Pulsed Electric Fields

    NASA Astrophysics Data System (ADS)

    Kolb, Juergen F.; Stacey, Michael

    Membranes of biological cells can be charged by exposure to pulsed electric fields. After the potential difference across the barrier reaches critical values on the order of 1 V, pores will form. For moderate pulse parameters of duration and amplitude, the effect is limited to the outer cell membrane. With the exposure to nanosecond pulses of several tens of kilovolts per centimeter, a similar effect is also expected for subcellular membranes and structures. Cells will respond to the disruption by different biochemical processes. This offers possibilities for the development of novel medical therapies, the manipulation of cells and microbiological decontamination.

  18. Dynamic neuroanatomy at subcellular resolution in the zebrafish.

    PubMed

    Faucherre, Adèle; López-Schier, Hernán

    2014-01-01

    Genetic means to visualize and manipulate neuronal circuits in the intact animal have revolutionized neurobiology. "Dynamic neuroanatomy" defines a range of approaches aimed at quantifying the architecture or subcellular organization of neurons over time during their development, regeneration, or degeneration. A general feature of these approaches is their reliance on the optical isolation of defined neurons in toto by genetically expressing markers in one or few cells. Here we use the afferent neurons of the lateral line as an example to describe a simple method for the dynamic neuroanatomical study of axon terminals in the zebrafish by laser-scanning confocal microscopy.

  19. Developing Photo Activated Localization Microscopy

    NASA Astrophysics Data System (ADS)

    Hess, Harald

    2015-03-01

    Photo Activated Localization Microscopy, PALM, acquires super-resolution images by activating a subset of activatable fluorescent labels and estimating the center of the each molecular label to sub-diffractive accuracy. When this process is repeated thousands of times for different subsets of molecules, then an image can be rendered from all the center coordinates of the molecules. I will describe the circuitous story of its development that began with another super-resolution technique, NSOM, developed by my colleague Eric Betzig, who imaged single molecules at room temperature, and later we spectrally resolved individual luminescent centers of quantum wells. These two observations inspired a generalized path to localization microscopy, but that path was abandoned because no really useful fluorescent labels were available. After a decade of nonacademic industrial pursuits and the subsequent freedom of unemployment, we came across a class of genetically expressible fluorescent proteins that were switchable or convertible that enabled the concept to be implemented and be biologically promising. The past ten years have been very active with many groups exploring applications and enhancements of this concept. Demonstrating significant biological relevance will be the metric if its success.

  20. The G protein-coupled estrogen receptor (GPER) is expressed in two different subcellular localizations reflecting distinct tumor properties in breast cancer.

    PubMed

    Samartzis, Eleftherios P; Noske, Aurelia; Meisel, Alexander; Varga, Zsuzsanna; Fink, Daniel; Imesch, Patrick

    2014-01-01

    The G protein-coupled estrogen receptor (GPER) is a novel estrogen receptor that mediates proliferative effects induced by estrogen but also by tamoxifen. The aim of our study was to analyze the frequency of GPER in a large collective of primary invasive breast carcinomas, with special emphasis on the subcellular expression and to evaluate the association with clinicopathological parameters and patient overall survival. The tissue microarrays from formalin-fixed, paraffin embedded samples of primary invasive breast carcinomas (n = 981) were analyzed for GPER expression using immunohistochemistry. Expression data were compared to the clinicopathological parameters and overall survival. GPER localization was also analyzed in two immortalized breast cancer cell lines T47D and MCF7 by confocal immunofluorescence microscopy. A predominantly cytoplasmic GPER expression was found in 189 carcinomas (19.3%), whereas a predominantly nuclear expression was observed in 529 cases (53.9%). A simultaneous comparable positive expression of both patterns was found in 32 of 981 cases (3.2%), and negative staining was detected in 295 cases (30%). Confocal microscopy confirmed the occurrence of cytoplasmic and nuclear GPER expression in T47D and MCF7. Cytoplasmic GPER expression was significantly associated with non-ductal histologic subtypes, low tumor stage, better histologic differentiation, as well as Luminal A and B subtypes. In contrast, nuclear GPER expression was significantly associated with poorly differentiated carcinomas and the triple-negative subtype. In univariate analysis, cytoplasmic GPER expression was associated with better overall survival (p = 0.012). Our data suggest that predominantly cytoplasmic and/or nuclear GPER expression are two distinct immunohistochemical patterns in breast carcinomas and may reflect different biological features, reason why these patterns should be clearly distinguished in histological evaluations. Prospective studies will be

  1. The G Protein-Coupled Estrogen Receptor (GPER) Is Expressed in Two Different Subcellular Localizations Reflecting Distinct Tumor Properties in Breast Cancer

    PubMed Central

    Samartzis, Eleftherios P.; Noske, Aurelia; Meisel, Alexander; Varga, Zsuzsanna; Fink, Daniel; Imesch, Patrick

    2014-01-01

    Introduction The G protein-coupled estrogen receptor (GPER) is a novel estrogen receptor that mediates proliferative effects induced by estrogen but also by tamoxifen. The aim of our study was to analyze the frequency of GPER in a large collective of primary invasive breast carcinomas, with special emphasis on the subcellular expression and to evaluate the association with clinicopathological parameters and patient overall survival. Methods The tissue microarrays from formalin-fixed, paraffin embedded samples of primary invasive breast carcinomas (n = 981) were analyzed for GPER expression using immunohistochemistry. Expression data were compared to the clinicopathological parameters and overall survival. GPER localization was also analyzed in two immortalized breast cancer cell lines T47D and MCF7 by confocal immunofluorescence microscopy. Results A predominantly cytoplasmic GPER expression was found in 189 carcinomas (19.3%), whereas a predominantly nuclear expression was observed in 529 cases (53.9%). A simultaneous comparable positive expression of both patterns was found in 32 of 981 cases (3.2%), and negative staining was detected in 295 cases (30%). Confocal microscopy confirmed the occurrence of cytoplasmic and nuclear GPER expression in T47D and MCF7. Cytoplasmic GPER expression was significantly associated with non-ductal histologic subtypes, low tumor stage, better histologic differentiation, as well as Luminal A and B subtypes. In contrast, nuclear GPER expression was significantly associated with poorly differentiated carcinomas and the triple-negative subtype. In univariate analysis, cytoplasmic GPER expression was associated with better overall survival (p = 0.012). Conclusion Our data suggest that predominantly cytoplasmic and/or nuclear GPER expression are two distinct immunohistochemical patterns in breast carcinomas and may reflect different biological features, reason why these patterns should be clearly distinguished in histological

  2. Predicting Human Protein Subcellular Locations by the Ensemble of Multiple Predictors via Protein-Protein Interaction Network with Edge Clustering Coefficients

    PubMed Central

    Du, Pufeng; Wang, Lusheng

    2014-01-01

    One of the fundamental tasks in biology is to identify the functions of all proteins to reveal the primary machinery of a cell. Knowledge of the subcellular locations of proteins will provide key hints to reveal their functions and to understand the intricate pathways that regulate biological processes at the cellular level. Protein subcellular location prediction has been extensively studied in the past two decades. A lot of methods have been developed based on protein primary sequences as well as protein-protein interaction network. In this paper, we propose to use the protein-protein interaction network as an infrastructure to integrate existing sequence based predictors. When predicting the subcellular locations of a given protein, not only the protein itself, but also all its interacting partners were considered. Unlike existing methods, our method requires neither the comprehensive knowledge of the protein-protein interaction network nor the experimentally annotated subcellular locations of most proteins in the protein-protein interaction network. Besides, our method can be used as a framework to integrate multiple predictors. Our method achieved 56% on human proteome in absolute-true rate, which is higher than the state-of-the-art methods. PMID:24466278

  3. Modeling curvature-dependent subcellular localization of a small sporulation protein in Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Wasnik, Vaibhav; Wingreen, Ned; Mukhopadhyay, Ranjan

    2012-02-01

    Recent experiments suggest that in the bacterium, B. subtilis, the cue for the localization of small sporulation protein, SpoVM, that plays a central role in spore coat formation, is curvature of the bacterial plasma membrane. This curvature-dependent localization is puzzling given the orders of magnitude difference in lengthscale of an individual protein and radius of curvature of the membrane. Here we develop a minimal model to study the relationship between curvature-dependent membrane absorption of SpoVM and clustering of membrane-associated SpoVM and compare our results with experiments.

  4. Analyses of expression and localization of two mammalian-type transglutaminases in Physarum polycephalum, an acellular slime mold.

    PubMed

    Wada, Fumitaka; Ogawa, Atsuko; Hanai, Yuko; Nakamura, Akio; Maki, Masatoshi; Hitomi, Kiyotaka

    2004-11-01

    Transglutaminase (TGase) is an enzyme that modifies proteins by crosslinking or polyamination. Physarum polycephalum, an acellular slime mold, is the evolutionally lowest organism that has a mammalian-type transglutaminase. We have cloned a cDNA for Physarum polycephalum TGase (PpTGB), homologous to a previously identified TGase (PpTGA), whose sequence is similar to that of mammalian TGases. PpTGB encodes a primary sequence identical to that of PpTGA except for 11 amino acid residues at the N-terminus. Reverse transcription-PCR and Western blotting analyses showed that both PpTGA and PpTGB are expressed in microplasmodia and macroplasmodia during their life cycle, except for in sporangia. For biochemical characterization, we carried out the ectopical expressions of PpTGA and PpTGB in Dictyostelium discoideum. Subcellular fractionation of these Dictyostelium cells showed that the expressed PpTGA, but not PpTGB, localizes to the membrane fraction. Furthermore, in Physarum, subcellular fractionation and immunostaining indicated specific localization at the plasma membrane in macroplasmodia, while the localization was entirely cytoplasmic in microplasmodia.

  5. Pharmacologic modulation of protein kinase C isozymes: the role of RACKs and subcellular localisation.

    PubMed

    Csukai, M; Mochly-Rosen, D

    1999-04-01

    Protein kinase C (PKC) isozymes are highly homologous kinases and several different isozymes can be present in a cell. Each isozyme is likely to mediate unique functions, but pharmacological tools to explore their isozyme-specific roles have not been available until recently. In this review, we describe the development and application of isozyme-selective inhibitors of PKC. The identification of these inhibitors stems from the observation that PKC isozymes are each localised to unique subcellular locations following activation. Inhibitors of this isozyme-unique localisation have been shown to act as selective inhibitors of the functions of individual isozymes. The identification of isozyme-specific inhibitors should allow the exploration of individual PKC isozyme function in a wide range of cell systems. Copyright 1999 The Italian Pharmacological Society.

  6. Using the concept of Chou's pseudo amino acid composition to predict apoptosis proteins subcellular location: an approach by approximate entropy.

    PubMed

    Jiang, Xiaoying; Wei, Rong; Zhang, Tongliang; Gu, Quan

    2008-01-01

    The function of protein is closely correlated with it subcellular location. Prediction of subcellular location of apoptosis proteins is an important research area in post-genetic era because the knowledge of apoptosis proteins is useful to understand the mechanism of programmed cell death. Compared with the conventional amino acid composition (AAC), the Pseudo Amino Acid composition (PseAA) as originally introduced by Chou can incorporate much more information of a protein sequence so as to remarkably enhance the power of using a discrete model to predict various attributes of a protein. In this study, a novel approach is presented to predict apoptosis protein solely from sequence based on the concept of Chou's PseAA composition. The concept of approximate entropy (ApEn), which is a parameter denoting complexity of time series, is used to construct PseAA composition as additional features. Fuzzy K-nearest neighbor (FKNN) classifier is selected as prediction engine. Particle swarm optimization (PSO) algorithm is adopted for optimizing the weight factors which are important in PseAA composition. Two datasets are used to validate the performance of the proposed approach, which incorporate six subcellular location and four subcellular locations, respectively. The results obtained by jackknife test are quite encouraging. It indicates that the ApEn of protein sequence could represent effectively the information of apoptosis proteins subcellular locations. It can at least play a complimentary role to many of the existing methods, and might become potentially useful tool for protein function prediction. The software in Matlab is available freely by contacting the corresponding author.

  7. Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly(3-hydroxybutyrate), PHB, granules in Ralstonia eutropha H16.

    PubMed

    Pfeiffer, Daniel; Wahl, Andreas; Jendrossek, Dieter

    2011-11-01

    A two-hybrid approach was applied to screen for proteins with the ability to interact with PHB synthase (PhaC1) of Ralstonia eutropha. The H16_A0141 gene (phaM) was identified in the majority of positive clones. PhaM (26.6 kDa) strongly interacted with PhaC1 and with phasin PhaP5 but not with PhaP1 or other PHB granule-associated proteins. A ΔphaM mutant accumulated only one or two large PHB granules instead of three to six medium-sized PHB granules of the wild type, and distribution of granules to daughter cells was disordered. All three phenotypes (number, size and distribution of PHB granules) were reversed by reintroduction of phaM. Purified PhaM revealed DNA-binding properties in gel mobility shift experiments. Expression of a fusion of the yellow fluorescent protein (eYfp) with PhaM resulted in formation of many small fluorescent granules that were bound to the nucleoid region. Remarkably, an eYfp-PhaP5 fusion localized at the cell poles in a PHB-negative background and overexpression of eYfp-PhaP5 in the wild type conferred binding of PHB granules to the cell poles. In conclusion, subcellular localization of PHB granules in R. eutropha depends on a concerted expression of at least three PHB granule-associated proteins, namely PhaM, PhaP5 and PHB synthase PhaC1. © 2011 Blackwell Publishing Ltd.

  8. RNA:RNA interaction can enhance RNA localization in Drosophila oocytes

    PubMed Central

    Hartswood, Eve; Brodie, Jim; Vendra, Georgia; Davis, Ilan; Finnegan, David J.

    2012-01-01

    RNA localization is a key mechanism for targeting proteins to particular subcellular domains. Sequences necessary and sufficient for localization have been identified, but little is known about factors that affect its kinetics. Transcripts of gurken and the I factor, a non-LTR retrotransposon, colocalize at the nucleus in the dorso–antero corner of the Drosophila oocyte directed by localization signals, the GLS and ILS. I factor RNA localizes faster than gurken after injection into oocytes, due to a difference in the intrinsic localization ability of the GLS and ILS. The kinetics of localization of RNA containing the ILS are enhanced by the presence of a stem–loop, the A loop. This acts as an RNA:RNA interaction element in vivo and in vitro, and stimulates localization of RNA containing other localization signals. RNA:RNA interaction may be a general mechanism for modulating RNA localization and could allow an mRNA that lacks a localization signal to hitchhike on another RNA that has one. PMID:22345148

  9. Effect of cadmium on the physiological parameters and the subcellular cadmium localization in the potato (Solanum tuberosum L.).

    PubMed

    Xu, Dongyu; Chen, Zhifan; Sun, Ke; Yan, Dong; Kang, Mingjie; Zhao, Ye

    2013-11-01

    The pollution of agricultural soils with cadmium (Cd) has become a serious problem worldwide. The potato (Solanum tuberosum L.) was used to investigate how different concentrations of Cd (1, 5, and 25mgkg(-1)) affected the physiological parameters and the subcellular distribution of Cd in the potato. The analyses were conducted using scanning electron microscopy coupled with energy dispersive X-ray (SEM-EDX). The results suggest that the leaf is the organ with the highest accumulation of Cd. The malondialdehyde (MDA) content increased and the chlorophyll content decreased in response to high level of Cd. The SEM-EDX microanalysis revealed that Cd was primarily deposited in the spongy and palisade tissues of the leaf. Furthermore, Cd was also detected in the cortex and the adjacent phloem and was observed inside the intercellular space, the interior surface of the plasma membrane, and on the surface of the elliptical starch granules in the tubers of the potato. Although low concentrations of Cd migrated from the root to the tuber, the accumulation of Cd in the tuber exceeded the standard for food security. Therefore, the planting of potato plants in farmland containing Cd should be seriously evaluated because Cd-containing potatoes might present high health risk to humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Spontaneous Activity Drives Local Synaptic Plasticity In Vivo.

    PubMed

    Winnubst, Johan; Cheyne, Juliette E; Niculescu, Dragos; Lohmann, Christian

    2015-07-15

    Spontaneous activity fine-tunes neuronal connections in the developing brain. To explore the underlying synaptic plasticity mechanisms, we monitored naturally occurring changes in spontaneous activity at individual synapses with whole-cell patch-clamp recordings and simultaneous calcium imaging in the mouse visual cortex in vivo. Analyzing activity changes across large populations of synapses revealed a simple and efficient local plasticity rule: synapses that exhibit low synchronicity with nearby neighbors (<12 μm) become depressed in their transmission frequency. Asynchronous electrical stimulation of individual synapses in hippocampal slices showed that this is due to a decrease in synaptic transmission efficiency. Accordingly, experimentally increasing local synchronicity, by stimulating synapses in response to spontaneous activity at neighboring synapses, stabilized synaptic transmission. Finally, blockade of the high-affinity proBDNF receptor p75(NTR) prevented the depression of asynchronously stimulated synapses. Thus, spontaneous activity drives local synaptic plasticity at individual synapses in an "out-of-sync, lose-your-link" fashion through proBDNF/p75(NTR) signaling to refine neuronal connectivity. VIDEO ABSTRACT. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Subcellular distributions of metals and metal induced stress: A field study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, K.D.; Howe, S.; Sanders, B.M.

    This paper reports the results of a field study which took place around an exploratory well located in the Santa Barbara Channel. This study was designed to test for significant temporal and spatial differences in the concentrations of a number of drilling fluid-associated metals in both the sediments and biota. Temporal changes in the distribution of Ba, Cd, Cr, Cu, Hg, Ni, Pb, and Zn were examined in the sediments, and the bioaccumulation and subcellular distribution of these metals were examined in three benthic invertebrate species before and after drilling. Statistically significant increases in the accumulation of several of themore » metals were found in the surface sediments down current from the site after drilling with Ba showing the most pronounced increase. Statistically significant increases in the bioaccumulation of Ba were also observed in two of the three species examined, Cyclocardia ventricosa and Pactinaria californiensis. Within these organisms the majority of the Ba was localized in the granular pellets (>97%) and less than 0.1% accumulated in the cytosol. These data indicate that although bioaccumulation of Ba occurs in some species immediately down current from the well, most of it remains in an insoluble for, presumably as BaSO{sub 4}.« less

  12. Microalgae-derived oxylipins decrease inflammatory mediators by regulating the subcellular location of NFκB and PPAR-γ.

    PubMed

    Ávila-Román, Javier; Talero, Elena; de Los Reyes, Carolina; García-Mauriño, Sofía; Motilva, Virginia

    2018-02-01

    Oxylipins (OXLs) are bioactive molecules generated by the oxidation of fatty acids that promote the resolution of acute inflammation and prevent chronic inflammatory processes through molecular mechanisms that are not well known. We have previously reported the anti-inflammatory activity of microalgae-derived OXLs and OXL-containing biomass in two inflammatory bowel disease (IBD) models: 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced acute colitis and TNBS-induced recurrent colitis. In this study, we examined the in vitro anti-inflammatory mechanism of action of the most abundant OXLs isolated from Chlamydomonas debaryana (13S-HOTE and 13S-HODE) and Nannochloropsis gaditana (15S-HEPE). These OXLs decreased IL-1β and IL-6 pro-inflammatory cytokines production as well as iNOS and COX-2 expression levels in THP-1 macrophages. In addition, OXLs decreased IL-8 production in HT-29 colon cells, the major chemokine produced by these cells. The interaction of OXLs with NFκB and PPAR-γ signaling pathways was studied by confocal microscopy. In THP-1 macrophages and HT-29 colon cells, stimulated by LPS and TNFα respectively, a pre-treatment with 13S-HOTE, 13S-HODE and 15S-HEPE (100μM) resulted in a lower nuclear presence of NFκB in both cell lines. The study of the subcellular localization of PPAR-γ showed that the treatment of THP-1 and HT-29 cells with these OXLs caused the migration of PPAR-γ into the nucleus. Colocalization analysis of both transcription factors in LPS-stimulated THP-1 macrophages showed that the pre-treatment with 13S-HOTE, 13S-HODE or 15S-HEPE lowered nuclear colocalization similar to control value, and increased cytosolic localization above control level. These results indicate that these OXLs could act as agonist of PPAR-γ and consequently inhibit NFκB signaling pathway activation, thus lowering the production of inflammatory markers, highlighting the therapeutic potential of these OXLs in inflammatory diseases such as IBD. Copyright

  13. All health is local: state and local planning for physical activity promotion.

    PubMed

    Kohl, Harold W; Satinsky, Sara B; Whitfield, Geoffrey P; Evenson, Kelly R

    2013-01-01

    Physical activity is a leading cause of death in the world. Although state and local public health planning is a useful strategy to address noncommunicable disease health concerns such as heart disease, diabetes, cancer, and obesity, physical activity frequently is subsumed in such disease-centric planning efforts. This strategy could dilute broader efforts to promote physical activity, create administrative silos that may be trying to accomplish similar goals, and weaken efforts to more collectively address a variety of noncommunicable diseases. Currently, few stand-alone state plans directed specifically at physical activity exist. The reasons and barriers for this situation are not understood. In 2011, we surveyed public health care practitioners to describe state and local efforts for physical activity planning. Cross-sectional study. Survey of physical activity practitioners in the United States. A total of 227 former or current members of the US National Society of Physical Activity Practitioners in Public Health who completed a survey. Overall, 48.0% of respondents indicated that they were aware of public health plans for physical activity promotion in their state, whereas 36.6% indicated that they did not know. Respondents at the state level more frequently reported awareness of a plan (62.1%) than those with local-level (52.4%) or other job responsibilities (36.0%). A greater proportion of respondents reported that stand-alone physical activity plans existed in their state than actually did exist in the respective states. Integration with the National Physical Activity Plan was least often identified as a moderately or extremely relevant aspect of a state-level physical activity plan, although it was chosen at a high percentage (75.7%). Respondents identified financial support (88.0%) and political will and support (54.6%) most frequently as very or somewhat difficult barriers to moving forward with state-level physical activity plans. These data suggest

  14. A Series of Zn(II) Terpyridine-Based Nitrate Complexes as Two-Photon Fluorescent Probe for Identifying Apoptotic and Living Cells via Subcellular Immigration.

    PubMed

    Liu, Dandan; Zhang, Mingzhu; Du, Wei; Hu, Lei; Li, Fei; Tian, Xiaohe; Wang, Aidong; Zhang, Qiong; Zhang, Zhongping; Wu, Jieying; Tian, Yupeng

    2018-06-19

    Two-photon active probe to label apoptotic cells plays a significant role in biological systems. However, discrimination of live/apoptotic cells at subcellular level under microscopy remains unachieved. Here, three novel Zn(II) terpyridine-based nitrate complexes (C1-C3) containing different pull/push units were designed. The structures of the ligands and their corresponding Zn(II) complexes were confirmed by single-crystal X-ray diffraction analysis. On the basis of the comprehensive comparison, C3 had a suitable two-photon absorption cross section in the near-infrared wavelength and good biocompatibility. Under two-photon confocal microscopy and transmission electron microscopy, it is found that C3 could target mitochondria in living cells but immigrate into the nucleolus during the apoptotic process. This dual-functional probe (C3) not only offers a valuable image tool but also acts as an indicator for cell mortality at subcellular level in a real-time manner.

  15. Characterization of Aquaporin 4 Protein Expression and Localization in Tissues of the Dogfish (Squalus acanthias)

    PubMed Central

    Cutler, Christopher P.; Harmon, Sheena; Walsh, Jonathon; Burch, Kia

    2012-01-01

    The role of aquaporin water channels such as aquaporin 4 (Aqp4) in elasmobranchs such as the dogfish Squalus acanthias is completely unknown. This investigation set out to determine the expression and cellular and sub-cellular localization of Aqp4 protein in dogfish tissues. Two polyclonal antibodies were generated (AQP4/1 and AQP4/2) and these showed somewhat different characteristics in Western blotting and immunohistochemistry. Western blots using the AQP4/1 antibody showed two bands (35.5 and 49.5 kDa) in most tissues in a similar fashion to mammals. Liver had an additional band of 57 kDa and rectal gland two further faint bands of 37.5 and 38.5 kDa. However, unlike in mammals, Aqp4 protein was ubiquitously expressed in all tissues including gill and liver. The AQP4/2 antibody appeared much less specific in Western blots. Both antibodies were used in immunohistochemistry and showed similar cellular localizations, although the AQP4/2 antibody had a more restricted sub-cellular distribution compared to AQP4/1 and therefore appeared to be more specific for Aqp4. In kidney a sub-set of tubules were stained which may represent intermediate tubule segments (In-III–In-VI). AQP4/1 and AQP4/2 antibodies localized to the same tubules segments in serial sections although the intensity and sub-cellular distribution were different. AQP4/2 showed a basal or basolateral membrane distribution whereas AQP4/1 was often distributed throughout the whole cell including the nuclear region. In rectal gland and cardiac stomach Aqp4 was localized to secretory tubules but again AQP/1 and AQP/2 exhibited different sub-cellular distributions. In gill, both antibodies stained large cells in the primary filament and secondary lamellae. Again AQP4/1 antibody stained most or all the cell including the nucleus, whereas AQP4/2 had a plasma membrane or plasma membrane and cytoplasmic distribution. Two types of large mitochondrial rich transport cells are known to exist in elasmobranchs

  16. Characterization of Aquaporin 4 Protein Expression and Localization in Tissues of the Dogfish (Squalus acanthias).

    PubMed

    Cutler, Christopher P; Harmon, Sheena; Walsh, Jonathon; Burch, Kia

    2012-01-01

    The role of aquaporin water channels such as aquaporin 4 (Aqp4) in elasmobranchs such as the dogfish Squalus acanthias is completely unknown. This investigation set out to determine the expression and cellular and sub-cellular localization of Aqp4 protein in dogfish tissues. Two polyclonal antibodies were generated (AQP4/1 and AQP4/2) and these showed somewhat different characteristics in Western blotting and immunohistochemistry. Western blots using the AQP4/1 antibody showed two bands (35.5 and 49.5 kDa) in most tissues in a similar fashion to mammals. Liver had an additional band of 57 kDa and rectal gland two further faint bands of 37.5 and 38.5 kDa. However, unlike in mammals, Aqp4 protein was ubiquitously expressed in all tissues including gill and liver. The AQP4/2 antibody appeared much less specific in Western blots. Both antibodies were used in immunohistochemistry and showed similar cellular localizations, although the AQP4/2 antibody had a more restricted sub-cellular distribution compared to AQP4/1 and therefore appeared to be more specific for Aqp4. In kidney a sub-set of tubules were stained which may represent intermediate tubule segments (In-III-In-VI). AQP4/1 and AQP4/2 antibodies localized to the same tubules segments in serial sections although the intensity and sub-cellular distribution were different. AQP4/2 showed a basal or basolateral membrane distribution whereas AQP4/1 was often distributed throughout the whole cell including the nuclear region. In rectal gland and cardiac stomach Aqp4 was localized to secretory tubules but again AQP/1 and AQP/2 exhibited different sub-cellular distributions. In gill, both antibodies stained large cells in the primary filament and secondary lamellae. Again AQP4/1 antibody stained most or all the cell including the nucleus, whereas AQP4/2 had a plasma membrane or plasma membrane and cytoplasmic distribution. Two types of large mitochondrial rich transport cells are known to exist in elasmobranchs

  17. Controlling subcellular delivery to optimize therapeutic effect

    PubMed Central

    Mossalam, Mohanad; Dixon, Andrew S; Lim, Carol S

    2010-01-01

    This article focuses on drug targeting to specific cellular organelles for therapeutic purposes. Drugs can be delivered to all major organelles of the cell (cytosol, endosome/lysosome, nucleus, nucleolus, mitochondria, endoplasmic reticulum, Golgi apparatus, peroxisomes and proteasomes) where they exert specific effects in those particular subcellular compartments. Delivery can be achieved by chemical (e.g., polymeric) or biological (e.g., signal sequences) means. Unidirectional targeting to individual organelles has proven to be immensely successful for drug therapy. Newer technologies that accommodate multiple signals (e.g., protein switch and virus-like delivery systems) mimic nature and allow for a more sophisticated approach to drug delivery. Harnessing different methods of targeting multiple organelles in a cell will lead to better drug delivery and improvements in disease therapy. PMID:21113240

  18. The accumulation and localization of chalcone synthase in grapevine (Vitis vinifera L.).

    PubMed

    Wang, Huiling; Wang, Wei; Zhan, JiCheng; Yan, Ailing; Sun, Lei; Zhang, Guojun; Wang, Xiaoyue; Ren, Jiancheng; Huang, Weidong; Xu, Haiying

    2016-09-01

    Chalcone synthase (CHS, E.C.2.3.1.74) is the first committed enzyme in the flavonoid pathway. Previous studies have primarily focused on the cloning, expression and regulation of the gene at the transcriptional level. Little is yet known about the enzyme accumulation, regulation at protein level, as well as its localization in grapevine. In present study, the accumulation, tissue and subcellular localization of CHS in different grapevine tissues (Vitis vinifera L. Cabernet Sauvignon) were investigated via the techniques of Western blotting, immunohistochemical localization, immunoelectron microscopy and confocal microscopy. The results showed that CHS were mainly accumulated in the grape berry skin, leaves, stem tips and stem phloem, correlated with flavonoids accumulation. The accumulation of CHS is developmental dependent in grape berry skin and flesh. Immunohistochemical analysis revealed that CHS were primarily localized in the exocarp and vascular bundles of the fruits during berry development; in palisade, spongy tissues and vascular bundles of the leaves; in the primary phloem and pith ray in the stems; in the growth point, leaf primordium, and young leaves of leaf buds; and in the endoderm and primary phloem of grapevine roots. Furthermore, at the subcellular level, the cell wall, cytoplasm and nucleus localized patterns of CHS were observed in the grapevine vegetative tissue cells. Results above indicated that distribution of CHS in grapevine was organ-specific and tissue-specific. This work will provide new insight for the biosynthesis and regulation of diverse flavonoid compounds in grapevine. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Biosynthesis, processing, and subcellular localization of rat spermbeta-D-galactosidase.

    PubMed

    Chayko, C A; Orgebin-Crist, M C; Skudlarek, M D; Tulsiani, D R

    2000-09-01

    During spermatogenesis, spermatids synthesize constituent proteins present in mature spermatozoa; however, little information exists on the molecular processes involved. In previous studies, this laboratory reported the characterization of rat sperm beta-D-galactosidase. In this paper, we report the localization of this enzyme along with its biosynthesis and processing. An antibody against rat luminal fluid beta-D-galactosidase was used to immunolocalize the enzyme in the testis and in epididymal spermatozoa. We found that beta-D-galactosidase is localized within the acrosomal cap of spermatids and in the acrosome and cytoplasmic droplet of epididymal spermatozoa. A combination of germ cell radiolabeling, immunoprecipitation, SDS-PAGE, and autoradiography revealed that spermatids produce two forms of beta-D-galactosidase, 90 and 88 kDa. During pulse-chase analysis, a 56-kDa form appeared. Treatment of beta-D-galactosidase immunoprecipitates from testicular spermatozoa with N-glycanase or Endo H revealed that both the 90- and 88-kDa forms become a 70-kDa polypeptide on SDS-PAGE. Since Endo H or N-glycanase treatment provided similar results, the presence of extensive N-linked high mannose/hybrid-type glycans on these proteins is indicated. Treatment of the 56-kDa form of beta-D-galactosidase with Endo H or N-glycanase resulted in the appearance of 52- and 50-kDa forms, respectively. This result suggests that the 56-kDa form contains N-linked high mannose/hybrid as well as complex oligosaccharides. During epididymal maturation, the 90-kDa form of beta-D-galactosidase persists in caput epididymal spermatozoa and is gradually converted to a major 74-kDa form in cauda spermatozoa. In addition to the 90- to 74-kDa forms, cauda spermatozoa show a 56- to 52-kDa form on Western immunoblots. Since only the high-molecular weight forms of beta-D-galactosidase are present on immunoblots of isolated sperm heads, we suggest that they are acrosomal in origin and that the 56-k

  20. Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms.

    PubMed

    Liu, Tsung-Li; Upadhyayula, Srigokul; Milkie, Daniel E; Singh, Ved; Wang, Kai; Swinburne, Ian A; Mosaliganti, Kishore R; Collins, Zach M; Hiscock, Tom W; Shea, Jamien; Kohrman, Abraham Q; Medwig, Taylor N; Dambournet, Daphne; Forster, Ryan; Cunniff, Brian; Ruan, Yuan; Yashiro, Hanako; Scholpp, Steffen; Meyerowitz, Elliot M; Hockemeyer, Dirk; Drubin, David G; Martin, Benjamin L; Matus, David Q; Koyama, Minoru; Megason, Sean G; Kirchhausen, Tom; Betzig, Eric

    2018-04-20

    True physiological imaging of subcellular dynamics requires studying cells within their parent organisms, where all the environmental cues that drive gene expression, and hence the phenotypes that we actually observe, are present. A complete understanding also requires volumetric imaging of the cell and its surroundings at high spatiotemporal resolution, without inducing undue stress on either. We combined lattice light-sheet microscopy with adaptive optics to achieve, across large multicellular volumes, noninvasive aberration-free imaging of subcellular processes, including endocytosis, organelle remodeling during mitosis, and the migration of axons, immune cells, and metastatic cancer cells in vivo. The technology reveals the phenotypic diversity within cells across different organisms and developmental stages and may offer insights into how cells harness their intrinsic variability to adapt to different physiological environments. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.