Science.gov

Sample records for activity superoxide anion

  1. Superoxide anions mediate veratridine-induced cytochrome c release and caspase activity in bovine chromaffin cells

    PubMed Central

    Jordán, Joaquín; Galindo, María F; Tornero, Daniel; Benavides, Amparo; González, Constancio; Agapito, María T; González-Garcia, Carmen; Ceña, Valentín

    2002-01-01

    Mitochondrial mechanisms involved in veratridine-induced chromaffin cell death have been explored. Exposure to veratridine (30 μM, 1 h) produces cytochrome c release to the cytoplasm that seems to be mediated by superoxide anions and that is blocked by cyclosporin A (10 μM), MnTBAP (10 nM), catalase (100 IU ml−1) and vitamin E (50 μM). Following veratridine treatment, there is an increase in caspase-like activity, blocked by vitamin E (50 μM) and the mitochondrial permeability transition pore blocker cyclosporin A (10 μM). Superoxide anions open the mitochondrial permeability transition pore in isolated mitochondria, an effect that is blocked by vitamin E (50 μM) and cyclosporin A (10 μM), but not by the Ca2+ uniporter blocker ruthenium red (5 μM). These results strongly suggest that under the stress situation caused by veratridine, superoxide anions become important regulators of mitochondrial function in chromaffin cells. Exposure of isolated bovine chromaffin mitochondria to Ca2+ results in mitochondrial swelling. This effect was prevented by ruthenium red (5 μM) and cyclosporin A (10 μM), while it was not modified by vitamin E (50 μM). Veratridine (30 μM, 1 h) markedly decreased total glutathione and GSH content in bovine chromaffin cells. In conclusion, superoxide anions seem to mediate veratridine-induced cytochrome c release, decrease in total glutathione, caspase activation and cell death in bovine chromaffin cells. PMID:12429571

  2. Feijoa sellowiana Berg fruit juice: anti-inflammatory effect and activity on superoxide anion generation.

    PubMed

    Monforte, Maria T; Fimiani, Vincenzo; Lanuzza, Francesco; Naccari, Clara; Restuccia, Salvatore; Galati, Enza M

    2014-04-01

    Feijoa sellowiana Berg var. coolidge fruit juice was studied in vivo for the anti-inflammatory activity by carrageenin-induced paw edema test and in vitro for the effects on superoxide anion release from neutrophils in human whole blood. The fruit juice was analyzed by the high-performance liquid chromatography method, and quercetin, ellagic acid, catechin, rutin, eriodictyol, gallic acid, pyrocatechol, syringic acid, and eriocitrin were identified. The results showed a significant anti-inflammatory activity of F. sellowiana fruit juice, sustained also by an effective antioxidant activity observed in preliminary studies on 1,1-diphenyl-2-picrylhydrazyl (DPPH) test. In particular, the anti-inflammatory activity edema inhibition is significant since the first hour (44.11%) and persists until the fifth hour (44.12%) of the treatment. The effect on superoxide anion release was studied in human whole blood, in the presence of activators affecting neutrophils by different mechanisms. The juice showed an inhibiting response on neutrophils basal activity in all experimental conditions. In stimulated neutrophils, the higher inhibition of superoxide anion generation was observed at concentration of 10(-4) and 10(-2) mg/mL in whole blood stimulate with phorbol-myristate-13-acetate (PMA; 20% and 40%) and with N-formyl-methionyl-leucyl-phenylalanine (FMLP; 15% and 48%). The significant reduction of edema and the inhibition of O2(-) production, occurring mainly through interaction with protein-kinase C pathway, confirm the anti-inflammatory effect of F. sellowiana fruit juice. PMID:24433073

  3. Biphasic effects of muramyl dipeptide or lipopolysaccharide on superoxide anion-generating activities of macrophages.

    PubMed Central

    Yagawa, K; Kaku, M; Ichinose, Y; Nagao, S; Tanaka, A; Tomoda, A

    1984-01-01

    The superoxide anion (O2-)-generating activity of guinea pig macrophages stimulated by wheat germ agglutinin (WGA), immune complexes, or phorbol myristate acetate (PMA) was studied after short- and long-term exposures of the cells to muramyl dipeptide (MDP) or lipopolysaccharide (LPS). Neither MDP nor LPS alone induced O2- release in macrophages. Short-term (30 min) exposure to these agents caused the enhanced release of O2- in response to WGA or immune complexes, though the PMA-induced O2- generation was not affected. On the other hand, long-term exposure (more than 24 h) to MDP or LPS progressively enhanced O2- generation of the cells induced by WGA, immune complexes, or even PMA. These results suggest that the mechanism for O2- generation of macrophages stimulated by WGA or immune complexes differs from that stimulated by PMA and that the differences also exist between short- and long-term exposure to MDP or LPS. PMID:6329960

  4. Production and removal of superoxide anion radical by artificial metalloenzymes and redox-active metals

    PubMed Central

    Kawano, Tomonori; Kagenishi, Tomoko; Kadono, Takashi; Bouteau, François; Hiramatsu, Takuya; Lin, Cun; Tanaka, Kenichiro; Tanaka, Licca; Mancuso, Stefano; Uezu, Kazuya; Okobira, Tadashi; Furukawa, Hiroka; Iwase, Junichiro; Inokuchi, Reina; Baluška, Frantisek; Yokawa, Ken

    2015-01-01

    Generation of reactive oxygen species is useful for various medical, engineering and agricultural purposes. These include clinical modulation of immunological mechanism, enhanced degradation of organic compounds released to the environments, removal of microorganisms for the hygienic purpose, and agricultural pest control; both directly acting against pathogenic microorganisms and indirectly via stimulation of plant defense mechanism represented by systemic acquired resistance and hypersensitive response. By aiming to develop a novel classes of artificial redox-active biocatalysts involved in production and/or removal of superoxide anion radicals, recent attempts for understanding and modification of natural catalytic proteins and functional DNA sequences of mammalian and plant origins are covered in this review article. PMID:27066179

  5. Production and removal of superoxide anion radical by artificial metalloenzymes and redox-active metals.

    PubMed

    Kawano, Tomonori; Kagenishi, Tomoko; Kadono, Takashi; Bouteau, François; Hiramatsu, Takuya; Lin, Cun; Tanaka, Kenichiro; Tanaka, Licca; Mancuso, Stefano; Uezu, Kazuya; Okobira, Tadashi; Furukawa, Hiroka; Iwase, Junichiro; Inokuchi, Reina; Baluška, Frantisek; Yokawa, Ken

    2015-01-01

    Generation of reactive oxygen species is useful for various medical, engineering and agricultural purposes. These include clinical modulation of immunological mechanism, enhanced degradation of organic compounds released to the environments, removal of microorganisms for the hygienic purpose, and agricultural pest control; both directly acting against pathogenic microorganisms and indirectly via stimulation of plant defense mechanism represented by systemic acquired resistance and hypersensitive response. By aiming to develop a novel classes of artificial redox-active biocatalysts involved in production and/or removal of superoxide anion radicals, recent attempts for understanding and modification of natural catalytic proteins and functional DNA sequences of mammalian and plant origins are covered in this review article. PMID:27066179

  6. Enhanced superoxide anion production in activated peritoneal macrophages from English sole (Pleuronectes vetulus) exposed to PACs

    SciTech Connect

    Clemons, E.; Arkoosh, M.; Casillas, E.

    1995-12-31

    In fish, as in mammals, macrophages play a vital role in the destruction of infective organisms. The purpose of this study was to determine if peritoneal macrophages (M{O}s) from English sole (Pleuronectes vetulus), a marine benthic fish, have an altered ability to produce cytotoxic reactive oxygen intermediates (ROIs) after exposure to polycyclic aromatic compounds (PACs). ROIs are the principle product of M{O}s used to destroy engulfed organisms. Assay conditions, including the concentration of M{O}s, type of in vitro stimulant, tissue culture media, and incubation time were optimized to measure the production of superoxide anion (O{sub 2}{minus}), the progenitor ROI, in English sole M{O}s. English sole were injected with an organic solvent extract of a PAH-contaminated sediment, equivalent to 20g sediment/kg fish, via their dorsal lymphatic sinus, and peritoneal M{O}s were harvested on days 1, 3, 5, 7, and 14 post injection. Activated peritoneal M{O}s from English sole injected with the sediment extract produced significantly more superoxide radicals after stimulation in vitro with either opsonized zymosan (OZ) or phorbol myristate acetate (PMA) than the vehicle injected or control fish. Specifically, activated peritoneal M{O}s stimulated with PMA in vitro produced greater amounts (compared to controls) of O{sub 2}{minus} on days 7 and 14 after exposure, whereas the same cells stimulated with OZ showed heightened production only on day 7 after exposure. No differences in the basal amounts of O{sub 2}{minus} production from activated peritoneal M{O}s between the treatment groups were observed. This study shows that exposure of English sole to PACs altered production of O{sub 2}{minus} by macrophages, however, the consequence to the immunocompetence of exposed fish remains to be elucidated.

  7. 1,1-Diphenyl-2-picrylhydrazyl radical and superoxide anion scavenging activity of Rhizophora mangle (L.) bark

    PubMed Central

    Sánchez, Janet Calero; García, Roberto Faure; Cors, Ma. Teresa Mitjavila

    2010-01-01

    Background: Rhizophora mangle (L.) produce a variety of substances that possesses pharmacological actions. Although it shown antioxidant properties in some assays, there is no available information about its effect on some free radical species. So the objective of the present research is to evaluate the DPPH radical and superoxide anion scavenging properties of R. mangle extract and its polyphenol fraction. Methods: Rhizophora mangle (L.) bark aqueous extract and its major constituent, polyphenols fraction, were investigated for their antioxidant activities employing 2 in vitro assay systems: 1,1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide anion radicals scavenging. Results: IC50 for DPPH radical-scavenging activity was 6.7 µg tannins/mL for extract and 7.6 µg tannins/mL for polyphenolic fraction. The extract showed better activity than its fraction (P < 0.05) in the DPPH radicals reducing power. Polyphenolic fraction exhibited better superoxide anion scavenging ability (IC50 = 21.6 µg tannins/mL) than the extract (IC50 = 31.9 µg tannins/mL). Antioxidant activities of both samples increased with the rise of tannins concentration. The comparison of regression lines showed significant differences (P < 0.05) between extract and its polyphenolic fraction in both assays, indicating that extract was more effective in DPPH radical scavenging than its fraction at tannin concentrations below the crossing point of both lines, while that fraction was more effective than extract inhibiting the superoxide anions generation. Conclusions: R. mangle aqueous extract showed a potent antioxidant activity, achieved by the scavenging ability observed against DPPH radicals and superoxide anions. Regarding its polyphenolic composition, the antioxidant effects observed in this study are due, most probably, to the presence of polyphenolic compounds. PMID:21589751

  8. Chemiluminescence investigations of antioxidative activities of some antibiotics against superoxide anion radical.

    PubMed

    Kruk, Irena; Michalska, Teresa; Kładna, Aleksandra; Berczyński, Paweł; Aboul-Enein, Hassan Y

    2011-01-01

    A chemiluminescent technique was applied to determine antioxidative activities of adriamycin, farmorubicin, mitomycin C and bleomycin against superoxide anion radical (O(2)(•)) in aprotic medium. The antioxidant capacity was expressed as the decrease in light emission from the O(2)(•) solution by and antibiotic. A KO(2) solution in dimethyl sulphoxide (DMSO) and 18-crown-6 ether were used for the generation of O(2)(•). The results showed that the examined compounds decreased the chemiluminescence (CL) sum from the O(2)(•)-generating system in a dose-dependent manner. Among the antibiotics examined, adriamycin, farmorubicin and bleomycin exhibited antioxidant activity almost comparable to that of 1,2-dihydroxy benzene-3,5-disulphonic acid (tiron), an efficient of the O(2)(•) inhibitor. Mitomycin C was two-times less effective as tiron in decreasing the initial CL intensity. The proposed assay with usage of ultraweak CL technique and the KO(2)-DMSO-crown ether system was useful for the evaluation of antioxidant activity in aprotic solvents. PMID:21370385

  9. Characterization of the superoxide anion radical scavenging activity by tetracycline antibiotics in aprotic media.

    PubMed

    Kładna, Aleksandra; Kruk, Irena; Michalska, Teresa; Berczyński, Paweł; Aboul-Enein, Hassan Y

    2011-01-01

    The tetracycline family antibiotics are widely used as human and veterinary treatments. The drugs are effective as antibiotics and also show antimicrobial and non-microbial action. However, the antioxidant properties of tetracyclines have not been characterized in aprotic media. To better understand their biological functions, the in vitro superoxide anion radical (O2•¯) scavenging activities of tetracycline, chlortetracycline, oxytetracycline, doxycycline and methacycline were characterized, along with a very efficient O2•¯ scavenger, tiron, in dimethyl sulphoxide (DMSO), using ultra-weak chemiluminescence (CL). We found that tetracycline, chlortetracycline and doxycycline efficiently inhibited CL from the O2•¯-generating system at concentration levels of 0.02-1.0 mmol/L. Methacycline and oxytetracycline were the O2•¯ scavengers at concentration levels of 0.01-0.1 mmol/L, whereas when their concentration was lowered the drugs were capable of generating O2•¯, leading to CL enhancement. For all the data obtained in this study, the scavenging activity for the compounds tested decreased in the following order: tetracycline > doxycycline > chlortetracycline > tiron methacycline > oxytetracycline. These results indicate that the tetracycline drugs directly alter O2•¯ redox chemistry in aprotic media. PMID:21413138

  10. Superoxide anion radicals induce IGF-1 resistance through concomitant activation of PTP1B and PTEN.

    PubMed

    Singh, Karmveer; Maity, Pallab; Krug, Linda; Meyer, Patrick; Treiber, Nicolai; Lucas, Tanja; Basu, Abhijit; Kochanek, Stefan; Wlaschek, Meinhard; Geiger, Hartmut; Scharffetter-Kochanek, Karin

    2015-01-01

    The evolutionarily conserved IGF-1 signalling pathway is associated with longevity, metabolism, tissue homeostasis, and cancer progression. Its regulation relies on the delicate balance between activating kinases and suppressing phosphatases and is still not very well understood. We report here that IGF-1 signalling in vitro and in a murine ageing model in vivo is suppressed in response to accumulation of superoxide anions (O2∙-) in mitochondria, either by chemical inhibition of complex I or by genetic silencing of O2∙--dismutating mitochondrial Sod2. The O2∙--dependent suppression of IGF-1 signalling resulted in decreased proliferation of murine dermal fibroblasts, affected translation initiation factors and suppressed the expression of α1(I), α1(III), and α2(I) collagen, the hallmarks of skin ageing. Enhanced O2∙- led to activation of the phosphatases PTP1B and PTEN, which via dephosphorylation of the IGF-1 receptor and phosphatidylinositol 3,4,5-triphosphate dampened IGF-1 signalling. Genetic and pharmacologic inhibition of PTP1B and PTEN abrogated O2∙--induced IGF-1 resistance and rescued the ageing skin phenotype. We thus identify previously unreported signature events with O2∙-, PTP1B, and PTEN as promising targets for drug development to prevent IGF-1 resistance-related pathologies. PMID:25520316

  11. Superoxide anion radicals induce IGF-1 resistance through concomitant activation of PTP1B and PTEN

    PubMed Central

    Singh, Karmveer; Maity, Pallab; Krug, Linda; Meyer, Patrick; Treiber, Nicolai; Lucas, Tanja; Basu, Abhijit; Kochanek, Stefan; Wlaschek, Meinhard; Geiger, Hartmut; Scharffetter-Kochanek, Karin

    2015-01-01

    The evolutionarily conserved IGF-1 signalling pathway is associated with longevity, metabolism, tissue homeostasis, and cancer progression. Its regulation relies on the delicate balance between activating kinases and suppressing phosphatases and is still not very well understood. We report here that IGF-1 signalling in vitro and in a murine ageing model in vivo is suppressed in response to accumulation of superoxide anions () in mitochondria, either by chemical inhibition of complex I or by genetic silencing of -dismutating mitochondrial Sod2. The -dependent suppression of IGF-1 signalling resulted in decreased proliferation of murine dermal fibroblasts, affected translation initiation factors and suppressed the expression of α1(I), α1(III), and α2(I) collagen, the hallmarks of skin ageing. Enhanced led to activation of the phosphatases PTP1B and PTEN, which via dephosphorylation of the IGF-1 receptor and phosphatidylinositol 3,4,5-triphosphate dampened IGF-1 signalling. Genetic and pharmacologic inhibition of PTP1B and PTEN abrogated -induced IGF-1 resistance and rescued the ageing skin phenotype. We thus identify previously unreported signature events with , PTP1B, and PTEN as promising targets for drug development to prevent IGF-1 resistance-related pathologies. PMID:25520316

  12. Catalytic spectrofluorimetric determination of superoxide anion radical and superoxide dismutase activity using N, N-dimethylaniline as the substrate for horseradish peroxidase (HRP)

    NASA Astrophysics Data System (ADS)

    Tang, Bo; Wang, Yan; Chen, Zhen-zhen

    2002-10-01

    The coupled reaction of N, N-dimethylaniline (DMA) with 4-aminoantipyrine (4-AAP) using superoxide anion radical (O 2-) as oxidizing agent under the catalysis of horseradish peroxidase (HRP) was studied. Based on the reaction, O 2- produced by irradiating Vitamin B 2, (V B2) was spectrophotometricly determined at 554 nm. The linear range of this method was 1.8×10 -6-1.2×10 -4 mol l -1 with a detection limit of 5.3×10 -7 mol l -1. The effect of interferences on the determination of O 2- was investigated. The proposed method was successfully applied to the determination of superoxide dismutase (SOD) activity in human blood and mouse blood.

  13. Peroxynitrite Mediates Active Site Tyrosine Nitration in Manganese Superoxide Dismutase. Evidence of a Role for the Carbonate Radical Anion

    PubMed Central

    Surmeli, N. Basak; Litterman, Nadia K.; Miller, Anne Frances; Groves, John T.

    2010-01-01

    anion (•CO3-) in MnSOD nitration by PN. We also observed that the nitration of Tyr34 caused inactivation of the enzyme, while nitration of Tyr9 and Tyr11 did not interfere with the superoxide dismutase activity. The loss of MnSOD activity upon Tyr34 nitration implies that the responsible reagent in vivo is peroxynitrite, acting either directly or through the action of •CO3-. PMID:21080654

  14. Effect of active synthetic 2-substituted quinazolinones on anti-platelet aggregation and the inhibition of superoxide anion generation by neutrophils.

    PubMed

    Chang, Fang-Rong; Wu, Chin-Chung; Hwang, Tsong-Long; Patnam, Ramesh; Kuo, Reen-Yen; Wang, Wei-Ya; Lan, Yu-Hsuan; Wu, Yang-Chang

    2003-07-01

    Quinazolinones, 2-substituted and 3-substituted, mainly synthesized by microwave irradiation, were subjected to anti-platelet aggregation and inhibition of superoxide anion generation assays. Interestingly, 2-phenyl-4-quinazolinone (4) exhibited significant inhibitory activities toward platelet aggregation and neutrophil activation, and it might therefore serve as a prototype lead compound. PMID:12934640

  15. (-)-Xanthienopyran, a new inhibitor of superoxide anion generation by activated neutrophils, and further constituents of the seeds of Xanthium strumarium.

    PubMed

    Lee, Chia-Lin; Huang, Po-Ching; Hsieh, Pei-Wen; Hwang, Tsong-Long; Hou, Yu-Yi; Chang, Fang-Rong; Wu, Yang-Chang

    2008-08-01

    The dried seeds of XANTHIUM STRUMARIUM (Asteraceae) are used after thorough stir-frying as an ingredient in traditional Chinese medicines for relieving allergy. Two new compounds, xanthialdehyde ( 2) and (-)-xanthienopyran ( 7), as well as 26 known compounds were isolated in the present study. The structures of the isolates were elucidated by spectroscopic methods. Among them, compound 7 exhibited significant selective inhibition of superoxide anion generation by human neutrophils induced by formyl- L-methionyl- L-leucyl- L-phenylalanine, with an IC50 value of 1.72 microg/mL. PMID:18622908

  16. Modulatory effect of interleukin-10 on the production of platelet-activating factor and superoxide anions by human leucocytes.

    PubMed Central

    Bussolati, B; Mariano, F; Montrucchio, G; Piccoli, G; Camussi, G

    1997-01-01

    We observed that human monocytes (MO) and polymorphonuclear neutrophils (PMN) stimulated by lipopolysaccharide (LPS) produce platelet-activating factor (PAF) in a pattern characterized by an early and a delayed peak of synthesis. The early peak of PAF synthesis was due to a direct stimulation of these cells through mCD14 receptor as it was inhibited by anti-CD14 monoclonal antibody. The delayed and sustained peak of PAF synthesis was dependent on protein synthesis and cytokine production as shown by the inhibitory effect of cycloheximide on both MO and PMN, and of anti-tumour necrosis factor-alpha (anti-TNF-alpha) and of anti-interleukin-8 (anti-IL-8) neutralizing antibodies on MO and PMN respectively. IL-10 completely prevented this second, cytokine-dependent peak of PAF synthesis. In contrast, IL-10 markedly enhanced the first peak of PAF synthesis both in MO and PMN. Moreover, IL-10 was shown to modulate the production of superoxide anions (O2-) on both MO and PMN. As suggested by previous studies, IL-10 inhibited the delayed production of O2-. In the present study, we observed that IL-10 directly stimulated an early production of O2-. In addition, IL-10 enhanced the synthesis of O2- by MO and PMN challenged with LPS. The IL-10-induced O2- production was dependent, at least in part, from its effect on PAF synthesis, as it was inhibited by the PAF receptor antagonist WEB 2170. These results suggest that IL-10 may upregulate the early synthesis of PAF and O2- triggered by direct LPS stimulation, whereas it may downregulate the delayed production of these mediators. PMID:9155653

  17. Superoxide anion radical scavenging property of catecholamines.

    PubMed

    Kładna, Aleksandra; Berczyński, Paweł; Kruk, Irena; Michalska, Teresa; Aboul-Enein, Hassan Y

    2013-01-01

    The direct effect of the four catecholamines (adrenaline, noradrenaline, dopamine and isoproterenol) on superoxide anion radicals (O2•) was investigated. The reaction between 18-crown-6-ether and potassium superoxide in dimethylsulfoxide was used as a source of O2•. The reactivity of catecholamines with O2• was examined using chemiluminescence, reduction of nitroblue tetrazolium and electron paramagnetic resonance spin-trapping techniques. 5,5-Dimethyl-1-pyrroline-N-oxide was included as the spin trap. The results showed that the four catecholamines were effective and efficient in inhibiting chemiluminescence accompanying the potassium superoxide/18-crown-6-ether system in a dose-dependent manner over the range 0.05-2 mM in the following order: adrenaline > noradrenaline > dopamine > isoproterenol, with, IC50 = 0.15 ± 0.02 mM 0.21 ± 0.03 mM, 0.27 ± 0.03 mM and 0.50 ± 0.04 mM, respectively. The catecholamines examined also exhibited a strong scavenging effect towards O2• when evaluated this property by the inhibition of nitroblue tetrazolium reduction (56-73% at 1 M concentration). A very similar capacity of O2• scavenging was monitored in the 5,5-dimethyl-1-pyrroline-N-oxide spin-trapping assay. The results suggest that catecholamines tested may involve a direct effect on scavenging O2- radicals. PMID:23319391

  18. Superoxide anion-induced pain and inflammation depends on TNFα/TNFR1 signaling in mice.

    PubMed

    Yamacita-Borin, Fabiane Y; Zarpelon, Ana C; Pinho-Ribeiro, Felipe A; Fattori, Victor; Alves-Filho, Jose C; Cunha, Fernando Q; Cunha, Thiago M; Casagrande, Rubia; Verri, Waldiceu A

    2015-09-25

    Inhibition of tumor necrosis factor-alpha (TNFα) and superoxide anion production reduces inflammation and pain. The present study investigated whether superoxide anion-induced pain depends on TNFα signaling and the role of superoxide anion in TNFα-induced hyperalgesia to clarify the interrelation between these two mediators in the context of pain. Intraplantar injection of a superoxide anion donor (potassium superoxide) induced mechanical hyperalgesia (0.5-5h after injection), neutrophil recruitment (myeloperoxidase activity), and overt pain-like behaviors (paw flinching, paw licking, and abdominal writhings) in wild-type mice. Tumor necrosis factor receptor 1 deficiency (TNFR1-/-) and treatment of wild-type mice with etanercept (a soluble TNFR2 receptor that inhibits TNFα actions) inhibited superoxide anion-induced pain-like behaviors. TNFR1(-/-) mice were also protected from superoxide anion donor-induced oxidative stress, suggesting the role of this pathway in the maintenance of oxidative stress. Finally, we demonstrated that Apocynin (an NADPH oxidase inhibitor) or Tempol (a superoxide dismutase mimetic) treatment inhibited TNFα-induced paw mechanical hyperalgesia and neutrophil recruitment (myeloperoxidase activity). These results demonstrate that TNFα/TNFR1 signaling is important in superoxide anion-triggered pain and that TNFα/TNFR1 signaling amplifies the oxidative stress triggered by superoxide anion, which contributes to sustaining pain and inflammation. PMID:26291484

  19. Effect of etizolam (Depas) on production of superoxide anion by platelet-activating factor and N-formyl-methionyl-leucyl-phenylalanine-stimulated guinea pig polymorphonuclear leukocytes.

    PubMed

    Aratani, H; Nishida, Y; Terasawa, M; Maruyama, Y

    1988-06-01

    Effect of etizolam on platelet activating factor (PAF) and N-formyl-methionyl-leucyl-phenylalanine (FMLP)-induced superoxide anion (O2-) production in guinea pig polymorphonuclear leukocytes (PMNL) was investigated. Etizolam showed the inhibitory effect on PAF-induced O2- production concentration dependently, with an IC50 value of 4.7 microM, but it had no inhibitory effect on FMLP-induced O2- production at 100 microM. These results suggest that etizolam has a selectively strong inhibitory effect on PAF-induced O2- production in guinea pig PMNL. PMID:2848961

  20. Effects of asbestos and silica on superoxide anion production in the guinea pig alveolar macrophage

    SciTech Connect

    Roney, P.L.

    1988-01-01

    This study examined the effect of asbestos and silica on the activation pathway of the guinea pig alveolar macrophage. Activation of macrophages by physiological agents results in stimulation of phospholipase C causing phosphatidyl inositol turnover and intracellular calcium mobilization. Phosphatidyl inositol turnover produces diacylglycerol which activates protein kinase C causing superoxide anion production. Chrysotile stimulated alveolar macrophages to produce superoxide anion. This stimulation proceeded via phospholipase C, since chrysotile stimulated phosphatidyl inositol turnover and intracellular calcium mobilization. The possible involvement of a coupling protein was evaluated by pretreating cells with pertussis toxin. Potential binding sites for chrysotile stimulation were examined using a series of nine lectins. Chrysotile-stimulated superoxide anion production was blocked by pretreatment with lectins which bound to mannose, fucose, or N-acetylgalactosamine. In addition, incubation with the N-acetylglucosamine, but not by lectins which bound to mannose, fucose, or N-acetylgalactosamine. In addition, incubation with the N-acetylglucosamine polymer, chitin, inhibited chrysotile-stimulated superoxide anion production, suggesting that chrysotile stimulated superoxide anion production by binding to N-acetylglucosamine residues. On the other hand, silica did not stimulate superoxide anion production. The effect of silica on agonist stimulation of this pathway was examined using two stimulants of superoxide anion production, N-formyl-nle-leu-phe (FNLP, which stimulates through phospholipase C) and phorbol-12,13-dibutyrate (which directly activates protein kinase C).

  1. Theoretical study of the superoxide anion assisted firefly oxyluciferin formation

    NASA Astrophysics Data System (ADS)

    Pinto da Silva, Luís; Esteves da Silva, Joaquim C. G.

    2013-12-01

    This a theoretical Letter based on density functional theory, on the role of superoxide anion in firefly chemiluminescence in DMSO. We have found that this anion can attack luciferin radical molecules, thus forming a luciferin-like trianion. This latter molecule transfers an oxygen atom, which results in the formation of oxyluciferyl radical dianion and carbon dioxide molecules. Oxyluciferin is finally formed after an electron transfer from oxyluciferyl radical dianion to tert-BuOrad radical molecules. Thus, we have found evidence that firefly oxyluciferin can be formed in a energetically favorable superoxide anion-assisted reaction, without the need for the formation of firefly dioxetanone.

  2. Bosentan, a mixed endothelin receptor antagonist, inhibits superoxide anion-induced pain and inflammation in mice.

    PubMed

    Serafim, Karla G G; Navarro, Suelen A; Zarpelon, Ana C; Pinho-Ribeiro, Felipe A; Fattori, Victor; Cunha, Thiago M; Alves-Filho, Jose C; Cunha, Fernando Q; Casagrande, Rubia; Verri, Waldiceu A

    2015-11-01

    Bosentan is a mixed endothelin receptor antagonist widely used to treat patients with pulmonary arterial hypertension, and the emerging literature suggests bosentan as a potent anti-inflammatory drug. Superoxide anion is produced in large amounts during inflammation, stimulates cytokine production, and thus contributes to inflammation and pain. However, it remains to be determined whether endothelin contributes to the inflammatory response triggered by the superoxide anion. The present study investigated the effects of bosentan in a mouse model of inflammation and pain induced by potassium superoxide, a superoxide anion donor. Male Swiss mice were treated with bosentan (10-100 mg/kg) by oral gavage, 1 h before potassium superoxide injection, and the inflammatory response was evaluated locally and at spinal cord (L4-L6) levels. Bosentan (100 mg/kg) inhibited superoxide anion-induced mechanical and thermal hyperalgesia, overt pain-like behavior (abdominal writhings, paw flinching, and licking), paw edema, myeloperoxidase activity (neutrophil marker) in the paw skin, and leukocyte recruitment in the peritoneal cavity. Bosentan also inhibited superoxide anion-induced interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) production, while it enhanced IL-10 production in the paw skin and spinal cord. Bosentan inhibited the reduction of antioxidant capacity (reduced glutathione, ferric reducing antioxidant power, and ABTS radical scavenging ability) induced by the superoxide anion. Finally, we demonstrated that intraplantar injection of potassium superoxide induces the mRNA expression of prepro-endothelin-1 in the paw skin and spinal cord. In conclusion, our results demonstrated that superoxide anion-induced inflammation, pain, cytokine production, and oxidative stress depend on endothelin; therefore, these responses are amenable to bosentan treatment. PMID:26246053

  3. A superoxide anion-scavenger, 1,3-selenazolidin-4-one suppresses serum deprivation-induced apoptosis in PC12 cells by activating MAP kinase

    SciTech Connect

    Nishina, Atsuyoshi; Kimura, Hirokazu; Kozawa, Kunihisa; Sommen, Geoffroy; Nakamura, Takao; Heimgartner, Heinz; Koketsu, Mamoru; Furukawa, Shoei

    2011-12-15

    Synthetic organic selenium compounds, such as ebselen, may show glutathione peroxidase-like antioxidant activity and have a neurotrophic effect. We synthesized 1,3-selenazolidin-4-ones, new types of synthetic organic selenium compounds (five-member ring compounds), to study their possible applications as antioxidants or neurotrophic-like molecules. Their superoxide radical scavenging effects were assessed using the quantitative, highly sensitive method of real-time kinetic chemiluminescence. At 166 {mu}M, the O{sub 2}{sup -} scavenging activity of 1,3-selenazolidin-4-ones ranged from 0 to 66.2%. 2-[3-(4-Methoxyphenyl)-4-oxo-1,3-selenazolidin-2-ylidene]malononitrile (compound b) showed the strongest superoxide anion-scavenging activity among the 6 kinds of 2-methylene-1,3-selenazolidin-4-ones examined. Compound b had a 50% inhibitory concentration (IC{sub 50}) at 92.4 {mu}M and acted as an effective and potentially useful O{sub 2}{sup -} scavenger in vitro. The effect of compound b on rat pheochromocytome cell line PC12 cells was compared with that of ebselen or nerve growth factor (NGF) by use of the MTT [3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] assay. When ebselen was added at 100 {mu}M or more, toxicity toward PC12 cells was evident. On the contrary, compound b suppressed serum deprivation-induced apoptosis in PC12 cells more effectively at a concentration of 100 {mu}M. The activity of compound b to phosphorylate mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) 1/2 (MAP kinase) in PC12 cells was higher than that of ebselen, and the former at 100 {mu}M induced the phosphorylation of MAP kinase to a degree similar to that induced by NGF. From these results, we conclude that this superoxide anion-scavenger, compound b, suppressed serum deprivation-induced apoptosis by promoting the phosphorylation of MAP kinase. -- Highlights: Black-Right-Pointing-Pointer We newly synthesized 1,3-selenazolidin-4-ones to

  4. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    NASA Astrophysics Data System (ADS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-09-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as rad OH and ONOO -. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  5. Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence

    PubMed Central

    Weinberger, Martin; Mesquita, Ana; Carroll, Timothy; Marks, Laura; Yang, Hui; Zhang, Zhaojie; Ludovico, Paula; Burhans, William C.

    2010-01-01

    Inhibition of growth signaling pathways protects against aging and age-related diseases in parallel with reduced oxidative stress. The relationships between growth signaling, oxidative stress and aging remain unclear. Here we report that in Saccharomyces cerevisiae, alterations in growth signaling pathways impact levels of superoxide anions that promote chronological aging and inhibit growth arrest of stationary phase cells in G0/G1. Factors that decrease intracellular superoxide anions in parallel with enhanced longevity and more efficient G0/G1 arrest include genetic inactivation of growth signaling pathways that inhibit Rim15p, which activates oxidative stress responses, and downregulation of these pathways by caloric restriction. Caloric restriction also reduces superoxide anions independently of Rim15p by elevating levels of H2O2, which activates superoxide dismutases. In contrast, high glucose or mutations that activate growth signaling accelerate chronological aging in parallel with increased superoxide anions and reduced efficiency of stationary phase G0/G1 arrest. High glucose also activates DNA damage responses and preferentially kills stationary phase cells that fail to arrest growth in G0/G1. These findings suggest that growth signaling promotes chronological aging in budding yeast by elevating superoxide anions that inhibit quiescence and induce DNA replication stress. A similar mechanism likely contributes to aging and age-related diseases in complex eukaryotes. PMID:21076178

  6. Biomimetic superoxide dismutase stabilized by photopolymerization for superoxide anions biosensing and cell monitoring.

    PubMed

    Yuan, Ling; Liu, Suli; Tu, Wenwen; Zhang, Zengsong; Bao, Jianchun; Dai, Zhihui

    2014-05-20

    Photopolymerization strategy, as one of the immobilization methods, has attracted considerable interest because of some advantages, such as easy operation, harmlessness to the biomolecules, and long storage stability. (E)-4-(4-Formylstyryl) pyridine (formylstyrylpyridine) was prepared through Heck reaction and used as a photopolymer material to immobilize biomimetic superoxide dismutase under ultraviolet irradiation (UV) irradiation in a short time. The styrylpyridinium moiety of Formylstyrylpyridine was photoreactive and formed a dimer under UV irradiation. Mn2P2O7 multilayer sheet, a novel superoxide dismutase mimic, was synthesized. The formed photopolymer can immobilize Mn2P2O7 firmly under UV irradiation. On the basis of high catalytic activity of Mn2P2O7 biomimetic enzyme and long-term stability of Mn2P2O7-formylstyrylpyridine film, after introducing multiwalled carbon nanotubes (MWCNTs), a novel electrochemical biosensing platform called MWCNTs/Mn2P2O7-formylstyrylpyridine for superoxide anion (O2(•-)) detection was constructed. The biosensor displayed good performance for O2(•-) detection and provided a reliable platform to adhere living cells directly on the modified electrode surface. Therefore, the biosensor was successfully applied to vitro determination of O2(•-) released from living cells, which had a promising prospect for living cells monitoring and diagnosis of reactive oxygen species-related diseases. PMID:24773067

  7. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor

    SciTech Connect

    Yogi, Alvaro; Callera, Glaucia E.; Mecawi, André S.; Batalhão, Marcelo E.; Carnio, Evelin C.; Antunes-Rodrigues, José; Queiroz, Regina H.; Touyz, Rhian M.; Tirapelli, Carlos R.

    2012-11-01

    Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin–angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT{sub 1} receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase‐mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT{sub 1}-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. -- Highlights: ► Acute ethanol intake stimulates RAS activity and vascular oxidative stress. ► RAS plays a role in acute ethanol-induced oxidative damage via AT{sub 1} receptor activation.

  8. Phlomis mauritanica extracts reduce the xanthine oxidase activity, scavenge the superoxide anions, and inhibit the aflatoxin B1-, sodium azide-, and 4-nitrophenyldiamine-induced mutagenicity in bacteria.

    PubMed

    Limem, Ilef; Bouhlel, Ines; Bouchemi, Meriem; Kilani, Soumaya; Boubaker, Jihed; Ben-Sghaier, Mohamed; Skandrani, Ines; Behouri, Wissem; Neffati, Aicha; Ghedira, Kamel; Chekir-Ghedira, Leila

    2010-06-01

    Four extracts were prepared from the leaves of Phlomis mauritanica: lyophilized infusion, total oligomer flavonoids, methanol, and ethyl acetate extracts. The antimutagenic properties of these extracts were investigated by assessing the inhibition of the mutagenic effects of direct-acting mutagens such as sodium azide and 4-nitrophenylenediamine and indirect-acting mutagens like aflatoxin B1 (AFB1) using the Ames assay. The four extracts prepared from P. mauritanica strongly inhibit the mutagenicity induced by AFB1 in both Salmonella typhimurium TA 100 and TA 98 assay systems. Lyophilized infusion and methanol extracts at the dose of 250 microg per plate reduced AFB1 mutagenicity by 93% and 91%, respectively, in S. typhymurium strain TA 100. We examined also the antioxidant effect of these extracts by the enzymatic xanthine/xanthine oxidase assay. Result indicated that total oligomer flavonoids and ethyl acetate and methanol extracts were potent inhibitors of xanthine oxidase activity. In contrast, lyophilized infusion, total oligomer flavonoids, and methanol extracts exhibited a high degree of superoxide anion scavenging. Our findings emphasize the potential of P. mauritanica extracts to prevent mutations and oxidant effects. Furthermore, the results presented here could be an additional argument to support the use of this species as a medicinal and dietary plant. PMID:20406134

  9. Effect of superoxide anion scavenger on rat hearts with chronic intermittent hypoxia.

    PubMed

    Pai, Peiying; Lai, Ching Jung; Lin, Ching-Yuang; Liou, Yi-Fan; Huang, Chih-Yang; Lee, Shin-Da

    2016-04-15

    Only very limited information regarding the protective effects of the superoxide anion scavenger on chronic intermittent hypoxia-induced cardiac apoptosis is available. The purpose of this study is to evaluate the effects of the superoxide anion scavenger on cardiac apoptotic and prosurvival pathways in rats with sleep apnea. Forty-two Sprague-Dawley rats were divided into three groups, rats with normoxic exposure (Control, 21% O2, 1 mo), rats with chronic intermittent hypoxia exposure (Hypoxia, 3-7% O2vs. 21% O2per 40 s cycle, 8 h per day, 1 mo), and rats with pretreatment of the superoxide anion scavenger and chronic intermittent hypoxia exposure (Hypoxia-O2 (-)-Scavenger, MnTMPyP pentachloride, 1 mg/kg ip per day; 3-7% O2vs. 21% O2per 40 s cycle, 8 h per day, 1 mo) at 5-6 mo of age. After 1 mo, the protein levels and apoptotic cells of excised hearts from three groups were measured by Western blotting and terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL) assay. The superoxide anion scavenger decreased hypoxia-induced myocardial architecture abnormalities, left ventricular hypertrophy, and TUNEL-positive apoptosis. The superoxide anion scavenger decreased hypoxia-induced Fas ligand, Fas death receptors, Fas-associated death domain (FADD), activated caspase-8, and activated caspase-3 (Fas-dependent apoptotic pathway) as well as Bad, activated caspase-9 and activated caspase-3 (mitochondria-dependent apoptotic pathway), endonuclease G (EndoG), apoptosis-inducing factor (AIF), and TUNEL-positive apoptosis. The superoxide anion scavenger increased IGF-1, IGF-1R, p-PI3k, p-Akt, p-Bad, Bcl-2, and Bcl-xL (survival pathway). Our findings imply that the superoxide anion scavenger might prevent cardiac Fas-mediated and mitochondrial-mediated apoptosis and enhance the IGF-1-related survival pathway in chronic intermittent hypoxia. The superoxide anion scavenger may prevent chronic sleep apnea-enhanced cardiac apoptotic pathways and enhances

  10. Faropenem enhances superoxide anion production by human neutrophils in vitro.

    PubMed

    Sato, K; Sato, N; Shimizu, H; Tsutiya, T; Takahashi, H; Kakizaki, S; Takayama, H; Takagi, H; Mori, M

    1999-09-01

    Neutrophils are important cellular components in the defence against infections and many studies in vitro have shown that some antibiotics affect neutrophil function. We examined the effect of faropenem, a new oral penem antibiotic on neutrophil killing function by determining the generation of superoxide anion in vitro. The production of superoxide anion was measured by chemiluminescence amplified by a Cypridina luciferin analogue in the presence of N-formyl-Met-Leu-Phe (fMLP). Faropenem significantly enhanced chemiluminescence in a dose-dependent manner. The effect of faropenem was maximal at 5 min of incubation time and continued for at least 30 min. The effect of faropenem was also observed when neutrophils were stimulated by a calcium ionophore (ionomycin), while the effect of faropenem did not change in the presence of 12-O-tetra-decanoylphorbolmyristate acetate. Cytosol Ca2+ concentration ([Ca2+]i) monitored with Fura-2 increased in response to fMLP, however, faropenem did not influence the response of [Ca2+]i to fMLP. Our results suggest that faropenem enhanced the generation of superoxide anion by neutrophils, probably at the site where cytosol Ca2+ regulates NADPH oxidase. Faropenem might be potentially advantageous in the treatment of infections because a synergic interaction of antibodies and cytocidal neutrophils is necessary for the early eradication of the pathogenic bacteria. PMID:10511400

  11. Screening New Drugs for Immunotoxic Potential: II. Assessment of the Effects of Selective and Nonselective COX-2 Inhibitors on Complement Activation, Superoxide Anion Production and Leukocyte Chemotaxis and Migration Through Endothelial Cells.

    PubMed

    Furst, Sylvia M; Khan, K Nasir; Komocsar, Wendy J; Fan, Lian; Mennear, John

    2005-04-01

    Results from earlier experiments in our laboratories revealed that both selective and nonselective inhibitors of cyclooxygenase-2 possess little potential for decreasing in vitro phagocytosis by rat macrophages or canine neutrophils and no potential for decreasing in vivo phagocytosis by the intact murine immune system. We now report the results of studies to assess in vitro and ex vivo effects of the drugs on 1) canine complement activation, 2) generation of superoxide anion and hydrogen peroxide (oxidative burst) by canine neutrophils, and 3) leukocytic chemotaxis and transmigration through endothelial cell monolayers. In vitro concentrations of naproxen sodium, SC-236, SC-245, and SC-791 ranging from 0.1 to 10 muM were tested for their abilities to inhibit canine complement-mediated hemolysis of opsonized sheep erythrocytes and to block phorbol myristate acetate-induced oxidative burst in canine neutrophils. Both models responded to known inhibitory agents, leupeptin in the complement activation test and staurosporine in the superoxide anion assay. In contrast, tested nonsteroidal anti-inflammatory drugs produced only trivial changes in complement activation and superoxide anion production. Experiments on plasma and neutrophils isolated from dogs administered an experimental selective COX-2 inhibitor during a 28-day toxicology study revealed no evidence of drug-associated changes in complement activation or formation of superoxide anion. SC-791 reduced chemotaxis of canine leukocytes toward zymosan-activated dog plasma, but not toward leukotriene B(4). None of the other drugs tested significantly affected leukocytic chemotaxis. Ibuprofen, SC-245 and SC-791 but not SC-236, reduced transmigration of canine leukocytes through endothelial cell monolayers. Based on the results of these experiments and our earlier studies we have concluded that, although high (suprapharmacologic) concentrations of the drugs may induce in vitro evidence of apparent immunomodulation of

  12. Anti-inflammatory activity of betalain-rich dye of Beta vulgaris: effect on edema, leukocyte recruitment, superoxide anion and cytokine production.

    PubMed

    Martinez, Renata M; Longhi-Balbinot, Daniela T; Zarpelon, Ana C; Staurengo-Ferrari, Larissa; Baracat, Marcela M; Georgetti, Sandra R; Sassonia, Rogério C; Verri, Waldiceu A; Casagrande, Rubia

    2015-04-01

    We have recently developed betalain-rich beetroot (Beta vulgaris) dye (betalain) to be used in food products. Betalain (30-300 mg/kg) intraperitoneal (i.p.) treatment diminished carrageenan (100 µg/paw)-induced paw edema and neutrophil migration to the paw skin tissue. Betalain (100 mg/kg) treatment by subcutaneous or per oral routes also inhibited the carrageenan-induced paw edema. Importantly, the post-treatment with betalain (100 mg/kg, i.p.) significantly inhibited carrageenan- and complete Freund's adjuvant (10 µl/paw)-induced paw edema. Betalain (100 mg/kg) also reduced carrageenan (500 µg/cavity)-induced recruitment of total leukocytes, including mononuclear cells and neutrophils, as well as increasing vascular permeability in the peritoneal cavity. Furthermore, betalain significantly reduced carrageenan-induced superoxide anion, tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-1β levels in the peritoneal fluid, as well as augmenting IL-10 levels. Therefore, this compound presents prominent anti-inflammatory effect on carrageenan-induced paw edema and peritonitis by reducing the production of superoxide anion and the cytokines TNF-α and IL-1β, in addition to increasing IL-10 levels. These results suggest that betalain shows therapeutic potential that could be utilized in the treatment of inflammation-associated diseases. PMID:25173360

  13. Reactions of superoxide dismutases with HS(-)/H2S and superoxide radical anion: An in vitro EPR study.

    PubMed

    Bolić, Bojana; Mijušković, Ana; Popović-Bijelić, Ana; Nikolić-Kokić, Aleksandra; Spasić, Snežana; Blagojević, Duško; Spasić, Mihajlo B; Spasojević, Ivan

    2015-12-01

    Interactions of hydrogen sulfide (HS(-)/H2S), a reducing signaling species, with superoxide dimutases (SOD) are poorly understood. We applied low-T EPR spectroscopy to examine the effects of HS(-)/H2S and superoxide radical anion O2.- on metallocenters of FeSOD, MnSOD, and CuZnSOD. HS(-)/H2S did not affect FeSOD, whereas active centers of MnSOD and CuZnSOD were open to this agent. Cu(2+) was reduced to Cu(1+), while manganese appears to be released from MnSOD active center. Untreated and O2.- treated FeSOD and MnSOD predominantly show 5 d-electron systems, i.e. Fe(3+) and Mn(2+). Our study provides new details on the mechanisms of (patho)physiological effects of HS(-)/H2S. PMID:26436856

  14. The superoxide anion donor, potassium superoxide, induces pain and inflammation in mice through production of reactive oxygen species and cyclooxygenase-2

    PubMed Central

    Maioli, N.A.; Zarpelon, A.C.; Mizokami, S.S.; Calixto-Campos, C.; Guazelli, C.F.S.; Hohmann, M.S.N.; Pinho-Ribeiro, F.A.; Carvalho, T.T.; Manchope, M.F.; Ferraz, C.R.; Casagrande, R.; Verri, W.A.

    2015-01-01

    It is currently accepted that superoxide anion (O2 •−) is an important mediator in pain and inflammation. The role of superoxide anion in pain and inflammation has been mainly determined indirectly by modulating its production and inactivation. Direct evidence using potassium superoxide (KO2), a superoxide anion donor, demonstrated that it induced thermal hyperalgesia, as assessed by the Hargreaves method. However, it remains to be determined whether KO2 is capable of inducing other inflammatory and nociceptive responses attributed to superoxide anion. Therefore, in the present study, we investigated the nociceptive and inflammatory effects of KO2. The KO2-induced inflammatory responses evaluated in mice were: mechanical hyperalgesia (electronic version of von Frey filaments), thermal hyperalgesia (hot plate), edema (caliper rule), myeloperoxidase activity (colorimetric assay), overt pain-like behaviors (flinches, time spent licking and writhing score), leukocyte recruitment, oxidative stress, and cyclooxygenase-2 mRNA expression (quantitative PCR). Administration of KO2 induced mechanical hyperalgesia, thermal hyperalgesia, paw edema, leukocyte recruitment, the writhing response, paw flinching, and paw licking in a dose-dependent manner. KO2 also induced time-dependent cyclooxygenase-2 mRNA expression in the paw skin. The nociceptive, inflammatory, and oxidative stress components of KO2-induced responses were responsive to morphine (analgesic opioid), quercetin (antioxidant flavonoid), and/or celecoxib (anti-inflammatory cyclooxygenase-2 inhibitor) treatment. In conclusion, the well-established superoxide anion donor KO2 is a valuable tool for studying the mechanisms and pharmacological susceptibilities of superoxide anion-triggered nociceptive and inflammatory responses ranging from mechanical and thermal hyperalgesia to overt pain-like behaviors, edema, and leukocyte recruitment. PMID:25714890

  15. The superoxide anion donor, potassium superoxide, induces pain and inflammation in mice through production of reactive oxygen species and cyclooxygenase-2.

    PubMed

    Maioli, N A; Zarpelon, A C; Mizokami, S S; Calixto-Campos, C; Guazelli, C F S; Hohmann, M S N; Pinho-Ribeiro, F A; Carvalho, T T; Manchope, M F; Ferraz, C R; Casagrande, R; Verri, W A

    2015-04-01

    It is currently accepted that superoxide anion (O2•-) is an important mediator in pain and inflammation. The role of superoxide anion in pain and inflammation has been mainly determined indirectly by modulating its production and inactivation. Direct evidence using potassium superoxide (KO2), a superoxide anion donor, demonstrated that it induced thermal hyperalgesia, as assessed by the Hargreaves method. However, it remains to be determined whether KO2 is capable of inducing other inflammatory and nociceptive responses attributed to superoxide anion. Therefore, in the present study, we investigated the nociceptive and inflammatory effects of KO2. The KO2-induced inflammatory responses evaluated in mice were: mechanical hyperalgesia (electronic version of von Frey filaments), thermal hyperalgesia (hot plate), edema (caliper rule), myeloperoxidase activity (colorimetric assay), overt pain-like behaviors (flinches, time spent licking and writhing score), leukocyte recruitment, oxidative stress, and cyclooxygenase-2 mRNA expression (quantitative PCR). Administration of KO2 induced mechanical hyperalgesia, thermal hyperalgesia, paw edema, leukocyte recruitment, the writhing response, paw flinching, and paw licking in a dose-dependent manner. KO2 also induced time-dependent cyclooxygenase-2 mRNA expression in the paw skin. The nociceptive, inflammatory, and oxidative stress components of KO2-induced responses were responsive to morphine (analgesic opioid), quercetin (antioxidant flavonoid), and/or celecoxib (anti-inflammatory cyclooxygenase-2 inhibitor) treatment. In conclusion, the well-established superoxide anion donor KO2 is a valuable tool for studying the mechanisms and pharmacological susceptibilities of superoxide anion-triggered nociceptive and inflammatory responses ranging from mechanical and thermal hyperalgesia to overt pain-like behaviors, edema, and leukocyte recruitment. PMID:25714890

  16. Titanium Dioxide Nanoparticles Increase Superoxide Anion Production by Acting on NADPH Oxidase.

    PubMed

    Masoud, Rawand; Bizouarn, Tania; Trepout, Sylvain; Wien, Frank; Baciou, Laura; Marco, Sergio; Houée Levin, Chantal

    2015-01-01

    Titanium dioxide (TiO2) anatase nanoparticles (NPs) are metal oxide NPs commercialized for several uses of everyday life. However their toxicity has been poorly investigated. Cellular internalization of NPs has been shown to activate macrophages and neutrophils that contribute to superoxide anion production by the NADPH oxidase complex. Transmission electron micrososcopy images showed that the membrane fractions were close to the NPs while fluorescence indicated an interaction between NPs and cytosolic proteins. Using a cell-free system, we have investigated the influence of TiO2 NPs on the behavior of the NADPH oxidase. In the absence of the classical activator molecules of the enzyme (arachidonic acid) but in the presence of TiO2 NPs, no production of superoxide ions could be detected indicating that TiO2 NPs were unable to activate by themselves the complex. However once the NADPH oxidase was activated (i.e., by arachidonic acid), the rate of superoxide anion production went up to 140% of its value without NPs, this effect being dependent on their concentration. In the presence of TiO2 nanoparticles, the NADPH oxidase produces more superoxide ions, hence induces higher oxidative stress. This hyper-activation and the subsequent increase in ROS production by TiO2 NPs could participate to the oxidative stress development. PMID:26714308

  17. Titanium Dioxide Nanoparticles Increase Superoxide Anion Production by Acting on NADPH Oxidase

    PubMed Central

    Trepout, Sylvain; Wien, Frank; Marco, Sergio

    2015-01-01

    Titanium dioxide (TiO2) anatase nanoparticles (NPs) are metal oxide NPs commercialized for several uses of everyday life. However their toxicity has been poorly investigated. Cellular internalization of NPs has been shown to activate macrophages and neutrophils that contribute to superoxide anion production by the NADPH oxidase complex. Transmission electron micrososcopy images showed that the membrane fractions were close to the NPs while fluorescence indicated an interaction between NPs and cytosolic proteins. Using a cell-free system, we have investigated the influence of TiO2 NPs on the behavior of the NADPH oxidase. In the absence of the classical activator molecules of the enzyme (arachidonic acid) but in the presence of TiO2 NPs, no production of superoxide ions could be detected indicating that TiO2 NPs were unable to activate by themselves the complex. However once the NADPH oxidase was activated (i.e., by arachidonic acid), the rate of superoxide anion production went up to 140% of its value without NPs, this effect being dependent on their concentration. In the presence of TiO2 nanoparticles, the NADPH oxidase produces more superoxide ions, hence induces higher oxidative stress. This hyper-activation and the subsequent increase in ROS production by TiO2 NPs could participate to the oxidative stress development. PMID:26714308

  18. Inhibition of superoxide anion production by extracellular acidification in neutrophils.

    PubMed

    Murata, Naoya; Mogi, Chihiro; Tobo, Masayuki; Nakakura, Takashi; Sato, Koichi; Tomura, Hideaki; Okajima, Fumikazu

    2009-01-01

    Extracellular acidification inhibited formyl-Met-Leu-Phe- or C5a-induced superoxide anion (O(2)(-)) production in differentiated HL-60 neutrophil-like cells and human neutrophils. A cAMP-increasing agonist, prostaglandin E(1), also inhibited the formyl peptide-induced O(2)(-) production. The inhibitory action on the O(2)(-) production by extracellular acidic pH was associated with cAMP accumulation and partly attenuated by H89, a protein kinase A inhibitor. A significant amount of mRNAs for T-cell death-associated gene 8 (TDAG8) and other proton-sensing ovarian cancer G-protein-coupled receptor 1 (OGR1)-family receptors is expressed in these cells. These results suggest that cAMP/protein kinase A, possibly through proton-sensing G-protein-coupled receptors, may be involved in extracellular acidic pH-induced inhibition of O(2)(-) production. PMID:19539899

  19. Methylglyoxal as a scavenger for superoxide anion-radical.

    PubMed

    Shumaev, K B; Lankin, V Z; Konovalova, G G; Grechnikova, M A; Tikhaze, A K

    2016-07-01

    Methylglyoxal at a concentration of 5 mM caused a significant inhibition of superoxide anion radical (O2 (·-)) comparable to the effect of Tirone. In the process of O2 (·-) generation in the system of egg phosphatidylcholine liposome peroxidation induced by the azo-initiator AIBN, a marked inhibition of chemiluminescence in the presence of 100 mM methylglyoxal was found. At the same time, methylglyoxal did not inhibit free radical peroxidation of low-density lipoprotein particles, which indicates the absence of interaction with methylglyoxal alkoxyl and peroxyl polyenoic lipid radicals. These findings deepen information about the role of methylglyoxal in the regulation of free radical processes. PMID:27599518

  20. [Role of superoxide anion radicals in the bacterial corrosion of metals].

    PubMed

    Belov, D V; Kalinina, A A; Sokolova, T N; Smirnov, V F; Chelnokova, M V; Kartashov, V R

    2012-01-01

    It was found that seven strains of bacteria can cause corrosion damage to aluminum, its alloys, and zinc. With respect to the studied metals, the most active bacteria were Proteus vulgaris 1212 and Pseudomonas aeruginosa 969. Superoxide anion radicals were demonstrated to play a role in the initiation of corrosive damage to aluminum and zinc, while bacterial exometabolites participate in the later stages of this process. PMID:22834301

  1. Intercellular HOCl-mediated Apoptosis Induction in Malignant Cells: Interplay Between NOX1-Dependent Superoxide Anion Generation and DUOX-related HOCl-generating Peroxidase Activity.

    PubMed

    Pottgiesser, Stefanie J; Heinzelmann, Sonja; Bauer, Georg

    2015-11-01

    Intercellular apoptosis-inducing HOCl signaling is discussed as a control step during oncogenesis. It is defined as a sophisticated interplay between transformed target cells and non-transformed or transformed effector cells. In this study, transformed target cells were seeded as clumps of high local cell density, but low total cell number. They were surrounded by large numbers of effector cells, seeded at low local density. This spatially defined experimental arrangement allowed study of the impact of siRNA-mediated knockdown of NADPH oxidase 1 (NOX1) or dual oxidase 1 (DUOX1) on intercellular HOCl signaling. Our data show that the target function of transformed cells is defined as expression of NOX1 and subsequent extracellular superoxide anion generation. The NOX domain of DUOX1 does not contribute to the target function. The peroxidase domain of DUOX1 is released from transforming growth factor β1-treated non-transformed and transformed cells and acts in trans as HOCl-synthesizing peroxidase. These findings clarify the biochemical source of HOCl during HOCl-mediated signaling. PMID:26504017

  2. Theoretical study of the correlation between superoxide anion consumption and firefly luciferin chemiluminescence

    NASA Astrophysics Data System (ADS)

    Pinto da Silva, Luís; Esteves da Silva, Joaquim C. G.

    2013-07-01

    This is the first theoretical study of the relationship between superoxide anion and firefly chemiluminescence, in DMSO. Electron transfer reactions between luciferin dianionic/carbanionic/radical species and superoxide were studied in order see if an alternative explanation existed for the consumption of the latter species, without correlating it with a role on luciferin chemiluminescence. Despite the finding that luciferin may indeed inhibit the formation of the superoxide anion, no theoretical evidence was found that showed that this molecule is consumed in a non-chemiluminescence reaction. Therefore, it is concluded that the superoxide anion is indeed related to the firefly luciferin chemiluminescence.

  3. Pyrrolidine dithiocarbamate inhibits superoxide anion-induced pain and inflammation in the paw skin and spinal cord by targeting NF-κB and oxidative stress.

    PubMed

    Pinho-Ribeiro, Felipe A; Fattori, Victor; Zarpelon, Ana C; Borghi, Sergio M; Staurengo-Ferrari, Larissa; Carvalho, Thacyana T; Alves-Filho, Jose C; Cunha, Fernando Q; Cunha, Thiago M; Casagrande, Rubia; Verri, Waldiceu A

    2016-06-01

    We evaluated the effect of pyrrolidine dithiocarbamate (PDTC) in superoxide anion-induced inflammatory pain. Male Swiss mice were treated with PDTC and stimulated with an intraplantar or intraperitoneal injection of potassium superoxide, a superoxide anion donor. Subcutaneous PDTC treatment attenuated mechanical hyperalgesia, thermal hyperalgesia, paw oedema and leukocyte recruitment (neutrophils and macrophages). Intraplantar injection of superoxide anion activated NF-κB and increased cytokine production (IL-1β, TNF-α and IL-10) and oxidative stress (nitrite and lipid peroxidation levels) at the primary inflammatory foci and in the spinal cord (L4-L6). PDTC treatment inhibited superoxide anion-induced NF-κB activation, cytokine production and oxidative stress in the paw and spinal cord. Furthermore, intrathecal administration of PDTC successfully inhibited superoxide anion-induced mechanical hyperalgesia, thermal hyperalgesia and inflammatory response in peripheral foci (paw). These results suggest that peripheral stimulus with superoxide anion activates the local and spinal cord oxidative- and NF-κB-dependent inflammatory nociceptive mechanisms. PDTC targets these events, therefore, inhibiting superoxide anion-induced inflammatory pain in mice. PMID:27160222

  4. Inhibitory effects of cardols and related compounds on superoxide anion generation by xanthine oxidase.

    PubMed

    Masuoka, Noriyoshi; Nihei, Ken-ichi; Maeta, Ayami; Yamagiwa, Yoshiro; Kubo, Isao

    2015-01-01

    5-Pentadecatrienylresorcinol, isolated from cashew nuts and commonly known as cardol (C₁₅:₃), prevented the generation of superoxide radicals catalysed by xanthine oxidase without the inhibition of uric acid formation. The inhibition kinetics did not follow the Michelis-Menten equation, but instead followed the Hill equation. Cardol (C₁₀:₀) also inhibited superoxide anion generation, but resorcinol and cardol (C₅:₀) did not inhibit superoxide anion generation. The related compounds 3,5-dihydroxyphenyl alkanoates and alkyl 2,4-dihydroxybenzoates, had more than a C9 chain, cooperatively inhibited but alkyl 3,5-dihydroxybenzoates, regardless of their alkyl chain length, did not inhibit the superoxide anion generation. These results suggested that specific inhibitors for superoxide anion generation catalysed by xanthine oxidase consisted of an electron-rich resorcinol group and an alkyl chain having longer than C9 chain. PMID:25053055

  5. Nitric oxide and superoxide anion differentially activate poly(ADP-ribose) polymerase-1 and Bax to induce nuclear translocation of apoptosis-inducing factor and mitochondrial release of cytochrome c after spinal cord injury.

    PubMed

    Wu, Kay L H; Hsu, Chin; Chan, Julie Y H

    2009-07-01

    We reported previously that complete spinal cord transection (SCT) results in depression of mitochondrial respiratory chain enzyme activity that triggers apoptosis via sequential activations of apoptosis-inducing factor (AIF)- and caspase-dependent cascades in the injured spinal cord. This study tested the hypothesis that nitric oxide (NO) and superoxide anion (O(2)(.-)) serve as the interposing signals between SCT and impaired mitochondrial respiratory functions. Adult Sprague-Dawley rats manifested a significant increase in NO or O(2)(.-) level in the injured spinal cord during the first 3 days after SCT. The augmented O(2)(.-) production, along with concomitant reduction in mitochondrial respiratory chain enzyme activity or ATP level, nuclear translocation of AIF, cytosolic release of cytochrome c, and DNA fragmentation were reversed by osmotic minipump infusion of a NO trapping agent, carboxy-PTIO, or a superoxide dismutase mimetic, tempol, into the epicenter of the transected spinal cord. Intriguingly, carboxy-PTIO significantly suppressed upregulation of poly(ADP-ribose) polymerase-1 (PARP-1) in the nucleus, attenuated nuclear translocation of AIF, inhibited mitochondrial translocation of Bax and antagonized mitochondrial release of cytochrome c; whereas tempol only inhibited the later two cellular events after SCT. We conclude that overproduction of NO and O(2)(.-) in the injured spinal cord promulgates mitochondrial dysfunction and triggers AIF- and caspase-dependent apoptotic signaling cascades via differential upregulation of nuclear PARP-1 and mitochondrial translocation of Bax. PMID:19473058

  6. Chemiluminescence Imaging of Superoxide Anion Detects Beta-Cell Function and Mass

    PubMed Central

    Bronsart, Laura L.; Stokes, Christian; Contag, Christopher H.

    2016-01-01

    Superoxide anion is produced during normal cellular respiration and plays key roles in cellular physiology with its dysregulation being associated with a variety of diseases. Superoxide anion is a short-lived molecule and, therefore, its homeostatic regulation and role in biology and disease requires dynamic quantification with fine temporal resolution. Here we validated coelenterazine as a reporter of intracellular superoxide anion concentration and used it as a dynamic measure both in vitro and in vivo. Chemiluminescence was dependent upon superoxide anion levels, including those produced during cellular respiration, and concentrations varied both kinetically and temporally in response to physiologically relevant fluctuations in glucose levels. In vivo imaging with coelenterazine revealed that beta cells of the pancreas have increased levels of superoxide anion, which acted as a measure of beta-cell function and mass and could predict the susceptibility of mice to diabetes mellitus. Glucose response and regulation are key elements of cellular physiology and organismal biology, and superoxide anion appears to play a fundamental and dynamic role in both of these processes. PMID:26752052

  7. Exhaled 8-isoprostane in sarcoidosis: relation to superoxide anion production by bronchoalveolar lavage cells

    PubMed Central

    Kurmanowska, Zofia; Antczak, Adam; Marczak, Jerzy; Ciebiada, Maciej; Górski, Paweł

    2010-01-01

    Objective This study was designed to examine the mutual relationship between 8-isoprostane in exhaled breath condensate (EBC) and superoxide anion generation by bronchoalveolar lavage fluid (BALF) cells in patients with sarcoidosis. Design About 29 patients with sarcoidosis, 34 healthy never smokers (control group for EBC) and 15 healthy never smokers (control group for BAL) were examined. EBC was collected directly before bronchoscopy. 8-Isoprostane was measured by ELISA, and superoxide anion by colorimetry. Results Exhaled breath condensate 8-isoprostane is increased in sarcoidosis (median, 25–75 percentile): 2.50; 2.50–3.90 versus 6.20; 2.50–16.95 pg/ml, p ≤ 0.05). Spontaneous superoxide anion release from BALF cells was significantly elevated only in patients with a high percentage of lymphocytes in BALF (6.42 ± 1.24 vs. 23.52 ± 4.30 nmol/106 cells, p ≤ 0.01). There were no correlations between 8-isoprostane and spontaneous or stimulated superoxide anion release. Conclusions We confirmed higher concentrations of EBC 8-isoprostane in sarcoidosis and higher spontaneous release of superoxide anion from BALF cells in patients with sarcoidosis. The increase of EBC 8-isoprostane is not directly related to superoxide anion released from BALF cells. PMID:20521080

  8. Synthesis, superoxide dismutase, nuclease, and anticancer activities of copper(II) complexes incorporating bis(2-picolyl)amine with different counter anions

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mohamed M.; Ramadan, Abdel-Motaleb M.; Mersal, Gaber A. M.; El-Shazly, Samir A.

    2011-07-01

    Interaction of the tridentate ligand bis(2-picolyl)amine L with copper(II) salts gave a series of copper(II) complexes with the formula types: [ LCu(X) 2] (X = Cl -1, = Br -2), [( LCu (H 2O)(μ-SO 4)( LCu(H 2O)]SO 43, [ LCu(OAc)](OAc )H 2O 4, [ LCu(H 2O) 2](Y) 2 (Y = NO3-5, = ClO4-6). Their structures and properties were characterized by elemental analysis, thermal analysis (TGA), IR, UV-vis and ESR spectroscopy, electrochemical measurements including cyclic voltammetry and electrical molar conductivity, and magnetic moment measurements. A square pyramidal geometry is proposed for the halogeno complexes 1 and 2 in monomeric structures. For sulfate complex, the sulfate group bridged two copper(II) ions of the two [N 3O] donor units to give the dimeric complex molecule 3 in square pyramidal environment around the copper(II) ions. In the case of complexes 4- 6, square planar stereochemistries in monomeric structures are suggested. The SOD biomimetic catalytic activity of the obtained complexes was assessed for their ability to inhibit the reduction of nitroblue tetrazolium (NBT). The catalytic efficiency of O2- scavenging by complexes depends on the nature of the particular acidic anion radical incorporated in the complex molecule and follows the order: NO3- > ClO4- > Br - ⩾ Cl - > SO4- > AcO -. A probable mechanistic implications for the catalytic dismutation of O2- by copper(II) complexes are proposed. Furthermore, complex 1 exhibits significant hydrolytic cleavage of the genomic DNA in the absence of any external additives. In addition, the in vitro study of cytotoxicity of complex 1 on colon cancer cell line (Caco-2) indicates that the complex has the potential to act as an effective anticancer drug with IC 50 value of 156 ± 0.35 μM.

  9. IFN-beta-induced reduction of superoxide anion generation by macrophages.

    PubMed Central

    Boraschi, D; Ghezzi, P; Salmona, M; Tagliabue, A

    1982-01-01

    Resident mouse peritoneal macrophages (M phi) produced significant amounts of superoxide anion (O2-) in response to phagocytic stimuli. When M phi were exposed in vitro for 20 hr to fibroblast interferon (IFN-beta), their capacity to release O2- was significantly reduced, such reduction being more evident with increasing IFN-beta concentrations. In contrast, O2- production by M phi exposed for 20 hr to the lymphokine macrophage activating factor (MAF) or treated with either MAF or IFN-beta for 4 hr was not significantly different from that of control cells. This pattern of activity closely followed that of M phi-mediated suppression of lymphocyte proliferation, which was dramatically reduced by 20 hr exposure of M phi to IFN-beta, but unchanged by treatment with MAF. No correlation was however found between superoxide anion generation and enhancement of tumoricidal capacity in IFN-beta-treated M phi. We thus concluded that O2- does not play a relevant role in IFN-beta-induced M phi cytolysis, whereas the reduction of O2- production could be of major importance in the decrease of M phi suppression induced by IFN-beta. PMID:6175565

  10. Cell metabolic changes of porphyrins and superoxide anions by anthracene and benzo(a)pyrene.

    PubMed

    Uribe-Hernández, Raúl; Pérez-Zapata, Aura J; Vega-Barrita, María L; Ramón-Gallegos, Eva; Amezcua-Allieri, Myriam A

    2008-09-01

    The aim of this work was to evaluate the induction of protoporphyrins IX (PpIX) activity and superoxide anions (SO) in human leukocytes exposed to anthracene (ANT) and benzo(a)pyrene (B(a)P). The leukocyte LC(50)s for both hydrocarbons and the PpIX accumulation and SO overproduction were measured. The LC(50)s were 0.35 and 3.23μM for ANT and B(a)P, respectively. A linear relationship (r=0.97, p<0.01) between PpIX and ANT concentration was obtained. The induced accumulation of PpIX was proportional (r=0.63, p<0.01) to B(a)P concentration. SO overproduction showed a linear relationship (r=0.83, p<0.05) with ANT concentrations. The linear regression analysis of the effect of B(a)P on the superoxide anion overproduction showed a good coefficient (r=0.97, p<0.01), showed that ANT and B(a)P exposure induces PpIX accumulation, probably by disruption of the haem biosynthesis. ANT and B(a)P induce SO overproduction, perhaps through a process of redox cycling. PMID:21791370

  11. Mechanism of Action of Sulforaphane as a Superoxide Radical Anion and Hydrogen Peroxide Scavenger by Double Hydrogen Transfer: A Model for Iron Superoxide Dismutase.

    PubMed

    Prasad, Ajit Kumar; Mishra, P C

    2015-06-25

    The mechanism of action of sulforaphane as a scavenger of superoxide radical anion (O2(•-)) and hydrogen peroxide (H2O2) was investigated using density functional theory (DFT) in both gas phase and aqueous media. Iron superoxide dismutase (Fe-SOD) involved in scavenging superoxide radical anion from biological media was modeled by a complex consisting of the ferric ion (Fe(3+)) attached to three histidine rings. Reactions related to scavenging of superoxide radical anion by sulforaphane were studied using DFT in the presence and absence of Fe-SOD represented by this model in both gas phase and aqueous media. The scavenging action of sulforaphane toward both superoxide radical anion and hydrogen peroxide was found to involve the unusual mechanism of double hydrogen transfer. It was found that sulforaphane alone, without Fe-SOD, cannot scavenge superoxide radical anion in gas phase or aqueous media efficiently as the corresponding reaction barriers are very high. However, in the presence of Fe-SOD represented by the above-mentioned model, the scavenging reactions become barrierless, and so sulforaphane scavenges superoxide radical anion by converting it to hydrogen peroxide efficiently. Further, sulforaphane was found to scavenge hydrogen peroxide also very efficiently by converting it into water. Thus, the mechanism of action of sulforaphane as an excellent antioxidant has been unravelled. PMID:26020652

  12. Carotenoids can act as antioxidants by oxidizing the superoxide radical anion.

    PubMed

    Galano, Annia; Vargas, Rubicelia; Martínez, Ana

    2010-01-01

    The electron transfer (ET) reaction between carotenoids and the superoxide radical anion is found to be not only a viable process but also a very unique one. The nature of the O(2) (-) inverts the direction of the transfer, with respect to ET involving other ROS: the O(2) (-) becomes the electron donor and carotenoids (CAR) the electron acceptor. Therefore the "antioxidant" activity of CAR when reacting with O(2) (-) lies in their capacity to prevent the formation of oxidant ROS. This peculiar charge transfer is energetically feasible in non-polar environments but not in polar media. In addition the relative reactivity of CAR towards O(2) (-) is drastically different from their reactivity to other ROS. Asthaxanthin (ASTA) is predicted to be a better O(2) (-) quencher than LYC and the other CAR. The CAR + O(2) (-) reactions were found to be diffusion controlled. The agreement with available experimental data supports the density functional theory results from the present work. PMID:20024459

  13. Modifications in nitric oxide and superoxide anion metabolism induced by fructose overload in rat heart are prevented by (-)-epicatechin.

    PubMed

    Calabró, Valeria; Piotrkowski, Barbara; Fischerman, Laura; Vazquez Prieto, Marcela A; Galleano, Monica; Fraga, Cesar G

    2016-04-20

    Fructose overload promotes functional and metabolic derangements in humans and in animal experimental models. Evidence suggests that dietary flavonoids have the ability to prevent/attenuate the development of metabolic diseases. In this work we investigated the effects of (-)-epicatechin on the modifications induced by fructose overload in the rat heart in terms of nitric oxide and superoxide metabolism. Male Sprague Dawley rats received 10% (w/v) fructose in the drinking water for 8 weeks, with or without (-)-epicatechin (20 mg per kg body weight per day) in the rat chow diet. These conditions of fructose overload did not lead to overt manifestations of heart hypertrophy or tissue remodeling. However, biochemical and molecular changes were observed and could represent the onset of functional alterations. (-)-Epicatechin prevented a compromised NO bioavailability and the development of oxidative stress produced by fructose overload essentially acting on superoxide anion metabolism. In this line, the increase in superoxide anion production, the overexpression of NOX2 subunit p47phox and of NOX4, the decrease in superoxide dismutase activity, and the higher oxidized/reduced glutathione ratio installed by fructose overload were absent in the rats receiving (-)-epicatechin. These results support the hypothesis that diets rich in (-)-epicatechin could prevent the onset and progression of heart dysfunctions associated with metabolic alterations. PMID:26960258

  14. Some aspects of the chemistry and biology of the superoxide radical anion

    NASA Astrophysics Data System (ADS)

    Faraggi, M.; Houée-Levin, C.

    1999-01-01

    There is increasing evidence that the superoxide radical anion is produced in many biological reactions and especially in respiration. Also, there are many indications that the participation of this radical in certain biological reactions can ultimately have deleterious effects on the health and well being of certain individuals. Based on pulse radiolytic method of generating superoxide its physical and chemical properties are described. This review gives the present state of research on the formation and reactivity of the superoxide radical anion in biological systems, the physiological function of superoxide dismutase, as well as several enzymatic reactions for which the participation of the radical has not yet been conclusively established. Les signes de la production du radical anion superoxyde lors de nombreuses réactions biologiques et surtout lors de la respiration sont maintenant bien établis. De nombreux résultats montrent que la participation de ce radical dans certaines réactions biologiques peut conduire a des effets délétères préjudiciables à la santé. Bases sur la génération du radical superoxyde par la méthode de radiolyse pulsée, ses propriétés physiques et chimiques seront analysées. La présentation inclura l'état actuel de la recherche sur la formation et la réactivité de l'anion superoxyde dans les systèmes biologiques, la fonction physiologiques de la superoxyde dismutase aussi bien que celles de plusieurs autres réactions enzymatiques, pour lesquelles la participation de ce radical n'a pas encore été clairement établie.

  15. Nitric Oxide and Superoxide Anion Balance in Rats Exposed to Chronic and Long Term Intermittent Hypoxia

    PubMed Central

    Siques, Patricia; López de Pablo, Ángel Luis; Brito, Julio; Arribas, Silvia M.; Naveas, Nelson; González, M. Carmen; León-Velarde, Fabiola; López, M. Rosario

    2014-01-01

    Work at high altitude in shifts exposes humans to a new form of chronic intermittent hypoxia, with still unknown health consequences. We have established a rat model resembling this situation, which develops a milder form of right ventricular hypertrophy and pulmonary artery remodelling compared to continuous chronic exposure. We aimed to compare the alterations in pulmonary artery nitric oxide (NO) availability induced by these forms of hypoxia and the mechanisms implicated. Rats were exposed for 46 days to normoxia or hypobaric hypoxia, either continuous (CH) or intermittent (2 day shifts, CIH2x2), and assessed: NO and superoxide anion availability (fluorescent indicators and confocal microscopy); expression of phosphorylated endothelial NO synthase (eNOS), NADPH-oxidase (p22phox), and 3-nitrotyrosine (western blotting); and NADPH-oxidase location (immunohistochemistry). Compared to normoxia, (1) NO availability was reduced and superoxide anion was increased in both hypoxic groups, with a larger effect in CH, (2) eNOS expression was only reduced in CH, (3) NADPH-oxidase was similarly increased in both hypoxic groups, and (4) 3-nitrotyrosine was increased to a larger extent in CH. In conclusion, intermittent hypoxia reduces NO availability through superoxide anion destruction, without reducing its synthesis, while continuous hypoxia affects both, producing larger nitrosative damage which could be related to the more severe cardiovascular alterations. PMID:24719876

  16. Effects of Alchornea cordifolia on elastase and superoxide anion produced by human neutrophils.

    PubMed

    Kouakou-Siransy, Gisèle; Sahpaz, Sevser; Nguessan, G Irié; Datté, Jacques Yao; Brou, Jérome Kablan; Gressier, Bernard; Bailleul, François

    2010-02-01

    The ability of Alchornea cordifolia (Schum. and Thonn.) Müll. Arg. (Euphorbiaceae) leaves to inhibit human neutrophil elastase (HNE) and superoxide anion (O(2)(*-)) activities was evaluated on aqueous and ethyl acetate extracts as they allow for a targeted extraction of polyphenols. The direct effect of A. cordifolia extracts on HNE and O(2)(*-) was assessed in an acellular system. Results showed that extracts scavenge HNE and O(2)(*-) in a dose-dependent manner. Better activity was exhibited by the ethyl acetate extract with lower IC(50) (2.2 and 4. 1 mg/L for HNE and O(2)(*-), respectively) than for the aqueous extract. Cellular systems including isolated human polymorphonuclear neutrophils (PMN) were investigated to assess the effect of extracts on PMN metabolism. PMN were stimulated with 4beta-phorbol-12-myristate-13-acetate (PMA), calcium ionophore (CaI), or N-formyl-methionyl-leucine-phenylalanine (fMLP), each stimulant having its own stimulation pathway. From the IC(50) obtained, it can be concluded that A. cordifolia reduces HNE and O(2)(*-) liberation. Furthermore it was demonstrated that A. cordifolia extracts have no cytotoxic activity on PMN by measuring release of the cytosolic enzyme lactate dehydrogenase. As the ethyl acetate extract offers a higher rate of total phenols than the aqueous extract as well as better scavenging activity, it can be supposed that polyphenols, which are well known for their potent antioxidant and antielastase activity, are implicated in the activity of the plant. Phenolic substances such as quercetin, myricetin-3-glucopyranoside, myricetin-3-rhamnopyranoside, and proanthocyanidin A2 were identified in the ethyl acetate extract. In conclusion, the study provides proof of ethnomedical claims and partly explains the mechanisms of the anti-inflammatory action of A. cordifolia leaves. PMID:20645828

  17. Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases

    PubMed Central

    Nauseef, William M.

    2013-01-01

    BACKGROUND The recent recognition that isoforms of the cellular NADPH-dependent oxidases, collectively known as the NOX protein family, participate in a wide range of physiologic and pathophysiologic processes in both the animal and plant kingdoms has stimulated interest in the identification, localization, and quantitation of their products in biological settings. Although several tools for reassuring oxidants released extracellularly are available, the specificity and selectivity of the methods for reliable analysis of intracellular oxidants have not matched the enthusiasm for studying NOX proteins. SCOPE OF REVIEW Focusing exclusively on superoxide anion and hydrogen peroxide produced by NOX proteins, this review describes the ideal probe for analysis of O2· and H2O2 generated extracellularly and intracellularly by NOX proteins. An overview of the components, organization, and topology of NOX proteins provides a rationale for applying specific probes for use and a context in which to interpret results and thereby construct plausible models linking NOX-derived oxidants to biological responses. The merits and shortcomings of methods currently in use to assess NOX activity are highlighted, and those assays that provide quantitation of superoxide or H2O2 are contrasted with those intended to examine spatial and temporal aspects of NOX activity. MAJOR CONCLUSIONS Although interest in measuring the extracellular and intracellular products of the NOX protein family is great, robust analytical probes are limited. Several reliable methods for measurement of extracellular O2· and H2O2 by NOX proteins are available. Chemiluminescent probes for both extracellular and intracellular O2· and H2O2 detection have shortcomings that limit their use Options for quantitation of intracellular O2· and H2O2 are very limited However, non-redox sensitive probes and genetically encoded reporters promise to provide spatial and temporal detection of O2· and H2O2 GENERAL SIGNIFICANCE

  18. Enzyme release and superoxide anion production by human alveolar macrophages stimulated with immunoglobulin E.

    PubMed Central

    Joseph, M; Tonnel, A B; Capron, A; Voisin, C

    1980-01-01

    Human alveolar macrophages specifically released lysosomal beta-glucuronidase and neutral proteases when successively incubated with IgE, and then, for 30 min, with anti-IgE. Superoxide anion O2- generation was obtained when anti-IgE-opsonized zymosan was added to IgE-incubated cells. Macrophages from smokers excreted twice as much enzymes and superoxide as cells from non-smokers. It was possible to induce the specific release of beta-glucuronidase with normal alveolar macrophages successively incubated with the serum of patients allergic to house dust or to grass pollen and then with the specific allergen. This characteristic opens the field to a direct test for allergic sera by analogy with the allergen-induced degranulation test of sensitized basophils. PMID:6254706

  19. Optimization of Pyrogallol Autoxidation Conditions and Its Application in Evaluation of Superoxide Anion Radical Scavenging Capacity for Four Antioxidants.

    PubMed

    Zhang, Qing-An; Wang, Xi; Song, Yun; Fan, Xue-Hui; García Martín, Juan Francisco

    2016-03-01

    In this study, some factors influencing pyrogallol autoxidation, including EDTA, temperature, and solvent, were systematically investigated to improve its feasibility in the evaluation of antioxidants for the first time. Subsequently, the improved pyrogallol autoxidation conditions were used to assess the superoxide anion scavenging activity (SASA) of four commonly used antioxidants, namely, ascorbic acid, rutin, catechin, and gallic acid, by both the reaction rate method and the terminated method. The results indicate that pyrogallol autoxidation could be successfully used to determine the antioxidant capacity of ascorbic acid and rutin, which correspondingly suggests the feasibility of its use to measure the superoxide anion radical scavenging activity of polysaccharides and flavonols, because these compounds have a similar basic structural unit as ascorbic acid and rutin, respectively. Unexpectedly, however, pyrogallol autoxidation cannot be used to evaluate the SASA of catechin and gallic acid, although their good antioxidant capacity was confirmed by the 1,1-diphenyl-2-picrylhydrazyl assay. Together, these results suggest the importance of noting the conditions used for pyrogallol autoxidation when assessing the SASA of targeted compounds. PMID:26997318

  20. Inhalation of ozone produces a decrease in superoxide anion radical production in mouse alveolar macrophages

    SciTech Connect

    Ryer-Powder, J.E.; Amoruso, M.A.; Czerniecki, B.; Witz, G.; Goldstein, B.D.

    1988-11-01

    The potentiation of fatal bacterial pneumonia in mice by prior inhalation of ozone occurs at levels of this oxidant pollutant that are frequently present in ambient air. A likely mechanism for this effect is an ozone-induced inhibition in the ability of pulmonary alveolar macrophages (PAM) to produce superoxide anion radical (O2-) demonstrated in the present study. A 25% decrease in PAM O2- production, as measured by nitroblue tetrazolium reduction, occurred after exposure of Swiss-Webster mice to 0.11 ppm ozone for 3 h (p less than 0.05). After 1 ppm there was almost complete inhibition of O2- release. In contrast, the rat, which is highly resistant to the potentiation of bacterial infections by ozone, was less sensitive to inhibition of PAM O2- production, as measured by cytochrome c reduction (mouse IC50, 0.41 ppm; rat IC50, 3.0 ppm ozone for 3 h). The observed decrement in mouse PAM O2- production was not associated with any change in phagocytic ability, as measured by both latex bead ingestion and 51Cr-labeled sheep red blood cell ingestion. This decrease in O2- production in the presence of normal phagocytic activity is analogous to certain of the findings in the neutrophils of children with chronic granulomatous disease. A decrease in rat PAM membrane cytochrome b558 levels was observed after ozone exposure of 3 ppm for 3 h, preliminarily suggesting that the mechanism by which ozone interferes with PAM O2- production may be through interaction with this heme-containing electron carrier.

  1. Irradiation of titanium dioxide generates both singlet oxygen and superoxide anion.

    PubMed

    Konaka, R; Kasahara, E; Dunlap, W C; Yamamoto, Y; Chien, K C; Inoue, M

    1999-08-01

    Although photoexcited TiO2 has been known to initiate various chemical reactions, such as the generation of reactive oxygen species, precise mechanism and chemical nature of the generated species remain to be elucidated. The present work demonstrates the generation of singlet oxygen by irradiated TiO2 in ethanol as measured by ESR spectroscopy using 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TMP) as a 1O2-sensitive trapping agent. Under identical conditions, the superoxide ion was also detected by spin trapping agent 5,5-dimethyl-pyrroline-N-oxide (DMPO). Kinetic analysis in the presence of both 4-oxo-TMP and DMPO revealed that singlet oxygen is produced directly at the irradiated TiO2 surface but not by a successive reaction involving superoxide anion. The basis for this view is the fact that DMPO added in the mixture increased the signals responsible for 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (4-oxo-TEMPO), a reaction product of 4-oxo-TMP and 1O2. The detailed mechanism for the generation of 1O2 and superoxide ion by irradiated TiO2 and reactions between these species and DMPO are discussed. PMID:10468201

  2. Pulmonary inflammation by ambient air particles is mediated by superoxide anion.

    PubMed

    Rhoden, Claudia Ramos; Ghelfi, Elisa; González-Flecha, Beatriz

    2008-01-01

    Lung inflammation is a key response to increased levels of particulate air pollution (PM); however, the cellular mechanisms leading to this response remain poorly understood. We have previously shown that oxidants are critical mediators of the inflammatory response elicited by inhalation of ambient air particles. Here we tested the possible role of a specific oxidant, superoxide anion, by using the membrane-permeable analog of superoxide dismutase, Mn(III) tetrakis(4-benzoic acid)porphyrin chloride (MnTBAP). Adult Sprague-Dawley rats were instilled with either urban air particles (UAP) or saline. MnTBAP-treated rats received 10 mg/kg (ip) MnTBAP 2 h prior to exposure to UAP. Recruitment of inflammatory cells into bronchoalveolar lavage was evaluated 4 h after instillation. Rats exposed to UAP showed significant increases in the total cell number (8.9 +/- 0.6 x 10(6); sham: 5.1 +/- 0.6 x 10(6), p < .02), the numbers of polymorphonuclear leukocytes (26 +/- 4%; sham: 6 +/- 1%, p < .0001), protein levels (1.2 +/- 0.5 mg/ml, sham: 0.4 +/- 0.1 mg/ml, p < .001), and a trend of increase in myeloperoxidase levels (5 +/- 1; sham: 2 +/- 1 mU/ml) in bronchoalveolar lavage (BAL). Pretreatment with MnTBAP at a dose that prevented UAP-induced increases in oxidants effectively prevented increase in BAL cells (2.7 +/- 0.6 x 10(6), p < .0001 vs. UAP), PMN influx into the lungs (4 +/- 3%, p < .0001 vs. UAP), and increase in myeloperoxidase (2 +/- 1 mU/ml) and protein levels in BAL (0.1 +/- 0.1 mg/ml). These data indicate that superoxide anion is a critical mediator of the inflammatory response elicited by PM deposition in the lung. PMID:18236216

  3. [Acidity and interaction with superoxide anion radical of echinochrome and its structural analogs].

    PubMed

    Lebedev, A V; Ivanova, M V; Krasnovid, N I; Kol'tsova, E A

    1999-01-01

    Weak acid properties, autoxidation and interaction of natural polyhydroxy1,4-naphthoquinones (PHNQ) with superoxide anion-radical (O2-.) were studied by methods of potentiometric titration, polarography, and UV- and visible spectrophotometry. Sea urchin pigments 3-acetyl-2,6,7-trihydroxynaphthazarin (spinochrome C), 2,3,6,7-trihydroxynaphthazarin (spinochrome D), 2,3,6,7-trihydroxynaphthazarin (spinochrome E), 6-ethyl-2,3,7-trihydroxynaphthazarin (echinochrome A), synthetic 2,3-dihydroxy-6,7-dimethylnaphthazarin and 6-ethyl-2,3,7-trimethoxynaphthazarin (trimethoxyechinochrome A) were tested. Determined dissociation constants (pKi) were in the range of pH 5.3-8.5 (40% ethanol solvent). PHNQ autoxidation observrd in basic pH were inhibited by superoxide dismutase. Xanthine and xanthine oxidase was applied for O2-. generation. Interaction with O2-. led to sufficient time-dependent changing in spectra of echinochrome A, spinochromes D and E. There was weak O2-. influence on spinochrome C spectrum and no changing in trimethoxyechinochrome A spectrum. The spectra, that were transforming during time of reaction, contained pronounced isobestic point. It means formation the single reaction product. We proposed formation of 1,2,3,4-tetraketones from 2,3,5,8-tetrahydroxy-1,4-naphthoquinones (echinochrome A, spinochromes D and E) due to O2-.-induced oxidation of their OH-groups in 2 and 3 positions. Reaction constants were determined by competition method using nitro blue tetrazolium (NBT). The reaction constants were about 10(4)-10(5) M-1s-1. They were decreased in the order: echinochrome A > spinochrome D > spinochrome C > NBT > trimethoxyechinochrome A. Thus, we concluded that some of the natural PGNQ, containing hydroxyl groups in 2nd and 3rd positions, could operate as powerful superoxide anion-radical scavengers. PMID:10378300

  4. Superoxide anion radical generation during the oxidation of various amines by diamine oxidase.

    PubMed

    Silva, I J; Azevedo, M S; Manso, C F

    1996-03-01

    Diamine oxidase (DAO) or histaminase is an enzyme which deaminates histamine and several aliphatic amines to their corresponding aldehydes. Hydrogen peroxide and ammonia are side products of this reaction. The purpose of the present work was to evaluate if determination of produced hydrogen peroxide reflects DAO activity or if intermediate formation of the superoxide radical could be a reason for lack of correspondence between oxygen uptake and hydrogen peroxide production at different pH. Superoxide radical formation was determined by cytochrome c reduction in the presence and absence of superoxide dismutase (SOD). Oxygen uptake was measured with an oxygen electrode and hydrogen peroxide production by a spectrophotometric method. At pH 6.6 there was no superoxide production, but at pH 7.4 there was some, and it increased markedly at pH 9.5. Oxygen uptake also increased with increasing pH, especially with histamine as substrate. These results lead us to suggest that the mechanism of action of DAO involves the intermediate generation of superoxide radicals. PMID:8728118

  5. Arsenic alters monocyte superoxide anion and nitric oxide production in environmentally exposed children

    SciTech Connect

    Luna, Ana L.; Acosta-Saavedra, Leonor C.; Lopez-Carrillo, Lizbeth; Conde, Patricia; Vera, Eunice; De Vizcaya-Ruiz, Andrea; Bastida, Mariana; Cebrian, Mariano E.; Calderon-Aranda, Emma S.

    2010-06-01

    Arsenic (As) exposure has been associated with alterations in the immune system, studies in experimental models and adults have shown that these effects involve macrophage function; however, limited information is available on what type of effects could be induced in children. The aim of this study was to evaluate effects of As exposure, through the association of inorganic As (iAs) and its metabolites [monomethylated arsenic (MMA) and dimethylated arsenic (DMA)] with basal levels of nitric oxide (NO{sup {center_dot}-}) and superoxide anion (O{sub 2}{sup {center_dot}-}), in peripheral blood mononuclear cells (PBMC) and monocytes, and NO{sup {center_dot}-} and O{sub 2}{sup {center_dot}-} produced by activated monocytes. Hence, a cross-sectional study was conducted in 87 children (6-10 years old) who had been environmentally exposed to As through drinking water. Levels of urinary As species (iAs, MMA and DMA) were determined by hydride generation atomic absorption spectrometry, total As (tAs) represents the sum of iAs and its species; tAs urine levels ranged from 12.3 to 1411 {mu}g/g creatinine. Using multiple linear regression models, iAs presented a positive and statistical association with basal NO{sup {center_dot}-} in PBMC ({beta} = 0.0048, p = 0.049) and monocytes ({beta} = 0.0044, p = 0.044), while basal O{sub 2}{sup {center_dot}-} had a significant positive association with DMA ({beta} = 0.0025, p = 0.046). In activated monocytes, O{sub 2}{sup {center_dot}-} showed a statistical and positive association with iAs ({beta} = 0.0108, p = 0.023), MMA ({beta} = 0.0066, p = 0.022), DMA ({beta} = 0.0018, p = 0.015), and tAs ({beta} = 0.0013, p = 0.015). We conclude that As exposure in the studied children was positively associated with basal levels of NO{sup {center_dot}-} and O{sub 2}{sup {center_dot}-} in PBMC and monocytes, suggesting that As induces oxidative stress in circulating blood cells. Additionally, this study showed a positive association of O{sub 2}{sup

  6. SUPEROXIDE-DEPENDENT IRON UPTAKE: A NEW ROLE FOR ANION EXCHANGE PROTEIN 2

    EPA Science Inventory

    Lung cells import iron across the plasma membrane as ferrous (Fe2+) ion by incompletely understood mechanisms. We tested the hypothesis that human bronchial epithelial (HBE) cells import non-transferrin-bound iron (NTBI) using superoxide-dependent ferri-reductase activity involvi...

  7. A study on scavenging effects of Chinese medicine on superoxide anion radicals by pulse radiolysis

    NASA Astrophysics Data System (ADS)

    Fengmei, Li; Andong, Liu; Hongchun, Gu; Shaojie, Di

    1993-10-01

    A study on scavenging and dismutation effects on superoxide anion radical (·O -2) by using two Chinese antiaging medicine-Salvia Miltiorrhiza injection (S.M.) and Sulekang capsule (S.C.) were performed by pulse radiolysis. The absorption spectra of ·O -2 have been redetermined in radiolysis of aqueous solution of sodium format. The absorption maximum is at about 250nm. The results suggested that S.M. and S.C. can dismutate and scavenge ·O -2. The experimental scavenging rate of S.M. (150μg/ml) and S.C. (250μg/ml) were 89.6% and 69.5% respectively.

  8. Manganese Phosphate Self-assembled Nanoparticle Surface and Its application for Superoxide Anion Detection.

    PubMed

    Shen, Xiaohui; Wang, Qi; Liu, Yuhong; Xue, Wenxiao; Ma, Lie; Feng, Shuaihui; Wan, Mimi; Wang, Fenghe; Mao, Chun

    2016-01-01

    Quantitative analysis of superoxide anion (O2(·-)) has increasing importance considering its potential damages to organism. Herein, a novel Mn-superoxide dismutase (MnSOD) mimics, silica-manganous phosphate (SiO2-Mn3(PO4)2) nanoparticles, were designed and synthesized by surface self-assembly processes that occur on the surface of silica-phytic acid (SiO2-PA) nanoparticles. The composite nanoparticles were characterized by fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electronic microscopy (SEM), electron diffraction pattern, energy dispersive spectroscopy (EDS) and elemental mapping. Then the electrochemical measurements of O2(·-) based on the incorporation of SiO2-Mn3(PO4)2 onto the surface of electrodes were performed, and some satisfactory results were obtained. This is the first report that manganous phosphate (Mn3(PO4)2) nanoparticles with shape-controlled, but not multilayer sheets, were utilized for O2(·-) detection. The surface self-assembly technology we proposed will offer the ideal material to construct more types biosensor and catalytic system for its nanosized effect. PMID:27357008

  9. Manganese Phosphate Self-assembled Nanoparticle Surface and Its application for Superoxide Anion Detection

    PubMed Central

    Shen, Xiaohui; Wang, Qi; Liu, Yuhong; Xue, Wenxiao; Ma, Lie; Feng, Shuaihui; Wan, Mimi; Wang, Fenghe; Mao, Chun

    2016-01-01

    Quantitative analysis of superoxide anion (O2·−) has increasing importance considering its potential damages to organism. Herein, a novel Mn-superoxide dismutase (MnSOD) mimics, silica-manganous phosphate (SiO2-Mn3(PO4)2) nanoparticles, were designed and synthesized by surface self-assembly processes that occur on the surface of silica-phytic acid (SiO2-PA) nanoparticles. The composite nanoparticles were characterized by fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electronic microscopy (SEM), electron diffraction pattern, energy dispersive spectroscopy (EDS) and elemental mapping. Then the electrochemical measurements of O2·− based on the incorporation of SiO2-Mn3(PO4)2 onto the surface of electrodes were performed, and some satisfactory results were obtained. This is the first report that manganous phosphate (Mn3(PO4)2) nanoparticles with shape-controlled, but not multilayer sheets, were utilized for O2·− detection. The surface self-assembly technology we proposed will offer the ideal material to construct more types biosensor and catalytic system for its nanosized effect. PMID:27357008

  10. Depression of alveolar macrophage hydrogen peroxide and superoxide anion release by mineral dusts: Correlation with antimony, lead, and arsenic contents

    SciTech Connect

    Gulyas, H.; Labedzka, M.; Gercken, G. )

    1990-04-01

    Activated rabbit alveolar macrophages were incubated with airborne dusts from four West German sites (1 to 200 micrograms/10(6) cells) and waste incinerator fly ash fractions (50 to 500 micrograms/10(6) cells). Quartz dust DQ 12 (5 to 200 micrograms/10(6) cells) and Fe2O3 (0.05 to 50 micrograms/10(6) cells) were used as control dusts. The zymosan-stimulated hydrogen peroxide and superoxide anion release of the macrophages were not affected significantly by Fe2O3. All other investigated dusts decreased the two cell functions which were correlated negatively with surfaces, particle numbers, and antimony, lead, and arsenic contents of the dusts. The influence of heavy metal antagonisms and dust surfaces on dust toxicity against alveolar macrophages is discussed.

  11. Depression of alveolar macrophage hydrogen peroxide and superoxide anion release by mineral dusts: correlation with antimony, lead, and arsenic contents.

    PubMed

    Gulyas, H; Labedzka, M; Gercken, G

    1990-04-01

    Activated rabbit alveolar macrophages were incubated with airborne dusts from four West German sites (1 to 200 micrograms/10(6) cells) and waste incinerator fly ash fractions (50 to 500 micrograms/10(6) cells). Quartz dust DQ 12 (5 to 200 micrograms/10(6) cells) and Fe2O3 (0.05 to 50 micrograms/10(6) cells) were used as control dusts. The zymosan-stimulated hydrogen peroxide and superoxide anion release of the macrophages were not affected significantly by Fe2O3. All other investigated dusts decreased the two cell functions which were correlated negatively with surfaces, particle numbers, and antimony, lead, and arsenic contents of the dusts. The influence of heavy metal antagonisms and dust surfaces on dust toxicity against alveolar macrophages is discussed. PMID:2159400

  12. Modified natural porcine surfactant inhibits superoxide anions and proinflammatory mediators released by resting and stimulated human monocytes.

    PubMed

    Walti, H; Polla, B S; Bachelet, M

    1997-01-01

    Pulmonary surfactant has a potential role in modulating inflammation in normal and injured lungs. In lung injury, monocytes become activated and participate in lung inflammation. We therefore, investigated the proinflammatory functions of stimulated human blood monocytes after an overnight preincubation period with modified natural porcine surfactant (Curosurf) (500-1000 micrograms/mL). Monocytes were stimulated either with phorbol myristate acetate (PMA), bacterial extract OM-85, lipopolysaccharide (LPS), or Ca2+ ionophore A23187. The present study shows that Curosurf significantly inhibits: 1) the production of superoxide anions stimulated with OM-85 (1 mg/mL, 30 min), but not with PMA (100 ng/mL, 30 min); 2) the release of cyclooxygenase metabolites prostaglandin E2 and thromboxane B2 stimulated with OM-85 (1 mg/mL, overnight); 3) the release of lipoxygenase metabolite leukotriene C4 stimulated with A23187 (10 microM, 10 min); 4) the release of the cytokine TNF-alpha stimulated overnight with either OM-85 (1 mg/mL) or LPS (10 micrograms/mL)) in a dose-dependent fashion. In addition, Curosurf decreases the spontaneous adherence of monocytes to plastic culture wells in a dose-dependent fashion. Experiments performed with staurosporine, an inhibitor of protein kinase C (PKC) indicate that, in contrast with PMA, the production of superoxide anions stimulated by OM-85 is not related to PKC activation. Consequently, we propose that the mechanism involved in the suppressive effects of Curosurf is PKC-independent. In summary, the present study provides experimental evidence that favors the anti-inflammatory role of modified natural porcine surfactant (Curosurf) in human monocytes in vitro. PMID:8979299

  13. A new formula to calculate activity of superoxide dismutase in indirect assays.

    PubMed

    Zhang, Chen; Bruins, Marieke E; Yang, Zhi-Qiang; Liu, Shu-Tao; Rao, Ping-Fan

    2016-06-15

    To calculate superoxide dismutase (SOD) activity rapidly and accurately by indirect SOD assays, a formula based on the ratio of the catalytic speed of SOD to the reaction speed of the indicator with superoxide anion was deduced. The accuracy of this formula was compared with the conventional formula based on inhibition in five indirect SOD assays. The new formula was validated in nearly the entire SOD activity range, whereas the conventional formula was validated only during inhibition of 40-60%. This formula might also be used for the assays of other enzymes. PMID:27033009

  14. Stimulus specificity of prostaglandin inhibition of rabbit polymorphonuclear leukocyte lysosomal enzyme release and superoxide anion production.

    PubMed Central

    Fantone, J. C.; Marasco, W. A.; Elgas, L. J.; Ward, P. A.

    1984-01-01

    Prostaglandins (PGs) of the E series and PGI2 have been shown to inhibit acute inflammatory reactions in vivo and polymorphonuclear leukocyte (PMN), chemotaxis, lysosomal enzyme release, and superoxide anion (O-2) production in vitro. This inhibition of neutrophil stimulation by PGEs and PGI2 has been correlated with their ability to increase intracellular cyclic adenosine monophosphate (cAMP) levels. However, the mechanism(s) by which PGEs and PGI2 alter the complex biochemical and biophysical events associated with stimulus-response coupling in the neutrophil are not clear. It is reported here that both PGEs and PGI2 in micromolar concentrations inhibit formyl-methionyl-leucyl-phenylalanine (FMLP)- and zymosan-induced lysosomal enzyme secretion and superoxide anion production in a dose-dependent manner. No preincubation time of PMNs with the prostaglandins is required for inhibition. Addition of PGEs 10 seconds or later after FMLP stimulation does not alter the biologic response of the neutrophils to the stimulus, suggesting that the prostaglandin inhibition effects early events associated with stimulus-response coupling in the neutrophil. Prostaglandin inhibition of lysosomal enzyme release by the calcium ionophore A23187 was overcome by increasing the extracellular ionophore and/or calcium concentration, suggesting that PGs may modulate intracellular free calcium levels in a manner similar to that observed with platelets. Inhibition of phorbol myristate acetate (PMA)-induced neutrophil lysosomal enzyme secretion by PGEs and PGI2 was overcome by increasing concentrations of PMA. However, neither PGEs nor PGI2 altered O-2 production by PMA-treated neutrophils. These data indicate a dissociation between PMA-stimulated O-2 production and lysosomal enzyme release. These findings are consistent with the hypothesis that inhibition of neutrophil stimulation by PGEs and PGI2 is a result of increased intracellular cyclic AMP levels and modulation of calcium

  15. Intermolecular interactions and proton transfer in the hydrogen halide-superoxide anion complexes.

    PubMed

    Lee, Sebastian J R; Mullinax, J Wayne; Schaefer, Henry F

    2016-02-17

    The superoxide radical anion O2(-) is involved in many important chemical processes spanning different scientific disciplines (e.g., environmental and biological sciences). Characterizing its interaction with various substrates to help elucidate its rich chemistry may have far reaching implications. Herein, we investigate the interaction between O2(-) (X[combining tilde] (2)Πg) and the hydrogen halides (X[combining tilde] (1)Σ) with coupled-cluster theory. In contrast to the short (1.324 Å) hydrogen bond formed between the HF and O2(-) monomers, a barrierless proton transfer occurs for the heavier hydrogen halides with the resulting complexes characterized as long (>1.89 Å) hydrogen bonds between halide anions and the HO2 radical. The dissociation energy with harmonic zero-point vibrational energy (ZPVE) for FHO2(-) (X[combining tilde] (2)A'') → HF (X[combining tilde] (1)Σ) + O2(-) (X[combining tilde] (2)Πg) is 31.2 kcal mol(-1). The other dissociation energies with ZPVE for X(-)HO2 (X[combining tilde] (2)A'') → X(-) (X[combining tilde] (1)Σ) + HO2 (X[combining tilde] (2)A'') are 25.7 kcal mol(-1) for X = Cl, 21.9 kcal mol(-1) for X = Br, and 17.9 kcal mol(-1) for X = I. Additionally, the heavier hydrogen halides can form weak halogen bonds H-XO2(-) (X[combining tilde] (2)A'') with interaction energies including ZPVE of -2.3 kcal mol(-1) for HCl, -8.3 kcal mol(-1) for HBr, and -16.7 kcal mol(-1) for HI. PMID:26852733

  16. Modulation of pulmonary macrophage superoxide release and tumoricidal activity following activation by biological response modifiers.

    PubMed

    Drath, D B

    1986-10-01

    Following immunologic activation, pulmonary macrophages may prevent or cause regression of lung metastases by mechanisms which remain largely unknown. The studies described here were designed to determine if enhanced oxygen metabolite release was related to postactivation tumoricidal activity. We have shown that in vitro activation of Fischer 344 rat pulmonary macrophages by either free or liposome-encapsulated muramyl dipeptide leads to both enhanced release of superoxide anions and marked tumoricidal activity against syngenic (Fischer 13762), allogeneic (Schmidt-Ruppin RR 1022) and xenogeneic (Fibrosarcoma MCA-F) 125I-deoxyuridine-labeled target cells. This immune modulator did not, however, metabolically activate pulmonary macrophages as effectively as liposome-encapsulated lipopolysaccharide. A 24-h in vitro incubation with either 150 U or 300 U of interferon-gamma (3 X 10(6) U/mg) or 30 U, 150 U or 300 U of interferon-alpha (6 X 10(5) U/mg) caused a significant elevation in superoxide release above controls, whereas short-term exposure (2 or 4 h) had little or no effect. Free or encapsulated 6-O-stearoyl muramyl dipeptide, on the other hand, did increase superoxide levels at all 3 time periods. When either interferon-gamma or free or encapsulated muramyl dipeptide derivative were administered to intact rats by either i.v. injection, intratracheal instillation or osmotic minipump infusion, pulmonary macrophage tumoricidal activity was observed 96 h after cell harvesting. Zymosan-stimulated superoxide release, however, was not consistently elevated above control or empty liposome treatment following this course of in vivo activation. The data collectively suggest that in vivo pulmonary macrophage activation to a tumoricidal state and metabolic activation resulting in enhanced superoxide may be separable events. PMID:3021650

  17. Ultrasensitive detection of superoxide anion released from living cells using a porous Pt-Pd decorated enzymatic sensor.

    PubMed

    Zhu, Xiang; Liu, Tingting; Zhao, Hongli; Shi, Libo; Li, Xiaoqing; Lan, Minbo

    2016-05-15

    Considering the critical roles of superoxide anion (O2(∙-)) in pathological conditions, it is of great urgency to establish a reliable and durable approach for real-time determination of O2(∙-). In this study, we propose a porous Pt-Pd decorated superoxide dismutase (SOD) sensor for qualitative and quantitative detection O2(∙-). The developed biosensor exhibits a fast, selective and linear amperometric response upon O2(∙-) in the concentration scope of 16 to 1,536 μM (R(2)=0.9941), with a detection limit of 0.13 μM (S/N=3) and a low Michaelis-Menten constant of 1.37 μM which indicating a high enzymatic activity and affinity to O2(∙-). Inspiringly, the proposed sensor possesses an ultrahigh sensitivity of 1270 μA mM(-1)cm(-2). In addition, SOD/porous Pt-Pd sensor exhibits excellent anti-interference property, reproducibility and long-term storage stability. Beyond our expectation, the trace level of O2(∙-) released from living cells has also been successfully captured. These satisfactory results are mainly ascribed to (1) the porous interface with larger surface area and more active sites to provide a biocompatible environment for SOD (2) the specific biocatalysis of SOD towards O2(∙-) and (3) porous Pt-Pd nanomaterials fastening the electron transfer. The superior electrochemical performance makes SOD/porous Pt-Pd sensor a promising candidate for monitoring the dynamic changes of O2(∙-)in vivo. PMID:26745791

  18. Competitive Deprotonation and Superoxide [O₂⁻•)] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions.

    PubMed

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B

    2016-03-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O(•)) preferentially form superoxide radical-anion (O2(-•)) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2(-•)) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2(-•) adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O(•)) to generate the superoxide radical-anion (m/z 32) or the deprotonated amide [m/z (M - H)(-)], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions. PMID:26545766

  19. Competitive Deprotonation and Superoxide [O2 -•] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions

    NASA Astrophysics Data System (ADS)

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B.

    2016-03-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O•) preferentially form superoxide radical-anion (O2 -•) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2 -•) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2 -• adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O•) to generate the superoxide radical-anion ( m/z 32) or the deprotonated amide [ m/z (M - H)-], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions.

  20. Precocene II, a Trichothecene Production Inhibitor, Binds to Voltage-Dependent Anion Channel and Increases the Superoxide Level in Mitochondria of Fusarium graminearum.

    PubMed

    Furukawa, Tomohiro; Sakamoto, Naoko; Suzuki, Michio; Kimura, Makoto; Nagasawa, Hiromichi; Sakuda, Shohei

    2015-01-01

    Precocene II, a constituent of essential oils, shows antijuvenile hormone activity in insects and inhibits trichothecene production in fungi. We investigated the molecular mechanism by which precocene II inhibits trichothecene production in Fusarium graminearum, the main causal agent of Fusarium head blight and trichothecene contamination in grains. Voltage-dependent anion channel (VDAC), a mitochondrial outer membrane protein, was identified as the precocene II-binding protein by an affinity magnetic bead method. Precocene II increased the superoxide level in mitochondria as well as the amount of oxidized mitochondrial proteins. Ascorbic acid, glutathione, and α-tocopherol promoted trichothecene production by the fungus. These antioxidants compensated for the inhibitory activity of precocene II on trichothecene production. These results suggest that the binding of precocene II to VDAC may cause high superoxide levels in mitochondria, which leads to stopping of trichothecene production. PMID:26248339

  1. Precocene II, a Trichothecene Production Inhibitor, Binds to Voltage-Dependent Anion Channel and Increases the Superoxide Level in Mitochondria of Fusarium graminearum

    PubMed Central

    Furukawa, Tomohiro; Sakamoto, Naoko; Suzuki, Michio; Kimura, Makoto; Nagasawa, Hiromichi; Sakuda, Shohei

    2015-01-01

    Precocene II, a constituent of essential oils, shows antijuvenile hormone activity in insects and inhibits trichothecene production in fungi. We investigated the molecular mechanism by which precocene II inhibits trichothecene production in Fusarium graminearum, the main causal agent of Fusarium head blight and trichothecene contamination in grains. Voltage-dependent anion channel (VDAC), a mitochondrial outer membrane protein, was identified as the precocene II-binding protein by an affinity magnetic bead method. Precocene II increased the superoxide level in mitochondria as well as the amount of oxidized mitochondrial proteins. Ascorbic acid, glutathione, and α-tocopherol promoted trichothecene production by the fungus. These antioxidants compensated for the inhibitory activity of precocene II on trichothecene production. These results suggest that the binding of precocene II to VDAC may cause high superoxide levels in mitochondria, which leads to stopping of trichothecene production. PMID:26248339

  2. Evidence for the Involvement of Loosely Bound Plastosemiquinones in Superoxide Anion Radical Production in Photosystem II

    PubMed Central

    Yadav, Deepak Kumar; Prasad, Ankush; Kruk, Jerzy; Pospíšil, Pavel

    2014-01-01

    Recent evidence has indicated the presence of novel plastoquinone-binding sites, QC and QD, in photosystem II (PSII). Here, we investigated the potential involvement of loosely bound plastosemiquinones in superoxide anion radical (O2•−) formation in spinach PSII membranes using electron paramagnetic resonance (EPR) spin-trapping spectroscopy. Illumination of PSII membranes in the presence of the spin trap EMPO (5-(ethoxycarbonyl)-5-methyl-1-pyrroline N-oxide) resulted in the formation of O2•−, which was monitored by the appearance of EMPO-OOH adduct EPR signal. Addition of exogenous short-chain plastoquinone to PSII membranes markedly enhanced the EMPO-OOH adduct EPR signal. Both in the unsupplemented and plastoquinone-supplemented PSII membranes, the EMPO-OOH adduct EPR signal was suppressed by 50% when the urea-type herbicide DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) was bound at the QB site. However, the EMPO-OOH adduct EPR signal was enhanced by binding of the phenolic-type herbicide dinoseb (2,4-dinitro-6-sec-butylphenol) at the QD site. Both in the unsupplemented and plastoquinone-supplemented PSII membranes, DCMU and dinoseb inhibited photoreduction of the high-potential form of cytochrome b559 (cyt b559). Based on these results, we propose that O2•− is formed via the reduction of molecular oxygen by plastosemiquinones formed through one-electron reduction of plastoquinone at the QB site and one-electron oxidation of plastoquinol by cyt b559 at the QC site. On the contrary, the involvement of a plastosemiquinone formed via the one-electron oxidation of plastoquinol by cyt b559 at the QD site seems to be ambiguous. In spite of the fact that the existence of QC and QD sites is not generally accepted yet, the present study provided more spectroscopic data on the potential functional role of these new plastoquinone-binding sites. PMID:25541694

  3. Evidence for the involvement of loosely bound plastosemiquinones in superoxide anion radical production in photosystem II.

    PubMed

    Yadav, Deepak Kumar; Prasad, Ankush; Kruk, Jerzy; Pospíšil, Pavel

    2014-01-01

    Recent evidence has indicated the presence of novel plastoquinone-binding sites, QC and QD, in photosystem II (PSII). Here, we investigated the potential involvement of loosely bound plastosemiquinones in superoxide anion radical (O2-) formation in spinach PSII membranes using electron paramagnetic resonance (EPR) spin-trapping spectroscopy. Illumination of PSII membranes in the presence of the spin trap EMPO (5-(ethoxycarbonyl)-5-methyl-1-pyrroline N-oxide) resulted in the formation of O2-, which was monitored by the appearance of EMPO-OOH adduct EPR signal. Addition of exogenous short-chain plastoquinone to PSII membranes markedly enhanced the EMPO-OOH adduct EPR signal. Both in the unsupplemented and plastoquinone-supplemented PSII membranes, the EMPO-OOH adduct EPR signal was suppressed by 50% when the urea-type herbicide DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) was bound at the QB site. However, the EMPO-OOH adduct EPR signal was enhanced by binding of the phenolic-type herbicide dinoseb (2,4-dinitro-6-sec-butylphenol) at the QD site. Both in the unsupplemented and plastoquinone-supplemented PSII membranes, DCMU and dinoseb inhibited photoreduction of the high-potential form of cytochrome b559 (cyt b559). Based on these results, we propose that O2- is formed via the reduction of molecular oxygen by plastosemiquinones formed through one-electron reduction of plastoquinone at the QB site and one-electron oxidation of plastoquinol by cyt b559 at the QC site. On the contrary, the involvement of a plastosemiquinone formed via the one-electron oxidation of plastoquinol by cyt b559 at the QD site seems to be ambiguous. In spite of the fact that the existence of QC and QD sites is not generally accepted yet, the present study provided more spectroscopic data on the potential functional role of these new plastoquinone-binding sites. PMID:25541694

  4. DNA-strand breaks induced by dimethylarsinic acid, a metabolite of inorganic arsenics, are strongly enhanced by superoxide anion radicals.

    PubMed

    Rin, K; Kawaguchi, K; Yamanaka, K; Tezuka, M; Oku, N; Okada, S

    1995-01-01

    We previously reported that dimethylarsinic acid (DMAA), a major metabolite of inorganic arsenics, induced DNA single-strand breaks (ssb) both in vivo and in cultured alveolar type II (L-132) cells in vitro, possibly via the production of dimethylarsenic peroxyl radicals. Here, the interaction of superoxide anion radicals (O2-) in the induction of ssb in L-132 cells was investigated using paraquat, an O2(-)-producing agent. A significant enhancement of ssb formation was observed in the DMAA-exposed cells when coexposed to paraquat. This enhancement occurred even when post-exposed to DMAA after washing, suggesting that the DMAA exposure caused some modification of DNA such as DNA-adducts, which was recognized by active oxygens to form ssb. An experiment with UV-irradiation, which was likely to induce ssb at the modified region, supported the possibility of DNA modification by DMAA exposure. An ESR study indicated that O2- produced by paraquat in DMAA-exposed cells was more consumed than in non-exposed cells, assumingly through the reaction with the dimethylarsenic-modified region of DNA. The species of active oxygens were estimated by using diethyldithiocarbamate, aminotriazole, diethylmaleate, hydrogen peroxide (H2O2), gamma-irradiation and ethanol. O2- but neither H2O2 nor hydroxyl radicals was very likely to contribute to the ssb-enhancing action of paraquat. PMID:7735248

  5. Uranyl nitrate-exposed rat alveolar macrophages cell death: Influence of superoxide anion and TNF α mediators

    SciTech Connect

    Orona, N.S.; Tasat, D.R.

    2012-06-15

    Uranium compounds are widely used in the nuclear fuel cycle, military and many other diverse industrial processes. Health risks associated with uranium exposure include nephrotoxicity, cancer, respiratory, and immune disorders. Macrophages present in body tissues are the main cell type involved in the internalization of uranium particles. To better understand the pathological effects associated with depleted uranium (DU) inhalation, we examined the metabolic activity, phagocytosis, genotoxicity and inflammation on DU-exposed rat alveolar macrophages (12.5–200 μM). Stability and dissolution of DU could differ depending on the dissolvent and in turn alter its biological action. We dissolved DU in sodium bicarbonate (NaHCO{sub 3} 100 mM) and in what we consider a more physiological vehicle resembling human internal media: sodium chloride (NaCl 0.9%). We demonstrate that uranyl nitrate in NaCl solubilizes, enters the cell, and elicits its cytotoxic effect similarly to when it is diluted in NaHCO{sub 3}. We show that irrespective of the dissolvent employed, uranyl nitrate impairs cell metabolism, and at low doses induces both phagocytosis and generation of superoxide anion (O{sub 2}{sup −}). At high doses it provokes the secretion of TNFα and through all the range of doses tested, apoptosis. We herein suggest that at DU low doses O{sub 2}{sup −} may act as the principal mediator of DNA damage while at higher doses the signaling pathway mediated by O{sub 2}{sup −} may be blocked, prevailing damage to DNA by the TNFα route. The study of macrophage functions after uranyl nitrate treatment could provide insights into the pathophysiology of uranium‐related diseases. -- Highlights: ► Uranyl nitrate effect on cultured macrophages is linked to the doses and independent of its solubility. ► At low doses uranyl nitrate induces generation of superoxide anion. ► At high doses uranyl nitrate provokes secretion of TNFα. ► Uranyl nitrate induces apoptosis through

  6. Ursolic Acid Inhibits Superoxide Production in Activated Neutrophils and Attenuates Trauma-Hemorrhage Shock-Induced Organ Injury in Rats

    PubMed Central

    Hwang, Tsong-Long; Shen, Hsin-I; Liu, Fu-Chao; Tsai, Hsin-I; Wu, Yang-Chang; Chang, Fang-Rong; Yu, Huang-Ping

    2014-01-01

    Neutrophil activation is associated with the development of organ injury after trauma–hemorrhagic shock. In the present study, ursolic acid inhibited the superoxide anion generation and elastase release in human neutrophils. Administration of ursolic acid attenuated trauma–hemorrhagic shock-induced hepatic and lung injuries in rats. In addition, administration of ursolic acid attenuated the hepatic malondialdehyde levels and reduced the plasma aspartate aminotransferase and alanine aminotransferase levels after trauma–hemorrhagic shock. In conclusion, ursolic acid, a bioactive natural compound, inhibits superoxide anion generation and elastase release in human neutrophils and ameliorates trauma–hemorrhagic shock-induced organ injury in rats. PMID:25360589

  7. Differential effects of nylon fibre adherence on the production of superoxide anion by human polymorphonuclear neutrophilic granulocytes stimulated with chemoattractants, ionophore A23187 and phorbol myristate acetate.

    PubMed Central

    Kownatzki, E; Uhrich, S

    1987-01-01

    Human polymorphonuclear neutrophilic granulocytes were made adherent by passing them over protein-coated nylon fibre columns and compared with suspended cells for their production of superoxide anion as measured by cytochrome C reduction. The cells were stimulated with chemotactic factors, the ionophore A 23187, and the tumour promoter phorbol myristate acetate. There was no increased O2-. production by adherent cells in the absence of a stimulus. Adherent cells produced considerably higher amounts of superoxide than suspended cells when stimulated with formyl-methionyl-leucyl-phenylalanine, ionophore A 23187, C5a, C5adesArg, and the platelet activating factor 1-o-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine. In contrast, stimulation with phorbol myristate acetate did not result in higher superoxide release from adherent than from suspended cells, and leukotriene B4 and a mononuclear cell-derived chemotaxin did not stimulate either cell to release significant amounts of superoxide. It is suggested that the augmented production of oxygen radicals with certain stimuli contributes to inflammatory symptoms in situations involving adherent granulocytes. PMID:2820637

  8. Thromboxane-induced renal vasoconstriction is mediated by the ADP-ribosyl cyclase CD38 and superoxide anion

    PubMed Central

    Vogel, Paul A.; Kopple, Tayler E.; Arendshorst, William J.

    2013-01-01

    The present renal hemodynamic study tested the hypothesis that CD38 and superoxide anion (O2·−) participate in the vasoconstriction produced by activation of thromboxane prostanoid (TP) receptors in the mouse kidney. CD38 is the major mammalian ADP-ribosyl cyclase contributing to vasomotor tone through the generation of cADP-ribose, a second messenger that activates ryanodine receptors to release Ca2+ from the sarcoplasmic reticulum in vascular smooth muscle cells. We evaluated whether the stable thromboxane mimetic U-46619 causes less pronounced renal vasoconstriction in CD38-deficient mice and the involvement of O2·− in U-46619-induced renal vasoconstriction. Our results indicate that U-46619 activation of TP receptors causes renal vasoconstriction in part by activating cADP-ribose signaling in renal resistance arterioles. Based on maximal renal blood flow and renal vascular resistance responses to bolus injections of U-46619, CD38 contributes 30–40% of the TP receptor-induced vasoconstriction. We also found that the antioxidant SOD mimetic tempol attenuated the magnitude of vasoconstriction by U-46619 in both groups of mice, suggesting mediation by O2·−. The degree of tempol blockage of U-46619-induced renal vasoconstriction was greater in wild-type mice, attenuating renal vasoconstriction by 40% compared with 30% in CD38-null mice. In other experiments, U-46619 rapidly stimulated O2·− production (dihydroethidium fluorescence) in isolated mouse afferent arterioles, an effect abolished by tempol. These observations provide the first in vivo demonstration of CD38 and O2·− involvement in the vasoconstrictor effects of TP receptor activation in the kidney and in vitro evidence for TP receptor stimulation of O2·− production by the afferent arteriole. PMID:23884143

  9. Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells

    PubMed Central

    Niska, Karolina; Pyszka, Katarzyna; Tukaj, Cecylia; Wozniak, Michal; Radomski, Marek Witold; Inkielewicz-Stepniak, Iwona

    2015-01-01

    Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide for a variety of engineering and bioengineering applications. TiO2NPs are frequently used as a material for orthopedic implants. However, to the best of our knowledge, the biocompatibility of TiO2NPs and their effects on osteoblast cells, which are responsible for the growth and remodeling of the human skeleton, have not been thoroughly investigated. In the research reported here, we studied the effects of exposing hFOB 1.19 human osteoblast cells to TiO2NPs (5–15 nm) for 24 and 48 hours. Cell viability, alkaline phosphatase (ALP) activity, cellular uptake of NPs, cell morphology, superoxide anion (O2•−2) generation, superoxide dismutase (SOD) activity and protein level, sirtuin 3 (SIR3) protein level, correlation between manganese (Mn) SOD and SIR, total antioxidant capacity, and malondialdehyde were measured following exposure of hFOB 1.19 cells to TiO2NPs. Exposure of hFOB 1.19 cells to TiO2NPs resulted in: (1) cellular uptake of NPs; (2) increased cytotoxicity and cell death in a time- and concentration-dependent manner; (3) ultrastructure changes; (4) decreased SOD and ALP activity; (5) decreased protein levels of SOD1, SOD2, and SIR3; (6) decreased total antioxidant capacity; (7) increased O2•− generation; and (8) enhanced lipid peroxidation (malondialdehyde level). The linear relationship between the protein level of MnSOD and SIR3 and between O2•− content and SIR3 protein level was observed. Importantly, the cytotoxic effects of TiO2NPs were attenuated by the pretreatment of hFOB 1.19 cells with SOD, indicating the significant role of O2•− in the cell damage and death observed. Thus, decreased expression of SOD leading to increased oxidizing stress may underlie the nanotoxic effects of TiO2NPs on human osteoblasts. PMID:25709434

  10. Increased Superoxide Anions Level may be Related with Impaired Endothelium-Dependent Relaxation of Cerebral and Carotid Arteries in Simulated Microgravity Rats

    NASA Astrophysics Data System (ADS)

    Ma, Jin; Zhang, Ran; Ren, Xin-Ling

    2008-06-01

    Our previous works showed that there is a significant increase in nitrite and nitrate content of cerebral and carotid arteries of hindlimb unweighting rats, and this result suggests that NOS activity or NO production may be increased by HU in the cerebral and carotid arteries ,and this may result in a enhanced endothelium-dependent dilatory responses in these artery of hindlimb unweighting rats. The aim of this work is to investigate the effects of hindlimb unweighting on endothelium mediated relaxation and find the possible mechanisms which may result in the alteration. Twenty male healthy SD rats, which body weight ranged from 250g to 280g, were divided into control and hindlimb unweighting simulated microgravity groups randomly. After three weeks, the basilar artery and carotid artery were isolated and arterial dilatory responsiveness were examined in vitro using isolated arterial rings from rats. And the Superoxide Anions Levels were detected by oxidation-sensitive dye dihydroethidium and laser scanning confocal microscope. The data showed: Dilatory responses of both basilar and carotid arterial rings to Acetylcholine(10-10~10-4 mol/L ) was decreased in simulated microgravity rats as compared with that of controls, but dilatory responses of isolated arterial rings to Sodium Nitroprussid (10-10~10-4 mol/L ) was similar in both simulated Microgravity rats and control rats, and stronger superoxide anions signals were detected in basilar and carotid arteries from HU rats, while compared with that of control rats. These results indicate that endothelium-dependent relaxation of both basilar artery and carotid artery have been diminished by 3-week hindlimb unweighting, and increased superoxide anions levels may contribute to this alteration.

  11. Naringenin Inhibits Superoxide Anion-Induced Inflammatory Pain: Role of Oxidative Stress, Cytokines, Nrf-2 and the NO-cGMP-PKG-KATPChannel Signaling Pathway.

    PubMed

    Manchope, Marília F; Calixto-Campos, Cássia; Coelho-Silva, Letícia; Zarpelon, Ana C; Pinho-Ribeiro, Felipe A; Georgetti, Sandra R; Baracat, Marcela M; Casagrande, Rúbia; Verri, Waldiceu A

    2016-01-01

    In the present study, the effect and mechanism of action of the flavonoid naringenin were evaluated in superoxide anion donor (KO2)-induced inflammatory pain in mice. Naringenin reduced KO2-induced overt-pain like behavior, mechanical hyperalgesia, and thermal hyperalgesia. The analgesic effect of naringenin depended on the activation of the NO-cGMP-PKG-ATP-sensitive potassium channel (KATP) signaling pathway. Naringenin also reduced KO2-induced neutrophil recruitment (myeloperoxidase activity), tissue oxidative stress, and cytokine production. Furthermore, naringenin downregulated KO2-induced mRNA expression of gp91phox, cyclooxygenase (COX)-2, and preproendothelin-1. Besides, naringenin upregulated KO2-reduced nuclear factor (erythroid-derived 2)-like 2 (Nrf2) mRNA expression coupled with enhanced heme oxygenase (HO-1) mRNA expression. In conclusion, the present study demonstrates that the use of naringenin represents a potential therapeutic approach reducing superoxide anion-driven inflammatory pain. The antinociceptive, anti-inflammatory and antioxidant effects are mediated via activation of the NO-cGMP-PKG-KATP channel signaling involving the induction of Nrf2/HO-1 pathway. PMID:27045367

  12. Naringenin Inhibits Superoxide Anion-Induced Inflammatory Pain: Role of Oxidative Stress, Cytokines, Nrf-2 and the NO−cGMP−PKG−KATPChannel Signaling Pathway

    PubMed Central

    Manchope, Marília F.; Calixto-Campos, Cássia; Coelho-Silva, Letícia; Zarpelon, Ana C.; Pinho-Ribeiro, Felipe A.; Georgetti, Sandra R.; Baracat, Marcela M.; Casagrande, Rúbia; Verri, Waldiceu A.

    2016-01-01

    In the present study, the effect and mechanism of action of the flavonoid naringenin were evaluated in superoxide anion donor (KO2)-induced inflammatory pain in mice. Naringenin reduced KO2-induced overt-pain like behavior, mechanical hyperalgesia, and thermal hyperalgesia. The analgesic effect of naringenin depended on the activation of the NO−cGMP−PKG−ATP-sensitive potassium channel (KATP) signaling pathway. Naringenin also reduced KO2-induced neutrophil recruitment (myeloperoxidase activity), tissue oxidative stress, and cytokine production. Furthermore, naringenin downregulated KO2-induced mRNA expression of gp91phox, cyclooxygenase (COX)-2, and preproendothelin-1. Besides, naringenin upregulated KO2-reduced nuclear factor (erythroid-derived 2)-like 2 (Nrf2) mRNA expression coupled with enhanced heme oxygenase (HO-1) mRNA expression. In conclusion, the present study demonstrates that the use of naringenin represents a potential therapeutic approach reducing superoxide anion-driven inflammatory pain. The antinociceptive, anti-inflammatory and antioxidant effects are mediated via activation of the NO−cGMP−PKG−KATP channel signaling involving the induction of Nrf2/HO-1 pathway. PMID:27045367

  13. The effect of superoxide anion and hydrogen peroxide imbalance on prostate cancer: an integrative in vivo and in vitro analysis.

    PubMed

    Berto, Maiquidieli Dal; Bica, Claudia Giuliano; de Sá, Gustavo Pereira; Barbisan, Fernanda; Azzolin, Verônica Farina; Rogalski, Felipe; Duarte, Marta Maria Medeiros Frescura; da Cruz, Ivana Beatrice Mânica

    2015-11-01

    The epidemiological impact of SOD2 imbalance on prostate cancer (PC) risk associated with genetic variations has previously been studied. However, we found no previous studies clarifying the nature of SOD2 effects on prostate cancer. Here, we performed integrated in vivo and in vitro protocols that analyzed the association between Ala16Val-SOD2 polymorphism and prostate cancer aggressiveness at the time of diagnosis and evaluated the effect of the imbalance on PC proliferation using the DU-145 PC cell line treated with paraquat and porphyrin. In the pharmacological model, paraquat was used to increase superoxide anion levels and porphyrin was the SOD2 analog. The results confirmed the impact of superoxide-hydrogen peroxide imbalance on PC cell biology since porphyrin decreased cell proliferation and both treatments modulated antioxidant genes. Therefore, our results corroborate previous suggestions that alteration of redox status could be exploited therapeutically in the treatment of PC. PMID:26468117

  14. Studies of the effect of D-penicillamine and sodium aurothiomalate therapy on superoxide anion production by monocytes from patients with rheumatoid arthritis: evidence for in vivo stimulation of monocytes.

    PubMed Central

    Hurst, N P; Bell, A L; Nuki, G

    1986-01-01

    The capacity of monocytes from patients with rheumatoid arthritis to generate superoxide anion in vitro after stimulation with serum treated zymosan (STZ) or IgG treated zymosan (IgTZ) was studied before and during therapy with penicillamine (n = 9) or sodium aurothiomalate (AuTM) (n = 12). Significant increases in rates of STZ (p less than 0.01) and IgTZ (p less than 0.02) stimulated superoxide anion production were seen after successful therapy (14 patients), which were paralleled by a significant increase in serum thiol levels. Patients who did not respond clinically to therapy (n = 4) showed a smaller mean increase in serum thiol levels and had high mean rates of in vitro superoxide production before and after second-line therapy. Three patients were withdrawn from the study. The data suggest that successful therapy with penicillamine or AuTM may be associated with monocyte activation, and possible mechanisms are discussed. PMID:3006610

  15. Superoxide anion and proteasomal dysfunction contribute to curcumin-induced paraptosis of malignant breast cancer cells.

    PubMed

    Yoon, Mi Jin; Kim, Eun Hee; Lim, Jun Hee; Kwon, Taeg Kyu; Choi, Kyeong Sook

    2010-03-01

    Curcumin is considered a pharmacologically safe agent that may be useful in cancer chemoprevention and therapy. Here, we show for the first time that curcumin effectively induces paraptosis in malignant breast cancer cell lines, including MDA-MB-435S, MDA-MB-231, and Hs578T cells, by promoting vacuolation that results from swelling and fusion of mitochondria and/or the endoplasmic reticulum (ER). Inhibition of protein synthesis by cycloheximide blocked curcumin-induced vacuolation and subsequent cell death, indicating that protein synthesis is required for this process. The levels of AIP-1/Alix protein, a known inhibitor protein of paraptosis, were progressively downregulated in curcumin-treated malignant breast cancer cells, and AIP-1/Alix overexpression attenuated curcumin-induced death in these cells. ERK2 and JNK activation were positively associated with curcumin-induced cell death. Mitochondrial superoxide was shown to act as a critical early signal in curcumin-induced paraptosis, whereas proteasomal dysfunction was mainly responsible for the paraptotic changes associated with ER dilation. Notably, curcumin-induced paraptotic events were not observed in normal breast cells, including mammary epithelial cells and MCF-10A cells. Taken together, our findings on curcumin-induced paraptosis may provide novel insights into the mechanisms underlying the selective anti-cancer effects of curcumin against malignant cancer cells. PMID:20036734

  16. Uranyl nitrate-exposed rat alveolar macrophages cell death: influence of superoxide anion and TNF α mediators.

    PubMed

    Orona, N S; Tasat, D R

    2012-06-15

    Uranium compounds are widely used in the nuclear fuel cycle, military and many other diverse industrial processes. Health risks associated with uranium exposure include nephrotoxicity, cancer, respiratory, and immune disorders. Macrophages present in body tissues are the main cell type involved in the internalization of uranium particles. To better understand the pathological effects associated with depleted uranium (DU) inhalation, we examined the metabolic activity, phagocytosis, genotoxicity and inflammation on DU-exposed rat alveolar macrophages (12.5-200 μM). Stability and dissolution of DU could differ depending on the dissolvent and in turn alter its biological action. We dissolved DU in sodium bicarbonate (NaHCO₃ 100 mM) and in what we consider a more physiological vehicle resembling human internal media: sodium chloride (NaCl 0.9%). We demonstrate that uranyl nitrate in NaCl solubilizes, enters the cell, and elicits its cytotoxic effect similarly to when it is diluted in NaHCO₃. We show that irrespective of the dissolvent employed, uranyl nitrate impairs cell metabolism, and at low doses induces both phagocytosis and generation of superoxide anion (O₂⁻). At high doses it provokes the secretion of TNFα and through all the range of doses tested, apoptosis. We herein suggest that at DU low doses O₂⁻ may act as the principal mediator of DNA damage while at higher doses the signaling pathway mediated by O₂⁻ may be blocked, prevailing damage to DNA by the TNFα route. The study of macrophage functions after uranyl nitrate treatment could provide insights into the pathophysiology of uranium-related diseases. PMID:22561334

  17. Superoxide anions produced by Streptococcus pyogenes group A-stimulated keratinocytes are responsible for cellular necrosis and bacterial growth inhibition.

    PubMed

    Regnier, Elodie; Grange, Philippe A; Ollagnier, Guillaume; Crickx, Etienne; Elie, Laetitia; Chouzenoux, Sandrine; Weill, Bernard; Plainvert, Céline; Poyart, Claire; Batteux, Frédéric; Dupin, Nicolas

    2016-02-01

    Gram-positive Streptococcus pyogenes (group A Streptococcus or GAS) is a major skin pathogen and interacts with keratinocytes in cutaneous tissues. GAS can cause diverse suppurative and inflammatory infections, such as cellulitis, a common acute bacterial dermo-hypodermitis with a high morbidity. Bacterial isolation yields from the lesions are low despite the strong local inflammation observed, raising numerous questions about the pathogenesis of the infection. Using an in vitro model of GAS-infected keratinocytes, we show that the major ROS produced is the superoxide anion ([Formula: see text]), and that its production is time- and dose-dependent. Using specific modulators of ROS production, we show that [Formula: see text] is mainly synthesized by the cytoplasmic NADPH oxidase. Superoxide anion production leads to keratinocyte necrosis but incomplete inhibition of GAS growth, suggesting that GAS may be partially resistant to the oxidative burst. In conclusion, GAS-stimulated keratinocytes are able to develop an innate immune response based on the production of ROS. This local immune response limits GAS development and induces keratinocyte cell death, resulting in the skin lesions observed in patients with cellulitis. PMID:26621818

  18. Effect of polyphenolic compounds from Solanum torvum on plasma lipid peroxidation, superoxide anion and cytochrome P450 2E1 in human liver microsomes.

    PubMed

    Kusirisin, Winthana; Jaikang, Churdsak; Chaiyasut, Chaiyavat; Narongchai, Paitoon

    2009-11-01

    Previous studies presented evidence that plants contain antioxidants that have free radical-scavenging properties. Overproduction of free radicals leads to oxidative stress, a factor associated with a variety of diseases, such as diabetes. Cytochrome P450 2E1 enzymes (CYP2E1) are involved in drug metabolism in the liver and metabolism of DNA-reaction generating intra-mitochondrial ROS, which leads to micro- and macro-vascular pathology in diabetes. Plant-based chemicals can affect CYP2E1 enzymes and related defense mechanisms, possibly leading to protection against oxidative stress. We investigated the effect of Solanum torvum (ST) extracts on the inhibition of CYP2E1 activity in human liver microsomes. ST extract was analyzed for antioxidant activity by the ABTS method. Polyphenolic compounds were measured by the total phenol content using the Folin-Ciocalteau reagent. Flavonoid and tannin content were analyzed by standard methods. Oxidative stress was evaluated by measuring lipid peroxidation by TBARS and superoxide anion scavenging levels in plasma from diabetic patients. Results showed that 10 mg/ml of ST had CYP2E1 catalytic inhibiting activity (57.16 %). The IC50 value of CYP2E1 catalytic inhibiting activity level was 5.14 mg/ml by concentration in a dependent manner. One gram of concentrated ST extract had an antioxidant activity index of 3.68 mg of trolox and 360.53 mg of ascorbic acid equivalent. Effects on free radical-scavenging, as measured by TBARS and superoxide anion, showed IC50 values of 20.60 and 10.26 microg/ml, respectively. Polyphenolic compounds found included phenol, flavonoid and tannin, measuring 160.30, 104.36 and 65.91 mg/g, respectively. These results imply that ST is a natural source of polyphenolic antioxidants, which have cytochrome P450 2E1 enzyme inhibiting and free radical scavenging properties, as related to lipid peroxidation and superoxide anion activity. ST could potentially be used for reducing oxidative stress in diabetes

  19. Activation of Mitochondrial Uncoupling Protein 4 and ATP-Sensitive Potassium Channel Cumulatively Decreases Superoxide Production in Insect Mitochondria.

    PubMed

    Slocińska, Malgorzata; Rosinski, Grzegorz; Jarmuszkiewicz, Wieslawa

    2016-01-01

    It has been evidenced that mitochondrial uncoupling protein 4 (UCP4) and ATP-regulated potassium channel (mKATP channel) of insect Gromphadorhina coqereliana mitochondria decrease superoxide anion production. We elucidated whether the two energy-dissipating systems work together on a modulation of superoxide level in cockroach mitochondria. Our data show that the simultaneous activation of UCP4 by palmitic acid and mKATP channel by pinacidil revealed a cumulative effect on weakening mitochondrial superoxide formation. The inhibition of UCP4 by GTP (and/or ATP) and mKATP channel by ATP elevated superoxide production. These results suggest a functional cooperation of both energy-dissipating systems in protection against oxidative stress in insects. PMID:26548865

  20. Cyanobacterial Microcystis aeruginosa lipopolysaccharide elicits release of superoxide anion, thromboxane B₂, cytokines, chemokines, and matrix metalloproteinase-9 by rat microglia.

    PubMed

    Mayer, Alejandro M S; Clifford, Jonathan A; Aldulescu, Monica; Frenkel, Jeffrey A; Holland, Michael A; Hall, Mary L; Glaser, Keith B; Berry, John

    2011-05-01

    Microcystis aeruginosa (M. aeruginosa) is a cosmopolitan Gram-negative cyanobacterium that may contaminate freshwater by releasing toxins, such as lipopolysaccharide (LPS) during aquatic blooms, affecting environmental and human health. The putative toxic effects of cyanobacterial LPS on brain microglia, a glial cell type that constitutes the main leukocyte-dependent source of reactive oxygen species in the central nervous system, are presently unknown. We tested the hypothesis that in vitro concentration- and time-dependent exposure to M. aeruginosa LPS strain UTCC 299 would activate rat microglia and the concomitant generation of superoxide anion (O₂⁻). After a 17-h exposure of microglia to M.aeruginosa LPS, the following concentration-dependent responses were observed: 0.1-100 ng/ml M. aeruginosa LPS enhanced O₂⁻ generation, with limited inflammatory mediator generation; 1000-10,000 ng/ml M. aeruginosa LPS caused thromboxane B₂ (TXB₂), matrix metalloproteinase-9 (MMP-9), and macrophage inflammatory protein-2 (MIP-2/CXCL2) release, concurrent with maximal O₂⁻ generation; 100,000 ng/mL M. aeruginosa LPS deactivated O₂⁻ production but maintained elevated levels of TXB₂, MMP-9, tumor necrosis factor-α (TNF-α), interleukin 1-α (IL-1α), and interleukin-6 (IL-6), macrophage inflammatory protein 1α (MIP-1α/CCL3), and MIP-2/CXCL2, with concomitant lactic dehydrogenase release. Although M. aeruginosa LPS was consistently less potent than Escherichia coli LPS, with the exception of O₂⁻, TXB₂, and MCP-1/CCL2 generation, it was more efficacious because higher levels of MMP-9, TNF-α, IL-1α, IL-6, MIP-1α/CCL3, and MIP-2/CXCL2 were produced. Our in vitro studies suggest that one or more of the inflammatory mediators released during M. aeruginosa LPS stimulation of microglia may play a critical role in the subsequent ability of microglia to generate O₂⁻. To our knowledge, this is the first experimental evidence that LPS isolated from a M

  1. The Effect of Orexin-A on Cardiac Dysfunction Mediated by NADPH Oxidase-Derived Superoxide Anion in Ventrolateral Medulla

    PubMed Central

    Chen, Jun; Xia, Chunmei; Wang, Jin; Jiang, Meiyan; Zhang, Huanhuan; Zhang, Chengrong; Zhu, Minxia; Shen, Linlin; Zhu, Danian

    2013-01-01

    Hypocretin/orexin-producing neurons, located in the perifornical region of the lateral hypothalamus area (LHA) and projecting to the brain sites of rostral ventrolateral medulla (RVLM), involve in the increase of sympathetic activity, thereby regulating cardiovascular function. The current study was designed to test the hypothesis that the central orexin-A (OXA) could be involved in the cardiovascular dysfunction of acute myocardial infarction (AMI) by releasing NAD(P)H oxidase-derived superoxide anion (O2−) generation in RVLM, AMI rat model established by ligating the left anterior descending (LAD) coronary artery to induce manifestation of cardiac dysfunction, monitored by the indicators as heart rate (HR), heart rate variability (HRV), mean arterial pressure (MAP) and left intraventricular pressure. The results showed that the expressions of OXA in LHA and orexin 1 receptor (OX1R) increased in RVLM of AMI rats. The double immunofluorescent staining indicated that OX1R positive cells and NAD(P)H oxidative subunit gp91phox or p47phox-immunoreactive (IR) cells were co-localized in RVLM. Microinjection of OXA into the cerebral ventricle significantly increased O2− production and mRNA expression of NAD(P)H oxidase subunits when compared with aCSF-treated ones. Exogenous OXA administration in RVLM produced pressor and tachycardiac effects. Furthermore, the antagonist of OX1R and OX2R (SB-408124 and TCS OX2 29, respectively) or apocynin (APO), an inhibitor of NAD(P)H oxidase, partly abolished those cardiovascular responses of OXA. HRV power spectral analysis showed that exogenous OXA led to decreased HF component of HRV and increased LF/HF ratio in comparison with aCSF, which suggested that OXA might be related to sympathovagal imbalance. As indicated by the results, OXA might participate in the central regulation of cardiovascular activities by disturbing the sympathovagal balance in AMI, which could be explained by the possibility that OXR and NAD(P)H-derived O2

  2. FITC Doped Rattle-Type Silica Colloidal Particle-Based Ratiometric Fluorescent Sensor for Biosensing and Imaging of Superoxide Anion.

    PubMed

    Zhou, Ying; Ding, Jie; Liang, Tingxizi; Abdel-Halim, E S; Jiang, Liping; Zhu, Jun-Jie

    2016-03-16

    Fluorescent nanosensors have been widely applied in recognition and imaging of bioactive small molecules; however, the complicated surface modification process and background interference limit their applications in practical biological samples. Here, a simple, universal method was developed for ratiometric fluorescent determination of general small molecules. Taking superoxide anion (O2(•-)) as an example, the designed sensor was composed of three main moieties: probe carrier, rattle-type silica colloidal particles (mSiO2@hmSiO2 NPs); reference fluorophore doped into the core of NPs, fluorescein isothiocyanate (FITC); fluorescent probe for superoxide anion, hydroethidine (HE). In the absence of O2(•-), the sensor just emitted green fluorescence of FITC at 518 nm. When released HE was oxidized by O2(•-), the oxidation product exhibited red fluorescence at 570 nm and the intensity was linearly associated with the concentration of O2(•-), while that of reference element remained constant. Accordingly, ratiometric determination of O2(•-) was sensitively and selectively achieved with a linear range of 0.2-20 μM, and the detection limit was calculated as low as 80 nM. Besides, the technique was also successfully applied for dual-emission imaging of O2(•-) in live cells and realized visual recognition with obvious fluorescence color change in normal conditions or under oxidative stress. As long as appropriate reference dyes and sensing probes are selected, ratiometric biosensing and imaging of bioactive small molecules would be achieved. Therefore, the design could provide a simple, accurate, universal platform for biological applications. PMID:26910878

  3. An electrochemical biosensor based on gold microspheres and nanoporous gold for real-time detection of superoxide anion in skeletal muscle tissue.

    PubMed

    Sadeghian, Ramin Banan; Ostrovidov, Serge; Salehi, Sahar; Jiuhui Han; Mingwei Chen; Khademhosseini, Ali

    2015-08-01

    Superoxide anion (SOA) as a member of reactive oxygen species (ROS) group is involved in various physiological and pathological states. For instance, generation of SOA is known to increase with skeletal muscle contractile activity and fatigue. It is therefore important to selectively detect and accurately quantify the release of SOA within both physiological and pathological levels. We report fabrication and characterization of a cytochrome-c functionalized SOA biosensor built on commercially available miniaturized screen-printed electrodes made of gold microspheres. The device was first tested and calibrated in a xanthine/xanthine oxidase (XOD) system and then employed to detect SOA release from C2C12 myoblasts and myotubes upon stimulation with PMA. PMID:26738139

  4. Superoxide radical and iron modulate aconitase activity in mammalian cells.

    PubMed

    Gardner, P R; Raineri, I; Epstein, L B; White, C W

    1995-06-01

    Aconitase is a member of a family of iron-sulfur-containing (de)hydratases whose activities are modulated in bacteria by superoxide radical (O2-.)-mediated inactivation and iron-dependent reactivation. The inactivation-reactivation of aconitase(s) in cultured mammalian cells was explored since these reactions may impact important and diverse aconitase functions in the cytoplasm and mitochondria. Conditions which increase O2-. production including exposure to the redox-cycling agent phenazine methosulfate (PMS), inhibitors of mitochondrial ubiquinol-cytochrome c oxidoreductase, or hyperoxia inactivated aconitase in mammalian cells. Overproduction of mitochondrial Mn-superoxide dismutase protected aconitase from inactivation by PMS or inhibitors of ubiquinol-cytochrome c oxidoreductase, but not from normobaric hyperoxia. Aconitase activity was reactivated (t1/2 of 12 +/- 3 min) upon removal of PMS. The iron chelator deferoxamine impaired reactivation and increased net inactivation of aconitase by O2-.. The ability of ubiquinol-cytochrome c oxidoreductase-generated O2-. to inactivate aconitase in several cell types correlated with the fraction of the aconitase activity localized in mitochondria. Extracellular O2-. generated with xanthine oxidase did not affect aconitase activity nor did exogenous superoxide dismutase decrease aconitase inactivation by PMS. The results demonstrate a dynamic and cyclical O2-.-mediated inactivation and iron-dependent reactivation of the mammalian [4Fe-4S] aconitases under normal and stress conditions and provide further evidence for the membrane compartmentalization of O2-.. PMID:7768942

  5. Chlorovirus PBCV-1 Encodes an Active Copper-Zinc Superoxide Dismutase

    PubMed Central

    Kang, Ming; Duncan, Garry A.; Kuszynski, Charles; Oyler, George; Zheng, Jiayin; Becker, Donald F.

    2014-01-01

    ABSTRACT Superoxide dismutases (SODs) are metalloproteins that protect organisms from toxic reactive oxygen species by catalyzing the conversion of superoxide anion to hydrogen peroxide and molecular oxygen. Chlorovirus PBCV-1 encodes a 187-amino-acid protein that resembles a Cu-Zn SOD with all of the conserved amino acid residues for binding copper and zinc (named cvSOD). cvSOD has an internal Met that results in a 165-amino-acid protein (named tcvSOD). Both cvSOD and tcvSOD recombinant proteins inhibited nitroblue tetrazolium reduction of superoxide anion generated in a xanthine-xanthine oxidase system in solution. tcvSOD was chosen for further characterization because it was easier to produce. Recombinant tcvSOD also inhibited a riboflavin photochemical reduction system in a polyacrylamide gel assay, which was blocked by the Cu-Zn SOD inhibitor cyanide but not by azide, which inhibits Fe and Mn SODs. A kcat/Km value for cvSOD was determined by stop-flow spectrophotometry as 1.28 × 108 M−1 s−1, suggesting that cvSOD-catalyzed O2− dismutation was not a diffusion controlled encounter. The cvsod gene was expressed as a late gene, and cvSOD activity was detected in purified virions. Superoxide accumulated rapidly during virus infection, and circumstantial evidence indicates that cvSOD aids its decomposition to benefit virus replication. Cu-Zn SOD homologs have been described to occur in 3 other families of large DNA viruses, poxviruses, baculoviruses, and mimiviruses, which group as a clade. Interestingly, cvSOD does not group in the same clade as the other virus SODs but instead groups in an expanded clade that includes Cu-Zn SODs from many cellular organisms. IMPORTANCE Virus infection often leads to an increase in toxic reactive oxygen species in the host, which can be detrimental to virus replication. Viruses have developed various ways to overcome this barrier. As reported in this article, the chloroviruses often encode and package a functional Cu

  6. Sonochemiluminescence of lucigenin: Evidence of superoxide radical anion formation by ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Matsuoka, Masanori; Takahashi, Fumiki; Asakura, Yoshiyuki; Jin, Jiye

    2016-07-01

    The sonochemiluminescence (SCL) behavior of lucigenin (Luc2+) has been studied in aqueous solutions irradiated with 500 kHz ultrasound. Compared with the SCL of a luminol system, a tremendously increased SCL intensity is observed from 50 µM Luc2+ aqueous solution (pH =11) when small amounts of coreactants such as 2-propanol coexist. It is shown that SCL intensity strongly depends on the presence of dissolved gases such as air, O2, N2, and Ar. The highest SCL intensity is obtained in an O2-saturated solution, indicating that molecular oxygen is required to generate SCL. Since SCL intensity is quenched completely in the presence of superoxide dismutase (SOD), an enzyme that can catalyze the disproportionation of O2 •‑, the generation of O2 •‑ in the ultrasonic reaction field is important in the SCL of Luc2+. In this work, the evidence of O2 •‑ production is examined by a spectrofluorometric method using 2-(2-pyridyl)benzothiazoline as the fluorescent probe. The results indicate that the yield of O2 •‑ is markedly increased in the O2-saturated solutions when a small amount of 2-propanol coexists, which is consistent with the results of SCL measurements. 2-Propanol in the interfacial region of a cavitation bubble reacts with a hydroxyl radical (•OH) to form a 2-propanol radical, CH3C•(OH)CH3, which can subsequently react with dissolved oxygen to generate O2 •‑. The most likely pathways for SCL as well as the spatial distribution of SCL in a microreactor are discussed in this study.

  7. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase

    PubMed Central

    2012-01-01

    Background Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. Methods The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane) and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) assays in MCF-7 cells. Results Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml). Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Conclusions Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide dismutase in the treated cells

  8. A New Polymer Nanoprobe Based on Chemiluminescence Resonance Energy Transfer for Ultrasensitive Imaging of Intrinsic Superoxide Anion in Mice.

    PubMed

    Li, Ping; Liu, Lu; Xiao, Haibin; Zhang, Wei; Wang, Lulin; Tang, Bo

    2016-03-01

    Despite significant developments in optical imaging of superoxide anion (O2(•-)) as the preliminary reactive oxygen species, novel visualizing strategies that offer ultrahigh sensitivity are still imperative. This is mainly because intrinsic concentrations of O2(•-) are extremely low in living systems. Herein, we present the rational design and construction of a new polymer nanoprobe PCLA-O2(•-) for detecting O2(•-) based on chemiluminescence (CL) resonance energy transfer without an external excitation source. Structurally, PCLA-O2(•-) contains two moieties linked covalently, namely imidazopyrazinone that is capable of CL triggered by O2(•-) as the energy donor and conjugated polymers with light-amplifying property as the energy acceptor. Experiment results demonstrate that PCLA-O2(•-) exhibits ultrahigh sensitivity at the picomole level, dramatically prolonged luminescence time, specificity, and excellent biocompatibility. Without exogenous stimulation, this probe for the first time in situ visualizes O2(•-) level differences between normal and tumor tissues of mice. These exceptional features ensure that PCLA-O2(•-) as a self-luminescing probe is an alternative in vivo imaging approach for ultralow level O2(•-). PMID:26908223

  9. Superoxide dismutase activity and gene expression levels in Saudi women with recurrent miscarriage

    PubMed Central

    GHNEIM, HAZEM K.; AL-SHEIKH, YAZEED A.; ALSHEBLY, MASHAEL M.; ABOUL-SOUD, MOURAD A. M.

    2016-01-01

    The antioxidant activities of superoxide dismutase 1 (SOD1) and SOD2, as well as the levels of the oxidant superoxide anion (SOA) and the micronutrients zinc (Zn), copper (Cu) and manganese (Mn), were assayed in plasma, whole blood and placental tissue of non-pregnant (NP), healthy pregnant (HP) women and recurrent miscarriage (RM) patients. The results showed that SOD1 and SOD2 activities and the levels of Zn, Cu and Mn in plasma and whole blood of HP women were slightly, but significantly lower, and even more significantly decreased in RM patients compared to those observed in NP women (P<0.05 and P<0.0001, respectively). Additionally, whereas plasma SOD1 and SOD2 activities and Zn, Cu and Mn levels were significantly lower in RM patients, those of whole blood and placental tissue were significantly lower when compared to HP women (P<0.001 and P<0.0001, respectively). Concurrently, there were consistent increases of equal magnitude and statistical significance in SOA levels in all the assayed samples as identified by a comparison between the subjects. The findings thus supported oxidative metabolism and excessive reactive oxygen species generation. The resultant oxidative stress, identified in whole blood and placental tissues of RM patients, may have been a primary cause of RM. Dietary supplementation of Zn, Cu and Mn may be beneficial to these patients pre- and post-conception. PMID:26821085

  10. Real-time monitoring of superoxide accumulation and antioxidant activity in a brain slice model using an electrochemical cytochrome c biosensor

    PubMed Central

    Ganesana, Mallikarjunarao; Erlichman, Joseph S.; Andreescu, Silvana

    2012-01-01

    The overproduction of reactive oxygen species and resulting damage are central to the pathology of many diseases. The study of the temporal and spatial accumulation of reactive oxygen species has been limited due to the lack of specific probes and techniques capable of continuous measurement. We demonstrate the use of a miniaturized electrochemical cytochrome C (Cyt C) biosensor for real-time measurements and quantitative assessment of superoxide production and inactivation by natural and engineered antioxidants in acutely prepared brain slices from mice. During control conditions, superoxide radicals produced from the hippocampal region of the brain in 400 μm thick sections were well within the range of detection of the electrode. Exposure of the slices to ischemic conditions increased the superoxide production two fold and measurements from the slices were stable over a 3–4 hour period. The stilbene derivative and anion channel inhibitor, 4,4′-diisothiocyano-2,2′-disulfonic stilbene (DIDS), markedly reduced the extracellular superoxide signal under control conditions suggesting that a transmembrane flux of superoxide into the extracellular space may occur as part of normal redox signaling. The specificity of the electrode for superoxide released by cells in the hippocampus was verified by the exogenous addition of superoxide dismutase (SOD) which decreased the superoxide signal in a dose-dependent manner. Similar results were seen with the addition of the SOD-mimetic, cerium oxide nanoparticles (nanoceria) where the superoxide anion radical scavenging activity of nanoceria with an average diameter of 15 nm was equivalent to 527 U of SOD for each 1 μg/ml of nanoceria added. This study demonstrates the potential of electrochemical biosensors for studying real-time dynamics of reactive oxygen species in a biological model and the utility of these measurements in defining the relative contribution of superoxide to oxidative injury. PMID:23085519

  11. Superoxide anion radical (O2(-)) degrades methylmercury to inorganic mercury in human astrocytoma cell line (CCF-STTG1).

    PubMed

    Mailloux, Ryan J; Yumvihoze, Emmanuel; Chan, Hing Man

    2015-09-01

    Methylmercury (MeHg) is a global pollutant that is affecting the health of millions of people worldwide. However, the mechanism of MeHg toxicity still remains somewhat elusive and there is no treatment. It has been known for some time that MeHg can be progressively converted to inorganic mercury (iHg) in various tissues including the brain. Recent work has suggested that cleavage of the carbon-metal bond in MeHg in a biological environment is facilitated by reactive oxygen species (ROS). However, the oxyradical species that actually mediates this process has not been identified. Here, we provide evidence that superoxide anion radical (O2(-)) can convert MeHg to iHg. The calculated second-order rate constant for the degradation of 1μM MeHg by O2(-) generated by xanthine/xanthine oxidase was calculated to be 2×10(5)M(-1)s(-1). We were also able to show that this bioconversion can proceed in intact CCF-STTG1 human astrocytoma cells exposed to paraquat (PQ), a O2(-) generating viologen. Notably, exposure of cells to increasing amounts of PQ led to a dose dependent increase in both MeHg and iHg. Indeed, a 24h exposure to 500μM PQ induced a ∼13-fold and ∼18-fold increase in intracellular MeHg and iHg respectively. These effects were inhibited by superoxide dismutase mimetic MnTBAP. In addition, we also observed that a 24h exposure to a biologically relevant concentration of MeHg (1μM) did not induce cell death, oxidative stress, or even changes in cellular O2(-) and H2O2. However, co-exposure to PQ enhanced MeHg toxicity which was associated with a robust increase in cell death and oxidative stress. Collectively our results show that O2(-) can bioconvert MeHg to iHg in vitro and in intact cells exposed to conditions that simulate high intracellular O2(-) production. In addition, we show for the first time that O2(-) mediated degradation of MeHg to iHg enhances the toxicity of MeHg by facilitating an accumulation of both MeHg and iHg in the intracellular

  12. The peroxidase activity of mitochondrial superoxide dismutase (MnSOD/SOD2)

    PubMed Central

    Ansenberger-Fricano, Kristine; Ganini, Douglas da Silva; Mao, Mao; Chatterjee, Saurabh; Dallas, Shannon; Mason, Ronald P.; Stadler, Krisztian; Santos, Janine H.; Bonini, Marcelo G.

    2014-01-01

    Manganese superoxide dismutase (MnSOD) is an integral mitochondrial protein known as a first line antioxidant defense against superoxide radical anions produced as by-products of the electron transport chain. Recent studies have shaped the idea that by regulating the mitochondrial redox status and H2O2 outflow, MnSOD acts as a fundamental regulator of cellular proliferation, metabolism and apoptosis thereby assuming roles that extend far beyond its proposed antioxidant functions. Accordingly, allelic variations of MnSOD that have been shown to augment levels of MnSOD in mitochondria result in a 10-fold increase in prostate cancer risk. In addition, epidemiologic studies indicate that reduced glutathione peroxidase (GPx) activity along with increases in H2O2 further increase cancer risk in the face MnSOD overexpression. These facts led us to hypothesize that, like the Cu, Zn-counterpart, MnSOD may work as a peroxidase, utilizing H2O2 to promote mitochondrial damage, a known cancer risk factor. Here we report that MnSOD indeed possesses peroxidase activity that manifests in mitochondria when the enzyme is overexpressed. PMID:22982047

  13. Moricandia arvensis extracts protect against DNA damage, mutagenesis in bacteria system and scavenge the superoxide anion.

    PubMed

    Skandrani, Ines; Bouhlel, Ines; Limem, Ilef; Boubaker, Jihed; Bhouri, Wissem; Neffati, Aicha; Ben Sghaier, Mohamed; Kilani, Soumaya; Ghedira, Kamel; Ghedira-Chekir, Leila

    2009-02-01

    The mutagenic potential of total aqueous, total oligomers flavonoids (TOF), ethyl acetate (EA), chloroform (Chl), petroleum ether (PE) and methanol (MeOH) extracts from aerial parts of Moricandia arvensis was assessed using Ames Salmonella tester strains TA100 and TA1535 with and without metabolic activation (S9), and using plasmid pBluescript DNA assay. None of the different extracts produced a mutagenic effect, except aqueous extract when incubated with Salmonella typhimurium TA100 after metabolic activation. Likewise, the antimutagenicity of the same extracts was tested using the "Ames test". Our results showed that M. arvensis extracts possess antimutagenic effects against sodium azide (SA) in the two tested Salmonella assay systems, except metabolized aqueous and PE extracts when tested with S. typhimurium TA100 assay system. Different extracts were also found to be effective in protecting plasmid DNA against the strand breakage induced by hydroxyl radicals, except PE and aqueous extracts. Antioxidant capacity of the tested extracts was evaluated using the enzymatic (xanthine/xanthine oxidase assay) (X/XOD) and the non enzymatic (NBT/Riboflavine assay) systems. TOF extract was the more effective one in inhibiting both xanthine oxidase activity and NBT reduction. PMID:19015021

  14. Superoxide anion radical (O sub 2 sup sm bullet minus ) mediated base-catalyzed autoxidation of. alpha. -keto enols

    SciTech Connect

    Frimer, A.A.; Gilinsky-Sharon, P.; Aljadeff, G.; Marks, V.; Rosental, Z. )

    1989-09-29

    Eight 4,4-disubstituted 2-hydroxycyclohexa-2,5-dien-1-ones were prepared by the base-catalyzed autoxidation (BCA) of the corresponding 4,4- or 5,5-disubstituted cyclohex-2-en-1-ones. Upon reaction with superoxide anion radical (O{sub 2}{sup {sm bullet}{minus}}, generated from KO{sub 2}/18-crown-6) in inert nonpolar aprotic media at room temperature, {alpha}-keto enols 3a-g undergo initial deprotonation of the enol hydrogen followed by BCA at C{sub 3} of the resulting enolate. Aqueous acid workshop of the reaction mixture yields lactols 4, while methyl iodide quenching generated methoxy lactones 5. Lactols 4 can be readily converted to their acetoxy analogues 8, opened to aldehydo methyl esters 6, or reduced to the related lactones 7. The latter suggests a convenient one-pot synthesis of 2,3-unsaturated {delta}-valerolactones from the corresponding cyclohex-2-en-1-ones. 4,4-Diphenyl enol 3h, by contrast, resists BCA (whether mediated by O{sub 2}{sup {sm bullet}{minus}} or t-C{sub 4}H{sub 9}O{sup {minus}}) to the corresponding lactol yielding instead a variety of oxidative cleavage products 13-18. 2-Hydroxyspiro(4.5)dec-1-en-3-one (21) also underwent O{sub 2}{sup {sm bullet}{minus}}-mediated BCA, yielding diacids 22 and 26 as well as lactol 30. The synthetic applications of these results are also discussed.

  15. Superoxide dismutase activity in needles of Norwegian spruce trees (Picea abies L. )

    SciTech Connect

    Polle, A.; Krings, B.; Rennenberg, H. Universitaet zu Koeln )

    1989-08-01

    The activity of superoxide dismutase was investigated in needles of spruce trees. To obtain maximum activity, needles were homogenized in the presence of Triton X-100 and polyvinylpyrrolidone. Superoxide dismutase activity was measured in dialyzed extracts with a modified epinephrine assay at pH 10.2. The extracts contained 70 to 120 units of superoxide dismutase per milligram protein. One unit of superoxide dismutase was completely inhibited in the presence of 20 micromolar NaCN. On native polyacrylamide gels three electromorphs were visualized after staining for activity. All three species were sensitive to CN{sup {minus}} and H{sub 2}O{sub 2} and were therefore assumed to be Cu/Zn-superoxide dismutases. Superoxide dismutase activity was dependent on the age of the needles and declined by approximately 25% within 3 to 4 years.

  16. Superoxide dismutase activity of Cu-bound prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry

    2009-03-01

    Misfolding of the prion protein, PrP, has been linked to a group of neurodegenerative diseases, including the mad cow disease in cattle and the Creutzfeldt-Jakob disease in humans. The normal function of PrP is still unknown, but it was found that the PrP can efficiently bind Cu(II) ions. Early experiments suggested that Cu-PrP complex possesses significant superoxide dismutase (SOD) activity, but later experiments failed to confirm it and at present this issue remains unresolved. Using a recently developed hybrid DFT/DFT method, which combines Kohn-Sham DFT for the solute and its first solvation shells with orbital-free DFT for the remainder of the solvent, we have investigated SOD activity of PrP. The PrP is capable of incorporating Cu(II) ions in several binding modes and our calculations find that each mode has a different SOD activity. The highest activity found is comparable to those of well-known SOD proteins, suggesting that the conflicting experimental results may be due to different bindings of Cu(II) in those experiments.

  17. The photoproduction of superoxide radicals and the superoxide dismutase activity of Photosystem II. The possible involvement of cytochrome b559.

    PubMed

    Ananyev, G; Renger, G; Wacker, U; Klimov, V

    1994-08-01

    In the present study the light induced formation of superoxide and intrinsic superoxide dismutase (SOD) activity in PS II membrane fragments and D1/D2/Cytb559-complexes from spinach have been analyzed by the use of ferricytochrome c (cyt c(III)) reduction and xanthine/xanthine oxidase as assay systems. The following results were obtained: 1.) Photoreduction of Cyt c (III) by PS II membrane fragments is induced by addition of sodium azide, tetracyane ethylene (TCNE) or carbonylcyanide-p-trifluoromethoxy-phenylhydrazone (FCCP) and after removal of the extrinsic polypeptides by a 1M CaCl2-treatment. This activity which is absent in control samples becomes completely inhibited by the addition of exogenous SOD. 2.) The TCNE induced cyt c(III) photoreduction by PS II membrane fragments was found to be characterized by a half maximal concentration of c1/2=10 μM TCNE. Simultaneously, TCNE inhibits the oxygen evolution rate of PS II membrane fragments with c1/2≈ 3 μM. 3.) The photoproduction of O2 (-) is coupled with H(+)-uptake. This effect is diminished by the addition of the O2 (-)-trap cyt c(III). 4.) D1/D2/Cytb559-complexes and PS II membrane fragments deprived of the extrinsic proteins and manganese exhibit no SOD-activity but are capable of producing O2 (-) in the light if a PS II electron donor is added.Based on these results the site(s) of light induced superoxide formation in PS II is (are) inferred to be located at the acceptor side. A part of the PS II donor side and Cyt b559 in its HP-form are proposed to provide an intrinsic superoxide dismutase (SOD) activity. PMID:24310115

  18. Superoxide-mediated activation of uncoupling protein 2 causes pancreatic β cell dysfunction

    PubMed Central

    Krauss, Stefan; Zhang, Chen-Yu; Scorrano, Luca; Dalgaard, Louise T.; St-Pierre, Julie; Grey, Shane T.; Lowell, Bradford B.

    2003-01-01

    Failure to secrete adequate amounts of insulin in response to increasing concentrations of glucose is an important feature of type 2 diabetes. The mechanism for loss of glucose responsiveness is unknown. Uncoupling protein 2 (UCP2), by virtue of its mitochondrial proton leak activity and consequent negative effect on ATP production, impairs glucose-stimulated insulin secretion. Of interest, it has recently been shown that superoxide, when added to isolated mitochondria, activates UCP2-mediated proton leak. Since obesity and chronic hyperglycemia increase mitochondrial superoxide production, as well as UCP2 expression in pancreatic β cells, a superoxide-UCP2 pathway could contribute importantly to obesity- and hyperglycemia-induced β cell dysfunction. This study demonstrates that endogenously produced mitochondrial superoxide activates UCP2-mediated proton leak, thus lowering ATP levels and impairing glucose-stimulated insulin secretion. Furthermore, hyperglycemia- and obesity-induced loss of glucose responsiveness is prevented by reduction of mitochondrial superoxide production or gene knockout of UCP2. Importantly, reduction of superoxide has no beneficial effect in the absence of UCP2, and superoxide levels are increased further in the absence of UCP2, demonstrating that the adverse effects of superoxide on β cell glucose sensing are caused by activation of UCP2. Therefore, superoxide-mediated activation of UCP2 could play an important role in the pathogenesis of β cell dysfunction and type 2 diabetes. PMID:14679178

  19. Antioxidative capacity and enzyme activity in Haematococcus pluvialis cells exposed to superoxide free radicals

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Zhang, Xiaoli; Sun, Yanhong; Lin, Wei

    2010-01-01

    The antioxidative capacity of astaxanthin and enzyme activity of reactive oxygen eliminating enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were studied in three cell types of Haematococcus pluvialis exposed to high concentrations of a superoxide anion radical (O{2/-}). The results show that defensive enzymes and astaxanthin-related mechanisms were both active in H. pluvialis during exposure to reactive oxygen species (ROS) such as O{2/-}. Astaxanthin reacted with ROS much faster than did the protective enzymes, and had the strongest antioxidative capacity to protect against lipid peroxidation. The defensive mechanisms varied significantly between the three cell types and were related to the level of astaxanthin that had accumulated in those cells. Astaxanthin-enriched red cells had the strongest antioxidative capacity, followed by brown cells, and astaxanthin-deficient green cells. Although there was no significant increase in expression of protective enzymes, the malondialdehyde (MDA) content in red cells was sustained at a low level because of the antioxidative effect of astaxanthin, which quenched O{2/-} before the protective enzymes could act. In green cells, astaxanthin is very low or absent; therefore, scavenging of ROS is inevitably reliant on antioxidative enzymes. Accordingly, in green cells, these enzymes play the leading role in scavenging ROS, and the expression of these enzymes is rapidly increased to reduce excessive ROS. However, because ROS were constantly increased in this study, the enhance enzyme activity in the green cells was not able to repair the ROS damage, leading to elevated MDA content. Of the four defensive enzymes measured in astaxanthin-deficient green cells, SOD eliminates O{2/-}, POD eliminates H2O2, which is a by-product of SOD activity, and APX and CAT are then initiated to scavenge excessive ROS.

  20. The subunit composition of human extracellular superoxide dismutase (EC-SOD) regulate enzymatic activity

    PubMed Central

    Petersen, Steen V; Valnickova, Zuzana; Oury, Tim D; Crapo, James D; Chr Nielsen, Niels; Enghild, Jan J

    2007-01-01

    Background Human extracellular superoxide dismutase (EC-SOD) is a tetrameric metalloenzyme responsible for the removal of superoxide anions from the extracellular space. We have previously shown that the EC-SOD subunit exists in two distinct folding variants based on differences in the disulfide bridge pattern (Petersen SV, Oury TD, Valnickova Z, Thøgersen IB, Højrup P, Crapo JD, Enghild JJ. Proc Natl Acad Sci USA. 2003;100(24):13875–80). One variant is enzymatically active (aEC-SOD) while the other is inactive (iEC-SOD). The EC-SOD subunits are associated into covalently linked dimers through an inter-subunit disulfide bridge creating the theoretical possibility of 3 dimers (aa, ai or ii) with different antioxidant potentials. We have analyzed the quaternary structure of the endogenous EC-SOD disulfide-linked dimer to investigate if these dimers in fact exist. Results The analyses of EC-SOD purified from human tissue show that all three dimer combinations exist including two homo-dimers (aa and ii) and a hetero-dimer (ai). Because EC-SOD is a tetramer the dimers may combine to generate 5 different mature EC-SOD molecules where the specific activity of each molecule is determined by the ratio of aEC-SOD and iEC-SOD subunits. Conclusion This finding shows that the aEC-SOD and iEC-SOD subunits combine in all 3 possible ways supporting the presence of tetrameric enzymes with variable enzymatic activity. This variation in enzymatic potency may regulate the antioxidant level in the extracellular space and represent a novel way of modulating enzymatic activity. PMID:17937792

  1. Superoxide scavenging activity of pirfenidone-iron complex

    SciTech Connect

    Mitani, Yoshihiro; Sato, Keizo Muramoto, Yosuke; Karakawa, Tomohiro; Kitamado, Masataka; Iwanaga, Tatsuya; Nabeshima, Tetsuji; Maruyama, Kumiko; Nakagawa, Kazuko; Ishida, Kazuhiko; Sasamoto, Kazumi

    2008-07-18

    Pirfenidone (PFD) is focused on a new anti-fibrotic drug, which can minimize lung fibrosis etc. We evaluated the superoxide (O{sub 2}{sup {center_dot}}{sup -}) scavenging activities of PFD and the PFD-iron complex by electron spin resonance (ESR) spectroscopy, luminol-dependent chemiluminescence assay, and cytochrome c reduction assay. Firstly, we confirmed that the PFD-iron complex was formed by mixing iron chloride with threefold molar PFD, and the complex was stable in distillated water and ethanol. Secondary, the PFD-iron complex reduced the amount of O{sub 2}{sup {center_dot}}{sup -} produced by xanthine oxidase/hypoxanthine without inhibiting the enzyme activity. Thirdly, it also reduced the amount of O{sub 2}{sup {center_dot}}{sup -} released from phorbor ester-stimulated human neutrophils. PFD alone showed few such effects. These results suggest the possibility that the O{sub 2}{sup {center_dot}}{sup -} scavenging effect of the PFD-iron complex contributes to the anti-fibrotic action of PFD used for treating idiopathic pulmonary fibrosis.

  2. Expression of functional NK1 receptors in human alveolar macrophages: superoxide anion production, cytokine release and involvement of NF-kappaB pathway.

    PubMed

    Bardelli, Claudio; Gunella, Gabriele; Varsaldi, Federica; Balbo, Pietro; Del Boca, Elisa; Bernardone, Ilaria Seren; Amoruso, Angela; Brunelleschi, Sandra

    2005-06-01

    1 Substance P (SP) is deeply involved in lung pathophysiology and plays a key role in the modulation of inflammatory-immune processes. We previously demonstrated that SP activates guinea-pig alveolar macrophages (AMs) and human monocytes, but a careful examination of its effects on human AMs is still scarce. 2 This study was undertaken to establish the role of SP in human AM isolated from healthy smokers and non-smokers, by evaluating the presence of tachykinin NK(1) receptors (NK-1R) and SP's ability to induce superoxide anion (O(2)(-)) production and cytokine release, as well as activation of the nuclear factor-kappaB (NF-kappaB) pathway. 3 By Western blot analysis and immunofluorescence, we demonstrate that authentic NK-1R are present on human AMs, a three-fold enhanced expression being observed in healthy smokers. These NK-1R are functional, as SP and NK(1) agonists dose-dependently induce O(2)(-) production and cytokine release. In AMs from healthy smokers, SP evokes an enhanced respiratory burst and a significantly increased release of tumor necrosis factor-alpha as compared to healthy non-smokers, but has inconsistent effects on IL-10 release. The NK(1) selective antagonist CP 96,345 ((2S,3S)-cis-2-diphenylmethyl-N[(2-methoxyphenyl)-methyl]-1-azabicyclo-octan-3-amine)) competitively antagonized SP-induced effects. 4 SP activates the transcription factor NF-kappaB, a three-fold increased nuclear translocation being observed in AMs from healthy smokers. This effect is receptor-mediated, as it is reproduced by the NK(1) selective agonist [Sar(9)Met(O(2))(11)]SP and reverted by CP 96,345. 5 These results clearly indicate that human AMs possess functional NK-1R on their surface, which are upregulated in healthy smokers, providing new insights on the mechanisms involved in tobacco smoke toxicity. PMID:15778738

  3. Polysaccharides from Astragalus membranaceus promote phagocytosis and superoxide anion (O2-) production by coelomocytes from sea cucumber Apostichopus japonicus in vitro.

    PubMed

    Sun, Yongxin; Jin, Liji; Wang, Tingting; Xue, Jipeng; Liu, Gang; Li, Xiaoyu; You, Jiansong; Li, Shuying; Xu, Yongping

    2008-04-01

    The potential immunostimulatory effects of Astralagus membranaceus polysaccharides (APS) on sea cucumber, Apostichopus japonicus (Selenka), were investigated in vitro. Phagocytosis and superoxide anion (O(2)(-)) production by phagocytic amoebocytes (PA) from A. japonicus coelomic fluid were measured during incubation at 18 degrees C, 22 degrees C, or 25 degrees C with APS at 0, 10, 20, or 40 microg mL(-1) (n=3). Phagocytic activity against yeast cells was quantified by direct visualization, and O(2)(-) production by nitroblue tetrazolium (NBT) reduction assay. Compared with controls, including APS at 20 microg mL(-1) significantly increased (P<0.05) the percentage of phagocytic capacity (PC) and phagocytic index (PI) at 18 degrees C and 22 degrees C, but no significant enhancement was observed at 25 degrees C. In contrast, the coelmocytes of A. japonicus can have an obvious generation of O(2)(-) after the stimulation. The concentration of 20 microg mL(-1) APS resulted in a significant increase in nitroblue tetrazolium (NBT) positive cells (P<0.05) at different temperature and even 10 microg mL(-1) APS could increase O(2)(-) generation significantly at 18 degrees C and 22 degrees C. Both phagocytosing and O(2)(-) production increased with the increase of APS concentration from 0 to 20 microg mL(-1) at different temperature, and when APS at 40 microg mL(-1), they were decreased. It suggested that immunocytes activity in A. japonicus decreased with the temperature increasing from 18 degrees C to 25 degrees C, and APS could be an effective immunostimulant to enhance phagocytic activity and O(2)(-) production. PMID:18221918

  4. Detoxification of superoxide without production of H2O2: Antioxidant activity of superoxide reductase complexed with ferrocyanide

    PubMed Central

    Molina-Heredia, Fernando P.; Houée-Levin, Chantal; Berthomieu, Catherine; Touati, Danièle; Tremey, Emilie; Favaudon, Vincent; Adam, Virgile; Nivière, Vincent

    2006-01-01

    The superoxide radical O2·̅ is a toxic by-product of oxygen metabolism. Two O2·̅ detoxifying enzymes have been described so far, superoxide dismutase and superoxide reductase (SOR), both forming H2O2 as a reaction product. Recently, the SOR active site, a ferrous iron in a [Fe2+ (N-His)4 (S-Cys)] pentacoordination, was shown to have the ability to form a complex with the organometallic compound ferrocyanide. Here, we have investigated in detail the reactivity of the SOR–ferrocyanide complex with O2·̅ by pulse and γ-ray radiolysis, infrared, and UV-visible spectroscopies. The complex reacts very efficiently with O2·̅. However, the presence of the ferrocyanide adduct markedly modifies the reaction mechanism of SOR, with the formation of transient intermediates different from those observed for SOR alone. A one-electron redox chemistry appears to be carried out by the ferrocyanide moiety of the complex, whereas the SOR iron site remains in the reduced state. Surprisingly, the toxic H2O2 species is no longer the reaction product. Accordingly, in vivoexperiments showed that formation of the SOR–ferrocyanide complex increased the antioxidant capabilities of SOR expressed in an Escherichia coli sodA sodB recA mutant strain. Altogether, these data describe an unprecedented O2·̅ detoxification activity, catalyzed by the SOR–ferrocyanide complex, which does not conduct to the production of the toxic H2O2 species. PMID:17001016

  5. Inhibition of phosphate transport in rat heart mitochondria by 3'-azido-3'-deoxythymidine due to stimulation of superoxide anion mitochondrial production.

    PubMed

    Valenti, Daniela; Atlante, Anna; Barile, Maria; Passarella, Salvatore

    2002-07-15

    In order to gain some insight into the mechanism by which 3'-azido-3'-deoxythymidine (AZT) damages mitochondria, we investigated whether externally added AZT can stimulate reactive oxygen species (ROS) production by rat heart mitochondria (RHM). An increase in superoxide anion ((O(2)(.-)) production was measured in RHM added with AZT, by using a photometrically method which allows an early O(2)(.-) detection by following the absorbance increase at 550 nm due to the ferricytochrome c reduction. Such an increase was found to be prevented from externally added superoxide dismutase. The stimulation of O(2)(.-) mitochondrial production induced by AZT was found to occur under conditions in which mitochondrial oxygen consumption was prevented by both inhibitors of electron flow and ATP synthesis. Since ROS can cause mitochondrial carrier impairment, we investigated whether AZT can affect mitochondrial permeability in virtue of its capability to stimulate ROS production. In this regard, we studied the transport of phosphate (P(i)), by measuring the mitochondrial shrinkage that takes place as a result of P(i) uptake by RHM previously swollen in a calcium acetate medium. As a result of the AZT-dependent O(2)(.-) production, uncompetitive inhibition of the rate of P(i) transport in RHM was found (K(i) of about 10 microM), consistently, such an inhibition was found to prevent by certain known ROS scavengers, i.e. superoxide dismutase, the antioxidant Vitamin C and reduced gluthatione. PMID:12123740

  6. Endogenous superoxide-like species and antioxidant activity in ocular tissues detected by luminol luminescence.

    PubMed

    Trevithick, J R; Dzialoszynski, T

    1997-04-01

    A new luminescent method was used to detect the reactive oxygen species in aqueous and vitreous humors and in homogenates of the lens and retina of laboratory rats. Superoxide-like activity per microgram protein increased in all tissues with weight of the rat, a good indicator of animal age. Superoxide dismutase, centrophenoxine, soluble vitamin E (D-alpha-Locopherol (polyethlyene glycol 1000) succinate, and N'-diphenyl-p-phenylenediamine (DPPD) reduced the luminescence. Catalase had no effect. These results are consistent with the detected species being superoxide-like. PMID:9111931

  7. Chaperonin 20 might be an iron chaperone for superoxide dismutase in activating iron superoxide dismutase (FeSOD)

    PubMed Central

    Kuo, Wen-Yu; Huang, Chien-Hsun; Jinn, Tsung-Luo

    2013-01-01

    Activation of Cu/Zn superoxide dismutases (CuZnSODs) is aided by Cu incorporation and disulfide isomerization by Cu chaperone of SOD (CCS). As well, an Fe-S cluster scaffold protein, ISU, might alter the incorporation of Fe or Mn into yeast MnSOD (ySOD2), thus leading to active or inactive ySOD2. However, metallochaperones involved in the activation of FeSODs are unknown. Recently, we found that a chloroplastic chaperonin cofactor, CPN20, could mediate FeSOD activity. To investigate whether Fe incorporation in FeSOD is affected by CPN20, we used inductively coupled plasma mass spectrometry to analyze the ability of CPN20 to bind Fe. CPN20 could bind Fe, and the Fe binding to FeSOD was increased with CPN20 incubation. Thus, CPN20 might be an Fe chaperone for FeSOD activation, a role independent of its well-known co-chaperonin activity. PMID:23299425

  8. Honokiol Dimers and Magnolol Derivatives with New Carbon Skeletons from the Roots of Magnolia officinalis and Their Inhibitory Effects on Superoxide Anion Generation and Elastase Release

    PubMed Central

    Chen, Hung-Chung; Kuo, Ping-Chung; Lee, E-Jian; Lee, Kuo-Hsiung; Wu, Tian-Shung

    2013-01-01

    Two honokiol dimers, houpulins A and B (1 and 2), and two magnolol derivatives, houpulins C and D (3 and 4), were isolated and characterized from an ethanol extract obtained from the roots of Magnolia officinalis. The chemical structures were determined based on spectroscopic and physicochemical analyses, which included 1D and 2D NMR, as well as mass spectrometry data. These four oligomers possess new carbon skeletons postulated to be biosynthesized from the coupling of three or four C6-C3 subunits. In addition, the new oligomers were evaluated for inhibition of superoxide anion generation and elastase release, and houpulin B (2) was identified as a new anti-inflammatory lead compound. PMID:23667420

  9. Effect of fluticasone propionate on neutrophil chemotaxis, superoxide generation, and extracellular proteolytic activity in vitro.

    PubMed Central

    Llewellyn-Jones, C. G.; Hill, S. L.; Stockley, R. A.

    1994-01-01

    BACKGROUND--Corticosteroids are widely used in the treatment of many inflammatory conditions but the exact mode of action on neutrophil function is uncertain. Fluticasone propionate is a new topically active synthetic steroid which can be measured in body fluids and which undergoes first pass metabolism. METHODS--The effects of fluticasone propionate on the function of neutrophils isolated from normal, healthy control subjects and on the chemotactic activity of sputum sol phase were assessed. RESULTS--Preincubation of neutrophils with fluticasone propionate reduced the chemotactic response to 10(-8) mol/l F-Met-Leu-Phe (FMLP) and to a 1:5 dilution of sputum sol phase in a dose dependent manner. Furthermore, when fluticasone propionate was added to sputum from eight patients with stable chronic obstructive bronchitis the chemotactic activity of a 1:5 dilution of the sol phase fell from a mean (SE) value of 22.2 (1.21) cells/field to 19.6 (0.89), 17.1 (0.74), and 11.9 (0.6) cells field at 1 mumol/l, 10 mumol/l, and 100 mumol/l, respectively. In further experiments fluticasone propionate preincubated with neutrophils inhibited fibronectin degradation by resting cells and by cells stimulated by FMLP (15.2% inhibition of resting cells, 5.1% inhibition of stimulated cells with 1 mumol/l fluticasone propionate, 24% and 18.7% inhibition respectively at 100 mumol/l fluticasone propionate. Fluticasone propionate had no effect on generation of superoxide anion by resting or stimulated cells. CONCLUSIONS--These results indicate that fluticasone propionate has a direct suppressive effect on several aspects of neutrophil function and may suggest a role for this agent in the modulation of neutrophil mediated damage to connective tissue. PMID:8202875

  10. Antioxidant capacity and angiotensin I converting enzyme inhibitory activity of a melon concentrate rich in superoxide dismutase.

    PubMed

    Carillon, Julie; Del Rio, Daniele; Teissèdre, Pierre-Louis; Cristol, Jean-Paul; Lacan, Dominique; Rouanet, Jean-Max

    2012-12-01

    Antioxidant capacity and angiotensin 1-converting enzyme (ACE) inhibitory activity of a melon concentrate rich in superoxide dismutase (SOD-MC) were investigated in vitro. The total antioxidant capacity (TAC) was measured by the Trolox equivalent antioxidant capacity assay (TEAC), the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical assay, and the ferric reducing antioxidant power assay (FRAP). The ability of the extract to scavenge three specific reactive oxygen species (superoxide radical anion (O(2)(-)), hydroxyl radical (HO()) and hydrogen peroxide (H(2)O(2))) was also investigated in order to better evaluate its antioxidant properties. Even if the measures of TAC were relatively low, results clearly established an antioxidant potential of SOD-MC that exhibited the highest radical-scavenging activity towards O(2)(-), with a IC(50) 12-fold lower than that of H(2)O(2) or HO(). This lets hypothesis that the antioxidant potential of SOD-MC could be mainly due to its high level of SOD. Moreover, for the first time, an ACE inhibitory activity of SOD-MC (IC(50)=2.4±0.1mg/mL) was demonstrated, showing that its use as a functional food ingredient with potential preventive benefits in the context of hypertension may have important public health implications and should be carefully considered. PMID:22953857

  11. Structures of two superoxide dismutases from Bacillus anthracis reveal a novel active centre

    SciTech Connect

    Boucher, Ian W.; Kalliomaa, Anne K.; Levdikov, Vladimir M.; Blagova, Elena V.; Fogg, Mark J.; Brannigan, James A. Wilson, Keith S.; Wilkinson, Anthony J.

    2005-07-01

    The crystal structures of two manganese superoxide dismutases from B. anthracis were solved by X-ray crystallography using molecular replacement. The BA4499 and BA5696 genes of Bacillus anthracis encode proteins homologous to manganese superoxide dismutase, suggesting that this organism has an expanded repertoire of antioxidant proteins. Differences in metal specificity and quaternary structure between the dismutases of prokaryotes and higher eukaryotes may be exploited in the development of therapeutic antibacterial compounds. Here, the crystal structure of two Mn superoxide dismutases from B. anthracis solved to high resolution are reported. Comparison of their structures reveals that a highly conserved residue near the active centre is substituted in one of the proteins and that this is a characteristic feature of superoxide dismutases from the B. cereus/B. anthracis/B. thuringiensis group of organisms.

  12. Superoxide Flashes

    PubMed Central

    Ma, Qi; Fang, Huaqiang; Shang, Wei; Liu, Lei; Xu, Zhengshuang; Ye, Tao; Wang, Xianhua; Zheng, Ming; Chen, Quan; Cheng, Heping

    2011-01-01

    Irreversible mitochondrial permeability transition and the resultant cytochrome c release signify the commitment of a cell to apoptotic death. However, the role of transient MPT (tMPT) because of flickering opening of the mitochondrial permeability transition pore remains elusive. Here we show that tMPT and the associated superoxide flashes (i.e. tMPT/superoxide flashes) constitute early mitochondrial signals during oxidative stress-induced apoptosis. Selenite (a ROS-dependent insult) but not staurosporine (a ROS-independent insult) stimulated an early and persistent increase in tMPT/superoxide flash activity prior to mitochondrial fragmentation and a global ROS rise, independently of Bax translocation and cytochrome c release. Selectively targeting tMPT/superoxide flash activity by manipulating cyclophilin D expression or scavenging mitochondrial ROS markedly impacted the progression of selenite-induced apoptosis while exerting little effect on the global ROS response. Furthermore, the tMPT/superoxide flash served as a convergence point for pro- and anti-apoptotic regulation mediated by cyclophilin D and Bcl-2 proteins. These results indicate that tMPT/superoxide flashes act as early mitochondrial signals mediating the apoptotic response during oxidative stress, and provide the first demonstration of highly efficacious local mitochondrial ROS signaling in deciding cell fate. PMID:21659534

  13. Synergism between arsenite and proteasome inhibitor MG132 over cell death in myeloid leukaemic cells U937 and the induction of low levels of intracellular superoxide anion

    SciTech Connect

    Lombardo, Tomás; Cavaliere, Victoria; Costantino, Susana N.; Kornblihtt, Laura; Alvarez, Elida M.; Blanco, Guillermo A.

    2012-02-01

    Increased oxygen species production has often been cited as a mechanism determining synergism on cell death and growth inhibition effects of arsenic-combined drugs. However the net effect of drug combination may not be easily anticipated solely from available knowledge of drug-induced death mechanisms. We evaluated the combined effect of sodium arsenite with the proteasome inhibitor MG132, and the anti-leukaemic agent CAPE, on growth-inhibition and cell death effect in acute myeloid leukaemic cells U937 and Burkitt's lymphoma-derived Raji cells, by the Chou–Talalay method. In addition we explored the association of cytotoxic effect of drugs with changes in intracellular superoxide anion (O{sub 2}{sup −}) levels. Our results showed that combined arsenite + MG132 produced low levels of O{sub 2}{sup −} at 6 h and 24 h after exposure and were synergic on cell death induction in U937 cells over the whole dose range, although the combination was antagonistic on growth inhibition effect. Exposure to a constant non-cytotoxic dose of 80 μM hydrogen peroxide together with arsenite + MG132 changed synergism on cell death to antagonism at all effect levels while increasing O{sub 2}{sup −} levels. Arsenite + hydrogen peroxide also resulted in antagonism with increased O{sub 2}{sup −} levels in U937 cells. In Raji cells, arsenite + MG132 also produced low levels of O{sub 2}{sup −} at 6 h and 24 h but resulted in antagonism on cell death and growth inhibition. By contrast, the combination arsenite + CAPE showed high levels of O{sub 2}{sup −} production at 6 h and 24 h post exposure but resulted in antagonism over cell death and growth inhibition effects in U937 and Raji cells. We conclude that synergism between arsenite and MG132 in U937 cells is negatively associated to O{sub 2}{sup −} levels at early time points after exposure. -- Highlights: ► Arsenic combined cytotoxic and anti-proliferative effects by Chou–Talalay method. ► Cytotoxic effect associated

  14. Construction of a Fusion Enzyme Exhibiting Superoxide Dismutase and Peroxidase Activity.

    PubMed

    Sharapov, M G; Novoselov, V I; Ravin, V K

    2016-04-01

    A chimeric gene construct encoding human peroxiredoxin 6 and Mn-superoxide dismutase from Escherichia coli was developed. Conditions for expression of the fusion protein in E. coli cell were optimized. Fusing of the enzymes into a single polypeptide chain with peroxiredoxin 6 at the N-terminus (PSH) did not affect their activities. On the contrary, the chimeric protein with reverse order of enzymes (SPH) was not obtained in a water-soluble active form. The active chimeric protein (PSH) exhibiting both peroxidase and superoxide dismutase activities was prepared and its physicochemical properties were characterized. PMID:27293100

  15. Unexpected superoxide dismutase antioxidant activity of ferric chloride in acetonitrile.

    PubMed

    Foti, Mario C; Ingold, K U

    2003-11-14

    The azobis(isobutyronitrile)-initiated autoxidation of gamma-terpinene in acetonitrile at 50 degrees C yields only p-cymene and hydrogen peroxide (1:1) in a chain reaction carried by the hydroperoxyl radical, HOO. (Foti, M. C.; Ingold, K. U. J. Agric. Food Chem. 2003, 51, 2758-2765). This reaction is retarded by very low (microM) concentrations of FeCl(3) and CuCl(2). The kinetics of the FeCl(3)-inhibited autoxidation are consistent with chain-termination via the following: Fe(3+) + HOO. <==>[Fe(IV)-OOH](3+) and [Fe(IV)-OOH](3+) + HOO. --> Fe(3+) + H2O2 + O2. Thus, FeCl(3) in acetonitrile can be regarded as a very effective (and very simple) superoxide dismutase. The kinetics of the CuCl(2)-inhibited autoxidation indicate that chain transfer occurs and becomes more and more important as the reaction proceeds, i.e., the inhibition is replaced by autocatalysis. These kinetics are consistent withreduction of Cu2+ to Cu+ by HOO. and then the reoxidation of Cu+ to Cu2+ by both HOO.and the H2O2 product. The latter reaction yields HO. radicals which continue the chain. PMID:14604404

  16. Tissue-specific activity of two manganese superoxide dismutase promoters in transgenic tobacco.

    PubMed Central

    Van Camp, W; Hérouart, D; Willekens, H; Takahashi, H; Saito, K; Van Montagu, M; Inzé, D

    1996-01-01

    In eukaryotes, manganese superoxide dismutase is a nuclear-encoded protein that scavenges superoxide radicals in the mitochondrial matrix. We have isolated two manganese superoxide dismutase genes from Nicotiana plumbaginifolia L. and fused the 5' upstream regulatory region of these genes to the beta-glucuronidase reporter gene. The two gene fusions displayed a differential tissue specificity in transgenic tobacco (Nicotiana tabacum). Promoter activity of the SodA1 gene fusion was found in the pollen, middle layer, and stomium of anthers, but was usually undetectable in vegetative organs of mature plants. The SodA2 gene fusion was expressed in the leaves, stems, roots, and flowers. SodA2 promoter activity was most prominent in the vascular bundles, stomata, axillary buds, pericycle, stomium, and pollen. Histochemical analysis of succinate dehydrogenase activity suggested that the spatial expression of the two gene fusions is generally correlated with mitochondrial respiratory activity. PMID:8883376

  17. An anion channel in Arabidopsis hypocotyls activated by blue light.

    PubMed Central

    Cho, M H; Spalding, E P

    1996-01-01

    A rapid, transient depolarization of the plasma membrane in seedling stems is one of the earliest effects of blue light detected in plants. It appears to play a role in transducing blue light into inhibition of hypocotyl (stem) elongation, and perhaps other responses. The possibility that activation of a Cl- conductance is part of the depolarization mechanism was raised previously and addressed here. By patch clamping hypocotyl cells isolated from dark-grown (etiolated) Arabidopsis seedlings, blue light was found to activate an anion channel residing at the plasma membrane. An anion-channel blocker commonly known as NPPB 15-nitro-2-(3-phenylpropylamino)-benzoic acid] potently and reversibly blocked this anion channel. NPPB also blocked the blue-light-induced depolarization in vivo and decreased the inhibitory effect of blue light on hypocotyl elongation. These results indicate that activation of this anion channel plays a role in transducing blue light into growth inhibition. PMID:8755616

  18. An anion channel in Arabidopsis hypocotyls activated by blue light

    NASA Technical Reports Server (NTRS)

    Cho, M. H.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1996-01-01

    A rapid, transient depolarization of the plasma membrane in seedling stems is one of the earliest effects of blue light detected in plants. It appears to play a role in transducing blue light into inhibition of hypocotyl (stem) elongation, and perhaps other responses. The possibility that activation of a Cl- conductance is part of the depolarization mechanism was raised previously and addressed here. By patch clamping hypocotyl cells isolated from dark-grown (etiolated) Arabidopsis seedlings, blue light was found to activate an anion channel residing at the plasma membrane. An anion-channel blocker commonly known as NPPB 15-nitro-2-(3-phenylpropylamino)-benzoic acid] potently and reversibly blocked this anion channel. NPPB also blocked the blue-light-induced depolarization in vivo and decreased the inhibitory effect of blue light on hypocotyl elongation. These results indicate that activation of this anion channel plays a role in transducing blue light into growth inhibition.

  19. Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance

    SciTech Connect

    Beckman, J.S.; Minor, R.L. Jr.; White, C.W.; Repine, J.E.; Rosen, G.M.; Freeman, B.A.

    1988-05-15

    Covalent conjugation of superoxide dismutase and catalase with polyethylene glycol (PEG) increases the circulatory half-lives of these enzymes from <10 min to 40 h, reduced immunogenicity, and decreases sensitivity to proteolysis. Because PEG has surface active properties and can induce cell fusion, the authors hypothesized that PEG conjugation could enhance cell binding and association of normally membrane-impermeable enzymes. Incubation of cultured porcine aortic endothelial cells with /sup 125/I-PEG-catalase or /sup 125/I-PEG-superoxide dismutase produced a linear, concentration-dependent increase in cellular enzyme activity and radioactivity. Fluorescently labeled PEG-superoxide dismutase incubated with endothelial cells showed a vesicular localization. Mechanical injury to cell monolayers, which is known to stimulate endocytosis, further increased the uptake of fluorescent PEG-superoxide dismutase. Addition of PEG and PEG-conjugated enzymes perturbed the spin-label binding environment, indicative of producing an increase in plasma membrane fluidity. Thus, PEG conjugation to superoxide dismutase and catalase enhances cell association of these enzymes in a manner which increases cellular enzyme activities and provides prolonged protection from partially reduced oxygen species.

  20. Investigations of riboflavin photolysis via coloured light in the nitro blue tetrazolium assay for superoxide dismutase activity.

    PubMed

    Cheng, Chien-wei; Chen, Liang-yü; Chou, Chan-wei; Liang, Ji-yuan

    2015-07-01

    Determination of the superoxide dismutase activity is an important issue in the fields of biochemistry and the medical sciences. In the riboflavin/nitro blue tetrazolium (B2/NBT) method, the light sources used for generating superoxide anion radicals from light-excited riboflavin are normally fluorescent lamps. However, the conditions of B2/NBT experiments vary. This study investigated the effect of the light source on the light-excitation of riboflavin. The effectiveness of the photolysis was controlled by the wavelength of the light source. The spectra of fluorescent lamps are composed of multiple colour lights, and the emission spectra of fluorescent lamps made by different manufacturers may vary. Blue light was determined to be the most efficient for the photochemical reaction of riboflavin in visible region. The quality of the blue light in fluorescent lamps is critical to the photo-decomposition of riboflavin. A blue light is better than a fluorescent lamp for the photo-decomposition of riboflavin. The performance of the B2/NBT method is thereby optimized. PMID:25985146

  1. Magnetic Resonance Imaging of Mitochondrial Dysfunction and Metabolic Activity, Accompanied by Overproduction of Superoxide.

    PubMed

    Bakalova, Rumiana; Georgieva, Ekaterina; Ivanova, Donika; Zhelev, Zhivko; Aoki, Ichio; Saga, Tsuneo

    2015-12-16

    This study shows that a mitochondria-penetrating nitroxide probe (mito-TEMPO) allows detection of superoxide and visualization of mitochondrial dysfunction in living cells due to the effect of T1 shortening in MRI. Mitochondrial dysfunction was induced by treatment of cells with rotenone and 2-methoxyestradiol (2-ME/Rot). The MRI measurements were performed on 7T MRI. The 2-ME/Rot-treated cells were characterized by overproduction of superoxide, which was confirmed by a conventional dihydroethidium test. In the presence of mito-TEMPO, the intensity of MRI signal in 2-ME/Rot-treated cells was ∼30-40% higher, in comparison with that in untreated cells or culture media. In model (cell-free) systems, we observed that superoxide, but not hydrogen peroxide, increased the intensity of T1-weighted MRI signal of mito-TEMPO. Moreover, the superoxide restores the T1-weighted MRI contrast of mito-TEMPOH, a noncontrast (diamagnetic) analogue of mito-TEMPO. This was also confirmed by using EPR spectroscopy. The results demonstrate that superoxide radical is involved in the enhancement of T1-weighted MRI contrast in living cells, in the absence and presence of mito-TEMPO. This report gives a direction for discovering new opportunities for functional MRI, for detection of metabolic activity, accompanied by overproduction of superoxide, as well as by disturbance of the balance between superoxide and hydrogen peroxide, a very important approach to clarify the fine molecular mechanisms in the regulation of many pathologies. The visualization of mitochondrial activity in real-time can be crucial to clarify the molecular mechanism of the functional MRI in its commonly accepted definition, as a method for detection of neurovascular coupling. PMID:26367059

  2. In vitro detection of superoxide anions released from cancer cells based on potassium-doped carbon nanotubes-ionic liquid composite gels

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Rong; Wang, Bo; Xu, Jing-Juan; Chen, Hong-Yuan

    2011-12-01

    A newly developed electrochemical biosensor for the determination of superoxide anions (O2&z.rad;-) released from cancer cells using potassium-doped multi-walled carbon nanotubes (KMWNTs)-1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) ionic liquid composite gels is demonstrated. The KMWNTs-[BMIM]PF6 can electrocatalyze oxygen reduction to generate a strong current signal in neutral solution. Compared with KMWNTs without [BMIM]PF6 or MWNTs-[BMIM]PF6 composites, the KMWNTs-[BMIM]PF6 can enhance the oxygen reduction peak current by 6.2-fold and 2.8-fold, which greatly increases the detection sensitivity of oxygen. Then, O2&z.rad;- biosensors are fabricated by mixing superoxide dismutase (SOD) in the KMWNTs-[BMIM]PF6 gels via monitoring oxygen produced by an enzymic reaction between SOD/O2&z.rad;- without the help of electron mediators. The resulting biosensors show a linear range from 0.04 to 38 μM with a high sensitivity of 98.2 μA mM-1, and a lower detection limit of 0.024 μM. The common interferents such as hydrogen peroxide (H2O2), ascorbic acid (AA), uric acid (UA), and metabolites of neurotransmitters, do not interfere with the detection of O2&z.rad;-. The proposed biosensor is tested to determine O2&z.rad;-in vitro and from liver cancer and leukemia cells and shows good application potential in biological electrochemistry.

  3. Membrane-Active Peptides and the Clustering of Anionic Lipids

    PubMed Central

    Wadhwani, P.; Epand, R.F.; Heidenreich, N.; Bürck, J.; Ulrich, A.S.; Epand, R.M.

    2012-01-01

    There is some overlap in the biological activities of cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs). We compared nine AMPs, seven CPPs, and a fusion peptide with regard to their ability to cluster anionic lipids in a mixture mimicking the cytoplasmic membrane of Gram-negative bacteria, as measured by differential scanning calorimetry. We also studied their bacteriostatic effect on several bacterial strains, and examined their conformational changes upon membrane binding using circular dichroism. A remarkable correlation was found between the net positive charge of the peptides and their capacity to induce anionic lipid clustering, which was independent of their secondary structure. Among the peptides studied, six AMPs and four CPPs were found to have strong anionic lipid clustering activity. These peptides also had bacteriostatic activity against several strains (particularly Gram-negative Escherichia coli) that are sensitive to lipid clustering agents. AMPs and CPPs that did not cluster anionic lipids were not toxic to E. coli. As shown previously for several types of AMPs, anionic lipid clustering likely contributes to the mechanism of antibacterial action of highly cationic CPPs. The same mechanism could explain the escape of CPPs from intracellular endosomes that are enriched with anionic lipids. PMID:22853904

  4. Structures of two superoxide dismutases from Bacillus anthracis reveal a novel active centre

    PubMed Central

    Boucher, Ian W.; Kalliomaa, Anne K.; Levdikov, Vladimir M.; Blagova, Elena V.; Fogg, Mark J.; Brannigan, James A.; Wilson, Keith S.; Wilkinson, Anthony J.

    2005-01-01

    The BA4499 and BA5696 genes of Bacillus anthracis encode proteins homologous to manganese superoxide dismutase, suggesting that this organism has an expanded repertoire of antioxidant proteins. Differences in metal specificity and quaternary structure between the dismutases of prokaryotes and higher eukaryotes may be exploited in the development of therapeutic antibacterial compounds. Here, the crystal structure of two Mn superoxide dismutases from B. anthracis solved to high resolution are reported. Comparison of their structures reveals that a highly conserved residue near the active centre is substituted in one of the proteins and that this is a characteristic feature of superoxide dismutases from the B. cereus/B. anthracis/B. thuringiensis group of organisms. PMID:16511113

  5. Redox-activated expression of the cytosolic copper/zinc superoxide dismutase gene in Nicotiana.

    PubMed Central

    Hérouart, D; Van Montagu, M; Inzé, D

    1993-01-01

    Superoxide dismutases (SODs; superoxide: superoxide oxidoreductase, EC 1.15.1.1) play a key role in protection against oxygen radicals, and SOD gene expression is highly induced during environmental stress. To determine the conditions of SOD induction, the promoter of the cytosolic copper/zinc SOD (Cu/ZnSODcyt) gene was isolated in Nicotiana plumbaginifolia and fused to the beta-glucuronidase reporter gene. Oxidative stress is likely to alter the cellular redox in favor of the oxidized status. Surprisingly, the expression of the Cu/ZnSODcyt gene is induced by sulfhydryl antioxidants such as reduced glutathione, cysteine, and dithiothreitol, whereas the oxidized forms of glutathione and cysteine have no effect. It is therefore possible that reduced glutathione directly acts as an antioxidant and simultaneously activates the Cu/ZnSODcyt gene during oxidative stress. Images Fig. 2 PMID:8464930

  6. Enhanced superoxide release and tumoricidal activity by a postlavage, in situ pulmonary macrophage population in response to activation by Mycobacterium bovis BCG exposure.

    PubMed Central

    Drath, D B

    1985-01-01

    The monocytic phagocyte population of rat lungs is heterogeneous. In addition to the freely lavagable alveolar macrophages, there is a fixed in situ tissue-associated subpopulation of pulmonary macrophages. The response of this subpopulation to classical macrophage activation by Mycobacterium bovis BCG exposure was monitored. Results indicate that this population can be activated both metabolically and functionally, as evidenced by enhanced release of superoxide anions and demonstrable tumoricidal activity against syngeneic and xenogeneic target cells. The pattern of metabolic activation of in situ tissue-associated macrophages differed somewhat from that of alveolar macrophages and was observed only after subsequent exposure of the cells to either zymosan particles or phorbol myristate acetate. Upon such exposure, the activated zymosan-treated tissue macrophages released approximately twice as much superoxide as the nonactivated cells and amounts comparable to the amounts released by activated alveolar macrophages. The tissue macrophages also displayed greater levels of cytotoxicity toward xenogenic targets than the alveolar cells and may have an important role in preventing microbial or tumor cell colonization of respiratory systems. PMID:2989181

  7. Enhanced superoxide release and tumoricidal activity by a postlavage, in situ pulmonary macrophage population in response to activation by Mycobacterium bovis BCG exposure.

    PubMed

    Drath, D B

    1985-07-01

    The monocytic phagocyte population of rat lungs is heterogeneous. In addition to the freely lavagable alveolar macrophages, there is a fixed in situ tissue-associated subpopulation of pulmonary macrophages. The response of this subpopulation to classical macrophage activation by Mycobacterium bovis BCG exposure was monitored. Results indicate that this population can be activated both metabolically and functionally, as evidenced by enhanced release of superoxide anions and demonstrable tumoricidal activity against syngeneic and xenogeneic target cells. The pattern of metabolic activation of in situ tissue-associated macrophages differed somewhat from that of alveolar macrophages and was observed only after subsequent exposure of the cells to either zymosan particles or phorbol myristate acetate. Upon such exposure, the activated zymosan-treated tissue macrophages released approximately twice as much superoxide as the nonactivated cells and amounts comparable to the amounts released by activated alveolar macrophages. The tissue macrophages also displayed greater levels of cytotoxicity toward xenogenic targets than the alveolar cells and may have an important role in preventing microbial or tumor cell colonization of respiratory systems. PMID:2989181

  8. Superoxide dismutase activity in mesocarp tissue from divergent Cucumis melo L. genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Muskmelon (Cucumis melo L.) fruit matrix is unique among plant foods in being able to provide a protective medium in which the antioxidant activity of the enzyme superoxide dismutase (SOD) is preserved during the digestive process, and therefore, being able to elicit in vivo pharmacological effects ...

  9. An extract from berries of Aronia melanocarpa modulates the generation of superoxide anion radicals in blood platelets from breast cancer patients.

    PubMed

    Kedzierska, Magdalena; Olas, Beata; Wachowicz, Barbara; Stochmal, Anna; Oleszek, Wieslaw; Jeziorski, Arkadiusz; Piekarski, Janusz; Glowacki, Rafal

    2009-10-01

    Plant antioxidants protect cells against oxidative stress. Because oxidative stress (measured by different biomarkers) is observed in breast cancer patients, the aim of this study was to establish the effects of a polyphenol-rich extract of Aronia melanocarpa (final concentration of 50 microg/mL, 5 min, 37 degrees C) on superoxide anion radicals (O(2)(-*)) and glutathione (GSH) in platelets from patients with breast cancer and in a healthy group in vitro. Generation of O(2)(-*) in platelets before and after incubation with the extract was measured by cytochrome C reduction. Using HPLC, we determined the level of glutathione in blood platelets. We observed a statistically significant increase of biomarkers of oxidative stress such as O(2)(-*) and a decrease in GSH in platelets from patients with breast cancer compared with the healthy group. We showed that the extract from A. melanocarpa added to blood platelets significantly reduced the production of O(2)(-*) in platelets not only from the healthy group but also from patients with breast cancer. Considering the data presented in this study, we have demonstrated the protective role of the extract from A. melanocarpa in patients with breast cancer in vitro. PMID:19444773

  10. Induction of the superoxide anion radical scavenging capacity of dried 'funori'Gloiopeltis furcata by Lactobacillus plantarum S-SU1 fermentation.

    PubMed

    Kuda, Takashi; Nemoto, Maki; Kawahara, Miho; Oshio, Satoshi; Takahashi, Hajime; Kimura, Bon

    2015-08-01

    To understand the beneficial properties of edible algae obtained from the north-eastern (Sanriku) Satoumi region of Japan, the antioxidant properties of hot aqueous extract solutions (AES) obtained from 18 dried algal products were determined. The samples included 4 Ceratophyllum demersum (matsumo), 5 Undaria pinnatifida (wakame), 5 Laminaria japonica (kombu), and 2 each of Gloiopeltis furcate (funori) and G. tenax (funori). Of these products, the total phenolic content and Fe-reducing power were highest in matsumo. On the other hand, the polysaccharide content, viscosity, and superoxide anion radical (O2˙(-))-scavenging capacity were highest in funori. Lactobacillus plantarum S-SU3, isolated from the intestine of Japanese surfperch, and Lb. plantarum S-SU1, isolated from salted squid, could ferment the AES of matsumo and funori, respectively. Although the Fe-reducing power of the matsumo solution was reduced due to fermentation, the O2˙(-)-scavenging capacity of the funori solution was increased by fermentation. Furthermore, the fermented funori suspension protected Saccharomyces cerevisiae, a live cell model, against H2O2 toxicity. These results suggest that the fermented funori is a promising functional food material that is capable of protecting against reactive oxygen species. PMID:26110834

  11. Superoxide dismutase activity in healthy and inflamed pulp tissues of permanent teeth in children.

    PubMed

    Tulunoglu, O; Alacam, A; Bastug, M; Yavuzer, S

    1998-01-01

    The free radicals play an important role in the tissue damage. Oxygen-derived free radicals are controlled by various cellular defense mechanisms consisting of enzymatic such as superoxide dismutase, catalase, glutathion peroxidase and nonenzymatic scavenger components. Superoxide dismutase (SOD) is responsible for the dismutation of the superoxide radicals into hydrogen peroxide and molecular oxygen. In this study, pulp samples extirpated from the teeth of the 27 children between 10-15 ages which diagnosed to be healthy, reversible pulpitis or symptomatic irreversible pulpitis were evaluated for the activity of superoxide dismutase enzyme. There were statistically significant differences between healthy and reversible pulpitis, and between reversible and symptomatic irreversible pulpitis groups. The SOD activity of the reversible pulpitis group were significantly lower than the irreversible pulpitis and healthy pulp groups. The evaluation of the data revealed that the quantity of SOD as a vitality protector enzyme is low at the beginning of the inflammation as a consequence of rapidly depletion and/or destruction of this enzyme, but as the inflammation proceeds the pulp tissue showed adaptation to this situation. PMID:9796506

  12. Biochemical Characterization, Action on Macrophages, and Superoxide Anion Production of Four Basic Phospholipases A2 from Panamanian Bothrops asper Snake Venom

    PubMed Central

    Rueda, Aristides Quintero; Rodríguez, Isela González; Arantes, Eliane C.; Setúbal, Sulamita S.; Calderon, Leonardo de A.; Zuliani, Juliana P.; Stábeli, Rodrigo G.; Soares, Andreimar M.

    2013-01-01

    Bothrops asper (Squamata: Viperidae) is the most important venomous snake in Central America, being responsible for the majority of snakebite accidents. Four basic PLA2s (pMTX-I to -IV) were purified from crude venom by a single-step chromatography using a CM-Sepharose ion-exchange column (1.5 × 15 cm). Analysis of the N-terminal sequence demonstrated that pMTX-I and III belong to the catalytically active Asp49 phospholipase A2 subclass, whereas pMTX-II and IV belong to the enzymatically inactive Lys49 PLA2s-like subclass. The PLA2s isolated from Panama Bothrops asper venom (pMTX-I, II, III, and IV) are able to induce myotoxic activity, inflammatory reaction mainly leukocyte migration to the muscle, and induce J774A.1 macrophages activation to start phagocytic activity and superoxide production. PMID:23509779

  13. Biochemical characterization, action on macrophages, and superoxide anion production of four basic phospholipases A2 from Panamanian Bothrops asper snake venom.

    PubMed

    Rueda, Aristides Quintero; Rodríguez, Isela González; Arantes, Eliane C; Setúbal, Sulamita S; Calderon, Leonardo de A; Zuliani, Juliana P; Stábeli, Rodrigo G; Soares, Andreimar M

    2013-01-01

    Bothrops asper (Squamata: Viperidae) is the most important venomous snake in Central America, being responsible for the majority of snakebite accidents. Four basic PLA2s (pMTX-I to -IV) were purified from crude venom by a single-step chromatography using a CM-Sepharose ion-exchange column (1.5 × 15 cm). Analysis of the N-terminal sequence demonstrated that pMTX-I and III belong to the catalytically active Asp49 phospholipase A2 subclass, whereas pMTX-II and IV belong to the enzymatically inactive Lys49 PLA2s-like subclass. The PLA2s isolated from Panama Bothrops asper venom (pMTX-I, II, III, and IV) are able to induce myotoxic activity, inflammatory reaction mainly leukocyte migration to the muscle, and induce J774A.1 macrophages activation to start phagocytic activity and superoxide production. PMID:23509779

  14. Mitochondrial superoxide flashes: metabolic biomarkers of skeletal muscle activity and disease

    PubMed Central

    Wei, Lan; Salahura, Gheorghe; Boncompagni, Simona; Kasischke, Karl A.; Protasi, Feliciano; Sheu, Shey-Shing; Dirksen, Robert T.

    2011-01-01

    Mitochondrial superoxide flashes (mSOFs) are stochastic events of quantal mitochondrial superoxide generation. Here, we used flexor digitorum brevis muscle fibers from transgenic mice with muscle-specific expression of a novel mitochondrial-targeted superoxide biosensor (mt-cpYFP) to characterize mSOF activity in skeletal muscle at rest, following intense activity, and under pathological conditions. Results demonstrate that mSOF activity in muscle depended on electron transport chain and adenine nucleotide translocase functionality, but it was independent of cyclophilin-D-mediated mitochondrial permeability transition pore activity. The diverse spatial dimensions of individual mSOF events were found to reflect a complex underlying morphology of the mitochondrial network, as examined by electron microscopy. Muscle activity regulated mSOF activity in a biphasic manner. Specifically, mSOF frequency was significantly increased following brief tetanic stimulation (18.1±1.6 to 22.3±2.0 flashes/1000 μm2·100 s before and after 5 tetani) and markedly decreased (to 7.7±1.6 flashes/1000 μm2·100 s) following prolonged tetanic stimulation (40 tetani). A significant temperature-dependent increase in mSOF frequency (11.9±0.8 and 19.8±2.6 flashes/1000 μm2·100 s at 23°C and 37°C) was observed in fibers from RYR1Y522S/WT mice, a mouse model of malignant hyperthermia and heat-induced hypermetabolism. Together, these results demonstrate that mSOF activity is a highly sensitive biomarker of mitochondrial respiration and the cellular metabolic state of muscle during physiological activity and pathological oxidative stress.—Wei, L., Salahura, G., Boncompagni, S., Kasischke, K. A., Protasi, F., Sheu, S.-S., Dirksen, R. T. Mitochondrial superoxide flashes: metabolic biomarkers of skeletal muscle activity and disease. PMID:21646399

  15. A bryozoan species may offer novel antioxidants with anti-carbon-dioxide anion radical activity.

    PubMed

    Pejin, Boris; Savic, Aleksandar G; Hegedis, Aleksandar; Karaman, Ivo; Horvatovic, Mladen; Mojovic, Milos

    2014-01-01

    The antiradical activity of the freshwater bryozoan Hyalinella punctata water extracts (two samples, seasonal collection) was evaluated by using electron paramagnetic resonance spectroscopy against hydroxyl (√OH), superoxide anion (√O2(- )), methoxy (√CH2OH), carbon-dioxide anion (√CO2(- )), nitric-oxide (√NO) and 2,2-diphenyl-1-picrylhydrazyl (√DPPH) radicals. The extracts reduced the production of all tested radicals but to a varying degree. The better activity was observed against √CO2(- ) and √CH2OH radicals (54 ± 5% and 44 ± 4%, and 58 ± 6% and 22 ± 2%, respectively) than towards √DPPH, √NO, √OH and √O2(- ) radicals (59 ± 6% and 1.0 ± 0.1%, 46 ± 5% and 14 ± 1%, 7.0 ± 0.5% and 34 ± 3%, and 33 ± 3% and 0%, respectively). FTIR spectra of the both extracts indicate the presence of cyclic peptides and polypeptides which might be responsible for the observed activity. According to the experimental data obtained, H. punctata water extract may be considered as a novel promising resource of natural products with anti √CO2(- ) radical activity. PMID:24897340

  16. [Ability of carbon dioxide to inhibit generation of superoxide anion radical in cells and its biomedical role].

    PubMed

    Kogan, A Kh; Grachev, S V; Eliseeva, S V; Bolevich, S

    1996-01-01

    The study was carried out on blood phagocytes and alveolar macrophages of 96 persons, cells of inner organs and tissue phagocytes (liver, brain, myocardium, lungs, kidneys, stomach, skeletal muscles), as well as on mitochondria of the liver of 186 non-linear white mice. Generation of active oxygen forms (AOF) was evaluated by various methods with CO2 directly affecting the cells and bioptates and indirectly the whole organism. The results show that CO2 with tension close to that of the blood (37.0 mm Hg) and at higher tensions (60 and 146 mm Hg) is a powerful inhibitor of AOF generation by human and animal cells, as well as by liver mitochondria of mice. The data obtained allow to explain, in terms of AOF role, a number of physiological and pathophysiological (medical) CO2 effects. PMID:9139450

  17. OXIDATIVE STRESS ACTIVATES ANION EXCHANGE PROTEIN 2 AND AP-1 IN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Anion exchange protein 2 (AE2) is a membrane-bound protein that mediates chloride-bicarbonate exchange. In addition to regulating intracellular pH and cell volume, AE2 exports superoxide (O.) to the extracellular matrix in an HCO-dependent process. Given this ability to export O....

  18. Limitation of dietary copper and zinc decreases superoxide dismutase activity in the onion fly, Delia antiqua.

    PubMed

    Matsuo, T; Ooe, S; Ishikawa, Y

    1997-06-01

    Larvae of the onion fly, Delia antiqua, have lower superoxide dismutase (SOD) activity when they are fed a defined synthetic diet that contains no copper or zinc. SOD activity was rapidly recovered when these larvae were fed onion bulbs. Addition of copper and zinc to the synthetic diet also led to the recovery of SOD activity. Results of an immunoblotting analysis using anti-D. antiqua CuZnSOD mouse monoclonal antibody suggest that this alteration of SOD activity is dependent on the amount of CuZnSOD. PMID:9172377

  19. Absence of superoxide dismutase activity causes nuclear DNA fragmentation during the aging process

    SciTech Connect

    Muid, Khandaker Ashfaqul; Karakaya, Hüseyin Çaglar; Koc, Ahmet

    2014-02-07

    Highlights: • Aging process increases ROS accumulation. • Aging process increases DNA damage levels. • Absence of SOD activity does not cause DNA damage in young cells. • Absence of SOD activity accelerate aging and increase oxidative DNA damages during the aging process. - Abstract: Superoxide dismutases (SOD) serve as an important antioxidant defense mechanism in aerobic organisms, and deletion of these genes shortens the replicative life span in the budding yeast Saccharomyces cerevisiae. Even though involvement of superoxide dismutase enzymes in ROS scavenging and the aging process has been studied extensively in different organisms, analyses of DNA damages has not been performed for replicatively old superoxide dismutase deficient cells. In this study, we investigated the roles of SOD1, SOD2 and CCS1 genes in preserving genomic integrity in replicatively old yeast cells using the single cell comet assay. We observed that extend of DNA damage was not significantly different among the young cells of wild type, sod1Δ and sod2Δ strains. However, ccs1Δ mutants showed a 60% higher amount of DNA damage in the young stage compared to that of the wild type cells. The aging process increased the DNA damage rates 3-fold in the wild type and more than 5-fold in sod1Δ, sod2Δ, and ccs1Δ mutant cells. Furthermore, ROS levels of these strains showed a similar pattern to their DNA damage contents. Thus, our results confirm that cells accumulate DNA damages during the aging process and reveal that superoxide dismutase enzymes play a substantial role in preserving the genomic integrity in this process.

  20. Regulation of an in vivo metal-exchangeable superoxide dismutase from Propionibacterium shermanii exhibiting activity with different metal cofactors.

    PubMed Central

    Sehn, A P; Meier, B

    1994-01-01

    The anaerobic, but aerotolerant Propionibacterium freudenreichii sp. shermanii contains a single superoxide dismutase [EC 1.15.1.1.] exhibiting comparable activity with iron or manganese as metal cofactor. The formation of superoxide dismutase is not depending on the supplementation of iron or manganese to the culture medium. Even in the absence of these metals the protein is built in comparable amounts. Bacteria grown in the absence of iron and manganese synthesize a superoxide dismutase with very low activity which had incorporated copper. If the medium was also depleted of copper, cobalt was incorporated, leading to an enzymically inactive form. In the absence of cobalt an enzymically inactive superoxide dismutase was built with unknown metal contents. Upon aeration the amount of superoxide dismutase activity increased continuously up to 9 h, due to a de novo synthesis of the protein. This superoxide dismutase had incorporated iron into the active centre. The superoxide dismutase of Propionibacterium shermanii is able to form a much wider variety of complexes with trace metal ions in vivo than previously recognized, leading to the hypothesis that the original function of these proteins was the binding of cytoplasmic trace metals present in excess. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7818484

  1. Peroxidase activation of cytoglobin by anionic phospholipids: Mechanisms and consequences.

    PubMed

    Tejero, Jesús; Kapralov, Alexandr A; Baumgartner, Matthew P; Sparacino-Watkins, Courtney E; Anthonymutu, Tamil S; Vlasova, Irina I; Camacho, Carlos J; Gladwin, Mark T; Bayir, Hülya; Kagan, Valerian E

    2016-05-01

    Cytoglobin (Cygb) is a hexa-coordinated hemoprotein with yet to be defined physiological functions. The iron coordination and spin state of the Cygb heme group are sensitive to oxidation of two cysteine residues (Cys38/Cys83) and/or the binding of free fatty acids. However, the roles of redox vs lipid regulators of Cygb's structural rearrangements in the context of the protein peroxidase competence are not known. Searching for physiologically relevant lipid regulators of Cygb, here we report that anionic phospholipids, particularly phosphatidylinositolphosphates, affect structural organization of the protein and modulate its iron state and peroxidase activity both conjointly and/or independently of cysteine oxidation. Thus, different anionic lipids can operate in cysteine-dependent and cysteine-independent ways as inducers of the peroxidase activity. We establish that Cygb's peroxidase activity can be utilized for the catalysis of peroxidation of anionic phospholipids (including phosphatidylinositolphosphates) yielding mono-oxygenated molecular species. Combined with the computational simulations we propose a bipartite lipid binding model that rationalizes the modes of interactions with phospholipids, the effects on structural re-arrangements and the peroxidase activity of the hemoprotein. PMID:26928591

  2. Simple Biological Systems for Assessing the Activity of Superoxide Dismutase Mimics

    PubMed Central

    Tovmasyan, Artak; Reboucas, Julio S.

    2014-01-01

    Abstract Significance: Half a century of research provided unambiguous proof that superoxide and species derived from it—reactive oxygen species (ROS)—play a central role in many diseases and degenerative processes. This stimulated the search for pharmaceutical agents that are capable of preventing oxidative damage, and methods of assessing their therapeutic potential. Recent Advances: The limitations of superoxide dismutase (SOD) as a therapeutic tool directed attention to small molecules, SOD mimics, that are capable of catalytically scavenging superoxide. Several groups of compounds, based on either metal complexes, including metalloporphyrins, metallocorroles, Mn(II) cyclic polyamines, and Mn(III) salen derivatives, or non-metal based compounds, such as fullerenes, nitrones, and nitroxides, have been developed and studied in vitro and in vivo. Very few entered clinical trials. Critical Issues and Future Directions: Development of SOD mimics requires in-depth understanding of their mechanisms of biological action. Elucidation of both molecular features, essential for efficient ROS-scavenging in vivo, and factors limiting the potential side effects requires biologically relevant and, at the same time, relatively simple testing systems. This review discuses the advantages and limitations of genetically engineered SOD-deficient unicellular organisms, Escherichia coli and Saccharomyces cerevisiae as tools for investigating the efficacy and mechanisms of biological actions of SOD mimics. These simple systems allow the scrutiny of the minimal requirements for a functional SOD mimic: the association of a high catalytic activity for superoxide dismutation, low toxicity, and an efficient cellular uptake/biodistribution. Antioxid. Redox Signal. 20, 2416–2436. PMID:23964890

  3. Anion Permeation in Ca2+-Activated Cl− Channels

    PubMed Central

    Qu, Zhiqiang; Hartzell, H. Criss

    2000-01-01

    Ca2+-activated Cl channels (ClCaCs) are an important class of anion channels that are opened by increases in cytosolic [Ca2+]. Here, we examine the mechanisms of anion permeation through ClCaCs from Xenopus oocytes in excised inside-out and outside-out patches. ClCaCs exhibited moderate selectivity for Cl over Na: PNa/PCl = 0.1. The apparent affinity of ClCaCs for Cl was low: Kd = 73 mM. The channel had an estimated pore diameter >0.6 nm. The relative permeabilities measured under bi-ionic conditions by changes in Erev were as follows: C(CN)3 > SCN > N(CN)2 > ClO4 > I > N3 > Br > Cl > formate > HCO3 > acetate = F > gluconate. The conductance sequence was as follows: N3 > Br > Cl > N(CN)2 > I > SCN > COOH > ClO4 > acetate > HCO3 = C(CN)3 > gluconate. Permeant anions block in a voltage-dependent manner with the following affinities: C(CN)3 > SCN = ClO4 > N(CN)2 > I > N3 > Br > HCO3 > Cl > gluconate > formate > acetate. Although these data suggest that anionic selectivity is determined by ionic hydration energy, other factors contribute, because the energy barrier for permeation is exponentially related to anion hydration energy. ClCaCs exhibit weak anomalous mole fraction behavior, implying that the channel may be a multi-ion pore, but that ions interact weakly in the pore. The affinity of the channel for Ca2+ depended on the permeant anion at low [Ca2+] (100–500 nM). Apparently, occupancy of the pore by a permeant anion increased the affinity of the channel for Ca2+. The current was strongly dependent on pH. Increasing pH on the cytoplasmic side decreased the inward current, whereas increasing pH on the external side decreased the outward current. In both cases, the apparent pKa was voltage-dependent with apparent pKa at 0 mV = ∼9.2. The channel may be blocked by OH− ions, or protons may titrate a site in the pore necessary for ion permeation. These data demonstrate that the permeation properties of ClCaCs are different from those of CFTR or ClC-1, and provide

  4. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress.

    PubMed

    Ribeiro, Thales P; Fernandes, Christiane; Melo, Karen V; Ferreira, Sarah S; Lessa, Josane A; Franco, Roberto W A; Schenk, Gerhard; Pereira, Marcos D; Horn, Adolfo

    2015-03-01

    Due to their aerobic lifestyle, eukaryotic organisms have evolved different strategies to overcome oxidative stress. The recruitment of some specific metalloenzymes such as superoxide dismutases (SODs) and catalases (CATs) is of great importance for eliminating harmful reactive oxygen species (hydrogen peroxide and superoxide anion). Using the ligand HPClNOL {1-[bis(pyridin-2-ylmethyl)amino]-3-chloropropan-2-ol}, we have synthesized three coordination compounds containing iron(III), copper(II), and manganese(II) ions, which are also present in the active site of the above-noted metalloenzymes. These compounds were evaluated as SOD and CAT mimetics. The manganese and iron compounds showed both SOD and CAT activities, while copper showed only SOD activity. The copper and manganese in vitro SOD activities are very similar (IC50~0.4 μmol dm(-3)) and about 70-fold higher than those of iron. The manganese compound showed CAT activity higher than that of the iron species. Analyzing their capacity to protect Saccharomyces cerevisiae cells against oxidative stress (H2O2 and the O2(•-) radical), we observed that all compounds act as antioxidants, increasing the resistance of yeast cells mainly due to a reduction of lipid oxidation. Especially for the iron compound, the data indicate complete protection when wild-type cells were exposed to H2O2 or O2(•-) species. Interestingly, these compounds also compensate for both superoxide dismutase and catalase deficiencies; their antioxidant activity is metal ion dependent, in the order iron(III)>copper(II)>manganese(II). The protection mechanism employed by the complexes proved to be independent of the activation of transcription factors (such as Yap1, Hsf1, Msn2/Msn4) and protein synthesis. There is no direct relation between the in vitro and the in vivo antioxidant activities. PMID:25511255

  5. Catalase and superoxide dismutase activities after heat injury of listeria monocytogenes

    SciTech Connect

    Dallmier, A.W.; Martin, S.E.

    1988-02-01

    Four strains of Listeria monocytogenes were examined for catalase (CA) and superoxide dismutase (SOD) activities. The two strains having the highest CA activities (LCDC and Scott A) also possessed the highest SOD activities. The CA activity of heated cell extracts of all four strains examined decreased sharply between 55 and 60/sup 0/C. SOD was more heat labile than CA. Two L. monocytogenes strains demonstrated a decline in SOD activity after heat treatment at 45/sup 0/C, whereas the other two strains demonstrated a decline at 50/sup 0/C. Sublethal heating of the cells at 55/sup 0/C resulted in increased sensitivity to 5.5% NaCl. Exogenous hydrogen peroxide was added to suspensions of L. monocytogenes; strains producing the highest CA levels showed the greatest H/sub 2/O/sub 2/ resistance.

  6. Extracellular superoxide dismutase ameliorates house dust mite-induced atopic dermatitis-like skin inflammation and inhibits mast cell activation in mice.

    PubMed

    Lee, Yun Sang; Choi, Jung-Hye; Lee, Ji-Hyun; Lee, Han-Woong; Lee, Weontae; Kim, Woo Taek; Kim, Tae-Yoon

    2016-08-01

    Extracellular superoxide dismutase (EC-SOD) is an enzyme that catalyses the dismutation of superoxide anions. It has multiple functions, such as reactive oxygen species scavenging, anti-angiogenic, anti-inflammatory, antichemotatic and antitumor activities. Recently, we demonstrated that EC-SOD inhibits ovalbumin-induced allergic airway inflammation in mice. However, the anti-allergic effect of EC-SOD on skin tissue and the role of EC-SOD in mast cells, which are important for allergic responses, have not been well studied. In this study, we investigated whether EC-SOD can alleviate atopic dermatitis in mice and inhibit mast cell activation. Treatment with human recombinant EC-SOD ameliorated house dust mite-induced atopic dermatitis in mice. Furthermore, the levels of pro-allergic cytokine gene expression and histamine release increased in EC-SOD KO mast cells and decreased in EC-SOD overexpressing mast cells, suggesting that EC-SOD inhibits mast cell activation. Consistently, a passive cutaneous anaphylaxis experiment showed more blood leakage from EC-SOD KO mouse ear skin, implying that the lack of EC-SOD increases allergic responses. These results suggest that EC-SOD inhibits mast cell activation and atopic dermatitis and that the loss of EC-SOD causes more severe allergic responses, implying that EC-SOD might be a good drug candidate for treatment of allergic disorders, such as atopic dermatitis. PMID:27061078

  7. Assessment of physical and antioxidant activity stability, in vitro release and in vivo efficacy of formulations added with superoxide dismutase alone or in association with alpha-tocopherol.

    PubMed

    Di Mambro, Valéria Maria; Fonseca, Maria José Vieira

    2007-06-01

    A topical formulation was added with different concentrations of superoxide dismutase (SOD) alone or in association with alpha-tocopherol (alpha-TOC). The physical stability was evaluated by rheological behavior of formulations stored at 4 degrees C, 30 degrees C/60% RH and 40 degrees C/70% RH for 6 months. SOD alone and formulations containing SOD 0.2%, 0.4% or 0.6% or SOD and alpha-TOC were stored in the same conditions and the enzymatic activity was evaluated by the superoxide anion scavenging using chemiluminescence measurement. In vitro release study was carried out using modified Franz diffusion cell and SOD formulations photoprotection against skin erythema was observed for 72 h. SOD and alpha-TOC formulation proved to be instable, since the interaction between the antioxidants led to both physical and enzymatic activity instability. SOD formulations showed to be physically stable and maintained the enzymatic activity for 6 months when stored at 4 and 30 degrees C/60% RH. Despite the fact of low SOD release from the formulation, it was effective in inhibiting the UVB-induced skin erythema for 48 h after a single application. Topical administration of antioxidants provides an efficient way to enrich the endogenous cutaneous protection system, and SOD formulations could be used for improving photoprotection of skin. PMID:17196809

  8. PEA chloroplasts under clino-rotation: lipid peroxidation and superoxide dismutase activity

    NASA Astrophysics Data System (ADS)

    Baranenko, V. V.

    The lipid peroxidation (LP) intensity and the activity of the antioxidant enzyme superoxide dismutase (SOD) were studied in chloroplasts of pea (Pisum sativum L.) plants grown for 7 and 14 days under clino-rotation. An increase in LP levels in chloroplasts during both terms of clinorotation in comparison with stationary controls was documented. SOD activity increased in chloroplasts of plants that were clino-rotated for seven days. SOD has a significant protective effect by diminishing the availability of O2-. However, under more prolonged clino-rotation (14 days), SOD activity decreased but was still higher than in the control samples. In accordance with Selye's oxidative stress theory (Selye, 1956; modified by Leshem et al., 1998), plants that were clino-rotated for seven days are presumed to be in a stage of resistance while 14-day plants reached a stage of exhaustion.

  9. Oxidase, superoxide dismutase, and hydrogen peroxide reductase activities of methanobactin from types I and II methanotrophs.

    PubMed

    Choi, Dong W; Semrau, Jeremy D; Antholine, William E; Hartsel, Scott C; Anderson, Ryan C; Carey, Jeffrey N; Dreis, Ashley M; Kenseth, Erik M; Renstrom, Joel M; Scardino, Lori L; Van Gorden, Garrett S; Volkert, Anna A; Wingad, Aaron D; Yanzer, Paul J; McEllistrem, Marcus T; de la Mora, Arlene M; DiSpirito, Alan A

    2008-08-01

    Methanobactin (mb) is a copper-binding chromopeptide that appears to be involved in oxidation of methane by the membrane-associated or particulate methane monooxygenase (pMMO). To examine this potential physiological role, the redox and catalytic properties of mb from three different methanotrophs were examined in the absence and presence of O(2). Metal free mb from the type II methanotroph Methylosinus trichosporium OB3b, but not from the type I methanotrophs Methylococcus capsulatus Bath or Methylomicrobium album BG8, were reduced by a variety of reductants, including NADH and duroquinol, and catalyzed the reduction of O(2) to O(2)(-). Copper-containing mb (Cu-mb) from all three methanotrophs showed several interesting properties, including reductase dependent oxidase activity, dismutation of O(2)(-) to H(2)O(2), and the reductant dependent reduction of H(2)O(2) to H(2)O. The superoxide dismutase-like and hydrogen peroxide reductase activities of Cu-mb were 4 and 1 order(s) of magnitude higher, respectively, than the observed oxidase activity. The results demonstrate that Cu-mb from all three methanotrophs are redox-active molecules and oxygen radical scavengers, with the capacity to detoxify both superoxide and hydrogen peroxide without the formation of the hydroxyl radicals associated with Fenton reactions. As previously observed with Cu-mb from Ms. trichosporium OB3b, Cu-mb from both type I methanotrophs stimulated pMMO activity. However, in contrast to previous studies using mb from Ms. trichosporium OB3b, pMMO activity was not inhibited by mb from the two type I methanotrophs at low copper to mb ratios. PMID:18372044

  10. ENVIRONMENTAL EFFECTS ON SUPEROXIDE DISMUTASE AND CATALASE ACTIVITY AND EXPRESSION IN HONEY BEE.

    PubMed

    Nikolić, Tatjana V; Purać, Jelena; Orčić, Snežana; Kojić, Danijela; Vujanović, Dragana; Stanimirović, Zoran; Gržetić, Ivan; Ilijević, Konstantin; Šikoparija, Branko; Blagojević, Duško P

    2015-12-01

    Understanding the cellular stress response in honey bees will significantly contribute to their conservation. The aim of this study was to analyze the response of the antioxidative enzymes superoxide dismutase and catalase in honey bees related to the presence of toxic metals in different habitats. Three locations were selected: (i) Tunovo on the mountain Golija, as control area, without industry and large human impact, (ii) Belgrade as urban area, and (iii) Zajača, as mining and industrial zone. Our results showed that the concentrations of lead (Pb) in whole body of bees vary according to habitat, but there was very significant increase of Pb in bees from investigated industrial area. Bees from urban and industrial area had increased expression of both Sod1 and Cat genes, suggesting adaptation to increased oxidative stress. However, in spite increased gene expression, the enzyme activity of catalase was lower in bees from industrial area suggesting inhibitory effect of Pb on catalase. PMID:26314562

  11. Mononuclear copper (II) salicylate complexes with 1,2-dimethylimidazole and 2-methylimidazole: Synthesis, spectroscopic and crystal structure characterization and their superoxide scavenging activities

    NASA Astrophysics Data System (ADS)

    Abuhijleh, A. Latif

    2010-09-01

    The complexes cis-bis (1,2-dimethylimidazole) bis (salicylato) copper (II) ( 1) and tris (2-methylimidazole) (salicylato) copper (II) ( 2) have been prepared by the reaction of appropriate methylimidazole derivative with binuclear copper (II) aspirinate. Spectral and X-ray structural studies for complex 1 showed that the copper ion is coordinated in a cis arrangement to two imidazole nitrogen atoms and two carboxylate oxygen atoms from the salicylate mono-anion ligands. The second carboxylate oxygen atoms form weak axial interactions with the copper ion. Spectral, magnetic and analytical data for complex 2 showed that the copper ion is bonded to three 2-methylimidazole nitrogen atoms and one doubly deprotonated salicylate di-anion, which is chelated to Cu (II) ion through one of its carboxylate oxygen atoms and the deprotonated hydroxyl oxygen atom to form distorted square-pyramidal geometry having CuN 3O + O chromophore. The superoxide dismutase (SOD) mimetic activities (IC 50) of the complexes 1, 2 and the structurally known mixture complexes Cu (imidazole) n(salicylato) 2( 3) (where n = 2, 5 and 6) were determined using the xanthine-xanthine oxidase assay and compared with those reported for other copper (II) complexes with anti-inflammatory drugs. The results obtained indicated that complexes 1- 3 have high SOD-like activities, which may act as good mimics for native Cu, Zn-SOD enzyme.

  12. Macrocyclic nickel(II) complexes: Synthesis, characterization, superoxide scavenging activity and DNA-binding

    NASA Astrophysics Data System (ADS)

    Ramadan, Abd El-Motaleb M.

    2012-05-01

    A new series of nickel(II) complexes with the tetraaza macrocyclic ligand have been synthesized as possible functional models for nickel-superoxide dismutase enzyme. The reaction of 5-amino-3-methyl-1-phenylpyrazole-4-carbaldehyde (AMPC) with itself in the presence of nickel(II) ion yields, the new macrocyclic cationic complex, [NiL(NO3)2], containing a ligand composed of the self-condensed AMPC (4 mol) bound to a single nickel(II) ion. A series of metathetical reactions have led to the isolation of a number of newly complexes of the types [NiL]X2; X = ClO4 and BF4, [NiLX2], X = Cl and Br (Scheme 1). Structures and characterizations of these complexes were achieved by several physicochemical methods namely, elemental analysis, magnetic moment, conductivity, and spectral (IR and UV-Vis) measurements. The electrochemical properties and thermal behaviors of these chelates were investigated by using cyclic voltammetry and thermogravimetric analysis (TGA and DTG) techniques. A distorted octahedral stereochemistry has been proposed for the six-coordinate nitrato, and halogeno complexes. For the four-coordinate, perchlorate and fluoroborate, complex species a square-planar geometry is proposed. The measured superoxide dismutase mimetic activities of the complexes indicated that they are potent NiSOD mimics and their activities are compared with those obtained previously for nickel(II) complexes. The probable mechanistic implications of the catalytic dismutation of O2rad - by the synthesized nickel(II) complexes are discussed. The DNA-binding properties of representative complexes [NiLCl2] and [NiL](PF4)2 have been investigated by the electronic absorption and fluorescence measurements. The results obtained suggest that these complexes bind to DNA via an intercalation binding mode and the binding affinity for DNA follows the order: [NiLCl2] □ [NiL](PF4)2.

  13. Do Superoxide Dismutase (SOD) and Catalase (CAT) protect Cells from DNA Damage Induced by Active Arsenicals?

    EPA Science Inventory

    Superoxide dismutase (SOD) catalyzes the conversion of superoxide to hydrogen peroxide, which can be converted to water and oxygen through the action of catalase. Heterozygous mice of strain B6: 129S7-SodltmlLeb/J were obtained from Jackson Laboratories and bred to produce offspr...

  14. Sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts

    SciTech Connect

    Paoletti, F.; Aldinucci, D.; Mocali, A.; Caparrini, A.

    1986-05-01

    Superoxide dismutase (EC 1.15.1.1) has been assayed by a spectrophotometric method based on the inhibition of a superoxide-driven NADH oxidation. The assay consists of a purely chemical reaction sequence which involves EDTA. Mn(II), mercaptoethanol, and molecular oxygen, requiring neither auxiliary enzymes nor sophisticated equipment. The method is very flexible and rapid and is applicable with high sensitivity to the determination of both pure and crude superoxide dismutase preparations. The decrease of the rate of NADH oxidation is a function of enzyme concentration, and saturation levels are attainable. Fifty percent inhibition, corresponding to one unit of the enzyme, is produced by approximately 15 ng of pure superoxide dismutase. Experiments on rat liver cytosol have shown the specificity of the method for superoxide dismutase. Moreover, common cellular components do not interfere with the measurement, except for hemoglobin when present at relatively high concentrations. The assay is performed at physiological pH and is unaffected by catalase.

  15. Superoxide dismutase activity of Mycobacterium avium, M. intracellulare, and M. scrofulaceum.

    PubMed Central

    Mayer, B K; Falkinham, J O

    1986-01-01

    Superoxide dismutase (EC 1.15.1.1) (SOD) activity has been detected in crude cell extracts of representative strains of the Mycobacterium avium, M. intracellulare, and M. scrofulaceum (MAIS) group. Polyacrylamide gel electrophoresis demonstrated a single SOD activity band for each of the MAIS strains, though there were differences in mobility. All M. avium and M. intracellulare and two of five M. scrofulaceum strains demonstrated a single activity band of identical mobility (Rf = 0.83), while the SOD activity band for the three remaining M. scrofulaceum strains migrated farther (Rf = 0.85). The differences in mobility correlated with differences in sensitivity to NaN3 and H2O2. The SOD activities of the majority of the MAIS strains which displayed the slower-migrating activity band were inhibited 22 to 81% after 15 min of exposure to 5 mM H2O2, suggesting that both iron and manganese may be present in a single enzyme. The SOD activities of the three M. scrofulaceum strains which had the faster-migrating activity band were inhibited 100% after only 5 min of exposure to 5 mM H2O2 and exhibited greater sensitivity to 5 and 10 mM NaN3, characteristics of an iron-containing SOD. A concentration of 1 mM KCN did not cause inhibition of enzyme activity in any of the MAIS strains tested. Extracellular SOD activity was detected in four of six MAIS strains and was shown to be identical in mobility to the SOD activity of the crude extracts. Images PMID:3744555

  16. Catalase and superoxide dismutase activities as biomarkers of oxidative stress in workers exposed to mercury vapors

    SciTech Connect

    Perrin-Nadif, R.; Dusch, M.; Mur, J.M.; Koch, C.; Schmitt, P.

    1996-06-07

    We investigated the role of three blood antioxidant enzyme activities and total antioxidant status (TAS) as biological markers of oxidative stress in workers exposed to mercury (Hg{degrees}) vapors. Twenty-two female workers took part in the study. Blood and urine sampling for biological analyses was performed. The workers were classified into three subgroups according to their creatinine-corrected Hg concentration in urine. Blood antioxidant enzyme activities and TAS were compared between groups with nonparametric distribution-free methods. A significant difference existed in catalase activity and a slight, but not significant, difference existed in Cu{sup 2+}/Zn{sup 2+} superoxide dismutase (Cu{sup 2+}/Zn{sup 2+} SOD) activity between the three groups. No differences were observed in either the glutathione peroxidase activity or the TAS between these groups. Catalase and Cu{sup 2+}/Zn{sup 2+} SOD activities were increased in the groups of workers with higher creatinine-corrected urinary Hg concentrations when compared with the group of lower creatinine-corrected urinary Hg concentrations. Catalase activity was positively correlated with the creatinine-corrected concentration of Hg in urine, and Cu{sup 2+}/Zn{sup 2+} SOD activity was slightly correlated with the creatinine-corrected concentration of Hg in urine. The role of erythrocyte catalase and Cu{sup 2}/Zn{sup 2+} SOD activities we have measured is in agreement with the hypothesis of the involvement of reactive oxygen species production as an important event in chronic exposure to Hg{degrees} vapors in humans. In spite of the small sample size, results indicate that erythrocyte catalase and Cu{sup 2+}/Zn{sup 2+} SOD activities could be considered as markers of biological effect in workers exposed to Hg{degrees} vapors. 24 refs., 3 figs., 2 tabs.

  17. Effects of cadmium on growth and superoxide dismutase activity of the marine microalga Tetraselmis gracilis (Prasinophyceae)

    SciTech Connect

    Okamoto, O.K.; Asano, C.S.; Aidar, E.; Colepicolo, P.

    1996-02-01

    Marine planktonic algae are frequently exposed to metallic contaminants. Because heavy metals can be assimilated and accumulated by algal cells, they can then be transferred to higher trophic levels of food chains. We studied the effects of cadmium on protein production and the growth of the marine prasinophyte Tetraselmis gracilis (Kylin) Butcher. By means of toxicological assays, we estimated the LC{sub 50} of cadmium as 3.2 ppm and 1.8 ppm after 48 h and 96 h of exposure to this heavy metal, respectively. The growth of curves and survival percentages of cell cultures in the presence of cadmium were determined, and a proportional reduction of both parameters with increasing metal concentrations of cadmium, T. gracilis contained high levels of superoxide dismutase (SOD) activity, one of the main enzymes of the cell`s antioxidant defense mechanism. Under these growth conditions, total SOD activity in crude extracts was increased by 41% (at 1.5 ppm) and 107% (at 3.0 ppm). Assays of SOD activity in nondenaturing polyacrylamide gels also showed a similar induction by cadmium. These results show that cadmium has potentially toxic properties since it significantly inhibited the growth of T. gracilis at low concentrations and promoted by induction of SOD activity, suggestive of an oxidative stress state. Besides being the first report of SOD in T. gracilis, this work describes experimental evidence of SOD induction by cadmium in this species. 56 refs., 4 figs., 1 tab.

  18. Effect of a short-term in vitro exposure to the marine toxin domoic acid on viability, tumor necrosis factor-alpha, matrix metalloproteinase-9 and superoxide anion release by rat neonatal microglia

    PubMed Central

    Mayer, Alejandro MS; Hall, Mary; Fay, Michael J; Lamar, Peter; Pearson, Celeste; Prozialeck, Walter C; Lehmann, Virginia KB; Jacobson, Peer B; Romanic, Anne M; Uz, Tolga; Manev, Hari

    2001-01-01

    Background The excitatory amino acid domoic acid, a glutamate and kainic acid analog, is the causative agent of amnesic shellfish poisoning in humans. No studies to our knowledge have investigated the potential contribution to short-term neurotoxicity of the brain microglia, a cell type that constitutes circa 10% of the total glial population in the brain. We tested the hypothesis that a short-term in vitro exposure to domoic acid, might lead to the activation of rat neonatal microglia and the concomitant release of the putative neurotoxic mediators tumor necrosis factor-α (TNF-α), matrix metalloproteinases-2 and-9 (MMP-2 and -9) and superoxide anion (O2-). Results In vitro, domoic acid [10 μM-1 mM] was significantly neurotoxic to primary cerebellar granule neurons. Although neonatal rat microglia expressed ionotropic glutamate GluR4 receptors, exposure during 6 hours to domoic acid [10 μM-1 mM] had no significant effect on viability. By four hours, LPS (10 ng/mL) stimulated an increase in TNF-α mRNA and a 2,233 % increase in TNF-α protein In contrast, domoic acid (1 mM) induced a slight rise in TNF-α expression and a 53 % increase (p < 0.01) of immunoreactive TNF-α protein. Furthermore, though less potent than LPS, a 4-hour treatment with domoic acid (1 mM) yielded a 757% (p < 0.01) increase in MMP-9 release, but had no effect on MMP-2. Finally, while PMA (phorbol 12-myristate 13-acetate) stimulated O2- generation was elevated in 6 hour LPS-primed microglia, a similar pretreatment with domoic acid (1 mM) did not prime O2- release. Conclusions To our knowledge this is the first experimental evidence that domoic acid, at in vitro concentrations that are toxic to neuronal cells, can trigger a release of statistically significant amounts of TNF-α and MMP-9 by brain microglia. These observations are of considerable pathophysiological significance because domoic acid activates rat microglia several days after in vivo administration. PMID:11686853

  19. Effects of copper supplementation on erythrocyte superoxide dismutase activity levels in rheumatoid arthritis patients

    SciTech Connect

    Marten, J.T.; DiSilvestro, R.A. )

    1989-02-09

    Rheumatoid arthritis (RA) patients are reported to possess lower than normal levels of Cu-Zn superoxide dismutase (SOD) activity. The contribution of copper status to these low values has not been examined. To address this issue, blood samples were obtained from 10 RA patients before and after 28 days of daily oral copper supplementation (2 mg/day). All patients were receiving gold therapy. Each RA subject, before supplementation, displayed lower erythrocyte SOD values than any of 25 age matched controls. The mean value for the RA subjects was about 40% lower than the control mean, whether expressed as units per ml packed cells or per mg hemoglobin. Erythrocyte SOD activity levels were increased in all subjects by the 4 week copper supplementation, with 7 of the patients showing at least a 22% increase. Presupplement SOD activities showed no correlation with serum C-reactive protein contents, an indicator of acute phase response. Serum levels of the copper containing acute phase protein ceruloplasmin, showed variable responses to copper supplementation. The studies described here are currently being extended to include RA subjects not being treated with gold and to include supplemented controls.

  20. Superoxide dismutase activity as a measure of hepatic oxidative stress in cattle following ethionine administration.

    PubMed

    Abd Ellah, Mahmoud R; Okada, Keiji; Goryo, Masanobu; Oishi, Akihiro; Yasuda, Jun

    2009-11-01

    The goal of this study was to assess if oxidative stress, as measured by alterations in the concentrations of antioxidant enzymes in the liver and erythrocytes of cattle, could be induced following dl-ethionine administration. Whole blood, serum and liver biopsy samples were collected 0, 4, 7 and 10 days after intra-peritoneal ethionine administration to five cows. The activities of the antioxidant enzymes copper zinc superoxide dismutase (Cu, Zn SOD) and catalase were assessed in the liver biopsies which were also examined histopathologically. Significant increases in hepatic Cu, Zn SOD concentrations (P<0.01) were noted on days 7 and 10 post-treatment. Hepatic catalase activity decreased significantly (P<0.01) on days 4, 7 and 10 post-treatment and erythrocyte Cu, Zn SOD activity was significantly increased on day 10. Serum biochemical analysis revealed a significant increase (P<0.01) in non-esterified fatty acid concentrations on day 4 and significant decreases in total cholesterol and phospholipid levels on days 4 (P<0.05), 7 (P<0.01) and 10 (P<0.01). In this model system, dl-ethionine administration was effective in inducing oxidative stress particularly reflected in the liver. PMID:18585936

  1. Aortic ascorbic acid, trace elements, and superoxide dismutase activity in human aneurysmal and occlusive disease

    SciTech Connect

    Dubick, M.A.; Hunter, G.C.; Casey, S.M.; Keen, C.L.

    1987-02-01

    Altered trace elements and ascorbic acid metabolism have been implicated in the pathogenesis of atherosclerotic cardiovascular disease. However, their role in the disease process, or the effect of atherosclerosis on their tissue levels within plaque, is poorly understood. The presence study analyzes the concentrations of Fe, Cu, Zn, and Mn, and ascorbic acid and superoxide dismutase (SOD) activity in tissue samples from 29 patients with abdominal aortic aneurysms (AAA) and 14 patients with atherosclerotic occlusive disease (AOD). It was observed that the Fe and Mn concentrations in AAA and AOD tissue were higher than the levels in nondiseased control aorta, whereas Cu and Zn levels in AAA and AOD tissue were similar to the levels in controls. The Zn:Cu ratio was significantly lower in the AAA tissue in comparison to both AOD and control tissue. In addition, AAA and AOD tissue had low ascorbic acid levels and low Cu, Zn-SOD activity with Cu,Zn-SOD:Mn-SOD ratios of 0.27 and 0.19, respectively, compared to a ratio of 3.20 in control aorta. These data indicate that aorta affected by aneurysms and occlusive disease have altered trace element and ascorbic acid concentrations, as well as low Cu,Zn-SOD activity. Although these observations do not directly support the hypothesis that AAA is associated with aortic Cu deficiency they do suggest a role for oxygen radicals or increased lipid peroxidation in occlusive and aneurysmal disease of the aorta.

  2. Copper-zinc superoxide dismutase activity in dental pulp after dental preparation.

    PubMed

    Varvara, G; Pinchi, V; Caputi, S; D'Arcangelo, C; Scarano, A; Sinjari, B; Murmura, G

    2012-01-01

    The superoxide dismutases (SODs) are the major enzymatic defence mechanism against toxic reactive oxygen species generated during normal oxidative metabolism and during the respiratory burst associated with inflammation. To further clarify the potential role of copper-zinc (Cu/Zn)-SOD during inflammation of pulp tissue in humans, the aim was to determine whether significant changes in Cu/Zn-SOD activity occur in healthy dental pulp after dental preparation. The condition of the pulp was assessed using clinical and radiographic evaluation. Thirty systemically healthy patients were the source of the pulp tissue, which was collected by longitudinally grooving and splitting teeth that were matched between the control dental pulp and the prepared tooth (test) dental pulp. Cu/Zn-SOD activity was determined through spectrophotometric methods, with Mann-Whitney tests used to assess the significance of the differences between the groups. The Cu/Zn-SOD activity was 168.2+/-46.4 mU.mg−1 total protein (range: 96-212 mU.mg−1) in the control group, and 328.2+/-84.2 mU.mg−1 total protein (range: 280-420 mU.mg−1) in the test group. The difference between the groups was statistically significant, at P <0.001. These results demonstrate a potential role for Cu/Zn-SOD during dental pulp inflammation in humans after dental preparation. PMID:23241127

  3. Topical formulations with superoxide dismutase: influence of formulation composition on physical stability and enzymatic activity.

    PubMed

    Di Mambro, Valéria M; Borin, Maria F; Fonseca, Maria J V

    2003-04-24

    Three different topical formulations were supplemented with superoxide dismutase (SOD) and evaluated concerning physical and chemical stabilities in order to determine the most stable formulation that would maintain SOD activity. Physical stability was evaluated by storing the formulation at room temperature, and at 37 and 45 degrees C for 28 days. Samples were collected at 7-day intervals for assessment of rheological behavior. Chemical stability was evaluated by the measurement of enzymatic activity in formulations stored at room temperature and at 45 degrees C for 75 days. The formulations showed a pseudoplastic behavior, with a flow index of less than 1. There was no significant difference in the initial values of flow index, hysteresis loop or minimum apparent viscosity. The simple emulsion and the one stabilized with hydroxyethylcellulose showed decreased viscosity by the 21st day and with higher temperature, but no significant changes concerning the presence of SOD. Although there were no significant changes concerning storage time or temperature, the formulation stabilized with hydroxyethylcellulose showed a marked loss of SOD activity. The addition of SOD to the formulations studied did not affect their physical stability. Simple emulsions or emulsions stabilized with carboxypolymethylene seem to be better bases for enzyme addition than emulsion stabilized with hydroxyethylcellulose. PMID:12852452

  4. The Effect of UV-B Radiation on Bufo arenarum Embryos Survival and Superoxide Dismutase Activity

    PubMed Central

    Herkovits, J.; D’Eramo, J. L.; Fridman, O.

    2006-01-01

    The exposure of Bufo arenarum embryos to 300–310 nm UV-B at a dose of 4,104 Joule/m2 resulted in 100% lethality within 24 hr while 820 Joule/m2 was the NOEC value for short-term chronic (10 days) exposure. The dose response curves show that lethal effects are proportional with the dose and achieve its highest value within 48 hr post exposure. The superoxide dismutase (SOD) activity in amphibian embryos for sublethal UV-B exposures was evaluated by means of UV-B treatments with 273 (A), 820(B), 1368(C) and 1915(D) Joule/m2 at 2 and 5 hours post irradiation. The SOD activity in units/mg protein in A, B, C and D at 2 hr after treatments were 80.72 ± 14.29, 74.5 ± 13.19, 39.5 ± 6.99 and 10.7 ± 1.89 respectively while for control embryos it was 10.88 ± 1.31. At 5 hr after treatments the SOD values were similar to those found in control embryos. The results confirm the high susceptibility of amphibian embryos to UV-B and point out that the SOD activity is enhanced by low doses of UV-B irradiation achieving significantly higher values than in control embryos at 2 hr post exposure. PMID:16823076

  5. Peroxymonosulfate activation by phosphate anion for organics degradation in water.

    PubMed

    Lou, Xiaoyi; Wu, Liuxi; Guo, Yaoguang; Chen, Chuncheng; Wang, Zhaohui; Xiao, Dongxue; Fang, Changling; Liu, Jianshe; Zhao, Jincai; Lu, Shuyu

    2014-12-01

    Activation of peroxygens is a critical method to generate oxidative species, but often consumes additional chemical reagents and/or energy. Here we report a novel and efficient activation reaction for peroxymonosulfate (PMS) by phosphate anions (PBS). The PBS/PMS coupled system, at neutral pH, is able to decompose efficiently even mineralize a variety of organic pollutants, such as Acid Orange 7, Rhodamine B and 2,4,6-trichlorophenol. In contrast, no measurable degradation was observed when the PMS was replaced by other peroxygens (i.e. hydrogen peroxide and peroxydisulfate). Both PMS and PBS are indispensable for the oxidative degradation of pollutants. Increasing pH and concentrations of PMS and PBS significantly accelerate the degradation of organics. It is proposed that OH would be the major radical for contamination degradation at pH 7.0 through the radical quenching experiments. This work provides a new way of PMS activation for decontamination at neutral pH, in particular for phosphate-rich wastewater treatment. PMID:25303463

  6. Suppression of development of anti-nuclear antibody and glomerulonephritis in NZB x NZWF1 mice by persistent infection with lactic dehydrogenase virus: possible involvement of superoxide anion as a progressive effector.

    PubMed Central

    Hayashi, T.; Noguchi, Y.; Kameyama, Y.

    1993-01-01

    The development of anti-nuclear antibody (ANA) and glomerulonephritis (GN) in autoimmune NZB x NZWF1 mice was suppressed by persistent lactic dehydrogenase virus (LDV) infection. This observation was used to study a possible pathogenetic role for the toxic oxygen radical, superoxide anion (O2-), in the progression of ANA and GN. Compared to macrophages from NZB x NZWF1 mice with LDV infection, macrophages from uninfected NZB x NZWF1 mice exhibited an age-related and drastic increase in O2- production in association with the development of the ANA and GN (representing the late stage of disease). NZB x NZWF1 mice with or without LDV infection were then given the O2- scavenger superoxide dismutase (SOD) during the late stage of the disease. Treatment of uninfected NZB x NZWF1 mice with SOD (10,000 units/mouse/day for 3 weeks) protected animals from the development of ANA and GN. SOD treatment also suppressed the development of the lesions in NZB x NZWF1 mice with LDV infection. Our findings suggest that O2- may, at least in part, contribute to the development of ANA and GN in the late stage of disease, and that decreased O2- production in NZB x NZWF1 mice with LDV infection may be responsible for the suppression of the development of ANA and GN in the late stage of the disease. Images Figure 7 Figure 9 PMID:8292553

  7. Manganese accumulation in yeast cells. Electron-spin-resonance characterization and superoxide dismutase activity.

    PubMed

    Galiazzo, F; Pedersen, J Z; Civitareale, P; Schiesser, A; Rotilio, G

    1989-01-01

    Manganese accumulation was studied by room-temperature electron spin resonance (ESR) spectroscopy in Saccharomyces cerevisiae grown in the presence of increasing amounts of MnSO4. Mn2+ retention was nearly linear in intact cells for fractions related to both low-molecular-mass and macromolecular complexes ('free' and 'bound' Mn2+, respectively). A deviation from linearity was observed in cell extracts between the control value and 0.1 mM Mn2+, indicating more efficient accumulation at low Mn2+ concentrations. The difference in slopes between the two straight lines describing Mn2+ retention at concentrations lower and higher than 0.1 mM, respectively, was quite large for the free Mn2+ fraction. Furthermore it was unaffected by subsequent dialyses of the extracts, showing stable retention in the form of low-molecular-mass complexes. In contrast, the slope of the line describing retention of 'bound' Mn2+ at concentrations higher than 0.1 mM became less steep after subsequent dialyses of the cell extracts. This result indicates that the macromolecule-bound Mn2+ was essentially associated with particulate structures. In contrast to Cu2+, Mn2+ had no effect on the major enzyme activities involved in oxygen metabolism except for a slight increase of cyanide-resistant Mn-superoxide dismutase activity, due to dialyzable Mn2+ complexes. PMID:2562042

  8. Synthesis, crystal structure, superoxide scavenging activity, anticancer and docking studies of novel adamantyl nitroxide derivatives

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-he; Sun, Jin; Wang, Shan; Bu, Wei; Yao, Min-na; Gao, Kai; Song, Ying; Zhao, Jin-yi; Lu, Cheng-tao; Zhang, En-hu; Yang, Zhi-fu; Wen, Ai-dong

    2016-03-01

    A novel adamantyl nitroxide derivatives has been synthesized and characterized by IR, ESI-MS and elemental analysis. Quantum chemical calculations have also been performed to calculate the molecular geometry using density functional theory (B3LYP) with the 6-31G (d,p) basis set. The calculated results showed that the optimized geometry can well reproduce the crystal structure. The antioxidant and antiproliferative activity were evaluated by superoxide (NBT) and MTT assay. The adamantyl nitroxide derivatives exhibited stronger scavenging ability towards O2· - radicals when compared to Vitamin C, and demonstrated a remarked anticancer activity against all the tested cell lines, especially Bel-7404 cells with IC50 of 43.3 μM, compared to the positive control Sorafenib (IC50 = 92.0 μM). The results of molecular docking within EGFR using AutoDock confirmed that the titled compound favorably fitted into the ATP binding site of EGFR and would be a potential anticancer agent.

  9. Gas-phase reactions of molecular oxygen with uranyl(V) anionic complexes-synthesis and characterization of new superoxides of uranyl(VI).

    PubMed

    Lucena, Ana F; Carretas, José M; Marçalo, Joaquim; Michelini, Maria C; Gong, Yu; Gibson, John K

    2015-04-16

    Gas-phase complexes of uranyl(V) ligated to anions X(-) (X = F, Cl, Br, I, OH, NO3, ClO4, HCO2, CH3CO2, CF3CO2, CH3COS, NCS, N3), [UO2X2](-), were produced by electrospray ionization and reacted with O2 in a quadrupole ion trap mass spectrometer to form uranyl(VI) anionic complexes, [UO2X2(O2)](-), comprising a superoxo ligand. The comparative rates for the oxidation reactions were measured, ranging from relatively fast [UO2(OH)2](-) to slow [UO2I2](-). The reaction rates of [UO2X2](-) ions containing polyatomic ligands were significantly faster than those containing the monatomic halogens, which can be attributed to the greater number of vibrational degrees of freedom in the polyatomic ligands to dissipate the energy of the initial O2-association complexes. The effect of the basicity of the X(-) ligands was also apparent in the relative rates for O2 addition, with a general correlation between increasing ligand basicity and O2-addition efficiency for polyatomic ligands. Collision-induced dissociation of the superoxo complexes showed in all cases loss of O2 to form the [UO2X2](-) anions, indicating weaker binding of the O2(-) ligand compared to the X(-) ligands. Density functional theory computations of the structures and energetics of selected species are in accord with the experimental observations. PMID:25807358

  10. Lipid peroxidation, erythrocyte superoxide-dismutase activity and trace metals in young male footballers.

    PubMed

    Metin, Gokhan; Atukeren, Pinar; Alturfan, A Ata; Gulyasar, Tevfik; Kaya, Mehmet; Gumustas, M Koray

    2003-12-30

    Physical training is known to induce oxidative stress in individuals subjected to intense exercise. In this study, we investigated plasma malondialdehyde (MDA) levels and erythrocyte superoxide dismutase (SOD) activity of 25 young male footballers and a control group of similar age. Red blood cell (RBC) count, haemoglobin (Hb) and haematocrit (Hct) values, and copper (Cu) and zinc (Zn) levels were also examined. The maximal oxygen uptake (VO2max) of all subjects was determined in order to establish their functional capacity. The main finding of the present study was that plasma MDA levels, one of the most commonly used markers of lipid peroxidation, of this group of footballers aged under 21 decreased slightly when compared with those of the control group (p < 0.001). In contrast, erythrocyte SOD activity was higher in the footballer group than in the controls (p < 0.001). Footballers who are under regular training showed an improved antioxidant activity in comparison to sedentary controls. Plasma copper concentration, RBC count and Hb concentration of the footballer group were all significantly lower than those of the control group, (p < 0.001, p < 0.01, p < 0.01, respectively). Investigating the footballers' data with Spearman's correlation analyses, the correlation coefficients (r) between Zn/Cu ratio and SOD was positive (r=0.44; p < 0.05); and between VO2max and SOD (r=0.42; p < 0.05) were both positive. On the basis of statistical analysis, we suggest that regular exercise may be beneficial in cases of oxidative damage by reducing the amount of lipid peroxidation and increasing the activity of the antioxidant enzyme SOD. PMID:14703604

  11. Catalase and superoxide dismutase activities in a Stenotrophomonas maltophilia WZ2 resistant to herbicide pollution.

    PubMed

    Lü, Zhenmei; Sang, Liya; Li, Zimu; Min, Hang

    2009-01-01

    Quinclorac bensulfuron-methyl is a mixed herbicide widely used on paddy rice field to effectively control barnyard grass and most broad-leaved grasses and sedges. We analyzed superoxide dismutase (SOD) and catalase activities in the quinclorac-highly degrading strain Stenotrophomonas maltophilia WZ2 and Gram-negative standard strain Escherichia coli K12 in an attempt to understand antioxidant enzymes in bacteria are produced in response to quinclorac or bensulfuron-methyl, which increases the virulence of the bacteria. MnSOD and two additional catalase isozymes were induced by quinclorac or bensulfuron-methyl in S. maltophilia WZ2, but not in E. coli K12. Quinclorac turned out to be a more sensitive inducer of SOD, whereas bensulfuron-methyl is a more sensitive one of catalase. A mixture of both has effects similar to quinclorac. Results indicate that catalase has a much weakly role in the defense against quinclorac or bensulfuron-methyl induced oxidative stress, whereas SOD could be critical. PMID:18304632

  12. Role of Superoxide Dismutase Activity in the Physiology of Porphyromonas gingivalis

    PubMed Central

    Lynch, Michael C.; Kuramitsu, Howard K.

    1999-01-01

    Porphyromonas gingivalis is a gram-negative, obligate anaerobe strongly associated with chronic adult periodontitis. A previous study has demonstrated that this organism requires superoxide dismutase (SOD) for its modest aerotolerance. In this study, we have constructed a mutant deficient in SOD activity by insertional inactivation as well as a sod::lacZ reporter translational fusion construct to study the regulation of expression of this gene. We have confirmed that SOD is essential for tolerance to atmospheric oxygen but does not appear to be protective against hydrogen peroxide or exogenously generated reactive oxygen species. Furthermore, the sod mutant appeared to be no more sensitive to killing by neutrophils than the parental strain 381. SOD appears to be protective against oxygen-dependent DNA damage as measured by increased mutation to rifampin resistance by the sod mutant. Use of the sod::lacZ construct confirmed that SOD expression is maximal at mid-log phase and is influenced by oxygen, temperature, and pH. However, expression does not appear to be significantly affected by iron depletion, osmolarity, or nutrient depletion. The transcription start site of the sod gene was determined to be 315 bp upstream of the sod start codon and to be within an upstream open reading frame. Our studies demonstrate the essential role that SOD plays in aerotolerance of this organism as well as the selective induction of this enzyme by environmental stimuli. PMID:10377114

  13. Formation of cesium peroxide and cesium superoxide on InP photocathode activated by cesium and oxygen

    SciTech Connect

    Sun Yun; Liu Zhi; Pianetta, Piero; Lee, Dong-Ick

    2007-10-01

    Activation of p-type III-V semiconductors with cesium and oxygen has been widely used to prepare negative electron affinity (NEA) photocathodes. However, the nature of the chemical species on the surface after the activation is not well understood. In this study, InP NEA photocathodes activated with cesium and oxygen are studied using synchrotron radiation photoelectron spectroscopy, also called photoemission. Based on the O 1s core level as well as the valence band spectra, Cs peroxide and Cs superoxide are identified on the InP surface. Transformation from Cs peroxide to Cs superoxide is observed after the activation, and is probably the major reason for the decay of the quantum yield of the photocathode. The oxidation of the InP substrate is also observed with elapse of time, adding to the decay of the quantum yield.

  14. A Manganese-rich Environment Supports Superoxide Dismutase Activity in a Lyme Disease Pathogen, Borrelia burgdorferi*

    PubMed Central

    Aguirre, J. Dafhne; Clark, Hillary M.; McIlvin, Matthew; Vazquez, Christine; Palmere, Shaina L.; Grab, Dennis J.; Seshu, J.; Hart, P. John; Saito, Mak; Culotta, Valeria C.

    2013-01-01

    The Lyme disease pathogen Borrelia burgdorferi represents a novel organism in which to study metalloprotein biology in that this spirochete has uniquely evolved with no requirement for iron. Not only is iron low, but we show here that B. burgdorferi has the capacity to accumulate remarkably high levels of manganese. This high manganese is necessary to activate the SodA superoxide dismutase (SOD) essential for virulence. Using a metalloproteomic approach, we demonstrate that a bulk of B. burgdorferi SodA directly associates with manganese, and a smaller pool of inactive enzyme accumulates as apoprotein. Other metalloproteins may have similarly adapted to using manganese as co-factor, including the BB0366 aminopeptidase. Whereas B. burgdorferi SodA has evolved in a manganese-rich, iron-poor environment, the opposite is true for Mn-SODs of organisms such as Escherichia coli and bakers' yeast. These Mn-SODs still capture manganese in an iron-rich cell, and we tested whether the same is true for Borrelia SodA. When expressed in the iron-rich mitochondria of Saccharomyces cerevisiae, B. burgdorferi SodA was inactive. Activity was only possible when cells accumulated extremely high levels of manganese that exceeded cellular iron. Moreover, there was no evidence for iron inactivation of the SOD. B. burgdorferi SodA shows strong overall homology with other members of the Mn-SOD family, but computer-assisted modeling revealed some unusual features of the hydrogen bonding network near the enzyme's active site. The unique properties of B. burgdorferi SodA may represent adaptation to expression in the manganese-rich and iron-poor environment of the spirochete. PMID:23376276

  15. Nitric oxide activates superoxide dismutase and ascorbate peroxidase to repress the cell death induced by wounding.

    PubMed

    Lin, Chih-Ching; Jih, Pei-Ju; Lin, Hsin-Hung; Lin, Jeng-Shane; Chang, Ling-Lan; Shen, Yu-Hsing; Jeng, Shih-Tong

    2011-10-01

    Wounding caused by rain, wind, and pathogen may lead plants to onset defense response. Previous studies indicated that mechanical wounding stimulates plants to generate nitric oxide (NO) and hydrogen peroxide (H(2)O(2)). In this study, the functions of NO and H(2)O(2) after wounding in sweet potato (Ipomoea batatas cv. Tainung 57) was further analyzed. Mechanical wounding damaged cells and resulted in necrosis, but the presence of NO donors or NO scavenger might reduce or enhance the cell death caused by wounding, respectively. The amount of H(2)O(2) induced by wounding was also decreased or increased when plants were incubated with NO donors or NO scavenger, individually. These results indicate that NO may regulate H(2)O(2) generation to affect cell death. NO-induced proteins isolated from two-dimensional electrophoresis were identified to be Copper/Zinc superoxide dismutases (CuZnSODs). The activities of CuZnSODs and ascorbate peroxidase (APX) could be enhanced by NO. In addition, the expression of CuZnSOD and APX was induced by wounding via NO, and their expression was further stimulated by NO through the generation of cGMP. The influx of calcium ions and the activity of NADPH oxidase were also involved in the NO signal transduction pathway inducing APX expression. Collectively, the generation of H(2)O(2) in wounded plants might trigger cell death. Meanwhile, the production of NO induced by wounding stimulated signal transducers including cGMP, calcium ions, and H(2)O(2) to activate CuZnSOD and APX, which further decreased H(2)O(2) level and reduced the cell death caused by wounding. PMID:21833542

  16. Penetrating cations enhance uncoupling activity of anionic protonophores in mitochondria.

    PubMed

    Antonenko, Yuri N; Khailova, Ljudmila S; Knorre, Dmitry A; Markova, Olga V; Rokitskaya, Tatyana I; Ilyasova, Tatyana M; Severina, Inna I; Kotova, Elena A; Karavaeva, Yulia E; Prikhodko, Anastasia S; Severin, Fedor F; Skulachev, Vladimir P

    2013-01-01

    Protonophorous uncouplers causing a partial decrease in mitochondrial membrane potential are promising candidates for therapeutic applications. Here we showed that hydrophobic penetrating cations specifically targeted to mitochondria in a membrane potential-driven fashion increased proton-translocating activity of the anionic uncouplers 2,4-dinitrophenol (DNP) and carbonylcyanide-p-trifluorophenylhydrazone (FCCP). In planar bilayer lipid membranes (BLM) separating two compartments with different pH values, DNP-mediated diffusion potential of H(+) ions was enhanced in the presence of dodecyltriphenylphosphonium cation (C12TPP). The mitochondria-targeted penetrating cations strongly increased DNP- and carbonylcyanide m-chlorophenylhydrazone (CCCP)-mediated steady-state current through BLM when a transmembrane electrical potential difference was applied. Carboxyfluorescein efflux from liposomes initiated by the plastoquinone-containing penetrating cation SkQ1 was inhibited by both DNP and FCCP. Formation of complexes between the cation and CCCP was observed spectophotometrically. In contrast to the less hydrophobic tetraphenylphosphonium cation (TPP), SkQ1 and C12TPP promoted the uncoupling action of DNP and FCCP on isolated mitochondria. C12TPP and FCCP exhibited a synergistic effect decreasing the membrane potential of mitochondria in yeast cells. The stimulating action of penetrating cations on the protonophore-mediated uncoupling is assumed to be useful for medical applications of low (non-toxic) concentrations of protonophores. PMID:23626747

  17. Penetrating Cations Enhance Uncoupling Activity of Anionic Protonophores in Mitochondria

    PubMed Central

    Antonenko, Yuri N.; Khailova, Ljudmila S.; Knorre, Dmitry A.; Markova, Olga V.; Rokitskaya, Tatyana I.; Ilyasova, Tatyana M.; Severina, Inna I.; Kotova, Elena A.; Karavaeva, Yulia E.; Prikhodko, Anastasia S.; Severin, Fedor F.; Skulachev, Vladimir P.

    2013-01-01

    Protonophorous uncouplers causing a partial decrease in mitochondrial membrane potential are promising candidates for therapeutic applications. Here we showed that hydrophobic penetrating cations specifically targeted to mitochondria in a membrane potential-driven fashion increased proton-translocating activity of the anionic uncouplers 2,4-dinitrophenol (DNP) and carbonylcyanide-p-trifluorophenylhydrazone (FCCP). In planar bilayer lipid membranes (BLM) separating two compartments with different pH values, DNP-mediated diffusion potential of H+ ions was enhanced in the presence of dodecyltriphenylphosphonium cation (C12TPP). The mitochondria-targeted penetrating cations strongly increased DNP- and carbonylcyanide m-chlorophenylhydrazone (CCCP)-mediated steady-state current through BLM when a transmembrane electrical potential difference was applied. Carboxyfluorescein efflux from liposomes initiated by the plastoquinone-containing penetrating cation SkQ1 was inhibited by both DNP and FCCP. Formation of complexes between the cation and CCCP was observed spectophotometrically. In contrast to the less hydrophobic tetraphenylphosphonium cation (TPP), SkQ1 and C12TPP promoted the uncoupling action of DNP and FCCP on isolated mitochondria. C12TPP and FCCP exhibited a synergistic effect decreasing the membrane potential of mitochondria in yeast cells. The stimulating action of penetrating cations on the protonophore-mediated uncoupling is assumed to be useful for medical applications of low (non-toxic) concentrations of protonophores. PMID:23626747

  18. Kinetics and mechanism of exogenous anion exchange in FeFbpA-NTA: significance of periplasmic anion lability and anion binding activity of ferric binding protein A.

    PubMed

    Heymann, Jared J; Gabricević, Mario; Mietzner, Timothy A; Crumbliss, Alvin L

    2010-02-01

    The bacterial transferrin ferric binding protein A (FbpA) requires an exogenous anion to facilitate iron sequestration, and subsequently to shuttle the metal across the periplasm to the cytoplasmic membrane. In the diverse conditions of the periplasm, numerous anions are known to be present. Prior in vitro experiments have demonstrated the ability of multiple anions to fulfill the synergistic iron-binding requirement, and the identity of the bound anion has been shown to modulate important physicochemical properties of iron-bound FbpA (FeFbpA). Here we address the kinetics and mechanism of anion exchange for the FeFbpA-nitrilotriacetate (NTA) assembly with several biologically relevant anions (citrate, oxalate, phosphate, and pyrophosphate), with nonphysiologic NTA serving as a representative synergistic anion/chelator. The kinetic data are consistent with an anion-exchange process that occurs in multiple steps, dependent on the identity of both the entering anion and the leaving anion. The exchange mechanism may proceed either as a direct substitution or through an intermediate FeFbpA-X* assembly based on anion (X) identity. Our kinetic results further develop an understanding of exogenous anion lability in the periplasm, as well as address the final step of the iron-free FbpA (apo-FbpA)/Fe(3+) sequestration mechanism. Our results highlight the kinetic significance of the FbpA anion binding site, demonstrating a correlation between apo-FbpA/anion affinity and the FeFbpA rate of anion exchange, further supporting the requirement of an exogenous anion to complete tight sequestration of iron by FbpA, and developing a mechanism for anion exchange within FeFbpA that is dependent on the identity of both the entering anion and the leaving anion. PMID:19813031

  19. Melatonin preserves superoxide dismutase activity in hypoglossal motoneurons of adult rats following peripheral nerve injury.

    PubMed

    Chang, Hung-Ming; Huang, Yi-Lun; Lan, Chyn-Tair; Wu, Un-In; Hu, Ming-E; Youn, Su-Chung

    2008-03-01

    Peripheral nerve injury (PNI) produces functional changes in lesioned neurons in which oxidative stress is considered to be the main cause of neuronal damage. As superoxide dismutase (SOD) is an important antioxidative enzyme involved in redox regulation of oxidative stress, the present study determined whether melatonin would exert its beneficial effects by preserving the SOD reactivity following PNI. Adult rats subjected to hypoglossal nerve transection were intraperitoneally injected with melatonin at ones for 3, 7, 14, 30 and 60 days successively. The potential neuroprotective effects of melatonin were quantitatively demonstrated by neuronal nitric oxide synthase (nNOS), mitochondrial manganese SOD (Mn-SOD), and cytosolic copper-zinc SOD (Cu/Zn-SOD) immunohistochemistry. The functional recovery of the lesioned neurons was evaluated by choline acetyltransferase (ChAT) immunohistochemistry along with the electromyographic (EMG) recordings of denervation-induced fibrillation activity. The results indicate that following PNI, the nNOS immunoreactivity was significantly increased in lesioned neurons peaking at 14 days. The up-regulation of nNOS temporally coincided with the reduction of ChAT and SOD in which the Cu/Zn-SOD showed a greater diminution than Mn-SOD. However, following melatonin administration, the nNOS augmentation was successfully suppressed and the activities of Mn-SOD, Cu/Zn-SOD, and ChAT were effectively preserved at all postaxotomy periods. EMG data also showed a decreased fibrillation in melatonin-treated groups, suggesting a potential effect of melatonin in promoting functional recovery. In association with its significant capacity in preserving SOD reactivity, melatonin is suggested to serve as a powerful therapeutic agent for treating PNI-relevant oxidative damage. PMID:18289169

  20. Synthesis of calcium superoxide

    NASA Technical Reports Server (NTRS)

    Rewick, R. T.; Blucher, W. G.; Estacio, P. L.

    1972-01-01

    Efforts to prepare Ca(O2) sub 2 from reactions of calcium compounds with 100% O3 and with O(D-1) atoms generated by photolysis of O3 at 2537 A are described. Samples of Ca(OH) sub 2, CaO, CaO2, Ca metal, and mixtures containing suspected impurities to promote reaction have been treated with excess O3 under static and flow conditions in the presence and absence of UV irradiation. Studies with KO2 suggest that the superoxide anion is stable to radiation at 2537 A but reacts with oxygen atoms generated by the photolysis of O3 to form KO3. Calcium superoxide is expected to behave in an analogous.

  1. Oversynthesis of riboflavin in the yeast Pichia guilliermondii is accompanied by reduced catalase and superoxide dismutases activities.

    PubMed

    Prokopiv, Tetyana M; Fedorovych, Dariya V; Boretsky, Yuriy R; Sibirny, Andriy A

    2013-01-01

    Iron deficiency causes oversynthesis of riboflavin in several yeast species, known as flavinogenic yeasts. Under iron deprivation conditions, Pichia guilliermondii cells increase production of riboflavin and malondialdehyde and the formation of protein carbonyl groups, which reflect increased intracellular content of reactive oxygen species. In this study, we found that P. guilliermondii iron deprived cells showed dramatically decreased catalase and superoxide dismutase activities. Previously reported mutations rib80, rib81, and hit1, which affect repression of riboflavin synthesis and iron accumulation by iron ions, caused similar drops in activities of the mentioned enzymes. These findings could explain the previously described development of oxidative stress in iron deprived or mutated P. guilliermondii cells that overproduce riboflavin. Similar decrease in superoxide dismutase activities was observed in iron deprived cells in the non-flavinogenic yeast Saccharomyces cerevisiae. PMID:23053489

  2. Interdisciplinary therapy changes superoxide dismutase activity and adiponectin in obese adolescents: a randomised controlled trial.

    PubMed

    Nunes, João Elias Dias; Cunha, Heitor Santos; Freitas, Zulmária Rezende; Nogueira, Ana Maria Caixeta; Dâmaso, Ana Raimunda; Espindola, Foued Salmen; Cheik, Nadia Carla

    2016-05-01

    The objective of this study is to evaluate the effect of interdisciplinary therapy in the parameters of the oxidative stress and the anti-inflammatory responses of obese adolescents. We selected 57 participants, who were randomly divided into 2 groups: interdisciplinary therapy group and a control group. After 6 months of intervention, 17 participants of the interdisciplinary therapy group and 8 of the control group returned for re-evaluation. The interdisciplinary therapy group participated in a treatment with 4 weekly sessions of exercise, a weekly group therapy session and a weekly nutritional education session. Blood parameters of oxidative stress and anti-inflammatory response were evaluated. The results demonstrated that there were significant increases in the interdisciplinary therapy group for superoxide dismutase activity (6.56 ± 3.22 to 11.40 ± 7.49) and ferric-reducing antioxidant potential concentration (532.91 ± 106.48 to 573.25 ± 112.57), although adiponectin levels did not reduce (40.9 ± 29.34 to 49.05 ± 41.22). A significant decrease in nitrite levels was also found (14.23 ± 8.48 to 11.45 ± 6.05). In the control group, significant reduction was found in adiponectin (31.56 ± 18.88 to 18.01 ± 11.66). This study suggests that interdisciplinary therapy for 6 months was effective in improving the anti-inflammatory responses and the antioxidant defences in obese adolescents. PMID:26367325

  3. Cardiovascular Effects of Copper Deficiency on Activity of Superoxide Dismutase in Diabetic Nephropathy

    PubMed Central

    Al-Bayati, Mohammed A.; Jamil, Dina A.; Al-Aubaidy, Hayder A.

    2015-01-01

    Background: Copper (Cu) is essential both for its role in antioxidant enzymes, like Cu/zinc (Zn) superoxide dismutase (SOD) and ceruloplasmin, as well as its role in lysyl oxidase, essential for the strength and integrity of the heart and blood vessels. With such a central role in cardiovascular health, Cu has been generally overlooked in the debate over improving our cardiovascular health. Cu deficiency has produced many of the same abnormalities present in cardiovascular disease. It seems almost certain that Cu plays a large role in the development of this killer disease, not because of its excess in the diet, but rather its deficiency. Aim: This study was undertaken to investigate the cardiovascular effects of Cu deficiency on the activity of SOD in patients with type 2 diabetes mellitus (T2DM) with and without diabetic nephropathy. Materials and Methods: Fifty-five patients with T2DM were recruited in this study which were divided into two subgroups based on the presence of microalbuminuria, the first group (microal buminuric group, n = 31) had a microalbuminuria between 30 and 299 μg/mg. The second group (normoal buminuric group, n = 29) had an albumin level less than 30 μg/mg. The two diabetic groups were compared to the control group (n = 37). Results: The results of our study showed a significant reduction in the levels of SOD enzyme associated with an increased urinary Cu excretion in microalbuminuric group compared to the control group at P < 0.05. Conclusions: The current study illustrates that the regulation of the blood concentrations of Cu may be a potential therapeutic target for prevention and treatment of diabetic nephropathy. PMID:25789247

  4. Transgenic mice with increased Cu/Zn-superoxide dismutase activity: animal model of dosage effects in Down syndrome

    SciTech Connect

    Epstein, C.J.; Avraham, K.B.; Lovett, M.; Smith, S.; Elroy-Stein, O.; Rotman, G.; Bry, C.; Groner, Y.

    1987-11-01

    Down syndrome, the phenotypic expression of human trisomy 21, is presumed to result from a 1.5-fold increase in the expression of the genes on human chromosome 21. As an approach to the development of an animal model for Down syndrome, several strains of transgenic mice that carry the human Cu/Zn-superoxide dismutase gene have been prepared. The animals express the transgene in a manner similar to that of humans, with 0.9- and 0.7-kilobase transcripts in a 1:4 ratio, and synthesize the human enzyme in an active form capable of forming human-mouse enzyme heterodimers. Cu/Zn-superoxide dismutase activity is increased from 1.6- to 6.0-fold in the brains of four transgenic strains and to an equal or lesser extent in several other tissues. These animals provide a unique system for studying the consequences of increased dosage of the Cu/Zn-superoxide dismutase gene in Down syndrome and the role of this enzyme in a variety of other pathological processes.

  5. Superoxide reduction by a superoxide reductase lacking the highly conserved lysine residue

    DOE PAGESBeta

    Teixeira, Miguel; Cabelli, Diane; Pinto, Ana F.; Romao, Celia V.; Pinto, Liliana C.; Huber, Harald; Saraiva, Ligia M.; Todorovic, Smilja

    2014-12-05

    Superoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the –EKHVP– motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network. However, we show here that this residue ismore » substituted by non-equivalent amino acids in several putative SORs from Archaea and unicellular Eukarya. In this work, we focus on mechanistic and spectroscopic studies of one of these less common enzymes, the SOR from the hyperthermophilic crenarchaeon Ignicoccus hospitalis. We employ pulse radiolysis fast kinetics and spectroscopic approaches to study the wild-type enzyme (₋E₂₃T₂₄HVP₋), and two mutants, T24K and E23A, the later mimicking enzymes lacking both the lysine and glutamate (a ferric ion ligand) of the motif. The efficiency of the wild type protein and mutants in reducing superoxide is comparable to other SORs, revealing the robustness of these enzymes to single mutations.« less

  6. Superoxide reduction by a superoxide reductase lacking the highly conserved lysine residue

    SciTech Connect

    Teixeira, Miguel; Cabelli, Diane; Pinto, Ana F.; Romao, Celia V.; Pinto, Liliana C.; Huber, Harald; Saraiva, Ligia M.; Todorovic, Smilja

    2014-12-05

    Superoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the –EKHVP– motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network. However, we show here that this residue is substituted by non-equivalent amino acids in several putative SORs from Archaea and unicellular Eukarya. In this work, we focus on mechanistic and spectroscopic studies of one of these less common enzymes, the SOR from the hyperthermophilic crenarchaeon Ignicoccus hospitalis. We employ pulse radiolysis fast kinetics and spectroscopic approaches to study the wild-type enzyme (₋E₂₃T₂₄HVP₋), and two mutants, T24K and E23A, the later mimicking enzymes lacking both the lysine and glutamate (a ferric ion ligand) of the motif. The efficiency of the wild type protein and mutants in reducing superoxide is comparable to other SORs, revealing the robustness of these enzymes to single mutations.

  7. Age-Related Alterations of Plasma Lipid Peroxidation and Erythrocyte Superoxide Dismutase Activity in Different Ethnic Groups of Gorgan

    NASA Astrophysics Data System (ADS)

    Marjani, Abdoljalal; Mansourian, Azad Reza; Veghari, Gholam Reza; Rabiee, Mohammad Reza

    Free radicals have been proposed as important causative agents of ageing. The free radical theory of ageing postulates that ageing is caused by free radical reactions. These highly reactive species can cause oxidative damage in the cell. The purposive of this study was to investigate the alteration in plasma lipid peroxidation and erythrocyte superoxide dismutase activity in 2 different ethnic groups of Fars and Turkmen healthy people. We measured plasma lipid peroxidation levels (lipid peroxidation expressed as malondialdehyde) and erythrocyte superoxide dismutase activity. Study include 350 (175 Fars and 175 Turkmen male) apparently healthy individuals. Erythrocyte superoxide dismutase activities were determined in 2 different ethnic groups of Fars and Turkmen consisting of healthy individuals between 26-60 years of age {26-30 (n = 30), 3-35 (n = 30), 36-40 (n = 30), 41-45 (n = 30), 46-50 (n = 25), 51-55 (n = 15) and 56-60 (n = 15)}, respectively. The data was analyzed by Student` t-test. Erythrocyte superoxide dismutase and plasma lipid peroxidation levels in Fars and Turkmen people with 41-45 ages (group 4) and 36-40 ages (group 3) were significantly lower and higher than in the other age groups (Fars groups 1, 2 and 3, Turkmen groups 1, 2), respectively (p< 0.05). There were no significant relation between the age group 4 (Fars people) and the age groups 5, 6 and 7 (p>0.05). There were no significant relation between the age groups 3 (Turkmen people) and the age groups 4, 5, 6 and 7 (p>0.05). We found age-related differences in erythrocyte superoxide dismutase activity and plasma lipid peroxidation levels. The results indicate that the balance between antioxidant and prooxidant factors in free radical metabolism shifts towards increased lipid peroxidation with advancing age in 2 ethnic groups. This situation maybe begin in Turkmen people earlier than Fars people. The ethnic origin, diet, heavy working and life style factors of the two populations may explain

  8. ACE1, a copper-dependent transcription factor, activates expression of the yeast copper, zinc superoxide dismutase gene.

    PubMed Central

    Gralla, E B; Thiele, D J; Silar, P; Valentine, J S

    1991-01-01

    Copper, zinc superoxide dismutase (SOD1 gene product) (superoxide:superoxide oxidoreductase, EC 1.15.1.1) is a copper-containing enzyme that functions to prevent oxygen toxicity. In the yeast Saccharomyces cerevisiae, copper levels exert some control over the level of SOD1 expression. We show that the ACE1 transcriptional activator protein, which is responsible for the induction of yeast metallothionein (CUP1) in response to copper, also controls the SOD1 response to copper. A single binding site for ACE1 is present in the SOD1 promoter region, as demonstrated by DNase I protection and methylation interference experiments, and is highly homologous to a high-affinity ACE1 binding site in the CUP1 promoter. The functional importance of this DNA-protein interaction is demonstrated by the facts that (i) copper induction of SOD1 mRNA does not occur in a strain lacking ACE1 and (ii) it does not occur in a strain containing a genetically engineered SOD1 promoter that lacks a functional ACE1 binding site. Images PMID:1924315

  9. Molecular and biochemical characterization of manganese-containing superoxide dismutase from the silkworm, Bombyx mori.

    PubMed

    Yamamoto, Kohji; Zhang, Pingbo; He, Ningjia; Wang, Yongqiang; Aso, Yoichi; Banno, Yutaka; Fujii, Hiroshi

    2005-12-01

    Superoxide dismutase (SOD) is responsible for the removal of superoxide anion from living organisms. In this study, cDNA encoding the manganese-containing SOD (MnSOD) from the silkworm, Bombyx mori, was isolated by reverse transcriptase-polymerase chain reaction and sequenced. The deduced amino acid sequence of the MnSOD revealed 62% identity to that of the Drosophila melanogaster; both were close to each other in a phylogenetic tree. The MnSOD was overproduced in Escherichia coli and purified. The internal structure of the recombinant MnSOD was confirmed by peptide mass fingerprinting method. The recombinant MnSOD facilitating the reduction reaction of superoxide anion retained 75% of its original activity after incubation at pH 4-11 for 24 h at 4 degrees C. Its activity was never affected by incubation at pH 7 for 30 min below 50 degrees C. PMID:16236537

  10. Alternative catalytic anions differentially modulate human alpha-amylase activity and specificity.

    PubMed

    Maurus, Robert; Begum, Anjuman; Williams, Leslie K; Fredriksen, Jason R; Zhang, Ran; Withers, Stephen G; Brayer, Gary D

    2008-03-18

    A mechanistic study of the essential allosteric activation of human pancreatic alpha-amylase by chloride ion has been conducted by exploring a wide range of anion substitutions through kinetic and structural experiments. Surprisingly, kinetic studies indicate that the majority of these alternative anions can induce some level of enzymatic activity despite very different atomic geometries, sizes, and polyatomic natures. These data and subsequent structural studies attest to the remarkable plasticity of the chloride binding site, even though earlier structural studies of wild-type human pancreatic alpha-amylase suggested this site would likely be restricted to chloride binding. Notably, no apparent relationship is observed between anion binding affinity and relative activity, emphasizing the complexity of the relationship between chloride binding parameters and the activation mechanism that facilitates catalysis. Of the anions studied, particularly intriguing in terms of observed trends in substrate kinetics and their novel atomic compositions were the nitrite, nitrate, and azide anions, the latter of which was found to enhance the relative activity of human pancreatic alpha-amylase by nearly 5-fold. Structural studies have provided considerable insight into the nature of the interactions formed in the chloride binding site by the nitrite and nitrate anions. To probe the role such interactions play in allosteric activation, further structural analyses were conducted in the presence of acarbose, which served as a sensitive reporter molecule of the catalytic ability of these modified enzymes to carry out its expected rearrangement by human pancreatic alpha-amylase. These studies show that the largest anion of this group, nitrate, can comfortably fit in the chloride binding pocket, making all the necessary hydrogen bonds. Further, this anion has nearly the same ability to activate human pancreatic alpha-amylase and leads to the production of the same acarbose product

  11. An investigation of large inhibitors binding to phosphoglycerate kinase and their effect on anion activation.

    PubMed

    Joao, H C; Williams, R J; Littlechild, J A; Nagasuma, R; Watson, H C

    1992-05-01

    This study extends, to a series of larger anions, our earlier investigation of the interaction of the trypanocidal drug suramin and other small negatively charged molecules with yeast phosphoglycerate kinase. 1H-NMR structural studies of phosphoglycerate kinase in the presence of varying concentrations of these large molecules (designed to mimic, at one end, the anionic charge distribution in the substrate 3-phosphoglycerate, while possibly being able to interact across the cleft of the enzyme) including inositol 1,4,5-triphosphate, 4-amino-6-trichloroethenyl-1,3- benzenedisulphonamide, gallic acid and sulphasalazine are described. The anion activation and/or inhibition of the enzyme by these molecules are also reported. Evidence that binding to the general anion site in the 'basic patch' region of the protein may be responsible for either the activating or inhibiting effects, while binding at the hydrophobic (catalytic) site leads to inhibition only is presented. A reaction scheme which explains these observations is given. PMID:1349525

  12. Activity of Superoxide Dismutase and Catalase in Fenugreek (Trigonella foenum-graecum) in Response to Carbendazim.

    PubMed

    Sangeetha, R

    2010-01-01

    Fenugreek (Trigonella foenum-graecum) is an annual herb, used as a spice and traditionally as medicine. Fenugreek finds its uses in treating hyperglycemia, hyperlipidemia and disorders of gastro-intestinal and cardiovascular systems. Fenugreek cultivation in India is affected by fungal diseases like root-rot and damping-off and fungicides like carbendazim are used to overcome these infections. Fungicides play both positive and negative role in plants; fungicides protect plants from diseases and also exert oxidative stress simultaneously. This report is on the response of antioxidants, superoxide dismutase and catalase in fenugreek seeds and plants treated to different concentrations of carbendazim. PMID:20582202

  13. Effects of Hatha yoga exercise on plasma malondialdehyde concentration and superoxide dismutase activity in female patients with shoulder pain

    PubMed Central

    Ha, Min-Sung; Kim, Do-Yeon; Baek, Yeong-Ho

    2015-01-01

    [Purpose] The purpose of this study was to analyze the effects of Hatha yoga exercise on plasma malondialdehyde (MDA) concentration and superoxide dismutase (SOD) activity in female patients with shoulder pain. [Subjects] Subjects comprised 20 female patients with shoulder pain. [Methods] Subjects were divided into 2 groups: a Hatha yoga exercise group (n = 10) and a control group that performed no exercise (n = 10). The subjects’ body composition, plasma malondialdehyde concentrations, and superoxide dismutase activities were measured before and after a 16-week Hatha yoga exercise program. [Results] After the 16-week Hatha yoga exercise program, the exercise group had significantly lower plasma MDA concentrations than the control group. In addition, the exercise group had significantly higher plasma SOD activity than the control group. [Conclusions] Hatha yoga exercise improves flexibility, muscle tone and strength, balance, and joint function. Our findings indicate that regular and continuous yoga exercise effectively improved body composition, decrease plasma MDA concentration, and increase plasma SOD activity in female patients with shoulder pain. PMID:26311934

  14. Amino acids flanking the central core of Cu,Zn superoxide dismutase are important in retaining enzyme activity after autoclaving.

    PubMed

    Kumar, Arun; Randhawa, Vinay; Acharya, Vishal; Singh, Kashmir; Kumar, Sanjay

    2016-01-01

    Enzymes are known to be denatured upon boiling, although Cu,Zn superoxide dismutase of Potentilla atrosanguinea (Pot-SOD) retains significant catalytic activity even after autoclaving (heating at 121 °C at a pressure of 1.1 kg per square cm for 20 min). The polypeptide backbone of Pot-SOD consists of 152 amino acids with a central core spanning His45 to Cys145 that is involved in coordination of Cu(2+) and Zn(2+) ions. While the central core is essential for imparting catalytic activity and structural stability to the enzyme, the role of sequences flanking the central core was not understood. Experiments with deletion mutants showed that the amino acid sequences flanking the central core were important in retaining activity of Pot-SOD after autoclaving. Molecular dynamics simulations demonstrated the unfavorable structure of mutants due to increased size of binding pocket and enhanced negative charge on the electrostatic surface, resulting in unavailability of the substrate superoxide radical ([Formula: see text]) to the catalytic pocket. Deletion caused destabilization of structural elements and reduced solvent accessibility that further produced unfavorable structural geometry of the protein. PMID:25990646

  15. Superoxide metabolism is correlated to the post-anoxic injury of soybean (Glycine max) roots

    SciTech Connect

    Bolles, C.S.; Van Toai, T.T. )

    1990-05-01

    Post-anoxic injury of root tips of soybean seedlings is more severe following a very short (1 hour) period of anoxia than a longer (3-5 hour) period. Anaerobic incubation of root tips in the presence of 100 mM ascorbate, an antioxidant and free-radical-scavenging compound, alleviates the detrimental post-anoxia effects of a very short anoxic treatment. Extracts of root tips which have been treated anoxically for 1 hour have an elevated capacity to produce superoxide anions when subsequently exposed to air, than extracts from seedlings treated anoxically for longer time. Changes in superoxide dismutase (SOD) enzyme activity and SOD-specific RNA sequences will be presented. The results support that post-anoxic injury occurs in soybean roots and that SOD plays a role in the detoxification of superoxide anions.

  16. [Type of behavior and superoxide dismutase activity in the brain of rats (a comparison of 2 Tryon strains)].

    PubMed

    Khonicheva, N M; Guliaeva, N V; Zhdanova, I V; Obidin, A B; Dmitrieva, I L

    1986-12-01

    Differences in the type of behaviour in capable ("maze-bright") and incapable ("maze-dull") Tryon rats have been demonstrated in the situation with pain-irritated partner by the method of "emotional resonance". Most "bright" rats belonged to the type not avoiding the signals of another pain-irritated rat, they revealed a persistent ecologically defensive reaction of preferring a small closed space. The type of anxiety behaviour prevailed in the group of "dull" rats. In the open field test "bright" rats were characterized by low locomotor activity and high level of defecation and "dull" rats by high activity and low defecation. Increased levels of superoxide dismutase activity and high content of thiobarbituric acid-reactive material were observed in brains of dull rats. The interrelations between behavioural and molecular levels of defensive response to stress is discussed. PMID:3801607

  17. Active-Metal Template Synthesis of a Halogen-Bonding Rotaxane for Anion Recognition.

    PubMed

    Langton, Matthew J; Xiong, Yaoyao; Beer, Paul D

    2015-12-21

    The synthesis of an all-halogen-bonding rotaxane for anion recognition is achieved by using active-metal templation. A flexible bis-iodotriazole-containing macrocycle is exploited for the metal-directed rotaxane synthesis. Endotopic binding of a Cu(I) template facilitates an active-metal CuAAC iodotriazole axle formation reaction that captures the interlocked rotaxane product. Following copper-template removal, exotopic coordination of a more sterically demanding rhenium(I) complex induces an inversion in the conformation of the macrocycle component, directing the iodotriazole halogen-bond donors into the rotaxane's interlocked binding cavity to facilitate anion recognition. PMID:26500150

  18. Mimic of superoxide dismutase activity protects Chlorella sorokiniana against the toxicity of sulfite

    SciTech Connect

    Rabinowitch, H.D.; Rosen, G.M.; Fridovich, I.

    1989-01-01

    The spin-trapping agent 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) has been used to demonstrate the light-dependent production of O/sub 2/- by Chlorella sorokiniana. In the presence of SO/sub 3/= a light-dependent production of the sulfur trioxy anion radical (SO/sub 3/-.) could also be seen. A complex prepared by reacting desferrioxamine with MnO/sub 2/, which catalyzes the dismutation of O/sub 2/-, protected the alga against the toxicity of sulfite. The data suggest that SO/sub 2/ toxicity is at least partially due to the effects of sulfoxy-free radicals generated by the oxidation of SO3= by O/sub 2/-.

  19. CHAPERONIN 20 mediates iron superoxide dismutase (FeSOD) activity independent of its co-chaperonin role in Arabidopsis chloroplasts.

    PubMed

    Kuo, W Y; Huang, C H; Liu, A C; Cheng, C P; Li, S H; Chang, W C; Weiss, C; Azem, A; Jinn, T L

    2013-01-01

    Iron superoxide dismutases (FeSODs; FSDs) are primary antioxidant enzymes in Arabidopsis thaliana chloroplasts. The stromal FSD1 conferred the only detectable FeSOD activity, whereas the thylakoid membrane- and nucleoid-co-localized FSD2 and FSD3 double mutant showed arrested chloroplast development. FeSOD requires cofactor Fe for its activity, but its mechanism of activation is unclear. We used reversed-phase high-performance liquid chromatography (HPLC), gel filtration chromatography, LC-MS/MS, protoplast transient expression and virus-induced gene silencing (VIGS) analyses to identify and characterize a factor involved in FeSOD activation. We identified the chloroplast-localized co-chaperonin CHAPERONIN 20 (CPN20) as a mediator of FeSOD activation by direct interaction. The relationship between CPN20 and FeSOD was confirmed by in vitro experiments showing that CPN20 alone could enhance FSD1, FSD2 and FSD3 activity. The in vivo results showed that CPN20-overexpressing mutants and mutants with defective co-chaperonin activity increased FSD1 activity, without changing the chaperonin CPN60 protein level, and VIGS-induced downregulation of CPN20 also led to decreased FeSOD activity. Our findings reveal that CPN20 can mediate FeSOD activation in chloroplasts, a role independent of its known function in the chaperonin system. PMID:23057508

  20. Activation of Methane Promoted by Adsorption of CO on Mo2 C2 (-) Cluster Anions.

    PubMed

    Liu, Qing-Yu; Ma, Jia-Bi; Li, Zi-Yu; Zhao, Chongyang; Ning, Chuan-Gang; Chen, Hui; He, Sheng-Gui

    2016-05-01

    Atomic clusters are being actively studied for activation of methane, the most stable alkane molecule. While many cluster cations are very reactive with methane, the cluster anions are usually not very reactive, particularly for noble metal free anions. This study reports that the reactivity of molybdenum carbide cluster anions with methane can be much enhanced by adsorption of CO. The Mo2 C2 (-) is inert with CH4 while the CO addition product Mo2 C3 O(-) brings about dehydrogenation of CH4 under thermal collision conditions. The cluster structures and reactions are characterized by mass spectrometry, photoelectron spectroscopy, and quantum chemistry calculations, which demonstrate that the Mo2 C3 O(-) isomer with dissociated CO is reactive but the one with non-dissociated CO is unreactive. The enhancement of cluster reactivity promoted by CO adsorption in this study is compared with those of reported systems of a few carbonyl complexes. PMID:27060286

  1. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).

    PubMed

    Zwick, Matthias; Esposito, Cinzia; Hellstern, Manuel; Seelig, Anna

    2016-07-01

    The cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), mutations of which cause cystic fibrosis, belongs to the ATP-binding cassette (ABC) transporter family and works as a channel for small anions, such as chloride and bicarbonate. Anion channel activity is known to depend on phosphorylation by cAMP-dependent protein kinase A (PKA) and CFTR-ATPase activity. Whereas anion channel activity has been extensively investigated, phosphorylation and CFTR-ATPase activity are still poorly understood. Here, we show that the two processes can be measured in a label-free and non-invasive manner in real time in live cells, stably transfected with CFTR. This study reveals three key findings. (i) The major contribution (≥90%) to the total CFTR-related ATP hydrolysis rate is due to phosphorylation by PKA and the minor contribution (≤10%) to CFTR-ATPase activity. (ii) The mutant CFTR-E1371S that is still conductive, but defective in ATP hydrolysis, is not phosphorylated, suggesting that phosphorylation requires a functional nucleotide binding domain and occurs in the post-hydrolysis transition state. (iii) CFTR-ATPase activity is inversely related to CFTR anion flux. The present data are consistent with a model in which CFTR is in a closed conformation with two ATPs bound. The open conformation is induced by ATP hydrolysis and corresponds to the post-hydrolysis transition state that is stabilized by phosphorylation and binding of chloride channel potentiators. PMID:27226582

  2. Purification and characterization of Ag,Zn-superoxide dismutase from Saccharomyces cerevisiae exposed to silver.

    PubMed

    Ciriolo, M R; Civitareale, P; Carrì, M T; De Martino, A; Galiazzo, F; Rotilio, G

    1994-10-14

    Cu,Zn-superoxide dismutase plays an important role in protecting cells from oxygen toxicity by catalyzing the dismutation of superoxide anion into hydrogen peroxide and oxygen. In Saccharomyces cerevisiae Cu,Zn-superoxide dismutase is coregulated with copper-thionein by copper via the transcription factor ACE 1. We demonstrate here that presence of AgNO3 in the culture medium leads to a five times increase of Cu,Zn-superoxide dismutase mRNA, with a concomitant six times decrease of the enzyme activity. Susceptibility of yeast to silver was apparently inversely related to Cu,Zn-superoxide dismutase activity. From silver-treated yeast a Cu,Zn-superoxide dismutase with impaired dismutase function was purified and was shown to contain silver, which was located to the copper site. These data suggest that Cu,Zn-superoxide dismutase may play an additional direct role in the defense of S. cerevisiae against metal stress by functioning as metal chelator. PMID:7929283

  3. [A comparison of the effects of laser and light-emitting diodes on superoxide dismutase activity and nitric oxide production in rat wound fluid].

    PubMed

    Klebanov, G I; Shuraeva, N Iu; Chichuk, T V; Osipov, A N; Vladimirov, Iu A

    2006-01-01

    The action of laser and light-emitting diode radiation in the visible region on the content of reactive nitrogen species and activity of superoxide dismutase in rat wound fluid was studied, and efficiency of action of coherent laser and incoherent light emitting diode radiations in the red region of the spectrum on the parameters under study was compared. A model of incised aseptic wounds in rats proposed by L.I. Slutskiy was used. A He-Ne laser (632 nm) and a Y-332B light emitting diode served as radiation sources. It was shown that (1) exposure of wounds to the visible light of both laser and light-emitting diodes causes dose-dependent changes in superoxide dismutase activity and production of nitrites and (2) the radiation coherence does not play any significant role in the changes of superoxide dismutase activity or nitrogen oxide formation by wound fluid phagocytes. PMID:16521561

  4. Kinetic evidence for an anion binding pocket in the active site of nitronate monooxygenase.

    PubMed

    Francis, Kevin; Gadda, Giovanni

    2009-10-01

    A series of monovalent, inorganic anions and aliphatic aldehydes were tested as inhibitors for Hansenula mrakii and Neurospora crassa nitronate monooxygenase, formerly known as 2-nitropropane dioxygenase, to investigate the structural features that contribute to the binding of the anionic nitronate substrates to the enzymes. A linear correlation between the volumes of the inorganic anions and their effectiveness as competitive inhibitors of the enzymes was observed in a plot of pK(is)versus the ionic volume of the anion with slopes of 0.041+/-0.001 mM/A(3) and 0.027+/-0.001 mM/A(3) for the H. mrakii and N. crassa enzymes, respectively. Aliphatic aldehydes were weak competitive inhibitors of the enzymes, with inhibition constants that are independent of their alkyl chain lengths. The reductive half reactions of H. mrakii nitronate monooxygenase with primary nitronates containing two to four carbon atoms all showed apparent K(d) values of approximately 5 mM. These results are consistent with the presence of an anion binding pocket in the active site of nitronate monooxygenase that interacts with the nitro group of the substrate, and suggest a minimal contribution of the hydrocarbon chain of the nitronates to the binding of the ligands to the enzyme. PMID:19683782

  5. TMEM16F (Anoctamin 6), an anion channel of delayed Ca2+ activation

    PubMed Central

    Grubb, Søren; Poulsen, Kristian A.; Juul, Christian Ammitzbøll; Kyed, Tania; Klausen, Thomas K.

    2013-01-01

    Members of the TMEM16 (Anoctamin) family of membrane proteins have been shown to be essential constituents of the Ca2+-activated Cl− channel (CaCC) in many cell types. In this study, we have investigated the electrophysiological properties of mouse TMEM16F. Heterologous expression of TMEM16F in HEK293 cells resulted in plasma membrane localization and an outwardly rectifying ICl,Ca that was activated with a delay of several minutes. Furthermore, a significant Na+ current was activated, and the two permeabilities were correlated according to PNa = 0.3 PCl. The current showed an EC50 of 100 µM intracellular free Ca2+ concentration and an Eisenman type 1 anion selectivity sequence of PSCN > PI > PBr > PCl > PAsp. The mTMEM16F-associated ICl,Ca was abolished in one mutant of the putative pore region (R592E) but retained in two other mutants (K616E and R636E). The mutant K616E had a lower relative permeability to iodide, and the mutant R636E had an altered anion selectivity sequence (PSCN = PI = PBr = PCl > PAsp). Our data provide evidence that TMEM16F constitutes a Ca2+-activated anion channel or a pore-forming subunit of an anion channel with properties distinct from TMEM16A. PMID:23630341

  6. C-H Bond Activation by Early Transition Metal Carbide Cluster Anion MoC3 (-).

    PubMed

    Li, Zi-Yu; Hu, Lianrui; Liu, Qing-Yu; Ning, Chuan-Gang; Chen, Hui; He, Sheng-Gui; Yao, Jiannian

    2015-12-01

    Although early transition metal (ETM) carbides can activate CH bonds in condensed-phase systems, the electronic-level mechanism is unclear. Atomic clusters are ideal model systems for understanding the mechanisms of bond activation. For the first time, CH activation of a simple alkane (ethane) by an ETM carbide cluster anion (MoC3 (-) ) under thermal-collision conditions has been identified by using high-resolution mass spectrometry, photoelectron imaging spectroscopy, and high-level quantum chemical calculations. Dehydrogenation and ethene elimination were observed in the reaction of MoC3 (-) with C2 H6 . The CH activation follows a mechanism of oxidative addition that is much more favorable in the carbon-stabilized low-spin ground electronic state than in the high-spin excited state. The reaction efficiency between the MoC3 (-) anion and C2 H6 is low (0.23±0.05) %. A comparison between the anionic and a highly efficient cationic reaction system (Pt(+) +C2 H6 ) was made. It turned out that the potential-energy surfaces for the entrance channels of the anionic and cationic reaction systems can be very different. PMID:26490554

  7. Human mitochondrial manganese superoxide dismutase polymorphic variant Ile58Thr reduces activity by destabilizing the tetrameric interface

    SciTech Connect

    Borgstahl, G.E.O.; Hickey, M.J.; Johnson, M.J.

    1996-04-09

    Human manganese superoxide dismutase (MnSOD) is a homotetrameric enzyme which protects mitochondria against oxygen-mediated free radical damage. Within each subunit, both the N-terminal helical hairpin and C-terminal {alpha}/{beta} domains contribute ligands to the catalytic manganese site. Two identical four-helix bundles,symmetrically assembled form the N-terminal helical hairpins, form a novel tetrameric interface that stabilizes the active sites. The 2.5 {angstrom} crystallographic structure of the naturally occurring polymorphic variant Ile58Thr MnSOD reveals that the helical hairpin mutation Thr58 causes two packing defects in each of the two four-helix bundles of the tetrameric interface. Similar mutations, expected to cause packing defects in the Cu,ZnSOD dimer interface, are associated with the degenerative disease amyotrophic lateral sclerosis. Ile58Thr MnSOD is primarily dimeric in solution and is significantly less thermostable than the normal enzyme, with decreases of 15{degrees}C in the main melting temperature and 20{degrees}C in the heat-inactivation temperature. Consequently, this mutant MnSOD is compromised at normal body temperatures: thermal inactivation, predicted from the decrease in thermal stability, occurs with a theoretical half-life of only 3.2h at 37{degrees}C (1.4 h at 41 {degrees}C), compared with 3.1 years for native MnSOD. This prediction is supported by direct measurements: incubation at 41.7{degrees}C for 3 h has no effect on the activity of native MnSOD but completely inactivates mutant MnSOD. Rapid inactivation of Ile58Thr MnSOD at the elevated temperatures associated with fever and inflammation could provide an early advantage by killing infected cells, but also would increase superoxide-mediated oxidative damage and perhaps contribute to late-onset diseases. 63 refs., 7 figs., 2 tabs.

  8. Angiotensin II stimulates superoxide production in the thick ascending limb by activating NOX4

    PubMed Central

    Hong, Nancy J.; Garvin, Jeffrey L.

    2012-01-01

    Angiotensin II (ANG II) stimulates production of superoxide (O2−) by NADPH oxidase (NOX) in medullary thick ascending limbs (TALs). There are three isoforms of the catalytic subunit (NOX1, 2, and 4) known to be expressed in the kidney. We hypothesized that NOX2 mediates ANG II-induced O2− production by TALs. To test this, we measured NOX1, 2, and 4 mRNA and protein by RT-PCR and Western blot in TAL suspensions from rats and found three catalytic subunits expressed in the TAL. We measured O2− production using a lucigenin-based assay. To assess the contribution of NOX2, we measured ANG II-induced O2− production in wild-type and NOX2 knockout mice (KO). ANG II increased O2− production by 346 relative light units (RLU)/mg protein in the wild-type mice (n = 9; P < 0.0007 vs. control). In the knockout mice, ANG II increased O2− production by 290 RLU/mg protein (n = 9; P < 0.007 vs. control). This suggests that NOX2 does not contribute to ANG II-induced O2− production (P < 0.6 WT vs. KO). To test whether NOX4 mediates the effect of ANG II, we selectively decreased NOX4 expression in rats using an adenovirus that expresses NOX4 short hairpin (sh)RNA. Six to seven days after in vivo transduction of the kidney outer medulla, NOX4 mRNA was reduced by 77%, while NOX1 and NOX2 mRNA was unaffected. In control TALs, ANG II stimulated O2− production by 96%. In TALs transduced with NOX4 shRNA, ANG II-stimulated O2− production was not significantly different from the baseline. We concluded that NOX4 is the main catalytic isoform of NADPH oxidase that contributes to ANG II-stimulated O2− production by TALs. PMID:22875785

  9. Non-coordinating-Anion-Directed Reversal of Activation Site: Selective C-H Bond Activation of N-Aryl Rings.

    PubMed

    Wang, Dawei; Yu, Xiaoli; Xu, Xiang; Ge, Bingyang; Wang, Xiaoli; Zhang, Yaxuan

    2016-06-13

    An Rh-catalyzed selective C-H bond activation of diaryl-substituted anilides is described. In an attempt to achieve C-H activation of C-aryl rings, we unexpectedly obtained an N-aryl ring product under non-coordinating anion conditions, whereas the C-aryl ring product was obtained in the absence of a non-coordinating anion. This methodology has proved to be an excellent means of tuning and adjusting selective C-H bond activation of C-aryl and N-aryl rings. The approach has been rationalized by mechanistic studies and theoretical calculations. In addition, it has been found and verified that the catalytic activity of the rhodium catalyst is obviously improved by non-coordinating anions, which provides an efficient strategy for obtaining a highly chemoselective catalyst. Mechanistic experiments also unequivocally ruled out the possibility of a so-called "silver effect" in this transformation involving silver. PMID:27159169

  10. Effect of S-nitrosoglutathione on renal mitochondrial function: a new mechanism for reversible regulation of manganese superoxide dismutase activity?

    PubMed Central

    Patil, Naeem K.; Saba, Hamida; MacMillan-Crow, Lee Ann

    2016-01-01

    Mitochondria are at the heart of all cellular processes as they provide the majority of the energy needed for various metabolic processes. Nitric oxide has been shown to have numerous roles in the regulation of mitochondrial function. Mitochondria have enormous pools of glutathione (GSH≈5–10 mM). Nitric oxide can react with glutathione to generate a physiological molecule, S-nitrosoglutathione (GSNO). The impact GSNO has on mitochondrial function has been intensively studied in recent years, and several mitochondrial electron transport chain complex proteins have been shown to be targeted by GSNO. In this study we investigated the effect of GSNO on mitochondrial function using normal rat proximal tubular kidney cells (NRK cells). GSNO treatment of NRK cells led to mitochondrial membrane depolarization and significant reduction in activities of mitochondrial complex IV and manganese superoxide dismutase enzyme (MnSOD). MnSOD is a critical endogenous antioxidant enzyme that scavenges excess superoxide radicals in the mitochondria. The decrease in MnSOD activity was not associated with a reduction in its protein levels and treatment of NRK cell lysate with dithiothreitol (a strong sulfhydryl-group-reducing agent) restored MnSOD activity to control values. GSNO is known to cause both S-nitrosylation and S-glutathionylation, which involve the addition of NO and GS groups, respectively, to protein sulfhydryl (SH) groups of cysteine residues. Endogenous GSH is an essential mediator in S-glutathionylation of cellular proteins, and the current studies revealed that GSH is required for MnSOD inactivation after GSNO or diamide treatment in rat kidney cells as well as in isolated kidneys. Further studies showed that GSNO led to glutathionylation of MnSOD; however, glutathionylated recombinant MnSOD was not inactivated. This suggests that a more complex pathway, possibly involving the participation of multiple proteins, leads to MnSOD inactivation after GSNO treatment. The

  11. Glycoursodeoxycholic acid reduces matrix metalloproteinase-9 and caspase-9 activation in a cellular model of superoxide dismutase-1 neurodegeneration.

    PubMed

    Vaz, Ana Rita; Cunha, Carolina; Gomes, Cátia; Schmucki, Nadja; Barbosa, Marta; Brites, Dora

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects mainly motor neurons (MNs). NSC-34 MN-like cells carrying the G93A mutation in human superoxide dismutase-1 (hSOD1(G93A)) are a common model to study the molecular mechanisms of neurodegeneration in ALS. Although the underlying pathways of MN failure still remain elusive, increased apoptosis and oxidative stress seem to be implicated. Riluzole, the only approved drug, only slightly delays ALS progression. Ursodeoxycholic acid (UDCA), as well as its glycine (glycoursodeoxycholic acid, GUDCA) and taurine (TUDCA) conjugated species, have shown therapeutic efficacy in neurodegenerative models and diseases. Pilot studies in ALS patients indicate safety and tolerability for UDCA oral administration. We explored the mechanisms associated with superoxide dismutase-1 (SOD1) accumulation and MN degeneration in NSC-34/hSOD1(G93A) cells differentiated for 4 days in vitro (DIV). We examined GUDCA efficacy in preventing such pathological events and in restoring MN functionality by incubating cells with 50 μM GUDCA at 0 DIV and at 2 DIV, respectively. Increased cytosolic SOD1 inclusions were observed in 4 DIV NSC-34/hSOD1(G93A) cells together with decreased mitochondria viability (1.2-fold, p < 0.01), caspase-9 activation (1.8-fold, p < 0.05), and apoptosis (2.1-fold, p < 0.01). GUDCA exerted preventive effects (p < 0.05) while also reduced caspase-9 levels when added at 2 DIV (p < 0.05). ATP depletion (2-fold, p < 0.05), increased nitrites (1.6-fold, p < 0.05) and metalloproteinase-9 (MMP-9) activation (1.8-fold, p < 0.05), but no changes in MMP-2, were observed in the extracellular media of 4 DIV NSC-34/hSOD1(G93A) cells. GUDCA inhibited nitrite production (p < 0.05) while simultaneously prevented and reverted MMP-9 activation (p < 0.05), but not ATP depletion. Data highlight caspase-9 and MMP-9 activation as key pathomechanisms in ALS and GUDCA

  12. Copper-dependent metabolism of Cu,Zn-superoxide dismutase in human K562 cells. Lack of specific transcriptional activation and accumulation of a partially inactivated enzyme.

    PubMed Central

    Steinkühler, C; Carrì, M T; Micheli, G; Knoepfel, L; Weser, U; Rotilio, G

    1994-01-01

    The regulation of Cu,Zn-superoxide dismutase by copper was investigated in human K562 cells. Copper ions caused a dose- and time-dependent increase, up to 3-fold, of the steady-state level of Cu,Zu-superoxide dismutase mRNA. A comparable increase was also observed for actin and ribosomal protein L32 mRNAs, but not for metallothionein mRNA which was augmented more than 50-fold and showed a different induction pattern. The copper-induced mRNAs were actively translated as judged from their enhanced loading on polysomes, the concomitantly increased cellular protein levels and an augmented incorporation of [3H]lysine into acid-precipitable material. Cu,Zn-superoxide dismutase protein followed this general trend, as demonstrated by dose- and time-dependent increases in immunoreactive and enzymically active protein. However, a specific accumulation of Cu,Zn-superoxide dismutase was noticed in cells grown in the presence of copper, that was not detectable for other proteins. Purification of the enzyme demonstrated that Cu,Zn-superoxide dismutase was present as a reconstitutable, copper-deficient protein with high specific activity (kcat./Cu = 0.89 x 10(9) M-1.s-1) in untreated K562 cells and as a fully metallated protein with low specific activity (kcat./Cu = 0.54 x 10(9) M-1.s-1) in copper-treated cells. Pulse-chase experiments using [3H]lysine indicated that turnover rates of Cu,Zn-superoxide dismutase in K562 cells were not affected by growth in copper-enriched medium, whereas turnover of total protein was significantly enhanced as a function of metal supplementation. From these results we conclude that: (i) unlike in yeast [Carrì, Galiazzo, Ciriolo and Rotilio (1991) FEBS Lett. 278, 263-266] Cu,Zn-superoxide dismutase is not specifically regulated by copper at the transcriptional level in human K562 cells, suggesting that this type of regulation has not been conserved during the evolution of higher eukaryotes; (ii) copper ions cause an inactivation of the enzyme in

  13. Copper-dependent metabolism of Cu,Zn-superoxide dismutase in human K562 cells. Lack of specific transcriptional activation and accumulation of a partially inactivated enzyme.

    PubMed

    Steinkühler, C; Carrì, M T; Micheli, G; Knoepfel, L; Weser, U; Rotilio, G

    1994-09-15

    The regulation of Cu,Zn-superoxide dismutase by copper was investigated in human K562 cells. Copper ions caused a dose- and time-dependent increase, up to 3-fold, of the steady-state level of Cu,Zu-superoxide dismutase mRNA. A comparable increase was also observed for actin and ribosomal protein L32 mRNAs, but not for metallothionein mRNA which was augmented more than 50-fold and showed a different induction pattern. The copper-induced mRNAs were actively translated as judged from their enhanced loading on polysomes, the concomitantly increased cellular protein levels and an augmented incorporation of [3H]lysine into acid-precipitable material. Cu,Zn-superoxide dismutase protein followed this general trend, as demonstrated by dose- and time-dependent increases in immunoreactive and enzymically active protein. However, a specific accumulation of Cu,Zn-superoxide dismutase was noticed in cells grown in the presence of copper, that was not detectable for other proteins. Purification of the enzyme demonstrated that Cu,Zn-superoxide dismutase was present as a reconstitutable, copper-deficient protein with high specific activity (kcat./Cu = 0.89 x 10(9) M-1.s-1) in untreated K562 cells and as a fully metallated protein with low specific activity (kcat./Cu = 0.54 x 10(9) M-1.s-1) in copper-treated cells. Pulse-chase experiments using [3H]lysine indicated that turnover rates of Cu,Zn-superoxide dismutase in K562 cells were not affected by growth in copper-enriched medium, whereas turnover of total protein was significantly enhanced as a function of metal supplementation. From these results we conclude that: (i) unlike in yeast [Carrì, Galiazzo, Ciriolo and Rotilio (1991) FEBS Lett. 278, 263-266] Cu,Zn-superoxide dismutase is not specifically regulated by copper at the transcriptional level in human K562 cells, suggesting that this type of regulation has not been conserved during the evolution of higher eukaryotes; (ii) copper ions cause an inactivation of the enzyme in

  14. Extracellular Superoxide Dismutase: Growth Promoter or Tumor Suppressor?

    PubMed Central

    Laukkanen, Mikko O.

    2016-01-01

    Extracellular superoxide dismutase (SOD3) gene transfer to tissue damage results in increased healing, increased cell proliferation, decreased apoptosis, and decreased inflammatory cell infiltration. At molecular level, in vivo SOD3 overexpression reduces superoxide anion (O2−) concentration and increases mitogen kinase activation suggesting that SOD3 could have life-supporting characteristics. The hypothesis is further strengthened by the observations showing significantly increased mortality in conditional knockout mice. However, in cancer SOD3 has been shown to either increase or decrease cell proliferation and survival depending on the model system used, indicating that SOD3-derived growth mechanisms are not completely understood. In this paper, the author reviews the main discoveries in SOD3-dependent growth regulation and signal transduction. PMID:27293512

  15. Extracellular Superoxide Dismutase: Growth Promoter or Tumor Suppressor?

    PubMed

    Laukkanen, Mikko O

    2016-01-01

    Extracellular superoxide dismutase (SOD3) gene transfer to tissue damage results in increased healing, increased cell proliferation, decreased apoptosis, and decreased inflammatory cell infiltration. At molecular level, in vivo SOD3 overexpression reduces superoxide anion (O2 (-)) concentration and increases mitogen kinase activation suggesting that SOD3 could have life-supporting characteristics. The hypothesis is further strengthened by the observations showing significantly increased mortality in conditional knockout mice. However, in cancer SOD3 has been shown to either increase or decrease cell proliferation and survival depending on the model system used, indicating that SOD3-derived growth mechanisms are not completely understood. In this paper, the author reviews the main discoveries in SOD3-dependent growth regulation and signal transduction. PMID:27293512

  16. Inorganic nitrite attenuates NADPH oxidase-derived superoxide generation in activated macrophages via a nitric oxide-dependent mechanism.

    PubMed

    Yang, Ting; Peleli, Maria; Zollbrecht, Christa; Giulietti, Alessia; Terrando, Niccolo; Lundberg, Jon O; Weitzberg, Eddie; Carlström, Mattias

    2015-06-01

    Oxidative stress contributes to the pathogenesis of many disorders, including diabetes and cardiovascular disease. Immune cells are major sources of superoxide (O2(∙-)) as part of the innate host defense system, but exaggerated and sustained O2(∙-) generation may lead to progressive inflammation and organ injuries. Previous studies have proven organ-protective effects of inorganic nitrite, a precursor of nitric oxide (NO), in conditions manifested by oxidative stress and inflammation. However, the mechanisms are still not clear. This study aimed at investigating the potential role of nitrite in modulating NADPH oxidase (NOX) activity in immune cells. Mice peritoneal macrophages or human monocytes were activated by lipopolysaccharide (LPS), with or without coincubation with nitrite. O2(∙-) and peroxynitrite (ONOO(-)) formation were detected by lucigenin-based chemiluminescence and fluorescence techniques, respectively. The intracellular NO production was measured by DAF-FM DA fluorescence. NOX isoforms and inducible NO synthase (iNOS) expression were detected by qPCR. LPS increased both O2(∙-) and ONOO(-) production in macrophages, which was significantly reduced by nitrite (10µmol/L). Mechanistically, the effects of nitrite are (1) linked to increased NO generation, (2) similar to that observed with the NO donor DETA-NONOate, and (3) can be abolished by the NO scavenger carboxy-PTIO or by the xanthine oxidase (XO) inhibitor febuxostat. Nox2 expression was increased in activated macrophages, but was not influenced by nitrite. However, nitrite attenuated LPS-induced upregulation of iNOS expression. Similar to that observed in mice macrophages, nitrite also reduced O2(∙-) generation in LPS-activated human monocytes. In conclusion, XO-mediated reduction of nitrite attenuates NOX activity in activated macrophages, which may modulate the inflammatory response. PMID:25724690

  17. Magnesium Deficiency and High Light Intensity Enhance Activities of Superoxide Dismutase, Ascorbate Peroxidase, and Glutathione Reductase in Bean Leaves 1

    PubMed Central

    Cakmak, Ismail; Marschner, Horst

    1992-01-01

    The influence of varied Mg supply (10-1000 micromolar) and light intensity (100-580 microeinsteins per square meter per second) on the concentrations of ascorbate (AsA) and nonprotein SH-compounds and the activities of superoxide dismutase (SOD; EC 1.15.11) and the H2O2 scavenging enzymes, AsA peroxidase (EC 1.11.1.7), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2) were studied in bean (Phaseolus vulgaris L.) leaves over a 13-day period. The concentrations of AsA and SH-compounds and the activities of SOD and H2O2 scavenging enzymes increased with light intensity, in particular in Mg-deficient leaves. Over the 12-day period of growth for a given light intensity, the concentrations of AsA and SH-compounds and the activities of these enzymes remained more or less constant in Mg-sufficient leaves. In contrast, in Mg-deficient leaves, a progressive increase was recorded, particularly in concentrations of AsA and activities of AsA peroxidase and glutathione reductase, whereas the activities of guaiacol peroxidase and catalase were only slightly enhanced. Partial shading of Mg-deficient leaf blades for 4 days prevented chlorosis, and the activities of the O2.− and H2O2 scavenging enzymes remained at a low level. The results demonstrate the role of both light intensity and Mg nutritional status on the regulation of O2.− and H2O2 scavenging enzymes in chloroplasts. PMID:16668779

  18. Enzymosomes with surface-exposed superoxide dismutase: in vivo behaviour and therapeutic activity in a model of adjuvant arthritis.

    PubMed

    Gaspar, Maria Manuela; Boerman, Otto C; Laverman, Peter; Corvo, Maria Luísa; Storm, Gert; Cruz, Maria Eugénia Meirinhos

    2007-02-12

    Acylated Superoxide Dismutase (Ac-SOD) enzymosomes, liposomal enzymatic systems expressing catalytic activity in the intact form, were previously characterized. The main scope of the present work was to investigate the biological behaviour of Ac-SOD inserted in the lipid bilayer of liposomes, in comparison with SOD located in the aqueous compartment of liposomes. Two types of liposomes were used: conventional liposomes presenting an unmodified external surface and long circulating liposomes coated with poly (ethylene glycol) (PEG). Liposomal formulations of Ac-SOD and SOD were prepared and labelled with indium-111 and their in vivo fate compared. Data obtained led us to the conclusion that, for liposomes coated with PEG the in vivo fate was not influenced by the insertion of Ac-SOD in the lipid bilayers. The potential therapeutic effect of Ac-SOD enzymosomes was compared with SOD liposomes in a rat model of adjuvant arthritis. A faster anti-inflammatory effect was observed for Ac-SOD enzymosomes by monitoring the volume of the inflamed paws. The present results allowed us to conclude that Ac-SOD enzymosomes are nano-carriers combining the advantages of expressing enzymatic activity in intact form and thus being able to exert therapeutic effect even before liposomes disruption, as well as acting as a sustained release of the enzyme. PMID:17169460

  19. Superoxide production by phagocytic leukocytes.

    PubMed

    Drath, D B; Karnovsky, M L

    1975-01-01

    Mononuclear phagocytic leukocytes, as well as polymorphonuclear leukocytes, produce and release superoxide at rest, and this is stimulated by phagocytosis. Of the mouse monocytic cells studied, alveolar macrophages released the largest amounts of superoxide during phagocytosis, followed by normal peritoneal macrophages. Casein-elicited and "activated" macrophages released smaller quantities. In the guinea pig, polymorphonuclear leukocytes and casein-elicited macrophages were shown to release superoxide during phagocytosis whereas alveolar macrophages did not. Superoxide release accounted for only a small fraction of the respiratory burst of phagocytosis in all but the normal mouse peritoneal macrophage, the guinea pig polymorphonuclear leukocyte, and probably the mouse alveolar macrophage. There are obviously considerable species differences in O2-release by various leukocytes that might reflect both the production and/or destruction (e.g. by dismutase) of that substance. PMID:804030

  20. Identification of two peanut germin-like genes and the potential superoxide dismutase activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Germin and germin-like protein (GLP) genes are members of large multigene families. These genes have been reported to play a role directly or indirectly in plant defense response. A number of GLPs have been demonstrated to have superoxidase dismutase (SOD) or oxalate oxidase (OxO) activity, leading ...

  1. Expression, subcellular localization, and enzyme activity of a recombinant human extra-cellular superoxide dismutase in tobacco (Nicotiana benthamiana L.).

    PubMed

    Park, Ki Youl; Kim, Eun Yu; Lee, Weontae; Kim, Tae-Yoon; Kim, Woo Taek

    2016-03-01

    Human extracellular superoxide dismutase (hEC-SOD) is an enzyme that scavenges reactive oxygen species (ROS). Because of its antioxidant activity, hEC-SOD has been used as a therapeutic protein to treat skin disease and arthritis in mammalian systems. In this study, codon-optimized hEC-SOD was expressed in tobacco (Nicotiana benthamiana L.) via a plant-based transient protein expression system. Plant expression binary vectors containing full-length hEC-SOD (f-hEC-SOD) and modified hEC-SOD (m-hEC-SOD), in which the signal peptide and heparin-binding domain were deleted, were constructed for the cytosolic-, endoplasmic reticulum (ER)-, and chloroplast-localizations in tobacco leaf mesophyll cells. The results demonstrated that f-hEC-SOD was more efficiently expressed in the cytosolic fractions than in the ER or chloroplasts of tobacco cells. Our data further indicated that differently localized f-hEC-SOD and m-hEC-SOD displayed SOD enzyme activities, suggesting that the hEC-SODs expressed by plants may be functionally active. The f-hEC-SOD was expressed up to 3.8% of the total leaf soluble protein and the expression yield was calculated to be 313.7 μg f-hEC-SOD per g fresh weight of leaf. Overall, our results reveal that it was possible to express catalytically active hEC-SODs by means of a transient plant expression system in tobacco leaf cells. PMID:26611610

  2. Alterations in superoxide dismutase activities, lipid peroxidation and glutathione levels in thinner inhaled rat lungs: relationship between histopathological properties.

    PubMed

    Ulakoğlu, E Z; Saygi, A; Gümüştaş, M K; Zor, E; Oztek, I; Kökoğlu, E

    1998-09-01

    Paint thinner has widespread use in industry. The use of thinner among children as a narcotic agent has become a social and health problem. There is some evidence that organic solvents may express their toxicity by the way of reactive oxygen species (ROS) induced cell damage. ROS has been shown to induce lipid peroxidation in biological membranes. This study examined peroxidative and histopathological changes in the rat lung, during 5 weeks of thinner inhalation. Significant increases were found in lipid peroxidation (MDA+4-DHA) levels related to the duration of inhalation. As opposed to increases in the lipid peroxidation levels, significant decreases in superoxide dismutase activities and glutathione levels were observed from the third inhalation week to the end of the fifth week. At the beginning of the inhalation slight inflammatory changes, intraalveolar and interstitial extravasation and oedema in lung parenchyma were noted. As the inhalation period extended, chronic inflammatory changes, alveolar epithelial proliferation, collapse, emphysematous changes and interstitial fibrosis in lung were detected. PMID:9782071

  3. Manganese(II) induces cell division and increases in superoxide dismutase and catalase activities in an aging deinococcal culture

    SciTech Connect

    Chou, F.I.; Tan, S.T. )

    1990-04-01

    Addition of Mn(II) at 2.5 microM or higher to stationary-phase cultures of Deinococcus radiodurans IR was found to trigger at least three rounds of cell division. This Mn(II)-induced cell division (Mn-CD) did not occur when the culture was in the exponential or death phase. The Mn-CD effect produced daughter cells proportionally reduced in size, pigmentation, and radioresistance but proportionally increased in activity and amount of the oxygen toxicity defense enzymes superoxide dismutase and catalase. In addition, the concentration of an Mn-CD-induced protein was found to remain high throughout the entire Mn-CD phase. It was also found that an untreated culture exhibited a growth curve characterized by a very rapid exponential-stationary transition and that cells which had just reached the early stationary phase were synchronous. Our results suggest the presence of an Mn(II)-sensitive mechanism for controlling cell division. The Mn-CD effect appears to be specific to the cation Mn(II) and the radioresistant bacteria, deinococci.

  4. A novel porphyrin derivative and its metal complexes: Electrochemical, photoluminescence, thermal, DNA-binding and superoxide dismutase activity studies

    NASA Astrophysics Data System (ADS)

    Purtaş, Savaş; Köse, Muhammet; Tümer, Ferhan; Tümer, Mehmet; Gölcü, Ayşegül; Ceyhan, Gökhan

    2016-02-01

    In this study, a new porphyrin-Schiff base ligand (L) and its metal complexes (Cu(II), Fe(III), Mn(III), Pt(II) and Zn(II)) were synthesized. The starting material 4-ethyl-2,6-bis(hydroxymethyl)phenol (A) was synthesized from 4-ethylphenol and formaldehyde in the alkaline media. The compound (A) was then oxidized to the 4-ethyl-2,6-diformylphenol (B). The starting compounds (A) and (B) were obtained as single crystals. Structures of the compounds (A) and (B) were determined by the X-ray crytallography technique. The porphyrin ligand (L) and its metal complexes were characterized by the analytical and spectroscopic methods. Electronic, electrochemical and thermal properties of the synthesised compounds were investigated. Superoxide dismutase activities (SOD) of the porphyrin Schiff base complexes were investigated and results were discussed. Additionally, the DNA (fish sperm FSdsDNA) binding studies of the complexes were performed using UV-vis spectroscopy. Competitive studies with ethidium bromide (EB) show that the compounds interact efficiently with DNA through an intercalating way.

  5. Ca(2+)-activated anion channels and membrane depolarizations induced by blue light and cold in Arabidopsis seedlings

    NASA Technical Reports Server (NTRS)

    Lewis, B. D.; Karlin-Neumann, G.; Davis, R. W.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The activation of an anion channel in the plasma membrane of Arabidopsis thaliana hypocotyls by blue light (BL) is believed to be a signal-transducing event leading to growth inhibition. Here we report that the open probability of this particular anion channel depends on cytoplasmic Ca2+ ([Ca2+]cyt) within the concentration range of 1 to 10 microM, raising the possibility that BL activates the anion channel by increasing [Ca2+]cyt. Arabidopsis seedlings cytoplasmically expressing aequorin were generated to test this possibility. Aequorin luminescence did not increase during or after BL, providing evidence that Ca2+ does not play a second-messenger role in the activation of anion channels. However, cold shock simultaneously triggered a large increase in [Ca2+]cyt and a 110-mV transient depolarization of the plasma membrane. A blocker of the anion channel, 5-nitro-2-(3-phenylpropylamino)-benzoic acid, blocked 61% of the cold-induced depolarization without affecting the increase in [Ca2+]cyt. These data led us to propose that cold shock opens Ca2+ channels at the plasma membrane, allowing an inward, depolarizing Ca2+ current. The resulting large increase in [Ca2+]cyt activates the anion channel, which further depolarizes the membrane. Although an increase in [Ca2+]cyt may activate anion channels in response to cold, it appears that BL does so via a Ca(2+)-independent pathway.

  6. Production, purification, and characterization of a novel cold-active superoxide dismutase from the Antarctic strain Aspergillus glaucus 363.

    PubMed

    Abrashev, Radoslav; Feller, Georges; Kostadinova, Nedelina; Krumova, Ekaterina; Alexieva, Zlatka; Gerginova, Maria; Spasova, Boryana; Miteva-Staleva, Jeni; Vassilev, Spassen; Angelova, Maria

    2016-05-01

    The Antarctic fungal strain Aspergillus glaucus 363 produces cold-active (CA) Cu/Zn-superoxide dismutase (SOD). The strain contains at least one gene encoding Cu/Zn-SOD that exhibited high homology with the corresponding gene of other Aspergillus species. To our knowledge, this is the first nucleotide sequence of a CA Cu/Zn-SOD gene in fungi. An effective laboratory technology for A. glaucus SOD production in 3 L bioreactors was developed on the basis of transient cold-shock treatment. The temperature downshift to 10 °C caused 1.4-fold increase of specific SOD activity compared to unstressed culture. Maximum enzyme productivity was 64 × 10(3) U kg(-1) h(-1). Two SOD isoenzymes (Cu/Zn-SODI and Cu/Zn-SODII) were purified to electrophoretic homogeneity. The specific activity of the major isoenzyme, Cu/Zn-SODII, after Q-Sepharose chromatography was 4000 U mg(-1). The molecular mass of SODI (38 159 Da) and of SODII (15 835 Da) was determined by electrospray quadropole time-of-flight (ESI-Q-TOF) mass spectrometry and dynamic light scattering (DLS). The presence of Cu and Zn were confirmed by inductively coupled plasma mass spectrometry (ICP-MS). The N-terminal amino acid sequence of Cu/Zn-SODII revealed a high degree of structural homology with Cu/Zn-SOD from other fungi, including Aspergillus species. PMID:27109365

  7. Boron influences immune and antioxidant responses by modulating hepatic superoxide dismutase activity under calcium deficit abiotic stress in Wistar rats.

    PubMed

    Bhasker, T Vijay; Gowda, N K S; Mondal, S; Krishnamoorthy, P; Pal, D T; Mor, A; Bhat, S Karthik; Pattanaik, A K

    2016-07-01

    The influence of Boron (B) supplementation on immune and antioxidant status of rats with or without abiotic stress induced by dietary calcium (Ca) restriction was studied in a feeding trial of 90 days. Wistar strain rats (3-4 wk age, n=84) were divided into 7 dietary groups (4 replicates of 3 each) viz., normal-calcium (100%) basal diet alone (NC, control) or supplemented with B at 5 (NCB-5), 10 (NCB-10), 20 (NCB-20) and 40ppm (NCB-40) levels; low-calcium (50%) basal diet alone (LC) or supplemented with 40ppm B (LCB-40). After 75 days of experimental feeding, rats were challenged with intraperitoneal injection of sheep RBCs to assess their humoral immunity. At the end of the trial, cell-mediated immunity was assessed as foot pad reaction to sheep RBCs injected into the hind leg paws. Eight rats from each group were sacrificed to collect blood for estimation of minerals and total antioxidant activity, and liver for superoxide dismutase gene expression analysis. Supplementation of graded levels of B (5, 10, 20 and 40ppm) as borax in NC diets significantly increased (P<0.01) the footpad thickness and serum total antioxidant activity, hepatic expression levels of both Cu-Zn SOD (SOD1) and Mn-SOD (SOD2) mRNAs. The erythrocytic SOD activity and humoral response did not differ significantly among the dietary groups. In Ca restricted groups, humoral immune response was significantly decreased (P<0.01) compared to control but increased (P<0.05) with 40ppm B supplementation. Serum levels of copper (Cu) and zinc (Zn) remained similar among the dietary groups, while the manganese (Mn) content was significantly decreased (P<0.01) with increased levels of dietary B. In conclusion, B supplementation increased the hepatic mRNA expression levels of both SOD isoenzymes, thereby improving the immune and antioxidant status. PMID:27259355

  8. Improving activity and stability of cutinase towards the anionic detergent AOT by complete saturation mutagenesis.

    PubMed

    Brissos, V; Eggert, T; Cabral, J M S; Jaeger, K-E

    2008-06-01

    Cutinase is an enzyme suitable for detergent applications as well as for organic synthesis in non-aqueous solvents. However, its inactivation in the presence of anionic surfactants is a problem which we have addressed by creating a complete saturation library. For this, the cutinase gene from Fusarium solani pisi was mutated to incorporate all 19 possible amino acid exchanges at each of the 214 amino acid positions. The resulting library was screened for active variants with improved stability in the presence of the anionic surfactant dioctyl sulfosuccinate sodium salt (AOT). Twenty-four sites in cutinase were discovered where amino acid replacements resulted in a 2-11-fold stability increase as compared to the wild-type enzyme. PMID:18424821

  9. Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants.

    PubMed

    Ahn, Chi K; Park, Donghee; Woo, Seung H; Park, Jong M

    2009-05-30

    To increase their capacity to adsorb heavy metals, activated carbons were impregnated with the anionic surfactants sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), or dioctyl sulfosuccinate sodium (DSS). Surfactant-impregnated activated carbons removed Cd(II) at up to 0.198 mmol g(-1), which was more than an order of magnitude better than the Cd(II) removal performance of activated carbon without surfactant (i.e., 0.016 mmol g(-1)) even at optimal pH (i.e., pH 6). The capacity of the activated carbon to adsorb Cd(II) increased in proportion to the quantity of surfactant with which they were impregnated. The kinetics of the adsorption of Cd(II) onto the surfactant-impregnated activated carbon was best described by a pseudo-second-order model, and was described better by the Freundlich adsorption isotherm than by the Langmuir isotherm. The surface charge of activated carbon was negative in all pH ranges tested (2-6). These results indicate that surface modification with anionic surfactant could be used to significantly enhance the capacity of activated carbon to adsorb cations. PMID:19022570

  10. Acetaminophen-Induced Hepatotoxicity in Mice Occurs with Inhibition of Activity and Nitration of Mitochondrial Manganese Superoxide Dismutase

    PubMed Central

    Agarwal, Rakhee; MacMillan-Crow, Lee Ann; Rafferty, Tonya M.; Saba, Hamida; Roberts, Dean W.; Fifer, E. Kim; James, Laura P.

    2011-01-01

    In overdose the analgesic/antipyretic acetaminophen (APAP) is hepatotoxic. Toxicity is mediated by initial hepatic metabolism to N-acetyl-p-benzoquinone imine (NAPQI). After low doses NAPQI is efficiently detoxified by GSH. However, in overdose GSH is depleted, NAPQI covalently binds to proteins as APAP adducts, and oxygen/nitrogen stress occurs. Toxicity is believed to occur by mitochondrial dysfunction. Manganese superoxide dismutase (MnSOD) inactivation by protein nitration has been reported to occur during other oxidant stress-mediated diseases. MnSOD is a critical mitochondrial antioxidant enzyme that prevents peroxynitrite formation within the mitochondria. To examine the role of MnSOD in APAP toxicity, mice were treated with 300 mg/kg APAP. GSH was significantly reduced by 65% at 0.5 h and remained reduced from 1 to 4 h. Serum alanine aminotransferase did not significantly increase until 4 h and was 2290 IU/liter at 6 h. MnSOD activity was significantly reduced by 50% at 1 and 2 h. At 1 h, GSH was significantly depleted by 62 and 80% at nontoxic doses of 50 and 100 mg/kg, respectively. No further GSH depletion occurred with hepatotoxic doses of 200 and 300 mg/kg APAP. A dose response decrease in MnSOD activity was observed for APAP at 100, 200, and 300 mg/kg. Immunoprecipitation of MnSOD from livers of APAP-treated mice followed by Western blot analysis revealed nitrated MnSOD. APAP-MnSOD adducts were not detected. Treatment of recombinant MnSOD with NAPQI did not produce APAP protein adducts. The data indicate that MnSOD inactivation by nitration is an early event in APAP-induced hepatic toxicity. PMID:21205919

  11. Anionic Lipid Content Presents a Barrier to the Activity of ROMP-Based Synthetic Mimics of Protein Transduction Domains (PTDMs).

    PubMed

    Lis, Michael; Dorner, Franziska; Tew, Gregory N; Lienkamp, Karen

    2016-06-14

    Many biophysical studies of protein transduction domains (PTDs) and their synthetic mimics (PTDMs) focus on the interaction between the polycationic PTD(M) and anionic phospholipid surfaces. Most, but not all, of these studies suggest that these cation-anion interactions are vital for membrane activity. In this study, the effect of anionic lipid content on PTDM performance was examined for three ring-opening metathesis (ROMP)-based PTDMs with varying hydrophobicity. Using a series of dye-loaded vesicles with gradually increasing anionic lipid content, we saw that increased anionic lipid content inhibited dye release caused by these PTDMs. This result is the opposite of what was found in studies with poly- and oligo-arginine. While the effect is reduced for more hydrophobic PTDMs, it is observable even with the most hydrophobic PTDMs of our test panel. Additional experiments included dynamic light scattering and zeta potential measurements to measure size as a function of vesicle surface charge in the presence of increasing PTDM concentration and surface plasmon resonance spectroscopy to quantify binding between PTDMs and surface-bound lipid layers with varying anion content. The results from these measurements suggested that PTDM hydrophobicity, not cation-anion interactions, is the main driving force of the interaction between our PTDMs and the model membranes investigated. This suggests a model of interaction where surface association and membrane insertion are driven by PTDM hydrophobicity, while anionic lipid content serves primarily to "pin" the PTDM to the membrane surface and limit insertion. PMID:27182683

  12. Anion selective optodes: development of a fluorescent fiber optic sensor for the determination of nitrite activity

    NASA Astrophysics Data System (ADS)

    Barker, Susan L. R.; Shortreed, Michael R.; Kopelman, Raoul

    1996-12-01

    The response of state of the art anion optodes often cannot be described in a thermodynamically exact manner because the ionic strength within the membrane phase of such optodes changes during the course of a titration. Incorporating lipophilic charge sites in the anion optode membranes provides a constant ionic strength in the membrane phase, the ability to measure anion activities, and a more thermodynamically describable system. This configuration has been used to create a micrometer-sized nitrite-selective optode. Recent elucidation of the many biological roles of nitric oxide (NO) has spurred interest in sensitive and selective detection of this molecule. In biological systems NO is converted to NO2- within 30 sec and the biological concentration of NO2- is normally on the micromolar level. The optode we have prepared contains a selective vitamin B12 derivative ionophore, a fluorescent chromoionophore (ETH 2439 or ETH 5350), and lipophilic charge sites. These components are entrapped in a highly plasticized PVC matrix which is placed on the distal end of the fiber. Sensor characteristics such as limit of detection and reversibility are presented.

  13. Transport activity of chimaeric AE2-AE3 chloride/bicarbonate anion exchange proteins.

    PubMed Central

    Fujinaga, Jocelyne; Loiselle, Frederick B; Casey, Joseph R

    2003-01-01

    Chloride/bicarbonate anion exchangers (AEs), found in the plasma membrane of most mammalian cells, are involved in pH regulation and bicarbonate metabolism. Although AE2 and AE3 are highly similar in sequence, AE2-transport activity was 10-fold higher than AE3 (41 versus 4 mM x min(-1) respectively), when expressed by transient transfection of HEK-293 cells. AE2-AE3 chimaeras were constructed to define the region responsible for differences in transport activity. The level of AE2 expression was approx. 30% higher than that of AE3. Processing to the cell surface, studied by chemical labelling and confocal microscopy, showed that AE2 is processed to the cell surface approx. 8-fold more efficiently than AE3. The efficiency of cell-surface processing was dependent on the cytoplasmic domain, since the AE2 domain conferred efficient processing upon the AE3 membrane domain, with a predominant role for amino acids 322-677 of AE2. AE2 that was expressed in HEK-293 cells was glycosylated, but little of AE3 was. However, AE2 expressed in the presence of the glycosylation inhibitor, tunicamycin, was not glycosylated, yet retained 85 +/- 8% of anion-transport activity. Therefore glycosylation has little, if any, role in the cell-surface processing or activity of AE2 or AE3. We conclude that the low anion-transport activity of AE3 in HEK-293 cells is due to low level processing to the plasma membrane, possibly owing to protein interactions with the AE3 cytoplasmic domain. PMID:12578559

  14. Third generation fluoroquinolones antibacterial drug based mixed-ligand Cu(II) complexes: structure, antibacterial activity, superoxide dismutase activity and DNA-interaction approach.

    PubMed

    Patel, Mohan N; Parmar, Pradhuman A; Gandhi, Deepen S

    2011-04-01

    The copper(II) complexes of the type [Cu(SPF)(A(n))Cl]/[Cu(PFL)(A(n))Cl] (where SPF is sparfloxacin, PFL is pefloxacin and A(n) is 2,2'-dipyridylamine/pyridine-2-carboxalehyde/thiophene-2-carboxaldehyde) were synthesised and were found to have a pyramidal geometry with a square base. The superoxide dismutase (SOD) like activity of the complexes were measured using an NBT/NADH/PMS system, these were expressed in terms of the concentration of complex which termianates the formation of formazan by 50% (IC₅₀ value) and found to range from 0.781 to 1.354 μM. The interactions of the complexes with DNA were studied by absorption titration, viscosity measurement and gel electrophoresis under physiological conditions. The antimicrobial efficiency of the complexes were tested on five different microorganisms and showed good biological activity. PMID:20583870

  15. Activation and induction by copper of Cu/Zn superoxide dismutase in Saccharomyces cerevisiae. Presence of an inactive proenzyme in anaerobic yeast.

    PubMed

    Galiazzo, F; Ciriolo, M R; Carrì, M T; Civitareale, P; Marcocci, L; Marmocchi, F; Rotilio, G

    1991-03-28

    The Cu/Zn superoxide dismutase activity of Saccharomyces cerevisiae was found to be strictly related to the extent of oxygen metabolism, since cells grown under anaerobic or repressed conditions were found to contain 10% and 40% the activity of derepressed cells, respectively. The dependence of Cu/Zn superoxide dismutase on oxygen was found to be related to the availability of copper to the cells since the enzyme activity and immunoreactive protein measured under the various conditions was roughly proportional to the copper content of cells and in anaerobic cells a large fraction of the enzyme was found to be in the form of an inactive proenzyme which was activated by the addition of copper to cell extracts. The Cu/Zn superoxide dismutase mRNA did not parallel the dependence of the enzyme concentration on oxygen metabolism, suggesting that the gene expression was affected by copper also at the post-transcriptional level. However, under conditions of copper overloading, a more direct effect on transcription was observed and the presence of the inactive proenzyme in anaerobic cultures was associated with the over-expression of metallothionein. PMID:2013277

  16. Mitogen-activated protein kinase kinase 5 (MKK5)-mediated signalling cascade regulates expression of iron superoxide dismutase gene in Arabidopsis under salinity stress

    PubMed Central

    Xing, Yu; Chen, Wei-hua; Jia, Wensuo; Zhang, Jianhua

    2015-01-01

    Superoxide dismutases (SODs) are involved in plant adaptive responses to biotic and abiotic stresses but the upstream signalling process that modulates their expression is not clear. Expression of two iron SODs, FSD2 and FSD3, was significantly increased in Arabidopsis in response to NaCl treatment but blocked in transgenic MKK5-RNAi plant, mkk5. Using an assay system for transient expression in protoplasts, it was found that mitogen-activated protein kinase kinase 5 (MKK5) was also activated in response to salt stress. Overexpression of MKK5 in wild-type plants enhanced their tolerance to salt treatments, while mkk5 mutant exhibited hypersensitivity to salt stress in germination on salt-containing media. Moreover, another kinase, MPK6, was also involved in the MKK5-mediated iron superoxide dismutase (FSD) signalling pathway in salt stress. The kinase activity of MPK6 was totally turned off in mkk5, whereas the activity of MPK3 was only partially blocked. MKK5 interacted with the MEKK1 protein that was also involved in the salt-induced FSD signalling pathway. These data suggest that salt-induced FSD2 and FSD3 expressions are influenced by MEKK1 via MKK5–MPK6-coupled signalling. This MAP kinase cascade (MEKK1, MKK5, and MPK6) mediates the salt-induced expression of iron superoxide dismutases. PMID:26136265

  17. Effect of xenobiotics on the respiratory activity of rat heart mitochondria and the concomitant formation of superoxide radicals

    SciTech Connect

    Stolze, K.; Nohl, H. . Inst. of Pharmacology and Toxicology)

    1994-03-01

    The effects of the xenobiotics atrazine, benzene, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lindane, toluene, and xylenol on the respiration of isolated rate heart mitochondria were studied. Bioenergetic parameters such as respiratory control (RC) and ATP/oxygen (P/O) values decreased considerably in the presence of these substances, and a concomitant increase of superoxide radical (O[sub 2][sup [minus

  18. Mammalian Glucose Transporter Activity Is Dependent upon Anionic and Conical Phospholipids.

    PubMed

    Hresko, Richard C; Kraft, Thomas E; Quigley, Andrew; Carpenter, Elisabeth P; Hruz, Paul W

    2016-08-12

    The regulated movement of glucose across mammalian cell membranes is mediated by facilitative glucose transporters (GLUTs) embedded in lipid bilayers. Despite the known importance of phospholipids in regulating protein structure and activity, the lipid-induced effects on the GLUTs remain poorly understood. We systematically examined the effects of physiologically relevant phospholipids on glucose transport in liposomes containing purified GLUT4 and GLUT3. The anionic phospholipids, phosphatidic acid, phosphatidylserine, phosphatidylglycerol, and phosphatidylinositol, were found to be essential for transporter function by activating it and stabilizing its structure. Conical lipids, phosphatidylethanolamine and diacylglycerol, enhanced transporter activity up to 3-fold in the presence of anionic phospholipids but did not stabilize protein structure. Kinetic analyses revealed that both lipids increase the kcat of transport without changing the Km values. These results allowed us to elucidate the activation of GLUT by plasma membrane phospholipids and to extend the field of membrane protein-lipid interactions to the family of structurally and functionally related human solute carriers. PMID:27302065

  19. Mammalian Glucose Transporter Activity Is Dependent upon Anionic and Conical Phospholipids*

    PubMed Central

    Hresko, Richard C.; Kraft, Thomas E.; Quigley, Andrew; Carpenter, Elisabeth P.; Hruz, Paul W.

    2016-01-01

    The regulated movement of glucose across mammalian cell membranes is mediated by facilitative glucose transporters (GLUTs) embedded in lipid bilayers. Despite the known importance of phospholipids in regulating protein structure and activity, the lipid-induced effects on the GLUTs remain poorly understood. We systematically examined the effects of physiologically relevant phospholipids on glucose transport in liposomes containing purified GLUT4 and GLUT3. The anionic phospholipids, phosphatidic acid, phosphatidylserine, phosphatidylglycerol, and phosphatidylinositol, were found to be essential for transporter function by activating it and stabilizing its structure. Conical lipids, phosphatidylethanolamine and diacylglycerol, enhanced transporter activity up to 3-fold in the presence of anionic phospholipids but did not stabilize protein structure. Kinetic analyses revealed that both lipids increase the kcat of transport without changing the Km values. These results allowed us to elucidate the activation of GLUT by plasma membrane phospholipids and to extend the field of membrane protein-lipid interactions to the family of structurally and functionally related human solute carriers. PMID:27302065

  20. Extracellular Superoxide Dismutase Activity and Plasma Malondialdehyde in Human Immunodeficiency Virus Subjects of Kano State as Surrogate Markers of CD4 Status

    PubMed Central

    Gwarzo, Muhammad Yalwa; Muhammad, Surajo Al-Kassim

    2010-01-01

    This study looked at the profile of plasma extracellular superoxide dismutase (SOD3) activity, malondialdehyde (MDA) vis-à-vis that of CD4 counts in human immunodeficiency virus subjects in Kano State, Nigeria. The subjects for this study comprised twenty (20) non-HIV infected volunteers as control and one hundred (100) HIV infected subjects. Forty nine (49) infected patients have not been on treatment, while fifty one (51) were at various stages of treatment. There was a negative correlation between the serum malondialdehyde concentration and CD4 count (Pearson r=−0.68, p<0.01). There was also a negative correlation between serum malondialdehyde concentration and extracellular superoxide dismutase activity ((Pearson r=−0.71, p<0.01) and Vitamin A concentration (Pearson r=−0.75; p<0.01). Conversely a positive correlation was observed between the CD4 counts in HIV infected patients and activity of extracellular superoxide dismutase (Pearson r=0.86, p<0.01). Similarly there was a positive correlation between CD4 count and serum vitamin A concentration (Pearson r=0.89 p<0.01). The possibility remains for using these indicators to monitor HIV patients not eligible for therapy in resource constrained facilities of our rural areas. PMID:23675205

  1. Effect of anions on the oxidation of organic compounds with ultrasonically activated persulfate

    NASA Astrophysics Data System (ADS)

    Sizykh, M. R.; Batoeva, A. A.

    2016-06-01

    The effect of anions typically present in natural and waste waters on the oxidation of the azo dye methyl orange with persulfate activated with high-frequency ultrasound was studied. At a chloride concentration of 1 mmol/L, the rate constant of substrate oxidation increased 1.5-fold, but further increase in the chloride content retarded the process. The addition of nitrates, carbonates, and hydrogen carbonates to the solution inhibited the process (NO 3 - < HCO 3 - ~ CO 3 2- ). These tendencies were in good agreement with the results obtained on a real water matrix of the natural surface water from Lake Baikal.

  2. A manganese superoxide dismutase (MnSOD) from ark shell, Scapharca broughtonii: Molecular characterization, expression and immune activity analysis.

    PubMed

    Zheng, Libing; Wu, Biao; Liu, Zhihong; Tian, Jiteng; Yu, Tao; Zhou, Liqing; Sun, Xiujun; Yang, Aiguo

    2015-08-01

    Manganese superoxide dismutase (MnSOD) is one of the key members of the antioxidant defense enzyme family, however, data regarding to the immune function of MnSOD in mollusks still remain limited now. In this study, a full-length MnSOD cDNA was identified by rapid amplification of cDNA ends (RACE) method from cDNA library of ark shell Scapharca broughtonii (termed SbMnSOD). The cDNA contained an open reading frame (ORF) of 696 bp which encoded a polypeptide of 232 amino acids, a 5'-UTR with length of 32 bp and a 3'-UTR of 275 bp. Four putative amino acid residues (His-57, His-105, Asp-190 and His-194) responsible for manganese coordination were located in the most highly conserved regions of SbMnSOD and the signature sequence (DVWEHAYY) also existed in SbMnSOD. The deduced amino acid sequence of SbMnSOD shared high homology to MnSOD from other species. All those data revealed that the SbMnSOD was a novel member of the MnSOD family. The mRNA expression profiles of SbMnSOD in tissues of foot, gill, mantle, adductor muscle, hemocytes and hepatopancreas analyzed by quantitative real-time PCR (qRT-PCR) suggested the mRNA transcripts of SbMnSOD distributed in all the examined tissues. Importantly, Vibrio anguillarum challenge resulted in the increased expression of SbMnSOD mRNA with a regular change trend in all examined tissues, indicating SbMnSOD actively participated in the immune response process. What's more, further analysis on the antibacterial activity of the recombinant SbMnSOD showed that the fusion protein could remarkably inhibit growth of both Gram-positive and Gram-negative bacteria. The present results clearly suggested that SbMnSOD was an acute phase protein involved in the immune reaction in S. broughtonii. PMID:25980798

  3. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters

    PubMed Central

    Ramesh, Sunita A.; Tyerman, Stephen D.; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A.; Ryan, Peter R.; Gillham, Matthew

    2015-01-01

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms. PMID:26219411

  4. Real time monitoring of superoxide dynamics in vivo through fluorescent proteins using a sensitive fiber probe

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Chung; Ken, Chuian-Fu; Hsu, Che-Wei; Liu, Ya-Ging

    2014-03-01

    Superoxide anion is the primary oxygen free radical generated in mitochondria that causes intracellular oxidative stress. The lack of a method to directly monitor superoxide concentration in vivo in real time has severely hindered our understanding on its pathophysiology. We made transgenic zebrafish to specifically express fluorescent proteins, which are recently developed as reversible superoxide-specific indicators, in the liver. A fiber-optic fluorescent probe was used to noninvasively monitor superoxide generation in the liver in real time. The fish were placed in microfluidic channels for manipulation and reagents administration. Several superoxide-inducing and scavenging reagents were administrated onto the fish to investigate their effects on superoxide anion balancing. The biochemical dynamics of superoxide due to the application reagents were revealed in the transient behaviors of fluorescence time courses. With the ability to monitor superoxide dynamics in vivo in real time, this method can be used as an in vivo pharmaceutical screening platform.

  5. Models of Superoxide Dismutases

    SciTech Connect

    Cabelli, Diane E.; Riley, Dennis; Rodriguez, Jorge A.; Valentine, Joan Selverstone; Zhu, Haining

    1998-05-20

    In this review we have focused much of our discussion on the mechanistic details of how the native enzymes function and how mechanistic developments/insights with synthetic small molecule complexes possessing SOD activity have influenced our understanding of the electron transfer processes involved with the natural enzymes. A few overriding themes have emerged. Clearly, the SOD enzymes operate at near diffusion controlled rates and to achieve such catalytic turnover activity, several important physical principles must be operative. Such fast electron transfer processes requires a role for protons; i.e., proton-coupled electron transfer (''H-atom transfer'') solves the dilemma of charge separation developing in the transition state for the electron transfer step. Additionally, outer-sphere electron transfer is likely a most important pathway for manganese and iron dismutases. This situation arises because the ligand exchange rates on these two ions in water never exceed {approx}10{sup +7} s{sup -1}; consequently, 10{sup +9} catalytic rates require more subtle mechanistic insights. In contrast, copper complexes can achieve diffusion controlled (>10{sup +9}) exchange rates in water; thus inner-sphere electron transfer processes are more likely to be operative in the Cu/Zn enzymes. Recent studies have continued to expand our understanding of the mechanism of action of this most important class of redox active enzymes, the superoxide dismutases, which have been critical in the successful adaptation of life on this planet to an oxygen-based metabolism. The design of SOD mimic drugs, synthetic models compounds that incorporate this superoxide dismutase catalytic activity and are capable of functioning in vivo, offers clear potential benefits in the control of diseases, ranging from the control of neurodegenerative conditions, such as Parkinson's or Alzheimer's disease, to cancer.

  6. Removal of bromide and iodide anions from drinking water by silver-activated carbon aerogels.

    PubMed

    Sánchez-Polo, M; Rivera-Utrilla, J; Salhi, E; von Gunten, U

    2006-08-01

    The aim of this study is to analyze the use of Ag-doped activated carbon aerogels for bromide and iodide removal from drinking water and to study how the activation of Ag-doped aerogels affects their behavior. It has been observed that the carbonization treatment and activation process of Ag-doped aerogels increased the surface area value ( [Formula: see text] ), whereas the volume of meso-(V(2)) and macropores (V(3)) decreased slightly. Chemical characterization of the materials revealed that carbonization and especially activation process considerably increased the surface basicity of the sample. Original sample (A) presented acidic surface properties (pH(PZC)=4.5) with 21% surface oxygen, whereas the sample that underwent activation showed mainly basic surface chemical properties (pH(PZC)=9.5) with only 6% of surface oxygen. Carbonization and especially, activation process considerable increased the adsorption capacity of bromide and iodide ions. This would mainly be produced by (i) an increase in the microporosity of the sample, which increases Ag-adsorption sites available to halide anions, and (ii) a rise of the basicity of the sample, which produces an increase in attractive electrostatic interactions between the aerogel surface, positively charged at the working pH (pH(solution)activation processes increased the adsorptive capacity of the aerogel sample. However, results showed that the adsorption capacity of the aerogel samples studied was considerably lower in water from Lake Zurich. Results showed X(0.02) (amount adsorbed to initial breakthrough) values of 0.1 and 4.3 mg/g for chloride anion and dissolved organic carbon (DOC), respectively, during bromide adsorption process in water from Lake Zurich

  7. pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Wu, Haohao; Li, Meng; Yin, Jun-Jie; Nie, Zhihong

    2014-09-01

    Recently, platinum (Pt) nanoparticles (NPs) have received increasing attention in the field of catalysis and medicine due to their excellent catalytic activity. To rationally design Pt NPs for these applications, it is crucial to understand the mechanisms underlying their catalytic and biological activities. This article describes a systematic study on the Pt NP-catalyzed decomposition of hydrogen peroxide (H2O2) and scavenging of superoxide (O2&z.rad;-) and singlet oxygen (1O2) over a physiologically relevant pH range of 1.12-10.96. We demonstrated that the catalytic activities of Pt NPs can be modulated by the pH value of the environment. Our results suggest that Pt NPs possess peroxidase-like activity of decomposing H2O2 into &z.rad;OH under acidic conditions, but catalase-like activity of producing H2O and O2 under neutral and alkaline conditions. In addition, Pt NPs exhibit significant superoxide dismutase-like activity of scavenging O2&z.rad;- under neutral conditions, but not under acidic conditions. The 1O2 scavenging ability of Pt NPs increases with the increase in the pH of the environment. The study will provide useful guidance for designing Pt NPs with desired catalytic and biological properties.Recently, platinum (Pt) nanoparticles (NPs) have received increasing attention in the field of catalysis and medicine due to their excellent catalytic activity. To rationally design Pt NPs for these applications, it is crucial to understand the mechanisms underlying their catalytic and biological activities. This article describes a systematic study on the Pt NP-catalyzed decomposition of hydrogen peroxide (H2O2) and scavenging of superoxide (O2&z.rad;-) and singlet oxygen (1O2) over a physiologically relevant pH range of 1.12-10.96. We demonstrated that the catalytic activities of Pt NPs can be modulated by the pH value of the environment. Our results suggest that Pt NPs possess peroxidase-like activity of decomposing H2O2 into &z.rad;OH under acidic conditions

  8. Air Revitalization Using Superoxides

    NASA Technical Reports Server (NTRS)

    Wydeven, Theodore; Wood, Peter C.; Spitze, L. A.

    1988-01-01

    Pellets made from powder mixtures of potassium superoxide, KO2, and calcium superoxide, Ca(O2)2, proven markedly superior to pellets of pure KO2 for adding O2 to and removing CO2 from atmospheric-pressure flow of humidified CO2 in He. Superoxides used extensively to supply O2 and scrub CO2 in variety of ambient-pressure life-support applications, including portable self-contained breathing apparatuses, spacecraft, and undersea submersible craft.

  9. A heterobimetallic superoxide complex formed through O2 activation between chromium(II) and a lithium cation.

    PubMed

    Schax, Fabian; Suhr, Simon; Bill, Eckhard; Braun, Beatrice; Herwig, Christian; Limberg, Christian

    2015-01-19

    The reaction of 1,1,3,3-tetraphenyl-1,3-disiloxandiol (LH2) with n-butyllithium and CrCl2 results in a mononuclear chromium(II) complex (1) that further reacts with O2 at low temperatures to yield a mononuclear chromium(III) superoxide complex [L2CrO2(THF)][Li2(THF)3] (2). The crystal structure revealed that the chromium superoxido entity is stabilized by the coordination to an adjacent lithium cation. Complex 2 thus contains an unprecedented heterobimetallic [Cr(III)(μ-O2)Li(+)] core; beyond this it is the first chromium superoxide for which a temperature-dependent magnetic characterization could be achieved, and the first structurally characterized representative with chromium in an exclusive O-donor environment. PMID:25477030

  10. First insight into catalytic activity of anionic iron porphyrins immobilized on exfoliated layered double hydroxides.

    PubMed

    Nakagaki, Shirley; Halma, Matilte; Bail, Alesandro; Arízaga, Gregório Guadalupe Carbajal; Wypych, Fernando

    2005-01-15

    Mg-Al layered double hydroxide (LDH) intercalated with glycinate anions was synthesized through co-precipitation and exfoliated in formamide and the single-layer suspension was reacted with aqueous iron porphyrin solutions (Fe(TDFSPP) and Fe(TCFSPP)). The obtained materials were characterized by X-ray powder diffraction, UV-vis, and electron paramagnetic resonance and investigated in the oxidation reaction of cyclooctene and cyclohexane using iodosylbenzene as oxidant. The iron porphyrin seems to be immobilized at the surface of the glycinate intercalated LDH. The catalytic activities obtained in heterogeneous media for iron porphyrin, Fe(TDFSPP), was superior to the results obtained under homogeneous conditions, but the opposite effect was observed on the Fe(TCFSPP), indicating that, instead of the structural similarity of both iron porphyrins (second-generation porphyrins), the immobilization of each one produced different catalysts. The best catalytic activity of the Fe(TDFSPP)/Gly-LDH, compared to Fe(TCFSPP)/Gly-LDH, can be explained by the easy access of the oxidant and the substrate to the catalytic sites in the former, probably located at the surface of the layered double hydroxide pillared with glycinate anions. A model for the immobilization and a mechanism for the oxidation reaction will be discussed. PMID:15571697

  11. Meta-Analyses of Manganese Superoxide Dismutase Activity, Gene Ala-9Val Polymorphism, and the Risk of Schizophrenia

    PubMed Central

    Wang, Dong-Fang; Cao, Bing; Xu, Mei-Yan; Liu, Ya-Qiong; Yan, Lai-Lai; Liu, Rong; Wang, Jing-Yu; Lu, Qing-Bin

    2015-01-01

    Abstract Schizophrenia is a complex and disabling psychiatric disorder, and tardive dyskinesia (TD) is a severe adverse drug effect occurring in 20% to 40% of schizophrenic patients chronically treated with typical neuroleptics. Previous studies suggested that the manganese superoxide dismutase (MnSOD) activity was associated with the development of schizophrenia. Ala-9Val polymorphism, a functional polymorphism of MnSOD gene, has been reported to be related to the risk of schizophrenia and TD. However, these studies did not lead to consistent results. We performed meta-analyses aiming to assess the association between MnSOD activity and schizophrenia, as well as the association of MnSOD Ala-9Val polymorphism with schizophrenia and TD in schizophrenic patients. We search for the literature on MnSOD and schizophrenia in English or Chinese published up to May 1, 2015 on PubMed, EMBASE, the Cochrane Databases, Chinese National Knowledge Infrastructure, China Biology Medical and Wanfang databases. Two investigators independently reviewed retrieved literature and evaluated eligibility. Discrepancy was resolved by consensus with a third reviewer. Data were pooled using fixed-effect or random-effect models. The standardized mean difference (SMD) and 95% confidence interval (CI) were calculated for the MnSOD activity. Pooled odds ratio (OR) and 95% CI were calculated for Ala-9Val genotype and allele frequencies. There were 6, 6, and 10 studies entering 3 parts of meta-analyses, respectively. The MnSOD activity of patients was significantly lower than that of controls (SMD = −0.94; 95% CI: −1.76, −0.12; P = 0.025). No significant associations of Ala-9Val genotypes (OR = 1.14; 95% CI: 0.97, 1.33; P = 0.109) and alleles (OR = 1.06; 95% CI: 0.94, 1.20; P = 0.361) with the risk of schizophrenia were observed. We also did not reveal significant associations of the genotypes (OR = 0.82; 95% CI: 0.66, 1.02; P = 0.075) and alleles (OR = 0

  12. The Superoxide Reductase from the Early Diverging Eukaryote Giardia Intestinalis

    SciTech Connect

    Cabelli, D.E.; Testa, F.; Mastronicola, D.; Bordi, E.; Pucillo, L.P.; Sarti, P.; Saraiva, L.M.; Giuffre, A.; Teixeira, M.

    2011-10-15

    Unlike superoxide dismutases (SODs), superoxidereductases (SORs) eliminate superoxide anion (O{sub 2}{sup {sm_bullet}-}) not through its dismutation, but via reduction to hydrogen peroxide (H{sub 2}O{sub 2}) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR{sub Gi}) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (T{sub final}) with Fe{sup 3+} ligated to glutamate or hydroxide depending on pH (apparent pK{sub a} = 8.7). Although showing negligible SOD activity, reduced SOR{sub Gi} reacts with O{sub 2}{sup {sm_bullet}-} with a pH-independent second-order rate constant k{sub 1} = 1.0 x 10{sup 9} M{sup -1} s{sup -1} and yields the ferric-(hydro)peroxo intermediate T{sub 1}; this in turn rapidly decays to the T{sub final} state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SOR{sub Gi} is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.

  13. Up-regulation of an extracellular superoxide dismutase-like activity in hibernating hamsters subjected to oxidative stress in mid- to late arousal from torpor.

    PubMed

    Okamoto, Iwao; Kayano, Tohru; Hanaya, Toshiharu; Arai, Shigeyuki; Ikeda, Masao; Kurimoto, Masashi

    2006-09-01

    Torpor-arousal cycles, one of the inherent features in hibernators, are associated with a rapid increase in body temperature and respiration, and it would lead to elevation of reactive oxygen species (ROS) generation. However, hibernators apparently tolerate this oxidative stress. We have observed in Syrian hamsters (Mesocricetus auratus) a maximal temperature shift and respiratory rate in mid- to late arousal (16-33 degrees C rectal temperature) from torpor. To examine plasma antioxidant status during arousal, we studied total superoxide radical-scavenging activity in plasma by electron spin resonance. The superoxide radical-scavenging activity reached a maximum at 32 degrees C, coincident with a peak in plasma uric acid levels, a ROS generation indicator. The up-regulated activity at 32 degrees C was attributable to the peak of the activity eluted at 260-kDa on gel-filtration chromatography, but was not to small antioxidant molecules such as ascorbate and alpha-tocopherol. The activity eluted at 260-kDa increased 3-fold at 32 degrees C compared with that of the torpid state, and was not detected either at 6 h after the onset of arousal or in the euthermic state. Moreover, the activity exhibited extracellular SOD-like properties: its induction in plasma by heparin injection and its affinity for heparin. Our results suggest that the 260-kDa extracellular SOD-like activity plays a role in the tolerance for the oxidative stress during arousal from torpor. PMID:16807121

  14. Anion-activated, thermoreversible gelation system for the capture, release, and visual monitoring of CO2.

    PubMed

    Zhang, Xin; Lee, Songyi; Liu, Yifan; Lee, Minji; Yin, Jun; Sessler, Jonathan L; Yoon, Juyoung

    2014-01-01

    Carbon dioxide (CO2) is an important green house gas. This is providing an incentive to develop new strategies to detect and capture CO2. Achieving both functions within a single molecular system represents an unmet challenge in terms of molecular design and could translate into enhanced ease of use. Here, we report an anion-activated chemosensor system, NAP-chol 1, that permits dissolved CO2 to be detected in organic media via simple color changes or through ratiometric differences in fluorescence intensity. NAP-chol 1 also acts as a super gelator for DMSO. The resulting gel is transformed into a homogeneous solution upon exposure to fluoride anions. Bubbling with CO2 regenerates the gel. Subsequent flushing with N2 or heating serves to release the CO2 and reform the sol form. This series of transformations is reversible and can be followed by easy-to-discern color changes. Thus, NAP-chol 1 allows for the capture and release of CO2 gas while acting as a three mode sensing system. In particular, it permits CO2 to be detected through reversible sol-gel transitions, simple changes in color, or ratiometric monitoring of the differences in the fluorescence features. PMID:24699626

  15. Anion-activated, thermoreversible gelation system for the capture, release, and visual monitoring of CO2

    PubMed Central

    Zhang, Xin; Lee, Songyi; Liu, Yifan; Lee, Minji; Yin, Jun; Sessler, Jonathan L.; Yoon, Juyoung

    2014-01-01

    Carbon dioxide (CO2) is an important green house gas. This is providing an incentive to develop new strategies to detect and capture CO2. Achieving both functions within a single molecular system represents an unmet challenge in terms of molecular design and could translate into enhanced ease of use. Here, we report an anion-activated chemosensor system, NAP-chol 1, that permits dissolved CO2 to be detected in organic media via simple color changes or through ratiometric differences in fluorescence intensity. NAP-chol 1 also acts as a super gelator for DMSO. The resulting gel is transformed into a homogeneous solution upon exposure to fluoride anions. Bubbling with CO2 regenerates the gel. Subsequent flushing with N2 or heating serves to release the CO2 and reform the sol form. This series of transformations is reversible and can be followed by easy-to-discern color changes. Thus, NAP-chol 1 allows for the capture and release of CO2 gas while acting as a three mode sensing system. In particular, it permits CO2 to be detected through reversible sol-gel transitions, simple changes in color, or ratiometric monitoring of the differences in the fluorescence features. PMID:24699626

  16. Anion-activated, thermoreversible gelation system for the capture, release, and visual monitoring of CO2

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Lee, Songyi; Liu, Yifan; Lee, Minji; Yin, Jun; Sessler, Jonathan L.; Yoon, Juyoung

    2014-04-01

    Carbon dioxide (CO2) is an important green house gas. This is providing an incentive to develop new strategies to detect and capture CO2. Achieving both functions within a single molecular system represents an unmet challenge in terms of molecular design and could translate into enhanced ease of use. Here, we report an anion-activated chemosensor system, NAP-chol 1, that permits dissolved CO2 to be detected in organic media via simple color changes or through ratiometric differences in fluorescence intensity. NAP-chol 1 also acts as a super gelator for DMSO. The resulting gel is transformed into a homogeneous solution upon exposure to fluoride anions. Bubbling with CO2 regenerates the gel. Subsequent flushing with N2 or heating serves to release the CO2 and reform the sol form. This series of transformations is reversible and can be followed by easy-to-discern color changes. Thus, NAP-chol 1 allows for the capture and release of CO2 gas while acting as a three mode sensing system. In particular, it permits CO2 to be detected through reversible sol-gel transitions, simple changes in color, or ratiometric monitoring of the differences in the fluorescence features.

  17. Silver coated anionic cellulose nanofiber composites for an efficient antimicrobial activity.

    PubMed

    Gopiraman, Mayakrishnan; Jatoi, Abdul Wahab; Hiromichi, Seki; Yamaguchi, Kyohei; Jeon, Han-Yong; Chung, Ill-Min; Ick Soo, Kim

    2016-09-20

    Herein, we report a comparative study of silver coated anionic cellulose nanocomposite before (CMC-Ag) and after (AgNPs/CMC) chemical reduction for antibacterial activity. Cellulose nanofibers were prepared by deacetylation of electrospun cellulose acetate nanofibers, which were then treated with sodium chloroacetate to prepare anionic cellulose nanofibers (CMC). Aqueous AgNO3 solution with different concentrations was employed to produce nanofiber composites. To obtain AgNPs/CMC, the resultant Ag/CMC nanofibers were chemically reduced with NaBH4. The nanocomposites were characterized by FE-SEM, FTIR, XPS and SEM-EDS. Antimicrobiality tests were conducted using S. aureus and Escherichia coli bacteria following standard test method JIS L1902, 2008. The EDS results confirmed higher silver content in CMC-Ag nanofibers than AgNPs/CMC nanofibers. The antimicrobial test and EDS results demonstrated higher silver release (larger halo width) by the former in comparison to later which confers better antimicrobiality by CMC-Ag nanofibers. PMID:27261729

  18. Superoxide and peroxynitrite in atherosclerosis.

    PubMed Central

    White, C R; Brock, T A; Chang, L Y; Crapo, J; Briscoe, P; Ku, D; Bradley, W A; Gianturco, S H; Gore, J; Freeman, B A

    1994-01-01

    The role of reactive oxygen species in the vascular pathology associated with atherosclerosis was examined by testing the hypothesis that impaired vascular reactivity results from the reaction of nitric oxide (.NO) with superoxide (O2-), yielding the oxidant peroxynitrite (ONOO-). Contractility studies were performed on femoral arteries from rabbits fed a cholesterol-supplemented diet. Cholesterol feeding shifted the EC50 for acetylcholine (ACh)-induced relaxation and impaired the maximal response to ACh. We used pH-sensitive liposomes to deliver CuZn superoxide dismutase (SOD; superoxide:superoxide oxidoreductase, EC 1.15.1.1) to critical sites of .NO reaction with O2-. Intravenously injected liposomes (3000 units of SOD per ml) augmented ACh-induced relaxation in the cholesterol-fed group to a greater extent than in controls. Quantitative immunocytochemistry demonstrated enhanced distribution of SOD in both endothelial and vascular smooth muscle cells as well as in the extracellular matrix. SOD activity in vessel homogenates of liposome-treated rabbits was also increased. Incubation of beta very low density lipoprotein with ONOO- resulted in the rapid formation of conjugated dienes and thiobarbituric acid-reactive substances. Our results suggest that the reaction of O2- with .NO is involved in the development of atherosclerotic disease by yielding a potent mediator of lipoprotein oxidation, as well as by limiting .NO stimulation of vascular smooth muscle guanylate cyclase activity. Images PMID:8302829

  19. Ground State Destabilization by Anionic Nucleophiles Contributes to the Activity of Phosphoryl Transfer Enzymes

    PubMed Central

    Andrews, Logan D.; Fenn, Tim D.; Herschlag, Daniel

    2013-01-01

    Enzymes stabilize transition states of reactions while limiting binding to ground states, as is generally required for any catalyst. Alkaline Phosphatase (AP) and other nonspecific phosphatases are some of Nature's most impressive catalysts, achieving preferential transition state over ground state stabilization of more than 1022-fold while utilizing interactions with only the five atoms attached to the transferred phosphorus. We tested a model that AP achieves a portion of this preference by destabilizing ground state binding via charge repulsion between the anionic active site nucleophile, Ser102, and the negatively charged phosphate monoester substrate. Removal of the Ser102 alkoxide by mutation to glycine or alanine increases the observed Pi affinity by orders of magnitude at pH 8.0. To allow precise and quantitative comparisons, the ionic form of bound Pi was determined from pH dependencies of the binding of Pi and tungstate, a Pi analog lacking titratable protons over the pH range of 5–11, and from the 31P chemical shift of bound Pi. The results show that the Pi trianion binds with an exceptionally strong femtomolar affinity in the absence of Ser102, show that its binding is destabilized by ≥108-fold by the Ser102 alkoxide, and provide direct evidence for ground state destabilization. Comparisons of X-ray crystal structures of AP with and without Ser102 reveal the same active site and Pi binding geometry upon removal of Ser102, suggesting that the destabilization does not result from a major structural rearrangement upon mutation of Ser102. Analogous Pi binding measurements with a protein tyrosine phosphatase suggest the generality of this ground state destabilization mechanism. Our results have uncovered an important contribution of anionic nucleophiles to phosphoryl transfer catalysis via ground state electrostatic destabilization and an enormous capacity of the AP active site for specific and strong recognition of the phosphoryl group in the transition

  20. A slow anion channel in guard cells, activating at large hyperpolarization, may be principal for stomatal closing.

    PubMed

    Linder, B; Raschke, K

    1992-11-16

    Slowly activating anion channel currents were discovered at micromolar 'cytoplasmic' Ca2+ during patch-clamp measurements on guard-cell protoplasts of Vicia faba and Xanthium strumarium. They activated at potentials as low as -200 mV, with time constants between 5 and 60 s, and no inactivation. The broad voltage dependence exhibited a current maximum near -40 mV. The single-channel open time was in the order of seconds, and the unitary conductance was 33 ps, similar to that of the already described 'quick' anion channel of guard cells. Because of its activity at low potentials, the slow anion channel may be essential for the depolarization of the plasmalemma that is required for salt efflux during stomatal closing. PMID:1385219

  1. Orally active antioxidative copper(II) aspirinate: synthesis, structure characterization, superoxide scavenging activity, and in vitro and in vivo antioxidative evaluations.

    PubMed

    Fujimori, T; Yamada, S; Yasui, H; Sakurai, H; In, Y; Ishida, T

    2005-12-01

    Ever since it was proposed that reactive oxygen species (ROS) are involved in the pathogeneses of various diseases, superoxide dismutase (SOD)-mimetic complexes have been intensively studied. We prepared copper(II) aspirinate [Cu2(asp)4] from Cu(II) and aspirin, which has been in use for many years as an antipyretic, an analgesic, and an anti-inflammatory agent. However, Cu2(asp)4 has been found to have additional activities, including anti-inflammatory, antiulcer, anti-ischemic/reperfusion agent, anticancer, antimutagenic, and antimicrobial activities. The activity of copper salicylate [Cu(sal)2] was also compared with that of Cu2(asp)4. The structure of the Cu2(asp)4 was determined using X-ray structure analysis. Its SOD-mimetic activity was determined using cytochrome c, electron spin resonance (ESR) spectroscopy, and ESR spin trap methods. The activity of Cu2(asp)4 was slightly greater than CuSO4 and copper acetate [Cu(ace)2] and slightly less than that of Cu(sal)2. The in vitro antioxidant activity, evaluated in human epithelial or transformed neoplastic keratinocyte cells, HaCaT, and normal dermal fibroblasts in terms of cell survival following ultraviolet B (UVB) irradiation, was significantly increased in the presence of Cu2(asp)4, Cu(sal)2, and CuSO4. Further, ROS generation following UVA irradiation in the skin of hairless mice following oral treatment with Cu2(asp)4 for three consecutive days was significantly suppressed compared to the vehicle- or Cu(ace)2-treated mice. On the basis of these results, Cu2(asp)4 was observed to be a potent antioxidative compound possessing antioxidative activity in biological systems. In conclusion, Cu2(asp)4 is a potent antioxidative agent that may be useful for future treatment of diseases resulting from ROS. PMID:16261369

  2. Periplasmic Superoxide Dismutase in Meningococcal Pathogenicity

    PubMed Central

    Wilks, Kathryn E.; Dunn, Kate L. R.; Farrant, Jayne L.; Reddin, Karen M.; Gorringe, Andrew R.; Langford, Paul R.; Kroll, J. Simon

    1998-01-01

    Meningococcal sodC encodes periplasmic copper- and zinc-cofactored superoxide dismutase (Cu,Zn SOD) which catalyzes the conversion of the superoxide radical anion to hydrogen peroxide, preventing a sequence of reactions leading to production of toxic hydroxyl free radicals. From its periplasmic location, Cu,Zn SOD was inferred to acquire its substrate from outside the bacterial cell and was speculated to play a role in preserving meningococci from the action of microbicidal oxygen free radicals produced in the context of host defense. A sodC mutant was constructed by allelic exchange and was used to investigate the role of Cu,Zn SOD in pathogenicity. Wild-type and mutant meningococci grew at comparable rates and survived equally long in aerobic liquid culture. The mutant showed no increased sensitivity to paraquat, which generates superoxide within the cytosol, but was approximately 1,000-fold more sensitive to the toxicity of superoxide generated in solution by the xanthine/xanthine oxidase system. These data support a role for meningococcal Cu,Zn SOD in protection against exogenous superoxide. In experiments to translate this into a role in pathogenicity, wild-type and mutant organisms were used in an intraperitoneal mouse infection model. The sodC mutant was significantly less virulent. We conclude that periplasmic Cu,Zn SOD contributes to the virulence of Neisseria meningitidis, most likely by reducing the effectiveness of toxic oxygen host defenses. PMID:9423860

  3. Superoxide dismutase 2 knockdown leads to defects in locomotor activity, sensitivity to paraquat, and increased cuticle pigmentation in Tribolium castaneum

    PubMed Central

    Tabunoki, Hiroko; Gorman, Maureen J.; Dittmer, Neal T.; Kanost, Michael R.

    2016-01-01

    Insects can rapidly adapt to environmental changes through physiological responses. The red flour beetle Tribolium castaneum is widely used as a model insect species. However, the stress–response system of this species remains unclear. Superoxide dismutase 2 (SOD2) is a crucial antioxidative enzyme that is found in mitochondria. T. castaneum SOD2 (TcSOD2) is composed of 215 amino acids, and has an iron/manganese superoxide dismutase domain. qRT-PCR experiments revealed that TcSOD2 was present through all developmental stages. To evaluate TcSOD2 function in T. castaneum, we performed RNAi and also assessed the phenotype and antioxidative tolerance of the knockdown of TcSOD2 by exposing larvae to paraquat. The administration of paraquat resulted in significantly higher 24-h mortality in TcSOD2 knockdown larval groups than in the control groups. The TcSOD2 knockdown adults moved significantly more slowly, had lower ATP content, and exhibited a different body color from the control groups. We found that TcSOD2 dsRNA treatment in larvae resulted in increased expression of tyrosinase and laccase2 mRNA after 10 days. This is the first report showing that TcSOD2 has an antioxidative function and demonstrates that T. castaneum may use an alternative antioxidative system when the SOD2-based system fails. PMID:27387523

  4. Superoxide dismutase 2 knockdown leads to defects in locomotor activity, sensitivity to paraquat, and increased cuticle pigmentation in Tribolium castaneum.

    PubMed

    Tabunoki, Hiroko; Gorman, Maureen J; Dittmer, Neal T; Kanost, Michael R

    2016-01-01

    Insects can rapidly adapt to environmental changes through physiological responses. The red flour beetle Tribolium castaneum is widely used as a model insect species. However, the stress-response system of this species remains unclear. Superoxide dismutase 2 (SOD2) is a crucial antioxidative enzyme that is found in mitochondria. T. castaneum SOD2 (TcSOD2) is composed of 215 amino acids, and has an iron/manganese superoxide dismutase domain. qRT-PCR experiments revealed that TcSOD2 was present through all developmental stages. To evaluate TcSOD2 function in T. castaneum, we performed RNAi and also assessed the phenotype and antioxidative tolerance of the knockdown of TcSOD2 by exposing larvae to paraquat. The administration of paraquat resulted in significantly higher 24-h mortality in TcSOD2 knockdown larval groups than in the control groups. The TcSOD2 knockdown adults moved significantly more slowly, had lower ATP content, and exhibited a different body color from the control groups. We found that TcSOD2 dsRNA treatment in larvae resulted in increased expression of tyrosinase and laccase2 mRNA after 10 days. This is the first report showing that TcSOD2 has an antioxidative function and demonstrates that T. castaneum may use an alternative antioxidative system when the SOD2-based system fails. PMID:27387523

  5. Na(+)-independent multispecific anion transporter mediates active transport of pravastatin into rat liver.

    PubMed

    Yamazaki, M; Suzuki, H; Hanano, M; Tokui, T; Komai, T; Sugiyama, Y

    1993-01-01

    To examine whether the relatively selective inhibition of hepatic cholesterol synthesis by the hydrophilic 3-hydroxyl-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor pravastatin in vivo may be due to the existence of a specific uptake mechanism in the liver, the uptake by isolated rat hepatocytes was investigated. The uptake was composed of a saturable component [Michaelis constant (Km) 29 microM, maximal uptake rate 546 pmol.min-1.mg-1] and nonspecific diffusion (nonspecific uptake clearance 1.6 microliters.min-1.mg-1), inhibited by hypothermia, metabolic inhibitors, sulfhydryl-modifying reagents, and inhibitor of anion exchanger, whereas replacement of Na+ by choline+ or Cl- by gluconate- did not alter the uptake. Competitive inhibition was observed by a more highly lipophilic HMG-CoA reductase inhibitor simvastatin (open acid form), dibromosulfophthalein, cholate, and taurocholate. Pravastatin inhibited Na(+)-independent taurocholate uptake with an inhibition constant comparable with the Km value of pravastatin itself. Furthermore, the hepatic permeability clearance in vivo obtained with intact rats was comparable with that in vitro, indicating that the carrier-mediated active transport system we demonstrated in vitro is responsible for the hepatic uptake in vivo. These findings demonstrated that the hepatic uptake of pravastatin occurs via a carrier-mediated active transport mechanism utilizing the so-called multispecific anion transporter, which is common with the Na(+)-independent bile acid uptake system, and that this is one of the mechanisms for its selective inhibition of hepatic cholesterol synthesis in vivo. PMID:8430803

  6. Physical and chemical stability of different formulations with superoxide dismutase.

    PubMed

    Di Mambro, V M; Campos, P M B G Maia; Fonseca, M J V

    2004-10-01

    Topical formulations with superoxide dismutase (SOD), a scavenger of superoxide radicals, have proved to be effective against some skin diseases. Nevertheless, formulations with proteins are susceptible to both chemical and physical instability. Three different formulations (anionic and non-ionic gel and emulsion) were developed and supplemented with SOD in order to determine the most stable formulation that would maintain SOD activity. Physical stability was evaluated by assessing the rheological behavior of the formulations stored at room temperature, 37 and 45 degrees C. Chemical stability was evaluated by the measurement of enzymatic activity in the formulations stored at room temperature and at 45 degrees C. Formulations showed a flow index less than one, characterizing pseudoplastic behavior. There was no significant difference in initial values of flow index, tixotropy or minimum apparent viscosity. Neither gel showed significant changes in minimum apparent viscosity concerning storage time or temperature, as well, SOD presence and its activity. The emulsion showed decreased viscosity by the 28th day, but no significant changes concerning storage temperature or SOD presence, although it showed a decreased activity. The addition of SOD to the formulations studied did not affect their physical stability but gel formulations seem to be better bases for enzyme addition. PMID:15544058

  7. Active Fe-Containing Superoxide Dismutase and Abundant sodF mRNA in Nostoc commune (Cyanobacteria) after Years of Desiccation

    PubMed Central

    Shirkey, Breanne; Kovarcik, Don Paul; Wright, Deborah J.; Wilmoth, Gabriel; Prickett, Todd F.; Helm, Richard F.; Gregory, Eugene M.; Potts, Malcolm

    2000-01-01

    Active Fe-superoxide dismutase (SodF) was the third most abundant soluble protein in cells of Nostoc commune CHEN/1986 after prolonged (13 years) storage in the desiccated state. Upon rehydration, Fe-containing superoxide disumutase (Fe-SOD) was released and the activity was distributed between rehydrating cells and the extracellular fluid. The 21-kDa Fe-SOD polypeptide was purified, the N terminus was sequenced, and the data were used to isolate sodF from the clonal isolate N. commune DRH1. sodF encodes an open reading frame of 200 codons and is expressed as a monocistronic transcript (of approximately 750 bases) from a region of the genome which includes genes involved in nucleic acid synthesis and repair, including dipyrimidine photolyase (phr) and cytidylate monophosphate kinase (panC). sodF mRNA was abundant and stable in cells after long-term desiccation. Upon rehydration of desiccated cells, there was a turnover of sodF mRNA within 15 min and then a rise in the mRNA pool to control levels (quantity of sodF mRNA in cells in late logarithmic phase of growth) over approximately 24 h. The extensive extracellular polysaccharide (glycan) of N. commune DRH1 generated superoxide radicals upon exposure to UV-A or -B irradiation, and these were scavenged by SOD. Despite demonstrated roles for the glycan in the desiccation tolerance of N. commune, it may in fact be a significant source of damaging free radicals in vivo. It is proposed that the high levels of SodF in N. commune, and release of the enzyme from dried cells upon rehydration, counter the effects of oxidative stress imposed by multiple cycles of desiccation and rehydration during UV-A or -B irradiation in situ. PMID:10613879

  8. Superoxide radical-generating compounds activate a predicted promoter site for paraquat-inducible genes of the Chromobacterium violaceum bacterium in a dose-dependent manner.

    PubMed

    Gabriel, J E; Guerra-Slompo, E P; de Souza, E M; de Carvalho, F A L; Madeira, H M F; de Vasconcelos, A T R

    2015-01-01

    The purpose of the present study was to functionally evaluate the influence of superoxide radical-generating compounds on the heterologous induction of a predicted promoter region of open reading frames for paraquat-inducible genes (pqi genes) revealed during genome annotation analyses of the Chromobacterium violaceum bacterium. A 388-bp fragment corresponding to a pqi gene promoter of C. violaceum was amplified using specific primers and cloned into a conjugative vector containing the Escherichia coli lacZ gene without a promoter. Assessments of the expression of the β-galactosidase enzyme were performed in the presence of menadione (MEN) and phenazine methosulfate (PMS) compounds at different final concentrations to evaluate the heterologous activation of the predicted promoter region of interest in C. violaceum induced by these substrates. Under these experimental conditions, the MEN reagent promoted highly significant increases in the expression of the β-galactosidase enzyme modulated by activating the promoter region of the pqi genes at all concentrations tested. On the other hand, significantly higher levels in the expression of the β-galactosidase enzyme were detected exclusively in the presence of the PMS reagent at a final concentration of 50 μg/mL. The findings described in the present study demonstrate that superoxide radical-generating compounds can activate a predicted promoter DNA motif for pqi genes of the C. violaceum bacterium in a dose-dependent manner. PMID:26345950

  9. Nonsynaptic Communication Through ATP Release from Volume-Activated Anion Channels in Axons

    PubMed Central

    Fields, R. Douglas; Ni, Yingchun

    2016-01-01

    The release of neuronal messengers outside synapses has broad biological implications, particularly with regard to communication between axons and glia. We identify a mechanism for nonsynaptic, nonvesicular release of adenosine triphosphate (ATP) from axons through volume-activated anion channels (VAACs) activated by microscopic axon swelling during action potential firing. We used a combination of single-photon imaging of ATP release, together with imaging for intrinsic optical signals, intracellular calcium ions (Ca2+), time-lapse video, and confocal microscopy, to investigate action potential–induced nonsynaptic release of this neurotransmitter. ATP release from cultured embryonic dorsal root ganglion axons persisted when bafilomycin or botulinum toxin was used to block vesicular release, whereas pharmacological inhibition of VAACs or prevention of action potential–induced axon swelling inhibited ATP release and disrupted activity-dependent signaling between axons and astrocytes. This nonvesicular, nonsynaptic communication could mediate various activity-dependent interactions between axons and nervous system cells in normal conditions, development, and disease. PMID:20923934

  10. Plasmodium induces swelling-activated ClC-2 anion channels in the host erythrocyte.

    PubMed

    Huber, Stephan M; Duranton, Christophe; Henke, Guido; Van De Sand, Claudia; Heussler, Volker; Shumilina, Ekaterina; Sandu, Ciprian D; Tanneur, Valerie; Brand, Verena; Kasinathan, Ravi S; Lang, Karl S; Kremsner, Peter G; Hübner, Christian A; Rust, Marco B; Dedek, Karin; Jentsch, Thomas J; Lang, Florian

    2004-10-01

    Intraerythrocytic growth of the human malaria parasite Plasmodium falciparum depends on delivery of nutrients. Moreover, infection challenges cell volume constancy of the host erythrocyte requiring enhanced activity of cell volume regulatory mechanisms. Patch clamp recording demonstrated inwardly and outwardly rectifying anion channels in infected but not in control erythrocytes. The molecular identity of those channels remained elusive. We show here for one channel type that voltage dependence, cell volume sensitivity, and activation by oxidation are identical to ClC-2. Moreover, Western blots and FACS analysis showed protein and functional ClC-2 expression in human erythrocytes and erythrocytes from wild type (Clcn2(+/+)) but not from Clcn2(-/-) mice. Finally, patch clamp recording revealed activation of volume-sensitive inwardly rectifying channels in Plasmodium berghei-infected Clcn2(+/+) but not Clcn2(-/-) erythrocytes. Erythrocytes from infected mice of both genotypes differed in cell volume and inhibition of ClC-2 by ZnCl(2) (1 mm) induced an increase of cell volume only in parasitized Clcn2(+/+) erythrocytes. Lack of ClC-2 did not inhibit P. berghei development in vivo nor substantially affect the mortality of infected mice. In conclusion, activation of host ClC-2 channels participates in the altered permeability of Plasmodium-infected erythrocytes but is not required for intraerythrocytic parasite survival. PMID:15272009

  11. Surface-active ionic liquids in micellar catalysis: impact of anion selection on reaction rates in nucleophilic substitutions.

    PubMed

    Cognigni, Alice; Gaertner, Peter; Zirbs, Ronald; Peterlik, Herwig; Prochazka, Katharina; Schröder, Christian; Bica, Katharina

    2016-05-21

    A series of surface-active ionic liquids based on the 1-dodecyl-3-methylimidazolium cation and different anions such as halides and alkylsulfates was synthesized. The aggregation behavior of these ionic liquids in water was characterized by surface tension, conductivity measurements and UV-Vis spectroscopy in order to determine the critical micelle concentration (CMC) and to provide aggregation parameters. The determination of surface activity and aggregation properties of amphiphilic ionic liquids was accompanied by SAXS studies on selected surface-active ionic liquids. The application of these surface-active ionic liquids with different anions was tested in nucleophilic substitution reactions for the degradation of organophosphorus compounds. Kinetic studies via UV-Vis spectrophotometry showed a strong acceleration of the reaction in the micellar system compared to pure water. In addition, an influence of the anion was observed, resulting in a correlation between the anion binding to the micelle and the reaction rate constants, indicating that the careful choice of the surface-active ionic liquid can considerably affect the outcome of reactions. PMID:27121134

  12. Differences in the activity of superoxide dismutase, polyphenol oxidase and Cu-Zn content in the fruits of Gordal and Manzanilla olive varieties.

    PubMed

    Hornero-Méndez, Dámaso; Gallardo-Guerrero, Lourdes; Jarén-Galán, Manuel; Mínguez-Mosquera, María Isabel

    2002-01-01

    Activity of the enzymes superoxide dismutase (SOD) and polyphenol oxidase (PPO) as well as Cu-Zn content have been monitored during the thirteen weeks growth of both Gordal and Manzanilla olive variety fruits. These metalloenzymes, with Cu and Zn in the prostetic group, are involved in controlling the redox balance in the chloroplast environment. The results indicated that, under similar phenological and environmental conditions, there are periodic peaks of SOD activity in both varieties, followed by fluctuations in the copper content of the fruit. This was interpreted as a common and simultaneous response to situations of oxidative stress, and this response was more intense in the variety Gordal. The enzyme PPO showed an activity peak at start of growth and then practically disappeared. Thus, its activity cannot be correlated with situations of stress or with changes of Cu and Zn in the fruit. PMID:11926522

  13. Superoxide targets calcineurin signaling in vascular endothelium

    SciTech Connect

    Namgaladze, Dmitry . E-mail: dmitry@zbc.kgu.de; Shcherbyna, Ivanna; Kienhoefer, Joachim; Hofer, H. Werner; Ullrich, Volker

    2005-09-09

    Superoxide emerges as key regulatory molecule in many aspects of vascular physiology and disease, but identification of superoxide targets in the vasculature remains elusive. In this work, we investigated the possibility of inhibition of protein phosphatase calcineurin by superoxide in endothelial cells. We employed a redox cycler 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) to generate superoxide inside the cells. DMNQ caused inhibition of cellular calcineurin phosphatase activity, which was reversible upon DMNQ removal. Inhibition was suppressed by pre-incubating the cells with copper/zinc superoxide dismutase (Cu,ZnSOD). In addition, reducing cellular Cu,ZnSOD activity by diethylthiocarbamic acid treatment resulted in calcineurin inhibition and enhanced sensitivity to DMNQ. Further, we could show that DMNQ inhibits calcineurin-dependent nuclear translocation and transcriptional activation of NFAT transcription factor, and Cu,ZnSOD or superoxide scavenger Tiron reduced the inhibition. Thus, superoxide generation in endothelial cells results in inhibition of calcineurin signaling, which could have important pathophysiological implications in the vasculature.

  14. Ground state destabilization by anionic nucleophiles contributes to the activity of phosphoryl transfer enzymes.

    PubMed

    Andrews, Logan D; Fenn, Tim D; Herschlag, Daniel

    2013-07-01

    Enzymes stabilize transition states of reactions while limiting binding to ground states, as is generally required for any catalyst. Alkaline Phosphatase (AP) and other nonspecific phosphatases are some of Nature's most impressive catalysts, achieving preferential transition state over ground state stabilization of more than 10²²-fold while utilizing interactions with only the five atoms attached to the transferred phosphorus. We tested a model that AP achieves a portion of this preference by destabilizing ground state binding via charge repulsion between the anionic active site nucleophile, Ser102, and the negatively charged phosphate monoester substrate. Removal of the Ser102 alkoxide by mutation to glycine or alanine increases the observed Pi affinity by orders of magnitude at pH 8.0. To allow precise and quantitative comparisons, the ionic form of bound P(i) was determined from pH dependencies of the binding of Pi and tungstate, a P(i) analog lacking titratable protons over the pH range of 5-11, and from the ³¹P chemical shift of bound P(i). The results show that the Pi trianion binds with an exceptionally strong femtomolar affinity in the absence of Ser102, show that its binding is destabilized by ≥10⁸-fold by the Ser102 alkoxide, and provide direct evidence for ground state destabilization. Comparisons of X-ray crystal structures of AP with and without Ser102 reveal the same active site and P(i) binding geometry upon removal of Ser102, suggesting that the destabilization does not result from a major structural rearrangement upon mutation of Ser102. Analogous Pi binding measurements with a protein tyrosine phosphatase suggest the generality of this ground state destabilization mechanism. Our results have uncovered an important contribution of anionic nucleophiles to phosphoryl transfer catalysis via ground state electrostatic destabilization and an enormous capacity of the AP active site for specific and strong recognition of the phosphoryl group in

  15. Superoxide dismutase activity in the oviductal and uterine fluid of the bitch and the effects of the enzyme on viability, motility and hyperactivation of canine sperm in vitro.

    PubMed

    Kobayashi, Masanori; Wada, Miho; Hori, Tatsuya; Kawakami, Eiichi

    2014-05-01

    Superoxide dismutase (SOD) activity in flushings from oviducts and uterine horns of 8 anestrous, 5 estrous and 7 diestrous bitches was measured. SOD activity in oviductal fluid in estrous bitches was significantly higher than that in anestrous and diestrous bitches (P<0.01). SOD activity in uterine fluid of diestrous bitches was, however, significantly higher than that in anestrous and estrous bitches (P<0.01). Additionally, sperm collected from normal dogs were incubated in MEM and in MEM containing SOD (SOD-MEM) for 24 hr. The percentages of sperm with viability, motility and hyperactivation in SOD-MEM were higher than those in MEM. SOD produced in oviduct and uterus may be able to maintain or improve sperm quality and fertility in the dog. PMID:24430658

  16. Superoxide dismutase overexpression protects against glucocorticoid-induced depressive-like behavioral phenotypes in mice.

    PubMed

    Uchihara, Yuki; Tanaka, Ken-ichiro; Asano, Teita; Tamura, Fumiya; Mizushima, Tohru

    2016-01-22

    In the stress response, activation of the hypothalamic-pituitary-adrenal axis, and particularly the release of glucocorticoids, plays a critical role. However, dysregulation of this system and sustained high plasma levels of glucocorticoids can result in depression. Recent studies have suggested the involvement of reactive oxygen species (ROS), such as superoxide anion, in depression. However, direct evidence for a role of ROS in the pathogenesis of this disorder is lacking. In this study, using transgenic mice expressing human Cu/Zn-superoxide dismutase (SOD1), an enzyme that catalyzes the dismutation of superoxide anions, we examined the effect of SOD1 overexpression on depressive-like behavioral phenotypes in mice. Depressive-like behaviors were induced by daily subcutaneous administration of the glucocorticoid corticosterone for 4 weeks, and was monitored with the social interaction test, the sucrose preference test and the forced swim test. These tests revealed that transgenic mice overexpressing SOD1 are more resistant to glucocorticoid-induced depressive-like behavioral disorders than wild-type animals. Furthermore, compared with wild-type mice, transgenic mice showed a reduction in the number of 8-hydroxy-2'-deoxyguanosine (a marker of oxidative stress)-positive cells in the hippocampal CA3 region following corticosterone administration. These results suggest that overexpression of SOD1 protects mice against glucocorticoid-induced depressive-like behaviors by decreasing cellular ROS levels. PMID:26721432

  17. Thioredoxin Activates MKK4-NFκB Pathway in a Redox-dependent Manner to Control Manganese Superoxide Dismutase Gene Expression in Endothelial Cells*

    PubMed Central

    Kundumani-Sridharan, Venkatesh; Subramani, Jaganathan; Das, Kumuda C.

    2015-01-01

    The mitogen-activated protein kinase kinase 4 (MKK4) is activated via phosphorylation of Ser-257 and Thr-261 by upstream MAP3Ks and activates JNK and p38 MAPKs in response to cellular stress. We show that thioredoxin (Trx), a cellular redox protein, activates MKK4 via Cys-246 and Cys-266 residues as mutation of these residues renders MKK4 insensitive to phosphorylation by MAP3Ks, TNFα, or Trx. MKK4 is activated in vitro by reduced Trx but not oxidized Trx in the absence of an upstream kinase, suggesting that autophosphorylation of this protein occurs due to reduction of Cys-246 and Cys-266 by Trx. Additionally, mutation of Cys-246 and Cys-266 resulted in loss of kinase activity suggesting that the redox state of Cys-246 and Cys-266 is a critical determinant of MKK4 activation. Trx induces manganese superoxide dismutase (MnSOD) gene transcription by activating MKK4 via redox control of Cys-246 and Cys-266, as mutation of these residues abrogates MKK4 activation and MnSOD expression. We further show that MKK4 activates NFκB for its binding to the MnSOD promoter, which leads to AP-1 dissociation followed by MnSOD transcription. Taken together, our studies show that the redox status of Cys-246 and Cys-266 in MKK4 controls its activities independent of MAP3K, demonstrating integration of the endothelial redox environment to MAPK signaling. PMID:26028649

  18. Therapeutic effects of vitamin E supplementation in 4 dogs with poor semen quality and low superoxide dismutase activity in seminal plasma

    PubMed Central

    KAWAKAMI, Eiichi; KOBAYASHI, Masanori; HORI, Tatsuya; KANEDA, Takeharu

    2015-01-01

    Four dogs with poor semen quality, low seminal plasma superoxide dismutase (SOD) activity and low blood plasma testosterone (T) levels were orally administered one vitamin E tablet containing 50 mg α-tocopheryl acetate per dog daily for 4 weeks. The mean values of semen quality were temporarily improved after the start of vitamin E treatment and the values of 4, and 5 weeks after that were significantly different from those before the treatment (P<0.05–0.001). The mean blood plasma T and seminal plasma SOD activity values slightly increased in the 4 dogs after the treatment. The results of the present study indicate that poor semen quality in dogs with low seminal plasma SOD can be improved by vitamin E treatment. PMID:26234739

  19. Calcium-calmodulin does not alter the anion permeability of the mouse TMEM16A calcium-activated chloride channel

    PubMed Central

    Yu, Yawei; Kuan, Ai-Seon

    2014-01-01

    The transmembrane protein TMEM16A forms a Ca2+-activated Cl− channel that is permeable to many anions, including SCN−, I−, Br−, Cl−, and HCO3−, and has been implicated in various physiological functions. Indeed, controlling anion permeation through the TMEM16A channel pore may be critical in regulating the pH of exocrine fluids such as the pancreatic juice. The anion permeability of the TMEM16A channel pore has recently been reported to be modulated by Ca2+-calmodulin (CaCaM), such that the pore of the CaCaM-bound channel shows a reduced ability to discriminate between anions as measured by a shift of the reversal potential under bi-ionic conditions. Here, using a mouse TMEM16A clone that contains the two previously identified putative CaM-binding motifs, we were unable to demonstrate such CaCaM-dependent changes in the bi-ionic potential. We confirmed the activity of CaCaM used in our study by showing CaCaM modulation of the olfactory cyclic nucleotide–gated channel. We suspect that the different bi-ionic potentials that were obtained previously from whole-cell recordings in low and high intracellular [Ca2+] may result from different degrees of bi-ionic potential shift secondary to a series resistance problem, an ion accumulation effect, or both. PMID:24981232

  20. Activation of superoxide formation and lysozyme release in human neutrophils by the synthetic lipopeptide Pam3Cys-Ser-(Lys)4. Involvement of guanine-nucleotide-binding proteins and synergism with chemotactic peptides.

    PubMed Central

    Seifert, R; Schultz, G; Richter-Freund, M; Metzger, J; Wiesmüller, K H; Jung, G; Bessler, W G; Hauschildt, S

    1990-01-01

    Upon exposure to the bacterial chemotactic peptide fMet-Leu-Phe, human neutrophils release lysozyme and generate superoxide anions (O2.-). The synthetic lipoamino acid N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-(R)-cysteine (Pam3Cys), which is derived from the N-terminus of bacterial lipoprotein, when attached to Ser-(Lys)4 [giving Pam3Cys-Ser-(Lys)4], activated O2.- formation and lysozyme release in human neutrophils with an effectiveness amounting to about 15% of that of fMet-Leu-Phe. Palmitic acid, muramyl dipeptide, lipopolysaccharide and the lipopeptides Pam3Cys-Ala-Gly, Pam3Cys-Ser-Gly, Pam3Cys-Ser, Pam3Cys-OMe and Pam3Cys-OH did not activate O2.- formation. Pertussis toxin, which ADP-ribosylates guanine-nucleotide-binding proteins (G-proteins) and functionally uncouples formyl peptide receptors from G-proteins, prevented activation of O2.- formation by fMet-Leu-Phe and inhibited Pam3Cys-Ser-(Lys)4-induced O2.- formation by 85%. Lipopeptide-induced exocytosis was pertussis-toxin-insensitive. O2.- formation induced by Pam3Cys-Ser-(Lys)4 and fMet-Leu-Phe was enhanced by cytochalasin B, by a phorbol ester and by a diacylglycerol kinase inhibitor. Addition of activators of adenylate cyclase and removal of extracellular Ca2+ inhibited O2.- formation by fMet-Leu-Phe and Pam3Cys-Ser-(Lys)4 to different extents. Pam3Cys-Ser-(Lys)4 synergistically enhanced fMet-Leu-Phe-induced O2.- formation and primed neutrophils to respond to the chemotactic peptide at non-stimulatory concentrations. Our data suggest the following. (1) Pam3Cys-Ser-(Lys)4 activates neutrophils through G-proteins, involving pertussis-toxin-sensitive and -insensitive processes. (2) The signal transduction pathways activated by fMet-Leu-Phe and Pam3Cys-Ser-(Lys)4 are similar but not identical. (3) In inflammatory processes, bacterial lipoproteins and chemotactic peptides may interact synergistically to activate O2.- formation, leading to enhanced bactericidal activity. PMID:2160237

  1. Mitochondria-targeted spin traps: synthesis, superoxide spin trapping, and mitochondrial uptake.

    PubMed

    Hardy, Micael; Poulhés, Florent; Rizzato, Egon; Rockenbauer, Antal; Banaszak, Karol; Karoui, Hakim; Lopez, Marcos; Zielonka, Jacek; Vasquez-Vivar, Jeannette; Sethumadhavan, Savitha; Kalyanaraman, Balaraman; Tordo, Paul; Ouari, Olivier

    2014-07-21

    Development of reliable methods and site-specific detection of free radicals is an active area of research. Here, we describe the synthesis and radical-trapping properties of new derivatives of DEPMPO and DIPPMPO, bearing a mitochondria-targeting triphenylphosphonium cationic moiety or guanidinium cationic group. All of the spin traps prepared have been observed to efficiently trap superoxide radical anions in a cell-free system. The superoxide spin adducts exhibited similar spectral properties, indicating no significant differences in the geometry of the cyclic nitroxide moieties of the spin adducts. The superoxide adduct stability was measured and observed to be highest (t1/2 = 73 min) for DIPPMPO nitrone linked to triphenylphosphonium moiety via a short carbon chain (Mito-DIPPMPO). The experimental results and DFT quantum chemical calculations indicate that the cationic property of the triphenylphosphonium group may be responsible for increased superoxide trapping efficiency and adduct stability of Mito-DIPPMPO, as compared to the DIPPMPO spin trap. The studies of uptake of the synthesized traps into isolated mitochondria indicated the importance of both cationic and lipophilic properties, with the DEPMPO nitrone linked to the triphenylphosphonium moiety via a long carbon chain (Mito10-DEPMPO) exhibiting the highest mitochondrial uptake. We conclude that, of the synthesized traps, Mito-DIPPMPO and Mito10-DEPMPO are the best candidates for potential mitochondria-specific spin traps for use in biologically relevant systems. PMID:24890552

  2. Anion solvation in alcohols

    SciTech Connect

    Jonah, C.D.; Xujia, Zhang; Lin, Yi

    1996-03-01

    Anion solvation is measured in alcohols using pump-probe pulse radiolysis and the activation energy of solvation is determined. Solvation of an anion appears to be different than excited state solvation. The continuum dielectric model does not appear to explain the results.

  3. Molecular imaging of mesothelioma by detection of manganese-superoxide dismutase activity using manganese-enhanced magnetic resonance imaging.

    PubMed

    Hasegawa, Sumitaka; Koshikawa-Yano, Michiko; Saito, Shigeyoshi; Morokoshi, Yukie; Furukawa, Takako; Aoki, Ichio; Saga, Tsuneo

    2011-05-01

    Malignant mesothelioma (MM) is a fatal malignancy with a rapidly increasing incidence in industrialized countries because of the widespread use of asbestos in the past centuries. Early diagnosis of MM is critical for a better prognosis, but this is often difficult because of the lack of disease-specific diagnostic imaging. Here, we report that manganese-enhanced magnetic resonance imaging (MEMRI) represents a promising approach for a more selective mesothelioma imaging by monitoring a high-level expression of manganese-superoxide dismutase (Mn-SOD), which is observed in many MM. We found that most human MM cells overexpressed Mn-SOD protein compared with human mesothelial cells and that NCI-H226 human MM cells highly expressed Mn-SOD and augmented Mn accumulation when loaded with manganese chloride (MnCl(2)). The cells showed marked T(1)-signal enhancement on in vitro MRI after incubation with MnCl(2) because of the T(1) shortening effect of Mn(2+). H226 subcutaneous tumor was preferentially enhanced compared with a lung adenocarcinoma cell tumor and another human MM cell tumor in MnCl(2)-enhanced T(1)-weighted MR image (T(1)WI), correlating with their respective Mn-SOD expression levels. Moreover, in a more clinically relevant setting, H226 xenografted pleural tumor was markedly enhanced and readily detected by MEMRI using manganese dipyridoxyl diphosphate (MnDPDP), a clinically used contrast agent, as well as MnCl(2). Therefore, we propose that MEMRI can be a potentially powerful method for noninvasive detection of MM, with high spatial resolution and marked signal enhancement, by targeting Mn-SOD. PMID:20617513

  4. ROLE OF COPPER,ZINC-SUPEROXIDE DISMUTASE IN CATALYZING NITROTYROSINE FORMATION IN MURINE LIVER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The solely known function of Cu,Zn-superoxide dismutase (SOD1) is to catalyze the dismutation of superoxide anion into hydrogen peroxide. Our objective was to determine if SOD1 catalyzed murine liver protein nitration induced by acetaminophen (APAP) and lipopolysaccharide (LPS). Liver and plasma ...

  5. Superoxide Dismutase in the Symbiont Anabaena azollae Strasb.

    PubMed

    Canini, A; Galiazzo, F; Rotilio, G; Caiola, M G

    1991-09-01

    Superoxide dismutase was investigated in the symbiont Anabaena azollae Strasb. living in Azolla filiculoides Lam. In vegetative cells, three isoenzymatic forms of superoxide dismutase, containing manganese, iron, and the hybrid iron-manganese, respectively, were present. Hybrid superoxide dismutase, detected for the first time in cyanobacteria, was 7% of the total superoxide dismutase present in vegetative cells. All three superoxide dismutase forms increased in the Anabaena vegetative cells obtained from irradiated plants grown in winter. In heterocysts, only an iron superoxide dismutase was present, which amounted to 25% of total vegetative cell superoxide dismutase activity. Hybrid superoxide dismutase appeared in heterocysts after irradiation. In vegetative cells of Anabaena from plants grown in summer, the basal level of total superoxide dismutase increased by 60% as compared with winter, and was unaffected by irradiation. The levels of superoxide dismutase in heterocysts from control and exposed plants grown in summer were comparable to those observed in heterocysts obtained from the plants grown during winter. No direct correlation was found between nitrogenase activity and superoxide dismutase in heterocysts. The presence of cyanophycin granules, either within the heterocyst pore channel or close to the transversal septum of vegetative cells, suggested a mechanism to stop communications between vegetative cells and heterocysts. PMID:16668392

  6. Superoxide Dismutase in the Symbiont Anabaena azollae Strasb. 1

    PubMed Central

    Canini, A.; Galiazzo, F.; Rotilio, G.; Caiola, M. Grilli

    1991-01-01

    Superoxide dismutase was investigated in the symbiont Anabaena azollae Strasb. living in Azolla filiculoides Lam. In vegetative cells, three isoenzymatic forms of superoxide dismutase, containing manganese, iron, and the hybrid iron-manganese, respectively, were present. Hybrid superoxide dismutase, detected for the first time in cyanobacteria, was 7% of the total superoxide dismutase present in vegetative cells. All three superoxide dismutase forms increased in the Anabaena vegetative cells obtained from irradiated plants grown in winter. In heterocysts, only an iron superoxide dismutase was present, which amounted to 25% of total vegetative cell superoxide dismutase activity. Hybrid superoxide dismutase appeared in heterocysts after irradiation. In vegetative cells of Anabaena from plants grown in summer, the basal level of total superoxide dismutase increased by 60% as compared with winter, and was unaffected by irradiation. The levels of superoxide dismutase in heterocysts from control and exposed plants grown in summer were comparable to those observed in heterocysts obtained from the plants grown during winter. No direct correlation was found between nitrogenase activity and superoxide dismutase in heterocysts. The presence of cyanophycin granules, either within the heterocyst pore channel or close to the transversal septum of vegetative cells, suggested a mechanism to stop communications between vegetative cells and heterocysts. ImagesFigure 1Figure 3Figure 4Figure 5 PMID:16668392

  7. Effect of Hofmeister anions and protein concentration on the activity and stability of some immobilized made-independent dehydrogenases

    SciTech Connect

    Carrea, G.; Bovara, R.; Pasta, P.; Cremonesi, P.

    1982-01-01

    The effect of several factors on the activity and stability of alcohol dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and 20-beta-hydroxysteroid dehydrogenase, both free and immobilized on CNBr-activated Sepharose 4B, was investigated. Enzymes were immobilized under different conditions including various degrees of matrix activation, variable amounts of protein, in the presence, or in the absence of, additives (coenzymes, dithiothreitol, salts). Activity recovery was in general satisfactorily high with 20-beta-hydroxysteroid dehydrogenase, low with glyceraldehyde-3-phosphate dehydrogenase, and markedly linked to the concentration of immobilized protein with alcohol dehydrogenase. In the latter case the advantageous stabilizing effect of high enzyme concentrations was notably diminished by the paralled decrease of the effectiveness factor. The effect of high concentrations of anions of the Hofmeister series was examined. It was found that 1M phosphate and 0.5M sulfate dramatically stabilize both free and immobilized enzymes against inactivation by temperature and urea. Km values of apolar substrates were considerably lowered by the two anions while Km values of polar substrates were not affected. In some cases Vmax values also were influenced by high concentrations of these anions. The present results appear of interest particularly in view of enzyme utilization for analytical as well as for preparative purposes. (Refs. 13).

  8. Association between ETFA genotype and activity of superoxide dismutase, catalase and glutathione peroxidase in cryopreserved sperm of Holstein-Friesian bulls.

    PubMed

    Hering, D M; Lecewicz, M; Kordan, W; Kamiński, S

    2015-02-01

    The aim of this study was to determine whether C/T missense mutation within the ETFA gene is associated with sperm antioxidant enzymatic activity. One hundred and twenty Holstein-Friesian bulls were genotyped by the PCR-RFLP technique (MwoI). Commercial straws of frozen-thawed semen were used to evaluate the activity of three antioxidant enzymes: superoxide dismutase, catalase and glutathione peroxidase. Among all bulls investigated, genotype CT was the most frequent (44.2%), in comparison with CC (42.5%) and TT (13.3%). Significant differences in glutathione peroxidase activity were observed between homozygous individuals (CC vs TT) with heterozygous CT having intermediate values. Dismutase activity was significantly associated with ETFA genotype, although only bulls with the CT genotype were significantly different from bulls carrying the CC genotype. The activity of catalase showed a similar trend (but was not statistically significant). In conclusion, we found that bulls with the ETFA TT genotype produce sperm with the highest glutathione peroxidase activity and can therefore be more efficiently protected from reactive oxygen. The mechanism of this interaction needs to be elucidated in future research. PMID:25472694

  9. Superoxide dismutase protects cultured neurons against death by starvation.

    PubMed Central

    Sáez, J C; Kessler, J A; Bennett, M V; Spray, D C

    1987-01-01

    Brief substrate deprivation resulted in high mortality of superior cervical ganglion neurons in culture, assayed 2 hr later by trypan blue exclusion. Involvement of superoxide anions was indicated by several observations. Survival was increased significantly by prior treatment that induced cells to take up superoxide dismutase. During starvation, neurons reduced nitroblue tetrazolium to form the blue precipitate formazan, and the color change was blocked in neurons preloaded with superoxide dismutase. The incidence of staining was comparable to the mortality. In many cells, brief starvation caused the appearance of fluorescence due to oxidation of 2',7'-dichlorofluorescin to dichlorofluorescein, which indicates that oxidants were generated intracellularly. In some cells fluorescence was transient, as would be caused by membrane breakdown, and these cells were then shown to be dead. Superoxide generation caused by substrate deprivation may contribute importantly to cell damage in a variety of pathological conditions. Images PMID:3472251

  10. Effect of the Electrochemical Proton Gradient and Anions on the ATPase Activity of Soybean Submitochondrial Particles 1

    PubMed Central

    Martins, Ione S.; Martins, Orlando B.; de Gómez-Puyou, Marietta Tuena; Gómez-Puyou, Armando

    1988-01-01

    Submitochondrial particles from soybean (Glycine max L. cv Jupiter) hypocotyls with an ATPase activity of 0.3 to 1.0 micromole per minute per milligram were prepared by sonication with Mg-ATP. The particles catalyzed ATP synthesis with NADH and succinate; the ratios of ATP/O with these substrates were 1.0 and 0.1, respectively. As monitored by oxonol-VI, the particles built up and maintained a membrane potential that was higher with NADH than with succinate or Mg-ATP. The ATPase activity of the particles increased two to threefold by preincubation with 50 millimolar phosphate at a temperature of 38°C. The increase in ATPase activity became higher (five to sixfold) when particles were preincubated with Mg-ATP plus phosphate. Under the latter conditions, collapse of Δ̄μH by carbonyl cyanide p-trifluoromethoxyphenylhydrazone prevented the activation. An increase in ATPase activity of the particles was also observed with NADH and succinate, although activation was lower with succinate. With these substrates, phosphate did not increase ATPase activation. When particles were preincubated with Mg-ATP, anions that stimulate ATP hydrolysis (malate, malonate, and bicarbonate) had an activating effect similar to that of phosphate. The data suggest that the soybean mitochondrial ATPase can be activated by Δ̄μH but that this activation is increased by the binding of certain anions to a conformation of the enzyme that appears during hydrolytic cycles. PMID:16666151

  11. Biological Superoxide In Manganese Oxide Formation

    NASA Astrophysics Data System (ADS)

    Hansel, C.; Learman, D.; Zeiner, C.; Santelli, C. M.

    2011-12-01

    Manganese (Mn) oxides are among the strongest sorbents and oxidants within the environment, controlling the fate and transport of numerous elements and the degradation of recalcitrant carbon. Both bacteria and fungi mediate the oxidation of Mn(II) to Mn(III/IV) oxides but the genetic and biochemical mechanisms responsible remain poorly understood. Furthermore, the physiological basis for microbial Mn(II) oxidation remains an enigma. We have recently reported that a common marine bacterium (Roseobacter sp. AzwK-3b) oxidizes Mn(II) via reaction with extracellular superoxide (O2-) produced during exponential growth. Here we expand this superoxide-mediated Mn(II) oxidation pathway to fungi, introducing a surprising homology between prokaryotic and eukaryotic metal redox processes. For instance, Stibella aciculosa, a common soil Ascomycete filamentous fungus, precipitates Mn oxides at the base of asexual reproductive structures (synnemata) used to support conidia (Figure 1). This distribution is a consequence of localized production of superoxide (and it's dismutation product hydrogen peroxide, H2O2), leading to abiotic oxidation of Mn(II) by superoxide. Disruption of NADPH oxidase activity using the oxidoreductase inhibitor DPI leads to diminished cell differentiation and subsequent Mn(II) oxidation inhibition. Addition of Cu(II) (an effective superoxide scavenger) leads to a concentration dependent decrease in Mn oxide formation. We predict that due to the widespread production of extracellular superoxide within the fungal and likely bacterial kingdoms, biological superoxide may be an important contributor to the cycling of Mn, as well as other metals (e.g., Hg, Fe). Current and future explorations of the genes and proteins involved in superoxide production and Mn(II) oxidation will ideally lend insight into the physiological and biochemical basis for these processes.

  12. [Environmental pollution of some regions of the Ukraine by anionic surface-active agents].

    PubMed

    Mudryĭ, I V

    1998-01-01

    Small rivers and soils in the North Ukraine were found to be polluted by anionic surfactants. The use of surfactant-based detergents makes the population complain of poorer health. Most of them mention the irritating effects of the detergents on the skin (65 and 30% in the urban and rural areas, respectively), upper airway (54 and 48%) and allergic reactions. PMID:9662880

  13. Modulation of the Activities of Catalase, Cu-Zn, Mn Superoxide Dismutase, and Glutathione Peroxidase in Adipocyte from Ovariectomised Female Rats with Metabolic Syndrome

    PubMed Central

    Guerra, Rebeca Cambray; Zuñiga-Muñoz, Alejandra; Guarner Lans, Verónica; Díaz-Díaz, Eulises; Tena Betancourt, Carlos Alberto; Pérez-Torres, Israel

    2014-01-01

    The aim of this study was to evaluate the association between estrogen removal, antioxidant enzymes, and oxidative stress generated by obesity in a MS female rat model. Thirty two female Wistar rats were divided into 4 groups: Control (C), MS, MS ovariectomized (Ovx), and MS Ovx plus estradiol (E2). MS was induced by administering 30% sucrose to drinking water for 24 weeks. After sacrifice, intra-abdominal fat was dissected; adipocytes were isolated and lipid peroxidation, non-enzymatic antioxidant capacity, and the activities of Cu-Zn and Mn superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined. There were no significant differences in the activities of Cu-Zn, Mn SOD, CAT, and GPx between the C and MS groups, but in the MS Ovx group there was a statistically significant decrease in the activities of these enzymes when compared to MS and MS Ovx+E2. The increased lipid peroxidation and nonenzymatic antioxidant capacity found in MS Ovx was significantly decreased when compared to MS and MS Ovx+E2. In conclusion, the removal of E2 by ovariectomy decreases the activity of the antioxidant enzymes in the intra-abdominal tissue of MS female rats; this is reflected by increased lipid peroxidation and decreased nonenzymatic antioxidant capacity. PMID:24987414

  14. PPAR{gamma} activation abolishes LDL-induced proliferation of human aortic smooth muscle cells via SOD-mediated down-regulation of superoxide

    SciTech Connect

    Heo, Kyung-Sun; Kim, Dong-Uk; Ryoo, Sungwoo; Nam, Miyoung; Baek, Seung Tae; Kim, Lila; Park, Song-Kyu; Myung, Chang-Seon; Hoe, Kwang-Lae . E-mail: kwanghoe@kribb.re.kr

    2007-08-10

    Native LDL would be a mitogenic and chemotactic stimulus of VSMC proliferation and differentiation in the atherosclerotic lesion where endothelial disruption occurred. In previous studies, our group investigated the molecular mechanisms by which LDL induces IL-8 production and by which PPAR{alpha} activation abolishes LDL effects in human aortic SMCs (hAoSMCs). Herein is the first report of PPAR{gamma} activation by troglitazone (TG) exerting its inhibitory effects on LDL-induced cell proliferation via generation not of H{sub 2}O{sub 2}, but of O2?-, and the subsequent activation of Erk1/2 in hAoSMCs. Moreover, in this study TG abolished the LDL-accelerated G{sub 1}-S progression to control levels via down-regulation of active cyclinD1/CDK4 and cyclinE/CDK2 complexes and up-regulation of p21{sup Cip1} expression. TG exerted its anti-proliferative effects through the up-regulation of basal superoxide dismutase (SOD) expression. This data suggests that the regulation of O2?- is located at the crossroads between LDL signaling and cell proliferation.

  15. Adsorption of anionic and cationic dyes by activated carbons, PVA hydrogels, and PVA/AC composite.

    PubMed

    Sandeman, Susan R; Gun'ko, Vladimir M; Bakalinska, Olga M; Howell, Carol A; Zheng, Yishan; Kartel, Mykola T; Phillips, Gary J; Mikhalovsky, Sergey V

    2011-06-15

    The textural and adsorption characteristics of a series of activated carbons (ACs), porous poly(vinyl alcohol) (PVA) gels, and PVA/AC composites were studied using scanning electron microscopy, mercury porosimetry, adsorption of nitrogen (at 77.4 K), cationic methylene blue (MB), anionic methyl orange (MO), and Congo red (CR) from the aqueous solutions. Dye-PVA-AC-water interactions were modeled using the semiempirical quantum chemical method PM6. The percentage of dye removed (C(rem)) by the ACs was close to 100% at an equilibrium concentration (C(eq)) of less than 0.1 mM but decreased with increasing dye concentration. This decrease was stronger at C(eq) of less than 1 mM, and C(rem) was less than 50% at a C(eq) of 10-20 mM. For PVA and the PVA/AC composite containing C-7, the C(rem) values were minimal (<75%). The free energy distribution functions (f(ΔG)) for dye adsorption include one to three peaks in the -ΔG range of 1-60 kJ/mol, depending on the dye concentration range used and the spatial, charge symmetry of the hydrated dye ions and the structural characteristics of the adsorbents. The f(ΔG) shape is most complex for MO with the most asymmetrical geometry and charge distribution and adsorbed at concentrations over a large C(eq) range. For symmetrical CR ions, adsorbed over a narrow C(eq) range, the f(ΔG) plot includes mainly one narrow peak. MB has a minimal molecular size at a planar geometry (especially important for effective adsorption in slit-shaped pores) which explains its greater adsorptive capacity over that of MO or CR. Dye adsorption was greatest for ACs with the largest surface area but as molecular size increases adsorption depends to a greater extent on the pore size distribution in addition to total and nanopore surface areas and pore volume. PMID:21457992

  16. [Regulation of superoxide dismutase activity during deep hypothermia by simultaneous administration of water and lipid soluble antioxidants].

    PubMed

    Shkesters, A P; Utno, L Ia; Girgensone, M Ia

    1991-06-01

    Alongside anti-hypoxia activity, the method of deep hypothermia causes discoordination of metabolism in the heart. This is due to increased secretion of catecholamines in the process of cooling, to activation in free radical generation and lipid peroxidation. Pantethine and alpha-tocopherol were used. Pantethine reduced lipid peroxidation, preserved reaction activity of catalyzing resyntheses and transport of high energetic compounds in the heart, while alpha-tocopherol prevented lipid peroxidation activation and decrease in SOD. Simultaneous use of pantethine and alpha-tocopherol caused increase in SOD and normalization of heart metabolism. Thus, for protection of the heart against excessive free radical generation under deep hypothermia simultaneous use of antioxidants like pantethine and alpha-tocopherol is necessary. PMID:1893178

  17. CO2 Activation and Hydrogenation by PtHn (-) Cluster Anions.

    PubMed

    Zhang, Xinxing; Liu, Gaoxiang; Meiwes-Broer, Karl-Heinz; Ganteför, Gerd; Bowen, Kit

    2016-08-01

    Gas phase reactions between PtHn (-) cluster anions and CO2 were investigated by mass spectrometry, anion photoelectron spectroscopy, and computations. Two major products, PtCO2 H(-) and PtCO2 H3 (-) , were observed. The atomic connectivity in PtCO2 H(-) can be depicted as HPtCO2 (-) , where the platinum atom is bonded to a bent CO2 moiety on one side and a hydrogen atom on the other. The atomic connectivity of PtCO2 H3 (-) can be described as H2 Pt(HCO2 )(-) , where the platinum atom is bound to a formate moiety on one side and two hydrogen atoms on the other. Computational studies of the reaction pathway revealed that the hydrogenation of CO2 by PtH3 (-) is highly energetically favorable. PMID:27363532

  18. The activity of superoxide dismutase in animal liver and erythrocyte at Sea Area nearby Dayawan Nuclear Power Station

    SciTech Connect

    Cheng, Ge; Cai, Yana; Chen, Huizhen

    1995-11-01

    Many tests, the effect of ionizing radiation on SOD in vivo and vitro, had proved that the irradiation can cause the SOD activity to decrease with the increase of irradiation dose, change some physicochemical properties and structure. This artical was to study the activity of SOD in Fish (Thearpon jorbua) and Toad(Bufo melanostictus) liver erythrocyte at sea area nearby Dayawan Nuclear Power Station (Nps). We found that the SOD activity in fish liver, after NPS revolved one year, was higher than that of before revoling (7.30 {plus_minus} 1.35U/mg protein, 5.49 {plus_minus}1.56 U/mg protein respectively). The SOD activity in the toad liver at NPS revolving one year after was decreased (4.54 {plus_minus} 0.75 U/mg protein 5.68{plus_minus} 1.49U/mg protein P < 0.001) but in erythrocyte increased (2.32 {plus_minus} 0.75 U/mg Hb, 0.70 {plus_minus} 0.33 U/mg Hb P < 0.001). These results indicated that the SOD activity was changed in different with the animal variety. The effect of irradiation on fish at present was absent, on toad need to research in the future.

  19. Superoxide production and decay in the subtropical North Pacific

    NASA Astrophysics Data System (ADS)

    Roe, K.; Voelker, B. M.; Hansel, C. M.

    2012-12-01

    Reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, can be generated through photochemical reactions or biological activity in seawater. The generation of ROS, especially superoxide, by photochemical or biological processes can influence trace metal speciation and cycling in the ocean since superoxide can react quickly with metals (Cu and Fe) and is capable of both oxidation and reduction of trace metals. In this study superoxide was detected and measured in the oligotrophic waters at station ALOHA by a MCLA chemiluminescence flow injection method. The superoxide concentrations ranged between 0.037-0.099 nM, had observed decay rates of 0.004-0.014 s-1, and production rates of 0.88-4.81 nM hr-1 during a 16 day period during July 2012. The influence of biological activity vs photochemical production on superoxide concentration, decay and production rates are discussed.

  20. Age-dependent basal level and induction capacity of copper-zinc and manganese superoxide dismutase and other scavenging enzyme activities in leukocytes from young and elderly adults.

    PubMed Central

    Niwa, Y.; Iizawa, O.; Ishimoto, K.; Akamatsu, H.; Kanoh, T.

    1993-01-01

    Several enzymes, including superoxide dismutase (SOD), catalase, glutathione peroxidase, and D-glucose-6-phosphate dehydrogenase are capable of scavenging reactive oxygen species in in vivo. We assessed both basal levels and the capacity of these enzyme activities to be induced in human leukocytes in response to a variety of agents. Basal activity of copper-zinc SOD, and manganese SOD showed little variation with age. In contrast, the basal activity of the three H2O2 scavenging enzymes, catalase, glutathione peroxidase, and D-glucose-6-phosphate dehydrogenase, was significantly higher in younger adults than in elderly individuals. Both manganese SOD and copper, zinc SOD activities were significantly induced by paraquat, interleukin-1, tumor necrosis factor, adriamycin, and bleomycin in lymphocytes and neutrophils from asymptomatic non-aged adults, whereas neither activity was induced in aged individuals. In contrast, glutathione peroxidase activity was significantly induced in both groups of subjects, whereas catalase and D-glucose-6-phosphate dehydrogenase were only slightly induced in either. Enzyme induction with paraquat, adriamycin, or bleomycin was inhibitable by neutralizing antibody to interleukin-1 and tumor necrosis factor, suggesting that the inductions observed with these three drugs are due to the distal mediators, interleukin-1 or tumor necrosis factor released from the cells. Finally, as observed in the regulation of genes in eukaryotes (Storz et al: Bacterial defenses against oxidative stress. Trends Genetics 1990, 6:363-368, ref. 1) O2- and H2O2 seem to differ in the rate of change with age in both basal levels and inducibility under oxygen stress. PMID:8317554

  1. Regulation of Cu,Zn superoxide dismutase with copper. Caeruloplasmin maintains levels of functional enzyme activity during differentiation of K562 cells.

    PubMed Central

    Percival, S S; Harris, E D

    1991-01-01

    K562 cells, a human erythroleukaemic cell line blocked for differentiation, commit towards erythrocytes when exposed to haemin (20 microM). The cells synthesize fetal haemoglobins and show site-specific binding of caeruloplasmin, a plasma copper protein. These events are set into motion by haemin. On the assumption that the binding of caeruloplasmin could reflect a greater need for copper, we sought to determine whether the transfer of 67Cu from caeruloplasmin was accelerated in haemin-induced compared with non-induced K562 cells. Cu,Zn superoxide dismutase (CuZnSOD) was the recipient. Haemin induction caused the K562 cells to lose CuZnSOD activity. By 96 h, the level of SOD activity was less than 60% of that of non-induced cells. The loss was confined entirely to the CuZn form, MnSOD activity staying essentially unchanged. Although CuZnSOD activity declined with the haemin induction, the incorporation of [4,5-3H]lysine into immunoprecipitable CuZnSOD protein was unaffected. There was also no change in CuZnSOD mRNA concentration in haemin-induced cells. Thus a loss of enzyme did not correlate with a decline in the synthesis de novo of CuZnSOD protein. When 48 h-induced cells were transferred to a medium supplemented with 0.2 microM-caeruloplasmin, CuZnSOD activity was restored to control levels in 24 h. Caeruloplasmin also stimulated the incorporation of [3H]lysine into immunoprecipitable CuZnSOD protein. Caeruloplasmin addition may have affected a post-translational regulatory site for CuZnSOD biosynthesis, possibly by providing copper for the newly synthesized enzyme. Images Fig. 2. PMID:1900417

  2. Activator anion binding site in pyridoxal phosphorylase b: the binding of phosphite, phosphate, and fluorophosphate in the crystal.

    PubMed

    Oikonomakos, N G; Zographos, S E; Tsitsanou, K E; Johnson, L N; Acharya, K R

    1996-12-01

    It has been established that phosphate analogues can activate glycogen phosphorylase reconstituted with pyridoxal in place of the natural cofactor pyridoxal 5'-phosphate (Change YC. McCalmont T, Graves DJ. 1983. Biochemistry 22:4987-4993). Pyridoxal phosphorylase b has been studied by kinetic, ultracentrifugation, and X-ray crystallographic experiments. In solution, the catalytically active species of pyridoxal phosphorylase b adopts a conformation that is more R-state-like than that of native phosphorylase b, but an inactive dimeric species of the enzyme can be stabilized by activator phosphite in combination with the T-state inhibitor glucose. Co-crystals of pyridoxal phosphorylase b complexed with either phosphite, phosphate, or fluorophosphate, the inhibitor glucose, and the weak activator IMP were grown in space group P4(3)2(1)2, with native-like unit cell dimensions, and the structures of the complexes have been refined to give crystallographic R factors of 18.5-19.2%, for data between 8 and 2.4 A resolution. The anions bind tightly at the catalytic site in a similar but not identical position to that occupied by the cofactor 5'-phosphate group in the native enzyme (phosphorus to phosphorus atoms distance = 1.2 A). The structural results show that the structures of the pyridoxal phosphorylase b-anion-glucose-IMP complexes are overall similar to the glucose complex of native T-state phosphorylase b. Structural comparisons suggest that the bound anions, in the position observed in the crystal, might have a structural role for effective catalysis. PMID:8976550

  3. Activator anion binding site in pyridoxal phosphorylase b: the binding of phosphite, phosphate, and fluorophosphate in the crystal.

    PubMed Central

    Oikonomakos, N. G.; Zographos, S. E.; Tsitsanou, K. E.; Johnson, L. N.; Acharya, K. R.

    1996-01-01

    It has been established that phosphate analogues can activate glycogen phosphorylase reconstituted with pyridoxal in place of the natural cofactor pyridoxal 5'-phosphate (Change YC. McCalmont T, Graves DJ. 1983. Biochemistry 22:4987-4993). Pyridoxal phosphorylase b has been studied by kinetic, ultracentrifugation, and X-ray crystallographic experiments. In solution, the catalytically active species of pyridoxal phosphorylase b adopts a conformation that is more R-state-like than that of native phosphorylase b, but an inactive dimeric species of the enzyme can be stabilized by activator phosphite in combination with the T-state inhibitor glucose. Co-crystals of pyridoxal phosphorylase b complexed with either phosphite, phosphate, or fluorophosphate, the inhibitor glucose, and the weak activator IMP were grown in space group P4(3)2(1)2, with native-like unit cell dimensions, and the structures of the complexes have been refined to give crystallographic R factors of 18.5-19.2%, for data between 8 and 2.4 A resolution. The anions bind tightly at the catalytic site in a similar but not identical position to that occupied by the cofactor 5'-phosphate group in the native enzyme (phosphorus to phosphorus atoms distance = 1.2 A). The structural results show that the structures of the pyridoxal phosphorylase b-anion-glucose-IMP complexes are overall similar to the glucose complex of native T-state phosphorylase b. Structural comparisons suggest that the bound anions, in the position observed in the crystal, might have a structural role for effective catalysis. PMID:8976550

  4. An ethoxylated alkyl phosphate (anionic surfactant) for the promotion of activities of proteases and its potential use in the enzymatic processing of wool.

    PubMed

    Zhang, Qinghua; Smith, Edward; Shen, Jinsong; Bishop, David

    2006-05-01

    Pretreatments of wool fabrics with cationic, anionic or non-ionic surfactants were investigated to reduce surface tension and improve the wettability of the fibres in order to promote protease activity on the fibres in subsequent processes. Results showed that an ethoxylated alkyl phosphate (specific anionic surfactant) as well as the widely used non-ionic surfactant was compatible with proteases in the enzymatic treatment of wool. There is therefore a potential for using specific anionic surfactants to achieve efficient enzymatic scouring processes. PMID:16791726

  5. Oxygen Activation by Co(II) and a Redox Non-Innocent Ligand: Spectroscopic Characterization of a Radical-Co(II)-Superoxide Complex with Divergent Catalytic Reactivity.

    PubMed

    Corcos, Amanda R; Villanueva, Omar; Walroth, Richard C; Sharma, Savita K; Bacsa, John; Lancaster, Kyle M; MacBeth, Cora E; Berry, John F

    2016-02-17

    Bimetallic (Et4N)2[Co2(L)2], (Et4N)2[1] (where (L)(3-) = (N(o-PhNC(O)(i)Pr)2)(3-)) reacts with 2 equiv of O2 to form the monometallic species (Et4N)[Co(L)O2], (Et4N)[3]. A crystallographically characterized analog (Et4N)2[Co(L)CN], (Et4N)2[2], gives insight into the structure of [3](1-). Magnetic measurements indicate [2](2-) to be an unusual high-spin Co(II)-cyano species (S = 3/2), while IR, EXAFS, and EPR spectroscopies indicate [3](1-) to be an end-on superoxide complex with an S = 1/2 ground state. By X-ray spectroscopy and calculations, [3](1-) features a high-spin Co(II) center; the net S = 1/2 spin state arises after the Co electrons couple to both the O2(•-) and the aminyl radical on redox non-innocent (L(•))(2-). Dianion [1](2-) shows both nucleophilic and electrophilic catalytic reactivity upon activation of O2 due to the presence of both a high-energy, filled O2(-) π* orbital and an empty low-lying O2(-) π* orbital in [3](1-). PMID:26799113

  6. Catalase and superoxide dismutase activities and the total protein content of protocorm-like bodies of Dendrobium sonia-28 subjected to vitrification.

    PubMed

    Poobathy, Ranjetta; Sinniah, Uma Rani; Xavier, Rathinam; Subramaniam, Sreeramanan

    2013-07-01

    Dendrobium sonia-28 is an important ornamental orchid in the Malaysian flower industry. However, the genus faces both low germination rates and the risk of producing heterozygous progenies. Cryopreservation is currently the favoured long-term storage method for orchids with propagation problems. Vitrification, a frequently used cryopreservation technique, involves the application of pretreatments and cryoprotectants to protect and recover explants during and after storage in liquid nitrogen. However, cryopreservation may cause osmotic injuries and toxicity to cryopreserved explants from the use of highly concentrated additives, and cellular injuries from thawing, devitrification and ice formation. Reactive oxygen species (ROS), occurring during dehydration and cryopreservation, may also cause membrane damage. Plants possess efficient antioxidant systems such as the superoxide dismutase (SOD) and catalase (CAT) enzymes to scavenge ROS during low temperature stress. In this study, protocorm-like bodies (PLBs) of Dendrobium sonia-28 were assayed for the total protein content, and both SOD and CAT activities, at each stage of a vitrification exercise to observe for deleterious stages in the protocol. The results indicated that cryopreserved PLBs of Dendrobium sonia-28 underwent excessive post-thawing oxidative stress due to decreased levels of the CAT enzyme at the post-thawing recovery stage, which contributed to the poor survival rates of the cryopreserved PLBs. PMID:23640259

  7. Nucleophilic reactivity of a copper(II)-superoxide complex.

    PubMed

    Pirovano, Paolo; Magherusan, Adriana M; McGlynn, Ciara; Ure, Andrew; Lynes, Amy; McDonald, Aidan R

    2014-06-01

    Metal-bound superoxide intermediates are often implicated as electrophilic oxidants in dioxygen-activating metalloenzymes. In the nonheme iron α-ketoglutarate dependent oxygenases and pterin-dependent hydroxylases, however, Fe(III)-superoxide intermediates are postulated to react by nucleophilic attack on electrophilic carbon atoms. By reacting a Cu(II)-superoxide complex (1) with acyl chloride substrates, we have found that a metal-superoxide complex can be a very reactive nucleophile. Furthermore, 1 was found to be an efficient nucleophilic deformylating reagent, capable of Baeyer-Villiger oxidation of a number of aldehyde substrates. The observed nucleophilic chemistry represents a new domain for metal-superoxide reactivity. Our observations provide support for the postulated role of metal-superoxide intermediates in nonheme iron α-ketoglutarate dependent and pterin-dependent enzymes. PMID:24753290

  8. Performance of waste activated carbon as a low-cost adsorbent for the removal of anionic surfactant from aquatic environment.

    PubMed

    Gupta, Sandeep; Pal, Anjali; Ghosh, Pranab Kumar; Bandyopadhyay, Manas

    2003-02-01

    In the present study, different low cost adsorbents were screened for their sodium dodecyl sulfate (SDS, an anionic surfactant) removal capacity. Waste activated carbon (WAC) from the aqua purifier has shown high efficiency for SDS removal. The performance evaluation in the presence of various ions (Ca2+, SO4(2-), NO3-, and Cl-) and at various pH was studied. Desorption studies were conducted using simple sonication and pH variation technique. Column adsorption studies were performed. SEM and EDS studies were done on the adsorbing material before adsorption, after adsorption and after desorption of SDS. PMID:12638703

  9. Polychlorinated biphenyls modulated tumorigenesis in Sprague Dawley rats: correlation with mixed function oxidase activities and superoxide (O2* ) formation potentials and implied mode of action.

    PubMed

    Brown, John F; Mayes, Brian A; Silkworth, Jay B; Hamilton, Stephen B

    2007-08-01

    Parallel, chronic (24 months) multidose bioassays of the PCB (polychlorinated biphenyls) Aroclors 1016, 1242, 1254, and 1260 in male and female Sprague-Dawley rats showed sex/Aroclor-dependent increases in hepatic tumors and decreases in extrahepatic tumors. To elucidate the PCB mode of action (MOA) involved, levels of a number of hypothesized mediators were measured in liver specimens collected at 3, 6, 12, 18, and 24 months and screened for correlation with late life hepatotumorigenesis (HT; mostly adenomas). Consistently correlated with HT were (1) tissue accumulations of SigmaPCBs (correlated in both sexes) and of dioxin equivalents (toxic equivalency [TEQ]; correlated in females only); (2) net activities of six groups of mixed function oxidases (MFOs), some PCB-induced, some PCB-repressed, as determined by differential metabolism of PCB congeners; (3) activities of deproteinated, reoxidized hepatic cytosols as catalysts for superoxide (O(2)(*-)) production, such activity having the chemical characteristics of redox-cycling quinones (RCQs), e.g., those derived from the glutathionylated estrogen catechols that were identified in the female rat livers; and (4) increased expression of the indicator of cell proliferation, proliferating cell nuclear antigen. The new findings, along with other recently reported relationships, were indicative of a MOA consisting of (1) SigmaPCB/TEQ accumulation in rat tissues; (2) SigmaPCB/TEQ repression of constitutive MFOs; (3) SigmaPCB/TEQ induction of other MFOs; (4) MFO-mediated formation of RCQs; (5) RCQ-mediated formation of O(2)(*-); (6) O(2)(*-) dismutation to H(2)O(2); and (7) H(2)O(2)-mediated mitotic signaling, resulting in the proliferation of spontaneously or otherwise initiated cells to form hepatic tumors, as in tumor promotion. PMID:17510085

  10. Effect of lead (Pb) exposure on the activity of superoxide dismutase and catalase in battery manufacturing workers (BMW) of Western Maharashtra (India) with reference to heme biosynthesis.

    PubMed

    Patil, Arun J; Bhagwat, Vinod R; Patil, Jyotsna A; Dongre, Nilima N; Ambekar, Jeevan G; Jailkhani, Rama; Das, Kusal K

    2006-12-01

    The aim of this study was to estimate the activity of superoxide dismutase (SOD) and catalase in erythrocytes and malondialdehyde (MDA) in plasma of battery manufacturing workers (BMW) of Western Maharashtra (India) who were occupationally exposed to lead (Pb) over a long period of time (about 15 years). This study was also aimed to determine the Pb intoxication resulted in a disturbance of heme biosynthesis in BMW group. The blood Pb level of BMW group (n = 28) was found to be in the range of 25.8 - 78.0 microg/dL (mean + SD, 53.63 + 16.98) whereas in Pb unexposed control group (n = 35) the range was 2.8 - 22.0 microg/dL (mean + SD, 12.52 + 4.08). The blood level (Pb-B) and urinary lead level (Pb-U) were significantly increased in BMW group as compared to unexposed control. Though activated d- aminolevulinic acid dehydratase (ALAD) activities in BMW group did not show any significant change when compared to control group but activated / non activated erythrocyte - ALAD activities in BMW group showed a significant increase. Erythrocyte- zinc protoporphyrin (ZPP), urinary daminolevulinic acid (ALA-U) and porphobilinogen (PBG-U) of BMW groups elevated significantly as compared to control. A positive correlation (r = 0.66, p < 0.001) between Pb-B and ALA-U were found in BMW group but no such significant correlation (r = 0.02, p> 1.0) were observed in control group. Hematological study revealed a significant decrease of hemoglobin concentration, packed cell volume (%) and other blood indices and a significant increase of total leucocytes count in BMW group in comparison to control group. The serum MDA content was significantly increased (p < 0.001) and the activities of antioxidant enzymes such as erythrocyte- SOD (p < 0.001) and erythrocytecatalase (p < 0.001) were significantly reduced in BMW group as compared to control group. A positive correlation (r = 0.45, p < 0.02) between Pb-B and serum MDA level was observed in BMW group (Pb-B range 25.8 - 78.0 microg / d

  11. Effects of a single exposure to UVB radiation on the activities and protein levels of copper-zinc and manganese superoxide dismutase in cultured human keratinocytes.

    PubMed

    Sasaki, H; Akamatsu, H; Horio, T

    1997-04-01

    Ultraviolet B irradiation has been believed to decrease or impair the activity of reactive oxygen species (ROS) scavenging enzymes such as superoxide dismutase (SOD) in the skin. It has been recently reported that two isozymes of SOD, namely copper-zinc SOD (Cu-Zn SOD) and manganese SOD (Mn SOD), exist in mammalian cells and that the two enzymes play different roles in living systems. The aim of this study was to investigate changes in SOD activities and protein levels in cultured human keratinocytes after acute UVB irradiation. In addition, the protein levels of Cu-Zn SOD and Mn SOD were quantified separately. A single exposure to UVB irradiation produced an increase in SOD activity and protein level that peaked immediately after UVB irradiation, after which a decline was observed, with subsequent recovery to baseline levels 24 h after irradiation. In individual assays of Mn SOD and Cu-Zn SOD, the amount of Mn SOD protein decreased and then gradually recovered 24 h after irradiation. In contrast, the amount of Cu-Zn SOD protein increased immediately after UVB irradiation, and then gradually declined. To evaluate the mechanisms of these changes, we examined the effects of the cytokines, interleukin-1 alpha (IL-1 alpha) and tumor necrosis factor-alpha (TNF-alpha), which can be secreted from keratinocytes after UVB irradiation, on the SOD activity and protein levels in keratinocytes. Interleukin-1 alpha and TNF-alpha enhanced both the SOD activity and protein level of Mn SOD, while these cytokines had no effect on Cu-Zn SOD protein levels in cultured human keratinocytes after incubation for 24 h. Furthermore, when neutralizing antibodies against IL-1 alpha and TNF-alpha were added separately or together to the culture medium before UVB irradiation, the recovery of total SOD activity and Mn SOD protein level were markedly inhibited 24 h after irradiation. Our results suggest that significant increases in SOD activity and protein level occur as a cutaneous antioxidant

  12. Extracellular Production and Degradation of Superoxide in the Coral Stylophora pistillata and Cultured Symbiodinium

    PubMed Central

    Saragosti, Eldad; Tchernov, Dan; Katsir, Adi; Shaked, Yeala

    2010-01-01

    Background Reactive oxygen species (ROS) are thought to play a major role in cell death pathways and bleaching in scleractinian corals. Direct measurements of ROS in corals are conspicuously in short supply, partly due to inherent problems with ROS quantification in cellular systems. Methodology/Principal Findings In this study we characterized the dynamics of the reactive oxygen species superoxide anion radical (O2−) in the external milieu of the coral Stylophora pistillata. Using a sensitive, rapid and selective chemiluminesence-based technique, we measured extracellular superoxide production and detoxification activity of symbiont (non-bleached) and aposymbiont (bleached) corals, and of cultured Symbiodinium (from clades A and C). Bleached and non-bleached Stylophora fragments were found to produce superoxide at comparable rates of 10−11–10−9 mol O2− mg protein−1 min−1 in the dark. In the light, a two-fold enhancement in O2− production rates was observed in non-bleached corals, but not in bleached corals. Cultured Symbiodinium produced superoxide in the dark at a rate of . Light was found to markedly enhance O2− production. The NADPH Oxidase inhibitor Diphenyleneiodonium chloride (DPI) strongly inhibited O2− production by corals (and more moderately by algae), possibly suggesting an involvement of NADPH Oxidase in the process. An extracellular O2− detoxifying activity was found for bleached and non-bleached Stylophora but not for Symbiodinium. The O2− detoxifying activity was partially characterized and found to resemble that of the enzyme superoxide dismutase (SOD). Conclusions/Significance The findings of substantial extracellular O2− production as well as extracellular O2− detoxifying activity may shed light on the chemical interactions between the symbiont and its host and between the coral and its environment. Superoxide production by Symbiodinium possibly implies that algal bearing corals are more susceptible to an internal

  13. A Germin-Like Protein Gene (CchGLP) of Capsicum chinense Jacq. Is Induced during Incompatible Interactions and Displays Mn-Superoxide Dismutase Activity

    PubMed Central

    León-Galván, Fabiola; de Jesús Joaquín-Ramos, Ahuizolt; Torres-Pacheco, Irineo; Barba de la Rosa, Ana P.; Guevara-Olvera, Lorenzo; González-Chavira, Mario M.; Ocampo-Velazquez, Rosalía V.; Rico-García, Enrique; Guevara-González, Ramón Gerardo

    2011-01-01

    A germin-like gene (CchGLP) cloned from geminivirus-resistant pepper (Capsicum chinense Jacq. Line BG-3821) was characterized and the enzymatic activity of the expressed protein analyzed. The predicted protein consists of 203 amino acids, similar to other germin-like proteins. A highly conserved cupin domain and typical germin boxes, one of them containing three histidines and one glutamate, are also present in CchGLP. A signal peptide was predicted in the first 18 N-terminal amino acids, as well as one putative N-glycosylation site from residues 44–47. CchGLP was expressed in E. coli and the recombinant protein displayed manganese superoxide dismutase (Mn-SOD) activity. Molecular analysis showed that CchGLP is present in one copy in the C. chinense Jacq. genome and was induced in plants by ethylene (Et) and salicylic acid (SA) but not jasmonic acid (JA) applications in the absence of pathogens. Meanwhile, incompatible interactions with either Pepper golden mosaic virus (PepGMV) or Pepper huasteco yellow vein virus (PHYVV) caused local and systemic CchGLP induction in these geminivirus-resistant plants, but not in a susceptible accession. Compatible interactions with PHYVV, PepGMV and oomycete Phytophthora capsici did not induce CchGLP expression. Thus, these results indicate that CchGLP encodes a Mn-SOD, which is induced in the C. chinense geminivirus-resistant line BG-3821, likely using SA and Et signaling pathways during incompatible interactions with geminiviruses PepGMV and PHYVV. PMID:22174599

  14. Oxidation of the Tryptophan 32 Residue of Human Superoxide Dismutase 1 Caused by Its Bicarbonate-dependent Peroxidase Activity Triggers the Non-amyloid Aggregation of the Enzyme*

    PubMed Central

    Coelho, Fernando R.; Iqbal, Asif; Linares, Edlaine; Silva, Daniel F.; Lima, Filipe S.; Cuccovia, Iolanda M.; Augusto, Ohara

    2014-01-01

    The role of oxidative post-translational modifications of human superoxide dismutase 1 (hSOD1) in the amyotrophic lateral sclerosis (ALS) pathology is an attractive hypothesis to explore based on several lines of evidence. Among them, the remarkable stability of hSOD1WT and several of its ALS-associated mutants suggests that hSOD1 oxidation may precede its conversion to the unfolded and aggregated forms found in ALS patients. The bicarbonate-dependent peroxidase activity of hSOD1 causes oxidation of its own solvent-exposed Trp32 residue. The resulting products are apparently different from those produced in the absence of bicarbonate and are most likely specific for simian SOD1s, which contain the Trp32 residue. The aims of this work were to examine whether the bicarbonate-dependent peroxidase activity of hSOD1 (hSOD1WT and hSOD1G93A mutant) triggers aggregation of the enzyme and to comprehend the role of the Trp32 residue in the process. The results showed that Trp32 residues of both enzymes are oxidized to a similar extent to hSOD1-derived tryptophanyl radicals. These radicals decayed to hSOD1-N-formylkynurenine and hSOD1-kynurenine or to a hSOD1 covalent dimer cross-linked by a ditryptophan bond, causing hSOD1 unfolding, oligomerization, and non-amyloid aggregation. The latter process was inhibited by tempol, which recombines with the hSOD1-derived tryptophanyl radical, and did not occur in the absence of bicarbonate or with enzymes that lack the Trp32 residue (bovine SOD1 and hSOD1W32F mutant). The results support a role for the oxidation products of the hSOD1-Trp32 residue, particularly the covalent dimer, in triggering the non-amyloid aggregation of hSOD1. PMID:25237191

  15. Superoxide-dependent oxidation of melatonin by myeloperoxidase.

    PubMed

    Ximenes, Valdecir F; Silva, Sueli de O; Rodrigues, Maria R; Catalani, Luiz H; Maghzal, Ghassan J; Kettle, Anthony J; Campa, Ana

    2005-11-18

    Myeloperoxidase uses hydrogen peroxide to oxidize numerous substrates to hypohalous acids or reactive free radicals. Here we show that neutrophils oxidize melatonin to N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) in a reaction that is catalyzed by myeloperoxidase. Production of AFMK was highly dependent on superoxide but not hydrogen peroxide. It did not require hypochlorous acid, singlet oxygen, or hydroxyl radical. Purified myeloperoxidase and a superoxide-generating system oxidized melatonin to AFMK and a dimer. The dimer would result from coupling of melatonin radicals. Oxidation of melatonin was partially inhibited by catalase or superoxide dismutase. Formation of AFMK was almost completely eliminated by superoxide dismutase but weakly inhibited by catalase. In contrast, production of melatonin dimer was enhanced by superoxide dismutase and blocked by catalase. We propose that myeloperoxidase uses superoxide to oxidize melatonin by two distinct pathways. One pathway involves the classical peroxidation mechanism in which hydrogen peroxide is used to oxidize melatonin to radicals. Superoxide adds to these radicals to form an unstable peroxide that decays to AFMK. In the other pathway, myeloperoxidase uses superoxide to insert dioxygen into melatonin to form AFMK. This novel activity expands the types of oxidative reactions myeloperoxidase can catalyze. It should be relevant to the way neutrophils use superoxide to kill bacteria and how they metabolize xenobiotics. PMID:16148002

  16. Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell.

    PubMed

    Xue, Shaowu; Hu, Honghong; Ries, Amber; Merilo, Ebe; Kollist, Hannes; Schroeder, Julian I

    2011-04-20

    Plants respond to elevated CO(2) via carbonic anhydrases that mediate stomatal closing, but little is known about the early signalling mechanisms following the initial CO(2) response. It remains unclear whether CO(2), HCO(3)(-) or a combination activates downstream signalling. Here, we demonstrate that bicarbonate functions as a small-molecule activator of SLAC1 anion channels in guard cells. Elevated intracellular [HCO(3)(-)](i) with low [CO(2)] and [H(+)] activated S-type anion currents, whereas low [HCO(3)(-)](i) at high [CO(2)] and [H(+)] did not. Bicarbonate enhanced the intracellular Ca(2+) sensitivity of S-type anion channel activation in wild-type and ht1-2 kinase mutant guard cells. ht1-2 mutant guard cells exhibited enhanced bicarbonate sensitivity of S-type anion channel activation. The OST1 protein kinase has been reported not to affect CO(2) signalling. Unexpectedly, OST1 loss-of-function alleles showed strongly impaired CO(2)-induced stomatal closing and HCO(3)(-) activation of anion channels. Moreover, PYR/RCAR abscisic acid (ABA) receptor mutants slowed but did not abolish CO(2)/HCO(3)(-) signalling, redefining the convergence point of CO(2) and ABA signalling. A new working model of the sequence of CO(2) signalling events in gas exchange regulation is presented. PMID:21423149

  17. Neutral sphingomyelinase activity dependent on Mg2+ and anionic phospholipids in the intraerythrocytic malaria parasite Plasmodium falciparum.

    PubMed Central

    Hanada, K; Mitamura, T; Fukasawa, M; Magistrado, P A; Horii, T; Nishijima, M

    2000-01-01

    Sphingolipid metabolism and metabolites are important in various cellular events in eukaryotes. However, little is known about their function in plasmodial parasites. Here we demonstrate that neutral sphingomyelinase (SMase) involved in the sphingomyelin (SM) catabolism is retained by the intraerythrocytic parasite Plasmodium falciparum. When assayed in a neutral pH buffer supplemented with Mg(2+) and phosphatidylserine, an activity for the release of the phosphocholine group from SM was detected in parasite-infected, but not in uninfected, erythrocyte ghosts. The SMase activity in the parasite-infected erythrocyte ghosts was enhanced markedly by anionic phospholipids including unsaturated but not saturated phosphatidylserine. Mn(2+) could not substitute for Mg(2+) to activate SMase in parasite-infected erythrocyte ghosts, whereas both Mn(2+) and Mg(2+) activated mammalian neutral SMase. The specific activity level of SMase was higher in isolated parasites than in infected erythrocyte ghosts; further fractionation of lysates of the isolated parasites showed that the activity was bound largely to the membrane fraction of the parasites. The plasmodial SMase seemed not to hydrolyse phosphatidylcholine or phosphatidylinositol. The plasmodial SMase, but not SM synthase, was sensitive to scyphostatin, an inhibitor of mammalian neutral SMase, indicating that the plasmodial activities for SM hydrolysis and SM synthesis are mediated by different catalysts. Our finding that the malaria parasites possess SMase activity might explain why the parasites seem to have an SM synthase activity but no activity to synthesize ceramide de novo. PMID:10698693

  18. Superoxide dismutases of heavy metal resistant streptomycetes.

    PubMed

    Schmidt, Astrid; Schmidt, André; Haferburg, Götz; Kothe, Erika

    2007-02-01

    Heavy metal tolerant and resistant strains of streptomycetes isolated from a former uranium mining site were screened for their superoxide dismutase expression. From the strains tolerating high concentrations of different heavy metals, one was selected for its tolerance of concentrations of heavy metals (Ni, Cu, Cd, Cr, Mn, Zn, Fe). This strain, Streptomyces acidiscabies E13, was chosen for the purpose of superoxide dismutase analysis. Gel electrophoresis and activity staining revealed only one each of a nickel (NiSOD) and an iron (FeZnSOD) containing superoxide dismutase as shown by differential enzymatic repression studies. The gene for nickel containing superoxide dismutase, sodN, was cloned and sequenced from this strain. The genomic sequence shows 92.7% nucleotide identity and 96.1% amino acid identity to sodN of S. coelicolor. Expression can be activated by nickel as well as other heavy metals and active enzyme is produced in media lacking nickel but containing copper, iron or zinc. Thus, the selected strain is well suited for further characterization of the enzyme encoded by sodN. PMID:17304620

  19. Cu(II)-disulfide complexes with superoxide dismutase- and catalase-like activities protect mitochondria and whole cells against oxidative stress.

    PubMed

    Aliaga, Margarita E; Sandoval-Acuña, Cristián; López-Alarcón, Camilo; Fuentes, Jocelyn; Speisky, Hernan

    2014-10-01

    Mitochondria are a major subcellular site of superoxide (O2(-)) formation. Conditions leading to an uncontrolled production, accumulation and/or conversion of O2(-) into hydrogen peroxide result in an increment in the intramitochondrial oxidative tone which, ultimately leads to the loss of cell viability. Recently, we reported on the ability of a series of Cu(II)-disulfide complexes to act simultaneously as SOD- and catalase-like molecules. In the present study, we addressed the potential of such compounds to protect mitochondria and cells against the oxidative stress and the cytolytic damage induced by diclofenac. Exposure of Caco-2 cells to diclofenac (250µM, 20min) led to a near 80% inhibition of mitochondrial complex I activity and almost doubled the rate of mitochondrial O2(-) production (assessed by Mitosox). A comparable increment was seen in whole cells when the oxidative tone was assessed through the largely hydrogen peroxide-dependent dichlorofluorescein (DCFH) oxidation. The increment in mitochondrial O2(-) production was totally and concentration-dependently prevented by the addition of the complexes formed between Cu(II) and the disulfides of glutathione, homocysteine, or a-dehydro-lipoic acid (20µM each); comparatively, the Cu(II)-cystine complex exerted a weaker protection. A comparable protection pattern was seen at the whole cell level, as these complexes were also effective in preventing the increment in DCFH oxidation. The mitochondrial and whole cell antioxidant protection also translated into a full protection against the cytolytic effects of diclofenac (45min). Results from the present study indicate that the here-tested Cu(II)-disulfides complexes are able to effectively protect cells against the oxidative and the lytic effects of O2(-)-overproducing mitochondria, suggesting a potential for these type of compounds to act as SOD- and catalase-like molecules under oxidative-stress conditions. Supported by FONDECYT #1110018. PMID:26461399

  20. Intracellular generation of superoxide as a by-product of Vibrio harveyi luciferase expressed in Escherichia coli.

    PubMed Central

    González-Flecha, B; Demple, B

    1994-01-01

    Luciferase genes are widely used as reporters of gene expression because of the high sensitivity of chemiluminescence detection and the possibility of monitoring light production in intact cells. We engineered fusions of the Escherichia coli soxS promoter to the luciferase structural genes (luxAB) from Vibrio harveyi. Since soxS transcription is positively triggered by the activated SoxR protein in response to agents such as paraquat that generate intracellular superoxide, we hoped to use this construct as a sensitive reporter of redox stress agents. Although a soxR+ soxS'::luxAB fusion exhibited a paraquat-inducible synthesis of luciferase, a smaller increase was consistently observed even in the absence of known soxRS inducers. This endogenous induction was soxR dependent and was further characterized by introducing a plasmid carrying the luciferase structural genes without the soxS promoter into a strain carrying a soxS'::lacZ fusion in the bacterial chromosome. These cells exhibited increased beta-galactosidase expression as they grew into mid-log phase. This increase was ascribed to luciferase activity because beta-galactosidase induction was suppressed (but not eliminated) when the substrate n-decanal was present in the medium. The soxS'::luxAB plasmid transformed superoxide dismutase-deficient strains very poorly under aerobic conditions but just as efficiently as a control plasmid under anaerobic conditions. The production of hydrogen peroxide, the dismutation product of superoxide anion, was significantly increased in strains carrying bacterial luciferase and maximal in the absence of n-decanal. Taken collectively, these data point to the generation of significant amounts of intracellular superoxide by bacterial luciferase, the possible mechanism of which is discussed. In addition to providing insights into the role of superoxide in the activation of the SoxR protein, these results suggest caution in the interpretation of experiments using luciferase as a

  1. Bicarbonate is required for the peroxidase function of Cu, Zn-superoxide dismutase at physiological pH.

    PubMed

    Sankarapandi, S; Zweier, J L

    1999-01-15

    Cu,Zn-superoxide dismutase (SOD1) acts as a peroxidase in the presence of H2O2 at high pH (pH > 9). The high pH species of H2O2, HO2-, was previously implicated as the reactive species. However, recent EPR studies of the enzyme performed in the physiological pH range 7.4-7.6 with the spin trap 5,5'-dimethyl-1-pyrolline-N-oxide attributed the intense EPR signal of 5, 5'-dimethyl-1-pyrolline-N-oxide-OH obtained from SOD1 and H2O2 to the peroxidase activity of the enzyme. The present study establishes that this intense signal is obtained only in the presence of bicarbonate. To explore the critical role of HCO3-, a comprehensive EPR investigation of the radical production and redox state of the active site copper was performed. The results indicate that HCO3- competes with other anions for the anion-binding site of SOD1 (Arg141) but does not bind directly to the copper. Structurally different anions that bind to Arg141 did not stimulate, but rather blocked, peroxidase function, ruling out an effect due to mere anion binding. However, the structurally similar anions HSeO3- and HSO3- mimic HCO3- in stimulating peroxidase function. These data suggest that HCO3- bound to Arg141 anchors the neutral H2O2 molecule at the active site copper, enabling its redox cleavage. Thus, SOD1 acquires peroxidase activity at physiological pH only in the presence of HCO3- or structurally similar anions. Alterations in pH that shift the HCO3-/CO2 equilibrium as occur in disease processes such as ischemia, sepsis, or shock would modulate the peroxidase function of SOD1. PMID:9880490

  2. A genetic system involving superoxide causes F1 necrosis in wheat (T. aestivum L.).

    PubMed

    Khanna-Chopra, R; Dalal, M; Kumar, G P; Laloraya, M

    1998-07-30

    A genetic system in wheat is described in which F1 produced by crossing a drought tolerant cultivar C306 and high yielding cultivar WL711 exhibits leaf necrosis leading to the death of the plant. The mechanism underlying hybrid necrosis is not yet known. The hybrid exhibited a higher level of superoxide anion compared to the healthy leaves of parents at similar developmental stages. This increase in superoxide generation preceded necrotic lesion formation and displayed a gradient from the leaf tip to base. The leaf tip where necrotic lesions make their first appearance exhibited a higher level of superoxide compared to the base. Superoxide anion thus appears to play a vital role in necrosis of leaves in F1 hybrid. This genetic system can be a model system for understanding cell death in higher plants. PMID:9703992

  3. Principles of activation and permeation in an anion-selective Cys-loop receptor.

    PubMed

    Hibbs, Ryan E; Gouaux, Eric

    2011-06-01

    Fast inhibitory neurotransmission is essential for nervous system function and is mediated by binding of inhibitory neurotransmitters to receptors of the Cys-loop family embedded in the membranes of neurons. Neurotransmitter binding triggers a conformational change in the receptor, opening an intrinsic chloride channel and thereby dampening neuronal excitability. Here we present the first three-dimensional structure, to our knowledge, of an inhibitory anion-selective Cys-loop receptor, the homopentameric Caenorhabditis elegans glutamate-gated chloride channel α (GluCl), at 3.3 Å resolution. The X-ray structure of the GluCl-Fab complex was determined with the allosteric agonist ivermectin and in additional structures with the endogenous neurotransmitter L-glutamate and the open-channel blocker picrotoxin. Ivermectin, used to treat river blindness, binds in the transmembrane domain of the receptor and stabilizes an open-pore conformation. Glutamate binds in the classical agonist site at subunit interfaces, and picrotoxin directly occludes the pore near its cytosolic base. GluCl provides a framework for understanding mechanisms of fast inhibitory neurotransmission and allosteric modulation of Cys-loop receptors. PMID:21572436

  4. Dehydroepiandrosterone inhibits the spontaneous release of superoxide radical by alveolar macrophages in vitro in asbestosis

    SciTech Connect

    Rom, W.N.; Harkin, T. )

    1991-08-01

    Asbestosis is characterized by an alveolar macrophage alveolitis with injury and fibrosis of the lower respiratory tract. Alveolar macrophages recovered by bronchoalveolar lavage spontaneously release exaggerated amounts of oxidants including superoxide anion and hydrogen peroxide that may mediate alveolar epithelial cell injury. Dehydroepiandrosterone (DHEA) is a normally occurring adrenal androgen that inhibits glucose-6-phosphate dehydrogenase, the initial enzyme in the pentose phosphate shunt necessary for NADPH generation and superoxide anion formation. In this regard, the authors hypothesized that DHEA may reduce asbestos-induced oxidant release. DHEA added in vitro to alveolar macrophages lavaged from 11 nonsmoking asbestos workers significantly reduced superoxide anion release. DHEA is an antioxidant and potential anticarcinogenic agent that may have a therapeutic role in reducing the increased oxidant burden in asbestos-induced alveolitis of the lower respiratory tract.

  5. Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids.

    PubMed

    Kolter, Thomas; Sandhoff, Konrad

    2005-01-01

    Sphingolipids and glycosphingolipids are membrane components of eukaryotic cell surfaces. Their constitutive degradation takes place on the surface of intra-endosomal and intra-lysosomal membrane structures. During endocytosis, these intra-lysosomal membranes are formed and prepared for digestion by a lipid-sorting process during which their cholesterol content decreases and the concentration of the negatively charged bis(monoacylglycero)phosphate (BMP)--erroneously also called lysobisphosphatidic acid (LBPA)--increases. Glycosphingolipid degradation requires the presence of water-soluble acid exohydrolases, sphingolipid activator proteins, and anionic phospholipids like BMP. The lysosomal degradation of sphingolipids with short hydrophilic head groups requires the presence of sphingolipid activator proteins (SAPs). These are the saposins (Saps) and the GM2 activator protein. Sphingolipid activator proteins are membrane-perturbing and lipid-binding proteins with different specificities for the bound lipid and the activated enzyme-catalyzed reaction. Their inherited deficiency leads to sphingolipid- and membrane-storage diseases. Sphingolipid activator proteins not only facilitate glycolipid digestion but also act as glycolipid transfer proteins facilitating the association of lipid antigens with immunoreceptors of the CD1 family. PMID:16212488

  6. Real time in vivo investigation of superoxide dynamics in zebrafish liver using a single-fiber fluorescent probe

    PubMed Central

    Chang, Yu-Chung; Ken, Chuian-Fu; Hsu, Che-Wei; Liu, Ya-Ging

    2013-01-01

    Superoxide anion is the key radical that causes intracellular oxidative stress. The lack of a method to directly monitor superoxide concentration in vivo in real time has severely hindered our understanding on its pathophysiology. We made transgenic zebrafish to specifically express yellow fluorescent proteins, a reversible superoxide-specific indicator, in the liver and used a fiber-optic fluorescent probe to noninvasively monitor the superoxide concentration in real time. Several superoxide-inducing and scavenging reagents were administrated onto the fish to alter superoxide concentrations. The distinct biochemical pathways of the reagents can be discerned from the transient behaviors of fluorescence time courses. These results demonstrate the feasibility of this method for analyzing superoxide dynamics and its potential as an in vivo pharmaceutical screening platform. PMID:24049691

  7. Active Demulsification of Photoresponsive Emulsions Using Cationic-Anionic Surfactant Mixtures.

    PubMed

    Takahashi, Yutaka; Koizumi, Nanami; Kondo, Yukishige

    2016-01-26

    The influence of ultraviolet (UV) light irradiation on the emulsification properties of mixtures of an anionic surfactant, sodium dodecyl sulfate (SDS), and a photoresponsive cationic surfactant, 2-(4-(4-butylphenyl)diazenylphenoxy)ethyltrimethylammonium bromide (C4AzoTAB), containing an azobenzene group has been investigated. When mixtures of n-octane and aqueous SDS/trans-C4AzoTAB solution are homogenized, stable emulsions are obtained in regions of specific surfactant concentrations and molar ratios of the mixed surfactants. The stable emulsions are stable for over a week and found to be of the oil-in-water (O/W) type. UV light irradiation of the stable O/W emulsions leads to the coalescence of smaller oil droplets into larger ones in the emulsions, i.e., demulsification. As a result, the oil and aqueous surfactant solution phases are fully separated by UV light irradiation for 90 min, even shorter than our previous result (6 h; Langmuir 2014 , 30 , 41 - 47 ). The use of a microreactor shortens the time required for the photoinduced demulsification into 3.5 min. When mixtures of octane and aqueous SDS/cis-C4AzoTAB solution are homogenized, no emulsions are obtained. The interfacial tension (IFT) between octane and aqueous SDS/cis-C4AzoTAB solution is higher than that between octane and aqueous SDS/trans-C4AzoTAB solution, indicating that the IFT of SDS/trans-C4AzoTAB mixtures increases with the cis photoisomerization of the trans isomer. These results suggest that cis isomerization of the SDS/trans-C4AzoTAB mixtures due to UV light irradiation causes Ostwald ripening of the octane droplets in the emulsions, thereby reducing the interfacial area between the octane and water phases as the IFT between octane and the aqueous surfactant solution increases. Subsequently, the octane and aqueous solution phases separate. PMID:26731043

  8. Ras Oncogene-Mediated Progressive Silencing of Extracellular Superoxide Dismutase in Tumorigenesis

    PubMed Central

    Cammarota, Francesca; de Vita, Gabriella; Salvatore, Marco; Laukkanen, Mikko O.

    2015-01-01

    Extracellular superoxide dismutase (SOD3) is a secreted enzyme that uses superoxide anion as a substrate in a dismutase reaction that results in the formation of hydrogen peroxide. Both of these reactive oxygen species affect growth signaling in cells. Although SOD3 has growth-supporting characteristics, the expression of SOD3 is downregulated in epithelial cancer cells. In the current work, we studied the mechanisms regulating SOD3 expression in vitro using thyroid cell models representing different stages of thyroid cancer. We demonstrate that a low level of RAS activation increases SOD3 mRNA synthesis that then gradually decreases with increasing levels of RAS activation and the decreasing degree of differentiation of the cancer cells. Our data indicate that SOD3 regulation can be divided into two classes. The first class involves RAS–driven reversible regulation of SOD3 expression that can be mediated by the following mechanisms: RAS GTPase regulatory genes that are responsible for SOD3 self-regulation; RAS-stimulated p38 MAPK activation; and RAS-activated increased expression of the mir21 microRNA, which inversely correlates with sod3 mRNA expression. The second class involves permanent silencing of SOD3 mediated by epigenetic DNA methylation in cells that represent more advanced cancers. Therefore, the work suggests that SOD3 belongs to the group of ras oncogene-silenced genes. PMID:26550576

  9. Differential effects of superoxide dismutase and superoxide dismutase/catalase mimetics on human breast cancer cells.

    PubMed

    Shah, Manisha H; Liu, Guei-Sheung; Thompson, Erik W; Dusting, Gregory J; Peshavariya, Hitesh M

    2015-04-01

    Reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H2O2) have been implicated in development and progression of breast cancer. In the present study, we have evaluated the effects of the superoxide dismutase (SOD) mimetic MnTmPyP and the SOD/catalase mimetic EUK 134 on superoxide and H2O2 formation as well as proliferation, adhesion, and migration of MCF-7 and MDA-MB-231 cells. Superoxide and H2O2 production was examined using dihydroethidium and Amplex red assays, respectively. Cell viability and adhesion were measured using a tetrazolium-based MTT assay. Cell proliferation was determined using trypan blue assay. Cell cycle progression was analyzed using flow cytometry. Clonal expansion of a single cell was performed using a colony formation assay. Cell migration was measured using transwell migration assay. Dual luciferase assay was used to determine NF-κB reporter activity. EUK 134 effectively reduced both superoxide and H2O2, whereas MnTmPyP removed superoxide but enhanced H2O2 formation. EUK 134 effectively attenuated viability, proliferation, clonal expansion, adhesion, and migration of MCF-7 and MDA-MB-231 cells. In contrast, MnTmPyP only reduced clonal expansion of MCF-7 and MDA-MB-231 cells but had no effect on adhesion and cell cycle progression. Tumor necrosis factor-alpha-induced NF-κB activity was reduced by EUK 134, whereas MnTmPyP enhanced this activity. These data indicate that the SOD mimetic MnTmPyP and the SOD/catalase mimetic EUK 134 exert differential effects on breast cancer cell growth. Inhibition of H2O2 signaling using EUK 134-like compound might be a promising approach to breast cancer therapy. PMID:25794772

  10. Superoxide dismutases in chronic gastritis.

    PubMed

    Švagelj, Dražen; Terzić, Velimir; Dovhanj, Jasna; Švagelj, Marija; Cvrković, Mirta; Švagelj, Ivan

    2016-04-01

    Human gastric diseases have shown significant changes in the activity and expression of superoxide dismutase (SOD) isoforms. The aim of this study was to detect Mn-SOD activity and expression in the tissue of gastric mucosa, primarily in chronic gastritis (immunohistochemical Helicobacter pylori-negative gastritis, without other pathohistological changes) and to evaluate their possible connection with pathohistological diagnosis. We examined 51 consecutive outpatients undergoing endoscopy for upper gastrointestinal symptoms. Patients were classified based on their histopathological examinations and divided into three groups: 51 patients (archive samples between 2004-2009) with chronic immunohistochemical Helicobacter pylori-negative gastritis (mononuclear cells infiltration were graded as absent, moderate, severe) divided into three groups. Severity of gastritis was graded according to the updated Sydney system. Gastric tissue samples were used to determine the expression of Mn-SOD with anti-Mn-SOD Ab immunohistochemically. The Mn-SOD expression was more frequently present in specimens with severe and moderate inflammation of gastric mucosa than in those with normal mucosa. In patients with normal histological finding, positive immunoreactivity of Mn-SOD was not found. Our results determine the changes in Mn-SOD expression occurring in the normal gastric mucosa that had undergone changes in the intensity of chronic inflammatory infiltrates in the lamina propria. PMID:26765960

  11. ION CHROMATOGRAPHY OF ANIONS

    EPA Science Inventory

    A Dionex Model 10 Ion Chromatograph was evaluated for the measurement of anionic species in water. The theoretical effect of hydrogen ion activity (pH) on the elution time of phosphate and arsenate was tested and empirical selectivity coefficients were determined for the major pr...

  12. Anion-π catalysis.

    PubMed

    Zhao, Yingjie; Beuchat, César; Domoto, Yuya; Gajewy, Jadwiga; Wilson, Adam; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2014-02-01

    The introduction of new noncovalent interactions to build functional systems is of fundamental importance. We here report experimental and theoretical evidence that anion-π interactions can contribute to catalysis. The Kemp elimination is used as a classical tool to discover conceptually innovative catalysts for reactions with anionic transition states. For anion-π catalysis, a carboxylate base and a solubilizer are covalently attached to the π-acidic surface of naphthalenediimides. On these π-acidic surfaces, transition-state stabilizations up to ΔΔGTS = 31.8 ± 0.4 kJ mol(-1) are found. This value corresponds to a transition-state recognition of KTS = 2.7 ± 0.5 μM and a catalytic proficiency of 3.8 × 10(5) M(-1). Significantly increasing transition-state stabilization with increasing π-acidity of the catalyst, observed for two separate series, demonstrates the existence of "anion-π catalysis." In sharp contrast, increasing π-acidity of the best naphthalenediimide catalysts does not influence the more than 12 000-times weaker substrate recognition (KM = 34.5 ± 1.6 μM). Together with the disappearance of Michaelis-Menten kinetics on the expanded π-surfaces of perylenediimides, this finding supports that contributions from π-π interactions are not very important for anion-π catalysis. The linker between the π-acidic surface and the carboxylate base strongly influences activity. Insufficient length and flexibility cause incompatibility with saturation kinetics. Moreover, preorganizing linkers do not improve catalysis much, suggesting that the ideal positioning of the carboxylate base on the π-acidic surface is achieved by intramolecular anion-π interactions rather than by an optimized structure of the linker. Computational simulations are in excellent agreement with experimental results. They confirm, inter alia, that the stabilization of the anionic transition states (but not the neutral ground states) increases with the π-acidity of the

  13. The Effect of Ionic Strength and Specific Anions on Substrate Binding and Hydrolytic Activities of Na,K-ATPase

    PubMed Central

    Nørby, Jens G.; Esmann, Mikael

    1997-01-01

    The physiological ligands for Na,K-ATPase (the Na,K-pump) are ions, and electrostatic forces, that could be revealed by their ionic strength dependence, are therefore expected to be important for their reaction with the enzyme. We found that the affinities for ADP3−, eosin2−, p-nitrophenylphosphate, and Vmax for Na,K-ATPase and K+-activated p-nitrophenylphosphatase activity, were all decreased by increasing salt concentration and by specific anions. Equilibrium binding of ADP was measured at 0–0.5 M of NaCl, Na2SO4, and NaNO3 and in 0.1 M Na-acetate, NaSCN, and NaClO4. The apparent affinity for ADP decreased up to 30 times. At equal ionic strength, I, the ranking of the salt effect was NaCl ≈ Na2SO4 ≈ Na-acetate < NaNO3 < NaSCN < NaClO4. We treated the influence of NaCl and Na2SO4 on Kdiss for E·ADP as a “pure” ionic strength effect. It is quantitatively simulated by a model where the binding site and ADP are point charges, and where their activity coefficients are related to I by the limiting law of Debye and Hückel. The estimated net charge at the binding site of the enzyme was about +1. Eosin binding followed the same model. The NO3− effect was compatible with competitive binding of NO3− and ADP in addition to the general I-effect. Kdiss for E·NO3 was ∼32 mM. Analysis of Vmax/Km for Na,K-ATPase and K+-p-nitrophenylphosphatase activity shows that electrostatic forces are important for the binding of p-nitrophenylphosphate but not for the catalytic effect of ATP on the low affinity site. The net charge at the p-nitrophenylphosphate-binding site was also about +1. The results reported here indicate that the reversible interactions between ions and Na,K-ATPase can be grouped according to either simple Debye-Hückel behavior or to specific anion or cation interactions with the enzyme. PMID:9154904

  14. Functional, structural and phylogenetic analysis of domains underlying the Al-sensitivity of the aluminium-activated malate/anion transporter, TaALMT1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TaALMT1 (Triticum aestivum Aluminum Activated Malate Transporter) is the founding member of a novel gene family of anion transporters (ALMTs) that mediate the efflux of organic acids. A small subgroup of root-localized ALMTs, including TaALMT1, is physiologically associated with in planta aluminum (...

  15. Anionic Lipids Modulate the Activity of the Aquaglyceroporin GlpF

    PubMed Central

    Klein, Noreen; Hellmann, Nadja; Schneider, Dirk

    2015-01-01

    The structure and composition of a biological membrane can severely influence the activity of membrane-embedded proteins. Here, we show that the E. coli aquaglyceroporin GlpF has only little activity in lipid bilayers formed from native E. coli lipids. Thus, at first glance, GlpF appears to not be optimized for its natural membrane environment. In fact, we found that GlpF activity was severely affected by negatively charged lipids regardless of the exact chemical nature of the lipid headgroup, whereas GlpF was not sensitive to changes in the lateral membrane pressure. These observations illustrate a potential mechanism by which the activity of an α-helical membrane protein is modulated by the negative charge density around the protein. PMID:26287624

  16. Site-directed mutagenesis of tobacco anionic peroxidase: Effect of additional aromatic amino acids on stability and activity.

    PubMed

    Poloznikov, A A; Zakharova, G S; Chubar, T A; Hushpulian, D M; Tishkov, V I; Gazaryan, I G

    2015-08-01

    Tobacco anionic peroxidase (TOP) is known to effectively catalyze luminol oxidation without enhancers, in contrast to horseradish peroxidase (HRP). To pursue structure-activity relationship studies for TOP, two amino acids have been chosen for mutation, namely Thr151, close to the heme plane, and Phe140 at the entrance to the active site pocket. Three mutant forms TOP F140Y, T151W and F140Y/T151W have been expressed in Escherichia coli, and reactivated to yield active enzymes. Single-point mutations introducing additional aromatic amino acid residues at the surface of TOP exhibit a significant effect on the enzyme catalytic activity and stability as judged by the results of steady-state and transient kinetics studies. TOP T151W is up to 4-fold more active towards a number of aromatic substrates including luminol, whereas TOP F140Y is 2-fold more stable against thermal inactivation and 8-fold more stable in the reaction course. These steady-state observations have been rationalized with the help of transient kinetic studies on the enzyme reaction with hydrogen peroxide in a single turnover regime. The stopped-flow data reveal (a) an increased stability of F140Y Compound I towards hydrogen peroxide, and thus, a higher operational stability as compared to the wild-type enzyme, and (b) a lesser leakage of oxidative equivalents from TOP T151W Compound I resulting in the increased catalytic activity. The results obtained show that TOP unique properties can be further improved for practical applications by site-directed mutagenesis. PMID:25957835

  17. Gold nanoparticles tune the activity of laccase in anionic reverse micelles.

    PubMed

    Yu, Xinxin; Zou, Feixue; Yao, Peipei; Huang, Xirong; Qu, Yinbo

    2014-09-14

    The interfacial property of reverse micelles is an important factor affecting the catalytic activity of enzymes hosted in the micelles. In this article, the effect of gold nanoparticles (GNPs) on the catalytic activity of laccase (non-surface-active enzyme) and the related mechanism are reported. It was found that laccase activity was dependent on the size of the particle and its concentration as well as on the water content and the concentration of AOT. It was shown that there existed several types of micelles in the present reverse micellar system in the presence of GNPs. The population of the various micelles depended on the concentrations of both GNPs and AOT. Fluorescence and circular dichroism spectra of laccase at different water contents and GNP concentrations indicated that the conformation of laccase and its activity were tuned by GNPs via changing the structure of the reverse micelles. Analysis showed that changes in the thickness of the water layer (Lw) and in the apparent occupied area of individual AOT molecules (AAOT) caused by GNPs were the main parameters affecting the activity of laccase. The present work extends and deepens the understanding of the tuning mechanism of GNPs on enzymatic performance in reverse micelles and provides guidance for rational design of the optimal microenvironment of laccase. PMID:25046816

  18. Pharmacological Role of Anions (Sulphate, Nitrate, Oxalate and Acetate) on the Antibacterial Activity of Cobalt(II), Copper(II) and Nickel(II) Complexes With Nicotinoylhydrazine-Derived ONO, NNO and SNO Ligands.

    PubMed

    Chohan, Z H; Rauf, A

    1996-01-01

    Mixed ligands biologically active complexes of cobalt(II), copper(II) and nickel(II) with nicotinoylhydrazine-derived ONO, NNO and SNO donor schiff-base ligands having the same metal ion but different anions such as sulphate, nitrate, oxalate and acetate have been synthesised and characterised on the basis of their physical, analytical and spectral data. In order to evaluate the role of anions on their bioability, these ligands and their synthesised metal complexes with various anions have been screened against bacterial species such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus and the title studies have proved a definative role of anions in increasing the biological activity. PMID:18472896

  19. Pharmacological Role of Anions (Sulphate, Nitrate, Oxalate and Acetate) on the Antibacterial Activity of Cobalt(II), Copper(II) and Nickel(II) Complexes With Nicotinoylhydrazine-Derived ONO, NNO and SNO Ligands

    PubMed Central

    Rauf, Abdur

    1996-01-01

    Mixed ligands biologically active complexes of cobalt(II), copper(II) and nickel(II) with nicotinoylhydrazine-derived ONO, NNO and SNO donor schiff-base ligands having the same metal ion but different anions such as sulphate, nitrate, oxalate and acetate have been synthesised and characterised on the basis of their physical, analytical and spectral data. In order to evaluate the role of anions on their bioability, these ligands and their synthesised metal complexes with various anions have been screened against bacterial species such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus and the title studies have proved a definative role of anions in increasing the biological activity PMID:18472896

  20. Effects of salinity change on two superoxide dismutases (SODs) in juvenile marbled eel Anguilla marmorata

    PubMed Central

    2016-01-01

    Salinity is one of the most important factors that affect the fish growth and survival. Superoxide dismutases (SODs), as the primary antioxidant enzymes, play a first role in the process of preventing oxidative stress caused by excessive superoxide anion (O\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{2}^{-}$\\end{document}2−) in living organisms. In the present study, we investigated the effects of salinity on the gene expressions as well as enzymatic activities of MnSOD and Cu/ZnSOD in gill, intestine, kidney, liver and muscle tissues of the marbled eel Anguilla marmorata. We found that the liver might possess stronger redox capacity compared with other tissues. Furthermore, the gene expressions and enzymatic activities of SODs in juvenile marbled eels could be effectively enhanced by low salinity but inhibited when the salinity was higher than the body tolerance. Our findings indicated that MnSOD and Cu/ZnSOD played vital roles in the adaptation of marbled eels to salinity variation, which contributed to the elucidation of physiological adaptation and regulatory mechanism of SODs in eels. PMID:27547518

  1. Effects of salinity change on two superoxide dismutases (SODs) in juvenile marbled eel Anguilla marmorata.

    PubMed

    Wang, Li; Wang, Xiaolu; Yin, Shaowu

    2016-01-01

    Salinity is one of the most important factors that affect the fish growth and survival. Superoxide dismutases (SODs), as the primary antioxidant enzymes, play a first role in the process of preventing oxidative stress caused by excessive superoxide anion (O[Formula: see text]) in living organisms. In the present study, we investigated the effects of salinity on the gene expressions as well as enzymatic activities of MnSOD and Cu/ZnSOD in gill, intestine, kidney, liver and muscle tissues of the marbled eel Anguilla marmorata. We found that the liver might possess stronger redox capacity compared with other tissues. Furthermore, the gene expressions and enzymatic activities of SODs in juvenile marbled eels could be effectively enhanced by low salinity but inhibited when the salinity was higher than the body tolerance. Our findings indicated that MnSOD and Cu/ZnSOD played vital roles in the adaptation of marbled eels to salinity variation, which contributed to the elucidation of physiological adaptation and regulatory mechanism of SODs in eels. PMID:27547518

  2. Assessing gibberellins oxidase activity by anion exchange/hydrophobic polymer monolithic capillary liquid chromatography-mass spectrometry.

    PubMed

    Chen, Ming-Luan; Su, Xin; Xiong, Wei; Liu, Jiu-Feng; Wu, Yan; Feng, Yu-Qi; Yuan, Bi-Feng

    2013-01-01

    Bioactive gibberellins (GAs) play a key regulatory role in plant growth and development. In the biosynthesis of GAs, GA3-oxidase catalyzes the final step to produce bioactive GAs. Thus, the evaluation of GA3-oxidase activity is critical for elucidating the regulation mechanism of plant growth controlled by GAs. However, assessing catalytic activity of endogenous GA3-oxidase remains challenging. In the current study, we developed a capillary liquid chromatography--mass spectrometry (cLC-MS) method for the sensitive assay of in-vitro recombinant or endogenous GA3-oxidase by analyzing the catalytic substrates and products of GA3-oxidase (GA1, GA4, GA9, GA20). An anion exchange/hydrophobic poly([2-(methacryloyloxy)ethyl]trimethylammonium-co-divinylbenzene-co-ethylene glycol dimethacrylate)(META-co-DVB-co-EDMA) monolithic column was successfully prepared for the separation of all target GAs. The limits of detection (LODs, Signal/Noise = 3) of GAs were in the range of 0.62-0.90 fmol. We determined the kinetic parameters (K m) of recombinant GA3-oxidase in Escherichia coli (E. coli) cell lysates, which is consistent with previous reports. Furthermore, by using isotope labeled substrates, we successfully evaluated the activity of endogenous GA3-oxidase that converts GA9 to GA4 in four types of plant samples, which is, to the best of our knowledge, the first report for the quantification of the activity of endogenous GA3-oxidase in plant. Taken together, the method developed here provides a good solution for the evaluation of endogenous GA3-oxidase activity in plant, which may promote the in-depth study of the growth regulation mechanism governed by GAs in plant physiology. PMID:23922762

  3. Massive excretion of calcium oxalate from late prepupal salivary glands of Drosophila melanogaster demonstrates active nephridial-like anion transport.

    PubMed

    Farkaš, Robert; Pečeňová, Ludmila; Mentelová, Lucia; Beňo, Milan; Beňová-Liszeková, Denisa; Mahmoodová, Silvia; Tejnecký, Václav; Raška, Otakar; Juda, Pavel; Svidenská, Silvie; Hornáček, Matúš; Chase, Bruce A; Raška, Ivan

    2016-08-01

    The Drosophila salivary glands (SGs) were well known for the puffing patterns of their polytene chromosomes and so became a tissue of choice to study sequential gene activation by the steroid hormone ecdysone. One well-documented function of these glands is to produce a secretory glue, which is released during pupariation to fix the freshly formed puparia to the substrate. Over the past two decades SGs have been used to address specific aspects of developmentally-regulated programmed cell death (PCD) as it was thought that they are doomed for histolysis and after pupariation are just awaiting their fate. More recently, however, we have shown that for the first 3-4 h after pupariation SGs undergo tremendous endocytosis and vacuolation followed by vacuole neutralization and membrane consolidation. Furthermore, from 8 to 10 h after puparium formation (APF) SGs display massive apocrine secretion of a diverse set of cellular proteins. Here, we show that during the period from 11 to 12 h APF, the prepupal glands are very active in calcium oxalate (CaOx) extrusion that resembles renal or nephridial excretory activity. We provide genetic evidence that Prestin, a Drosophila homologue of the mammalian electrogenic anion exchange carrier SLC26A5, is responsible for the instantaneous production of CaOx by the late prepupal SGs. Its positive regulation by the protein kinases encoded by fray and wnk lead to increased production of CaOx. The formation of CaOx appears to be dependent on the cooperation between Prestin and the vATPase complex as treatment with bafilomycin A1 or concanamycin A abolishes the production of detectable CaOx. These data demonstrate that prepupal SGs remain fully viable, physiologically active and engaged in various cellular activities at least until early pupal period, that is, until moments prior to the execution of PCD. PMID:27397870

  4. Compensatory role of inducible annexin A2 for impaired biliary epithelial anion-exchange activity of inflammatory cholangiopathy.

    PubMed

    Kido, Osamu; Fukushima, Koji; Ueno, Yoshiyuki; Inoue, Jun; Jefferson, Douglas M; Shimosegawa, Tooru

    2009-12-01

    The peribiliary inflammation of cholangiopathy affects the physiological properties of biliary epithelial cells (cholangiocyte), including bicarbonate-rich ductular secretion. We revealed the upregulation of annexin A2 (ANXA2) in cholangiocytes in primary biliary cirrhosis (PBC) by a proteomics approach and evaluated its physiological significance. Global protein expression profiles of a normal human cholangiocyte line (H69) in response to interferon-gamma (IFNgamma) were obtained by two-dimensional electrophoresis followed by MALDI-TOF-MS. Histological expression patterns of the identified molecules in PBC liver were confirmed by immunostaining. H69 cells stably transfected with doxycyclin-inducible ANXA2 were subjected to physiological evaluation. Recovery of the intracellular pH after acute alkalinization was measured consecutively by a pH indicator with a specific inhibitor of anion exchanger (AE), 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). Protein kinase-C (PKC) activation was measured by PepTag Assay and immunoblotting. Twenty spots that included ANXA2 were identified as IFNgamma-responsive molecules. Cholangiocytes of PBC liver were decorated by the unique membranous overexpression of ANXA2. Apical ANXA2 of small ducts of PBC was directly correlated with the clinical cholestatic markers and transaminases. Controlled induction of ANXA2 resulted in significant increase of the DIDS-inhibitory fraction of AE activity of H69, which was accompanied by modulation of PKC activity. We, therefore, identified ANXA2 as an IFNgamma-inducible gene in cholangiocytes that could serve as a potential histological marker of inflammatory cholangiopathy, including PBC. We conclude that inducible ANXA2 expression in cholangiocytes may play a compensatory role for the impaired AE activity of cholangiocytes in PBC in terms of bicarbonate-rich ductular secretion and bile formation through modulation of the PKC activity. PMID:19823170

  5. Assessing Gibberellins Oxidase Activity by Anion Exchange/Hydrophobic Polymer Monolithic Capillary Liquid Chromatography-Mass Spectrometry

    PubMed Central

    Liu, Jiu-Feng; Wu, Yan; Feng, Yu-Qi; Yuan, Bi-Feng

    2013-01-01

    Bioactive gibberellins (GAs) play a key regulatory role in plant growth and development. In the biosynthesis of GAs, GA3-oxidase catalyzes the final step to produce bioactive GAs. Thus, the evaluation of GA3-oxidase activity is critical for elucidating the regulation mechanism of plant growth controlled by GAs. However, assessing catalytic activity of endogenous GA3-oxidase remains challenging. In the current study, we developed a capillary liquid chromatography – mass spectrometry (cLC-MS) method for the sensitive assay of in-vitro recombinant or endogenous GA3-oxidase by analyzing the catalytic substrates and products of GA3-oxidase (GA1, GA4, GA9, GA20). An anion exchange/hydrophobic poly([2-(methacryloyloxy)ethyl]trimethylammonium-co-divinylbenzene-co-ethylene glycol dimethacrylate)(META-co-DVB-co-EDMA) monolithic column was successfully prepared for the separation of all target GAs. The limits of detection (LODs, Signal/Noise = 3) of GAs were in the range of 0.62–0.90 fmol. We determined the kinetic parameters (Km) of recombinant GA3-oxidase in Escherichia coli (E. coli) cell lysates, which is consistent with previous reports. Furthermore, by using isotope labeled substrates, we successfully evaluated the activity of endogenous GA3-oxidase that converts GA9 to GA4 in four types of plant samples, which is, to the best of our knowledge, the first report for the quantification of the activity of endogenous GA3-oxidase in plant. Taken together, the method developed here provides a good solution for the evaluation of endogenous GA3-oxidase activity in plant, which may promote the in-depth study of the growth regulation mechanism governed by GAs in plant physiology. PMID:23922762

  6. Superoxide dismutase during glucose repression of Hansenula polymorpha CBS 4732.

    PubMed

    Hristozova, Tsonka; Rasheva, Tanya; Nedeva, Trayana; Kujumdzieva, Anna

    2002-01-01

    Hansenula polymorpha CBS 4732 was studied during cultivation on methanol and different glucose concentrations. Activities of Cu/Zn and Mn superoxide dismutase, catalase and methanol oxidase were investigated. During cultivation on methanol, increased superoxide dismutase and catalase activities and an induced methanol oxidase were achieved. Transfer of a methanol grown culture to medium with a high glucose concentration caused growth inhibition, low consumption of carbon, nitrogen and phosphate substrates, methanol oxidase inactivation as well as decrease of catalase activity (21.8 +/- 0.61 deltaE240 x min(-1) x mg protein(-1)). At the same time, a high value for superoxide dismutase enzyme was found (42.9 +/- 0.98 U x mg protein(-1), 25% of which was represented by Mn superoxide dismutase and 75% - by the Cu/Zn type). During derepression methanol oxidase was negligible (0.005 +/- 0.0001 U x mg protein(-1)), catalase tended to be the same as in the repressed culture, while superoxide dismutase activity increased considerably (63.67 +/- 1.72 U x mg protein(-1), 69% belonging to the Cu/Zn containing enzyme). Apparently, the cycle of growth inhibition and reactivation of Hansenula polymorpha CBS 4732 cells is strongly connected with the activity of the enzyme superoxide dismutase. PMID:12064733

  7. Activation of Methane and Ethane as Mediated by the Triatomic Anion HNbN(-) : Electronic Structure Similarity with a Pt Atom.

    PubMed

    Ma, Jia-Bi; Xu, Lin-Lin; Liu, Qing-Yu; He, Sheng-Gui

    2016-04-11

    Investigations of the intrinsic properties of gas-phase transition metal nitride (TMN) ions represent one approach to gain a fundamental understanding of the active sites of TMN catalysts, the activities and electronic structures of which are known to be comparable to those of noble metal catalysts. Herein, we investigate the structures and reactivities of the triatomic anions HNbN(-) by means of mass spectrometry and photoelectron imaging spectroscopy, in conjunction with density functional theory calculations. The HNbN(-) anions are capable of activating CH4 and C2 H6 through oxidative addition, exhibiting similar reactivities to free Pt atoms. The similar electronic structures of HNbN(-) and Pt, especially the active orbitals, are responsible for this resemblance. Compared to the inert NbN(-) , the coordination of the H atom in HNbN(-) is indispensable. New insights into how to replace noble metals with TMNs may be derived from this combined experimental/computational study. PMID:26954294

  8. Coalesced chitosan activated carbon composite for batch and fixed-bed adsorption of cationic and anionic dyes.

    PubMed

    Auta, M; Hameed, B H

    2013-05-01

    A renewable waste tea activated carbon (WTAC) was coalesced with chitosan to form composite adsorbent used for waste water treatment. Adsorptive capacities of crosslinked chitosan beads (CCB) and its composite (WTAC-CCB) for Methylene blue dye (MB) and Acid blue 29 (AB29) were evaluated through batch and fixed-bed studies. Langmuir, Freundlich and Temkin adsorption isotherms were tested for the adsorption process and the experimental data were best fitted by Langmuir model and least by Freundlich model; the suitability of fitness was adjudged by the Chi-square (χ(2)) and Marquadt's percent standard deviation error functions. Judging by the values of χ(2), pseudo-second-order reaction model best described the adsorption process than pseudo-first-order kinetic model for MB/AB29 on both adsorbents. After five cycles of adsorbents desorption test, more than 50% WTAC-CCB adsorption efficiency was retained while CCB had <20% adsorption efficiency. The results of this study revealed that WTAC-CCB composite is a promising adsorbent for treatment of anionic and cationic dyes in effluent wastewaters. PMID:23376092

  9. Mild Alkalization Acutely Triggers the Warburg Effect by Enhancing Hexokinase Activity via Voltage-Dependent Anion Channel Binding

    PubMed Central

    Lee, Jin Hee; Park, Jin Won; Moon, Seung Hwan; Cho, Young Seok; Choe, Yearn Seong; Lee, Kyung-Han

    2016-01-01

    To fully understand the glycolytic behavior of cancer cells, it is important to recognize how it is linked to pH dynamics. Here, we evaluated the acute effects of mild acidification and alkalization on cancer cell glucose uptake and glycolytic flux and investigated the role of hexokinase (HK). Cancer cells exposed to buffers with graded pH were measured for 18F-fluorodeoxyglucose (FDG) uptake, lactate production and HK activity. Subcellular localization of HK protein was assessed by western blots and confocal microscopy. The interior of T47D breast cancer cells was mildly alkalized to pH 7.5 by a buffer pH of 7.8, and this was accompanied by rapid increases of FDG uptake and lactate extrusion. This shift toward glycolytic flux led to the prompt recovery of a reversed pH gradient. In contrast, mild acidification rapidly reduced cellular FDG uptake and lactate production. Mild acidification decreased and mild alkalization increased mitochondrial HK translocation and enzyme activity. Cells transfected with specific siRNA against HK-1, HK-2 and voltage-dependent anion channel (VDAC)1 displayed significant attenuation of pH-induced changes in FDG uptake. Confocal microscopy showed increased co-localization of HK-1 and HK-2 with VDAC1 by alkaline treatment. In isolated mitochondria, acidic pH increased and alkaline pH decreased release of free HK-1 and HK-2 from the mitochondrial pellet into the supernatant. Furthermore, experiments using purified proteins showed that alkaline pH promoted co-immunoprecipitation of HK with VDAC protein. These findings demonstrate that mild alkalization is sufficient to acutely trigger cancer cell glycolytic flux through enhanced activity of HK by promoting its mitochondrial translocation and VDAC binding. This process might serve as a mechanism through which cancer cells trigger the Warburg effect to maintain a dysregulated pH. PMID:27479079

  10. Mild Alkalization Acutely Triggers the Warburg Effect by Enhancing Hexokinase Activity via Voltage-Dependent Anion Channel Binding.

    PubMed

    Quach, Cung Hoa Thien; Jung, Kyung-Ho; Lee, Jin Hee; Park, Jin Won; Moon, Seung Hwan; Cho, Young Seok; Choe, Yearn Seong; Lee, Kyung-Han

    2016-01-01

    To fully understand the glycolytic behavior of cancer cells, it is important to recognize how it is linked to pH dynamics. Here, we evaluated the acute effects of mild acidification and alkalization on cancer cell glucose uptake and glycolytic flux and investigated the role of hexokinase (HK). Cancer cells exposed to buffers with graded pH were measured for 18F-fluorodeoxyglucose (FDG) uptake, lactate production and HK activity. Subcellular localization of HK protein was assessed by western blots and confocal microscopy. The interior of T47D breast cancer cells was mildly alkalized to pH 7.5 by a buffer pH of 7.8, and this was accompanied by rapid increases of FDG uptake and lactate extrusion. This shift toward glycolytic flux led to the prompt recovery of a reversed pH gradient. In contrast, mild acidification rapidly reduced cellular FDG uptake and lactate production. Mild acidification decreased and mild alkalization increased mitochondrial HK translocation and enzyme activity. Cells transfected with specific siRNA against HK-1, HK-2 and voltage-dependent anion channel (VDAC)1 displayed significant attenuation of pH-induced changes in FDG uptake. Confocal microscopy showed increased co-localization of HK-1 and HK-2 with VDAC1 by alkaline treatment. In isolated mitochondria, acidic pH increased and alkaline pH decreased release of free HK-1 and HK-2 from the mitochondrial pellet into the supernatant. Furthermore, experiments using purified proteins showed that alkaline pH promoted co-immunoprecipitation of HK with VDAC protein. These findings demonstrate that mild alkalization is sufficient to acutely trigger cancer cell glycolytic flux through enhanced activity of HK by promoting its mitochondrial translocation and VDAC binding. This process might serve as a mechanism through which cancer cells trigger the Warburg effect to maintain a dysregulated pH. PMID:27479079

  11. In vitro antioxidant activity of Holarrhena antidysenterica Wall. methanolic leaf extract

    PubMed Central

    Ganapathy, P. S. Sujan; Ramachandra, Y. L.; Rai, S. Padmalatha

    2011-01-01

    Antioxidative potential of methanolic leaf extract of Holarrhena antidysenterica was evaluated using hydroxyl radical, superoxide anion scavenging and reducing power assays. The antioxidant activity of the methanol extract increased in a concentration-dependent manner. The extract showed significant reactive oxygen species (ROS) scavenging activity in all in vitro antioxidant assays and contained high level of total phenolic content PMID:24826020

  12. Therapeutic Targeting of Mitochondrial Superoxide in Hypertension

    PubMed Central

    Dikalova, Anna E.; Bikineyeva, Alfiya T.; Budzyn, Klaudia; Nazarewicz, Rafal R.; McCann, Louise; Lewis, William; Harrison, David G.; Dikalov, Sergey I.

    2010-01-01

    Rationale: Superoxide (O2∸) has been implicated in the pathogenesis of many human diseases including hypertension, however commonly employed antioxidants have proven ineffective in clinical trials. It is possible that these agents are not adequately delivered to the subcellular sites of superoxide production. Objective: Because the mitochondria are important sources of reactive oxygen species, we postulated that mitochondrial targeting of superoxide scavenging would have therapeutic benefit. Methods and Results: In this study, we found that the hormone angiotensin II increased endothelial mitochondrial superoxide production. Treatment with the mitochondrial targeted antioxidant mitoTEMPO decreased mitochondrial O2∸, inhibited the total cellular O2∸, reduced cellular NADPH oxidase activity and restored the level of bioavailable NO. These effects were mimicked by overexpressing the mitochondrial MnSOD (SOD2), while SOD2 depletion with siRNA increased both basal and angiotensin II-stimulated cellular O2∸. Treatment of mice in vivo with mitoTEMPO attenuated hypertension when given at the onset of angiotensin II infusion and decreased blood pressure by 30 mm Hg following establishment of both angiotensin II-induced and DOCA-salt hypertension, while a similar dose of non-targeted TEMPOL was not effective. In vivo, mitoTEMPO decreased vascular O2∸, increased vascular NO• production and improved endothelial-dependent relaxation. Interestingly, transgenic mice overexpressing mitochondrial SOD2 demonstrated attenuated angiotensin II-induced hypertension and vascular oxidative stress similar to mice treated with mitoTEMPO. Conclusions: These studies show that mitochondrial O2∸ is important for the development of hypertension and that antioxidant strategies specifically targeting this organelle could have therapeutic benefit in this and possibly other diseases. PMID:20448215

  13. cap alpha. -Naphthylisothiocyanate (ANIT) stimulates the release of superoxide by rat neutrophils in vitro

    SciTech Connect

    Roth, R.A.; Hewett, J.

    1986-03-01

    ..cap alpha..-Naphthylisothiocyanate (ANIT) is an hepatotoxicant that produces cholestasis and hyperbilirubinemia in rats. Its mechanism of action is unknown. The observation that polymorphonuclear leukocytes (PMNs) accumulate in the bile ductular region of the liver following ANIT administration prompted us to examine the ability of ANIT to stimulate these cells. PMNs elicited from rat peritoneum were treated with ANIT in vitro to test for the release of superoxide anion (O/sub 2//sup -/). ANIT stimulated O/sub 2//sup -/ release from PMNs in a concentration-dependent manner. Maximal O/sub 2//sup -/ release was achieved by an ANIT concentration of 110 ..mu.. M. O/sub 2//sup -/ release was rapid after the first few minutes of ANIT addition and ceased entirely between 10 and 15 minutes. An increase in the extracellular activity of lactate dehydrogenase also occurred after a 5-10 minute lag phase following ANIT addition. PMNs exposed to ANIT also failed to exclude trypan blue dye, either in the presence or in the absence of superoxide dismutase and catalase, suggesting a direct, oxygen radical-independent, cytotoxic effect of ANIT on PMNs. Release of the lysosomal enzyme, ..beta..-glucuronidase, also occurred within 5 min following exposure of PMNs to ANIT. These results indicate that ANIT stimulates the release of cytotoxic agents from rat PMNs in vitro and suggests that the direct stimulation of PMNs in vivo may contribute to ANIT-induced hepatotoxicity in rats.

  14. Structure-Activity Analysis of the Dermcidin-derived Peptide DCD-1L, an Anionic Antimicrobial Peptide Present in Human Sweat*

    PubMed Central

    Paulmann, Maren; Arnold, Thomas; Linke, Dirk; Özdirekcan, Suat; Kopp, Annika; Gutsmann, Thomas; Kalbacher, Hubert; Wanke, Ines; Schuenemann, Verena J.; Habeck, Michael; Bürck, Jochen; Ulrich, Anne S.; Schittek, Birgit

    2012-01-01

    Dermcidin encodes the anionic amphiphilic peptide DCD-1L, which displays a broad spectrum of antimicrobial activity under conditions resembling those in human sweat. Here, we have investigated its mode of antimicrobial activity. We found that DCD-1L interacts preferentially with negatively charged bacterial phospholipids with a helix axis that is aligned flat on a lipid bilayer surface. Upon interaction with lipid bilayers DCD-1L forms oligomeric complexes that are stabilized by Zn2+. DCD-1L is able to form ion channels in the bacterial membrane, and we propose that Zn2+-induced self-assembly of DCD-1L upon interaction with bacterial lipid bilayers is a prerequisite for ion channel formation. These data allow us for the first time to propose a molecular model for the antimicrobial mechanism of a naturally processed human anionic peptide that is active under the harsh conditions present in human sweat. PMID:22262861

  15. Cation and anion release from broiler litter and cake activated carbons and the role of released anions in copper ion uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of activated carbons from broiler litter and broiler cake results in a large ash fraction that can be removed by acid treatment. The primary use for these carbons is in the removal of metal cations from aqueous solution. The objectives of this study were 1) to determine the extent t...

  16. Endogenous antioxidant defense induction by melon superoxide dismutase reduces cardiac hypertrophy in spontaneously hypertensive rats.

    PubMed

    Carillon, Julie; Rugale, Caroline; Rouanet, Jean-Max; Cristol, Jean-Paul; Lacan, Dominique; Jover, Bernard

    2014-08-01

    We assessed the influence of SODB, a melon superoxide dismutase (SOD), on left ventricular (LV) hypertrophy in SHR. SODB (4 or 40U SOD) was given orally for 4 or 28 days to SHR. For each treatment period, LV weight index (LVWI) and cardiomyocytes size were measured. SOD, glutathione peroxidase (GPx) and catalase expressions, and LV production and presence of superoxide anion were determined. Pro-inflammatory markers were also measured. SODB reduced LVWI and cardiomyocytes size after 4 or 28 days. Cardiac SOD and GPx increased by 30-40% with SODB. The presence but not production of superoxide anion was significantly reduced by SODB. No effect of SODB was detected on inflammatory status in any group. The beneficial effect of SODB on cardiac hypertrophy seems to be related to the stimulation of endogenous antioxidant defense, suggesting that SODB may be of interest as a dietary supplementation during conventional antihypertensive therapy. PMID:24601674

  17. Kinetics of the Oxidation of Reduced Cu,Zn-Superoxide Dismutase by Peroxymonocarbonate

    PubMed Central

    Ranguelova, Kalina; Ganini, Douglas; Bonini, Marcelo G.; London, Robert E.; Mason, Ronald P.

    2012-01-01

    Kinetic evidence is reported for the role of the peroxymonocarbonate, HOOCO2−, as an oxidant for reduced Cu,Zn-superoxide dismutase-Cu(I) (SOD1) during the peroxidase activity of the enzyme. The formation of this reactive oxygen species results from the equilibrium between hydrogen peroxide and bicarbonate. Recently, peroxymonocarbonate has been proposed to be a key substrate for reduced SOD1 and has been shown to oxidize SOD1-Cu(I) to SOD1-Cu(II) much faster than H2O2. We have reinvestigated the kinetics of the reaction between SOD1-Cu(I) and HOOCO2− by using conventional stopped-flow spectrophotometry and obtained a second-order rate constant of k = 1600 ± 100 M−1s−1 for SOD1-Cu(I) oxidation by HOOCO2−. Our results demonstrate that peroxymonocarbonate oxidizes SOD1-Cu(I) to SOD1-Cu(II) and is in turn reduced to the carbonate anion radical. It is proposed that the dissociation of His61 from the active site Cu(I) in SOD-Cu(I) contributes to this chemistry by facilitating the binding of larger anions, such as peroxymonocarbonate. PMID:22569304

  18. Blockade of monocyte-endothelial trafficking by transduced Tat-superoxide dismutase protein

    PubMed Central

    PARK, SIN-HYE; SHIN, MIN JAE; KIM, DAE WON; PARK, JINSEU; CHOI, SOO YOUNG; KANG, YOUNG-HEE

    2016-01-01

    It has previously been suggested that reactive oxygen species (ROS) are involved in the pathogenesis of chronic inflammatory diseases, which entails the initial activation of pro-inflammatory cytokines to facilitate leukocyte transmigration. The present study investigated whether intracellular superoxide dismutase (SOD) suppressed monocyte endothelial trafficking and transmigration. Human umbilical vein endothelial cells (HUVECs) and THP-1 monocytes were activated by the cytokine tumor necrosis factor-α (TNF-α) in the absence and presence of cell-permeable transactivator of transcription (Tat)-SOD protein. External stimulation with SOD was conducted using endothelial cells and monocytes. Purified cell-permeable Tat-SOD, but not non-targeted SOD, at 1–3 µM was transduced into endothelial cells in a time- and dose-dependent manner. Non-toxic Tat-SOD at ≤0.5 µM, but not 1 µM SOD, blocked the monocyte-endothelium interactions by inhibiting the TNF-α-induced stimulation of vascular cell adhesion molecule-1 (VCAM-1) in HUVECs and integrin β1 in THP-1 cells. Endothelial VCAM-1 induction by TNF-α was responsible for superoxide anion production being quenched by N-acetyl-cysteine and Tat-SOD. SOD treatment markedly inhibited superoxide anion production induced by TNF-α, but no inhibition of endothelial transmigration was noted. Tat-SOD prevented transendothelial monocyte migration by firmly localizing occludin-1, platelet/endothelial cell adhesion molecule-1 (PECAM-1) and vascular endothelial-cadherin present in paracellular junctions and inhibiting endothelial induction and activation of matrix-degrading membrane type-1 (MT-1) matrix metalloproteinase (MMP), MMP-2 and MMP-9. By contrast, treatment with 1 µM SOD did not have such effects. Furthermore, transduced Tat-SOD hindered nuclear transactivation of nuclear factor-κB (NF-κB), modulating the induction of paracellular junction proteins and matrix-degrading MMP in TNF-α-stimulated HUVECs. Transduced Tat

  19. Blockade of monocyte-endothelial trafficking by transduced Tat-superoxide dismutase protein.

    PubMed

    Park, Sin-Hye; Shin, Min Jae; Kim, Dae Won; Park, Jinseu; Choi, Soo Young; Kang, Young-Hee

    2016-02-01

    It has previously been suggested that reactive oxygen species (ROS) are involved in the pathogenesis of chronic inflammatory diseases, which entails the initial activation of pro-inflammatory cytokines to facilitate leukocyte transmigration. The present study investigated whether intracellular superoxide dismutase (SOD) suppressed monocyte endothelial trafficking and transmigration. Human umbilical vein endothelial cells (HUVECs) and THP-1 monocytes were activated by the cytokine tumor necrosis factor-α (TNF-α) in the absence and presence of cell-permeable transactivator of transcription (Tat)-SOD protein. External stimulation with SOD was conducted using endothelial cells and monocytes. Purified cell-permeable Tat-SOD, but not non-targeted SOD, at 1-3 µM was transduced into endothelial cells in a time‑ and dose-dependent manner. Non-toxic Tat-SOD at ≤0.5 µM, but not 1 µM SOD, blocked the monocyte-endothelium interactions by inhibiting the TNF-α-induced stimulation of vascular cell adhesion molecule-1 (VCAM-1) in HUVECs and integrin β1 in THP-1 cells. Endothelial VCAM-1 induction by TNF-α was responsible for superoxide anion production being quenched by N-acetyl-cysteine and Tat-SOD. SOD treatment markedly inhibited superoxide anion production induced by TNF-α, but no inhibition of endothelial transmigration was noted. Tat-SOD prevented transendothelial monocyte migration by firmly localizing occludin-1, platelet/endothelial cell adhesion molecule‑1 (PECAM-1) and vascular endothelial‑cadherin present in paracellular junctions and inhibiting endothelial induction and activation of matrix-degrading membrane type-1 (MT-1) matrix metalloproteinase (MMP), MMP-2 and MMP-9. By contrast, treatment with 1 µM SOD did not have such effects. Furthermore, transduced Tat-SOD hindered nuclear transactivation of nuclear factor-κB (NF-κB), modulating the induction of paracellular junction proteins and matrix‑degrading MMP in TNF-α‑stimulated HUVECs

  20. Senescence marker protein-30/superoxide dismutase 1 double knockout mice exhibit increased oxidative stress and hepatic steatosis.

    PubMed

    Kondo, Yoshitaka; Masutomi, Hirofumi; Noda, Yoshihiro; Ozawa, Yusuke; Takahashi, Keita; Handa, Setsuko; Maruyama, Naoki; Shimizu, Takahiko; Ishigami, Akihito

    2014-01-01

    Superoxide dismutase 1 (SOD1) is an antioxidant enzyme that converts superoxide anion radicals into hydrogen peroxide and molecular oxygen. The senescence marker protein-30 (SMP30) is a gluconolactonase that functions as an antioxidant protein in mammals due to its involvement in ascorbic acid (AA) biosynthesis. SMP30 also participates in Ca(2+) efflux by activating the calmodulin-dependent Ca(2+)-pump. To reveal the role of oxidative stress in lipid metabolism defects occurring in non-alcoholic fatty liver disease pathogenesis, we generated SMP30/SOD1-double knockout (SMP30/SOD1-DKO) mice and investigated their survival curves, plasma and hepatic lipid profiles, amounts of hepatic oxidative stress, and hepatic protein levels expressed by genes related to lipid metabolism. While SMP30/SOD1-DKO pups had no growth retardation by 14 days of age, they did have low plasma and hepatic AA levels. Thereafter, 39% and 53% of male and female pups died by 15-24 and 89 days of age, respectively. Compared to wild type, SMP30-KO and SOD1-KO mice, by 14 days SMP30/SOD1-DKO mice exhibited: (1) higher plasma levels of triglyceride and aspartate aminotransferase; (2) severe accumulation of hepatic triglyceride and total cholesterol; (3) higher levels of superoxide anion radicals and thiobarbituric acid reactive substances in livers; and (4) decreased mRNA and protein levels of Apolipoprotein B (ApoB) in livers - ApoB is an essential component of VLDL secretion. These results suggest that high levels of oxidative stress due to concomitant deficiency of SMP30 and/or AA, and SOD1 cause abnormal plasma lipid metabolism, hepatic lipid accumulation and premature death resulting from impaired VLDL secretion. PMID:25003023

  1. Designing the synthesis of catalytically active Ti-β by using various new templates in the presence of fluoride anion.

    PubMed

    Sasidharan, Manickam; Bhaumik, Asim

    2011-09-28

    Crystallization of large-pore Ti-β by using a variety of diquaternary ammonium derivatives of dibromoalkane and amines such as triethylamine, 1,4-diazabicyclo[2,2,2]octane (DABCO), and quinuclidine as structure-directing agents (SDA) is described. The size of hydrophobic bridging alkyl-chain length of the template [R(3)N(+)-(CH(2))(x)-N(+)R(3)](OH(-))(2) directs the final crystalline product: Ti-β, Ti-ZSM-12, Ti-nonasil or Ti-ZSM-5, as x gradually changes from 6 to 1, in the fluoride medium under hydrothermal conditions. A dense phase such as Ti-nonasil (clathrasil type) is crystallized as the size of hydrophobic bridging alkyl-chain length decreases. The use of F(-) anions as a mineralizer and Ti(4+) as a heteroatom in the synthesis gel also influences the selectivity of final crystalline product. The phase purity and incorporation of Ti(4+) into the lattice of β (BEA) and ZSM-12 frameworks are confirmed using XRD, UV-visible, FT-IR, (29)Si NMR spectroscopes, elemental analysis (ICP), surface area measurements and catalytic test reactions. The morphology of Ti-β samples is dependent on the nature of the structure-directing agent as revealed by the scanning electron microscopic (SEM) observations. The catalytic activity in the epoxidation of 4-vinyl-1-cyclohexene is increased with the amount of tetrahedral Ti(4+) atoms in the framework. The new templates can be effectively used for preparation of catalytically active Ti-β with the minimum number of framework defect sites. PMID:21833381

  2. Comparison of reversed-phase/cation-exchange/anion-exchange trimodal stationary phases and their use in active pharmaceutical ingredient and counterion determinations.

    PubMed

    Liu, Xiaodong; Pohl, Christopher A

    2012-04-01

    This study involved three commercial reversed-phase (RP)/anion-exchange (AEX)/cation-exchange (CEX) trimodal columns, namely Acclaim Trinity P1 (Thermo Fisher Scientific), Obelisc R (SIELC Technologies) and Scherzo SM-C18 (Imtakt). Their chromatographic properties were compared in details with respect to hydrophobicity, anion-exchange capacity, cation-exchange capacity, and selectivity, by studying retention behavior dependency on organic solvent, buffer concentration and pH. It was found that their remarkably different column chemistries resulted in distinctive chromatography properties. Trinity P1 exhibited strong anion-exchange and cation-exchange interactions but low RP retention while Scherzo SM-C18 showed strong reversed-phase retention with little cation-exchange and anion-exchange capacities. For Obelisc R, its reversed-phase capacity was weaker than Scherzo SM-C18 but slightly higher than Trinity P1, and its ion-exchange retentions were between Trinity P1 and Scherzo SM-C18. In addition, their difference in selectivity was demonstrated by examples of determining the active pharmaceutical ingredient (API) and counterion of drug products. PMID:22209548

  3. Economical synthesis of potassium superoxide

    NASA Technical Reports Server (NTRS)

    Bell, A. T.; Sadhukhan, P.

    1979-01-01

    High-frequency discharge in oxygen can be used to prepare superoxides of alkali and alkaline-earth metals. Since no direct-current discharge at the electrodes is present, no sputtering can contaminate the product, hence a high conversion efficiency.

  4. Skeletal Muscle Contractions Induce Acute Changes in Cytosolic Superoxide, but Slower Responses in Mitochondrial Superoxide and Cellular Hydrogen Peroxide

    PubMed Central

    Pearson, Timothy; Kabayo, Tabitha; Ng, Rainer; Chamberlain, Jeffrey; McArdle, Anne; Jackson, Malcolm J.

    2014-01-01

    Skeletal muscle generation of reactive oxygen species (ROS) is increased following contractile activity and these species interact with multiple signaling pathways to mediate adaptations to contractions. The sources and time course of the increase in ROS during contractions remain undefined. Confocal microscopy with specific fluorescent probes was used to compare the activities of superoxide in mitochondria and cytosol and the hydrogen peroxide content of the cytosol in isolated single mature skeletal muscle (flexor digitorum brevis) fibers prior to, during, and after electrically stimulated contractions. Superoxide in mitochondria and cytoplasm were assessed using MitoSox red and dihydroethidium (DHE) respectively. The product of superoxide with DHE, 2-hydroxyethidium (2-HE) was acutely increased in the fiber cytosol by contractions, whereas hydroxy-MitoSox showed a slow cumulative increase. Inhibition of nitric oxide synthases increased the contraction-induced formation of hydroxy-MitoSox only with no effect on 2-HE formation. These data indicate that the acute increases in cytosolic superoxide induced by contractions are not derived from mitochondria. Data also indicate that, in muscle mitochondria, nitric oxide (NO) reduces the availability of superoxide, but no effect of NO on cytosolic superoxide availability was detected. To determine the relationship of changes in superoxide to hydrogen peroxide, an alternative specific approach was used where fibers were transduced using an adeno-associated viral vector to express the hydrogen peroxide probe, HyPer within the cytoplasmic compartment. HyPer fluorescence was significantly increased in fibers following contractions, but surprisingly followed a relatively slow time course that did not appear directly related to cytosolic superoxide. These data demonstrate for the first time temporal and site specific differences in specific ROS that occur in skeletal muscle fibers during and after contractile activity. PMID

  5. Clastogenic Factors as Potential Biomarkers of Increased Superoxide Production

    PubMed Central

    Emerit, Ingrid

    2007-01-01

    The formation of clastogenic factors (CF) and their damaging effects are mediated by superoxide, since superoxide dismutase is regularly protective. CF are produced via superoxide and stimulate the production of superoxide by monocytes and neutrophils. This results in a selfsustaining and longlasting process of clastogenesis, which may exceed the DNA repair system and ultimately lead to cancer (Emerit, 1994). An increased cancer risk is indeed observed in conditions accompanied by CF formation. These include irradiated persons, patients with chronic inflammatory diseases, HIV-infected persons and the chromosomal breakage syndromes ataxia telangiectasia, Bloom’s syndrome and Fanconi’s anemia. Biochemical analysis has identified lipid peroxidation products, arachidonic acid metabolites, nucleotides of inosine and cytokines, in particular tumor necrosis factor alpha, as the clastogenic and also superoxide stimulating components of CF. Due to their chromosome damaging effects, these oxidants can be detected with classical cytogenetic techniques. Their synergistic action renders the CF-test particularly sensitive for the detection of a pro-oxidant state. Correlations were observed between CF and other biomarkers of oxidative stress such as decreases in total plasma thiols or increases in TBARS or chemiluminescence. Correlations between CF and disease activity, between CF and radiation exposure, suggest the study of CF for monitoring these conditions. CF may also be useful as biochemical markers and intermediate endpoints for the evaluation of promising antioxidant drugs. CF formation represents a link between chronic inflammation and carcinogenesis. Prophylactic use of superoxide scavengers as anticarcinogens is therefore suggested. PMID:19662223

  6. Anion conductance selectivity mechanism of the CFTR chloride channel.

    PubMed

    Linsdell, Paul

    2016-04-01

    All ion channels are able to discriminate between substrate ions to some extent, a process that involves specific interactions between permeant anions and the so-called selectivity filter within the channel pore. In the cystic fibrosis transmembrane conductance regulator (CFTR) anion-selective channel, both anion relative permeability and anion relative conductance are dependent on anion free energy of hydration--anions that are relatively easily dehydrated tend to show both high permeability and low conductance. In the present work, patch clamp recording was used to investigate the relative conductance of different anions in CFTR, and the effect of mutations within the channel pore. In constitutively-active E1371Q-CFTR channels, the anion conductance sequence was Cl(-) > NO3(-) > Br(-) > formate > SCN(-) > I(-). A mutation that disrupts anion binding in the inner vestibule of the pore (K95Q) disrupted anion conductance selectivity, such that anions with different permeabilities showed almost indistinguishable conductances. Conversely, a mutation at the putative narrowest pore region that is known to disrupt anion permeability selectivity (F337A) had minimal effects on anion relative conductance. Ion competition experiments confirmed that relatively tight binding of permeant anions resulted in relatively low conductance. These results suggest that the relative affinity of ion binding in the inner vestibule of the pore controls the relative conductance of different permeant anions in CFTR, and that the pore has two physically distinct anion selectivity filters that act in series to control anion conductance selectivity and anion permeability selectivity respectively. PMID:26779604

  7. Interplay between Superoxide Dismutase, Glutathione Peroxidase, and Peroxisome Proliferator Activated Receptor Gamma Polymorphisms on the Risk of End-Stage Renal Disease among Han Chinese Patients

    PubMed Central

    Chao, Chia-Ter; Chen, Yen-Ching; Chiang, Chih-Kang; Huang, Jenq-Wen; Fang, Cheng-Chung; Chang, Chen-Chih; Yen, Chung-Jen

    2016-01-01

    Background. Single nucleotide polymorphisms (SNPs) of antioxidants, including superoxide dismutase 2 (SOD2) and glutathione peroxidase 1 (GPX1), play an important role in the risk for cancer and metabolic disorders. However, little is known regarding the effect of antioxidant SNPs on renal events. Methods. We prospectively enrolled multicenter patients with end-stage renal disease (ESRD) and those without chronic kidney disease (CKD) of Han Chinese origin, with SOD2 (Val16Ala), GPX1 (Pro197Leu), and PPAR-γ (Pro12Ala, C161T) genotyped. Multiple regression analyses were conducted to evaluate the significant risk determinants for ESRD. Results. Compared to ESRD patients, non-CKD subjects were more likely to have T allele at SOD2 Val16Ala (p = 0.036) and CC genotype at PPAR-γ Pro12Ala (p = 0.028). Regression analysis showed that TT genotype of SOD2 Val16Ala conferred significantly lower ESRD risk among patients without diabetes (odds ratio 0.699; p = 0.018). GPX1 SNP alone did not alter the risk. We detected significant interactions between SNPs including PPAR-γ Pro12Ala, C161T, and GPX1 regarding the risk of ESRD. Conclusion. This is the first and largest study on the association between adverse renal outcomes and antioxidant SNPs among Han Chinese population. Determination of SOD2 and PPAR-γ SNPs status might assist in ESRD risk estimation. PMID:26881045

  8. An Enzyme-Based Theory of Obligate Anaerobiosis: The Physiological Function of Superoxide Dismutase

    PubMed Central

    McCord, Joe M.; Keele, Bernard B.; Fridovich, Irwin

    1971-01-01

    The distribution of catalase and superoxide dismutase has been examined in various micro-organisms. Strict anaerobes exhibited no superoxide dismutase and, generally, no catalase activity. All aerobic organisms containing cytochrome systems were found to contain both superoxide dismutase and catalase. Aerotolerant anaerobes, which survive exposure to air and metabolize oxygen to a limited extent but do not contain cytochrome systems, were found to be devoid of catalase activity but did exhibit superoxide dismutase activity. This distribution is consistent with the proposal that the prime physiological function of superoxide dismutase is protection of oxygen-metabolizing organisms against the potentially detrimental effects of the superoxide free radical, a biologically produced intermediate resulting from the univalent reduction of molecular oxygen. PMID:4995818

  9. The role of lattice anion vacancies in the activation of CO and as the catalytic site for methanol synthesis over zirconium dioxide and yttria-doped zirconium dioxide

    SciTech Connect

    Silver, R.G.; Hou, C.J.; Ekerdt, J.G. )

    1989-08-01

    The role of lattice oxygen anion vacancy sites in the activation of CO and in the synthesis of methanol was investigated over ZrO{sub 2}. The study involved a comparison of the amounts of CO and SO{sub 3} which adsorbed, the amount of methoxide which could be titrated from zirconia, and the rate of catalytic synthesis of methane and methanol as a function of crystalline phase, calcination conditions, and Y{sub 2}O{sub 3} levels in yttria-doped ZrO{sub 2}. Infrared and temperature-programmed desorption results established that CO adsorbed as formate and that SO{sub 3} adsorbed as the sulfate (ZrO){sub 3}S{double bond}O. Uptake studies over yttria-doped ZrO{sub 2} demonstrate that SO{sub 3} interacts with anion vacancy sites to form the sulfate. A maximum in SO{sub 3} and CO adsorption and methanol titration occurred at yttria dopant levels where ionic conductivity is highest for yttria-doped ZrO{sub 2}. The correspondence between the amount of formate or sulfate adsorbed and the amount of methanol produced from the basis for concluding that surface oxygen anion vacancies are the catalytic sites for CO activation and methanol synthesis.

  10. Photosensitization with anticancer agents. 17. EPR studies of photodynamic action of hypericin: formation of semiquinone radical and activated oxygen species on illumination.

    PubMed

    Diwu, Z; Lown, J W

    1993-02-01

    When hypericin was illuminated with 580 nm light in aqueous solution, the semiquinone radical, singlet oxygen, and superoxide anion radical were detected. The formation of the semiquinone radical and activated oxygen species and the transformation and competition between them depend on the quinone and oxygen concentrations, irradiation time and intensity, and the nature of substrate. In anaerobic solution containing a high concentration of the quinone, the semiquinone radical was predominantly photoproduced. In contrast, in aerobic solution, singlet oxygen is the principal product in the photosensitization of hypericin. Besides singlet oxygen, superoxide anion radical is generated by the quinone on illumination in aerobic solution via the reduction of oxygen by the semiquinone radical, but to a lesser extent than singlet oxygen. The generation of superoxide anion radical is significantly enhanced by the presence of electron donors. PMID:8381107

  11. Superoxide dismutase: an evolutionary puzzle

    SciTech Connect

    Lee, Y.M.; Friedman, D.J.; Ayala, F.J.

    1985-02-01

    The authors have obtained the complete amino acid sequence of copper/zinc-containing superoxide dismutase (SOD, superoxide:superoxide oxidoreductase, EC 1.15.1.1) from Drosophila melanogaster. The sequence of this enzyme is also known for man, horse, cow, and the yeast Saccharomyces cerevisiae. The rate of evolution of this enzyme is far from constant. The number of amino acid substitutions per 100 residues per 100 million years is 30.9 when the three mammals are compared to each other, 10.6 when Drosophila is compared to the three mammals, and 5.8 when the yeast is compared to the four animals. The first value represents one of the fastest evolutionary rates for any protein, the second is similar to the globin rate, and the third is similar to some cytochromes and other slowly evolving proteins. Hence, SOD is not acceptable evolutionary clock. Another peculiarity of this enzyme is that a two-amino-acid deletion must have occurred independently in the lineages going to the cow and to Drosophila. The authors conclude that using the primary structure of a single gene or protein to time evolutionary events or to reconstruct phylogenetic relationships is potentially fraught with error.

  12. SORGOdb: Superoxide Reductase Gene Ontology curated DataBase

    PubMed Central

    2011-01-01

    Background Superoxide reductases (SOR) catalyse the reduction of superoxide anions to hydrogen peroxide and are involved in the oxidative stress defences of anaerobic and facultative anaerobic organisms. Genes encoding SOR were discovered recently and suffer from annotation problems. These genes, named sor, are short and the transfer of annotations from previously characterized neelaredoxin, desulfoferrodoxin, superoxide reductase and rubredoxin oxidase has been heterogeneous. Consequently, many sor remain anonymous or mis-annotated. Description SORGOdb is an exhaustive database of SOR that proposes a new classification based on domain architecture. SORGOdb supplies a simple user-friendly web-based database for retrieving and exploring relevant information about the proposed SOR families. The database can be queried using an organism name, a locus tag or phylogenetic criteria, and also offers sequence similarity searches using BlastP. Genes encoding SOR have been re-annotated in all available genome sequences (prokaryotic and eukaryotic (complete and in draft) genomes, updated in May 2010). Conclusions SORGOdb contains 325 non-redundant and curated SOR, from 274 organisms. It proposes a new classification of SOR into seven different classes and allows biologists to explore and analyze sor in order to establish correlations between the class of SOR and organism phenotypes. SORGOdb is freely available at http://sorgo.genouest.org/index.php. PMID:21575179

  13. Superoxide-forming NADPH oxidase preparation of pig polymorphonuclear leucocyte.

    PubMed Central

    Wakeyama, H; Takeshige, K; Takayanagi, R; Minakami, S

    1982-01-01

    A phagocytic vesicle fraction with high NADPH-dependent superoxide-forming activity was obtained in large quantity from pig blood polymorphonuclear leucocytes, phagocytosing oil droplets in the presence of cyanide. The activity of the homogenate of the phagocytosing cells was 40 times that of the resting cells, and 70% of the activity in the homogenate was recovered in the phagocytic vesicle fraction. Essentially all of the superoxide-forming activity was extracted by repeated extraction with a mixture containing deoxycholate and Tween 20. The extract had a superoxide-forming activity of 1 mumol/min per mg of protein with NADPH, and one-fifth of this with NADH, Km values being similar to those of the vesicle fraction (40 microM for NADPH and 400 microM for NADH). A stoichiometric relationship of 1:2 for NADPH oxidation and superoxide formation was obtained, in agreement with the reaction NADPH +2O2 leads to NADP+ + 2O2 -. + H+. The activity of the extract was enhanced 2-fold by the addition of FAD, suggesting that the flavin is a component of the enzyme system. The Km value for FAD was 0.077 microM. The activities in both vesicle fraction and extract were labile even on refrigeration, but could be kept for several months at -70 degrees C. PMID:6293459

  14. Determination of antioxidant activity of lichen Cetraria islandica (L) Ach.

    PubMed

    Gülçin, Ilhami; Oktay, Münir; Küfrevioğlu, O Irfan; Aslan, Ali

    2002-03-01

    The study was aimed at evaluating the antioxidant activity of aqueous extract of C. islandica. The antioxidant activity, reducing power, superoxide anion radical scavenging and free radical scavenging activities were studied. The antioxidant activity increased with the increasing amount of extracts (from 50 to 500 microg) added to linoleic acid emulsion. About 50, 100, 250, and 500 microg of aqueous extract of C. islandica showed higher antioxidant activity than 500 microg of alpha-tocopherol. The samples showed 96, 99, 100, and 100% inhibition on peroxidation of linoleic acid, respectively. On the other hand, the 500 microg of alpha-tocopherol showed 77% inhibition on peroxidation on linoleic acid emulsion. Like antioxidant activity, the reducing power, superoxide anion radical scavenging and free radical scavenging activities of C. islandica depends on concentration and increasing with increased amount of sample. The results obtained in the present study indicate that C. islandica is a potential source of natural antioxidant. PMID:11849836

  15. Extracellular Superoxide Dismutase Regulates the Expression of Small GTPase Regulatory Proteins GEFs, GAPs, and GDI

    PubMed Central

    Laukkanen, Mikko O.; Cammarota, Francesca; Esposito, Tiziana; Salvatore, Marco; Castellone, Maria D.

    2015-01-01

    Extracellular superoxide dismutase (SOD3), which catalyzes the dismutation of superoxide anions to hydrogen peroxide at the cell membranes, regulates the cellular growth in a dose-dependent manner. This enzyme induces primary cell proliferation and immortalization at low expression levels whereas it activates cancer barrier signaling through the p53-p21 pathway at high expression levels, causing growth arrest, senescence, and apoptosis. Because previous reports suggested that the SOD3–induced reduction in the rates of cellular growth and migration also occurred in the absence of functional p53 signaling, in the current study we investigated the SOD3-induced growth-suppressive mechanisms in anaplastic thyroid cancer cells. Based on our data, the robust over-expression of SOD3 increased the level of phosphorylation of the EGFR, ERBB2, RYK, ALK, FLT3, and EPHA10 receptor tyrosine kinases with the consequent downstream activation of the SRC, FYN, YES, HCK, and LYN kinases. However, pull-down experiments focusing on the small GTPase RAS, RAC, CDC42, and RHO revealed a reduced level of growth and migration signal transduction, such as the lack of stimulation of the mitogen pathway, in the SOD3 over-expressing cells, which was confirmed by MEK1/2 and ERK1/2 Western blotting analysis. Interestingly, the mRNA expression analyses indicated that SOD3 regulated the expression of guanine nucleotide-exchange factors (RHO GEF16, RAL GEF RGL1), GTPase-activating proteins (ARFGAP ADAP2, RAS GAP RASAL1, RGS4), and a Rho guanine nucleotide-disassociation inhibitor (RHO GDI 2) in a dose dependent manner, thus controlling signaling through the small G protein GTPases. Therefore, our current data may suggest the occurrence of dose-dependent SOD3–driven control of the GTP loading of small G proteins indicating a novel growth regulatory mechanism of this enzyme. PMID:25751262

  16. Extracellular superoxide dismutase regulates the expression of small gtpase regulatory proteins GEFs, GAPs, and GDI.

    PubMed

    Laukkanen, Mikko O; Cammarota, Francesca; Esposito, Tiziana; Salvatore, Marco; Castellone, Maria D

    2015-01-01

    Extracellular superoxide dismutase (SOD3), which catalyzes the dismutation of superoxide anions to hydrogen peroxide at the cell membranes, regulates the cellular growth in a dose-dependent manner. This enzyme induces primary cell proliferation and immortalization at low expression levels whereas it activates cancer barrier signaling through the p53-p21 pathway at high expression levels, causing growth arrest, senescence, and apoptosis. Because previous reports suggested that the SOD3-induced reduction in the rates of cellular growth and migration also occurred in the absence of functional p53 signaling, in the current study we investigated the SOD3-induced growth-suppressive mechanisms in anaplastic thyroid cancer cells. Based on our data, the robust over-expression of SOD3 increased the level of phosphorylation of the EGFR, ERBB2, RYK, ALK, FLT3, and EPHA10 receptor tyrosine kinases with the consequent downstream activation of the SRC, FYN, YES, HCK, and LYN kinases. However, pull-down experiments focusing on the small GTPase RAS, RAC, CDC42, and RHO revealed a reduced level of growth and migration signal transduction, such as the lack of stimulation of the mitogen pathway, in the SOD3 over-expressing cells, which was confirmed by MEK1/2 and ERK1/2 Western blotting analysis. Interestingly, the mRNA expression analyses indicated that SOD3 regulated the expression of guanine nucleotide-exchange factors (RHO GEF16, RAL GEF RGL1), GTPase-activating proteins (ARFGAP ADAP2, RAS GAP RASAL1, RGS4), and a Rho guanine nucleotide-disassociation inhibitor (RHO GDI 2) in a dose dependent manner, thus controlling signaling through the small G protein GTPases. Therefore, our current data may suggest the occurrence of dose-dependent SOD3-driven control of the GTP loading of small G proteins indicating a novel growth regulatory mechanism of this enzyme. PMID:25751262

  17. Electrically-assisted delivery of an anionic protein across intact skin: cathodal iontophoresis of biologically active ribonuclease T1.

    PubMed

    Dubey, S; Kalia, Y N

    2011-06-30

    Cathodal iontophoresis of anionic macromolecules has been considered a major challenge owing to (i) the presence of a negative charge on the skin under physiological conditions and (ii) the electroosmotic solvent flow in the (opposite) anode-to-cathode direction. Moreover, electroosmosis, and not electromigration, was considered as the likely electrotransport mechanism for high molecular weight cations. However, it was recently shown that electromigration governed anodal iontophoretic transport of Cytochrome c (12.4 kDa) and Ribonuclease A (RNAse A; 13.6 kDa). Thus, the objective of this study was to investigate the feasibility of iontophoresing a negatively charged protein, the enzyme Ribonuclease T1 (RNAse T1, 11.1 kDa), from the cathode across intact skin. Cumulative permeation and skin deposition of RNAse T1 were investigated as a function of current density (0.15, 0.3 and 0.5 mA/cm(2) applied for 8h) using porcine ear skin and quantified by an enzymatic activity assay. Although RNAse T1 permeation was dependent upon current density (22.41 ± 8.10, 76.41 ± 56.98 and 142.19 ± 62.23μg/cm(2), respectively), no such relationship was observed with respect to skin deposition (9.78 ± 2.39, 7.76 ± 4.34 and 8.70 ± 2.94 μg/cm(2), respectively). MALDI-TOF spectra and the activity assay confirmed that RNAse T1 retained structural integrity and enzymatic function post-iontophoresis. Acetaminophen iontophoresis demonstrated the anode-to-cathode directionality of electroosmotic solvent flow confirming that RNAse T1 electrotransport was due entirely to electromigration. Interestingly, despite its lower net charge and higher molecular weight, electromigration of cationic Ribonuclease A was superior to that of RNAse T1 after iontophoresis at 0.5 mA/cm(2) for 8h. These results provide further evidence that charge to mass ratio and hence electric mobility might not alone be sufficient to predict protein electrotransport across the skin; three dimensional structures and the

  18. Fe3O4-citrate-curcumin: Promising conjugates for superoxide scavenging, tumor suppression and cancer hyperthermia

    NASA Astrophysics Data System (ADS)

    Kitture, Rohini; Ghosh, Sougata; Kulkarni, Parag; Liu, X. L.; Maity, Dipak; Patil, S. I.; Jun, Ding; Dushing, Yogesh; Laware, S. L.; Chopade, B. A.; Kale, S. N.

    2012-03-01

    Fe3O4 nanoparticles have been conjugated to curcumin (CU) molecules via a citrate (CA) linker (Fe-CA-CU) and have been explored for superoxide scavenging, tumor suppression, and cancer hyperthermia. The conjugation chemistry reveals that Fe3+ ions on the nanoparticle surface readily conjugates to the available carboxyl sites on the CA molecule, which further conjugates to CU at its central enol -OH group. As seen from the UV-vis spectroscopy, the therapeutically active chromophore group of CU, which is seen at 423 nm, was intact, ensuring the activity the molecule. Magnetization measurements showed good hysteresis curves of Fe3O4 and Fe-CA-CU, indicating the presence of magnetism after conjugation. The loading percentage of citrate-curcumin was seen to be ˜10% from the thermo-gravimetric analysis. The systems when subjected to radio-frequency fields of 240 KHz, were seen to get heated up. The Fe3O4 heating exhibited better slope (1 °C/s) as compared to the Fe-CA-CU system (˜0.7 °C/s) for a sample of concentration 10 mg/ml in average time of ˜20 s to reach the required hyperthermia threshold temperature of ˜45 °C. Tumor suppression studies were done using potato assay, which showed that while only CU showed 100% suppression in 7 days, it was about 89% by the Fe-CA-CU. Upon subjecting these systems to the superoxide anion scavenging assay and superoxide radical scavenging assay (riboflavin), it was observed that the activity was enhanced in the Fe-CA-CU to 40% (from 38% in only CU) and 100% (from 5.75% in only CU). These studies promise Fe-CA-CU as a good cancer hyperthermia-cum-tumor suppressant and antioxidant agent.

  19. A novel short anionic antibacterial peptide isolated from the skin of Xenopus laevis with broad antibacterial activity and inhibitory activity against breast cancer cell.

    PubMed

    Li, Siming; Hao, Linlin; Bao, Wanguo; Zhang, Ping; Su, Dan; Cheng, Yunyun; Nie, Linyan; Wang, Gang; Hou, Feng; Yang, Yang

    2016-07-01

    A vastarray of bioactive peptides from amphibian skin secretions is attracting increasing attention due to the growing problem of bacteria resistant to conventional antibiotics. In this report, a small molecular antibacterial peptide, named Xenopus laevis antibacterial peptide-P1 (XLAsp-P1), was isolated from the skin of Xenopus laevis using reversed-phase high-performance liquid chromatography. The primary structure of XLAsp-P1, which has been proved to be a novel peptide by BLAST search in AMP database, was DEDDD with a molecular weight of 607.7 Da analysed by Edman degradation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). The highlight of XLAsp-P1 is the strong in vitro potency against a variety of Gram-positive and Gram-negative bacteria with minimum inhibitory concentrations (MICs) starting at 10 μg/mL and potent inhibitory activity against breast cancer cell at tested concentrations from 5 to 50 μg/mL. In addition, only 6.2 % of red blood cells was haemolytic when incubated with 64 μg/mL (higher than MICs of all bacterial strain) of XLAsp-P1. The antimicrobial mechanism for this novel peptide was the destruction of the cell membrane investigated by transmission electron microscopy. All these showed that XLAsp-P1 is a novel short anionic antibacterial peptide with broad antibacterial activity and inhibitory activity against breast cancer cell. PMID:26952034

  20. Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid.

    PubMed

    Maierhofer, Tobias; Diekmann, Marion; Offenborn, Jan Niklas; Lind, Christof; Bauer, Hubert; Hashimoto, Kenji; S Al-Rasheid, Khaled A; Luan, Sheng; Kudla, Jörg; Geiger, Dietmar; Hedrich, Rainer

    2014-09-01

    Under drought stress, abscisic acid (ABA) triggers closure of leaf cell pores called stomata, which are formed by two specialized cells called guard cells in plant epidermis. Two pathways downstream of ABA stimulate phosphorylation of the S-type anion channels SLAC1 (slow anion channel associated 1) and SLAH3 (SLAC1 homolog 3), which causes these channels to open, reducing guard cell volume and triggering stomatal closure. One branch involves OST1 (open stomata 1), a calcium-independent SnRK2-type kinase, and the other branch involves calcium-dependent protein kinases of the CPK (calcium-dependent protein kinase) family. We used coexpression analyses in Xenopus oocytes to show that the calcineurin B-like (CBL) calcium sensors CBL1 and CBL9 and their interacting protein kinase CIPK23 also triggered SLAC1 and SLAH3 opening. We analyzed whether regulation of SLAC1 opening by these different families of kinases involved the same or different sites on SLAC1 by measuring channel conductance of SLAC1 with mutations in the putative phosphorylation sites in the amino or carboxyl termini coexpressed with specific kinases in Xenopus oocytes. SLAC1 mutants lacking the OST1-phosphorylated site were still activated by CPK or by CBL/CIPK complexes. Phosphorylation and activation of SLAC1 by any of the kinases were inhibited by the phosphatase ABI1 (ABA insensitive 1), which is inactivated in response to ABA signaling. These findings identified CBL/CIPK complexes as potential regulators of stomatal aperture through S-type anion channels and indicated that phosphorylation at distinct sites enables SLAC1 activation by both calcium-dependent and calcium-independent pathways downstream of ABA. PMID:25205850

  1. Studies on the antioxidant activities of some new chromone compounds.

    PubMed

    Kładna, Aleksandra; Berczyński, Paweł; Piechowska, Teresa; Kruk, Irena; Aboul-Enein, Hassan Y; Ceylan-Unlusoy, Meltem; Verspohl, Eugen J; Ertan, Rahmiye

    2014-11-01

    Recent reviews evidence that the naturally occurring compounds containing the chromone skeleton exhibit antiradical activities, providing protection against oxidative stress. The antioxidant activities of 13 new synthesized chromonyl-2,4-thiazolidinediones, chromonyl-2,4-imidazolidinediones and chromonyl-2-thioxoimidzolidine-4-ones were evaluated using in vitro antioxidant assays, including superoxide anion radical (O2(-•)), hydroxyl radical (HO(•)), 2,2-diphenyl-1-picryl-hydrazyl free radical (DPPH(•)) scavenging capacity and total antioxidant capacity ferric ion reducing activity. Superoxide anion radical was produced using potassium superoxide/18-crown-6-ether dissolved in dimethylsulfoxide, and the Fenton-like reaction (Fe(II) + H2O2) was a generator of hydroxyl radicals. Chemiluminescence, spectrophotometry, electron paramagnetic resonance (EPR) and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as the spin trap were the measurement techniques. The results showed that the majority of the chromone derivatives tested showed a strong scavenging effect towards free radicals, similar to the chemiluminescence reaction with superoxide anion radical with a high activity, inhibition of the DMPO-OOH radical EPR signal (24-58%), the DMPO-OH radical EPR signal (4-75%) and DPPH radical EPR signal (6-100%) at 1 mmol/L. Several of the examined compounds exhibited the high reduction potentials. The results obtained show that the new synthesized chromone derivatives may directly scavenger reactive oxygen species and thus may play a protective role against oxidative damage. PMID:24482260

  2. Mechanisms of Superoxide Signaling in Epigenetic Processes: Relation to Aging and Cancer

    PubMed Central

    Afanas’ev, Igor

    2015-01-01

    Superoxide is a precursor of many free radicals and reactive oxygen species (ROS) in biological systems. It has been shown that superoxide regulates major epigenetic processes of DNA methylation, histone methylation, and histone acetylation. We suggested that superoxide, being a radical anion and a strong nucleophile, could participate in DNA methylation and histone methylation and acetylation through mechanism of nucleophilic substitution and free radical abstraction. In nucleophilic reactions superoxide is able to neutralize positive charges of methyl donors S-adenosyl-L-methionine (SAM) and acetyl-coenzyme A (AcCoA) enhancing their nucleophilic capacity or to deprotonate cytosine. In the reversed free radical reactions of demethylation and deacetylation superoxide is formed catalytically by the (Tet) family of dioxygenates and converted into the iron form of hydroxyl radical with subsequent oxidation and final eradication of methyl substituents. Double role of superoxide in these epigenetic processes might be of importance for understanding of ROS effects under physiological and pathological conditions including cancer and aging. PMID:26029480

  3. Sulfur K-Edge X-Ray Absorption Spectroscopy And Density Functional Theory Calculations on Superoxide Reductase: Role of the Axial Thiolate in Reactivity

    SciTech Connect

    Dey, A.; Jenney, F.E.; Jr.; Adams, M.W.W.; Johnson, M.K.; Hodgson, K.O.; Hedman, B.; Solomon, E.I.

    2009-06-02

    from the product release at the end of the O2- reduction cycle is calculated to be capable of reacting with a second O2-, resulting in superoxide dismutase (SOD) activity. However, in contrast to FeSOD, the 5C FeIII site of SOR, which is more positively charged, is calculated to have a high affinity for binding a sixth anionic ligand, which would inhibit its SOD activity.

  4. Serum- and glucocorticoid-inducible kinase sgk2 stimulates the transport activity of human organic anion transporters 1 by enhancing the stability of the transporter

    PubMed Central

    Xu, Da; Huang, Haozhe; Toh, May Fern; You, Guofeng

    2016-01-01

    Human organic anion transporter 1 (hOAT1) belongs to a family of organic anion transporters that play critical roles in the body disposition of clinically important drugs, including anti-viral therapeutics, anti-cancer drugs, antibiotics, antihypertensives, and anti-inflammatories. hOAT1 is abundantly expressed in the kidney and brain. In the current study, we examined the regulation of hOAT1 by serum- and glucocorticoid-inducible kinase 2 (sgk2) in the kidney COS-7 cells. We showed that sgk2 stimulated hOAT1 transport activity. Such stimulation mainly resulted from an increased cell surface expression of the transporter, kinetically revealed as an increased maximal transport velocity V max without significant change in substrate-binding affinity K m. We further showed that stimulation of hOAT1 activity by sgk2 was achieved by preventing hOAT1 degradation. Our co-immunoprecipitation experiment revealed that the effect of sgk2 on hOAT1 was through a direct interaction between these two proteins. In conclusion, our study demonstrated that sgk2 stimulates hOAT1 transport activity by enhancing the stability of the transporter. This study provides the insights into sgk2 regulation of hOAT1-mediated transport in normal physiology and disease. PMID:27335683

  5. The activation pathway of the volume-sensitive organic osmolyte channel in Xenopus laevis oocytes expressing skate anion exchanger 1 (AE1).

    PubMed

    Koomoa, Dana-Lynn T; Musch, Mark W; Goldstein, Leon

    2005-12-01

    When swollen, skate red blood cells increase permeability and allow efflux of a number of solutes, including taurine. Hypoosmosis-induced taurine permeability appears to involve the red cell anion exchanger. However, three isoforms have been cloned from these cells. Therefore, to determine the ability of the individual isoform skate anion exchanger 1 (skAE1) to mediate hypoosmosis-induced taurine permeability as well as associated regulatory events, skAE1 was expressed in Xenopus oocytes. This study focused on investigating the role of tyrosine kinases and lipid rafts in the regulation of the channel. The results showed that tyrosine kinase inhibitors and lipid raft-disrupting agents inhibited the volume-sensitive organic osmolyte channel while protein tyrosine phosphatase inhibitors activated the channel in oocytes expressing skAE1. To study the role of lipid rafts in the activation of the volume-sensitive organic osmolyte channel, the cellular localization of skAE1 was investigated. Also, the role of tyrosine kinases was investigated by examining the tyrosine phosphorylation state of skAE1. Hypoosmotic stress induced mobilization of skAE1 into light membranes and the cell surface as well as tyrosine phosphorylation of skAE1. These events are involved in the activation of the volume-sensitive organic osmolyte channel in Xenopus oocytes expressing skAE1. PMID:16604471

  6. Serum- and glucocorticoid-inducible kinase sgk2 stimulates the transport activity of human organic anion transporters 1 by enhancing the stability of the transporter.

    PubMed

    Xu, Da; Huang, Haozhe; Toh, May Fern; You, Guofeng

    2016-01-01

    Human organic anion transporter 1 (hOAT1) belongs to a family of organic anion transporters that play critical roles in the body disposition of clinically important drugs, including anti-viral therapeutics, anti-cancer drugs, antibiotics, antihypertensives, and anti-inflammatories. hOAT1 is abundantly expressed in the kidney and brain. In the current study, we examined the regulation of hOAT1 by serum- and glucocorticoid-inducible kinase 2 (sgk2) in the kidney COS-7 cells. We showed that sgk2 stimulated hOAT1 transport activity. Such stimulation mainly resulted from an increased cell surface expression of the transporter, kinetically revealed as an increased maximal transport velocity V max without significant change in substrate-binding affinity K m. We further showed that stimulation of hOAT1 activity by sgk2 was achieved by preventing hOAT1 degradation. Our co-immunoprecipitation experiment revealed that the effect of sgk2 on hOAT1 was through a direct interaction between these two proteins. In conclusion, our study demonstrated that sgk2 stimulates hOAT1 transport activity by enhancing the stability of the transporter. This study provides the insights into sgk2 regulation of hOAT1-mediated transport in normal physiology and disease. PMID:27335683

  7. Cu/Zn superoxide dismutases in developing cotton fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrogen peroxide (H2O2) and other reactive oxygen species (ROS) are important signaling molecules in diverse physiological processes. Previously, we discovered superoxide dismutase (SOD) activity in extracellular protein preparations from fiber-bearing cotton (Gossypium hirsutum L.) seeds. We sho...

  8. Observation of superoxide production during catalysis of Bacillus subtilis oxalate decarboxylase at pH 4.

    PubMed

    Twahir, Umar T; Stedwell, Corey N; Lee, Cory T; Richards, Nigel G J; Polfer, Nicolas C; Angerhofer, Alexander

    2015-03-01

    This contribution describes the trapping of the hydroperoxyl radical at a pH of 4 during turnover of wild-type oxalate decarboxylase and its T165V mutant using the spin-trap BMPO. Radicals were detected and identified by a combination of EPR and mass spectrometry. Superoxide, or its conjugate acid, the hydroperoxyl radical, is expected as an intermediate in the decarboxylation and oxidation reactions of the oxalate monoanion, both of which are promoted by oxalate decarboxylase. Another intermediate, the carbon dioxide radical anion was also observed. The quantitative yields of superoxide trapping are similar in the wild type and the mutant while it is significantly different for the trapping of the carbon dioxide radical anion. This suggests that the two radicals are released from different sites of the protein. PMID:25526893

  9. Observation of Superoxide Production During Catalysis of Bacillus subtilis Oxalate Decarboxylase at pH4

    PubMed Central

    Twahir, Umar T.; Stedwell, Corey N.; Lee, Cory T.; Richards, Nigel G. J.; Polfer, Nicolas C.; Angerhofer, Alexander

    2015-01-01

    This contribution describes the trapping of the hydroperoxyl radical at a pH of 4 during turnover of wild-type oxalate decarboxylase and its T165V mutant using the spin trap BMPO. Radicals were detected and identified by a combination of EPR and mass spectrometry. Superoxide, or its conjugate acid, the hydroperoxyl radical, is expected as an intermediate in the decarboxylation and oxidation reactions of the oxalate monoanion both of which are promoted by oxalate decarboxylase. Another intermediate, the carbon dioxide radical anion was also observed. The quantitative yields of superoxide trapping is similar in the wild type and the mutant while it is significantly different for the trapping of the carbon dioxide radical anion. This suggests that the two radicals are released from different sites of the protein. PMID:25526893

  10. Nitric oxide triggers a concentration-dependent differential modulation of superoxide dismutase (FeSOD and Cu/ZnSOD) activity in sunflower seedling roots and cotyledons as an early and long distance signaling response to NaCl stress.

    PubMed

    Arora, Dhara; Bhatla, Satish C

    2015-01-01

    Dark-grown sunflower (Helianthus annuus L.) seedlings exhibit modulation of total superoxide dismutase (SOD;EC 1.15.1.1) activity in roots and cotyledons (10,000g supernatant) in response to salt stress (NaCl; 120 mM) through a differential, zymographically detectable, whole tissue activity of FeSOD and Cu/ZnSOD. Confocal laser scanning microscopic imaging (CLSM) has further shown that NaCl stress significantly influences differential spatial distribution of Cu/ZnSOD and MnSOD isoforms in an inverse manner. Dual action of nitric oxide (NO) is evident in its crosstalk with FeSOD and Cu/ZnSOD in seedling roots and cotyledons in control and NaCl(-) stress conditions. Cu/ZnSOD activity in the roots of 2 d old NaCl(-) stressed seedlings is enhanced in the presence of 125-1000 µM of NO donor (sodium nitroprusside; SNP) indicating salt sensitivity of the enzyme activity. Quenching of endogenous NO by cPTIO treatment (500, 1000 µM) lowers FeSOD activity in roots (-NaCl). Cotyledons from control seedlings show an upregulation of FeSOD activity with increasing availability of SNP (125-1000 µM) in the Hoagland irrigation medium. Quenching of NO by cPTIO provides evidence for an inverse correlation between NO availability and FeSOD activity in seedling cotyledons irrespective of NaCl stress. Variable response due to NO on SOD isoforms in sunflower seedlings reflects its concentration-dependent biphasic (pro- and antioxidant) nature of action. Differential induction of SOD isoforms by NO indicates separate intracellular signaling pathways (associated with their respective functional separation) operative in seedling roots as an early salt stress mechanism and in cotyledons as an early long-distance NaCl stress sensing mechanism. PMID:26339977

  11. Nitric oxide triggers a concentration-dependent differential modulation of superoxide dismutase (FeSOD and Cu/ZnSOD) activity in sunflower seedling roots and cotyledons as an early and long distance signaling response to NaCl stress

    PubMed Central

    Arora, Dhara; Bhatla, Satish C

    2015-01-01

    Dark-grown sunflower (Helianthus annuus L.) seedlings exhibit modulation of total superoxide dismutase (SOD;EC 1.15.1.1) activity in roots and cotyledons (10,000g supernatant) in response to salt stress (NaCl; 120 mM) through a differential, zymographically detectable, whole tissue activity of FeSOD and Cu/ZnSOD. Confocal laser scanning microscopic imaging (CLSM) has further shown that NaCl stress significantly influences differential spatial distribution of Cu/ZnSOD and MnSOD isoforms in an inverse manner. Dual action of nitric oxide (NO) is evident in its crosstalk with FeSOD and Cu/ZnSOD in seedling roots and cotyledons in control and NaCl− stress conditions. Cu/ZnSOD activity in the roots of 2 d old NaCl− stressed seedlings is enhanced in the presence of 125–1000 µM of NO donor (sodium nitroprusside; SNP) indicating salt sensitivity of the enzyme activity. Quenching of endogenous NO by cPTIO treatment (500, 1000 µM) lowers FeSOD activity in roots (-NaCl). Cotyledons from control seedlings show an upregulation of FeSOD activity with increasing availability of SNP (125–1000 µM) in the Hoagland irrigation medium. Quenching of NO by cPTIO provides evidence for an inverse correlation between NO availability and FeSOD activity in seedling cotyledons irrespective of NaCl stress. Variable response due to NO on SOD isoforms in sunflower seedlings reflects its concentration-dependent biphasic (pro- and antioxidant) nature of action. Differential induction of SOD isoforms by NO indicates separate intracellular signaling pathways (associated with their respective functional separation) operative in seedling roots as an early salt stress mechanism and in cotyledons as an early long-distance NaCl stress sensing mechanism. PMID:26339977

  12. Superoxide radicals increase transforming growth factor-{beta}1 and collagen release from human lung fibroblasts via cellular influx through chloride channels

    SciTech Connect

    Qi Shufan Hartog, Gertjan J.M. den; Bast, Aalt

    2009-05-15

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of fibrosis. However, it remains unclear which ROS is the major cause. We hypothesize that superoxide elicits specific toxicity to human lung fibroblasts and plays an important role in the development of pulmonary fibrosis. In this study, superoxide generated from xanthine and xanthine oxidase activated lung fibroblasts by increasing the release of TGF-{beta}1 and collagen. This was associated with increased levels of intracellular superoxide. SOD and tempol, by scavenging respectively extracellular and intracellular superoxide, prevented the activation of fibroblasts induced by exposure to exogenous superoxide, whereas catalase did not. Moreover, hydrogen peroxide did not activate fibroblasts. Apparently, superoxide rather than hydrogen peroxide is involved in the regulation of TGF-{beta}1 and collagen release in lung fibroblasts. The chloride channel blocker, DIDS, inhibited the increase of intracellular superoxide levels induced by exogenous superoxide and consequently prevented the activation of fibroblasts. This suggests that the cellular influx of superoxide through chloride channels is essential for superoxide-induced activation of fibroblasts. ERK1/2 and p38 MAPKs are involved in the intracellular pathway leading to superoxide-induced fibroblasts activation. Superoxide possesses until now undiscovered specific pro-fibrotic properties in human lung fibroblasts. This takes place via the cellular influx of superoxide through chloride channels rather than via the formation of hydrogen peroxide.

  13. Anion exchange membrane

    DOEpatents

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  14. Inhibition of potato polyphenol oxidase by anions and activity in various carboxylate buffers (pH 4.8) at constant ionic strength.

    PubMed

    Malkin, B D; Thickman, K R; Markworth, C J; Wilcox, D E; Kull, F J

    2001-01-01

    The activity of potato polyphenol oxidase (tyrosinase) toward DL-3,4-dihydroxyphenylalanine (K(M) 5.39 mM) was studied using a variety of carboxylate buffers at a common pH and ionic strength. Enzyme activity, greatest in citrate and least in oxalate, correlated with increasing carboxyl concentration and molecular mass. The lower activity in oxalate was attributed to more effective chelation of a copper(II) form of the enzyme by the oxalate dianion. Sodium halide salts inhibited the enzyme. Although there was little difference in inhibition between sodium and potassium salts, the degree and type of inhibition was anion dependent; K(is), values for NaCl and KCl, (competitive inhibitors) were 1.82 and 1.62 mM, whereas Na(2) SO(4) and K(2) SO(4) (mixed inhibitors) had K(is) and K(ii) values in the 250 to 450 mM range. PMID:11342282

  15. Recycling of agricultural solid waste, coir pith: removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon.

    PubMed

    Namasivayam, C; Sangeetha, D

    2006-07-31

    The abundant lignocellulosic agricultural waste, coir pith is used to develop ZnCl(2) activated carbon and applied to the removal of toxic anions, heavy metals, organic compounds and dyes from water. Sorption of inorganic anions such as nitrate, thiocyanate, selenite, chromium(VI), vanadium(V), sulfate, molybdate, phosphate and heavy metals such as nickel(II) and mercury(II) has been studied. Removal of organics such as resorcinol, 4-nitrophenol, catechol, bisphenol A, 2-aminophenol, quinol, O-cresol, phenol and 2-chlorophenol has also been investigated. Uptake of acidic dyes such as acid brilliant blue, acid violet, basic dyes such as methylene blue, rhodamine B, direct dyes such as direct red 12B, congo red and reactive dyes such as procion red, procion orange were also examined to assess the possible use of the adsorbent for the treatment of contaminated ground water. Favorable conditions for maximum removal of all adsorbates at the adsorbate concentration of 20 mg/L were used. Results show that ZnCl(2) activated coir pith carbon is effective for the removal of toxic pollutants from water. PMID:16406295

  16. Permeability Transition Pore-Mediated Mitochondrial Superoxide Flashes Regulate Cortical Neural Progenitor Differentiation

    PubMed Central

    Hou, Yan; Mattson, Mark P.; Cheng, Aiwu

    2013-01-01

    In the process of neurogenesis, neural progenitor cells (NPCs) cease dividing and differentiate into postmitotic neurons that grow dendrites and an axon, become excitable, and establish synapses with other neurons. Mitochondrial biogenesis and aerobic metabolism provide energy substrates required to support the differentiation, growth and synaptic activity of neurons. Mitochondria may also serve signaling functions and, in this regard, it was recently reported that mitochondria can generate rapid bursts of superoxide (superoxide flashes), the frequency of which changes in response to environmental conditions and signals including oxygen levels and Ca2+ fluxes. Here we show that the frequency of mitochondrial superoxide flashes increases as embryonic cerebral cortical neurons differentiate from NPCs, and provide evidence that the superoxide flashes serve a signaling function that is critical for the differentiation process. The superoxide flashes are mediated by mitochondrial permeability transition pore (mPTP) opening, and pharmacological inhibition of the mPTP suppresses neuronal differentiation. Moreover, superoxide flashes and neuronal differentiation are inhibited by scavenging of mitochondrial superoxide. Conversely, manipulations that increase superoxide flash frequency accelerate neuronal differentiation. Our findings reveal a regulatory role for mitochondrial superoxide flashes, mediated by mPTP opening, in neuronal differentiation. PMID:24116142

  17. Anions in Cometary Comae

    NASA Technical Reports Server (NTRS)

    Charnley, Steven B.

    2011-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.

  18. Cytotoxic, antibacterial, DNA interaction and superoxide dismutase like activities of sparfloxacin drug based copper(II) complexes with nitrogen donor ligands.

    PubMed

    Patel, Mohan N; Joshi, Hardik N; Patel, Chintan R

    2013-03-01

    The novel neutral mononuclear copper(II) complexes with fluoroquinolone antibacterial drug, sparfloxacin and nitrogen donor heterocyclic ligand have been synthesized and characterized. An antimicrobial efficiency of the complexes has been tested against five different microorganisms and showed diverse biological activity. The interaction of complex with Herring sperm (HS) DNA was investigated using viscosity titration and absorption titration techniques. The results indicate that the complexes bind to DNA by intercalative mode and have rather high DNA-binding constants. DNA cleavage study showed better cleaving ability of the complexes compare to metal salt and standard drug. All the complexes showed good cytotoxic activity with LC(50) values ranging from 4.89 to 11.94 μg mL(-1). Complexes also exhibit SOD-like activity with their IC(50) values ranging from 0.717 to 1.848 μM. PMID:23266675

  19. Cytotoxic, antibacterial, DNA interaction and superoxide dismutase like activities of sparfloxacin drug based copper(II) complexes with nitrogen donor ligands

    NASA Astrophysics Data System (ADS)

    Patel, Mohan N.; Joshi, Hardik N.; Patel, Chintan R.

    2013-03-01

    The novel neutral mononuclear copper(II) complexes with fluoroquinolone antibacterial drug, sparfloxacin and nitrogen donor heterocyclic ligand have been synthesized and characterized. An antimicrobial efficiency of the complexes has been tested against five different microorganisms and showed diverse biological activity. The interaction of complex with Herring sperm (HS) DNA was investigated using viscosity titration and absorption titration techniques. The results indicate that the complexes bind to DNA by intercalative mode and have rather high DNA-binding constants. DNA cleavage study showed better cleaving ability of the complexes compare to metal salt and standard drug. All the complexes showed good cytotoxic activity with LC50 values ranging from 4.89 to 11.94 μg mL-1. Complexes also exhibit SOD-like activity with their IC50 values ranging from 0.717 to 1.848 μM.

  20. Benfotiamine upregulates antioxidative system in activated BV-2 microglia cells

    PubMed Central

    Bozic, Iva; Savic, Danijela; Stevanovic, Ivana; Pekovic, Sanja; Nedeljkovic, Nadezda; Lavrnja, Irena

    2015-01-01

    Chronic microglial activation and resulting sustained neuroinflammatory reaction are generally associated with neurodegeneration. Activated microglia acquires proinflammatory cellular profile that generates oxidative burst. Their persistent activation exacerbates inflammation, which damages healthy neurons via cytotoxic mediators, such as superoxide radical anion and nitric oxide. In our recent study, we have shown that benfotiamine (S-benzoylthiamine O-monophosphate) possesses anti-inflammatory effects. Here, the effects of benfotiamine on the pro-oxidative component of activity of LPS-stimulated BV-2 cells were investigated. The activation of microglia was accompanied by upregulation of intracellular antioxidative defense, which was further promoted in the presence of benfotiamine. Namely, activated microglia exposed to non-cytotoxic doses of benfotiamine showed increased levels and activities of hydrogen peroxide- and superoxide-removing enzymes—catalase and glutathione system, and superoxide dismutase. In addition, benfotiamine showed the capacity to directly scavenge superoxide radical anion. As a consequence, benfotiamine suppressed the activation of microglia and provoked a decrease in NO and ·O−2 production and lipid peroxidation. In conclusion, benfotiamine might silence pro-oxidative activity of microglia to alleviate/prevent oxidative damage of neighboring CNS cells. PMID:26388737

  1. The chemical activities of the Viking biology experiments and the arguments for the presence of superoxides, peroxides, gamma-Fe2O3 and carbon suboxide polymer in the Martian soil

    NASA Technical Reports Server (NTRS)

    Oyama, V. I.; Berdahl, B. J.; Woeller, F.; Lehwalt, M.

    1978-01-01

    The evolution of N2, Ar, O2, and CO2 from Martian soil as a function of humidity in the Gas Exchange Experiment are correlated with the mean level of water vapor in the Martian atmosphere. All but O2 are associated with desorption. The evolution of oxygen is consistent with the presence of alkaline earth and alkali metal superoxides; and their peroxides and the gamma-Fe2O3 in the soil can account for the generation of radioactive gas in the Labeled Release Experiment. The slower evolution of CO2 from both the Gas Exchange Experiment and the Labeled Release Experiment are associated with the direct oxidation of organics by gamma-Fe2O3. The Pyrolytic Release Experiment's second peak may be carbon suboxide as demonstrated by laboratory experiments. A necessary condition is that the polymer exists in the Martian soil. We ascribe the activity of the surface samples to the reaction of Martian particulates with an anhydrous CO2 atmosphere activated by uv and ionizing radiations. The surface particles are ultimately altered by exposure to small but significant amounts of water at the sites. From the working model, we have predicted the peculiar nature of the chemical entities and demonstrated that the model is justified by laboratory data. The final confirmation of this model will entail a return to Mars, but the nature and implications of this chemistry for the Martian surface is predicted to reveal even more about Mars with further simulations in the laboratory.

  2. Constraints on superoxide mediated formation of manganese oxides

    PubMed Central

    Learman, Deric R.; Voelker, Bettina M.; Madden, Andrew S.; Hansel, Colleen M.

    2013-01-01

    Manganese (Mn) oxides are among the most reactive sorbents and oxidants within the environment, where they play a central role in the cycling of nutrients, metals, and carbon. Recent discoveries have identified superoxide (O2−) both of biogenic and abiogenic origin as an effective oxidant of Mn(II) leading to the formation of Mn oxides. Here we examined the conditions under which abiotically produced superoxide led to oxidative precipitation of Mn and the solid-phases produced. Oxidized Mn, as both aqueous Mn(III) and Mn(III/IV) oxides, was only observed in the presence of active catalase, indicating that hydrogen peroxide (H2O2), a product of the reaction of O2− with Mn(II), inhibits the oxidation process presumably through the reduction of Mn(III). Citrate and pyrophosphate increased the yield of oxidized Mn but decreased the amount of Mn oxide produced via formation of Mn(III)-ligand complexes. While complexing ligands played a role in stabilizing Mn(III), they did not eliminate the inhibition of net Mn(III) formation by H2O2. The Mn oxides precipitated were highly disordered colloidal hexagonal birnessite, similar to those produced by biotically generated superoxide. Yet, in contrast to the large particulate Mn oxides formed by biogenic superoxide, abiotic Mn oxides did not ripen to larger, more crystalline phases. This suggests that the deposition of crystalline Mn oxides within the environment requires a biological, or at least organic, influence. This work provides the first direct evidence that, under conditions relevant to natural waters, oxidation of Mn(II) by superoxide can occur and lead to formation of Mn oxides. For organisms that oxidize Mn(II) by producing superoxide, these findings may also point to other microbially mediated processes, in particular enzymatic hydrogen peroxide degradation and/or production of organic ligand metabolites, that allow for Mn oxide formation. PMID:24027565

  3. Activation of microglia with zymosan promotes excitatory amino acid release via volume-regulated anion channels: the role of NADPH oxidases

    PubMed Central

    Harrigan, Timothy J.; Abdullaev, Iskandar F.; Jourd'heuil, David; Mongin, Alexander A.

    2008-01-01

    Microglia are the resident immune cells of the CNS, which are important for preserving neural tissue functions, but may also contribute to neurodegeneration. Activation of these cells in infection, inflammation, or trauma leads to the release of various toxic molecules, including reactive oxygen species (ROS) and the excitatory amino acid glutamate. In this study we used an electrophysiological approach and a D-[3H]aspartate (glutamate) release assay to explore the ROS-dependent regulation of glutamate-permeable volume-regulated anion channels (VRACs). Exposure of rat microglia to hypoosmotic media stimulated Cl− currents and D-[3H]aspartate release, both of which were inhibited by the selective VRAC blocker DCPIB. Exogenously applied H2O2 potently increased swelling-activated glutamate release. Stimulation of microglia with zymosan triggered production of endogenous ROS and strongly enhanced glutamate release via VRAC in swollen cells. The effects of zymosan were attenuated by the ROS scavenger MnTMPyP, and by two inhibitors of NADPH oxidase (NOX) diphenyliodonium and thioridazine. However, zymosan-stimulated glutamate release was insensitive to other NOX blockers, apocynin and AEBSF. This pharmacological profile pointed to the potential involvement of apocynin-insensitive NOX4. Using RT-PCR we confirmed that NOX4 is expressed in rat microglial cells, along with NOX1 and NOX2. To check for potential involvement of phagocytic NOX2 we stimulated this isoform using protein kinase C (PKC) activator PMA, or inhibited it with the broad spectrum PKC blocker Gö6983. Both agents potently modulated endogenous ROS production by NOX2, but not VRAC activity. Taken together, these data suggest that the anion channel VRAC may contribute to microglial glutamate release, and that its activity is regulated by endogenous ROS originating from NOX4. PMID:18624925

  4. Production of the carbonate radical anion during xanthine oxidase turnover in the presence of bicarbonate.

    PubMed

    Bonini, Marcelo G; Miyamoto, Sayuri; Di Mascio, Paolo; Augusto, Ohara

    2004-12-10

    Xanthine oxidase is generally recognized as a key enzyme in purine catabolism, but its structural complexity, low substrate specificity, and specialized tissue distribution suggest other functions that remain to be fully identified. The potential of xanthine oxidase to generate superoxide radical anion, hydrogen peroxide, and peroxynitrite has been extensively explored in pathophysiological contexts. Here we demonstrate that xanthine oxidase turnover at physiological pH produces a strong one-electron oxidant, the carbonate radical anion. The radical was shown to be produced from acetaldehyde oxidation by xanthine oxidase in the presence of catalase and bicarbonate on the basis of several lines of evidence such as oxidation of both dihydrorhodamine 123 and 5,5-dimethyl-1-pyrroline-N-oxide and chemiluminescence and isotope labeling/mass spectrometry studies. In the case of xanthine oxidase acting upon xanthine and hypoxanthine as substrates, carbonate radical anion production was also evidenced by the oxidation of 5,5-dimethyl-1-pyrroline-N-oxide and of dihydrorhodamine 123 in the presence of uricase. The results indicated that Fenton chemistry occurring in the bulk solution is not necessary for carbonate radical anion production. Under the conditions employed, the radical was likely to be produced at the enzyme active site by reduction of a peroxymonocarbonate intermediate whose formation and reduction is facilitated by the many xanthine oxidase redox centers. In addition to indicating that the carbonate radical anion may be an important mediator of the pathophysiological effects of xanthine oxidase, the results emphasize the potential of the bicarbonate-carbon dioxide pair as a source of biological oxidants. PMID:15448145

  5. Growth hormone activation of human monocytes for superoxide production but not tumor necrosis factor production, cell adherence, or action against Mycobacterium tuberculosis.

    PubMed Central

    Warwick-Davies, J; Lowrie, D B; Cole, P J

    1995-01-01

    We have previously demonstrated that growth hormone (GH) is a human macrophage-activating factor which primes monocytes for enhanced production of H2O2 in vitro. This report extends our observations to other monocyte functions relevant to infection. We find that GH also primes monocytes for O2- production, to a degree similar to the effect of gamma interferon. Neither macrophage-activating factor alone stimulates monocytes to release bioactive tumor necrosis factor. However, GH, unlike gamma interferon, does not synergize with endotoxin for enhanced tumor necrosis factor production. In further contrast, GH does not alter monocyte adherence or morphology, while phagocytosis and killing of Mycobacterium tuberculosis by GH-treated monocytes are also unaffected. Therefore, despite the multiplicity of the effects of GH on the immune system in vivo, its effects on human monocytes in vitro appear to be limited to priming for the release of reactive oxygen intermediates. PMID:7591064

  6. Effect of acute exercise on some haematological parameters and neutrophil functions in active and inactive subjects.

    PubMed

    Benoni, G; Bellavite, P; Adami, A; Chirumbolo, S; Lippi, G; Brocco, G; Cuzzolin, L

    1995-01-01

    In this work we studied the possible effects of acute exercise on some haematological parameters and on some functions of neutrophils in seven active and six inactive subjects. Physical exercise (10 min on a cycle ergometer at a heart rate of 150 beats.min-1) induced a significant increase in total leucocyte, lymphocyte and neutrophil concentrations in active subjects; serum iron and ferritin concentrations were lower in active compared to inactive subjects. Cellular adhesion, bactericidal activity and superoxide anion production did not change after exercise, while we also observed some differences between active and inactive subjects before exercise. In particular, the neutrophils from active subjects showed a significantly higher percentage of adhesion, higher bactericidal activity and lower superoxide anion production. In conclusion, the training induced changes in some neutrophil functions, while acute exercise influenced, overall, leucocyte concentrations. PMID:7768243

  7. Activity and distribution of intracellular carbonic anhydrase II and their effects on the transport activity of anion exchanger AE1/SLC4A1

    PubMed Central

    Al-Samir, Samer; Papadopoulos, Symeon; Scheibe, Renate J; Meißner, Joachim D; Cartron, Jean-Pierre; Sly, William S; Alper, Seth L; Gros, Gerolf; Endeward, Volker

    2013-01-01

    We have investigated the previously published ‘metabolon hypothesis’ postulating that a close association of the anion exchanger 1 (AE1) and cytosolic carbonic anhydrase II (CAII) exists that greatly increases the transport activity of AE1. We study whether there is a physical association of and direct functional interaction between CAII and AE1 in the native human red cell and in tsA201 cells coexpressing heterologous fluorescent fusion proteins CAII-CyPet and YPet-AE1. In these doubly transfected tsA201 cells, YPet-AE1 is clearly associated with the cell membrane, whereas CAII-CyPet is homogeneously distributed throughout the cell in a cytoplasmic pattern. Förster resonance energy transfer measurements fail to detect close proximity of YPet-AE1 and CAII-CyPet. The absence of an association of AE1 and CAII is supported by immunoprecipitation experiments using Flag-antibody against Flag-tagged AE1 expressed in tsA201 cells, which does not co-precipitate native CAII but co-precipitates coexpressed ankyrin. Both the CAII and the AE1 fusion proteins are fully functional in tsA201 cells as judged by CA activity and by cellular HCO3− permeability () sensitive to inhibition by 4,4′-Diisothiocyano-2,2′-stilbenedisulfonic acid. Expression of the non-catalytic CAII mutant V143Y leads to a drastic reduction of endogenous CAII and to a corresponding reduction of total intracellular CA activity. Overexpression of an N-terminally truncated CAII lacking the proposed site of interaction with the C-terminal cytoplasmic tail of AE1 substantially increases intracellular CA activity, as does overexpression of wild-type CAII. These variously co-transfected tsA201 cells exhibit a positive correlation between cellular and intracellular CA activity. The relationship reflects that expected from changes in cytoplasmic CA activity improving substrate supply to or removal from AE1, without requirement for a CAII–AE1 metabolon involving physical interaction. A functional

  8. Chemical and physical differentiation of superoxide dismutases in anaerobes.

    PubMed Central

    Gregory, E M; Dapper, C H

    1980-01-01

    Superoxide dismutase activity in crude or partially purified cell extracts from several species and strains of obligate anaerobe Bacteroides was inhibited instantaneously by NaN3 and was inactivated rapidly upon incubation with H2O2. The extent of NaN3 inhibition varied from 41 to 93%, and the half-life of the enzymatic activity in 5 mM H2O2 ranged from 1.2 to 6.1 min, depending upon the organism tests. When grown in a defined medium containing 59Fe, Bacteroides fragilis (VPI 2393) incorporated radiolabel into a 40,000-molecular-weight NaN3- and H2O2-sensitive superoxide dismutase but did not incorporate 54Mn into that protein under similar growth conditions. The anaerobe Actinomyces naeslundii (VPI 9985) incorporated 54Mn but not 59Fe into a NaN3-insensitive and H2O2-resistant superoxide dismutase. The apparent molecular weight of the superoxide dismutase from this and several other Actinomyces spp. was estimated to be 110,000 to 140,000. Comparison of these data with studies of homogeneous metallosuperoxide dismutases suggests that the Bacteroides spp. studied contain a ferrisuperoxide dismutase, whereas Actinomyces spp. contain a managanisuperoxide dismutase. PMID:7440509

  9. Reduction of Renal Superoxide Dismutase in Progressive Diabetic Nephropathy

    PubMed Central

    Fujita, Hiroki; Fujishima, Hiromi; Chida, Shinsuke; Takahashi, Keiko; Qi, Zhonghua; Kanetsuna, Yukiko; Breyer, Matthew D.; Harris, Raymond C.; Yamada, Yuichiro; Takahashi, Takamune

    2009-01-01

    Superoxide excess plays a central role in tissue damage that results from diabetes, but the mechanisms of superoxide overproduction in diabetic nephropathy (DN) are incompletely understood. In the present study, we investigated the enzyme superoxide dismutase (SOD), a major defender against superoxide, in the kidneys during the development of murine DN. We assessed SOD activity and the expression of SOD isoforms in the kidneys of two diabetic mouse models (C57BL/6-Akita and KK/Ta-Akita) that exhibit comparable levels of hyperglycemia but different susceptibility to DN. We observed down-regulation of cytosolic CuZn-SOD (SOD1) and extracellular CuZn-SOD (SOD3), but not mitochondrial Mn-SOD (SOD2), in the kidney of KK/Ta-Akita mice which exhibit progressive DN. In contrast, we did not detect a change in renal SOD expression in DN-resistant C57BL/6-Akita mice. Consistent with these findings, there was a significant reduction in total SOD activity in the kidney of KK/Ta-Akita mice compared with C57BL/6-Akita mice. Finally, treatment of KK/Ta-Akita mice with a SOD mimetic, tempol, ameliorated the nephropathic changes in KK/Ta-Akita mice without altering the level of hyperglycemia. Collectively, these results indicate that down-regulation of renal SOD1 and SOD3 may play a key role in the pathogenesis of DN. PMID:19470681

  10. Effects of supplementation with two sources and two levels of copper on meat lipid oxidation, meat colour and superoxide dismutase and glutathione peroxidase enzyme activities in Nellore beef cattle.

    PubMed

    Correa, Lísia Bertonha; Zanetti, Marcus Antonio; Del Claro, Gustavo Ribeiro; de Paiva, Fernanda Alves; da Luz e Silva, Saulo; Netto, Arlindo Saran

    2014-10-28

    In the present study, thirty-five Nellore bulls were used to determine the effects of two levels and two sources (organic and inorganic) of Cu supplementation on the oxidative stability of lipids, measured by the thiobarbituric acid-reactive substance (TBARS) test, meat colour and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) enzyme activities. The following treatments were used: (1) control (C) - basal diet without supplementation of Cu (7 mg Cu/kg DM); (2) I10 - basal diet supplemented with 10 mg Cu/kg DM in the form of copper sulphate (inorganic form); (3) I40 - basal diet supplemented with 40 mg Cu/kg DM in the form of copper sulphate; (4) O10 - basal diet supplemented with 10 mg Cu/kg DM in the form of copper proteinate (organic form); (5) O40 - basal diet supplemented with 40 mg Cu/kg DM in the form of copper proteinate. Lipid oxidation was determined in meat samples exposed to display, modified atmosphere (MA) and vacuum packaging (VC) conditions and in liver samples using the TBARS test. These samples were also evaluated for meat discolouration after exposure to air. The activities of SOD and GSH-Px enzymes were determined in liver samples. In display, MA and VC conditions, the TBARS values of samples from animals supplemented with 40 mg Cu/kg DM were lower than those of samples from control animals. There was no effect of treatment on the colour variables (L*, a*, b*). There was also no significant effect of treatment on hepatic TBARS concentrations and GSH-Px activity. Supplementation with Cu at 40 mg/kg, regardless of the source, induced higher hepatic SOD activity compared with the control treatment. In conclusion, Cu supplementation improved the oxidative stability of lipids in samples exposed to display, MA and VC conditions, demonstrating the antioxidant effect of this mineral. PMID:25313573

  11. A novel nickel-containing superoxide dismutase from Streptomyces spp.

    PubMed Central

    Youn, H D; Kim, E J; Roe, J H; Hah, Y C; Kang, S O

    1996-01-01

    A novel type of superoxide dismutase (SOD) was purified to apparent homogeneity from the cytosolic fractions of Streptomyces sp. IMSNU-1 and Strep. coelicolor ATCC 10147 respectively. Both enzymes were composed of four identical subunits of 13.4 kDa, were stable at pH 4.0-8.0 and up to 70 degrees C, and were inhibited by cyanide and H2O2 but little inhibited by azide. The atomic absorption analyses revealed that both enzymes contain 0.74 g-atom of nickel per mol of subunit. Both enzymes were different from iron-containing SOD and manganese-containing SOD from Escherichia coli, and copper- and zinc-containing SODs from Saccharomyces cerevisiae and bovine erythrocytes, with respect to amino acid composition, N-terminal amino acid sequence and cross-reactivity against antibody. The absorption spectra of both enzymes were identical, exhibiting maxima at 276 and 378 nm, and a broad peak at 531 nm. The EPR spectra of both enzymes were almost identical with that of NiIII in a tetragonal symmetry of NiIII-oligopeptides especially containing histidine. The apoenzymes, lacking in nickel, had no ability to mediate the conversion of superoxide anion radical to hydrogen peroxide, strongly indicating that NiIII plays a main role in these enzymes. PMID:8836134

  12. Evaluation of malondialdehyde, superoxide dismutase and catalase activity and their diagnostic value in drug naïve, first episode, non-smoker major depression patients and healthy controls.

    PubMed

    Camkurt, Mehmet Akif; Fındıklı, Ebru; İzci, Filiz; Kurutaş, Ergül Belge; Tuman, Taha Can

    2016-04-30

    Major depression is a most frequent disorder, its diagnosis depends on patient interview, and yet we do not have a reliable biomarker for depression. Oxidative stress is defined as increase in oxidation or decrease is antioxidant defense mechanisms. Here, we aimed to investigate malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) activity and their diagnostic performance in depressed patients and healthy controls. We collected blood samples from 50 patients and 50 controls. We found MDA levels were significantly higher in the patients than controls, with medians at 4.04nmol/mg and 1.64nmol/mg, respectively, p<0.001. SOD activity was significantly decreased in depressed patients than healthy controls, with means at 143.50U/mg and 298.12U/mg, respectively, p<0.001. CAT activity was similar in both groups, p=0.517. ROC analysis showed good diagnostic value for MDA and SOD, with the area under the curve at 1.0 for both. We found high correlation between SOD and Ham-D scores (r=0.747, p<0.0001) and between MDA and Ham-D scores (r=0.785, p<0.0001). Overall, these results demonstrate that oxidative stress is increased in depressed patients. MDA increase seem to be a common finding for major depression. We believe MDA could be a good biomarker candidate for major depression, but not SOD. Future studies should focus on the diagnostic value of MDA in larger samples. PMID:27086215

  13. Peroxisomal membrane manganese superoxide dismutase: characterization of the isozyme from watermelon (Citrullus lanatus Schrad.) cotyledons.

    PubMed

    Rodríguez-Serrano, María; Romero-Puertas, María C; Pastori, Gabriela M; Corpas, Francisco J; Sandalio, Luisa M; del Río, Luis A; Palma, José M

    2007-01-01

    In this work the manganese superoxide dismutase (Mn-SOD) bound to peroxisomal membranes of watermelon cotyledons (Citrullus lanatus Schrad.) was purified to homogeneity and some of its molecular properties were determined. The stepwise purification procedure consisted of ammonium sulphate fractionation, batch anion-exchange chromatography, and anion-exchange and gel-filtration column chromatography using a fast protein liquid chromatography system. Peroxisomal membrane Mn-SOD (perMn-SOD; EC 1.15.1.1) was purified 5600-fold with a yield of 2.6 mug of enzyme g(-1) of cotyledons, and had a specific activity of 480 U mg(-1) of protein. The native molecular mass determined for perMn-SOD was 108 000 Da, and it was composed of four equal subunits of 27 kDa, which indicates that perMn-SOD is a homotetramer. Ultraviolet and visible absorption spectra of the enzyme showed a shoulder at 275 nm and two absorption maxima at 448 nm and 555 nm, respectively. By isoelectric focusing, a pI of 5.75 was determined for perMn-SOD. In immunoblot assays, purified perMn-SOD was recognized by a polyclonal antibody against Mn-SOD from pea leaves, and the peroxisomal enzyme rapidly dissociated in the presence of dithiothreitol and SDS. The potential binding of the Mn-SOD isozyme to the peroxisomal membrane was confirmed by immunoelectron microscopy analysis. The properties of perMn-SOD and the mitMn-SOD are compared and the possible function in peroxisomal membranes of the peripheral protein Mn-SOD is discussed. PMID:17545229

  14. Metal bacteriochlorins which act as dual singlet oxygen and superoxide generators.

    PubMed

    Fukuzumi, Shunichi; Ohkubo, Kei; Zheng, Xiang; Chen, Yihui; Pandey, Ravindra K; Zhan, Riqiang; Kadish, Karl M

    2008-03-01

    A series of stable free-base, Zn(II) and Pd(II) bacteriochlorins containing a fused six- or five-member diketo- or imide ring have been synthesized as good candidates for photodynamic therapy sensitizers, and their electrochemical, photophysical, and photochemical properties were examined. Photoexcitation of the palladium bacteriochlorin affords the triplet excited state without fluorescence emission, resulting in formation of singlet oxygen with a high quantum yield due to the heavy atom effect of palladium. Electrochemical studies revealed that the zinc bacteriochlorin has the smallest HOMO-LUMO gap of the investigated compounds, and this value is significantly lower than the triplet excited-state energy of the compound in benzonitrile. Such a small HOMO-LUMO gap of the zinc bacteriochlorin enables intermolecular photoinduced electron transfer from the triplet excited state to the ground state to produce both the radical cation and the radical anion. The radical anion thus produced can transfer an electron to molecular oxygen to produce superoxide anion which was detected by electron spin resonance. The same photosensitizer can also act as an efficient singlet oxygen generator. Thus, the same zinc bacteriochlorin can function as a sensitizer with a dual role in that it produces both singlet oxygen and superoxide anion in an aprotic solvent (benzonitrile). PMID:18254618

  15. Anionic group 6B metal carbonyls as homogeneous catalysts for carbon dioxide/hydrogen activation: the production of alkyl formates

    SciTech Connect

    Darensbourg, D.J.; Ovalles, C.

    1984-06-27

    The production of alkyl formates from the hydrocondensation of carbon dioxide in alcohols utilizing anionic group 6B carbonyl hydrides as catalysts is herein reported. HM(CO)/sub 5//sup -/ (M = Cr, W; derived from ..mu..-H(M/sub 2/(CO)/sub 10/)/sup -/) and their products of carbon dioxide insertion, HCO/sub 2/M(CO)/sub 5//sup -/, have been found to be effective catalysts for the hydrogenation of CO/sub 2/ in alcohols under rather mild conditions (loading pressures of CO/sub 2/ and H/sub 2/, 250 psi each, and 125/sup 0/C) to provide alkyl formates. The only metal carbonyl species detected in solution via spectroscopy, both at the end of a catalytic period and during catalysis, were M(CO)/sub 6/ and HCO/sub 2/M(CO)/sub 5//sup -/. The metal hexacarbonyls were independently shown to be catalytically inactive. A catalytic cycle is proposed which initially involves release of formic acid from the metal center, either by reductive elimination of the hydrido formato ligands or ligand-assisted heterolytic splitting of dihydrogen with loss of formic acid. In a rapid subsequent process HCOOH reacts with alcohols to yield HCOOR. The addition of carbon monoxide retards alkyl formate production, strongly implying CO/sub 2/ to be the primary source of the carboxylic carbon atom in HCOOR. This was verified by carrying out reactions in the presence of HCO/sub 2/W(/sup 13/CO)/sub 5//sup -/ which provided only H/sup 12/COOR after short reaction periods. However, in the absence of hydrogen and carbon dioxide ..mu..-H(M/sub 2/(CO)/sub 10/)/sup -/ species were observed to be effective catalyst precursors for converting CO and methanol into methyl formate. 36 references, 2 figures, 2 tables.

  16. Active intestinal absorption of fluoroquinolone antibacterial agent ciprofloxacin by organic anion transporting polypeptide, Oatp1a5.

    PubMed

    Arakawa, Hiroshi; Shirasaka, Yoshiyuki; Haga, Makoto; Nakanishi, Takeo; Tamai, Ikumi

    2012-09-01

    Fluoroquinolone antimicrobial drugs are absorbed efficiently after oral administration despite of their hydrophilic nature, implying an involvement of carrier-mediated transport in their membrane transport process. It has been that several fluoroquinolones are substrates of organic anion transporter polypeptides OATP1A2 expressed in human intestine derived Caco-2 cells. In the present study, to clarify the involvement of OATP in intestinal absorption of ciprofloxacin, the contribution of Oatp1a5, which is expressed at the apical membranes of rat enterocytes, to intestinal absorption of ciprofloxacin was investigated in rats. The intestinal membrane permeability of ciprofloxacin was measured by in situ and the vascular perfused closed loop methods. The disappeared and absorbed amount of ciprofloxacin from the intestinal lumen were increased markedly in the presence of 7,8-benzoflavone, a breast cancer resistance protein inhibitor, and ivermectin, a P-glycoprotein inhibitor, while it was decreased significantly in the presence of these inhibitors in combination with naringin, an Oatp1a5 inhibitor. Furthermore, the Oatp1a5-mediated uptake of ciprofloxacin was saturable with a K(m) value of 140 µm, and naringin inhibited the uptake with an IC(50) value of 18 µm by Xenopus oocytes expressing Oatp1a5. Naringin reduced the permeation of ciprofloxacin from the mucosal-to-serosal side, with an IC(50) value of 7.5 µm by the Ussing-type chamber method. The estimated IC(50) values were comparable to that of Oatp1a5. These data suggest that Oatp1a5 is partially responsible for the intestinal absorption of ciprofloxacin. In conclusion, the intestinal absorption of ciprofloxacin could be affected by influx transporters such as Oatp1a5 as well as the efflux transporters such as P-gp and Bcrp. PMID:22899169

  17. Metal Uptake by Manganese Superoxide Dismutase

    PubMed Central

    Whittaker, James W.

    2009-01-01

    Manganese superoxide dismutase is an important antioxidant defense metalloenzyme that protects cells from damage by the toxic oxygen metabolite, superoxide free radical, formed as an unavoidable by-product of aerobic metabolism. Many years of research have gone into understanding how the metal cofactor interacts with small molecules in its catalytic role. In contrast, very little is presently known about how the protein acquires its metal cofactor, an important step in the maturation of the protein and one that is absolutely required for its biological function. Recent work is beginning to provide insight into the mechanisms of metal delivery to manganese superoxide dismutase in vivo and in vitro. PMID:19699328

  18. Creating molecular macrocycles for anion recognition

    PubMed Central

    2016-01-01

    Summary The creation and functionality of new classes of macrocycles that are shape persistent and can bind anions is described. The genesis of triazolophane macrocycles emerges out of activity surrounding 1,2,3-triazoles made using click chemistry; and the same triazoles are responsible for anion capture. Mistakes made and lessons learnt in anion recognition provide deeper understanding that, together with theory, now provides for computer-aided receptor design. The lessons are acted upon in the creation of two new macrocycles. First, cyanostars are larger and like to capture large anions. Second is tricarb, which also favors large anions but shows a propensity to self-assemble in an orderly and stable manner, laying a foundation for future designs of hierarchical nanostructures. PMID:27340452

  19. Cu,Zn superoxide dismutase and copper deprivation and toxicity in Saccharomyces cerevisiae.

    PubMed Central

    Greco, M A; Hrab, D I; Magner, W; Kosman, D J

    1990-01-01

    A wild-type strain of the yeast Saccharomyces cerevisiae grown at a medium [Cu] of less than or equal to 50 nM contained less Cu,Zn superoxide dismutase (SOD) mRNA (60%), protein (50%), and activity (50%) in comparison with control cultures grown in normal synthetic dextrose medium ([Cu] approximately 150 nM). A compensating increase in the activity of MnSOD was observed, as well as a smaller increase in MnSOD mRNA. These medium [Cu]-dependent differences were observed in cultures under N2 as well. Addition of Cu2+ (100 microM) to Cu-depleted cultures resulted in a rapid (30 min) increase in Cu,ZnSOD mRNA (2.5-fold), protein (3.5-fold), and activity (4-fold). Ethidium bromide (200 micrograms/ml of culture) inhibited by 50% the increase in Cu,ZnSOD mRNA, while cycloheximide (100 micrograms/ml of culture) inhibited completely the increase in protein and activity. Addition of Cu2+ to greater than or equal to 100 microM caused no further increase in these parameters but did result in a loss of total cellular RNA and translatable RNA, a decline in the population of specific mRNAs, a decrease in total soluble protein and the activity of specific enzymes, and an inhibition of incorporation of [3H]uracil and [3H]leucine into trichloroacetic acid-insoluble material. Cu,ZnSOD mRNA, protein, and activity appeared relatively more resistant to these effects of Cu toxicity than did the other cellular constituents examined. When evaluated in cultures under N2, the cellular response to [Cu] of greater than or equal to 100 microM was limited to the inhibition of radiolabel incorporation into trichloroacetic acid-insoluble material. All other effects were absent in the absence of O2. The data indicated that medium (cellular) Cu alters the steady-state level of Cu, ZnSOD. This regulation may be at the level of transcription. In addition, Cu,ZnSOD exhibits the characteristics of Cu-stress protein in that it and its mRNA are enhanced relative to other cellular species under conditions

  20. Salicylic acid-induced superoxide generation catalyzed by plant peroxidase in hydrogen peroxide-independent manner

    PubMed Central

    Kimura, Makoto; Kawano, Tomonori

    2015-01-01

    It has been reported that salicylic acid (SA) induces both immediate spike and long lasting phases of oxidative burst represented by the generation of reactive oxygen species (ROS) such as superoxide anion radical (O2•−). In general, in the earlier phase of oxidative burst, apoplastic peroxidase are likely involved and in the late phase of the oxidative burst, NADPH oxidase is likely involved. Key signaling events connecting the 2 phases of oxidative burst are calcium channel activation and protein phosphorylation events. To date, the known earliest signaling event in response to exogenously added SA is the cell wall peroxidase-catalyzed generation of O2•− in a hydrogen peroxide (H2O2)-dependent manner. However, this model is incomplete since the source of the initially required H2O2 could not be explained. Based on the recently proposed role for H2O2-independent mechanism for ROS production catalyzed by plant peroxidases (Kimura et al., 2014, Frontiers in Plant Science), we hereby propose a novel model for plant peroxidase-catalyzed oxidative burst fueled by SA. PMID:26633563

  1. Manganese Superoxide Dismutase in Cancer Prevention

    PubMed Central

    Robbins, Delira

    2014-01-01

    Abstract Significance: Cancer is the second leading cause of death in the United States. Considering the quality of life and treatment cost, the best way to fight against cancer is to prevent or suppress cancer development. Cancer is preventable as indicated by human papilloma virus (HPV) vaccination and tamoxifen/raloxifen treatment in breast cancer prevention. The activities of superoxide dismutases (SODs) are often lowered during early cancer development, making it a rational candidate for cancer prevention. Recent Advances: SOD liposome and mimetics have been shown to be effective in cancer prevention animal models. They've also passed safety tests during early phase clinical trials. Dietary supplement-based SOD cancer prevention provides another opportunity for antioxidant-based cancer prevention. New mechanistic studies have revealed that SOD inhibits not only oncogenic activity, but also subsequent metabolic shifts during early tumorigenesis. Critical Issues: Lack of sufficient animal model studies targeting specific cancers; and lack of clinical trials and support from pharmaceutical industries also hamper efforts in further advancing SOD-based cancer prevention. Future Directions: To educate and obtain support from our society that cancer is preventable. To combine SOD-based therapeutics with other cancer preventive agents to obtain synergistic effects. To formulate a dietary supplementation-based antioxidant approach for cancer prevention. Lastly, targeting specific populations who are prone to carcinogens, which can trigger oxidative stress as the mechanism of carcinogenesis. Antioxid. Redox Signal. 20, 1628–1645. PMID:23706068

  2. Oxygen plasmas used to synthesize superoxides

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T.

    1972-01-01

    Production of alkali metal superoxides by interaction of molecular oxygen with alkali metals or their salts is discussed. Diagram of reactor to show components and operating principles is provided. Analysis of chemical reactions involved is developed.

  3. Cryo-Trapping the Distorted Octahedral Reaction Intermediate of Manganese Superoxide Dismutase

    NASA Technical Reports Server (NTRS)

    Borgstahl, Gloria; Snell, Edward H.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Superoxide dismutase protects organisms from potentially damaging oxygen radicals by catalyzing the disproportion of superoxide to oxygen and hydrogen peroxide. We report the use of cryogenic temperatures to kinetically trap the 6th ligand bound to the active site of manganese superoxide dismutase. Using cryocrystallography and synchrotron radiation, we describe at 1.55A resolution the six-coordinate, distorted octahedral geometry assumed by the active site during catalysis and compare it to the room temperature, five-coordinate trigonal-bipyramidal active site. Gateway residues Tyr34, His30 and a tightly bound water molecule are implicated in closing off the active site and blocking the escape route of superoxide during dismutation.

  4. ANNUAL REPORT. SUPRAMOLECULAR CHEMISTRY OF SELECTIVE ANION RECOGNITION FOR ANIONS OF ENVIRONMENTAL RELEVANCE

    EPA Science Inventory

    This project involves the design and synthesis of receptors for anions of environmental importance, including emphasis on high level and low activity waste. Polyammonium macrocycles as receptors and nitrate as target anion were the focus of the first phase of this project. A seco...

  5. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    SciTech Connect

    Bowman-James, K.; Wilson, G.; Moyer, B. A.

    2004-12-11

    This project involves the design and synthesis of receptors for oxoanions of environmental importance, including emphasis on high level and low activity waste. Target anions have included primarily oxoanions and a study of the basic concepts behind selective binding of target anions. A primary target has been sulfate because of its deleterious influence on the vitrification of tank wastes

  6. Cupric yersiniabactin is a virulence-associated superoxide dismutase mimic.

    PubMed

    Chaturvedi, Kaveri S; Hung, Chia S; Giblin, Daryl E; Urushidani, Saki; Austin, Anthony M; Dinauer, Mary C; Henderson, Jeffrey P

    2014-02-21

    Many Gram-negative bacteria interact with extracellular metal ions by expressing one or more siderophore types. Among these, the virulence-associated siderophore yersiniabactin (Ybt) is an avid copper chelator, forming stable cupric (Cu(II)-Ybt) complexes that are detectable in infected patients. Here we show that Ybt-expressing E. coli are protected from intracellular killing within copper-replete phagocytic cells. This survival advantage is highly dependent upon the phagocyte respiratory burst, during which superoxide is generated by the NADPH oxidase complex. Chemical fractionation links this phenotype to a previously unappreciated superoxide dismutase (SOD)-like activity of Cu(II)-Ybt. Unlike previously described synthetic copper-salicylate (Cu(II)-SA) SOD mimics, the salicylate-based natural product Cu(II)-Ybt retains catalytic activity at physiologically plausible protein concentrations. These results reveal a new virulence-associated adaptation based upon spontaneous assembly of a non-protein catalyst. PMID:24283977

  7. Cupric Yersiniabactin Is a Virulence-Associated Superoxide Dismutase Mimic

    PubMed Central

    2013-01-01

    Many Gram-negative bacteria interact with extracellular metal ions by expressing one or more siderophore types. Among these, the virulence-associated siderophore yersiniabactin (Ybt) is an avid copper chelator, forming stable cupric (Cu(II)-Ybt) complexes that are detectable in infected patients. Here we show that Ybt-expressing E. coli are protected from intracellular killing within copper-replete phagocytic cells. This survival advantage is highly dependent upon the phagocyte respiratory burst, during which superoxide is generated by the NADPH oxidase complex. Chemical fractionation links this phenotype to a previously unappreciated superoxide dismutase (SOD)-like activity of Cu(II)-Ybt. Unlike previously described synthetic copper-salicylate (Cu(II)-SA) SOD mimics, the salicylate-based natural product Cu(II)-Ybt retains catalytic activity at physiologically plausible protein concentrations. These results reveal a new virulence-associated adaptation based upon spontaneous assembly of a non-protein catalyst. PMID:24283977

  8. Regulation of bradykinin-induced activation of volume-sensitive outwardly rectifying anion channels by Ca2+ nanodomains in mouse astrocytes

    PubMed Central

    Akita, Tenpei; Okada, Yasunobu

    2011-01-01

    Abstract Volume-sensitive outwardly rectifying (VSOR) anion channels play a key role in a variety of essential cell functions including cell volume regulation, cell death induction and intercellular communications. We previously demonstrated that, in cultured mouse cortical astrocytes, VSOR channels are activated in response to an inflammatory mediator, bradykinin, even without an increase in cell volume. Here we report that this VSOR channel activation must be mediated firstly by ‘nanodomains’ of high [Ca2+]i generated at the sites of both Ca2+ release from intracellular Ca2+ stores and Ca2+ entry at the plasma membrane. Bradykinin elicited a [Ca2+]i rise, initially caused by Ca2+ release and then by Ca2+ entry. Suppression of the [Ca2+]i rise by removal of extracellular Ca2+ and by depletion of Ca2+ stores suppressed the VSOR channel activation in a graded manner. Quantitative RT-PCR and suppression of gene expression with small interfering RNAs indicated that Orai1, TRPC1 and TRPC3 channels are involved in the Ca2+ entry and especially the entry through TRPC1 channels is strongly involved in the bradykinin-induced activation of VSOR channels. Moreover, Ca2+-dependent protein kinases Cα and β were found to mediate the activation after the [Ca2+]i rise through inducing generation of reactive oxygen species. Intracellular application of a slow Ca2+ chelator, EGTA, at 10 mm or a fast chelator, BAPTA, at 1 mm, however, had little effect on the VSOR channel activation. Application of BAPTA at 10 mm suppressed significantly the activation to one-third. These suggest that the VSOR channel activation induced by bradykinin is regulated by Ca2+ in the vicinity of individual Ca2+ release and entry channels, providing a basis for local control of cell volume regulation and intercellular communications. PMID:21690189

  9. High Extracellular Levels of Mycobacterium tuberculosis Glutamine Synthetase and Superoxide Dismutase in Actively Growing Cultures Are Due to High Expression and Extracellular Stability Rather than to a Protein-Specific Export Mechanism

    PubMed Central

    Tullius, Michael V.; Harth, Günter; Horwitz, Marcus A.

    2001-01-01

    Glutamine synthetase (GS) and superoxide dismutase (SOD), large multimeric enzymes that are thought to play important roles in the pathogenicity of Mycobacterium tuberculosis, are among the bacterium's major culture filtrate proteins in actively growing cultures. Although these proteins lack a leader peptide, their presence in the extracellular medium during early stages of growth suggested that they might be actively secreted. To understand their mechanism of export, we cloned the homologous genes (glnA1 and sodA) from the rapid-growing, nonpathogenic Mycobacterium smegmatis, generated glnA1 and sodA mutants of M. smegmatis by allelic exchange, and quantitated expression and export of both mycobacterial and nonmycobacterial GSs and SODs in these mutants. We also quantitated expression and export of homologous and heterologous SODs from M. tuberculosis. When each of the genes was expressed from a multicopy plasmid, M. smegmatis exported comparable proportions of both the M. tuberculosis and M. smegmatis GSs (in the glnA1 strain) or SODs (in the sodA strain), in contrast to previous observations in wild-type strains. Surprisingly, recombinant M. smegmatis and M. tuberculosis strains even exported nonmycobacterial SODs. To determine the extent to which export of these large, leaderless proteins is expression dependent, we constructed a recombinant M. tuberculosis strain expressing green fluorescent protein (GFP) at high levels and a recombinant M. smegmatis strain coexpressing the M. smegmatis GS, M. smegmatis SOD, and M. tuberculosis BfrB (bacterioferritin) at high levels. The recombinant M. tuberculosis strain exported GFP even in early stages of growth and at proportions very similar to those of the endogenous M. tuberculosis GS and SOD. Similarly, the recombinant M. smegmatis strain exported bacterioferritin, a large (∼500-kDa), leaderless, multimeric protein, in proportions comparable to GS and SOD. In contrast, high-level expression of the large, leaderless

  10. Purification of human copper, zinc superoxide dismutase by copper chelate affinity chromatography

    SciTech Connect

    Weslake, R.J.; Chesney, S.L.; Petkau, A.; Friesen, A.D.

    1986-05-15

    Copper, zinc superoxide dismutase was isolated from human red blood cell hemolysate by DEAE-Sepharose and copper chelate affinity chromatography. Enzyme preparations had specific activities ranging from 3400 to 3800 U/mg and recoveries were approximately 60% of the enzyme activity in the lysate. Copper chelate affinity chromatography resulted in a purification factor of about 60-fold. The homogeneity of the superoxide dismutase preparation was analyzed by sodium dodecyl sulfate-gel electrophoresis, analytical gel filtration chromatography, and isoelectric focusing.

  11. Tetraorganylammonium superoxide compounds: close to unperturbed superoxide ions in the solid state.

    PubMed

    Dietzel, Pascal D C; Kremer, Reinhard K; Jansen, Martin

    2004-04-14

    Trimethylphenylammonium superoxide (1) and tetrabutylammonium superoxide (2) were prepared by ion-exchange reaction in liquid ammonia. Both compounds were structurally characterized by single-crystal X-ray diffraction. The crystal structure of 2 contains solvent ammonia molecules that are hydrogen bonded to the superoxide ion and therefore may influence the bonding properties of the superoxide ion. The crystal structure of 1 does not contain any solvent molecules. Therefore, it represents the best known approximation to the virtually isolated superoxide ion in the solid state to date. The O-O bond length is 1.332(2) A in 1 and 1.312(2) A in 2. Magnetization measurements show that the susceptibilities of both compounds follow an ideal Curie law down to 2 K reflecting an absence of intermolecular exchange effects between the superoxide ions. The effective magnetic moments of both compounds are larger than the spin-only value due to contributions of the orbital momentum in the superoxide ion. The values of the magnetic moment comply well with the g factors obtained from electron paramagnetic resonance spectra. The g tensors themselves reflect the anisotropic environment of the superoxide ions. The Pi(g) energy levels which are degenerate in the free superoxide ion split up in crystal fields of lower than tetragonal symmetry. The energy splitting is estimated from the diagonal elements of the g tensor of 1. PMID:15070387

  12. Structural Re-arrangement and Peroxidase Activation of Cytochrome c by Anionic Analogues of Vitamin E, Tocopherol Succinate and Tocopherol Phosphate*

    PubMed Central

    Yanamala, Naveena; Kapralov, Alexander A.; Djukic, Mirjana; Peterson, Jim; Mao, Gaowei; Klein-Seetharaman, Judith; Stoyanovsky, Detcho A.; Stursa, Jan; Neuzil, Jiri; Kagan, Valerian E.

    2014-01-01

    Cytochrome c is a multifunctional hemoprotein in the mitochondrial intermembrane space whereby its participation in electron shuttling between respiratory complexes III and IV is alternative to its role in apoptosis as a peroxidase activated by interaction with cardiolipin (CL), and resulting in selective CL peroxidation. The switch from electron transfer to peroxidase function requires partial unfolding of the protein upon binding of CL, whose specific features combine negative charges of the two phosphate groups with four hydrophobic fatty acid residues. Assuming that other endogenous small molecule ligands with a hydrophobic chain and a negatively charged functionality may activate cytochrome c into a peroxidase, we investigated two hydrophobic anionic analogues of vitamin E, α-tocopherol succinate (α-TOS) and α-tocopherol phosphate (α-TOP), as potential inducers of peroxidase activity of cytochrome c. NMR studies and computational modeling indicate that they interact with cytochrome c at similar sites previously proposed for CL. Absorption spectroscopy showed that both analogues effectively disrupt the Fe-S(Met80) bond associated with unfolding of cytochrome c. We found that α-TOS and α-TOP stimulate peroxidase activity of cytochrome c. Enhanced peroxidase activity was also observed in isolated rat liver mitochondria incubated with α-TOS and tBOOH. A mitochondria-targeted derivative of TOS, triphenylphosphonium-TOS (mito-VES), was more efficient in inducing H2O2-dependent apoptosis in mouse embryonic cytochrome c+/+ cells than in cytochrome c−/− cells. Essential for execution of the apoptotic program peroxidase activation of cytochrome c by α-TOS may contribute to its known anti-cancer pharmacological activity. PMID:25278024

  13. Anion-π Enzymes

    PubMed Central

    2016-01-01

    In this report, we introduce artificial enzymes that operate with anion-π interactions, an interaction that is essentially new to nature. The possibility to stabilize anionic intermediates and transition states on an π-acidic surface has been recently demonstrated, using the addition of malonate half thioesters to enolate acceptors as a biologically relevant example. The best chiral anion-π catalysts operate with an addition/decarboxylation ratio of 4:1, but without any stereoselectivity. To catalyze this important but intrinsically disfavored reaction stereoselectively, a series of anion-π catalysts was equipped with biotin and screened against a collection of streptavidin mutants. With the best hit, the S112Y mutant, the reaction occurred with 95% ee and complete suppression of the intrinsically favored side product from decarboxylation. This performance of anion-π enzymes rivals, if not exceeds, that of the best conventional organocatalysts. Inhibition of the S112Y mutant by nitrate but not by bulky anions supports that contributions from anion-π interactions exist and matter, also within proteins. In agreement with docking results, K121 is shown to be essential, presumably to lower the pKa of the tertiary amine catalyst to operate at the optimum pH around 3, that is below the pKa of the substrate. Most importantly, increasing enantioselectivity with different mutants always coincides with increasing rates and conversion, i.e., selective transition-state stabilization. PMID:27413782

  14. Anion-π Enzymes.

    PubMed

    Cotelle, Yoann; Lebrun, Vincent; Sakai, Naomi; Ward, Thomas R; Matile, Stefan

    2016-06-22

    In this report, we introduce artificial enzymes that operate with anion-π interactions, an interaction that is essentially new to nature. The possibility to stabilize anionic intermediates and transition states on an π-acidic surface has been recently demonstrated, using the addition of malonate half thioesters to enolate acceptors as a biologically relevant example. The best chiral anion-π catalysts operate with an addition/decarboxylation ratio of 4:1, but without any stereoselectivity. To catalyze this important but intrinsically disfavored reaction stereoselectively, a series of anion-π catalysts was equipped with biotin and screened against a collection of streptavidin mutants. With the best hit, the S112Y mutant, the reaction occurred with 95% ee and complete suppression of the intrinsically favored side product from decarboxylation. This performance of anion-π enzymes rivals, if not exceeds, that of the best conventional organocatalysts. Inhibition of the S112Y mutant by nitrate but not by bulky anions supports that contributions from anion-π interactions exist and matter, also within proteins. In agreement with docking results, K121 is shown to be essential, presumably to lower the pK a of the tertiary amine catalyst to operate at the optimum pH around 3, that is below the pK a of the substrate. Most importantly, increasing enantioselectivity with different mutants always coincides with increasing rates and conversion, i.e., selective transition-state stabilization. PMID:27413782

  15. Superoxide dismutase is dispensable for normal animal lifespan.

    PubMed

    Van Raamsdonk, Jeremy Michael; Hekimi, Siegfried

    2012-04-10

    Reactive oxygen species (ROS) are toxic oxygen-containing molecules that can damage multiple components of the cell and have been proposed to be the primary cause of aging. The antioxidant enzyme superoxide dismutase (SOD) is the only eukaryotic enzyme capable of detoxifying superoxide, one type of ROS. The fact that SOD is present in all aerobic organisms raises the question as to whether SOD is absolutely required for animal life and whether the loss of SOD activity will result in decreased lifespan. Here we use the genetic model organism Caenorhabditis elegans to generate an animal that completely lacks SOD activity (sod-12345 worms). We show that sod-12345 worms are viable and exhibit a normal lifespan, despite markedly increased sensitivity to multiple stresses. This is in stark contrast to what is observed in other genetic model organisms where the loss of a single sod gene can result in severely decreased survival. Investigating the mechanism underlying the normal lifespan of sod-12345 worms reveals that their longevity results from a balance between the prosurvival signaling and the toxicity of superoxide. Overall, our results demonstrate that SOD activity is dispensable for normal animal lifespan but is required to survive acute stresses. Moreover, our findings indicate that maintaining normal stress resistance is not crucial to the rate of aging. PMID:22451939

  16. Superoxide release by confluent endothelial cells, an electron spin resonance (ESR) study

    NASA Astrophysics Data System (ADS)

    Barbacanne, M.-A.; Margeat, E.; Arnal, J.-F.; Nepveu, F.; Souchard, J.-P.

    1999-01-01

    In the present study we used ESR to detect the release of oxygen radicals by endothelial cells stimulated with calcium ionophore A23187. Dimethyl-1-pyrroline-N-oxide (DMPO) was used as a spin trap. Although the observed adduct (DMPO-OH) suggested the presence of the hydroxyl radical, the use of superoxide dismutase and catalase revealed that superoxide anion was released in the medium. Superoxide production was more efficient when the cells were post-confluent for a few days. The release of superoxide was 3-fold greater in growth arrested cells (D6-D9) than in proliferating cells (D0). Although two inhibitors of the mitochondrial respiratory chain carbanyl cyanide m-chlorophenylhydrazone (CCCP), antimycine decreased the ESR signal by 35%, the use of superoxide dismutase (SOD) and tumor necrosis factor (TNF) suggested that the release of O2- occurred in the cell membrane. The physiological significance of this extracellular superoxide release by post-confluent cells deserves further study. Ce travail présente une étude par RSE de la libération des radicaux oxygénés par les cellules endothéliales bovines (BAEC) sous l'effet de l'ionophore calcique A23187. Le diméthyl-1-pyrroline-N-oxyde (DMPO) est utilisé comme piégeur de spin. Bien que l'adduit formé (DMPO-OH) semble traduire la présence du radical hydroxyle .OH, l'utilisation de superoxyde dismutase et de catalase a révélé que les cellules endothéliales libéraient l'anion superoxyde. La production du radical superoxyde est plus abondante lorsque les cellules sont à confluence depuis plusieurs jours. Lorsque les cellules sont entre J6 et J9, la production de superoxyde est trois fois supérieure à celle observée lorsque les cellules sont en prolifération (J0). Bien que deux inhibiteurs de la chaîne mitochondriale 1-carbonyldinitrile-m-chlorophenylhydrazone (CCCP), antimycineinhibent de 35 % le signal RPE, l'utilisation de superoxyde dismutase (SOD) et du tumor necrosis factor (TNF) sugg

  17. Manganese superoxide dismutase: guardian of the powerhouse.

    PubMed

    Holley, Aaron K; Bakthavatchalu, Vasudevan; Velez-Roman, Joyce M; St Clair, Daret K

    2011-01-01

    The mitochondrion is vital for many metabolic pathways in the cell, contributing all or important constituent enzymes for diverse functions such as β-oxidation of fatty acids, the urea cycle, the citric acid cycle, and ATP synthesis. The mitochondrion is also a major site of reactive oxygen species (ROS) production in the cell. Aberrant production of mitochondrial ROS can have dramatic effects on cellular function, in part, due to oxidative modification of key metabolic proteins localized in the mitochondrion. The cell is equipped with myriad antioxidant enzyme systems to combat deleterious ROS production in mitochondria, with the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD) acting as the chief ROS scavenging enzyme in the cell. Factors that affect the expression and/or the activity of MnSOD, resulting in diminished antioxidant capacity of the cell, can have extraordinary consequences on the overall health of the cell by altering mitochondrial metabolic function, leading to the development and progression of numerous diseases. A better understanding of the mechanisms by which MnSOD protects cells from the harmful effects of overproduction of ROS, in particular, the effects of ROS on mitochondrial metabolic enzymes, may contribute to the development of novel treatments for various diseases in which ROS are an important component. PMID:22072939

  18. Manganese Superoxide Dismutase: Guardian of the Powerhouse

    PubMed Central

    Holley, Aaron K.; Bakthavatchalu, Vasudevan; Velez-Roman, Joyce M.; St. Clair, Daret K.

    2011-01-01

    The mitochondrion is vital for many metabolic pathways in the cell, contributing all or important constituent enzymes for diverse functions such as β-oxidation of fatty acids, the urea cycle, the citric acid cycle, and ATP synthesis. The mitochondrion is also a major site of reactive oxygen species (ROS) production in the cell. Aberrant production of mitochondrial ROS can have dramatic effects on cellular function, in part, due to oxidative modification of key metabolic proteins localized in the mitochondrion. The cell is equipped with myriad antioxidant enzyme systems to combat deleterious ROS production in mitochondria, with the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD) acting as the chief ROS scavenging enzyme in the cell. Factors that affect the expression and/or the activity of MnSOD, resulting in diminished antioxidant capacity of the cell, can have extraordinary consequences on the overall health of the cell by altering mitochondrial metabolic function, leading to the development and progression of numerous diseases. A better understanding of the mechanisms by which MnSOD protects cells from the harmful effects of overproduction of ROS, in particular, the effects of ROS on mitochondrial metabolic enzymes, may contribute to the development of novel treatments for various diseases in which ROS are an important component. PMID:22072939

  19. Manganese superoxide dismutase: beyond life and death

    PubMed Central

    Holley, Aaron K.; Dhar, Sanjit Kumar; Xu, Yong

    2010-01-01

    Manganese superoxide dismutase (MnSOD) is a nuclear-encoded antioxidant enzyme that localizes to the mitochondria. Expression of MnSOD is essential for the survival of aerobic life. Transgenic mice expressing a luciferase reporter gene under the control of the human MnSOD promoter demonstrate that the level of MnSOD is reduced prior to the formation of cancer. Overexpression of MnSOD in transgenic mice reduces the incidences and multiplicity of papillomas in a DMBA/TPA skin carcinogenesis model. However, MnSOD deficiency does not lead to enhanced tumorigenicity of skin tissue similarly treated because MnSOD can modulate both the p53-mediated apoptosis and AP-1-mediated cell proliferation pathways. Apoptosis is associated with an increase in mitochondrial levels of p53 suggesting a link between MnSOD deficiency and mitochondrial-mediated apoptosis. Activation of p53 is preventable by application of a SOD mimetic (MnTE-2-PyP5+). Thus, p53 translocation to mitochondria and subsequent inactivation of MnSOD explain the observed mitochondrial dysfunction that leads to transcription-dependent mechanisms of p53-induced apoptosis. Administration of MnTE-2-PyP5+ following apoptosis but prior to proliferation leads to suppression of protein carbonyls and reduces the activity of AP-1 and the level of the proliferating cellular nuclear antigen, without reducing the activity of p53 or DNA fragmentation following TPA treatment. Remarkably, the incidence and multiplicity of skin tumors are drastically reduced in mice that receive MnTE-2-PyP5+ prior to cell proliferation. The results demonstrate the role of MnSOD beyond its essential role for survival and suggest a novel strategy for an antioxidant approach to cancer intervention. PMID:20454814

  20. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions.

    PubMed

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-04-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from -3.4±0.3 to -4.3±0.3‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from -7.0±0.4 to -13.6±1.2‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO4(-)). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO). PMID:26784392

  1. Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat

    PubMed Central

    Lepist, Eve-Irene; Zhang, Xuexiang; Hao, Jia; Huang, Jane; Kosaka, Alan; Birkus, Gabriel; Murray, Bernard P; Bannister, Roy; Cihlar, Tomas; Huang, Yong; Ray, Adrian S

    2014-01-01

    Many xenobiotics including the pharmacoenhancer cobicistat increase serum creatinine by inhibiting its renal active tubular secretion without affecting the glomerular filtration rate. This study aimed to define the transporters involved in creatinine secretion, applying that knowledge to establish the mechanism for xenobiotic-induced effects. The basolateral uptake transporters organic anion transporter OAT2 and organic cation transporters OCT2 and OCT3 were found to transport creatinine. At physiologic creatinine concentrations, the specific activity of OAT2 transport was over twofold higher than OCT2 or OCT3, establishing OAT2 as a likely relevant creatinine transporter and further challenging the traditional view that creatinine is solely transported by a cationic pathway. The apical multidrug and toxin extrusion transporters MATE1 and MATE2-K demonstrated low-affinity and high-capacity transport. All drugs known to affect creatinine inhibited OCT2 and MATE1. Similar to cimetidine and ritonavir, cobicistat had the greatest effect on MATE1 with a 50% inhibition constant of 0.99 μM for creatinine transport. Trimethoprim potently inhibited MATE2-K, whereas dolutegravir preferentially inhibited OCT2. Cimetidine was unique, inhibiting all transporters that interact with creatinine. Thus, the clinical observation of elevated serum creatinine in patients taking cobicistat is likely a result of OCT2 transport, facilitating intracellular accumulation, and MATE1 inhibition. PMID:24646860

  2. Heterodimeric structure of superoxide dismutase in complex with its metallochaperone

    SciTech Connect

    Lamb, A.L.; Torres, A.S.; O'Halloran, T.V.; Rosenzweig, A.C.

    2010-03-08

    The copper chaperone for superoxide dismutase (CCS) activates the eukaryotic antioxidant enzyme copper, zinc superoxide dismutase (SOD1). The 2.9 {angstrom} resolution structure of yeast SOD1 complexed with yeast CCS (yCCS) reveals that SOD1 interacts with its metallochaperone to form a complex comprising one monomer of each protein. The heterodimer interface is remarkably similar to the SOD1 and yCCS homodimer interfaces. Striking conformational rearrangements are observed in both the chaperone and target enzyme upon complex formation, and the functionally essential C-terminal domain of yCCS is well positioned to play a key role in the metal ion transfer mechanism. This domain is linked to SOD1 by an intermolecular disulfide bond that may facilitate or regulate copper delivery.

  3. Intrinsic anion oxidation potentials.

    PubMed

    Johansson, Patrik

    2006-11-01

    Anions of lithium battery salts have been investigated by electronic structure calculations with the objective to find a computational measure to correlate with the observed (in)stability of nonaqueous lithium battery electrolytes vs oxidation often encountered in practice. Accurate prediction of intrinsic anion oxidation potentials is here made possible by computing the vertical free energy difference between anion and neutral radical (Delta Gv) and further strengthened by an empirical correction using only the anion volume as a parameter. The 6-311+G(2df,p) basis set, the VSXC functional, and the C-PCM SCRF algorithm were used. The Delta Gv calculations can be performed using any standard computational chemistry software. PMID:17078600

  4. Anion exchange polymer electrolytes

    SciTech Connect

    Kim, Yu Seung; Kim, Dae Sik

    2015-06-02

    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  5. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth.

    PubMed

    Zielonka, Jacek; Kalyanaraman, B

    2010-04-15

    Hydroethidine (HE; or dihydroethidium) is the most popular fluorogenic probe used for detecting intracellular superoxide radical anion. The reaction between superoxide and HE generates a highly specific red fluorescent product, 2-hydroxyethidium (2-OH-E(+)). In biological systems, another red fluorescent product, ethidium, is also formed, usually at a much higher concentration than 2-OH-E(+). In this article, we review the methods to selectively detect the superoxide-specific product (2-OH-E(+)) and the factors affecting its levels in cellular and biological systems. The most important conclusion of this review is that it is nearly impossible to assess the intracellular levels of the superoxide-specific product, 2-OH-E(+), using confocal microscopy or other fluorescence-based microscopic assays and that it is essential to measure by HPLC the intracellular HE and other oxidation products of HE, in addition to 2-OH-E(+), to fully understand the origin of red fluorescence. The chemical reactivity of mitochondria-targeted hydroethidine (Mito-HE, MitoSOX red) with superoxide is similar to the reactivity of HE with superoxide, and therefore, all of the limitations attributed to the HE assay are applicable to Mito-HE (or MitoSOX) as well. PMID:20116425

  6. Hydroethidine- and Mito-SOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: Another inconvenient truth

    PubMed Central

    Zielonka, Jacek; Kalyanaraman, B.

    2010-01-01

    Hydroethidine (or dihydroethidium) (HE) is the most popular fluorogenic probe used for detecting intracellular superoxide radical anion. The reaction between superoxide and HE generates a highly specific red fluorescent product, 2-hydroxyethidium (2-OH-E+). In biological systems, another red fluorescent product, ethidium (E+), is also formed, usually at a much higher concentration than 2-OH-E+. In this article, we have reviewed the methods to selectively detect the superoxide-specific product (2-OH-E+) and the factors affecting its levels in cellular and biological systems. The most important conclusion of the present review is that it is nearly impossible to assess the intracellular levels of the superoxide specific product, 2-OH-E+, using the confocal microscopy or other fluorescence-based microscopic assays and that it is essential to measure by HPLC the intracellular HE and other oxidation products of HE, in addition to 2-OH-E+, in order to fully understand the origin of red fluorescence. The chemical reactivity of mitochondria-targeted hydroethidine (Mito-HE, MitoSOX Red ®) with superoxide is similar to the reactivity of HE with superoxide and therefore, all of the limitations attributed to the HE assay are applicable to Mito-HE (or Mito-SOX) as well. PMID:20116425

  7. Superoxide Dismutase (Sod-1) Null Mutants of Neurospora Crassa: Oxidative Stress Sensitivity, Spontaneous Mutation Rate and Response to Mutagens

    PubMed Central

    Chary, P.; Dillon, D.; Schroeder, A. L.; Natvig, D. O.

    1994-01-01

    Enzymatic superoxide-dismutase activity is believed to be important in defense against the toxic effects of superoxide. Although superoxide dismutases are among the best studied proteins, numerous questions remain concerning the specific biological roles of the various superoxide-dismutase types. In part, this is because the proposed damaging effects of superoxide are manifold, ranging from inactivation of certain metabolic enzymes to DNA damage. Studies with superoxide-deficient mutants have proven valuable, but surprisingly few such studies have been reported. We have constructed and characterized Neurospora crassa mutants that are null for sod-1, the gene that encodes copper-zinc superoxide dismutase. Mutant strains are sensitive to paraquat and elevated oxygen concentrations, and they exhibit an increased spontaneous mutation rate. They appear to have near wild-type sensitivities to near- and far-UV, heat shock and γ-irradiation. Unlike the equivalent Saccharomyces cerevisiae mutant and the sodA sodB double mutant of Escherichia coli, they do not exhibit aerobic auxotrophy. These results are discussed in the context of an attempt to identify consensus phenotypes among superoxide dismutase-deficient mutants. N. crassa sod-1 null mutant strains were also employed in genetic and subcellular fractionation studies. Results support the hypothesis that a single gene (sod-1), located between Fsr-12 and leu-3 on linkage group I, is responsible for most or all CuZn superoxide dismutase activity in this organism. PMID:8088518

  8. Evaluation of antioxidant enzymes activities and identification of intermediate products during phytoremediation of an anionic dye (C.I. Acid Blue 92) by pennywort (Hydrocotyle vulgaris).

    PubMed

    Vafaei, Fatemeh; Movafeghi, Ali; Khataee, Alireza

    2013-11-01

    The potential of pennywort (Hydrocotyle vulgaris) for phytoremediation of C.I. Acid Blue 92 (AB92) was evaluated. The effects of various experimental parameters including pH, temperature, dye concentration and plant weight on dye removal efficiency were investigated. The results showed that the optimal condition for dye removal were pH 3.5 and temperature 25 degree C. Moreover, the absolute dye removal enhanced with increase in the initial dye concentration and plant weight. Pennywort showed the same removal efficiency in repeated experiments (four runs) as that obtained from the first run (a 6-day period). Therefore, the ability of the plant in consecutive removal of AB92 confirmed the biodegradation process. Accordingly, a number of produced intermediate compounds were identified. The effect of treatment on photosynthesis and antioxidant defense system including superoxide dismutase, peroxidase and catalase in plant roots and leaves were evaluated. The results revealed a reduction in photosynthetic pigments content under dye treatments. Antioxidant enzyme responses showed marked variations with respect to th