Modeling active memory: Experiment, theory and simulation
NASA Astrophysics Data System (ADS)
Amit, Daniel J.
2001-06-01
Neuro-physiological experiments on cognitively performing primates are described to argue that strong evidence exists for localized, non-ergodic (stimulus specific) attractor dynamics in the cortex. The specific phenomena are delay activity distributions-enhanced spike-rate distributions resulting from training, which we associate with working memory. The anatomy of the relevant cortex region and the physiological characteristics of the participating elements (neural cells) are reviewed to provide a substrate for modeling the observed phenomena. Modeling is based on the properties of the integrate-and-fire neural element in presence of an input current of Gaussian distribution. Theory of stochastic processes provides an expression for the spike emission rate as a function of the mean and the variance of the current distribution. Mean-field theory is then based on the assumption that spike emission processes in different neurons in the network are independent, and hence the input current to a neuron is Gaussian. Consequently, the dynamics of the interacting network is reduced to the computation of the mean and the variance of the current received by a cell of a given population in terms of the constitutive parameters of the network and the emission rates of the neurons in the different populations. Within this logic we analyze the stationary states of an unstructured network, corresponding to spontaneous activity, and show that it can be stable only if locally the net input current of a neuron is inhibitory. This is then tested against simulations and it is found that agreement is excellent down to great detail. A confirmation of the independence hypothesis. On top of stable spontaneous activity, keeping all parameters fixed, training is described by (Hebbian) modification of synapses between neurons responsive to a stimulus and other neurons in the module-synapses are potentiated between two excited neurons and depressed between an excited and a quiescent neuron
Theory and modeling of active brazing.
van Swol, Frank B.; Miller, James Edward; Lechman, Jeremy B.; Givler, Richard C.
2013-09-01
Active brazes have been used for many years to produce bonds between metal and ceramic objects. By including a relatively small of a reactive additive to the braze one seeks to improve the wetting and spreading behavior of the braze. The additive modifies the substrate, either by a chemical surface reaction or possibly by alloying. By its nature, the joining process with active brazes is a complex nonequilibrium non-steady state process that couples chemical reaction, reactant and product diffusion to the rheology and wetting behavior of the braze. Most of the these subprocesses are taking place in the interfacial region, most are difficult to access by experiment. To improve the control over the brazing process, one requires a better understanding of the melting of the active braze, rate of the chemical reaction, reactant and product diffusion rates, nonequilibrium composition-dependent surface tension as well as the viscosity. This report identifies ways in which modeling and theory can assist in improving our understanding.
Ryle, A
1991-12-01
An account of object relations theory (ORT), represented in terms of the procedural sequence model (PSM), is compared to the ideas of Vygotsky and activity theory (AT). The two models are seen to be compatible and complementary and their combination offers a satisfactory account of human psychology, appropriate for the understanding and integration of psychotherapy.
Modeling of active transmembrane transport in a mixture theory framework.
Ateshian, Gerard A; Morrison, Barclay; Hung, Clark T
2010-05-01
This study formulates governing equations for active transport across semi-permeable membranes within the framework of the theory of mixtures. In mixture theory, which models the interactions of any number of fluid and solid constituents, a supply term appears in the conservation of linear momentum to describe momentum exchanges among the constituents. In past applications, this momentum supply was used to model frictional interactions only, thereby describing passive transport processes. In this study, it is shown that active transport processes, which impart momentum to solutes or solvent, may also be incorporated in this term. By projecting the equation of conservation of linear momentum along the normal to the membrane, a jump condition is formulated for the mechano-electrochemical potential of fluid constituents which is generally applicable to nonequilibrium processes involving active transport. The resulting relations are simple and easy to use, and address an important need in the membrane transport literature.
The activation strain model and molecular orbital theory
Wolters, Lando P; Bickelhaupt, F Matthias
2015-01-01
The activation strain model is a powerful tool for understanding reactivity, or inertness, of molecular species. This is done by relating the relative energy of a molecular complex along the reaction energy profile to the structural rigidity of the reactants and the strength of their mutual interactions: ΔE(ζ) = ΔEstrain(ζ) + ΔEint(ζ). We provide a detailed discussion of the model, and elaborate on its strong connection with molecular orbital theory. Using these approaches, a causal relationship is revealed between the properties of the reactants and their reactivity, e.g., reaction barriers and plausible reaction mechanisms. This methodology may reveal intriguing parallels between completely different types of chemical transformations. Thus, the activation strain model constitutes a unifying framework that furthers the development of cross-disciplinary concepts throughout various fields of chemistry. We illustrate the activation strain model in action with selected examples from literature. These examples demonstrate how the methodology is applied to different research questions, how results are interpreted, and how insights into one chemical phenomenon can lead to an improved understanding of another, seemingly completely different chemical process. WIREs Comput Mol Sci 2015, 5:324–343. doi: 10.1002/wcms.1221 PMID:26753009
Human Activity Modeling: Toward A Pragmatic Integration of Activity Theory and Usage-Centered Design
NASA Astrophysics Data System (ADS)
Constantine, Larry L.
Human activity modeling is a systematic approach to organizing and representing the contextual aspects of tool use that is both well-grounded in an accepted theoretical framework and embedded within a proven design method. Activity theory provides the vocabulary and conceptual framework for understanding the human use of tools and other artifacts. Usage-centered design provides the methodological scaffolding for applying activity theory in practice. In this chapter, activity theory and usage-centered design are outlined and the connections between the two are highlighted. Simple extensions to the models of usage-centered design are introduced that together succinctly model the salient and most essential features of the activities within which tool use is embedded. Although not intended as a tutorial, examples of Activity Maps, Activity Profiles, and Participation Maps are provided.
ERIC Educational Resources Information Center
Koschmann, Timothy; Roschelle, Jeremy; Nardi, Bonnie A.
1998-01-01
Includes three articles that discuss activity theory, based on "Context and Consciousness." Topics include human-computer interaction; computer interfaces; hierarchical structuring; mediation; contradictions and development; failure analysis; and designing educational technology. (LRW)
Using Activity Theory to Model the Taiwan Atayal Students' Classroom Mathematical Activity
ERIC Educational Resources Information Center
Huang, Chih-Hsien; Lin, Fou-Lai
2013-01-01
From the sociocultural perspective, this research utilized activity theory as the theoretical framework to analyze the influences of cultural factors for Taiwanese Atayal junior high school students' study in mathematics. The research methodology adopted grounded theory, theoretical and methodological approaches which are illustrated through…
The importance of behavior theory in control system modeling of physical activity sensor data.
Riley, William T; Martin, Cesar A; Rivera, Daniel E
2014-01-01
Among health behaviors, physical activity has the most extensive record of research using passive sensors. Control systems and other system dynamic approaches have long been considered applicable for understanding human behavior, but only recently has the technology provided the precise and intensive longitudinal data required for these analytic approaches. Although sensors provide intensive data on the patterns and variations of physical activity over time, the influences of these variations are often unmeasured. Health behavior theories provide an explanatory framework of the putative mediators of physical activity changes. Incorporating the intensive longitudinal measurement of these theoretical constructs is critical to improving the fit of control system model of physical activity and for advancing behavioral theory. Theory-based control models also provide guidance on the nature of the controllers which serve as the basis for just-in-time adaptive interventions based on these control system models.
ERIC Educational Resources Information Center
Peim, Nick
2009-01-01
This paper seeks to re-examine Yrio Engestrom's activity theory as a technology of knowledge designed to enable positive transformations of specific practices. The paper focuses on a key paper where Engestrom defines the nature and present state of activity theory. Beginning with a brief account of the relations between activity theory and…
Reflections on Activity Theory
ERIC Educational Resources Information Center
Bakhurst, David
2009-01-01
It is sometimes suggested that activity theory represents the most important legacy of Soviet philosophy and psychology. But what exactly "is" activity theory? The canonical account in the West is given by Engestrom, who identifies three stages in the theory's development: from Vygotsky's insights, through Leontiev's articulation of the…
Temporal self-regulation theory: a neurobiologically informed model for physical activity behavior
Hall, Peter A.; Fong, Geoffrey T.
2015-01-01
Dominant explanatory models for physical activity behavior are limited by the exclusion of several important components, including temporal dynamics, ecological forces, and neurobiological factors. The latter may be a critical omission, given the relevance of several aspects of cognitive function for the self-regulatory processes that are likely required for consistent implementation of physical activity behavior in everyday life. This narrative review introduces temporal self-regulation theory (TST; Hall and Fong, 2007, 2013) as a new explanatory model for physical activity behavior. Important features of the model include consideration of the default status of the physical activity behavior, as well as the disproportionate influence of temporally proximal behavioral contingencies. Most importantly, the TST model proposes positive feedback loops linking executive function (EF) and the performance of physical activity behavior. Specifically, those with relatively stronger executive control (and optimized brain structures supporting it, such as the dorsolateral prefrontal cortex (PFC)) are able to implement physical activity with more consistency than others, which in turn serves to strengthen the executive control network itself. The TST model has the potential to explain everyday variants of incidental physical activity, sport-related excellence via capacity for deliberate practice, and variability in the propensity to schedule and implement exercise routines. PMID:25859196
Temporal self-regulation theory: a neurobiologically informed model for physical activity behavior.
Hall, Peter A; Fong, Geoffrey T
2015-01-01
Dominant explanatory models for physical activity behavior are limited by the exclusion of several important components, including temporal dynamics, ecological forces, and neurobiological factors. The latter may be a critical omission, given the relevance of several aspects of cognitive function for the self-regulatory processes that are likely required for consistent implementation of physical activity behavior in everyday life. This narrative review introduces temporal self-regulation theory (TST; Hall and Fong, 2007, 2013) as a new explanatory model for physical activity behavior. Important features of the model include consideration of the default status of the physical activity behavior, as well as the disproportionate influence of temporally proximal behavioral contingencies. Most importantly, the TST model proposes positive feedback loops linking executive function (EF) and the performance of physical activity behavior. Specifically, those with relatively stronger executive control (and optimized brain structures supporting it, such as the dorsolateral prefrontal cortex (PFC)) are able to implement physical activity with more consistency than others, which in turn serves to strengthen the executive control network itself. The TST model has the potential to explain everyday variants of incidental physical activity, sport-related excellence via capacity for deliberate practice, and variability in the propensity to schedule and implement exercise routines.
Jiles, D.C. ); Sipahi, L.B. ); Williams, G. )
1993-05-15
Recent work by Bertotti [IEEE Trans. Magn. [bold MAG]-[bold 24], 621 (1988)] and others has shown that it is possible to model the micromagnetic Barkhausen discontinuities at the coercive point using a two-parameter stochastic model. However, the present formulation of the model is restricted to limited regions of the hysteresis curve over which [ital dM]/[ital dH] is approximately constant and when [ital dH]/[ital dt] is held at a constant rate. A natural extension of this model is to take the basic result, in which the level of Barkhausen activity in one time period is related to the activity in the previous time period, and increment it by a small amount which is dependent on the differential permeability. The extension of the model proposed here uses the theory of ferromagnetic hysteresis to determine the differential permeability at any point of the hysteresis loop. The Barkhausen activity is then assumed to vary in proportion to the differential permeability. The resulting model allows the Barkhausen sum of discontinuous changes in magnetization to be modelled around the entire hysteresis loop, leading to an important generalization of the basic model.
Activity Theory as a Framework for Designing the Model of College English Listening
ERIC Educational Resources Information Center
Zhang, Jianfeng
2014-01-01
Activity theory signifies that activities are at the centre of human behaviour and it has been used to study cognitive process in many fields. Nowadays, college English listening learning is time-consuming but less effective in China, so enhancing the performance of listening instruction is a very hot topic. Theoretically, activity theory is able…
On the global well-posedness theory for a class of PDE models for criminal activity
NASA Astrophysics Data System (ADS)
Rodríguez, N.
2013-10-01
We study a class of ‘reaction-advection-diffusion’ system of partial differential equations, which can be taken as basic models for criminal activity. This class of models are based on routine activity theory and other theories, such as the ‘repeat and near-repeat victimization effect’ and were first introduced in Short et al. (2008) [11]. In these models the criminal density is advected by a velocity field that depends on a scalar field, which measures the appeal to commit a crime. We refer to this scalar field as the attractiveness field. We prove local well-posedness of solutions for the general class of models. Furthermore, we prove global well-posedness of solutions to a fully-parabolic system with a velocity field that depends logarithmically on the attractiveness field. Our final result is the global well-posedness of solutions the fully-parabolic system with velocity field that depends linearly on the attractiveness field for small initial mass.
Collective learning modeling based on the kinetic theory of active particles.
Burini, D; De Lillo, S; Gibelli, L
2016-03-01
This paper proposes a systems approach to the theory of perception and learning in populations composed of many living entities. Starting from a phenomenological description of these processes, a mathematical structure is derived which is deemed to incorporate their complexity features. The modeling is based on a generalization of kinetic theory methods where interactions are described by theoretical tools of game theory. As an application, the proposed approach is used to model the learning processes that take place in a classroom.
ERIC Educational Resources Information Center
Becher, Ayelet; Orland-Barak, Lily
2016-01-01
This study suggests an integrative qualitative methodological framework for capturing complexity in mentoring activity. Specifically, the model examines how historical developments of a discipline direct mentors' mediation of professional knowledge through the language that they use. The model integrates social activity theory and a framework of…
NASA Astrophysics Data System (ADS)
Nieto, J.
2016-03-01
The learning phenomena, their complexity, concepts, structure, suitable theories and models, have been extensively treated in the mathematical literature in the last century, and [4] contains a very good introduction to the literature describing the many approaches and lines of research developed about them. Two main schools have to be pointed out [5] in order to understand the two -not exclusive- kinds of existing models: the stimulus sampling models and the stochastic learning models. Also [6] should be mentioned as a survey where two methods of learning are pointed out, the cognitive and the social, and where the knowledge looks like a mathematical unknown. Finally, as the authors do, we refer to the works [9,10], where the concept of population thinking was introduced and which motivate the game theory rules as a tool (both included in [4] to develop their theory) and [7], where the ideas of developing a mathematical kinetic theory of perception and learning were proposed.
Theory Modeling and Simulation
Shlachter, Jack
2012-08-23
Los Alamos has a long history in theory, modeling and simulation. We focus on multidisciplinary teams that tackle complex problems. Theory, modeling and simulation are tools to solve problems just like an NMR spectrometer, a gas chromatograph or an electron microscope. Problems should be used to define the theoretical tools needed and not the other way around. Best results occur when theory and experiments are working together in a team.
Vo, Phuong T; Bogg, Tim
2015-01-01
Prior research identified assorted relations between trait and social cognition models of personality and engagement in physical activity. Using a representative U.S. sample (N = 957), the goal of the present study was to test two alternative structural models of the relationships among the extraversion-related facet of activity, the conscientiousness-related facet of industriousness, social cognitions from the Theory of Planned Behavior (perceived behavioral control, affective attitudes, subjective norms, intentions), Social Cognitive Theory (self-efficacy, outcome expectancies), and the Transtheoretical Model (behavioral processes of change), and engagement in physical activity. Path analyses with bootstrapping procedures were used to model direct and indirect effects of trait and social cognition constructs on physical activity through two distinct frameworks - the Theory of Planned Behavior and Neo-Socioanalytic Theory. While both models showed good internal fit, comparative model information criteria showed the Theory-of-Planned-Behavior-informed model provided a better fit. In the model, social cognitions fully mediated the relationships from the activity facet and industriousness to intentions for and engagement in physical activity, such that the relationships were primarily maintained by positive affective evaluations, positive expected outcomes, and confidence in overcoming barriers related to physical activity engagement. The resultant model - termed the Disposition-Belief-Motivation model- is proposed as a useful framework for organizing and integrating personality trait facets and social cognitions from various theoretical perspectives to investigate the expression of health-related behaviors, such as physical activity. Moreover, the results are discussed in terms of extending the application of the Disposition-Belief-Motivation model to longitudinal and intervention designs for physical activity engagement.
Vo, Phuong T.; Bogg, Tim
2015-01-01
Prior research identified assorted relations between trait and social cognition models of personality and engagement in physical activity. Using a representative U.S. sample (N = 957), the goal of the present study was to test two alternative structural models of the relationships among the extraversion-related facet of activity, the conscientiousness-related facet of industriousness, social cognitions from the Theory of Planned Behavior (perceived behavioral control, affective attitudes, subjective norms, intentions), Social Cognitive Theory (self-efficacy, outcome expectancies), and the Transtheoretical Model (behavioral processes of change), and engagement in physical activity. Path analyses with bootstrapping procedures were used to model direct and indirect effects of trait and social cognition constructs on physical activity through two distinct frameworks – the Theory of Planned Behavior and Neo-Socioanalytic Theory. While both models showed good internal fit, comparative model information criteria showed the Theory-of-Planned-Behavior-informed model provided a better fit. In the model, social cognitions fully mediated the relationships from the activity facet and industriousness to intentions for and engagement in physical activity, such that the relationships were primarily maintained by positive affective evaluations, positive expected outcomes, and confidence in overcoming barriers related to physical activity engagement. The resultant model – termed the Disposition-Belief-Motivation model– is proposed as a useful framework for organizing and integrating personality trait facets and social cognitions from various theoretical perspectives to investigate the expression of health-related behaviors, such as physical activity. Moreover, the results are discussed in terms of extending the application of the Disposition-Belief-Motivation model to longitudinal and intervention designs for physical activity engagement. PMID:26300811
CONSTRUCTION OF EDUCATIONAL THEORY MODELS.
ERIC Educational Resources Information Center
MACCIA, ELIZABETH S.; AND OTHERS
THIS STUDY DELINEATED MODELS WHICH HAVE POTENTIAL USE IN GENERATING EDUCATIONAL THEORY. A THEORY MODELS METHOD WAS FORMULATED. BY SELECTING AND ORDERING CONCEPTS FROM OTHER DISCIPLINES, THE INVESTIGATORS FORMULATED SEVEN THEORY MODELS. THE FINAL STEP OF DEVISING EDUCATIONAL THEORY FROM THE THEORY MODELS WAS PERFORMED ONLY TO THE EXTENT REQUIRED TO…
2014-01-01
Background Research has shown that nursing students find it difficult to translate and apply their theoretical knowledge in a clinical context. Virtual patients (VPs) have been proposed as a learning activity that can support nursing students in their learning of scientific knowledge and help them integrate theory and practice. Although VPs are increasingly used in health care education, they still lack a systematic consistency that would allow their reuse outside of their original context. There is therefore a need to develop a model for the development and implementation of VPs in nursing education. Objective The aim of this study was to develop and evaluate a virtual patient model optimized to the learning and assessment needs in nursing education. Methods The process of modeling started by reviewing theoretical frameworks reported in the literature and used by practitioners when designing learning and assessment activities. The Outcome-Present State Test (OPT) model was chosen as the theoretical framework. The model was then, in an iterative manner, developed and optimized to the affordances of virtual patients. Content validation was performed with faculty both in terms of the relevance of the chosen theories but also its applicability in nursing education. The virtual patient nursing model was then instantiated in two VPs. The students’ perceived usefulness of the VPs was investigated using a questionnaire. The result was analyzed using descriptive statistics. Results A virtual patient Nursing Design Model (vpNDM) composed of three layers was developed. Layer 1 contains the patient story and ways of interacting with the data, Layer 2 includes aspects of the iterative process of clinical reasoning, and finally Layer 3 includes measurable outcomes. A virtual patient Nursing Activity Model (vpNAM) was also developed as a guide when creating VP-centric learning activities. The students perceived the global linear VPs as a relevant learning activity for the
Sample McMeeking, Laura B; Basile, Carole; Brian Cobb, R
2012-11-01
Theory-based evaluation (TBE) is an evaluation method that shows how a program will work under certain conditions and has been supported as a viable, evidence-based option in cases where randomized trials or high-quality quasi-experiments are not feasible. Despite the model's widely accepted theoretical appeal there are few examples of its well-implemented use, probably due to time and money limitations necessary for planning and a confusion over the definitions between research and evaluation functions and roles. In this paper, we describe the development of a theory-based evaluation design in a Math and Science Partnership (MSP) research project funded by the U.S. National Science Foundation (NSF). Through this work we developed an organizational model distinguishing between and integrating evaluation and research functions, explicating personnel roles and responsibilities, and highlighting connections between research and evaluation work. Although the research and evaluation components operated on independent budgeting, staffing, and implementation activities, we were able to combine datasets across activities to allow us to assess the integrity of the program theory, not just the hypothesized connections within it. This model has since been used for proposal development and has been invaluable as it creates a research and evaluation plan that is seamless from the beginning.
Wang, Chengwen; Quan, Long; Zhang, Shijie; Meng, Hongjun; Lan, Yuan
2017-03-01
Hydraulic servomechanism is the typical mechanical/hydraulic double-dynamics coupling system with the high stiffness control and mismatched uncertainties input problems, which hinder direct applications of many advanced control approaches in the hydraulic servo fields. In this paper, by introducing the singular value perturbation theory, the original double-dynamics coupling model of the hydraulic servomechanism was reduced to a integral chain system. So that, the popular ADRC (active disturbance rejection control) technology could be directly applied to the reduced system. In addition, the high stiffness control and mismatched uncertainties input problems are avoided. The validity of the simplified model is analyzed and proven theoretically. The standard linear ADRC algorithm is then developed based on the obtained reduced-order model. Extensive comparative co-simulations and experiments are carried out to illustrate the effectiveness of the proposed method.
The standard model and some new directions. [for scientific theory of Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Blandford, R. D.; Rees, M. J.
1992-01-01
A 'standard' model of Active Galactic Nuclei (AGN), based upon a massive black hole surrounded by a thin accretion disk, is defined. It is argued that, although there is good evidence for the presence of black holes and orbiting gas, most of the details of this model are either inadequate or controversial. Magnetic field may be responsible for the confinement of continuum and line-emitting gas, for the dynamical evolution of accretion disks and for the formation of jets. It is further argued that gaseous fuel is supplied in molecular form and that this is responsible for thermal re-radiation, equatorial obscuration and, perhaps, the broad line gas clouds. Stars may also supply gas close to the black hole, especially in low power AGN and they may be observable in discrete orbits as probes of the gravitational field. Recent observations suggest that magnetic field, stars, dusty molecular gas and orientation effects must be essential components of a complete description of AGN. The discovery of quasars with redshifts approaching 5 is an important clue to the mechanism of galaxy formation.
NASA Technical Reports Server (NTRS)
Holman, Gordon D.
1989-01-01
The primary purpose of the Theory and Modeling Group meeting was to identify scientists engaged or interested in theoretical work pertinent to the Max '91 program, and to encourage theorists to pursue modeling which is directly relevant to data which can be expected to result from the program. A list of participants and their institutions is presented. Two solar flare paradigms were discussed during the meeting -- the importance of magnetic reconnection in flares and the applicability of numerical simulation results to solar flare studies.
Active Inference: A Process Theory.
Friston, Karl; FitzGerald, Thomas; Rigoli, Francesco; Schwartenbeck, Philipp; Pezzulo, Giovanni
2017-01-01
This article describes a process theory based on active inference and belief propagation. Starting from the premise that all neuronal processing (and action selection) can be explained by maximizing Bayesian model evidence-or minimizing variational free energy-we ask whether neuronal responses can be described as a gradient descent on variational free energy. Using a standard (Markov decision process) generative model, we derive the neuronal dynamics implicit in this description and reproduce a remarkable range of well-characterized neuronal phenomena. These include repetition suppression, mismatch negativity, violation responses, place-cell activity, phase precession, theta sequences, theta-gamma coupling, evidence accumulation, race-to-bound dynamics, and transfer of dopamine responses. Furthermore, the (approximately Bayes' optimal) behavior prescribed by these dynamics has a degree of face validity, providing a formal explanation for reward seeking, context learning, and epistemic foraging. Technically, the fact that a gradient descent appears to be a valid description of neuronal activity means that variational free energy is a Lyapunov function for neuronal dynamics, which therefore conform to Hamilton's principle of least action.
An Application of Activity Theory
ERIC Educational Resources Information Center
Marken, James A.
2006-01-01
Activity Theory has often been used in workplace settings to gain new theoretical understandings about work and the humans who engage in work, but rarely has there been sufficient detail in the literature to allow HPT practitioners to do their own activity analysis. The detail presented in this case is sufficient for HPT practitioners to begin to…
A density functional theory model of mechanically activated silyl ester hydrolysis
Pill, Michael F.; Schmidt, Sebastian W.; Beyer, Martin K.; Clausen-Schaumann, Hauke; Kersch, Alfred
2014-01-28
To elucidate the mechanism of the mechanically activated dissociation of chemical bonds between carboxymethylated amylose (CMA) and silane functionalized silicon dioxide, we have investigated the dissociation kinetics of the bonds connecting CMA to silicon oxide surfaces with density functional calculations including the effects of force, solvent polarizability, and pH. We have determined the activation energies, the pre-exponential factors, and the reaction rate constants of candidate reactions. The weakest bond was found to be the silyl ester bond between the silicon and the alkoxy oxygen atom. Under acidic conditions, spontaneous proton addition occurs close to the silyl ester such that neutral reactions become insignificant. Upon proton addition at the most favored position, the activation energy for bond hydrolysis becomes 31 kJ mol{sup −1}, which agrees very well with experimental observation. Heterolytic bond scission in the protonated molecule has a much higher activation energy. The experimentally observed bi-exponential rupture kinetics can be explained by different side groups attached to the silicon atom of the silyl ester. The fact that different side groups lead to different dissociation kinetics provides an opportunity to deliberately modify and tune the kinetic parameters of mechanically activated bond dissociation of silyl esters.
Not Available
1981-10-01
(1) We recommend the establishment of an experimental test facility, appropriately instrumented, dedicated to research on theoretical modeling concepts. Validation of models for the various flow regimes, and establishment of the limitations or concepts used in the construction of models, are sorely needed areas of research. There exists no mechanism currently for funding of such research on a systematic basis. Such a facility would provide information fundamental to progress in the physics of turbulent multi-phase flow, which would also have impact on the understanding of coal utilization processes; (2) combustion research appears to have special institutional barriers to information exchange because it is an established, commercial ongoing effort, with heavy reliance on empirical data for proprietary configurations; (3) for both gasification and combustion reactors, current models appear to handle adequately some, perhaps even most, gross aspects of the reactors such as overall efficiency and major chemical output constituents. However, new and more stringent requirements concerning NOX, SOX and POX (small paticulate) production require greater understanding of process details and spatial inhomogenities, hence refinement of current models to include some greater detail is necessary; (4) further progress in the theory of single-phase turbulent flow would benefit our understanding of both combustors and gasifiers; and (5) another area in which theoretical development would be extremely useful is multi-phase flow.
Hofmann, Matthias
2009-09-01
[Mo(SSCH3)(S2C2(CH3)2)2](x) complexes with charges x between -3 and +3 were investigated by density functional theory computations as minimal nitrate reductase active-site models. The strongly reduced species (x = -2, -3) exist preferentially as pentacoordinate sulfo complexes separated from a thiolate anion. The oxidized extremes (x > 0) clearly prefer hexacoordinate complexes with an eta(2)-MeSS ligand. Among the neutral and especially for the singly negatively charged species structures with eta(2)-MeSS and eta(1)-MeSS ligands are energetically close to the sulfo methyl sulfide complex without SS bonding. For x = -1 the three isomers lie in a 1.5 kcal mol(-1) energy range. Putative mechanistic pathways for nitrate reduction from the literature were investigated computationally: (1) reduction at a pentacoordinate sulfo complex, (2) reduction at the ligand, and (3) reduction at the molybdenum center with an R-S-S ligand. All three pathways could be traced at least for some overall charges but no definite conclusion can be drawn about the mechanism. Complexes with larger dithiolato ligands were also computed in order to model the tricyclic metallopterin framework more accurately: the first heterocyclus (5,6-dihydro-2H-pyran) stabilizes the nitrate complex and the molybdenum oxo product complex by approximately 10 kcal mol(-1) and also reduces the activation barrier (by approximately 5 kcal mol(-1)). The effect of the second (1,2,3,4-tetrahydropyrazin) and third heterocyclus (2-amino-3H-pyrimidin-4-one) on the relative energies is relatively small. For bigger models derived from an experimental protein structure, nitrate reduction at a persulfo molybdenum(IV) complex fragment (mechanism 3) is clearly favored over the oxidation of a molybdenum-bound sulfur atom (mechanism 2). Mechanism 1 could not be investigated for the big models but seems the least favorable on the basis of the results from smaller models.
Pattern activation/recognition theory of mind
du Castel, Bertrand
2015-01-01
In his 2012 book How to Create a Mind, Ray Kurzweil defines a “Pattern Recognition Theory of Mind” that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call “Pattern Activation/Recognition Theory of Mind.” While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation. PMID:26236228
Pattern activation/recognition theory of mind.
du Castel, Bertrand
2015-01-01
In his 2012 book How to Create a Mind, Ray Kurzweil defines a "Pattern Recognition Theory of Mind" that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call "Pattern Activation/Recognition Theory of Mind." While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation.
Nahar, Vinayak K.; Sharma, Manoj; Catalano, Hannah Priest; Ickes, Melinda J.; Johnson, Paul; Ford, M. Allison
2016-01-01
Background: Most college students do not adequately participate in enough physical activity (PA) to attain health benefits. A theory-based approach is critical in developing effective interventions to promote PA. The purpose of this study was to examine the utility of the newly proposed multi-theory model (MTM) of health behavior change in predicting initiation and sustenance of PA among college students. Methods: Using a cross-sectional design, a valid and reliable survey was administered in October 2015 electronically to students enrolled at a large Southern US University. The internal consistency Cronbach alphas of the subscales were acceptable (0.65-0.92). Only those who did not engage in more than 150 minutes of moderate to vigorous intensity aerobic PA during the past week were included in this study. Results: Of the 495 respondents, 190 met the inclusion criteria of which 141 completed the survey. The majority of participants were females (72.3%) and Caucasians (70.9%). Findings of the confirmatory factor analysis (CFA) confirmed construct validity of subscales (initiation model: χ2 = 253.92 [df = 143], P < 0.001, CFI = 0.91, RMSEA = 0.07, SRMR = 0.07; sustenance model: χ2= 19.40 [df = 22], P < 0.001, CFI = 1.00, RMSEA = 0.00, SRMR = 0.03). Multivariate regression analysis showed that 26% of the variance in the PA initiation was explained by advantages outweighing disadvantages, behavioral confidence, work status, and changes in physical environment. Additionally, 29.7% of the variance in PA sustenance was explained by emotional transformation, practice for change, and changes in social environment. Conclusion: Based on this study’s findings, MTM appears to be a robust theoretical framework for predicting PA behavior change. Future research directions and development of suitable intervention strategies are discussed. PMID:27386419
ERIC Educational Resources Information Center
Skinner, Ellen A.; Chi, Una
2012-01-01
Building on self-determination theory, this study presents a model of intrinsic motivation and engagement as "active ingredients" in garden-based education. The model was used to create reliable and valid measures of key constructs, and to guide the empirical exploration of motivational processes in garden-based learning. Teacher- and…
Probability state modeling theory.
Bagwell, C Bruce; Hunsberger, Benjamin C; Herbert, Donald J; Munson, Mark E; Hill, Beth L; Bray, Chris M; Preffer, Frederic I
2015-07-01
As the technology of cytometry matures, there is mounting pressure to address two major issues with data analyses. The first issue is to develop new analysis methods for high-dimensional data that can directly reveal and quantify important characteristics associated with complex cellular biology. The other issue is to replace subjective and inaccurate gating with automated methods that objectively define subpopulations and account for population overlap due to measurement uncertainty. Probability state modeling (PSM) is a technique that addresses both of these issues. The theory and important algorithms associated with PSM are presented along with simple examples and general strategies for autonomous analyses. PSM is leveraged to better understand B-cell ontogeny in bone marrow in a companion Cytometry Part B manuscript. Three short relevant videos are available in the online supporting information for both of these papers. PSM avoids the dimensionality barrier normally associated with high-dimensionality modeling by using broadened quantile functions instead of frequency functions to represent the modulation of cellular epitopes as cells differentiate. Since modeling programs ultimately minimize or maximize one or more objective functions, they are particularly amenable to automation and, therefore, represent a viable alternative to subjective and inaccurate gating approaches.
Concerning interpretations of activity theory.
Mironenko, Irina A
2013-09-01
Activity theory (AT) is the most recognised part of Russian psychology outside Russia. However the general view of AT in international science is rather unilateral, lacking substantial aspects and areas necessary for proper understanding. This article is aimed at expanding the image of AT dominant in the mainstream which reduces the AT trend to A.N. Leontiev's theory. This reduction impoverishes the creative potentialities of the trend, and decreases the ability of AT to contribute to international science. We aim to reveal that AT is not limited to Leontiev's approach, to explain which ideas of the founders of AT, S.L. Rubinstein and L.S. Vygotsky, were pursued and which were rejected by A.N. Leontiev, and to assess another important contribution to the AT trend - the theory of B.G. Ananiev, where the ideas of AT's founders were developed which were not succeeded by A.N. Leontiev. Historical causes and consequences of the general reduction of the image of AT in the mainstream to Leontiev's theory are considered: why the discrepancies between views of Rubinstein, Vygotsky and Leontiev were hardly ever discussed in public and why other theories contemporary to Leontiev's theory were never given account appropriate to their value in Russia and remain almost unknown abroad.
ERIC Educational Resources Information Center
Beville, Jill M.; Umstattd Meyer, M. Renée; Usdan, Stuart L.; Turner, Lori W.; Jackson, John C.; Lian, Brad E.
2014-01-01
Objective: National data consistently report that males participate in leisure time physical activity (LTPA) at higher rates than females. This study expanded previous research to examine gender differences in LTPA of college students using the theory of planned behavior (TPB) by including 2 additional constructs, descriptive norm and…
Evaluation Theory, Models, and Applications
ERIC Educational Resources Information Center
Stufflebeam, Daniel L.; Shinkfield, Anthony J.
2007-01-01
"Evaluation Theory, Models, and Applications" is designed for evaluators and students who need to develop a commanding knowledge of the evaluation field: its history, theory and standards, models and approaches, procedures, and inclusion of personnel as well as program evaluation. This important book shows how to choose from a growing…
Ferrari, Jose A.; Perciante, Cesar D
2008-07-10
The behavior of photochromic glasses during activation and bleaching is investigated. A two-state phenomenological model describing light-induced activation (darkening) and thermal bleaching is presented. The proposed model is based on first-order kinetics. We demonstrate that the time behavior in the activation process (acting simultaneously with the thermal fading) can be characterized by two relaxation times that depend on the intensity of the activating light. These characteristic times are lower than the decay times of the pure thermal bleaching process. We study the temporal evolution of the glass optical density and its dependence on the activating intensity. We also present a series of activation and bleaching experiments that validate the proposed model. Our approach may be used to gain more insight into the transmittance behavior of photosensitive glasses, which could be potentially relevant in a broad range of applications, e.g., real-time holography and reconfigurable optical memories.
ERIC Educational Resources Information Center
Lippke, Sonia; Nigg, Claudio R.; Maddock, Jay E.
2007-01-01
This is the first study to test whether the stages of change of the transtheoretical model are qualitatively different through exploring discontinuity patterns in theory of planned behavior (TPB) variables using latent multigroup structural equation modeling (MSEM) with AMOS. Discontinuity patterns in terms of latent means and prediction patterns…
Theory of hadronic nonperturbative models
Coester, F.; Polyzou, W.N.
1995-08-01
As more data probing hadron structure become available hadron models based on nonperturbative relativistic dynamics will be increasingly important for their interpretation. Relativistic Hamiltonian dynamics of few-body systems (constituent-quark models) and many-body systems (parton models) provides a precisely defined approach and a useful phenomenology. However such models lack a quantitative foundation in quantum field theory. The specification of a quantum field theory by a Euclidean action provides a basis for the construction of nonperturbative models designed to maintain essential features of the field theory. For finite systems it is possible to satisfy axioms which guarantee the existence of a Hilbert space with a unitary representation of the Poincare group and the spectral condition which ensures that the spectrum of the four-momentum operator is in the forward light cone. The separate axiom which guarantees locality of the field operators can be weakened for the construction for few-body models. In this context we are investigating algebraic and analytic properties of model Schwinger functions. This approach promises insight into the relations between hadronic models based on relativistic Hamiltonian dynamics on one hand and Bethe-Salpeter Green`s-function equations on the other.
NASA Astrophysics Data System (ADS)
Lowe, Samuel; Partridge, Daniel G.; Topping, David; Stier, Philip
2016-09-01
In this study a novel framework for inverse modelling of cloud condensation nuclei (CCN) spectra is developed using Köhler theory. The framework is established by using model-generated synthetic measurements as calibration data for a parametric sensitivity analysis. Assessment of the relative importance of aerosol physicochemical parameters, while accounting for bulk-surface partitioning of surface-active organic species, is carried out over a range of atmospherically relevant supersaturations. By introducing an objective function that provides a scalar metric for diagnosing the deviation of modelled CCN concentrations from synthetic observations, objective function response surfaces are presented as a function of model input parameters. Crucially, for the chosen calibration data, aerosol-CCN spectrum closure is confirmed as a well-posed inverse modelling exercise for a subset of the parameters explored herein. The response surface analysis indicates that the appointment of appropriate calibration data is particularly important. To perform an inverse aerosol-CCN closure analysis and constrain parametric uncertainties, it is shown that a high-resolution CCN spectrum definition of the calibration data is required where single-valued definitions may be expected to fail. Using Köhler theory to model CCN concentrations requires knowledge of many physicochemical parameters, some of which are difficult to measure in situ on the scale of interest and introduce a considerable amount of parametric uncertainty to model predictions. For all partitioning schemes and environments modelled, model output showed significant sensitivity to perturbations in aerosol log-normal parameters describing the accumulation mode, surface tension, organic : inorganic mass ratio, insoluble fraction, and solution ideality. Many response surfaces pertaining to these parameters contain well-defined minima and are therefore good candidates for calibration using a Monte Carlo Markov Chain (MCMC
The present status of stellar activity theory
NASA Astrophysics Data System (ADS)
Belvedere, G.
Features, predictions available from, and problems facing mean field electrodynamic (MFE) models of solar and stellar dynamo activities are outlined. The linear, kinetic dynamo (LKD) approach describes the interaction between a turbulent velocity field and a magnetic field in terms of an MFE induction equation. LKD permits the reciprocal generation of poloidal and toroidal fields through rotational and cyclonic, turbulent forces. Nonlinear hydromagnetic theory considers magnetic field back reaction effects on the kinematic field by the Lorentz EM body force. All forces in the LKD model increase in impact with advancing spectral evolution. Differential rotation and dynamo action become particularly important. Further research is needed to account for the gap in the F-G region of the evolutionary continuum, the occurrence of multimodal dynamo features, and the presence of cyclic and noncyclic dynamo activity, depending on the star.
Esposito, Gabriele; van Bavel, René; Baranowski, Tom; Duch-Brown, Néstor
2016-08-01
The theory of planned behavior (TPB) has received its fair share of criticism lately, including calls for it to retire. We contribute to improving the theory by testing extensions such as the model of goal-directed behavior (MGDB, which adds desire and anticipated positive and negative emotions) applied to physical activity (PA) intention. We also test the inclusion of a descriptive norms construct as an addition to the subjective norms construct, also applied to PA, resulting in two additional models: TPB including descriptive norms (TPB + DN) and MGDB including descriptive norms (MGDB + DN). The study is based on an online survey of 400 young adult Internet users, previously enrolled in a subject pool. Confirmatory factor analysis (CFA) showed that TPB and TPB + DN were not fit for purpose, while MGDB and MGDB + DN were. Structural equation modelling (SEM) conducted on MGDB and MGDB + DN showed that the inclusion of descriptive norms took over the significance of injunctive norms, and increased the model's account of total variance in intention to be physically active.
NASA Astrophysics Data System (ADS)
Burini, D.; De Lillo, S.; Gibelli, L.
2016-03-01
Our paper [19] presents a review and critical analysis on a mathematical theory of learning in populations composed of many interacting individuals. Furthermore, it attempts to provide a foundational mathematical framework which may incorporate the main features of the learning process in view of applications to modeling complex systems, including crowds [15,39], swarms [2,4], and social systems [1,24,35,41].
NASA Astrophysics Data System (ADS)
Shizgal, Bernie
2016-03-01
The paper by Burini et al. [7] presents an interesting use of the Boltzmann equation of kinetic theory to model real learning processes. The authors provide a comprehensive discussion of the basic concepts involved in their modelling work. The Boltzmann equation as used by physicists and chemists to model a variety of transport processes in many diverse fields is based on the notion of the binary collisions between identifiable particles in the defined system [9]. The particles exchange energy on collision and the distribution function, which depends on the three velocity components and the three spatial coordinates, varies with time. The classical or quantum collision dynamics between particles play a central role in the definition of the kernels in the integral operators that define the Boltzmann equation [8].
ERIC Educational Resources Information Center
Akhurst, J.; Liebenberg, M.
2009-01-01
This article integrates previous research findings and theory to reflect on the limitations of traditional career counselling for students from disadvantaged backgrounds. It highlights the many challenges faced by students as they adjust to the university environment, and proposes a constructivist approach as more appropriate for career…
Hamilton, Kyra; Cox, Stephen; White, Katherine M
2012-02-01
Parents are at risk for inactivity; however, research into understanding parental physical activity (PA) is scarce. We integrated self-determined motivation, planning, and the theory of planned behavior (TPB) to better understand parental PA. Parents (252 mothers, 206 fathers) completed a main questionnaire assessing measures underpinning these constructs and a 1-week follow-up of PA behavior to examine whether self-determined motivation indirectly influenced intention via the TPB variables (i.e., attitude, subjective norm, and perceived behavioral control) and intention indirectly influenced behavior via planning. We found self-determined motivation on intention was fully mediated by the TPB variables and intention on behavior was partially mediated by the planning variables. In addition, slight differences in the model's paths between the sexes were revealed. The results illustrate the range of important determinants of parental PA and provide support for the integrated model in explaining PA decision making as well as the importance of examining sex differences.
Basen-Engquist, Karen; Carmack, Cindy L.; Perkins, Heidi; Hughes, Daniel; Serice, Susan; Scruggs, Stacie; Pinto, Bernardine; Waters, Andrew
2010-01-01
Physical activity has been shown to benefit cancer survivors' physical functioning, emotional well-being, and symptoms. Physical activity may be of particular benefit to survivors of endometrial cancer because they are more likely to be obese and sedentary than the general population, as these are risk factors for the disease, and thus experience a number of related co-morbid health problems. However, there is little research systematically studying mechanisms of physical activity adherence in cancer survivor populations. This paper describes the design of the Steps to Health study, which applies a Social Cognitive Theory-based model of endometrial cancer survivors' adoption and maintenance of exercise in the context of an intervention to increase walking or other moderate intensity cardiovascular activity. In Steps to Health we will test the influence of self-efficacy and outcome expectations on adherence to exercise recommendations, as well as studying the determinants of self-efficacy. Endometrial cancer survivors who are at least 6 months post-treatment are provided with an intervention involving print materials and telephone counseling, and complete assessments of fitness, activity, self-efficacy and outcome expectations, and determinants of self-efficacy every two months for a six month period. In addition to testing an innovative model, the Steps to Health study employs multiple assessment methods, including ecological momentary assessment, implicit tests of cognitive variables, and ambulatory monitoring of physical activity. The study results can be used to develop more effective interventions for increasing physical activity in sedentary cancer survivors by taking into account the full complement of sources of self-efficacy information and outcome expectations. PMID:21218163
Scarpitta, S.C.
1995-03-01
Water vapor interferes with adsorption {sup 222}Rn gas by passive activated charcoal devices used to estimate indoor air concentrations. The {sup 222}Rn adsorption coefficient is the fundamental parameter characterizing charcoal`s ability to adsorb {sup 222}Rn. The Dubinin-Radushkevich equation, based on Polanyi`s potential theory, was modified to include two terms quantifying the effect of both water vapor and sampling time on the {sup 222}Rn adsorption coefficient of passive charcoal devices. A single equation was derived that quantities the {sup 222}Rn adsorption coefficients at any temperature, humidity and exposure time using six experimentally determined physical constants that are unique for a particular passive charcoal device. The theoretical model was verified with published experimental data, and it showed a good correlation between theory and experiment. The model proved to be consistent with experimental data, provided that the amount of water vapor adsorbed by the charcoal device during sampling remains below a critical level, termed the breakpoint. 44 refs., 5 figs., 2 tabs.
ERIC Educational Resources Information Center
Wee, Joy; Paterson, Margo
2009-01-01
This paper explores a conceptualization of how factors impact activities of daily living (ADL) and participation from the perspective of persons with disability. This study identified what, and how, factors perceived by participants affect their daily activities, to better inform reporting of scores obtained on measures of ADLs and participation…
NASA Astrophysics Data System (ADS)
Lamperski, S.; Płuciennik, M.
2011-01-01
The recently developed inverse grand-canonical Monte Carlo technique (IGCMC) (S. Lamperski. Molecular Simulation 33, 1193 (2007)) and the MSA theory are applied to calculate the individual activity coefficients of ions and solvent for a solvent primitive model (SPM) electrolyte. In the SPM electrolyte model the anions, cations and solvent molecules are represented by hard spheres immersed in a dielectric continuum whose permittivity is equal to that of the solvent. The ions have a point electric charge embedded at the centre. A simple 1:1 aqueous electrolyte is considered. The ions are hydrated while the water molecules form clusters modelled by hard spheres of diameter d s. The diameter d s depends on the dissolved salt and is determined by fitting the mean activity coefficient ln γ ± calculated from IGCMC and from the MSA to the experimental data. A linear correlation is observed between d s and the Marcus parameter ΔG HB, which describes the ion influence on the water association.
Technology Transfer Automated Retrieval System (TEKTRAN)
The theory of planned behavior (TPB) has received its fair share of criticism lately, including calls for it to retire. We contributed to improving the theory by testing extensions such as the model of goal-directed behavior (MGDB, which adds desire and anticipated positive and negative emotions) ap...
NASA Astrophysics Data System (ADS)
Lowe, Samuel; Partridge, Daniel; Topping, David; Stier, Philip
2016-04-01
In this study an inverse modelling framework for the calculation of CCN spectra is developed to facilitate a more robust treatment of evaluation of Köhler models against observations. To achieve this, we define an objective function that provides a diagnostic metric of the deviation of modelled CCN spectra from observations as a function of input parameters. This allows for the assessment of model accuracy while simultaneously examining global parameter sensitivities and identifying parameter interactions across all atmospherically relevant supersaturations, corresponding to a broad range of cloud types and updraft velocities. The focus of this study is two-fold. Firstly, we assess the feasibility of inverse modelling as a new methodology for aerosol-CCN spectra closure. To achieve this goal, responses in the objective function to parameter perturbations in 2D cross-sections of the complete parameter space, response surfaces, are used to examine the likelihood of our chosen objective function containing enough information to constrain the model input parameters considered using automatic search algorithms. Secondly, these response surfaces are employed to conduct an extensive parametric sensitivity analysis and subsequently rank the relative importance of aerosol physiochemical parameters in determining CCN spectra. Using Köhler theory to model CCN concentrations requires knowledge of many physiochemical parameters, some of which are difficult to measure in-situ at the scale of interest. Therefore, novel methodologies, such as the one developed here, are required to probe the entire parameter space of aerosol-cloud interaction problems and provide global sensitivity analyses to constrain parametric uncertainties. Partitioning of surface-active species from the bulk to the surface phase can alter the point of CCN activation. Therefore, the analysis conducted here is carried out for a standard Köhler model as well as more complex Köhler models accounting for the
Halo modelling in chameleon theories
Lombriser, Lucas; Koyama, Kazuya; Li, Baojiu E-mail: kazuya.koyama@port.ac.uk
2014-03-01
We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on local scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations.
Stochastic models: theory and simulation.
Field, Richard V., Jr.
2008-03-01
Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness.
A Case Study Analysis of a Constructionist Knowledge Building Community with Activity Theory
ERIC Educational Resources Information Center
Ang, Chee S.; Zaphiris, Panayiotis; Wilson, Stephanie
2011-01-01
This article investigates how activity theory can help research a constructionist community. We present a constructionist activity model called CONstructionism Through ACtivity Theory (CONTACT) model and explain how it can be used to analyse the constructionist activity in knowledge building communities. We then illustrate the model through its…
Chan, Heng Choon Oliver; Heide, Kathleen M; Beauregard, Eric
2011-04-01
Despite the great interest in the study of sexual homicide, little is known about the processes involved in an individual's becoming motivated to sexually kill, deciding to sexually kill, and acting on that desire, intention, and opportunity. To date, no comprehensive model of sexual murdering from the offending perspective has been proposed in the criminological literature. This article incorporates the works of Akers and Cohen and Felson regarding their social learning theory and routine activities theory, respectively, to construct an integrated conceptual offending framework in sexual homicide. This integrated model produces a stronger and more comprehensive explanation of sexual murder than any single theory currently available.
Gravitational Model of the Three Elements Theory
NASA Astrophysics Data System (ADS)
Lassiaille, Frederic
The gravitational model of the three elements theory is an alternative theory to dark matter. It uses a modification of Newton's law in order to explain gravitational mysteries. The results of this model are explanations for the dark matter mysteries, the Pioneer anomaly, and the disparities of the measurements of G. Concerning the earth flyby anomalies, the theoretical order of magnitude is the same as the experimental one. A very small change of the perihelion advance of the planet orbits is calculated by this model. Meanwhile, this gravitational model is perfectly compatible with restricted relativity and general relativity, and is part of the three element theory, a unifying theory.
Linking Complexity with Cultural Historical Activity Theory
ERIC Educational Resources Information Center
McMurtry, Angus
2006-01-01
This paper explores the similarities and differences between complexity science's and cultural-historical activity theory's understandings of human learning. Notable similarities include their emphasis on the importance of social systems or collectives in understanding human knowledge and practices, as well as their characterization of systems'…
Theory, modeling and simulation: Annual report 1993
Dunning, T.H. Jr.; Garrett, B.C.
1994-07-01
Developing the knowledge base needed to address the environmental restoration issues of the US Department of Energy requires a fundamental understanding of molecules and their interactions in insolation and in liquids, on surfaces, and at interfaces. To meet these needs, the PNL has established the Environmental and Molecular Sciences Laboratory (EMSL) and will soon begin construction of a new, collaborative research facility devoted to advancing the understanding of environmental molecular science. Research in the Theory, Modeling, and Simulation program (TMS), which is one of seven research directorates in the EMSL, will play a critical role in understanding molecular processes important in restoring DOE`s research, development and production sites, including understanding the migration and reactions of contaminants in soils and groundwater, the development of separation process for isolation of pollutants, the development of improved materials for waste storage, understanding the enzymatic reactions involved in the biodegradation of contaminants, and understanding the interaction of hazardous chemicals with living organisms. The research objectives of the TMS program are to apply available techniques to study fundamental molecular processes involved in natural and contaminated systems; to extend current techniques to treat molecular systems of future importance and to develop techniques for addressing problems that are computationally intractable at present; to apply molecular modeling techniques to simulate molecular processes occurring in the multispecies, multiphase systems characteristic of natural and polluted environments; and to extend current molecular modeling techniques to treat complex molecular systems and to improve the reliability and accuracy of such simulations. The program contains three research activities: Molecular Theory/Modeling, Solid State Theory, and Biomolecular Modeling/Simulation. Extended abstracts are presented for 89 studies.
NASA Astrophysics Data System (ADS)
Chouhad, Nadia
2016-03-01
I have examined paper [1] based also on my scientific experience, namely the derivation of macroscopic models from the underlying description delivered at the microscopic scale by kinetic theory models. More precisely, I refer to the approach developed by Bellouquid and co-authors, from [2] to more recent results, on the derivation of macroscopic models for large systems of self-propelled particles [3], and fractal systems [4].
Dynamo theory prediction of solar activity
NASA Technical Reports Server (NTRS)
Schatten, Kenneth H.
1988-01-01
The dynamo theory technique to predict decadal time scale solar activity variations is introduced. The technique was developed following puzzling correlations involved with geomagnetic precursors of solar activity. Based upon this, a dynamo theory method was developed to predict solar activity. The method was used successfully in solar cycle 21 by Schatten, Scherrer, Svalgaard, and Wilcox, after testing with 8 prior solar cycles. Schatten and Sofia used the technique to predict an exceptionally large cycle, peaking early (in 1990) with a sunspot value near 170, likely the second largest on record. Sunspot numbers are increasing, suggesting that: (1) a large cycle is developing, and (2) that the cycle may even surpass the largest cycle (19). A Sporer Butterfly method shows that the cycle can now be expected to peak in the latter half of 1989, consistent with an amplitude comparable to the value predicted near the last solar minimum.
NASA Astrophysics Data System (ADS)
Lachowicz, Mirosław
2016-03-01
The very stimulating paper [6] discusses an approach to perception and learning in a large population of living agents. The approach is based on a generalization of kinetic theory methods in which the interactions between agents are described in terms of game theory. Such an approach was already discussed in Ref. [2-4] (see also references therein) in various contexts. The processes of perception and learning are based on the interactions between agents and therefore the general kinetic theory is a suitable tool for modeling them. However the main question that rises is how the perception and learning processes may be treated in the mathematical modeling. How may we precisely deliver suitable mathematical structures that are able to capture various aspects of perception and learning?
A situation-specific theory of Midlife Women's Attitudes Toward Physical Activity (MAPA).
Im, Eun-Ok; Stuifbergen, Alexa K; Walker, Lorraine
2010-01-01
This paper presents a situation specific theory-the Midlife Women's Attitudes Toward Physical Activity (MAPA) theory-that explains how women's attitudes toward physical activity influence their participation in physical activity. Using the integrative approach of Im, the theory was developed based on the Attitude, Social Influence, and Self Efficacy Model; a review of the related literature; and a study of women's attitudes toward physical activity. As a situation-specific theory, the MAPA theory can be linked easily to nursing practice and research projects related to physical activity in midlife women, especially interventions aimed at increasing midlife women's participation in physical activity.
Stellar magnetic structure and activity /theory/
NASA Astrophysics Data System (ADS)
Weiss, N. O.
Both the overall behavior of the solar cycle and the underlying fine structure of magnetic fields in the sun have been studied mathematically in some detail. These theories are summarized and different phenomenological models of the solar cycle are reviewed. In order to provide a description of the magnetic fields in late-type stars it is necessary to extrapolate boldly from what is known about the sun. In this way field strengths and configurations can be estimated.
Towards a quantitative kinetic theory of polar active matter
NASA Astrophysics Data System (ADS)
Ihle, T.
2014-06-01
A recent kinetic approach for Vicsek-like models of active particles is reviewed. The theory is based on an exact Chapman- Kolmogorov equation in phase space. It can handle discrete time dynamics and "exotic" multi-particle interactions. A nonlocal mean-field theory for the one-particle distribution function is obtained by assuming molecular chaos. The Boltzmann approach of Bertin, et al., Phys. Rev. E 74, 022101 (2006) and J. Phys. A 42, 445001 (2009), is critically assessed and compared to the current approach. In Boltzmann theory, a collision starts when two particles enter each others action spheres and is finished when their distance exceeds the interaction radius. The average duration of such a collision, τ0, is measured for the Vicsek model with continuous time-evolution. If the noise is chosen to be close to the flocking threshold, the average time between collisions is found to be roughly equal to τ0 at low densities. Thus, the continuous-time Vicsek-model near the flocking threshold cannot be accurately described by a Boltzmann equation, even at very small density because collisions take so long that typically other particles join in, rendering Boltzmann's binary collision assumption invalid. Hydrodynamic equations for the phase space approach are derived by means of a Chapman-Enskog expansion. The equations are compared to the Toner-Tu theory of polar active matter. New terms, absent in the Toner-Tu theory, are highlighted. Convergence problems of Chapman-Enskog and similar gradient expansions are discussed.
Model validation software -- Theory manual
Dolin, R.M.
1997-11-04
Work began in May of 1991 on the initial Independent Spline (IS) technology. The IS technology was based on research by Dolin showing that numerical topology and geometry could be validated through their topography. A unique contribution to this research is that the IS technology has provided a capability to modify one spline`s topology to match another spline`s topography. Work began in May of 1996 to extend the original IS capability to allow solid model topologies to be compared with corresponding two-dimensional topologies. Work began in July, 1996 to extend the IS capability to allow for tool path and inspection data analyses. Tool path analysis involves spline-spline comparisons. Inspection data analysis involves fitting inspection data with some type of analytical curve and then comparing that curve with the original (i.e., nominal) curve topology. There are three types of curves that the inspection data can be fit with. Using all three types of curve fits help engineers understand the As-Built state of whatever it is that is being interrogated. The ability to compute axi-symmetric volumes of revolution for a data set fit with either of the three curves fitting methods described above will be added later. This involves integrating the area under each curve and then revolving the area through 2{pi} radians to get a volume of revolution. The algorithms for doing this will be taken from the IGVIEW software system. The main IS program module parses out the desired activities into four different logical paths: (1) original IS spline modification; (2) two- or three-dimensional topography evaluated against 2D spline; (3) tool path analysis with tool path modifications; and (4) tool path and inspection data comparisons with nominal topography. Users have the option of running the traditional IS application software, comparing 3D ASCII data to a Wilson-Fowler spline interpolation of 2D data, comparing a Wilson-Fowler spline interpolation to analytical topology, or
Theory and model use in social marketing health interventions.
Luca, Nadina Raluca; Suggs, L Suzanne
2013-01-01
The existing literature suggests that theories and models can serve as valuable frameworks for the design and evaluation of health interventions. However, evidence on the use of theories and models in social marketing interventions is sparse. The purpose of this systematic review is to identify to what extent papers about social marketing health interventions report using theory, which theories are most commonly used, and how theory was used. A systematic search was conducted for articles that reported social marketing interventions for the prevention or management of cancer, diabetes, heart disease, HIV, STDs, and tobacco use, and behaviors related to reproductive health, physical activity, nutrition, and smoking cessation. Articles were published in English, after 1990, reported an evaluation, and met the 6 social marketing benchmarks criteria (behavior change, consumer research, segmentation and targeting, exchange, competition and marketing mix). Twenty-four articles, describing 17 interventions, met the inclusion criteria. Of these 17 interventions, 8 reported using theory and 7 stated how it was used. The transtheoretical model/stages of change was used more often than other theories. Findings highlight an ongoing lack of use or underreporting of the use of theory in social marketing campaigns and reinforce the call to action for applying and reporting theory to guide and evaluate interventions.
Replacement of the Project Manager Reflected Through Activity Theory and Work-System Theory
NASA Astrophysics Data System (ADS)
Vartiainen, Tero; Aramo-Immonen, Heli; Jussila, Jari; Pirhonen, Maritta; Liikamaa, Kirsi
Replacement of the project manager (RPM) is a known phenomenon in information systems (IS) projects, but scant attention is given to it in the project management or IS literature. Given its critical effects on the project business, the organization, the project team, and the project manager, it should be studied in more depth. We identified factors which make RPM occurrences inherently different and we show that work-system theory and activity theory give comprehensive lenses to advance research on RPM. For the future research on RPM we identified three objectives: experiences on RPM, process model for RPM, and organizational culture's influence on RPM occurrences.
NASA Astrophysics Data System (ADS)
Knopoff, Damián A.
2016-03-01
In the last several years there has been an increasing interest in the development of mathematical tools to study a vast number of social phenomena. The recent paper by Burini, De Lillo and Gibelli [7] constitutes a novel and valuable contribution on the modelling of learning dynamics over networks. In the spectrum of social sciences, this approach will surely provide new and useful tools for the progress of this field of interdisciplinary science.
ERIC Educational Resources Information Center
Park, Yangjoo
2015-01-01
This study is about graduate students' discourse practices in classroom text-based synchronous computer mediated discussions (SCMD). Cultural historical activity theory (in short, Activity Theory) is the primary theoretical lens through which the data are analyzed. Engeström's (1987) Activity System model among the various theoretical positions or…
Graphical Model Theory for Wireless Sensor Networks
Davis, William B.
2002-12-08
Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm.
Self Modeling: Expanding the Theories of Learning
ERIC Educational Resources Information Center
Dowrick, Peter W.
2012-01-01
Self modeling (SM) offers a unique expansion of learning theory. For several decades, a steady trickle of empirical studies has reported consistent evidence for the efficacy of SM as a procedure for positive behavior change across physical, social, educational, and diagnostic variations. SM became accepted as an extreme case of model similarity;…
ERIC Educational Resources Information Center
Kang, Haijun; Gyorke, Allan S.
2008-01-01
Despite its invaluable guidance to distance education development, transactional distance (TD) theory is not seamlessly synchronised with current field practice and lacks a social component. After it has provided over 30 years of guidance, there is now a need to re-appraise TD's propositions about distance learning activities. The social-cultural…
Moreau, Michel; Gagnon, Marie-Pierre
2015-01-01
Background Type 2 diabetes is a major challenge for Canadian public health authorities, and regular physical activity is a key factor in the management of this disease. Given that fewer than half of people with type 2 diabetes in Canada are sufficiently active to meet the recommendations, effective programs targeting the adoption of regular physical activity (PA) are in demand for this population. Many researchers argue that Web-based, tailored interventions targeting PA are a promising and effective avenue for sedentary populations like Canadians with type 2 diabetes, but few have described the detailed development of this kind of intervention. Objective This paper aims to describe the systematic development of the Web-based, tailored intervention, Diabète en Forme, promoting regular aerobic PA among adult Canadian francophones with type 2 diabetes. This paper can be used as a reference for health professionals interested in developing similar interventions. We also explored the integration of theoretical components derived from the I-Change Model, Self-Determination Theory, and Motivational Interviewing, which is a potential path for enhancing the effectiveness of tailored interventions on PA adoption and maintenance. Methods The intervention development was based on the program-planning model for tailored interventions of Kreuter et al. An additional step was added to the model to evaluate the intervention’s usability prior to the implementation phase. An 8-week intervention was developed. The key components of the intervention include a self-monitoring tool for PA behavior, a weekly action planning tool, and eight tailored motivational sessions based on attitude, self-efficacy, intention, type of motivation, PA behavior, and other constructs and techniques. Usability evaluation, a step added to the program-planning model, helped to make several improvements to the intervention prior to the implementation phase. Results The intervention development cost was
Recent contributions to solar activity theory
NASA Astrophysics Data System (ADS)
Schuessler, M.
1980-10-01
The current status of the theory of photospheric magnetic fields and the solar cycle theory is reviewed. Some new observations concerning the photospheric magnetic fields, the bright X-ray spots, and the ratio of the umbra radius to the penumbra radius are discussed, and their importance for these theories and their further development is examined.
Recursive renormalization group theory based subgrid modeling
NASA Technical Reports Server (NTRS)
Zhou, YE
1991-01-01
Advancing the knowledge and understanding of turbulence theory is addressed. Specific problems to be addressed will include studies of subgrid models to understand the effects of unresolved small scale dynamics on the large scale motion which, if successful, might substantially reduce the number of degrees of freedom that need to be computed in turbulence simulation.
A Probabilistic Model of Theory Formation
ERIC Educational Resources Information Center
Kemp, Charles; Tenenbaum, Joshua B.; Niyogi, Sourabh; Griffiths, Thomas L.
2010-01-01
Concept learning is challenging in part because the meanings of many concepts depend on their relationships to other concepts. Learning these concepts in isolation can be difficult, but we present a model that discovers entire systems of related concepts. These systems can be viewed as simple theories that specify the concepts that exist in a…
Aligning Grammatical Theories and Language Processing Models
ERIC Educational Resources Information Center
Lewis, Shevaun; Phillips, Colin
2015-01-01
We address two important questions about the relationship between theoretical linguistics and psycholinguistics. First, do grammatical theories and language processing models describe separate cognitive systems, or are they accounts of different aspects of the same system? We argue that most evidence is consistent with the one-system view. Second,…
Theory, Modeling, and Simulation of Semiconductor Lasers
NASA Technical Reports Server (NTRS)
Ning, Cun-Zheng; Saini, Subbash (Technical Monitor)
1998-01-01
Semiconductor lasers play very important roles in many areas of information technology. In this talk, I will first give an overview of semiconductor laser theory. This will be followed by a description of different models and their shortcomings in modeling and simulation. Our recent efforts in constructing a fully space and time resolved simulation model will then be described. Simulation results based on our model will be presented. Finally the effort towards a self-consistent and comprehensive simulation capability for the opto-electronics integrated circuits (OEICs) will be briefly reviewed.
NASA Astrophysics Data System (ADS)
Sellaoui, Lotfi; Lima, Éder Cláudio; Dotto, Guilherme Luiz; Dias, Silvio L. P.; Ben Lamine, Abdelmottaleb
Two equilibrium models based on statistical physics, i.e., monolayer model with single energy and multilayer model with saturation, were developed and employed to access the steric and energetic aspects in the adsorption of reactive violet 5 dye (RV-5) on cocoa shell activated carbon (AC) and commercial activated carbon (CAC), at different temperatures (from 298 to 323 K). The results showed that the multilayer model with saturation was able to represent the adsorption system. This model assumes that the adsorption occurs by a formation of certain number of layers. The n values ranged from 1.10 to 2.98, indicating that the adsorbate molecules interacted in an inclined position on the adsorbent surface and aggregate in solution. The study of the total number of the formed layers (1 + L2) showed that the steric hindrance is the dominant factor. The description of the adsorbate-adsorbent interactions by calculation of the adsorption energy indicated that the process occurred by physisorption in nature, since the values were lower than 40 kJ mol-1.
Lattice gauge theories and spin models
NASA Astrophysics Data System (ADS)
Mathur, Manu; Sreeraj, T. P.
2016-10-01
The Wegner Z2 gauge theory-Z2 Ising spin model duality in (2 +1 ) dimensions is revisited and derived through a series of canonical transformations. The Kramers-Wannier duality is similarly obtained. The Wegner Z2 gauge-spin duality is directly generalized to SU(N) lattice gauge theory in (2 +1 ) dimensions to obtain the SU(N) spin model in terms of the SU(N) magnetic fields and their conjugate SU(N) electric scalar potentials. The exact and complete solutions of the Z2, U(1), SU(N) Gauss law constraints in terms of the corresponding spin or dual potential operators are given. The gauge-spin duality naturally leads to a new gauge invariant magnetic disorder operator for SU(N) lattice gauge theory which produces a magnetic vortex on the plaquette. A variational ground state of the SU(2) spin model with nearest neighbor interactions is constructed to analyze SU(2) gauge theory.
Crack propagation modeling using Peridynamic theory
NASA Astrophysics Data System (ADS)
Hafezi, M. H.; Alebrahim, R.; Kundu, T.
2016-04-01
Crack propagation and branching are modeled using nonlocal peridynamic theory. One major advantage of this nonlocal theory based analysis tool is the unifying approach towards material behavior modeling - irrespective of whether the crack is formed in the material or not. No separate damage law is needed for crack initiation and propagation. This theory overcomes the weaknesses of existing continuum mechanics based numerical tools (e.g. FEM, XFEM etc.) for identifying fracture modes and does not require any simplifying assumptions. Cracks grow autonomously and not necessarily along a prescribed path. However, in some special situations such as in case of ductile fracture, the damage evolution and failure depend on parameters characterizing the local stress state instead of peridynamic damage modeling technique developed for brittle fracture. For brittle fracture modeling the bond is simply broken when the failure criterion is satisfied. This simulation helps us to design more reliable modeling tool for crack propagation and branching in both brittle and ductile materials. Peridynamic analysis has been found to be very demanding computationally, particularly for real-world structures (e.g. vehicles, aircrafts, etc.). It also requires a very expensive visualization process. The goal of this paper is to bring awareness to researchers the impact of this cutting-edge simulation tool for a better understanding of the cracked material response. A computer code has been developed to implement the peridynamic theory based modeling tool for two-dimensional analysis. A good agreement between our predictions and previously published results is observed. Some interesting new results that have not been reported earlier by others are also obtained and presented in this paper. The final objective of this investigation is to increase the mechanics knowledge of self-similar and self-affine cracks.
Activity Theory and Situated Learning Theory: Contrasting Views of Educational Practice
ERIC Educational Resources Information Center
Arnseth, Hans Christian
2008-01-01
The purpose of this article is to offer a critical discussion of the practice turn in contemporary educational research. In order to make the discussion specific, I use two influential theories, namely activity theory and situated learning theory. They both turn to the notion of practice in order to overcome the limitations of mentalist and…
Protection motivation theory: is this a worthwhile theory for physical activity promotion?
Plotnikoff, Ronald C; Trinh, Linda
2010-04-01
This article reviews the published studies in the physical activity domain, which include novel hypothesis from our laboratory, that have tested Rogers' Protection Motivation Theory. Across the various population groups, the theory's coping appraisal is generally supported; however, there is limited support for the theory's threat components. Implications of these findings are discussed from both theoretical and practical perspectives.
NASA Astrophysics Data System (ADS)
Dolfin, Marina
2016-03-01
The interesting novelty of the paper by Burini et al. [1] is that the authors present a survey and a new approach of collective learning based on suitable development of methods of the kinetic theory [2] and theoretical tools of evolutionary game theory [3]. Methods of statistical dynamics and kinetic theory lead naturally to stochastic and collective dynamics. Indeed, the authors propose the use of games where the state of the interacting entities is delivered by probability distributions.
Topos models for physics and topos theory
NASA Astrophysics Data System (ADS)
Wolters, Sander
2014-08-01
What is the role of topos theory in the topos models for quantum theory as used by Isham, Butterfield, Döring, Heunen, Landsman, Spitters, and others? In other words, what is the interplay between physical motivation for the models and the mathematical framework used in these models? Concretely, we show that the presheaf topos model of Butterfield, Isham, and Döring resembles classical physics when viewed from the internal language of the presheaf topos, similar to the copresheaf topos model of Heunen, Landsman, and Spitters. Both the presheaf and copresheaf models provide a "quantum logic" in the form of a complete Heyting algebra. Although these algebras are natural from a topos theoretic stance, we seek a physical interpretation for the logical operations. Finally, we investigate dynamics. In particular, we describe how an automorphism on the operator algebra induces a homeomorphism (or isomorphism of locales) on the associated state spaces of the topos models, and how elementary propositions and truth values transform under the action of this homeomorphism. Also with dynamics the focus is on the internal perspective of the topos.
Topos models for physics and topos theory
Wolters, Sander
2014-08-15
What is the role of topos theory in the topos models for quantum theory as used by Isham, Butterfield, Döring, Heunen, Landsman, Spitters, and others? In other words, what is the interplay between physical motivation for the models and the mathematical framework used in these models? Concretely, we show that the presheaf topos model of Butterfield, Isham, and Döring resembles classical physics when viewed from the internal language of the presheaf topos, similar to the copresheaf topos model of Heunen, Landsman, and Spitters. Both the presheaf and copresheaf models provide a “quantum logic” in the form of a complete Heyting algebra. Although these algebras are natural from a topos theoretic stance, we seek a physical interpretation for the logical operations. Finally, we investigate dynamics. In particular, we describe how an automorphism on the operator algebra induces a homeomorphism (or isomorphism of locales) on the associated state spaces of the topos models, and how elementary propositions and truth values transform under the action of this homeomorphism. Also with dynamics the focus is on the internal perspective of the topos.
Femtosecond spectral interferometry of optical activity: Theory
NASA Astrophysics Data System (ADS)
Rhee, Hanju; Ha, Jeong-Hyon; Jeon, Seung-Joon; Cho, Minhaeng
2008-09-01
Optical activities such as circular dichroism (CD) and optical rotatory dispersion (ORD) are manifested by almost all natural products. However, the CD is an extremely weak effect so that time-resolved CD spectroscopy has been found to be experimentally difficult and even impossible for vibrational CD with current technology. Here, we show that the weak-signal and nonzero background problems can be overcome by heterodyned spectral interferometric detection of the phase and amplitude of optical activity free-induction-decay (OA FID) field. A detailed theoretical description and a cross-polarization scheme for selectively measuring the OA FID are presented and discussed. It is shown that the parallel and perpendicular electric fields when the solution sample contains chiral molecules are coupled to each other. Therefore, simultaneous spectral interferometric measurements of the parallel and perpendicular FID fields can provide the complex susceptibility, which is associated with the circular dichroism and optical rotatory dispersion as its imaginary and real parts, respectively. On the basis of the theoretical results, to examine its experimental possibility, we present numerical simulations for a model system. We anticipate the method discussed here to be a valuable tool for detecting electronic or vibrational optical activity in femtosecond time scale.
Prospects for Advanced RF Theory and Modeling
Batchelor, D.B.
1999-04-12
This paper represents an attempt to express in print the contents of a rather philosophical review talk. The charge for the talk was not to summarize the present status of the field and what we can do, but to assess what we will need to do in the future and where the gaps are in fulfilling these needs. The objective was to be complete, covering all aspects of theory and modeling in all frequency regimes, although in the end the talk mainly focussed on the ion cyclotron range of frequencies (ICRF). In choosing which areas to develop, it is important to keep in mind who the customers for RF modeling are likely to be and what sorts of tasks they will need for RF to do. This occupies the first part of the paper. Then we examine each of the elements of a complete RF theory and try to identify the kinds of advances needed.
Prospects for advanced RF theory and modeling
NASA Astrophysics Data System (ADS)
Batchelor, D. B.
1999-09-01
This paper represents an attempt to express in print the contents of a rather philosophical review talk. The charge for the talk was not to summarize the present status of the field and what we can do, but to assess what we will need to do in the future and where the gaps are in fulfilling these needs. The objective was to be complete, covering all aspects of theory and modeling in all frequency regimes, although in the end the talk mainly focussed on the ion cyclotron range of frequencies (ICRF). In choosing which areas to develop, it is important to keep in mind who the customers for RF modeling are likely to be and what sorts of tasks they will need for RF to do. This occupies the first part of the paper. Then we examine each of the elements of a complete RF theory and try to identify the kinds of advances needed.
Minimal continuum theories of structure formation in dense active fluids
NASA Astrophysics Data System (ADS)
Dunkel, Jörn; Heidenreich, Sebastian; Bär, Markus; Goldstein, Raymond E.
2013-04-01
Self-sustained dynamical phases of living matter can exhibit remarkable similarities over a wide range of scales, from mesoscopic vortex structures in microbial suspensions and motility assays of biopolymers to turbulent large-scale instabilities in flocks of birds or schools of fish. Here, we argue that, in many cases, the phenomenology of such active states can be efficiently described in terms of fourth- and higher-order partial differential equations. Structural transitions in these models can be interpreted as Landau-type kinematic transitions in Fourier (wavenumber) space, suggesting that microscopically different biological systems can share universal long-wavelength features. This general idea is illustrated through numerical simulations for two classes of continuum models for incompressible active fluids: a Swift-Hohenberg-type scalar field theory, and a minimal vector model that extends the classical Toner-Tu theory and appears to be a promising candidate for the quantitative description of dense bacterial suspensions. We discuss how microscopic symmetry-breaking mechanisms can enter macroscopic continuum descriptions of collective microbial motion near surfaces, and conclude by outlining future applications.
Theory, Modeling and Simulation Annual Report 2000
Dixon, David A.; Garrett, Bruce C.; Straatsma, Tp; Jones, Donald R.; Studham, Ronald S.; Harrison, Robert J.; Nichols, Jeffrey A.
2001-11-01
This annual report describes the 2000 research accomplishments for the Theory, Modeling, and Simulation (TM&S) directorate, one of the six research organizations in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). EMSL is a U.S. Department of Energy (DOE) national scientific user facility and is the centerpiece of the DOE commitment to providing world-class experimental, theoretical, and computational capabilities for solving the nation's environmental problems.
Theory, Modeling and Simulation Annual Report 2000
Dixon, David A; Garrett, Bruce C; Straatsma, TP; Jones, Donald R; Studham, Scott; Harrison, Robert J; Nichols, Jeffrey A
2001-11-01
This annual report describes the 2000 research accomplishments for the Theory, Modeling, and Simulation (TM and S) directorate, one of the six research organizations in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). EMSL is a U.S. Department of Energy (DOE) national scientific user facility and is the centerpiece of the DOE commitment to providing world-class experimental, theoretical, and computational capabilities for solving the nation's environmental problems.
Modeling Second Language Change Using Skill Retention Theory
2013-06-01
Second language learning explored: SLA theories across nine contemporary theories . In B. VanPatten & J. Williams (Eds.), Theories in second ...mangngyrlngglrnngprgrm/correspo ndenceofproficiencysca.htm Spolsky, B. (1985). Formulating a theory of second language learning . Studies in Second ...public release; distribution is unlimited MODELING SECOND LANGUAGE CHANGE USING SKILL RETENTION THEORY by Samuel R.
Conceptual Models and Theory-Embedded Principles on Effective Schooling.
ERIC Educational Resources Information Center
Scheerens, Jaap
1997-01-01
Reviews models and theories on effective schooling. Discusses four rationality-based organization theories and a fifth perspective, chaos theory, as applied to organizational functioning. Discusses theory-embedded principles flowing from these theories: proactive structuring, fit, market mechanisms, cybernetics, and self-organization. The…
Community Service-Learning and Cultural-Historical Activity Theory
ERIC Educational Resources Information Center
Taylor, Alison
2014-01-01
This paper explores the potential of cultural-historical activity theory (CHAT), to provide new insights into community service-learning (CSL) in higher education. While CSL literature acknowledges the influences of John Dewey and Paolo Freire, discussion of the potential contribution of cultural-historical activity theory, rooted in the work of…
Teaching Sociological Theory through Active Learning: The Irrigation Exercise
ERIC Educational Resources Information Center
Holtzman, Mellisa
2005-01-01
For students, theory is often one of the most daunting aspects of sociology--it seems abstract, removed from the concrete events of their everyday lives, and therefore intimidating. In an attempt to break down student resistance to theory, instructors are increasingly turning to active learning approaches. Active learning exercises, then, appear…
A Guided Inquiry Activity for Teaching Ligand Field Theory
ERIC Educational Resources Information Center
Johnson, Brian J.; Graham, Kate J.
2015-01-01
This paper will describe a guided inquiry activity for teaching ligand field theory. Previous research suggests the guided inquiry approach is highly effective for student learning. This activity familiarizes students with the key concepts of molecular orbital theory applied to coordination complexes. Students will learn to identify factors that…
The danger model: questioning an unconvincing theory.
Józefowski, Szczepan
2016-02-01
Janeway's pattern recognition theory holds that the immune system detects infection through a limited number of the so-called pattern recognition receptors (PRRs). These receptors bind specific chemical compounds expressed by entire groups of related pathogens, but not by host cells (pathogen-associated molecular patterns (PAMPs). In contrast, Matzinger's danger hypothesis postulates that products released from stressed or damaged cells have a more important role in the activation of immune system than the recognition of nonself. These products, named by analogy to PAMPs as danger-associated molecular patterns (DAMPs), are proposed to act through the same receptors (PRRs) as PAMPs and, consequently, to stimulate largely similar responses. Herein, I review direct and indirect evidence that contradict the widely accepted danger theory, and suggest that it may be false.
Adapting Structuration Theory as a Comprehensive Theory for Distance Education: The ASTIDE Model
ERIC Educational Resources Information Center
Aktaruzzaman, Md; Plunkett, Margaret
2016-01-01
Distance Education (DE) theorists have argued about the requirement for a theory to be comprehensive in a way that can explicate many of the activities associated with DE. Currently, Transactional Distance Theory (TDT) (Moore, 1993) and the Theory of Instructional Dialogue (IDT) (Caspi & Gorsky, 2006) are the most prominent theories, yet they…
Algorithm for model validation: theory and applications.
Sornette, D; Davis, A B; Ide, K; Vixie, K R; Pisarenko, V; Kamm, J R
2007-04-17
Validation is often defined as the process of determining the degree to which a model is an accurate representation of the real world from the perspective of its intended uses. Validation is crucial as industries and governments depend increasingly on predictions by computer models to justify their decisions. We propose to formulate the validation of a given model as an iterative construction process that mimics the often implicit process occurring in the minds of scientists. We offer a formal representation of the progressive build-up of trust in the model. Thus, we replace static claims on the impossibility of validating a given model by a dynamic process of constructive approximation. This approach is better adapted to the fuzzy, coarse-grained nature of validation. Our procedure factors in the degree of redundancy versus novelty of the experiments used for validation as well as the degree to which the model predicts the observations. We illustrate the methodology first with the maturation of quantum mechanics as the arguably best established physics theory and then with several concrete examples drawn from some of our primary scientific interests: a cellular automaton model for earthquakes, a multifractal random walk model for financial time series, an anomalous diffusion model for solar radiation transport in the cloudy atmosphere, and a computational fluid dynamics code for the Richtmyer-Meshkov instability.
Algorithm for model validation: Theory and applications
Sornette, D.; Davis, A. B.; Ide, K.; Vixie, K. R.; Pisarenko, V.; Kamm, J. R.
2007-01-01
Validation is often defined as the process of determining the degree to which a model is an accurate representation of the real world from the perspective of its intended uses. Validation is crucial as industries and governments depend increasingly on predictions by computer models to justify their decisions. We propose to formulate the validation of a given model as an iterative construction process that mimics the often implicit process occurring in the minds of scientists. We offer a formal representation of the progressive build-up of trust in the model. Thus, we replace static claims on the impossibility of validating a given model by a dynamic process of constructive approximation. This approach is better adapted to the fuzzy, coarse-grained nature of validation. Our procedure factors in the degree of redundancy versus novelty of the experiments used for validation as well as the degree to which the model predicts the observations. We illustrate the methodology first with the maturation of quantum mechanics as the arguably best established physics theory and then with several concrete examples drawn from some of our primary scientific interests: a cellular automaton model for earthquakes, a multifractal random walk model for financial time series, an anomalous diffusion model for solar radiation transport in the cloudy atmosphere, and a computational fluid dynamics code for the Richtmyer–Meshkov instability. PMID:17420476
Network Theory Tools for RNA Modeling
Kim, Namhee; Petingi, Louis; Schlick, Tamar
2014-01-01
An introduction into the usage of graph or network theory tools for the study of RNA molecules is presented. By using vertices and edges to define RNA secondary structures as tree and dual graphs, we can enumerate, predict, and design RNA topologies. Graph connectivity and associated Laplacian eigenvalues relate to biological properties of RNA and help understand RNA motifs as well as build, by computational design, various RNA target structures. Importantly, graph theoretical representations of RNAs reduce drastically the conformational space size and therefore simplify modeling and prediction tasks. Ongoing challenges remain regarding general RNA design, representation of RNA pseudoknots, and tertiary structure prediction. Thus, developments in network theory may help advance RNA biology. PMID:25414570
Network Theory Tools for RNA Modeling.
Kim, Namhee; Petingi, Louis; Schlick, Tamar
2013-09-01
An introduction into the usage of graph or network theory tools for the study of RNA molecules is presented. By using vertices and edges to define RNA secondary structures as tree and dual graphs, we can enumerate, predict, and design RNA topologies. Graph connectivity and associated Laplacian eigenvalues relate to biological properties of RNA and help understand RNA motifs as well as build, by computational design, various RNA target structures. Importantly, graph theoretical representations of RNAs reduce drastically the conformational space size and therefore simplify modeling and prediction tasks. Ongoing challenges remain regarding general RNA design, representation of RNA pseudoknots, and tertiary structure prediction. Thus, developments in network theory may help advance RNA biology.
Critical Curriculum Theory and Slow Ecopedagogical Activism
ERIC Educational Resources Information Center
Payne, Phillip G.
2015-01-01
Enacting a critical environmental education curriculum theory with 8- to 9-year-old children in 1978 is now "restoried" in a "history of the present/future" like "case study" for prosecuting five interrelated problems confronting progress in environmental education and its research. They are: the intense heat of the…
Magidson, Jessica F.; Roberts, Brent; Collado-Rodriguez, Anahi; Lejuez, C.W.
2013-01-01
Considerable evidence suggests that personality traits may be changeable, raising the possibility that personality traits most linked to health problems can be modified with intervention. A growing body of research suggests that problematic personality traits may be altered with behavioral intervention using a bottom-approach. That is, by targeting core behaviors that underlie personality traits with the goal of engendering new, healthier patterns of behavior that over time become automatized and manifest in changes in personality traits. Nevertheless, a bottom-up model for changing personality traits is somewhat diffuse and requires clearer integration of theory and relevant interventions to enable real clinical application. As such, this manuscript proposes a set of guiding principles for theory-driven modification of targeted personality traits using a bottom-up approach, focusing specifically on targeting the trait of conscientiousness using a relevant behavioral intervention, Behavioral Activation (BA), considered within the motivational framework of Expectancy Value Theory (EVT). We conclude with a real case example of the application of BA to alter behaviors counter to conscientiousness in a substance dependent patient, highlighting the EVT principles most relevant to the approach and the importance and viability of a theoretically-driven, bottom-up approach to changing personality traits. PMID:23106844
Magidson, Jessica F; Roberts, Brent W; Collado-Rodriguez, Anahi; Lejuez, C W
2014-05-01
Considerable evidence suggests that personality traits may be changeable, raising the possibility that personality traits most linked to health problems can be modified with intervention. A growing body of research suggests that problematic personality traits may be altered with behavioral intervention using a bottom-up approach. That is, by targeting core behaviors that underlie personality traits with the goal of engendering new, healthier patterns of behavior that, over time, become automatized and manifest in changes in personality traits. Nevertheless, a bottom-up model for changing personality traits is somewhat diffuse and requires clearer integration of theory and relevant interventions to enable real clinical application. As such, this article proposes a set of guiding principles for theory-driven modification of targeted personality traits using a bottom-up approach, focusing specifically on targeting the trait of conscientiousness using a relevant behavioral intervention, Behavioral Activation (BA), considered within the motivational framework of expectancy value theory (EVT). We conclude with a real case example of the application of BA to alter behaviors counter to conscientiousness in a substance-dependent patient, highlighting the EVT principles most relevant to the approach and the importance and viability of a theoretically driven, bottom-up approach to changing personality traits.
Transition path theory analysis of c-Src kinase activation
Meng, Yilin; Shukla, Diwakar; Pande, Vijay S.; Roux, Benoît
2016-01-01
Nonreceptor tyrosine kinases of the Src family are large multidomain allosteric proteins that are crucial to cellular signaling pathways. In a previous study, we generated a Markov state model (MSM) to simulate the activation of c-Src catalytic domain, used as a prototypical tyrosine kinase. The long-time kinetics of transition predicted by the MSM was in agreement with experimental observations. In the present study, we apply the framework of transition path theory (TPT) to the previously constructed MSM to characterize the main features of the activation pathway. The analysis indicates that the activating transition, in which the activation loop first opens up followed by an inward rotation of the αC-helix, takes place via a dense set of intermediate microstates distributed within a fairly broad “transition tube” in a multidimensional conformational subspace connecting the two end-point conformations. Multiple microstates with negligible equilibrium probabilities carry a large transition flux associated with the activating transition, which explains why extensive conformational sampling is necessary to accurately determine the kinetics of activation. Our results suggest that the combination of MSM with TPT provides an effective framework to represent conformational transitions in complex biomolecular systems. PMID:27482115
Queuing theory models for computer networks
NASA Technical Reports Server (NTRS)
Galant, David C.
1989-01-01
A set of simple queuing theory models which can model the average response of a network of computers to a given traffic load has been implemented using a spreadsheet. The impact of variations in traffic patterns and intensities, channel capacities, and message protocols can be assessed using them because of the lack of fine detail in the network traffic rates, traffic patterns, and the hardware used to implement the networks. A sample use of the models applied to a realistic problem is included in appendix A. Appendix B provides a glossary of terms used in this paper. This Ames Research Center computer communication network is an evolving network of local area networks (LANs) connected via gateways and high-speed backbone communication channels. Intelligent planning of expansion and improvement requires understanding the behavior of the individual LANs as well as the collection of networks as a whole.
Compass models: Theory and physical motivations
NASA Astrophysics Data System (ADS)
Nussinov, Zohar; van den Brink, Jeroen
2015-01-01
Compass models are theories of matter in which the couplings between the internal spin (or other relevant field) components are inherently spatially (typically, direction) dependent. A simple illustrative example is furnished by the 90° compass model on a square lattice in which only couplings of the form τixτjx (where {τia}a denote Pauli operators at site i ) are associated with nearest-neighbor sites i and j separated along the x axis of the lattice while τiyτjy couplings appear for sites separated by a lattice constant along the y axis. Similar compass-type interactions can appear in diverse physical systems. For instance, compass models describe Mott insulators with orbital degrees of freedom where interactions sensitively depend on the spatial orientation of the orbitals involved as well as the low-energy effective theories of frustrated quantum magnets, and a host of other systems such as vacancy centers, and cold atomic gases. The fundamental interdependence between internal (spin, orbital, or other) and external (i.e., spatial) degrees of freedom which underlies compass models generally leads to very rich behaviors, including the frustration of (semi-)classical ordered states on nonfrustrated lattices, and to enhanced quantum effects, prompting, in certain cases, the appearance of zero-temperature quantum spin liquids. As a consequence of these frustrations, new types of symmetries and their associated degeneracies may appear. These intermediate symmetries lie midway between the extremes of global symmetries and local gauge symmetries and lead to effective dimensional reductions. In this article, compass models are reviewed in a unified manner, paying close attention to exact consequences of these symmetries and to thermal and quantum fluctuations that stabilize orders via order-out-of-disorder effects. This is complemented by a survey of numerical results. In addition to reviewing past works, a number of other models are introduced and new results
ERIC Educational Resources Information Center
Landry, Joan B.; Solmon, Melinda A.
2002-01-01
Explores the literature on the status of women's health behavior and the benefits of physical activity, using Self- Determination Theory (SDT) as an organizing framework and including the Health Belief Model and Transtheoretical Model in the framework. Women's physical activity behaviors are examined through the lens of SDT with the intention of…
A matrix model from string field theory
NASA Astrophysics Data System (ADS)
Zeze, Syoji
2016-09-01
We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N) vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The large N matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane.
Polarimetric clutter modeling: Theory and application
NASA Technical Reports Server (NTRS)
Kong, J. A.; Lin, F. C.; Borgeaud, M.; Yueh, H. A.; Swartz, A. A.; Lim, H. H.; Shim, R. T.; Novak, L. M.
1988-01-01
The two-layer anisotropic random medium model is used to investigate fully polarimetric scattering properties of earth terrain media. The polarization covariance matrices for the untilted and tilted uniaxial random medium are evaluated using the strong fluctuation theory and distorted Born approximation. In order to account for the azimuthal randomness in the growth direction of leaves in tree and grass fields, an averaging scheme over the azimuthal direction is also applied. It is found that characteristics of terrain clutter can be identified through the analysis of each element of the covariance matrix. Theoretical results are illustrated by the comparison with experimental data provided by MIT Lincoln Laboratory for tree and grass fields.
Active cell mechanics: Measurement and theory.
Ahmed, Wylie W; Fodor, Étienne; Betz, Timo
2015-11-01
Living cells are active mechanical systems that are able to generate forces. Their structure and shape are primarily determined by biopolymer filaments and molecular motors that form the cytoskeleton. Active force generation requires constant consumption of energy to maintain the nonequilibrium activity to drive organization and transport processes necessary for their function. To understand this activity it is necessary to develop new approaches to probe the underlying physical processes. Active cell mechanics incorporates active molecular-scale force generation into the traditional framework of mechanics of materials. This review highlights recent experimental and theoretical developments towards understanding active cell mechanics. We focus primarily on intracellular mechanical measurements and theoretical advances utilizing the Langevin framework. These developing approaches allow a quantitative understanding of nonequilibrium mechanical activity in living cells. This article is part of a Special Issue entitled: Mechanobiology.
Mathematical models for principles of gyroscope theory
NASA Astrophysics Data System (ADS)
Usubamatov, Ryspek
2017-01-01
Gyroscope devices are primary units for navigation and control systems that have wide application in engineering. The main property of the gyroscope device is maintaining the axis of a spinning rotor. This gyroscope peculiarity is represented in terms of gyroscope effects in which known mathematical models have been formulated on the law of kinetic energy conservation and the change in the angular momentum. The gyroscope theory is represented by numerous publications, which mathematical models do not match the actual torques and motions in these devices.. The nature of gyroscope effects is more complex than represented in known publications. Recent investigations in this area have demonstrated that on a gyroscope can act until eleven internal torques simultaneously and interdependently around two axes. These gyroscope torques are generated by spinning rotor's mass-elements and by the gyroscope center-mass based on action of several inertial forces. The change in the angular momentum does not play first role for gyroscope motions. The external load generates several internal torques which directions may be distinguished. This situation leads changing of the angular velocities of gyroscope motions around two axes. Formulated mathematical models of gyroscope internal torques are representing the fundamental principle of gyroscope theory. In detail, the gyroscope is experienced the resistance torque generated by the centrifugal and Coriolis forces of the spinning rotor and the precession torque generated by the common inertial forces and the change in the angular momentum. The new mathematical models for the torques and motions of the gyroscope confirmed for most unsolvable problems. The mathematical models practically tested and the results are validated the theoretical approach.
Holographic models for theories with hyperscaling violation
NASA Astrophysics Data System (ADS)
Gath, Jakob; Hartong, Jelle; Monteiro, Ricardo; Obers, Niels A.
2013-04-01
We study in detail a variety of gravitational toy models for hyperscaling-violating Lifshitz (hvLif) space-times. These space-times have been recently explored as holographic dual models for condensed matter systems. We start by considering a model of gravity coupled to a massive vector field and a dilaton with a potential. This model supports the full class of hvLif space-times and special attention is given to the particular values of the scaling exponents appearing in certain non-Fermi liquids. We study linearized perturbations in this model, and consider probe fields whose interactions mimic those of the perturbations. The resulting equations of motion for the probe fields are invariant under the Lifshitz scaling. We derive Breitenlohner-Freedman-type bounds for these new probe fields. For the cases of interest the hvLif space-times have curvature invariants that blow up in the UV. We study the problem of constructing models in which the hvLif space-time can have an AdS or Lifshitz UV completion. We also analyze reductions of Schrödinger space-times and reductions of waves on extremal (intersecting) branes, accompanied by transverse space reductions, that are solutions to supergravity-like theories, exploring the allowed parameter range of the hvLif scaling exponents.
PARFUME Theory and Model basis Report
Darrell L. Knudson; Gregory K Miller; G.K. Miller; D.A. Petti; J.T. Maki; D.L. Knudson
2009-09-01
The success of gas reactors depends upon the safety and quality of the coated particle fuel. The fuel performance modeling code PARFUME simulates the mechanical, thermal and physico-chemical behavior of fuel particles during irradiation. This report documents the theory and material properties behind vari¬ous capabilities of the code, which include: 1) various options for calculating CO production and fission product gas release, 2) an analytical solution for stresses in the coating layers that accounts for irradiation-induced creep and swelling of the pyrocarbon layers, 3) a thermal model that calculates a time-dependent temperature profile through a pebble bed sphere or a prismatic block core, as well as through the layers of each analyzed particle, 4) simulation of multi-dimensional particle behavior associated with cracking in the IPyC layer, partial debonding of the IPyC from the SiC, particle asphericity, and kernel migration (or amoeba effect), 5) two independent methods for determining particle failure probabilities, 6) a model for calculating release-to-birth (R/B) ratios of gaseous fission products that accounts for particle failures and uranium contamination in the fuel matrix, and 7) the evaluation of an accident condition, where a particle experiences a sudden change in temperature following a period of normal irradiation. The accident condi¬tion entails diffusion of fission products through the particle coating layers and through the fuel matrix to the coolant boundary. This document represents the initial version of the PARFUME Theory and Model Basis Report. More detailed descriptions will be provided in future revisions.
Modeling Environmental Concern: Theory and Application.
ERIC Educational Resources Information Center
Hackett, Paul M. W.
1993-01-01
Human concern for the quality and protection of the natural environment forms the basis of successful environmental conservation activities. Considers environmental concern research and proposes a model that incorporates the multiple dimensions of research through which environmental concern may be evaluated. (MDH)
Using Hybrid Modeling to Develop Innovative Activities
ERIC Educational Resources Information Center
Lichtman, Brenda; Avans, Diana
2005-01-01
This article describes a hybrid activities model that physical educators can use with students in grades four and above to create virtually a limitless array of novel games. A brief introduction to the basic theory is followed by descriptions of some hybrid games. Hybrid games are typically the result of merging two traditional sports or other…
A queueing theory based model for business continuity in hospitals.
Miniati, R; Cecconi, G; Dori, F; Frosini, F; Iadanza, E; Biffi Gentili, G; Niccolini, F; Gusinu, R
2013-01-01
Clinical activities can be seen as results of precise and defined events' succession where every single phase is characterized by a waiting time which includes working duration and possible delay. Technology makes part of this process. For a proper business continuity management, planning the minimum number of devices according to the working load only is not enough. A risk analysis on the whole process should be carried out in order to define which interventions and extra purchase have to be made. Markov models and reliability engineering approaches can be used for evaluating the possible interventions and to protect the whole system from technology failures. The following paper reports a case study on the application of the proposed integrated model, including risk analysis approach and queuing theory model, for defining the proper number of device which are essential to guarantee medical activity and comply the business continuity management requirements in hospitals.
Theory and modelling of nanocarbon phase stability.
Barnard, A. S.
2006-01-01
The transformation of nanodiamonds into carbon-onions (and vice versa) has been observed experimentally and has been modeled computationally at various levels of sophistication. Also, several analytical theories have been derived to describe the size, temperature and pressure dependence of this phase transition. However, in most cases a pure carbon-onion or nanodiamond is not the final product. More often than not an intermediary is formed, known as a bucky-diamond, with a diamond-like core encased in an onion-like shell. This has prompted a number of studies investigating the relative stability of nanodiamonds, bucky-diamonds, carbon-onions and fullerenes, in various size regimes. Presented here is a review outlining results of numerous theoretical studies examining the phase diagrams and phase stability of carbon nanoparticles, to clarify the complicated relationship between fullerenic and diamond structures at the nanoscale.
Modeling missing data in knowledge space theory.
de Chiusole, Debora; Stefanutti, Luca; Anselmi, Pasquale; Robusto, Egidio
2015-12-01
Missing data are a well known issue in statistical inference, because some responses may be missing, even when data are collected carefully. The problem that arises in these cases is how to deal with missing data. In this article, the missingness is analyzed in knowledge space theory, and in particular when the basic local independence model (BLIM) is applied to the data. Two extensions of the BLIM to missing data are proposed: The former, called ignorable missing BLIM (IMBLIM), assumes that missing data are missing completely at random; the latter, called missing BLIM (MissBLIM), introduces specific dependencies of the missing data on the knowledge states, thus assuming that the missing data are missing not at random. The IMBLIM and the MissBLIM modeled the missingness in a satisfactory way, in both a simulation study and an empirical application, depending on the process that generates the missingness: If the missing data-generating process is of type missing completely at random, then either IMBLIM or MissBLIM provide adequate fit to the data. However, if the pattern of missingness is functionally dependent upon unobservable features of the data (e.g., missing answers are more likely to be wrong), then only a correctly specified model of the missingness distribution provides an adequate fit to the data.
Gravothermal Star Clusters - Theory and Computer Modelling
NASA Astrophysics Data System (ADS)
Spurzem, Rainer
2010-11-01
In the George Darwin lecture, delivered to the British Royal Astronomical Society in 1960 by Viktor A. Ambartsumian he wrote on the evolution of stellar systems that it can be described by the "dynamic evolution of a gravitating gas" complemented by "a statistical description of the changes in the physical states of stars". This talk will show how this physical concept has inspired theoretical modeling of star clusters in the following decades up to the present day. The application of principles of thermodynamics shows, as Ambartsumian argued in his 1960 lecture, that there is no stable state of equilibrium of a gravitating star cluster. The trend to local thermodynamic equilibrium is always disturbed by escaping stars (Ambartsumian), as well as by gravothermal and gravogyro instabilities, as it was detected later. Here the state-of-the-art of modeling the evolution of dense stellar systems based on principles of thermodynamics and statistical mechanics (Fokker-Planck approximation) will be reviewed. Recent progress including rotation and internal correlations (primordial binaries) is presented. The models have also very successfully been used to study dense star clusters around massive black holes in galactic nuclei and even (in a few cases) relativistic supermassive dense objects in centres of galaxies (here again briefly touching one of the many research fields of V.A. Ambartsumian). For the modern present time of high-speed supercomputing, where we are tackling direct N-body simulations of star clusters, we will show that such direct modeling supports and proves the concept of the statistical models based on the Fokker-Planck theory, and that both theoretical concepts and direct computer simulations are necessary to support each other and make scientific progress in the study of star cluster evolution.
NASA Astrophysics Data System (ADS)
Urrutia, L.
2016-03-01
Information appears naturally in the description of living systems. In kinetic models of such systems, information defined as the knowledge that a population has of the structure of the environment plays a key role in the dynamics of the system. For example, on chemotaxis models of cell movement, the concentration of a certain chemical substance can be understood to be the information that cells have of the structure of the surrounding media, and adapt their movement to that [6,7].
PDAs as Lifelong Learning Tools: An Activity Theory Based Analysis
ERIC Educational Resources Information Center
Waycott, Jenny; Jones, Ann; Scanlon, Eileen
2005-01-01
This paper describes the use of an activity theory (AT) framework to analyze the ways that distance part time learners and mobile workers adapted and appropriated mobile devices for their activities and in turn how their use of these new tools changed the ways that they carried out their learning or their work. It is argued that there are two key…
Project-Based Language Learning: An Activity Theory Analysis
ERIC Educational Resources Information Center
Gibbes, Marina; Carson, Lorna
2014-01-01
This paper reports on an investigation of project-based language learning (PBLL) in a university language programme. Learner reflections of project work were analysed through Activity Theory, where tool-mediated activity is understood as the central unit of analysis for human interaction. Data were categorised according to the components of human…
ERIC Educational Resources Information Center
Silo, Nthalivi
2013-01-01
An in-depth case study on children's participation in environmental management activities in a primary school in Botswana was undertaken, drawing on cultural historical activity theory (CHAT) and the action competence model. This research revealed that due to a lack of dialogue between teachers and children, teachers tended to view children's…
Theory and Modeling in Support of Tether
NASA Technical Reports Server (NTRS)
Chang, C. L.; Bergeron, G.; Drobot, A. D.; Papadopoulos, K.; Riyopoulos, S.; Szuszczewicz, E.
1999-01-01
This final report summarizes the work performed by SAIC's Applied Physics Operation on the modeling and support of Tethered Satellite System missions (TSS-1 and TSS-1R). The SAIC team, known to be Theory and Modeling in Support of Tether (TMST) investigation, was one of the original twelve teams selected in July, 1985 for the first TSS mission. The accomplishments described in this report cover the period December 19, 1985 to September 31, 1999 and are the result of a continuous effort aimed at supporting the TSS missions in the following major areas. During the contract period, the SAIC's TMST investigation acted to: Participate in the planning and the execution on both of the TSS missions; Provide scientific understanding on the issues involved in the electrodynamic tether system operation prior to the TSS missions; Predict ionospheric conditions encountered during the re-flight mission (TSS-lR) based on realtime global ionosounde data; Perform post mission analyses to enhance our understanding on the TSS results. Specifically, we have 1) constructed and improved current collection models and enhanced our understanding on the current-voltage data; 2) investigated the effects of neutral gas in the current collection processes; 3) conducted laboratory experiments to study the discharge phenomena during and after tether-break; and 4) perform numerical simulations to understand data collected by plasma instruments SPES onboard the TSS satellite; Design and produce multi-media CD that highlights TSS mission achievements and convey the knowledge of the tether technology to the general public. Along with discussions of this work, a list of publications and presentations derived from the TMST investigation spanning the reporting period is compiled.
Liu, Jiamin; Udupa, Jayaram K
2009-04-01
Active shape models (ASM) are widely employed for recognizing anatomic structures and for delineating them in medical images. In this paper, a novel strategy called oriented active shape models (OASM) is presented in an attempt to overcome the following five limitations of ASM: 1) lower delineation accuracy, 2) the requirement of a large number of landmarks, 3) sensitivity to search range, 4) sensitivity to initialization, and 5) inability to fully exploit the specific information present in the given image to be segmented. OASM effectively combines the rich statistical shape information embodied in ASM with the boundary orientedness property and the globally optimal delineation capability of the live wire methodology of boundary segmentation. The latter characteristics allow live wire to effectively separate an object boundary from other nonobject boundaries with similar properties especially when they come very close in the image domain. The approach leads to a two-level dynamic programming method, wherein the first level corresponds to boundary recognition and the second level corresponds to boundary delineation, and to an effective automatic initialization method. The method outputs a globally optimal boundary that agrees with the shape model if the recognition step is successful in bringing the model close to the boundary in the image. Extensive evaluation experiments have been conducted by utilizing 40 image (magnetic resonance and computed tomography) data sets in each of five different application areas for segmenting breast, liver, bones of the foot, and cervical vertebrae of the spine. Comparisons are made between OASM and ASM based on precision, accuracy, and efficiency of segmentation. Accuracy is assessed using both region-based false positive and false negative measures and boundary-based distance measures. The results indicate the following: 1) The accuracy of segmentation via OASM is considerably better than that of ASM; 2) The number of landmarks
Catastrophe Theory: A Unified Model for Educational Change.
ERIC Educational Resources Information Center
Cryer, Patricia; Elton, Lewis
1990-01-01
Catastrophe Theory and Herzberg's theory of motivation at work was used to create a model of change that unifies and extends Lewin's two separate stage and force field models. This new model is used to analyze the behavior of academics as they adapt to the changing university environment. (Author/MLW)
A Leadership Identity Development Model: Applications from a Grounded Theory
ERIC Educational Resources Information Center
Komives, Susan R.; Mainella, Felicia C.; Longerbeam, Susan D.; Osteen, Laura; Owen, Julie E.
2006-01-01
This article describes a stage-based model of leadership identity development (LID) that resulted from a grounded theory study on developing a leadership identity (Komives, Owen, Longerbeam, Mainella, & Osteen, 2005). The LID model expands on the leadership identity stages, integrates the categories of the grounded theory into the LID model, and…
MaRIE theory, modeling and computation roadmap executive summary
Lookman, Turab
2010-01-01
The confluence of MaRIE (Matter-Radiation Interactions in Extreme) and extreme (exascale) computing timelines offers a unique opportunity in co-designing the elements of materials discovery, with theory and high performance computing, itself co-designed by constrained optimization of hardware and software, and experiments. MaRIE's theory, modeling, and computation (TMC) roadmap efforts have paralleled 'MaRIE First Experiments' science activities in the areas of materials dynamics, irradiated materials and complex functional materials in extreme conditions. The documents that follow this executive summary describe in detail for each of these areas the current state of the art, the gaps that exist and the road map to MaRIE and beyond. Here we integrate the various elements to articulate an overarching theme related to the role and consequences of heterogeneities which manifest as competing states in a complex energy landscape. MaRIE experiments will locate, measure and follow the dynamical evolution of these heterogeneities. Our TMC vision spans the various pillar science and highlights the key theoretical and experimental challenges. We also present a theory, modeling and computation roadmap of the path to and beyond MaRIE in each of the science areas.
Theory-Based Interventions in Physical Activity: A Systematic Review of Literature in Iran
Abdi, Jalal; Eftekhar, Hassan; Estebsari, Fatemeh; Sadeghi, Roya
2015-01-01
Lack of physical activity is ranked fourth among the causes of human death and chronic diseases. Using models and theories to design, implement, and evaluate the health education and health promotion interventions has many advantages. Using models and theories of physical activity, we decided to systematically study the educational and promotional interventions carried out in Iran from 2003 to 2013.Three information databases were used to systematically select papers using key words including Iranian Magazine Database (MAGIRAN), Iran Medical Library (MEDLIB), and Scientific Information Database (SID). Twenty papers were selected and studied. Having been applied in 9 studies, The Trans Theoretical Model (TTM) was the most widespread model in Iran (PENDER in 3 studies, BASNEF in 2, and the Theory of Planned Behavior in 2 studies). With regards to the educational methods, almost all studies used a combination of methods. The most widely used Integrative educational method was group discussion. Only one integrated study was done. Behavior maintenance was not addressed in 75% of the studies. Almost all studies used self-reporting instruments. The effectiveness of educational methods was assessed in none of the studies. Most of the included studies had several methodological weaknesses, which hinder the validity and applicability of their results. According to the findings, the necessity of need assessment in using models, epidemiology and methodology consultation, addressing maintenance of physical activity, using other theories and models such as social marketing and social-cognitive theory, and other educational methods like empirical and complementary are suggested. PMID:25948454
Brain activity and cognition: a connection from thermodynamics and information theory
Collell, Guillem; Fauquet, Jordi
2015-01-01
The connection between brain and mind is an important scientific and philosophical question that we are still far from completely understanding. A crucial point to our work is noticing that thermodynamics provides a convenient framework to model brain activity, whereas cognition can be modeled in information-theoretical terms. In fact, several models have been proposed so far from both approaches. A second critical remark is the existence of deep theoretical connections between thermodynamics and information theory. In fact, some well-known authors claim that the laws of thermodynamics are nothing but principles in information theory. Unlike in physics or chemistry, a formalization of the relationship between information and energy is currently lacking in neuroscience. In this paper we propose a framework to connect physical brain and cognitive models by means of the theoretical connections between information theory and thermodynamics. Ultimately, this article aims at providing further insight on the formal relationship between cognition and neural activity. PMID:26136709
Brain activity and cognition: a connection from thermodynamics and information theory.
Collell, Guillem; Fauquet, Jordi
2015-01-01
The connection between brain and mind is an important scientific and philosophical question that we are still far from completely understanding. A crucial point to our work is noticing that thermodynamics provides a convenient framework to model brain activity, whereas cognition can be modeled in information-theoretical terms. In fact, several models have been proposed so far from both approaches. A second critical remark is the existence of deep theoretical connections between thermodynamics and information theory. In fact, some well-known authors claim that the laws of thermodynamics are nothing but principles in information theory. Unlike in physics or chemistry, a formalization of the relationship between information and energy is currently lacking in neuroscience. In this paper we propose a framework to connect physical brain and cognitive models by means of the theoretical connections between information theory and thermodynamics. Ultimately, this article aims at providing further insight on the formal relationship between cognition and neural activity.
Continuum Theory of Phase Separation Kinetics for Active Brownian Particles
NASA Astrophysics Data System (ADS)
Stenhammar, Joakim; Tiribocchi, Adriano; Allen, Rosalind J.; Marenduzzo, Davide; Cates, Michael E.
2013-10-01
Active Brownian particles (ABPs), when subject to purely repulsive interactions, are known to undergo activity-induced phase separation broadly resembling an equilibrium (attraction-induced) gas-liquid coexistence. Here we present an accurate continuum theory for the dynamics of phase-separating ABPs, derived by direct coarse graining, capturing leading-order density gradient terms alongside an effective bulk free energy. Such gradient terms do not obey detailed balance; yet we find coarsening dynamics closely resembling that of equilibrium phase separation. Our continuum theory is numerically compared to large-scale direct simulations of ABPs and accurately accounts for domain growth kinetics, domain topologies, and coexistence densities.
NASA Astrophysics Data System (ADS)
Bellomo, Nicola; Elaiw, Ahmed; Alghamdi, Mohamed Ali
2016-03-01
The paper by Burini, De Lillo, and Gibelli [8] presents an overview and critical analysis of the literature on the modeling of learning dynamics. The first reference is the celebrated paper by Cucker and Smale [9]. Then, the authors also propose their own approach, based on suitable development of methods of the kinetic theory [6] and theoretical tools of evolutionary game theory [12,13], recently developed on graphs [2].
BARR, ASHLEY B.; LEI, MAN-KIT; STEWART, ERIC
2014-01-01
Simons and Burt’s (2011) social schematic theory (SST) of crime posits that adverse social factors are associated with offending because they promote a set of social schemas (i.e., a criminogenic knowledge structure) that elevates the probability of situational definitions favorable to crime. This study extends the SST model by incorporating the role of contexts for action. Furthermore, the study advances tests of the SST by incorporating a measure of criminogenic situational definitions to assess whether such definitions mediate the effects of schemas and contexts on crime. Structural equation models using 10 years of panel data from 582 African American youth provided strong support for the expanded theory. The results suggest that childhood and adolescent social adversity fosters a criminogenic knowledge structure as well as selection into criminogenic activity spaces and risky activities, all of which increase the likelihood of offending largely through situational definitions. Additionally, evidence shows that the criminogenic knowledge structure interacts with settings to amplify the likelihood of situational definitions favorable to crime. PMID:26392633
A Quantitative Causal Model Theory of Conditional Reasoning
ERIC Educational Resources Information Center
Fernbach, Philip M.; Erb, Christopher D.
2013-01-01
The authors propose and test a causal model theory of reasoning about conditional arguments with causal content. According to the theory, the acceptability of modus ponens (MP) and affirming the consequent (AC) reflect the conditional likelihood of causes and effects based on a probabilistic causal model of the scenario being judged. Acceptability…
Using Theory Elaboration and Activity Theory for Building a Knowledge Management Apparatus.
ERIC Educational Resources Information Center
Cortez, Edwin M.; Kazlauskas, Edward J.
2000-01-01
Reports ongoing developmental research at the Department of Agriculture to build a high-performance knowledge base for four agencies within the Department. Describes data gathering for the information system; planning to support knowledge management practices; theory elaboration through qualitative case analysis; and use of an activity theory…
BOOK REVIEW: Supersymmetry and String Theory: Beyond the Standard Model
NASA Astrophysics Data System (ADS)
Rocek, Martin
2007-11-01
When I was asked to review Michael Dine's new book, 'Supersymmetry and String Theory', I was pleased to have a chance to read a book by such an established authority on how string theory might become testable. The book is most useful as a list of current topics of interest in modern theoretical physics. It gives a succinct summary of a huge variety of subjects, including the standard model, symmetry, Yang Mills theory, quantization of gauge theories, the phenomenology of the standard model, the renormalization group, lattice gauge theory, effective field theories, anomalies, instantons, solitons, monopoles, dualities, technicolor, supersymmetry, the minimal supersymmetric standard model, dynamical supersymmetry breaking, extended supersymmetry, Seiberg Witten theory, general relativity, cosmology, inflation, bosonic string theory, the superstring, the heterotic string, string compactifications, the quintic, string dualities, large extra dimensions, and, in the appendices, Goldstone's theorem, path integrals, and exact beta-functions in supersymmetric gauge theories. Its breadth is both its strength and its weakness: it is not (and could not possibly be) either a definitive reference for experts, where the details of thorny technical issues are carefully explored, or a textbook for graduate students, with detailed pedagogical expositions. As such, it complements rather than replaces the much narrower and more focussed String Theory I and II volumes by Polchinski, with their deep insights, as well the two older volumes by Green, Schwarz, and Witten, which develop string theory pedagogically.
Program evaluation models and related theories: AMEE guide no. 67.
Frye, Ann W; Hemmer, Paul A
2012-01-01
This Guide reviews theories of science that have influenced the development of common educational evaluation models. Educators can be more confident when choosing an appropriate evaluation model if they first consider the model's theoretical basis against their program's complexity and their own evaluation needs. Reductionism, system theory, and (most recently) complexity theory have inspired the development of models commonly applied in evaluation studies today. This Guide describes experimental and quasi-experimental models, Kirkpatrick's four-level model, the Logic Model, and the CIPP (Context/Input/Process/Product) model in the context of the theories that influenced their development and that limit or support their ability to do what educators need. The goal of this Guide is for educators to become more competent and confident in being able to design educational program evaluations that support intentional program improvement while adequately documenting or describing the changes and outcomes-intended and unintended-associated with their programs.
Active and Collaborative Learning in an Undergraduate Sociological Theory Course
ERIC Educational Resources Information Center
Pedersen, Daphne E.
2010-01-01
In this article, the author describes the use of active and collaborative learning strategies in an undergraduate sociological theory course. A semester-long ethnographic project is the foundation for the course; both individual and group participation contribute to the learning process. Assessment findings indicate that students are able, through…
"Vygotsky's Neglected Legacy": Cultural-Historical Activity Theory
ERIC Educational Resources Information Center
Roth, Wolff-Michael; Lee, Yew-Jin
2007-01-01
The authors describe an evolving theoretical framework that has been called one of the best kept secrets of academia: cultural-historical activity theory, the result of proposals Lev Vygotsky first articulated but that his students and followers substantially developed to constitute much expanded forms in its second and third generations. Besides…
Engestrom's Version of Activity Theory: A Conservative Praxis?
ERIC Educational Resources Information Center
Avis, James
2007-01-01
This article examines Engestrom's version of activity theory, one rooted in Marxism. It is argued that whilst this approach holds progressive possibilities, its radicalism is undermined by a restricted conceptualisation of transformation and the marginalisation of a politicised notion of social antagonism. As a consequence, this approach to…
Anthropological Approach and Activity Theory: Culture, Communities and Institutions
ERIC Educational Resources Information Center
Lagrange, Jean-Baptiste
2013-01-01
The goal of this paper is to evaluate the contribution of the anthropological approach (AA) concurrently to Activity Theory (AT) in view of overarching questions about classroom use of technology for teaching and learning mathematics. I will do it first from a philosophical point of view, presenting the main notions of AA that have been used to…
Instructional Transaction Theory: Knowledge Relationships among Processes, Entities, and Activities.
ERIC Educational Resources Information Center
Merrill, M. David; And Others
1993-01-01
Discussion of instructional transaction theory focuses on knowledge representation in an automated instructional design expert system. A knowledge structure called PEA-Net (processes, entities, and activities) is explained; the refrigeration process is used as an example; text resources and graphic resources are described; and simulations are…
Videogames, Tools for Change: A Study Based on Activity Theory
ERIC Educational Resources Information Center
Méndez, Laura; Lacasa, Pilar
2015-01-01
Introduction: The purpose of this study is to provide a framework for analysis from which to interpret the transformations that take place, as perceived by the participants, when commercial video games are used in the classroom. We will show how Activity Theory (AT) is able to explain and interpret these changes. Method: Case studies are…
Distributed Leadership through the Lens of Activity Theory
ERIC Educational Resources Information Center
Yuen, Jeanne Ho Pau; Victor Chen, Der-Thanq; Ng, David
2016-01-01
Purpose: Using Activity Theory as an interpretive lens to examine the distribution of leadership, this paper shares a case study on how leadership for an ICT project was distributed in a Singapore school. Method: The case study involved observations of 49 meetings and 34 interviews of leaders and the teachers who were involved in the ICT project.…
Theory of stellar convection - II. First stellar models
NASA Astrophysics Data System (ADS)
Pasetto, S.; Chiosi, C.; Chiosi, E.; Cropper, M.; Weiss, A.
2016-07-01
We present here the first stellar models on the Hertzsprung-Russell diagram, in which convection is treated according to the new scale-free convection theory (SFC theory) by Pasetto et al. The aim is to compare the results of the new theory with those from the classical, calibrated mixing-length (ML) theory to examine differences and similarities. We integrate the equations describing the structure of the atmosphere from the stellar surface down to a few per cent of the stellar mass using both ML theory and SFC theory. The key temperature over pressure gradients, the energy fluxes, and the extension of the convective zones are compared in both theories. The analysis is first made for the Sun and then extended to other stars of different mass and evolutionary stage. The results are adequate: the SFC theory yields convective zones, temperature gradients ∇ and ∇e, and energy fluxes that are very similar to those derived from the `calibrated' MT theory for main-sequence stars. We conclude that the old scale dependent ML theory can now be replaced with a self-consistent scale-free theory able to predict correct results, as it is more physically grounded than the ML theory. Fundamentally, the SFC theory offers a deeper insight of the underlying physics than numerical simulations.
Large field inflation models from higher-dimensional gauge theories
NASA Astrophysics Data System (ADS)
Furuuchi, Kazuyuki; Koyama, Yoji
2015-02-01
Motivated by the recent detection of B-mode polarization of CMB by BICEP2 which is possibly of primordial origin, we study large field inflation models which can be obtained from higher-dimensional gauge theories. The constraints from CMB observations on the gauge theory parameters are given, and their naturalness are discussed. Among the models analyzed, Dante's Inferno model turns out to be the most preferred model in this framework.
Large field inflation models from higher-dimensional gauge theories
Furuuchi, Kazuyuki; Koyama, Yoji
2015-02-23
Motivated by the recent detection of B-mode polarization of CMB by BICEP2 which is possibly of primordial origin, we study large field inflation models which can be obtained from higher-dimensional gauge theories. The constraints from CMB observations on the gauge theory parameters are given, and their naturalness are discussed. Among the models analyzed, Dante’s Inferno model turns out to be the most preferred model in this framework.
Active gel model of amoeboid cell motility
NASA Astrophysics Data System (ADS)
Callan-Jones, A. C.; Voituriez, R.
2013-02-01
We develop a model of amoeboid cell motility based on active gel theory. Modeling the motile apparatus of a eukaryotic cell as a confined layer of finite length of poroelastic active gel permeated by a solvent, we first show that, due to active stress and gel turnover, an initially static and homogeneous layer can undergo a contractile-type instability to a polarized moving state in which the rear is enriched in gel polymer. This agrees qualitatively with motile cells containing an actomyosin-rich uropod at their rear. We find that the gel layer settles into a steadily moving, inhomogeneous state at long times, sustained by a balance between contractility and filament turnover. In addition, our model predicts an optimal value of the gel-substrate adhesion leading to maximum layer speed, in agreement with cell motility assays. The model may be relevant to motility of cells translocating in complex, confining environments that can be mimicked experimentally by cell migration through microchannels.
An Instructional Model for Teaching Proof Writing in the Number Theory Classroom
ERIC Educational Resources Information Center
Schabel, Carmen
2005-01-01
I discuss an instructional model that I have used in my number theory classes. Facets of the model include using small group work and whole class discussion, having students generate examples and counterexamples, and giving students the opportunity to write proofs and make conjectures in class. The model is designed to actively engage students in…
General autocatalytic theory and simple model of financial markets
NASA Astrophysics Data System (ADS)
Thuy Anh, Chu; Lan, Nguyen Tri; Viet, Nguyen Ai
2015-06-01
The concept of autocatalytic theory has become a powerful tool in understanding evolutionary processes in complex systems. A generalization of autocatalytic theory was assumed by considering that the initial element now is being some distribution instead of a constant value as in traditional theory. This initial condition leads to that the final element might have some distribution too. A simple physics model for financial markets is proposed, using this general autocatalytic theory. Some general behaviours of evolution process and risk moment of a financial market also are investigated in framework of this simple model.
Vispoel, Walter P; Morris, Carrie A; Kilinc, Murat
2017-01-23
Although widely recognized as a comprehensive framework for representing score reliability, generalizability theory (G-theory), despite its potential benefits, has been used sparingly in reporting of results for measures of individual differences. In this article, we highlight many valuable ways that G-theory can be used to quantify, evaluate, and improve psychometric properties of scores. Our illustrations encompass assessment of overall reliability, percentages of score variation accounted for by individual sources of measurement error, dependability of cut-scores for decision making, estimation of reliability and dependability for changes made to measurement procedures, disattenuation of validity coefficients for measurement error, and linkages of G-theory with classical test theory and structural equation modeling. We also identify computer packages for performing G-theory analyses, most of which can be obtained free of charge, and describe how they compare with regard to data input requirements, ease of use, complexity of designs supported, and output produced. (PsycINFO Database Record
Psychosocial Factors and Theory in Physical Activity Studies in Minorities
Mama, Scherezade K.; McNeill, Lorna H.; McCurdy, Sheryl A.; Evans, Alexandra E.; Diamond, Pamela M.; Adamus-Leach, Heather J.; Lee, Rebecca E.
2015-01-01
Objectives To summarize the effectiveness of interventions targeting psychosocial factors to increase physical activity (PA) among ethnic minority adults and explore theory use in PA interventions. Methods Studies (N = 11) were identified through a systematic review and targeted African American/Hispanic adults, specific psychosocial factors, and PA. Data were extracted using a standard code sheet and the Theory Coding Scheme. Results Social support was the most common psychosocial factor reported, followed by motivational readiness, and self-efficacy, as being associated with increased PA. Only 7 studies explicitly reported using a theoretical framework. Conclusions Future efforts should explore theory use in PA interventions and how integration of theoretical constructs, including psychosocial factors, increases PA. PMID:25290599
ERIC Educational Resources Information Center
Liaw, Shu-Sheng; Huang, Hsiu-Mei
2016-01-01
This paper investigates the use of e-books as learning tools in terms of learner satisfaction, usefulness, behavioral intention, and learning effectiveness. Based on the activity theory approach, this research develops a research model to understand learner attitudes toward e-books in two physical sizes: 10? and 7?. Results suggest that screen…
Applying Learning Theories and Instructional Design Models for Effective Instruction
ERIC Educational Resources Information Center
Khalil, Mohammed K.; Elkhider, Ihsan A.
2016-01-01
Faculty members in higher education are involved in many instructional design activities without formal training in learning theories and the science of instruction. Learning theories provide the foundation for the selection of instructional strategies and allow for reliable prediction of their effectiveness. To achieve effective learning…
Pluralistic and stochastic gene regulation: examples, models and consistent theory
Salas, Elisa N.; Shu, Jiang; Cserhati, Matyas F.; Weeks, Donald P.; Ladunga, Istvan
2016-01-01
We present a theory of pluralistic and stochastic gene regulation. To bridge the gap between empirical studies and mathematical models, we integrate pre-existing observations with our meta-analyses of the ENCODE ChIP-Seq experiments. Earlier evidence includes fluctuations in levels, location, activity, and binding of transcription factors, variable DNA motifs, and bursts in gene expression. Stochastic regulation is also indicated by frequently subdued effects of knockout mutants of regulators, their evolutionary losses/gains and massive rewiring of regulatory sites. We report wide-spread pluralistic regulation in ≈800 000 tightly co-expressed pairs of diverse human genes. Typically, half of ≈50 observed regulators bind to both genes reproducibly, twice more than in independently expressed gene pairs. We also examine the largest set of co-expressed genes, which code for cytoplasmic ribosomal proteins. Numerous regulatory complexes are highly significant enriched in ribosomal genes compared to highly expressed non-ribosomal genes. We could not find any DNA-associated, strict sense master regulator. Despite major fluctuations in transcription factor binding, our machine learning model accurately predicted transcript levels using binding sites of 20+ regulators. Our pluralistic and stochastic theory is consistent with partially random binding patterns, redundancy, stochastic regulator binding, burst-like expression, degeneracy of binding motifs and massive regulatory rewiring during evolution. PMID:26823500
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1993-01-01
The presentation begins with a brief description of the motivation and approach that has been taken for this research. This will be followed by a description of the Volterra Theory of Nonlinear Systems and the CAP-TSD code which is an aeroelastic, transonic CFD (Computational Fluid Dynamics) code. The application of the Volterra theory to a CFD model and, more specifically, to a CAP-TSD model of a rectangular wing with a NACA 0012 airfoil section will be presented.
A theory of exchange rate modeling
Alekseev, A.A.
1995-09-01
The article examines exchange rate modeling for two cases: (a) when the trading partners have mutual interests and (b) when the trading partners have antogonistic interests. Exchange rates in world markets are determined by supply and demand for the currency of each state, and states may control the exchange rate of their currency by changing the interest rate, the volume of credit, and product prices in both domestic and export markets. Abstracting from issues of production and technology in different countries and also ignoring various trade, institutional, and other barriers, we consider in this article only the effect of export and import prices on the exchange rate, we propose a new criterion of external trade activity: each trading partner earns a profit which is proportional to the volume of benefits enjoyed by the other partner. We consider a trading cycle that consists of four stages: (a) purchase of goods in the domestic market with the object of selling them abroad; (b) sale of the goods in foreign markets; (c) purchase of goods abroad with the object of selling them in the domestic market; (d) sale of the goods domestically.
Psycholinguistic Theory of Learning to Read Compared to the Traditional Theory Model.
ERIC Educational Resources Information Center
Murphy, Robert F.
A comparison of two models of the reading process--the psycholinguistic model, in which learning to read is seen as a top-down, holistic procedure, and the traditional theory model, in which learning to read is seen as a bottom-up, atomistic procedure--is provided in this paper. The first part of the paper provides brief overviews of the following…
Posterior Predictive Assessment of Item Response Theory Models
ERIC Educational Resources Information Center
Sinharay, Sandip; Johnson, Matthew S.; Stern, Hal S.
2006-01-01
Model checking in item response theory (IRT) is an underdeveloped area. There is no universally accepted tool for checking IRT models. The posterior predictive model-checking method is a popular Bayesian model-checking tool because it has intuitive appeal, is simple to apply, has a strong theoretical basis, and can provide graphical or numerical…
Posterior Predictive Model Checking for Multidimensionality in Item Response Theory
ERIC Educational Resources Information Center
Levy, Roy; Mislevy, Robert J.; Sinharay, Sandip
2009-01-01
If data exhibit multidimensionality, key conditional independence assumptions of unidimensional models do not hold. The current work pursues posterior predictive model checking, a flexible family of model-checking procedures, as a tool for criticizing models due to unaccounted for dimensions in the context of item response theory. Factors…
Theory, modeling, and simulation annual report, 1992
Not Available
1993-05-01
This report briefly discusses research on the following topics: development of electronic structure methods; modeling molecular processes in clusters; modeling molecular processes in solution; modeling molecular processes in separations chemistry; modeling interfacial molecular processes; modeling molecular processes in the atmosphere; methods for periodic calculations on solids; chemistry and physics of minerals; graphical user interfaces for computational chemistry codes; visualization and analysis of molecular simulations; integrated computational chemistry environment; and benchmark computations.
Thoughts about conceptual models, theories, and quality improvement projects.
Fawcett, Jacqueline
2014-10-01
This essay focuses on how a conceptual model of nursing can be the basis for identification of the phenomenon of interest for a quality improvement project and how a theory of quality improvement or a theory of change is the methodological guide for the project. An explanation and examples of conceptual-theoretical-empirical structures for quality improvement projects are given.
A continuum theory for modeling the dynamics of crystalline materials.
Xiong, Liming; Chen, Youping; Lee, James D
2009-02-01
This paper introduces a multiscale field theory for modeling and simulation of the dynamics of crystalline materials. The atomistic formulation of a multiscale field theory is briefly introduced. Its applicability is discussed. A few application examples, including phonon dispersion relations of ferroelectric materials BiScO3 and MgO nano dot under compression are presented.
Reframing Leadership Pedagogy through Model and Theory Building.
ERIC Educational Resources Information Center
Mello, Jeffrey A.
1999-01-01
Leadership theories formed the basis of a course assignment with four objectives: understanding complex factors affecting leadership dynamics, developing abilities to assess organizational factors influencing leadership, practicing model and theory building, and viewing leadership from a multicultural perspective. The assignment was to develop a…
Scaling theory of depinning in the Sneppen model
Maslov, S.; Paczuski, M. Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11790 The Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Road, Cambridge CB4 0EH )
1994-08-01
We develop a scaling theory for the critical depinning behavior of the Sneppen interface model [Phys. Rev. Lett. [bold 69], 3539 (1992)]. This theory is based on a gap'' equation that describes the self-organization process to a critical state of the depinning transition. All of the critical exponents can be expressed in terms of two independent exponents, [nu][sub [parallel
A Model of the Economic Theory of Regulation for Undergraduates.
ERIC Educational Resources Information Center
Wilson, Brooks
1995-01-01
Presents a model of the economic theory of regulation and recommends its use in undergraduate economics classes. Describes the use of computer-assisted instruction to teach the theory. Maintains that the approach enables students to gain access to graphs and tables that they produce themselves. (CFR)
ERIC Educational Resources Information Center
Westberry, Nicola; Franken, Margaret
2015-01-01
This paper provides an Activity Theory analysis of two online student-driven interactive learning activities to interrogate assumptions that such groups can effectively learn in the absence of the teacher. Such an analysis conceptualises learning tasks as constructed objects that drive pedagogical activity. The analysis shows a disconnect between…
Comparing Educational Tools Using Activity Theory: Clickers and Flashcards
NASA Astrophysics Data System (ADS)
Price, Edward; De Leone, Charles; Lasry, Nathaniel
2010-10-01
Physics educators and researchers have recently begun to distinguish between pedagogical approaches and the educational technologies that are used to implement them. For instance, peer instruction has been shown to be equally effective, in terms of student learning outcomes, when implemented with clickers or flashcards. Therefore, technological tools (clickers and flashcards) can be viewed as means to mediate pedagogical techniques (peer instruction or traditional instruction). In this paper, we use activity theory to examine peer instruction, with particular attention to the role of tools. This perspective helps clarify clickers' and flashcards' differences, similarities, impacts in the classroom, and utility to education researchers. Our analysis can suggest improvements and new uses. Finally, we propose activity theory as a useful approach in understanding and improving the use of technology in the physics classroom.
Multicategorical Spline Model for Item Response Theory.
ERIC Educational Resources Information Center
Abrahamowicz, Michal; Ramsay, James O.
1992-01-01
A nonparametric multicategorical model for multiple-choice data is proposed as an extension of the binary spline model of J. O. Ramsay and M. Abrahamowicz (1989). Results of two Monte Carlo studies illustrate the model, which approximates probability functions by rational splines. (SLD)
Development of a dynamic computational model of social cognitive theory.
Riley, William T; Martin, Cesar A; Rivera, Daniel E; Hekler, Eric B; Adams, Marc A; Buman, Matthew P; Pavel, Misha; King, Abby C
2016-12-01
Social cognitive theory (SCT) is among the most influential theories of behavior change and has been used as the conceptual basis of health behavior interventions for smoking cessation, weight management, and other health behaviors. SCT and other behavior theories were developed primarily to explain differences between individuals, but explanatory theories of within-person behavioral variability are increasingly needed as new technologies allow for intensive longitudinal measures and interventions adapted from these inputs. These within-person explanatory theoretical applications can be modeled as dynamical systems. SCT constructs, such as reciprocal determinism, are inherently dynamical in nature, but SCT has not been modeled as a dynamical system. This paper describes the development of a dynamical system model of SCT using fluid analogies and control systems principles drawn from engineering. Simulations of this model were performed to assess if the model performed as predicted based on theory and empirical studies of SCT. This initial model generates precise and testable quantitative predictions for future intensive longitudinal research. Dynamic modeling approaches provide a rigorous method for advancing health behavior theory development and refinement and for guiding the development of more potent and efficient interventions.
Mature students learning statistics: The activity theory perspective
NASA Astrophysics Data System (ADS)
Gordon, Sue
1993-09-01
The concept of approach "stresses relationships between intention, process and outcome within a specified context as described by an individual" (Schmeck, 1988, p. 10). This paper explores the approaches to learning of a group of mature students from the theoretical perspective of activity theory in order to gain an insight into some of the ways statistics is learned. In this framework, learning, regarded as goal-directed behaviour, is analysed by exploring the socio-historical factors relating to students' self regulation of their cognitive activities. The material is derived from questionnaires and interviews with five students, and focuses on the students' own interpretations of the contexts affecting their approaches.
Linear control theory for gene network modeling.
Shin, Yong-Jun; Bleris, Leonidas
2010-09-16
Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain) and linear state-space (time domain) can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.
A model of the measurement process in quantum theory
NASA Astrophysics Data System (ADS)
Diel, H. H.
2015-07-01
The so-called measurement problem of quantum theory (QT) is still lacking a satisfactory, or at least widely agreed upon, solution. A number of theories, known as interpretations of quantum theory, have been proposed and found differing acceptance among physicists. Most of the proposed theories try to explain what happens during a QT measurement using a modification of the declarative equations that define the possible results of a measurement of QT observables or by making assumptions outside the scope of falsifiable physics. This paper proposes a solution to the QT measurement problem in terms of a model of the process for the evolution of two QT systems that interact in a way that represents a measurement. The model assumes that the interactions between the measured QT object and the measurement apparatus are ’’normal” interactions which adhere to the laws of quantum field theory.
User Modeling and Register Theory: A Congruence of Concerns
1990-11-01
increasingly varied user community, across an ever more extensive range of situations. Just as for human-human interaction, no single style of generated text...and situation. Importantly, this paper shows bow relevant linguistic studies can be bought to bear the problem of user modeling and tailoring. In...theory can guide us in studies in user modeling. Based on this specific linguistic theory, we propose a methodology to systematically study the problem of
A Library Planning Model--Some Theory and How It Works.
ERIC Educational Resources Information Center
Goldberg, Robert L.
1985-01-01
The first part of the article describes the theoretical background of a library planning model based on the concept of right brain/left brain activities. The second describes the implementation of a short term planning model based on this theory. (CLB)
A Sharing Item Response Theory Model for Computerized Adaptive Testing
ERIC Educational Resources Information Center
Segall, Daniel O.
2004-01-01
A new sharing item response theory (SIRT) model is presented that explicitly models the effects of sharing item content between informants and test takers. This model is used to construct adaptive item selection and scoring rules that provide increased precision and reduced score gains in instances where sharing occurs. The adaptive item selection…
Bianchi class A models in Sàez-Ballester's theory
NASA Astrophysics Data System (ADS)
Socorro, J.; Espinoza-García, Abraham
2012-08-01
We apply the Sàez-Ballester (SB) theory to Bianchi class A models, with a barotropic perfect fluid in a stiff matter epoch. We obtain exact classical solutions à la Hamilton for Bianchi type I, II and VIh=-1 models. We also find exact quantum solutions to all Bianchi Class A models employing a particular ansatz for the wave function of the universe.
A Dynamic Systems Theory Model of Visual Perception Development
ERIC Educational Resources Information Center
Coté, Carol A.
2015-01-01
This article presents a model for understanding the development of visual perception from a dynamic systems theory perspective. It contrasts to a hierarchical or reductionist model that is often found in the occupational therapy literature. In this proposed model vision and ocular motor abilities are not foundational to perception, they are seen…
Social Learning Theory and the Health Belief Model.
ERIC Educational Resources Information Center
Rosenstock, Irwin M.; And Others
1988-01-01
This article shows how the Health Belief Model, social learning theory, and locus of control may be related and posits an explanatory model that incorporates self-efficacy into the Health Belief Model. Self-efficacy is proposed as an independent variable with the traditional variables of perceived susceptibility, severity, benefits, and barriers.…
The monster sporadic group and a theory underlying superstring models
Chapline, G.
1996-09-01
The pattern of duality symmetries acting on the states of compactified superstring models reinforces an earlier suggestion that the Monster sporadic group is a hidden symmetry for superstring models. This in turn points to a supersymmetric theory of self-dual and anti-self-dual K3 manifolds joined by Dirac strings and evolving in a 13 dimensional spacetime as the fundamental theory. In addition to the usual graviton and dilaton this theory contains matter-like degrees of freedom resembling the massless states of the heterotic string, thus providing a completely geometric interpretation for ordinary matter. 25 refs.
Theory and Modeling of Stimulated Raman Scattering
1993-06-01
nondiffraction- limited pump beam, Gaussian -Hermite (G-H) beams, Gaussian -Laguerre (G-L) beams, and Gaussian - Schell - model (GSM) beams are used. The AM2 factor...Laguerre (G-L) beams, and Gaussian - Schell - model (GSM) beams are used. The M 2 factor of these beams can be calculated analytically. A random...defined for elliptical beams and AM2 is not changed by astigmatic lenses. The Gaussian - Schell - model (GSM) beam has a Gaussian intensity profile given
Consumer preference models: fuzzy theory approach
NASA Astrophysics Data System (ADS)
Turksen, I. B.; Wilson, I. A.
1993-12-01
Consumer preference models are widely used in new product design, marketing management, pricing and market segmentation. The purpose of this article is to develop and test a fuzzy set preference model which can represent linguistic variables in individual-level models implemented in parallel with existing conjoint models. The potential improvements in market share prediction and predictive validity can substantially improve management decisions about what to make (product design), for whom to make it (market segmentation) and how much to make (market share prediction).
Analysis of the Effect of Water Activity on Ice Formation Using a New Theory of Nucleation
NASA Technical Reports Server (NTRS)
Barahona, Donifan
2013-01-01
In this work a new theory of nucleation is developed and used to investigate the effect of water activity on the formation of ice within super-cooled droplets. The new theory is based on a novel concept where the interface is assumed to be made of liquid molecules trapped by the solid matrix. Using this concept new expressions are developed for the critical ice germ size and the nucleation work, with explicit dependencies on temperature and water activity. However unlike previous approaches, the new theory does not depend on the interfacial tension between liquid and ice. Comparison against experimental results shows that the new theory is able to reproduce the observed effect of water activity on nucleation rate and freezing temperature. It allows for the first time a theoretical derivation of the constant shift in water activity between melting and nucleation. The new theory offers a consistent thermodynamic view of ice nucleation, simple enough to be applied in atmospheric models of cloud formation.
Baldrige Theory into Practice: A Generic Model
ERIC Educational Resources Information Center
Arif, Mohammed
2007-01-01
Purpose: The education system globally has moved from a push-based or producer-centric system to a pull-based or customer centric system. Malcolm Baldrige Quality Award (MBQA) model happens to be one of the latest additions to the pull based models. The purpose of this paper is to develop a generic framework for MBQA that can be used by…
Measurement Models for Reasoned Action Theory.
Hennessy, Michael; Bleakley, Amy; Fishbein, Martin
2012-03-01
Quantitative researchers distinguish between causal and effect indicators. What are the analytic problems when both types of measures are present in a quantitative reasoned action analysis? To answer this question, we use data from a longitudinal study to estimate the association between two constructs central to reasoned action theory: behavioral beliefs and attitudes toward the behavior. The belief items are causal indicators that define a latent variable index while the attitude items are effect indicators that reflect the operation of a latent variable scale. We identify the issues when effect and causal indicators are present in a single analysis and conclude that both types of indicators can be incorporated in the analysis of data based on the reasoned action approach.
Measurement Models for Reasoned Action Theory
Hennessy, Michael; Bleakley, Amy; Fishbein, Martin
2012-01-01
Quantitative researchers distinguish between causal and effect indicators. What are the analytic problems when both types of measures are present in a quantitative reasoned action analysis? To answer this question, we use data from a longitudinal study to estimate the association between two constructs central to reasoned action theory: behavioral beliefs and attitudes toward the behavior. The belief items are causal indicators that define a latent variable index while the attitude items are effect indicators that reflect the operation of a latent variable scale. We identify the issues when effect and causal indicators are present in a single analysis and conclude that both types of indicators can be incorporated in the analysis of data based on the reasoned action approach. PMID:23243315
Surrogacy theory and models of convoluted organic systems.
Konopka, Andrzej K
2007-03-01
The theory of surrogacy is briefly outlined as one of the conceptual foundations of systems biology that has been developed for the last 30 years in the context of Hertz-Rosen modeling relationship. Conceptual foundations of modeling convoluted (biologically complex) systems are briefly reviewed and discussed in terms of current and future research in systems biology. New as well as older results that pertain to the concepts of modeling relationship, sequence of surrogacies, cascade of representations, complementarity, analogy, metaphor, and epistemic time are presented together with a classification of models in a cascade. Examples of anticipated future applications of surrogacy theory in life sciences are briefly discussed.
Effective Lagrangian Models for gauge theories of fundamental interactions
NASA Astrophysics Data System (ADS)
Sannino, Francesco
The non abelian gauge theory which describes, in the perturbative regime, the strong interactions is Quantum Chromodynamics (QCD). Quarks and gluons are the fundamental degrees of freedom of the theory. A key feature of the theory (due to quantum corrections) is asymptotic freedom, i.e. the strong coupling constant increases as the energy scale of interest decreases. The perturbative approach becomes unreliable below a characteristic scale of the theory (Λ). Quarks and gluons confine themselves into colorless particles called hadrons (pions, protons,/...). The latter are the true physical states of the theory. We need to investigate alternative ways to describe strong interactions, and in general any asymptotically free theory, in the non perturbative regime. This is the fundamental motivation of the present thesis. Although the underlying gauge theory cannot be easily treated in the non perturbative regime we can still use its global symmetries as a guide to build Effective Lagrangian Models. These models will be written directly in terms of the colorless physical states of the theory, i.e. hadrons.
Homogeneous cosmological models in Yang's gravitation theory
NASA Technical Reports Server (NTRS)
Fennelly, A. J.; Pavelle, R.
1979-01-01
We present a dynamic, spatially homogeneous solution of Yang's pure space gravitational field equations which is non-Einsteinian. The predictions of this cosmological model seem to be at variance with observations.
Modeling workplace bullying using catastrophe theory.
Escartin, J; Ceja, L; Navarro, J; Zapf, D
2013-10-01
Workplace bullying is defined as negative behaviors directed at organizational members or their work context that occur regularly and repeatedly over a period of time. Employees' perceptions of psychosocial safety climate, workplace bullying victimization, and workplace bullying perpetration were assessed within a sample of nearly 5,000 workers. Linear and nonlinear approaches were applied in order to model both continuous and sudden changes in workplace bullying. More specifically, the present study examines whether a nonlinear dynamical systems model (i.e., a cusp catastrophe model) is superior to the linear combination of variables for predicting the effect of psychosocial safety climate and workplace bullying victimization on workplace bullying perpetration. According to the AICc, and BIC indices, the linear regression model fits the data better than the cusp catastrophe model. The study concludes that some phenomena, especially unhealthy behaviors at work (like workplace bullying), may be better studied using linear approaches as opposed to nonlinear dynamical systems models. This can be explained through the healthy variability hypothesis, which argues that positive organizational behavior is likely to present nonlinear behavior, while a decrease in such variability may indicate the occurrence of negative behaviors at work.
ERIC Educational Resources Information Center
Wang, Lin
2013-01-01
Background: Cultural-historical activity theory is an important theory in modern psychology. In recent years, it has drawn more attention from related disciplines including information science. Argument: This paper argues that activity theory and domain analysis which uses the theory as one of its bases could bring about some important…
ERIC Educational Resources Information Center
Theodoraki, Xarikleia; Plakitsi, Katerina
2013-01-01
In the present study, we analyze activities on the topic of sound, which are performed in the science education laboratory lessons in the third-year students of the Department of Early Childhood Education at the University of Ioannina. The analysis of the activities is based on one of the most modern learning theories of CHAT (Cultural Historical…
Nicholson, Jody; Kouros, Chrystyna; Little, Todd D.; Garber, Judy
2015-01-01
Matching theories about growth, development, and change to appropriate statistical models can present a challenge, which can result in misuse, misinterpretation, and underutilization of different analytical approaches. We discuss the use of derivatives --- the change of a construct with respect to changes in another construct. Derivatives provide a common language linking developmental theory and statistical methods. Conceptualizing change in terms of derivatives allows precise translation of theory into method and highlights commonly overlooked models of change. A wide variety of models can be understood in terms of the level, velocity and acceleration of constructs: the 0th, 1st, and 2nd derivatives, respectively. We introduce the language of derivatives, and highlight the conceptually differing questions that can be addressed in developmental studies. A substantive example is presented to demonstrate how common and unfamiliar statistical methodology can be understood as addressing relations between differing pairs of derivatives. PMID:26949327
Theory and modeling of electron fishbones
NASA Astrophysics Data System (ADS)
Vlad, G.; Fusco, V.; Briguglio, S.; Fogaccia, G.; Zonca, F.; Wang, X.
2016-10-01
Internal kink instabilities exhibiting fishbone like behavior have been observed in a variety of experiments where a high energy electron population, generated by strong auxiliary heating and/or current drive systems, was present. After briefly reviewing the experimental evidences of energetic electrons driven fishbones, and the main results of linear and nonlinear theory of electron fishbones, the results of global, self-consistent, nonlinear hybrid MHD-Gyrokinetic simulations will be presented. To this purpose, the extended/hybrid MHD-Gyrokinetic code XHMGC will be used. Linear dynamics analysis will enlighten the effect of considering kinetic thermal ion compressibility and diamagnetic response, and kinetic thermal electrons compressibility, in addition to the energetic electron contribution. Nonlinear saturation and energetic electron transport will also be addressed, making extensive use of Hamiltonian mapping techniques, discussing both centrally peaked and off-axis peaked energetic electron profiles. It will be shown that centrally peaked energetic electron profiles are characterized by resonant excitation and nonlinear response of deeply trapped energetic electrons. On the other side, off-axis peaked energetic electron profiles are characterized by resonant excitation and nonlinear response of barely circulating energetic electrons which experience toroidal precession reversal of their motion.
A catastrophe theory model of the conflict helix, with tests.
Rummel, R J
1987-10-01
Macro social field theory has undergone extensive development and testing since the 1960s. One of these has been the articulation of an appropriate conceptual micro model--called the conflict helix--for understanding the process from conflict to cooperation and vice versa. Conflict and cooperation are viewed as distinct equilibria of forces in a social field; the movement between these equilibria is a jump, energized by a gap between social expectations and power, and triggered by some minor event. Quite independently, there also has been much recent application of catastrophe theory to social behavior, but usually without a clear substantive theory and lacking empirical testing. This paper uses catastrophe theory--namely, the butterfly model--mathematically to structure the conflict helix. The social field framework and helix provide the substantive interpretation for the catastrophe theory; and catastrophe theory provides a suitable mathematical model for the conflict helix. The model is tested on the annual conflict and cooperation between India and Pakistan, 1948 to 1973. The results are generally positive and encouraging.
Qualitative model-based diagnosis using possibility theory
NASA Technical Reports Server (NTRS)
Joslyn, Cliff
1994-01-01
The potential for the use of possibility in the qualitative model-based diagnosis of spacecraft systems is described. The first sections of the paper briefly introduce the Model-Based Diagnostic (MBD) approach to spacecraft fault diagnosis; Qualitative Modeling (QM) methodologies; and the concepts of possibilistic modeling in the context of Generalized Information Theory (GIT). Then the necessary conditions for the applicability of possibilistic methods to qualitative MBD, and a number of potential directions for such an application, are described.
Comparison of kinetic theory models of laser ablation of carbon
Shusser, Michael
2010-05-15
The paper compares the predictions of three-dimensional kinetic theory models of laser ablation of carbon. All the models are based on the moment solution of the Boltzmann equation for arbitrary strong evaporation but use different approximations. Comparison of the model predictions demonstrated that the choice of the particular model has very little influence on the results. The influence of the heat conduction from the gas to the solid phase was also found to be negligible in this problem.
Modeling Developmental Transitions in Adaptive Resonance Theory
ERIC Educational Resources Information Center
Raijmakers, Maartje E. J.; Molenaar, Peter C. M.
2004-01-01
Neural networks are applied to a theoretical subject in developmental psychology: modeling developmental transitions. Two issues that are involved will be discussed: discontinuities and acquiring qualitatively new knowledge. We will argue that by the appearance of a bifurcation, a neural network can show discontinuities and may acquire…
Attachment theory and theory of planned behavior: an integrative model predicting underage drinking.
Lac, Andrew; Crano, William D; Berger, Dale E; Alvaro, Eusebio M
2013-08-01
Research indicates that peer and maternal bonds play important but sometimes contrasting roles in the outcomes of children. Less is known about attachment bonds to these 2 reference groups in young adults. Using a sample of 351 participants (18 to 20 years of age), the research integrated two theoretical traditions: attachment theory and theory of planned behavior (TPB). The predictive contribution of both theories was examined in the context of underage adult alcohol use. Using full structural equation modeling, results substantiated the hypotheses that secure peer attachment positively predicted norms and behavioral control toward alcohol, but secure maternal attachment inversely predicted attitudes and behavioral control toward alcohol. Alcohol attitudes, norms, and behavioral control each uniquely explained alcohol intentions, which anticipated an increase in alcohol behavior 1 month later. The hypothesized processes were statistically corroborated by tests of indirect and total effects. These findings support recommendations for programs designed to curtail risky levels of underage drinking using the tenets of attachment theory and TPB.
Theory of Activated Relaxation in Nanoscale Confined Liquids
NASA Astrophysics Data System (ADS)
Mirigian, Stephen; Schweizer, Kenneth
2014-03-01
We extend the recently developed Elastically Cooperative Nonlinear Langevin Equation(ECNLE) theory of activated relaxation in supercooled liquids to treat the case of geometrically confined liquids. Generically, confinement of supercooled liquids leads to a speeding up of the dynamics(with a consequent depression of the glass transition temperature) extending on the order of tens of molecular diameters away from a free surface. At present, this behavior is not theoretically well understood. Our theory interprets the speed up in dynamics in terms of two coupled effects. First, a direct surface effect, extending two to three molecular diameters from a free surface, and related to a local rearrangement of molecules with a single cage. The second is a longer ranged ``confinement'' effect, extending tens of molecular diameters from a free surface and related to the long range elastic penalty necessary for a local rearrangement. The theory allows for the calculation of relaxation time and Tg profiles within a given geometry and first principles calculations of relevant length scales. Comparison to both dynamic and pseudo-thermodynamic measurements shows reasonable agreement to experiment with no adjustable parameters.
Group theory and biomolecular conformation: I. Mathematical and computational models
Chirikjian, Gregory S
2010-01-01
Biological macromolecules, and the complexes that they form, can be described in a variety of ways ranging from quantum mechanical and atomic chemical models, to coarser grained models of secondary structure and domains, to continuum models. At each of these levels, group theory can be used to describe both geometric symmetries and conformational motion. In this survey, a detailed account is provided of how group theory has been applied across computational structural biology to analyze the conformational shape and motion of macromolecules and complexes. PMID:20827378
Minimal model of a heat engine: information theory approach.
Zhou, Yun; Segal, Dvira
2010-07-01
We construct a generic model for a heat engine using information theory concepts, attributing irreversible energy dissipation to the information transmission channels. Using several forms for the channel capacity, classical and quantum, we demonstrate that our model recovers both the Carnot principle in the reversible limit, and the universal maximum power efficiency expression of nonreversible thermodynamics in the linear response regime. We expect the model to be very useful as a testbed for studying fundamental topics in thermodynamics, and for providing new insights into the relationship between information theory and actual thermal devices.
Automated Physico-Chemical Cell Model Development through Information Theory
Peter J. Ortoleva
2005-11-29
The objective of this project was to develop predictive models of the chemical responses of microbial cells to variations in their surroundings. The application of these models is optimization of environmental remediation and energy-producing biotechnical processes.The principles on which our project is based are as follows: chemical thermodynamics and kinetics; automation of calibration through information theory; integration of multiplex data (e.g. cDNA microarrays, NMR, proteomics), cell modeling, and bifurcation theory to overcome cellular complexity; and the use of multiplex data and information theory to calibrate and run an incomplete model. In this report we review four papers summarizing key findings and a web-enabled, multiple module workflow we have implemented that consists of a set of interoperable systems biology computational modules.
Theory and Practice: An Integrative Model Linking Class and Field
ERIC Educational Resources Information Center
Lesser, Joan Granucci; Cooper, Marlene
2006-01-01
Social work has evolved over the years taking on the challenges of the times. The profession now espouses a breadth of theoretical approaches and treatment modalities. We have developed a model to help graduate social work students master the skill of integrating theory and social work practice. The Integrative Model has five components: (l) The…
Chiral field theories as models for hadron substructure
Kahana, S.H.
1987-03-01
A model for the nucleon as soliton of quarks interacting with classical meson fields is described. The theory, based on the linear sigma model, is renormalizable and capable of including sea quarks straightforwardly. Application to nuclear matter is made in a Wigner-Seitz approximation.
Minimax D-Optimal Designs for Item Response Theory Models.
ERIC Educational Resources Information Center
Berger, Martjin P. F.; King, C. Y. Joy; Wong, Weng Kee
2000-01-01
Proposed minimax designs for item response theory (IRT) models to overcome the problem of local optimality. Compared minimax designs to sequentially constructed designs for the two parameter logistic model. Results show that minimax designs can be nearly as efficient as sequentially constructed designs. (Author/SLD)
Minimal Pati-Salam model from string theory unification
Dent, James B.; Kephart, Thomas W.
2008-06-01
We provide what we believe is the minimal three family N=1 SUSY and conformal Pati-Salam model from type IIB superstring theory. This Z{sub 3} orbifolded AdS x S{sup 5} model has long lived protons and has potential phenomenological consequences for LHC (Large Hadron Collider)
The Mapping Model: A Cognitive Theory of Quantitative Estimation
ERIC Educational Resources Information Center
von Helversen, Bettina; Rieskamp, Jorg
2008-01-01
How do people make quantitative estimations, such as estimating a car's selling price? Traditionally, linear-regression-type models have been used to answer this question. These models assume that people weight and integrate all information available to estimate a criterion. The authors propose an alternative cognitive theory for quantitative…
Reciprocal Ontological Models Show Indeterminism Comparable to Quantum Theory
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Somshubhro; Banik, Manik; Bhattacharya, Some Sankar; Ghosh, Sibasish; Kar, Guruprasad; Mukherjee, Amit; Roy, Arup
2017-02-01
We show that within the class of ontological models due to Harrigan and Spekkens, those satisfying preparation-measurement reciprocity must allow indeterminism comparable to that in quantum theory. Our result implies that one can design quantum random number generator, for which it is impossible, even in principle, to construct a reciprocal deterministic model.
Dust in fusion plasmas: theory and modeling
Smirnov, R. D.; Pigarov, A. Yu.; Krasheninnikov, S. I.; Mendis, D. A.; Rosenberg, M.; Rudakov, D.; Tanaka, Y.; Rognlien, T. D.; Soboleva, T. K.; Shukla, P. K.; Bray, B. D.; West, W. P.; Roquemore, A. L.; Skinner, C. H.
2008-09-07
Dust may have a large impact on ITER-scale plasma experiments including both safety and performance issues. However, the physics of dust in fusion plasmas is very complex and multifaceted. Here, we discuss different aspects of dust dynamics including dust-plasma, and dust-surface interactions. We consider the models of dust charging, heating, evaporation/sublimation, dust collision with material walls, etc., which are suitable for the conditions of fusion plasmas. The physical models of all these processes have been incorporated into the DUST Transport (DUSTT) code. Numerical simulations demonstrate that dust particles are very mobile and accelerate to large velocities due to the ion drag force (cruise speed >100 m/s). Deep penetration of dust particles toward the plasma core is predicted. It is shown that DUSTT is capable of reproducing many features of recent dust-related experiments, but much more work is still needed.
New theories of root growth modelling
NASA Astrophysics Data System (ADS)
Landl, Magdalena; Schnepf, Andrea; Vanderborght, Jan; Huber, Katrin; Javaux, Mathieu; Bengough, A. Glyn; Vereecken, Harry
2016-04-01
In dynamic root architecture models, root growth is represented by moving root tips whose line trajectory results in the creation of new root segments. Typically, the direction of root growth is calculated as the vector sum of various direction-affecting components. However, in our simulations this did not reproduce experimental observations of root growth in structured soil. We therefore developed a new approach to predict the root growth direction. In this approach we distinguish between, firstly, driving forces for root growth, i.e. the force exerted by the root which points in the direction of the previous root segment and gravitropism, and, secondly, the soil mechanical resistance to root growth or penetration resistance. The latter can be anisotropic, i.e. depending on the direction of growth, which leads to a difference between the direction of the driving force and the direction of the root tip movement. Anisotropy of penetration resistance can be caused either by microscale differences in soil structure or by macroscale features, including macropores. Anisotropy at the microscale is neglected in our model. To allow for this, we include a normally distributed random deflection angle α to the force which points in the direction of the previous root segment with zero mean and a standard deviation σ. The standard deviation σ is scaled, so that the deflection from the original root tip location does not depend on the spatial resolution of the root system model. Similarly to the water flow equation, the direction of the root tip movement corresponds to the water flux vector while the driving forces are related to the water potential gradient. The analogue of the hydraulic conductivity tensor is the root penetrability tensor. It is determined by the inverse of soil penetration resistance and describes the ease with which a root can penetrate the soil. By adapting the three dimensional soil and root water uptake model R-SWMS (Javaux et al., 2008) in this way
Energy Model of Neuron Activation.
Romanyshyn, Yuriy; Smerdov, Andriy; Petrytska, Svitlana
2017-02-01
On the basis of the neurophysiological strength-duration (amplitude-duration) curve of neuron activation (which relates the threshold amplitude of a rectangular current pulse of neuron activation to the pulse duration), as well as with the use of activation energy constraint (the threshold curve corresponds to the energy threshold of neuron activation by a rectangular current pulse), an energy model of neuron activation by a single current pulse has been constructed. The constructed model of activation, which determines its spectral properties, is a bandpass filter. Under the condition of minimum-phase feature of the neuron activation model, on the basis of Hilbert transform, the possibilities of phase-frequency response calculation from its amplitude-frequency response have been considered. Approximation to the amplitude-frequency response by the response of the Butterworth filter of the first order, as well as obtaining the pulse response corresponding to this approximation, give us the possibility of analyzing the efficiency of activating current pulses of various shapes, including analysis in accordance with the energy constraint.
Montgomery, Erwin B
2016-01-01
Theories impact the movement disorders clinic, not only affecting the development of new therapies but determining how current therapies are used. Models are theories that are procedural rather than declarative. Theories and models are important because, as argued by Kant, one cannot know the thing-in-itself (das Ding an sich) and only a model is knowable. Further, biological variability forces higher level abstraction relevant for all variants. It is that abstraction that is raison d'être of theories and models. Theories "connect the dots" to move from correlation to causation. The necessity of theory makes theories helpful or counterproductive. Theories and models of the pathophysiology and physiology of the basal ganglia-thalamic-cortical system do not spontaneously arise but have a history and consequently are legacies. Over the last 40 years, numerous theories and models of the basal ganglia have been proposed only to be forgotten or dismissed, rarely critiqued. It is not harsh to say that current popular theories positing increased neuronal activities in the Globus Pallidus Interna (GPi), excessive beta oscillations and increased synchronization not only fail to provide an adequate explication but are inconsistent with many observations. It is likely that their shared intellectual and epistemic inheritance plays a factor in their shared failures. These issues are critically examined. How one is to derive theories and models and have hope these will be better is explored as well.
Montgomery Jr., Erwin B.
2016-01-01
Theories impact the movement disorders clinic, not only affecting the development of new therapies but determining how current therapies are used. Models are theories that are procedural rather than declarative. Theories and models are important because, as argued by Kant, one cannot know the thing-in-itself (das Ding an sich) and only a model is knowable. Further, biological variability forces higher level abstraction relevant for all variants. It is that abstraction that is raison d’être of theories and models. Theories “connect the dots” to move from correlation to causation. The necessity of theory makes theories helpful or counterproductive. Theories and models of the pathophysiology and physiology of the basal ganglia–thalamic–cortical system do not spontaneously arise but have a history and consequently are legacies. Over the last 40 years, numerous theories and models of the basal ganglia have been proposed only to be forgotten or dismissed, rarely critiqued. It is not harsh to say that current popular theories positing increased neuronal activities in the Globus Pallidus Interna (GPi), excessive beta oscillations and increased synchronization not only fail to provide an adequate explication but are inconsistent with many observations. It is likely that their shared intellectual and epistemic inheritance plays a factor in their shared failures. These issues are critically examined. How one is to derive theories and models and have hope these will be better is explored as well. PMID:27708569
The theory of an active magnetic regenerative refrigerator
NASA Technical Reports Server (NTRS)
Barclay, J. A.
1983-01-01
The adiabatic temperature change with field which is limited to about 2 K/Tesla for ferromagnets near their Curie temperatures by the change of magnetization with temperature and the lattice heat capacity is discussed. Practical magnetic refrigerators operate on a regenerative cycle such as the Brayton cycle. This cycle can be executed through the use of an active magnetic regenerator, i.e., a regenerator composed of magnetic material that is cycled in an out of a magnetic field with appropriate fluid flows. The theory of these devices is predicted by solving the partial differential equations that describe fluid and the magnetic solid. The active magnetic regenerator is described along with the method of calculation. Temperature profiles for a normal regenerator and a magnetic regenerative refrigerator are shown.
Nanofluid Drop Evaporation: Experiment, Theory, and Modeling
NASA Astrophysics Data System (ADS)
Gerken, William James
Nanofluids, stable colloidal suspensions of nanoparticles in a base fluid, have potential applications in the heat transfer, combustion and propulsion, manufacturing, and medical fields. Experiments were conducted to determine the evaporation rate of room temperature, millimeter-sized pendant drops of ethanol laden with varying amounts (0-3% by weight) of 40-60 nm aluminum nanoparticles (nAl). Time-resolved high-resolution drop images were collected for the determination of early-time evaporation rate (D2/D 02 > 0.75), shown to exhibit D-square law behavior, and surface tension. Results show an asymptotic decrease in pendant drop evaporation rate with increasing nAl loading. The evaporation rate decreases by approximately 15% at around 1% to 3% nAl loading relative to the evaporation rate of pure ethanol. Surface tension was observed to be unaffected by nAl loading up to 3% by weight. A model was developed to describe the evaporation of the nanofluid pendant drops based on D-square law analysis for the gas domain and a description of the reduction in liquid fraction available for evaporation due to nanoparticle agglomerate packing near the evaporating drop surface. Model predictions are in relatively good agreement with experiment, within a few percent of measured nanofluid pendant drop evaporation rate. The evaporation of pinned nanofluid sessile drops was also considered via modeling. It was found that the same mechanism for nanofluid evaporation rate reduction used to explain pendant drops could be used for sessile drops. That mechanism is a reduction in evaporation rate due to a reduction in available ethanol for evaporation at the drop surface caused by the packing of nanoparticle agglomerates near the drop surface. Comparisons of the present modeling predictions with sessile drop evaporation rate measurements reported for nAl/ethanol nanofluids by Sefiane and Bennacer [11] are in fairly good agreement. Portions of this abstract previously appeared as: W. J
Theory and modeling of stereoselective organic reactions.
Houk, K N; Paddon-Row, M N; Rondan, N G; Wu, Y D; Brown, F K; Spellmeyer, D C; Metz, J T; Li, Y; Loncharich, R J
1986-03-07
Theoretical investigations of the transition structures of additions and cycloadditions reveal details about the geometries of bond-forming processes that are not directly accessible by experiment. The conformational analysis of transition states has been developed from theoretical generalizations about the preferred angle of attack by reagents on multiple bonds and predictions of conformations with respect to partially formed bonds. Qualitative rules for the prediction of the stereochemistries of organic reactions have been devised, and semi-empirical computational models have also been developed to predict the stereoselectivities of reactions of large organic molecules, such as nucleophilic additions to carbonyls, electrophilic hydroborations and cycloadditions, and intramolecular radical additions and cycloadditions.
Genetic model compensation: Theory and applications
NASA Astrophysics Data System (ADS)
Cruickshank, David Raymond
1998-12-01
The adaptive filtering algorithm known as Genetic Model Compensation (GMC) was originally presented in the author's Master's Thesis. The current work extends this earlier work. GMC uses a genetic algorithm to optimize filter process noise parameters in parallel with the estimation of the state and based only on the observational information available to the filter. The original stochastic state model underlying GMC was inherited from the antecedent, non-adaptive Dynamic Model Compensation (DMC) algorithm. The current work develops the stochastic state model from a linear system viewpoint, avoiding the simplifications and approximations of the earlier development, and establishes Riemann sums as unbiased estimators of the stochastic integrals which describe the evolution of the random state components. These are significant developments which provide GMC with a solid theoretical foundation. Orbit determination is the area of application in this work, and two types of problems are studied: real-time autonomous filtering using absolute GPS measurements and precise post-processed filtering using differential GPS measurements. The first type is studied in a satellite navigation simulation in which pseudorange and pseudorange rate measurements are processed by an Extended Kalman Filter which incorporates both DMC and GMC. Both estimators are initialized by a geometric point solution algorithm. Using measurements corrupted by simulated Selective Availability errors, GMC reduces mean RSS position error by 6.4 percent, reduces mean clock bias error by 46 percent, and displays a marked improvement in covariance consistency relative to DMC. To study the second type of problem, GMC is integrated with NASA Jet Propulsion Laboratory's Gipsy/Oasis-II (GOA-II) precision orbit determination program creating an adaptive version of GOA-II's Reduced Dynamic Tracking (RDT) process noise formulation. When run as a sequential estimator with GPS measurements from the TOPEX satellite and
Integrated Modeling Program, Applied Chemical Theory (IMPACT)
BANKS, JAY L.; BEARD, HEGE S.; CAO, YIXIANG; CHO, ART E.; DAMM, WOLFGANG; FARID, RAMY; FELTS, ANTHONY K.; HALGREN, THOMAS A.; MAINZ, DANIEL T.; MAPLE, JON R.; MURPHY, ROBERT; PHILIPP, DEAN M.; REPASKY, MATTHEW P.; ZHANG, LINDA Y.; BERNE, BRUCE J.; FRIESNER, RICHARD A.; GALLICCHIO, EMILIO; LEVY, RONALD M.
2009-01-01
We provide an overview of the IMPACT molecular mechanics program with an emphasis on recent developments and a description of its current functionality. With respect to core molecular mechanics technologies we include a status report for the fixed charge and polarizable force fields that can be used with the program and illustrate how the force fields, when used together with new atom typing and parameter assignment modules, have greatly expanded the coverage of organic compounds and medicinally relevant ligands. As we discuss in this review, explicit solvent simulations have been used to guide our design of implicit solvent models based on the generalized Born framework and a novel nonpolar estimator that have recently been incorporated into the program. With IMPACT it is possible to use several different advanced conformational sampling algorithms based on combining features of molecular dynamics and Monte Carlo simulations. The program includes two specialized molecular mechanics modules: Glide, a high-throughput docking program, and QSite, a mixed quantum mechanics/molecular mechanics module. These modules employ the IMPACT infrastructure as a starting point for the construction of the protein model and assignment of molecular mechanics parameters, but have then been developed to meet specialized objectives with respect to sampling and the energy function. PMID:16211539
Integrated Modeling Program, Applied Chemical Theory (IMPACT).
Banks, Jay L; Beard, Hege S; Cao, Yixiang; Cho, Art E; Damm, Wolfgang; Farid, Ramy; Felts, Anthony K; Halgren, Thomas A; Mainz, Daniel T; Maple, Jon R; Murphy, Robert; Philipp, Dean M; Repasky, Matthew P; Zhang, Linda Y; Berne, Bruce J; Friesner, Richard A; Gallicchio, Emilio; Levy, Ronald M
2005-12-01
We provide an overview of the IMPACT molecular mechanics program with an emphasis on recent developments and a description of its current functionality. With respect to core molecular mechanics technologies we include a status report for the fixed charge and polarizable force fields that can be used with the program and illustrate how the force fields, when used together with new atom typing and parameter assignment modules, have greatly expanded the coverage of organic compounds and medicinally relevant ligands. As we discuss in this review, explicit solvent simulations have been used to guide our design of implicit solvent models based on the generalized Born framework and a novel nonpolar estimator that have recently been incorporated into the program. With IMPACT it is possible to use several different advanced conformational sampling algorithms based on combining features of molecular dynamics and Monte Carlo simulations. The program includes two specialized molecular mechanics modules: Glide, a high-throughput docking program, and QSite, a mixed quantum mechanics/molecular mechanics module. These modules employ the IMPACT infrastructure as a starting point for the construction of the protein model and assignment of molecular mechanics parameters, but have then been developed to meet specialized objectives with respect to sampling and the energy function.
Solar Coronal Jets: Observations, Theory, and Modeling
NASA Astrophysics Data System (ADS)
Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A. C.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; DeVore, C. R.; Archontis, V.; Török, T.; Mason, H.; Curdt, W.; Meyer, K.; Dalmasse, K.; Matsui, Y.
2016-11-01
Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of "nominal" solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems.
A Brinkmanship Game Theory Model of Terrorism
NASA Astrophysics Data System (ADS)
Melese, Francois
This study reveals conditions under which a world leader might credibly issue a brinkmanship threat of preemptive action to deter sovereign states or transnational terrorist organizations from acquiring weapons of mass destruction (WMD). The model consists of two players: the United Nations (UN) “Principal,” and a terrorist organization “Agent.” The challenge in issuing a brinkmanship threat is that it needs to be sufficiently unpleasant to deter terrorists from acquiring WMD, while not being so repugnant to those that must carry it out that they would refuse to do so. Two “credibility constraints” are derived. The first relates to the unknown terrorist type (Hard or Soft), and the second to acceptable risks (“blowback”) to the World community. Graphing the incentive-compatible Nash equilibrium solutions reveals when a brinkmanship threat is credible, and when it is not - either too weak to be effective, or unacceptably dangerous to the World community.
Theory and modeling of stereoselective organic reactions
Houk, K.N.; Paddon-Row, M.N.; Rondan, N.G.; Wu, Y.D.; Brown, F.K.; Spellmeyer, D.C.; Metz, J.T.; Li, Y.; Loncharich, R.J.
1986-03-07
Theoretical investigations of the transition structures of additions and cycloadditions reveal details about the geometrics of bond-forming processes that are not directly accessible by experiment. The conformational analysis of transition states has been developed from theoretical generalizations about the preferred angle of attack by reagents on multiple bonds and predictions of conformations with respect to partially formed bonds. Qualitative rules for the prediction of the stereochemistries of organic reactions have been devised, and semi-empirical computational models have also been developed to predict the stereoselectivities of reactions of large organic molecules, such as nucleophilic additions to carbonyls, electrophilic hydroborations and cycloadditions, and intramolecular radical additions and cycloadditions. 52 references, 7 figures.
Statistical inference for stochastic simulation models--theory and application.
Hartig, Florian; Calabrese, Justin M; Reineking, Björn; Wiegand, Thorsten; Huth, Andreas
2011-08-01
Statistical models are the traditional choice to test scientific theories when observations, processes or boundary conditions are subject to stochasticity. Many important systems in ecology and biology, however, are difficult to capture with statistical models. Stochastic simulation models offer an alternative, but they were hitherto associated with a major disadvantage: their likelihood functions can usually not be calculated explicitly, and thus it is difficult to couple them to well-established statistical theory such as maximum likelihood and Bayesian statistics. A number of new methods, among them Approximate Bayesian Computing and Pattern-Oriented Modelling, bypass this limitation. These methods share three main principles: aggregation of simulated and observed data via summary statistics, likelihood approximation based on the summary statistics, and efficient sampling. We discuss principles as well as advantages and caveats of these methods, and demonstrate their potential for integrating stochastic simulation models into a unified framework for statistical modelling.
ERIC Educational Resources Information Center
Hannah, David R.; Venkatachary, Ranga
2010-01-01
In this article, the authors present a retrospective analysis of an instructor's multiyear redesign of a course on organization theory into what is called a hybrid Classroom-as-Organization model. It is suggested that this new course design served to apprentice students to function in quasi-real organizational structures. The authors further argue…
ERIC Educational Resources Information Center
Deboeck, Pascal R.; Nicholson, Jody; Kouros, Chrystyna; Little, Todd D.; Garber, Judy
2015-01-01
Matching theories about growth, development, and change to appropriate statistical models can present a challenge, which can result in misuse, misinterpretation, and underutilization of different analytical approaches. We discuss the use of "derivatives": the change of a construct with respect to the change in another construct.…
Foundations of reusable and interoperable facet models using category theory.
Harris, Daniel R
2016-10-01
Faceted browsing has become ubiquitous with modern digital libraries and online search engines, yet the process is still difficult to abstractly model in a manner that supports the development of interoperable and reusable interfaces. We propose category theory as a theoretical foundation for faceted browsing and demonstrate how the interactive process can be mathematically abstracted. Existing efforts in facet modeling are based upon set theory, formal concept analysis, and light-weight ontologies, but in many regards, they are implementations of faceted browsing rather than a specification of the basic, underlying structures and interactions. We will demonstrate that category theory allows us to specify faceted objects and study the relationships and interactions within a faceted browsing system. Resulting implementations can then be constructed through a category-theoretic lens using these models, allowing abstract comparison and communication that naturally support interoperability and reuse.
Activated Dynamics in Dense Model Nanocomposites
NASA Astrophysics Data System (ADS)
Xie, Shijie; Schweizer, Kenneth
The nonlinear Langevin equation approach is applied to investigate the ensemble-averaged activated dynamics of small molecule liquids (or disconnected segments in a polymer melt) in dense nanocomposites under model isobaric conditions where the spherical nanoparticles are dynamically fixed. Fully thermalized and quenched-replica integral equation theory methods are employed to investigate the influence on matrix dynamics of the equilibrium and nonequilibrium nanocomposite structure, respectively. In equilibrium, the miscibility window can be narrow due to depletion and bridging attraction induced phase separation which limits the study of activated dynamics to regimes where the barriers are relatively low. In contrast, by using replica integral equation theory, macroscopic demixing is suppressed, and the addition of nanoparticles can induce much slower activated matrix dynamics which can be studied over a wide range of pure liquid alpha relaxation times, interfacial attraction strengths and ranges, particle sizes and loadings, and mixture microstructures. Numerical results for the mean activated relaxation time, transient localization length, matrix elasticity and kinetic vitrification in the nanocomposite will be presented.
An evaluation of neurocognitive models of theory of mind
Schurz, Matthias; Perner, Josef
2015-01-01
We review nine current neurocognitive theories of how theory of mind (ToM) is implemented in the brain and evaluate them based on the results from a recent meta-analysis by Schurz et al. (2014), where we identified six types of tasks that are the most frequently used in imaging research on ToM. From theories about cognitive processes being associated with certain brain areas, we deduce predictions about which areas should be engaged by the different types of ToM tasks. We then compare these predictions with the observed activations in the meta-analysis, and identify a number of unexplained findings in current theories. These can be used to revise and improve future neurocognitive accounts of ToM. PMID:26582995
Reconstructing constructivism: causal models, Bayesian learning mechanisms, and the theory theory.
Gopnik, Alison; Wellman, Henry M
2012-11-01
We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and nontechnical way, and review an extensive but relatively recent body of empirical results that supports these ideas. These include new studies of the mechanisms of learning. Children infer causal structure from statistical information, through their own actions on the world and through observations of the actions of others. Studies demonstrate these learning mechanisms in children from 16 months to 4 years old and include research on causal statistical learning, informal experimentation through play, and imitation and informal pedagogy. They also include studies of the variability and progressive character of intuitive theory change, particularly theory of mind. These studies investigate both the physical and the psychological and social domains. We conclude with suggestions for further collaborative projects between developmental and computational cognitive scientists.
Population changes: contemporary models and theories.
Sauvy, A
1981-01-01
In many developing countries rapid population growth has promoted a renewed interest in the study of the effect of population growth on economic development. This research takes either the macroeconomic viewpoint, where the nation is the framework, or the microeconomic perspective, where the family is the framework. For expository purposes, the macroeconomic viewpoint is assumed, and an example of such an investment is presented. Attention is directed to the following: a simplified model--housing; the lessons learned from experience (primitive populations, Spain in the 17th and 18th centuries, comparing development in Spain and Italy, 19th century Western Europe, and underdeveloped countries); the positive factors of population growth; and the concept of the optimal rate of growth. Housing is the typical investment that an individual makes. Hence, the housing per person (roughly 1/3 of the necessary amount of housing per family) is taken as a unit, and the calculations are made using averages. The conclusion is that growth is expensive. A population decrease might be advantageous, for this decrease would enable the entire population to benefit from past capital accumulation. It is also believed, "a priori," that population growth is more expensive for a developed than for a developing country. This belief may be attributable to the fact that the capital per person tends to be high in the developed countries. Any further increase in the population requires additional capital investments, driving this ratio even higher. Yet, investment is not the only factor inhibiting economic development. The literature describes factors regarding population growth, yet this writer prefers to emphasize 2 other factors that have been the subject of less study: a growing population's ease of adaptation and the human factor--behavior. A growing population adapts better to new conditions than does a stationary or declining population, and contrary to "a priori" belief, a growing
Bernard, Paquito; Carayol, Marion; Gourlan, Mathieu; Boiché, Julie; Romain, Ahmed Jérôme; Bortolon, Catherine; Lareyre, Olivier; Ninot, Gregory
2017-04-01
A meta-analysis of randomized controlled trials (RCTs) has recently showed that theory-based interventions designed to promote physical activity (PA) significantly increased PA behavior. The objective of the present study was to investigate the moderators of the efficacy of these theory-based interventions. Seventy-seven RCTs evaluating theory-based interventions were systematically identified. Sample, intervention, methodology, and theory implementation characteristics were extracted, coded by three duos of independent investigators, and tested as moderators of interventions effect in a multiple-meta-regression model. Three moderators were negatively associated with the efficacy of theory-based interventions on PA behavior: intervention length (≥14 weeks; β = -.22, p = .004), number of experimental patients (β = -.10, p = .002), and global methodological quality score (β = -.08, p = .04). Our findings suggest that the efficacy of theory-based interventions to promote PA could be overestimated consequently due to methodological weaknesses of RCTs and that interventions shorter than 14 weeks could maximize the increase of PA behavior.
Theory of compressive modeling and simulation
NASA Astrophysics Data System (ADS)
Szu, Harold; Cha, Jae; Espinola, Richard L.; Krapels, Keith
2013-05-01
Modeling and Simulation (M&S) has been evolving along two general directions: (i) data-rich approach suffering the curse of dimensionality and (ii) equation-rich approach suffering computing power and turnaround time. We suggest a third approach. We call it (iii) compressive M&S (CM&S); because the basic Minimum Free-Helmholtz Energy (MFE) facilitating CM&S can reproduce and generalize Candes, Romberg, Tao & Donoho (CRT&D) Compressive Sensing (CS) paradigm as a linear Lagrange Constraint Neural network (LCNN) algorithm. CM&S based MFE can generalize LCNN to 2nd order as Nonlinear augmented LCNN. For example, during the sunset, we can avoid a reddish bias of sunlight illumination due to a long-range Rayleigh scattering over the horizon. With CM&S we can take instead of day camera, a night vision camera. We decomposed long wave infrared (LWIR) band with filter into 2 vector components (8~10μm and 10~12μm) and used LCNN to find pixel by pixel the map of Emissive-Equivalent Planck Radiation Sources (EPRS). Then, we up-shifted consistently, according to de-mixed sources map, to the sub-micron RGB color image. Moreover, the night vision imaging can also be down-shifted at Passive Millimeter Wave (PMMW) imaging, suffering less blur owing to dusty smokes scattering and enjoying apparent smoothness of surface reflectivity of man-made objects under the Rayleigh resolution. One loses three orders of magnitudes in the spatial Rayleigh resolution; but gains two orders of magnitude in the reflectivity, and gains another two orders in the propagation without obscuring smog . Since CM&S can generate missing data and hard to get dynamic transients, CM&S can reduce unnecessary measurements and their associated cost and computing in the sense of super-saving CS: measuring one & getting one's neighborhood free .
ERIC Educational Resources Information Center
Hutzler, Yeshayahu
2007-01-01
This article proposes a theory- and practice-based model for adapting physical activities. The ecological frame of reference includes Dynamic and Action System Theory, World Health Organization International Classification of Function and Disability, and Adaptation Theory. A systematic model is presented addressing (a) the task objective, (b) task…
Modeling Cytoskeletal Active Matter Systems
NASA Astrophysics Data System (ADS)
Blackwell, Robert
Active networks of filamentous proteins and crosslinking motor proteins play a critical role in many important cellular processes. One of the most important microtubule-motor protein assemblies is the mitotic spindle, a self-organized active liquid-crystalline structure that forms during cell division and that ultimately separates chromosomes into two daughter cells. Although the spindle has been intensively studied for decades, the physical principles that govern its self-organization and function remain mysterious. To evolve a better understanding of spindle formation, structure, and dynamics, I investigate course-grained models of active liquid-crystalline networks composed of microtubules, modeled as hard spherocylinders, in diffusive equilibrium with a reservoir of active crosslinks, modeled as hookean springs that can adsorb to microtubules and and translocate at finite velocity along the microtubule axis. This model is investigated using a combination of brownian dynamics and kinetic monte carlo simulation. I have further refined this model to simulate spindle formation and kinetochore capture in the fission yeast S. pombe. I then make predictions for experimentally realizable perturbations in motor protein presence and function in S. pombe.
Theories beyond the standard model, one year before the LHC
NASA Astrophysics Data System (ADS)
Dimopoulos, Savas
2006-04-01
Next year the Large Hadron Collider at CERN will begin what may well be a new golden era of particle physics. I will discuss three theories that will be tested at the LHC. I will begin with the supersymmetric standard model, proposed with Howard Georgi in 1981. This theory made a precise quantitative prediction, the unification of couplings, that has been experimentally confirmed in 1991 by experiments at CERN and SLAC. This established it as the leading theory for physics beyond the standard model. Its main prediction, the existence of supersymmetric particles, will be tested at the large hadron collider. I will next overview theories with large new dimensions, proposed with Nima Arkani-Hamed and Gia Dvali in 1998. This links the weakness of gravity to the presence of sub-millimeter size dimensions, that are presently searched for in experiments looking for deviations from Newton's law at short distances. In this framework quantum gravity, string theory, and black holes may be experimentally investigated at the large hadron collider. I will end with the recent proposal of split supersymmetry with Nima Arkani-Hamed. This theory is motivated by the possible existence of an enormous number of ground states in the fundamental theory, as suggested by the cosmological constant problem and recent developments in string theory and cosmology. It can be tested at the large hadron collider and, if confirmed, it will lend support to the idea that our universe and its laws are not unique and that there is an enormous variety of universes each with its own distinct physical laws.
Higher-rank supersymmetric models and topological conformal field theory
NASA Astrophysics Data System (ADS)
Kawai, Toshiya; Uchino, Taku; Yang, Sung-Kil
1993-03-01
In the first part of this paper we investigate the operator aspect of a higher-rank supersymmetric model which is introduced as a Lie theoretic extension of the N = 2 minimal model with the simplest case su(2) corresponding to the N = 2 minimal model. In particular we identify the analogs of chirality conditions and chiral ring. In the second part we construct a class of topological conformal field theories starting with this higher-rank supersymmetric model. We show the BRST-exactness of the twisted stress-energy tensor, find out physical observables and discuss how to make their correlation functions. It is emphasized that in the case of su(2) the topological field theory constructed in this paper is distinct from the one obtained by twisting the N = 2 minimal model through the usual procedure.
Main problems in the theory of modeling of catalytic processes
Pisarenko, V.N.
1994-09-01
This paper formulates the main problems in the theory of modeling of catalytic processes yet to be solved and describes the stages of modeling. Fundamental problems of model construction for the physico-chemical phenomena and processes taking place in a catalytic reactor are considered. New methods for determining the mechanism of a catalytic reaction and selecting a kinetic model for it are analyzed. The use of the results of specially controlled experiments for the construction of models of a catalyst grain and a catalytic reactor is discussed. Algorithms are presented for determining the muliplicity of stationary states in the operation of a catalyst grain and a catalytic reactor.
Traffic Games: Modeling Freeway Traffic with Game Theory
Cortés-Berrueco, Luis E.; Gershenson, Carlos; Stephens, Christopher R.
2016-01-01
We apply game theory to a vehicular traffic model to study the effect of driver strategies on traffic flow. The resulting model inherits the realistic dynamics achieved by a two-lane traffic model and aims to incorporate phenomena caused by driver-driver interactions. To achieve this goal, a game-theoretic description of driver interaction was developed. This game-theoretic formalization allows one to model different lane-changing behaviors and to keep track of mobility performance. We simulate the evolution of cooperation, traffic flow, and mobility performance for different modeled behaviors. The analysis of these results indicates a mobility optimization process achieved by drivers’ interactions. PMID:27855176
Traffic Games: Modeling Freeway Traffic with Game Theory.
Cortés-Berrueco, Luis E; Gershenson, Carlos; Stephens, Christopher R
2016-01-01
We apply game theory to a vehicular traffic model to study the effect of driver strategies on traffic flow. The resulting model inherits the realistic dynamics achieved by a two-lane traffic model and aims to incorporate phenomena caused by driver-driver interactions. To achieve this goal, a game-theoretic description of driver interaction was developed. This game-theoretic formalization allows one to model different lane-changing behaviors and to keep track of mobility performance. We simulate the evolution of cooperation, traffic flow, and mobility performance for different modeled behaviors. The analysis of these results indicates a mobility optimization process achieved by drivers' interactions.
An Energy Model for Viewing Embodied Human Capital Theory
ERIC Educational Resources Information Center
Kaufman, Neil A.; Geroy, Gary D.
2007-01-01
Human capital development is one of the emerging areas of study with regard to social science theory, practice, and research. A relatively new concept, human capital is described in terms of individual knowledge skills and experience. It is currently expressed as a function of education as well as a measure of economic activity. Little theory…
Theory, modeling and simulation of superconducting qubits
Berman, Gennady P; Kamenev, Dmitry I; Chumak, Alexander; Kinion, Carin; Tsifrinovich, Vladimir
2011-01-13
We analyze the dynamics of a qubit-resonator system coupled with a thermal bath and external electromagnetic fields. Using the evolution equations for the set of Heisenberg operators that describe the whole system, we derive an expression for the resonator field, that includes the resonator-drive, the resonator-bath, and resonator-qubit interactions. The renormalization of the resonator frequency, caused by the qubit-resonator interaction, is accounted for. Using the solutions for the resonator field, we derive the equation that describes the qubit dynamics. The dependence of the qubit evolution during the measurement time on the fidelity of a single-shot measurement is studied. The relation between the fidelity and measurement time is shown explicitly. We proposed a novel adiabatic method for the phase qubit measurement. The method utilizes a low-frequency, quasi-classical resonator inductively coupled to the qubit. The resonator modulates the qubit energy, and the back reaction of the qubit causes a shift in the phase of the resonator. The resonator phase shift can be used to determine the qubit state. We have simulated this measurement taking into the account the energy levels outside the phase qubit manifold. We have shown that, for qubit frequencies in the range of 8-12GHZ, a resonator frequency of 500 MHz and a measurement time of 100 ns, the phase difference between the two qubit states is greater than 0.2 rad. This phase difference exceeds the measurement uncertainty, and can be detected using a classical phase-meter. A fidelity of 0.9999 can be achieved for a relaxation time of 0.5 ms. We also model and simulate a microstrip-SQUID amplifier of frequency about 500 MHz, which could be used to amplify the resonator oscillations in the phase qubit adiabatic measurement. The voltage gain and the amplifier noise temperature are calculated. We simulate the preparation of a generalized Bell state and compute the relaxation times required for achieving high
ERIC Educational Resources Information Center
Wold, Kari A.
2011-01-01
This article proposes an instructional design model for blended learning writing courses for English language learners (ELLs). It will do so by combining the main points of the cognitive load, activity, sociocultural, and transactional distance theories to present four tenets essential for optimal learning for ELLs: structure, environment,…
ERIC Educational Resources Information Center
Puzziferro, Maria; Shelton, Kaye
2008-01-01
As the demand for online education continues to increase, institutions are faced with developing process models for efficient, high-quality online course development. This paper describes a systems, team-based, approach that centers on an online instructional design theory ("Active Mastery Learning") implemented at Colorado State…
Modelling machine ensembles with discrete event dynamical system theory
NASA Technical Reports Server (NTRS)
Hunter, Dan
1990-01-01
Discrete Event Dynamical System (DEDS) theory can be utilized as a control strategy for future complex machine ensembles that will be required for in-space construction. The control strategy involves orchestrating a set of interactive submachines to perform a set of tasks for a given set of constraints such as minimum time, minimum energy, or maximum machine utilization. Machine ensembles can be hierarchically modeled as a global model that combines the operations of the individual submachines. These submachines are represented in the global model as local models. Local models, from the perspective of DEDS theory , are described by the following: a set of system and transition states, an event alphabet that portrays actions that takes a submachine from one state to another, an initial system state, a partial function that maps the current state and event alphabet to the next state, and the time required for the event to occur. Each submachine in the machine ensemble is presented by a unique local model. The global model combines the local models such that the local models can operate in parallel under the additional logistic and physical constraints due to submachine interactions. The global model is constructed from the states, events, event functions, and timing requirements of the local models. Supervisory control can be implemented in the global model by various methods such as task scheduling (open-loop control) or implementing a feedback DEDS controller (closed-loop control).
Active matter beyond mean-field: ring-kinetic theory for self-propelled particles.
Chou, Yen-Liang; Ihle, Thomas
2015-02-01
Recently, Hanke et al. [Phys. Rev. E 88, 052309 (2013)] showed that mean-field kinetic theory fails to describe collective motion in soft active colloids and that correlations must not be neglected. Correlation effects are also expected to be essential in systems of biofilaments driven by molecular motors and in swarms of midges. To obtain correlations in an active matter system from first principles, we derive a ring-kinetic theory for Vicsek-style models of self-propelled agents from the exact N-particle evolution equation in phase space. The theory goes beyond mean-field and does not rely on Boltzmann's approximation of molecular chaos. It can handle precollisional correlations and cluster formation, which are both important to understand the phase transition to collective motion. We propose a diagrammatic technique to perform a small-density expansion of the collision operator and derive the first two equations of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. An algorithm is presented that numerically solves the evolution equation for the two-particle correlations on a lattice. Agent-based simulations are performed and informative quantities such as orientational and density correlation functions are compared with those obtained by ring-kinetic theory. Excellent quantitative agreement between simulations and theory is found at not-too-small noises and mean free paths. This shows that there are parameter ranges in Vicsek-like models where the correlated closure of the BBGKY hierarchy gives correct and nontrivial results. We calculate the dependence of the orientational correlations on distance in the disordered phase and find that it seems to be consistent with a power law with an exponent around -1.8, followed by an exponential decay. General limitations of the kinetic theory and its numerical solution are discussed.
Active matter beyond mean-field: Ring-kinetic theory for self-propelled particles
NASA Astrophysics Data System (ADS)
Chou, Yen-Liang; Ihle, Thomas
2015-02-01
Recently, Hanke et al. [Phys. Rev. E 88, 052309 (2013), 10.1103/PhysRevE.88.052309] showed that mean-field kinetic theory fails to describe collective motion in soft active colloids and that correlations must not be neglected. Correlation effects are also expected to be essential in systems of biofilaments driven by molecular motors and in swarms of midges. To obtain correlations in an active matter system from first principles, we derive a ring-kinetic theory for Vicsek-style models of self-propelled agents from the exact N -particle evolution equation in phase space. The theory goes beyond mean-field and does not rely on Boltzmann's approximation of molecular chaos. It can handle precollisional correlations and cluster formation, which are both important to understand the phase transition to collective motion. We propose a diagrammatic technique to perform a small-density expansion of the collision operator and derive the first two equations of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. An algorithm is presented that numerically solves the evolution equation for the two-particle correlations on a lattice. Agent-based simulations are performed and informative quantities such as orientational and density correlation functions are compared with those obtained by ring-kinetic theory. Excellent quantitative agreement between simulations and theory is found at not-too-small noises and mean free paths. This shows that there are parameter ranges in Vicsek-like models where the correlated closure of the BBGKY hierarchy gives correct and nontrivial results. We calculate the dependence of the orientational correlations on distance in the disordered phase and find that it seems to be consistent with a power law with an exponent around -1.8 , followed by an exponential decay. General limitations of the kinetic theory and its numerical solution are discussed.
Coarse-grained theory of a realistic tetrahedral liquid model
NASA Astrophysics Data System (ADS)
Procaccia, I.; Regev, I.
2012-02-01
Tetrahedral liquids such as water and silica-melt show unusual thermodynamic behavior such as a density maximum and an increase in specific heat when cooled to low temperatures. Previous work had shown that Monte Carlo and mean-field solutions of a lattice model can exhibit these anomalous properties with or without a phase transition, depending on the values of the different terms in the Hamiltonian. Here we use a somewhat different approach, where we start from a very popular empirical model of tetrahedral liquids —the Stillinger-Weber model— and construct a coarse-grained theory which directly quantifies the local structure of the liquid as a function of volume and temperature. We compare the theory to molecular-dynamics simulations and show that the theory can rationalize the simulation results and the anomalous behavior.
Tsai, Chung-Hung
2014-05-07
Telehealth has become an increasingly applied solution to delivering health care to rural and underserved areas by remote health care professionals. This study integrated social capital theory, social cognitive theory, and the technology acceptance model (TAM) to develop a comprehensive behavioral model for analyzing the relationships among social capital factors (social capital theory), technological factors (TAM), and system self-efficacy (social cognitive theory) in telehealth. The proposed framework was validated with 365 respondents from Nantou County, located in Central Taiwan. Structural equation modeling (SEM) was used to assess the causal relationships that were hypothesized in the proposed model. The finding indicates that elderly residents generally reported positive perceptions toward the telehealth system. Generally, the findings show that social capital factors (social trust, institutional trust, and social participation) significantly positively affect the technological factors (perceived ease of use and perceived usefulness respectively), which influenced usage intention. This study also confirmed that system self-efficacy was the salient antecedent of perceived ease of use. In addition, regarding the samples, the proposed model fitted considerably well. The proposed integrative psychosocial-technological model may serve as a theoretical basis for future research and can also offer empirical foresight to practitioners and researchers in the health departments of governments, hospitals, and rural communities.
Tsai, Chung-Hung
2014-01-01
Telehealth has become an increasingly applied solution to delivering health care to rural and underserved areas by remote health care professionals. This study integrated social capital theory, social cognitive theory, and the technology acceptance model (TAM) to develop a comprehensive behavioral model for analyzing the relationships among social capital factors (social capital theory), technological factors (TAM), and system self-efficacy (social cognitive theory) in telehealth. The proposed framework was validated with 365 respondents from Nantou County, located in Central Taiwan. Structural equation modeling (SEM) was used to assess the causal relationships that were hypothesized in the proposed model. The finding indicates that elderly residents generally reported positive perceptions toward the telehealth system. Generally, the findings show that social capital factors (social trust, institutional trust, and social participation) significantly positively affect the technological factors (perceived ease of use and perceived usefulness respectively), which influenced usage intention. This study also confirmed that system self-efficacy was the salient antecedent of perceived ease of use. In addition, regarding the samples, the proposed model fitted considerably well. The proposed integrative psychosocial-technological model may serve as a theoretical basis for future research and can also offer empirical foresight to practitioners and researchers in the health departments of governments, hospitals, and rural communities. PMID:24810577
Theory of activated transport in bilayer quantum Hall systems.
Roostaei, B; Mullen, K J; Fertig, H A; Simon, S H
2008-07-25
We analyze the transport properties of bilayer quantum Hall systems at total filling factor nu=1 in drag geometries as a function of interlayer bias, in the limit where the disorder is sufficiently strong to unbind meron-antimeron pairs, the charged topological defects of the system. We compute the typical energy barrier for these objects to cross incompressible regions within the disordered system using a Hartree-Fock approach, and show how this leads to multiple activation energies when the system is biased. We then demonstrate using a bosonic Chern-Simons theory that in drag geometries current in a single layer directly leads to forces on only two of the four types of merons, inducing dissipation only in the drive layer. Dissipation in the drag layer results from interactions among the merons, resulting in very different temperature dependences for the drag and drive layers, in qualitative agreement with experiment.
ERIC Educational Resources Information Center
Dewar, Deborah L.; Plotnikoff, Ronald C.; Morgan, Philip J.; Okely, Anthony D.; Costigan, Sarah A.; Lubans, David R.
2013-01-01
Purpose: The aim of this study was to test the hypothesized structural paths in Bandura's social-cognitive theory (SCT) model on adolescent girls' physical activity following a 12-month physical activity and dietary intervention to prevent obesity. Method: We conducted a 12-month follow-up study of 235 adolescent girls ("M[subscript…
A model of dissociation based on attachment theory and research.
Liotti, Giovanni
2006-01-01
The article offers an historical review of studies on the role played by attachment processes in dissociative psychopathology. The treatise proceeds from Bowlby's first insights, through Main and her collaborators' empirical studies on attachment disorganization, to the first formulation of the hypothesis linking disorganized early attachment to pathological dissociation. Recent research supporting the hypothesis is then reviewed. It is concluded that infant attachment disorganization is in itself a dissociative process, and predisposes the individual to respond with pathological dissociation to later traumas and life stressors. Four implications of this theory are interspersed in the review and are discussed in the final section: (1) pathological dissociation should be viewed as a primarily intersubjective reality hindering the integrative processes of consciousness, rather than as an intrapsychic defense against mental pain; (2) early defenses against attachment-related dissociation are based on interpersonal controlling strategies that inhibit the attachment system; (3) dissociative symptoms emerge as a consequence of the collapse of these defensive strategies in the face of events that powerfully activate the attachment system; (4) psychotherapy of pathological dissociation should be a phase-oriented process focused primarily on achieving attachment security, and only secondarily on trauma work. Research studies on the psychotherapy process could test some predictions of this model.
NASA Astrophysics Data System (ADS)
Lutz, André; Nackenhorst, Udo
2012-09-01
In order to simulate the osseointegration of bone implants, a bio-active interface theory is necessary. The thin bone-implant interface layer is described by the Drucker-Prager plasticity model. The formulation of bone mineral density depends on the local mechanical environment. For the simulation of the osseointegration of bone implants a bio-active interface theory is suggested. A thin bone-implant interface layer is described by a Drucker-Prager plasticity model. An evolution rule for the bone mineral density is formulated in dependency of the local mechanical environment. The time dependent ingrowth is modeled by a hardening rule which modifies the Drucker-Prager yield-surface cone in the principle stress state in dependency of the local bone mineral density. The osseointegration process is limited by the violation of a so called micromotion threshold. This relative motion in the implant-bone interface is computed by dynamic loads of daily motion activity. For parameter studies on detailed 3D models model reduction techniques are introduced. The applicability is demonstrated on a hip-joint prosthesis which is in clinical usage.
Multilevel Higher-Order Item Response Theory Models
ERIC Educational Resources Information Center
Huang, Hung-Yu; Wang, Wen-Chung
2014-01-01
In the social sciences, latent traits often have a hierarchical structure, and data can be sampled from multiple levels. Both hierarchical latent traits and multilevel data can occur simultaneously. In this study, we developed a general class of item response theory models to accommodate both hierarchical latent traits and multilevel data. The…
Developments in Latent Trait Theory: Models, Technical Issues, and Applications.
ERIC Educational Resources Information Center
And Others; Hambleton, Ronald K.
1978-01-01
Topics concerning latent trait theory are addressed: (1) dimensionality of latent space, local independence, and item characteristic curves; (2) models--equations, parameter estimation, testing assumptions, and goodness of fit, (3) applications test developments, item bias, tailored testing and equating; and (4) advantages over classical…
A Proposed Model of Jazz Theory Knowledge Acquisition
ERIC Educational Resources Information Center
Ciorba, Charles R.; Russell, Brian E.
2014-01-01
The purpose of this study was to test a hypothesized model that proposes a causal relationship between motivation and academic achievement on the acquisition of jazz theory knowledge. A reliability analysis of the latent variables ranged from 0.92 to 0.94. Confirmatory factor analyses of the motivation (standardized root mean square residual…
Item Response Theory Modeling of the Philadelphia Naming Test
ERIC Educational Resources Information Center
Fergadiotis, Gerasimos; Kellough, Stacey; Hula, William D.
2015-01-01
Purpose: In this study, we investigated the fit of the Philadelphia Naming Test (PNT; Roach, Schwartz, Martin, Grewal, & Brecher, 1996) to an item-response-theory measurement model, estimated the precision of the resulting scores and item parameters, and provided a theoretical rationale for the interpretation of PNT overall scores by relating…
Item Response Theory Models for Performance Decline during Testing
ERIC Educational Resources Information Center
Jin, Kuan-Yu; Wang, Wen-Chung
2014-01-01
Sometimes, test-takers may not be able to attempt all items to the best of their ability (with full effort) due to personal factors (e.g., low motivation) or testing conditions (e.g., time limit), resulting in poor performances on certain items, especially those located toward the end of a test. Standard item response theory (IRT) models fail to…
Using Conceptual Change Theories to Model Position Concepts in Astronomy
ERIC Educational Resources Information Center
Yang, Chih-Chiang; Hung, Jeng-Fung
2012-01-01
The roles of conceptual change and model building in science education are very important and have a profound and wide effect on teaching science. This study examines the change in children's position concepts after instruction, based on different conceptual change theories. Three classes were chosen and divided into three groups, including a…
An NCME Instructional Module on Polytomous Item Response Theory Models
ERIC Educational Resources Information Center
Penfield, Randall David
2014-01-01
A polytomous item is one for which the responses are scored according to three or more categories. Given the increasing use of polytomous items in assessment practices, item response theory (IRT) models specialized for polytomous items are becoming increasingly common. The purpose of this ITEMS module is to provide an accessible overview of…
Using SAS PROC MCMC for Item Response Theory Models
ERIC Educational Resources Information Center
Ames, Allison J.; Samonte, Kelli
2015-01-01
Interest in using Bayesian methods for estimating item response theory models has grown at a remarkable rate in recent years. This attentiveness to Bayesian estimation has also inspired a growth in available software such as WinBUGS, R packages, BMIRT, MPLUS, and SAS PROC MCMC. This article intends to provide an accessible overview of Bayesian…
Application of Health Promotion Theories and Models for Environmental Health
ERIC Educational Resources Information Center
Parker, Edith A.; Baldwin, Grant T.; Israel, Barbara; Salinas, Maria A.
2004-01-01
The field of environmental health promotion gained new prominence in recent years as awareness of physical environmental stressors and exposures increased in communities across the country and the world. Although many theories and conceptual models are used routinely to guide health promotion and health education interventions, they are rarely…
A Model to Demonstrate the Place Theory of Hearing
ERIC Educational Resources Information Center
Ganesh, Gnanasenthil; Srinivasan, Venkata Subramanian; Krishnamurthi, Sarayu
2016-01-01
In this brief article, the authors discuss Georg von Békésy's experiments showing the existence of traveling waves in the basilar membrane and that maximal displacement of the traveling wave was determined by the frequency of the sound. The place theory of hearing equates the basilar membrane to a frequency analyzer. The model described in this…
Medical Specialty Decision Model: Utilizing Social Cognitive Career Theory
ERIC Educational Resources Information Center
Gibson, Denise D.; Borges, Nicole J.
2004-01-01
Objectives: The purpose of this study was to develop a working model to explain medical specialty decision-making. Using Social Cognitive Career Theory, we examined personality, medical specialty preferences, job satisfaction, and expectations about specialty choice to create a conceptual framework to guide specialty choice decision-making.…
Evaluating hydrological model performance using information theory-based metrics
Technology Transfer Automated Retrieval System (TEKTRAN)
The accuracy-based model performance metrics not necessarily reflect the qualitative correspondence between simulated and measured streamflow time series. The objective of this work was to use the information theory-based metrics to see whether they can be used as complementary tool for hydrologic m...
A Dynamic Theory of World Press Motivation: An Integrative Model.
ERIC Educational Resources Information Center
Schillinger, Elisabeth
Addressing the dynamic and integrative nature of the world's press systems, this paper presents a comprehensive press theory and accompanying model. Three "primary motives"--survival, ideology, and market--are posited as determinants of press systems, using the nation state as the unit of analysis. The premises of the paper are: (1)…
Conceptualizations of Creativity: Comparing Theories and Models of Giftedness
ERIC Educational Resources Information Center
Miller, Angie L.
2012-01-01
This article reviews seven different theories of giftedness that include creativity as a component, comparing and contrasting how each one conceptualizes creativity as a part of giftedness. The functions of creativity vary across the models, suggesting that while the field of gifted education often cites the importance of creativity, the…
Dimensions of Genocide: The Circumplex Model Meets Violentization Theory
ERIC Educational Resources Information Center
Winton, Mark A.
2008-01-01
The purpose of this study is to examine the use of Olson's (1995, 2000) family therapy based circumplex model and Athens' (1992, 1997, 2003) violentization theory in explaining genocide. The Rwandan genocide of 1994 is used as a case study. Published texts, including interviews with perpetrators, research reports, human rights reports, and court…
The adhesion model as a field theory for cosmological clustering
Rigopoulos, Gerasimos
2015-01-01
The adhesion model has been proposed in the past as an improvement of the Zel'dovich approximation, providing a good description of the formation of the cosmic web. We recast the model as a field theory for cosmological large scale structure, adding a stochastic force to account for power generated from very short, highly non-linear scales that is uncorrelated with the initial power spectrum. The dynamics of this Stochastic Adhesion Model (SAM) is reminiscent of the well known Kardar-Parisi-Zhang equation with the difference that the viscosity and the noise spectrum are time dependent. Choosing the viscosity proportional to the growth factor D restricts the form of noise spectrum through a 1-loop renormalization argument. For this choice, the SAM field theory is renormalizable to one loop. We comment on the suitability of this model for describing the non-linear regime of the CDM power spectrum and its utility as a relatively simple approach to cosmological clustering.
A model of reward choice based on the theory of reinforcement learning.
Smirnitskaya, I A; Frolov, A A; Merzhanova, G Kh
2008-03-01
A model explaining behavioral "impulsivity" and "self-control" is proposed on the basis of the theory of reinforcement learning. The discount coefficient gamma, which in this theory accounts for the subjective reduction in the value of a delayed reinforcement, is identified with the overall level of dopaminergic neuron activity which, according to published data, also determines the behavioral variant. Computer modeling showed that high values of gamma are characteristic of predominantly "self-controlled" subjects, while smaller values of gamma are characteristic of "impulsive" subjects.
Bluethmann, Shirley M; Bartholomew, L Kay; Murphy, Caitlin C; Vernon, Sally W
2016-05-25
Objective Theory use may enhance effectiveness of behavioral interventions, yet critics question whether theory-based interventions have been sufficiently scrutinized. This study applied a framework to evaluate theory use in physical activity interventions for breast cancer survivors. The aims were to (1) evaluate theory application intensity and (2) assess the association between extensiveness of theory use and intervention effectiveness. Methods Studies were previously identified through a systematic search, including only randomized controlled trials published from 2005 to 2013, that addressed physical activity behavior change and studied survivors who were <5 years posttreatment. Eight theory items from Michie and Prestwich's coding framework were selected to calculate theory intensity scores. Studies were classified into three subgroups based on extensiveness of theory use (Level 1 = sparse; Level 2 = moderate; and Level 3 = extensive). Results Fourteen randomized controlled trials met search criteria. Most trials used the transtheoretical model (n = 5) or social cognitive theory (n = 3). For extensiveness of theory use, 5 studies were classified as Level 1, 4 as Level 2, and 5 as Level 3. Studies in the extensive group (Level 3) had the largest overall effect size (g = 0.76). Effects were more modest in Level 1 and 2 groups with overall effect sizes of g = 0.28 and g = 0.36, respectively. Conclusions Theory use is often viewed as essential to behavior change, but theory application varies widely. In this study, there was some evidence to suggest that extensiveness of theory use enhanced intervention effectiveness. However, there is more to learn about how theory can improve interventions for breast cancer survivors.
Reconstructing constructivism: Causal models, Bayesian learning mechanisms and the theory theory
Gopnik, Alison; Wellman, Henry M.
2012-01-01
We propose a new version of the “theory theory” grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and non-technical way, and review an extensive but relatively recent body of empirical results that supports these ideas. These include new studies of the mechanisms of learning. Children infer causal structure from statistical information, through their own actions on the world and through observations of the actions of others. Studies demonstrate these learning mechanisms in children from 16 months to 4 years old and include research on causal statistical learning, informal experimentation through play, and imitation and informal pedagogy. They also include studies of the variability and progressive character of intuitive theory change, particularly theory of mind. These studies investigate both the physical and psychological and social domains. We conclude with suggestions for further collaborative projects between developmental and computational cognitive scientists. PMID:22582739
Emotion at Work: A Contribution to Third-Generation Cultural-Historical Activity Theory
ERIC Educational Resources Information Center
Roth, Wolff-Michael
2007-01-01
Second-generation cultural-historical activity theory, which drew its inspiration from Leont'ev's work, constituted an advance over Vygotsky's first-generation theory by explicitly articulating the dialectical relation between individual and collective. As part of an effort to develop third-generation-historical activity theory, I propose in this…
An Overview of Cultural Historical Activity Theory (CHAT) Use in Classroom Research 2000 to 2009
ERIC Educational Resources Information Center
Nussbaumer, Doris
2012-01-01
Western educational researchers have eagerly accepted activity theory (AT) also known as cultural historical activity theory (CHAT) to collect and analyze data in rich description of complex situations. As this theory is applicable to a wide variety of disciplines, this review is limited to education and specifically to qualitative studies of…
Cable theory in neurons with active, linearized membranes.
Koch, C
1984-01-01
This investigation aims at exploring some of the functional consequences of single neurons containing active, voltage dependent channels for information processing. Assuming that the voltage change in the dendritic tree of these neurons does not exceed a few millivolts, it is possible to linearize the non-linear channel conductance. The membrane can then be described in terms of resistances, capacitances and inductances, as for instance in the small-signal analysis of the squid giant axon. Depending on the channel kinetics and the associated ionic battery the linearization yields two basic types of membrane: a membrane modeled by a collection of resistances and capacitances and membranes containing in addition to these components inductances. Under certain specified conditions the latter type of membrane gives rise to a membrane impedance that displays a prominent maximum at some nonzero resonant frequency fmax. We call this type of membrane quasi-active, setting it apart from the usual passive membrane. We study the linearized behaviour of active channels giving rise to quasi-active membranes in extended neuronal structures and consider several instances where such membranes may subserve neuronal function: 1. The resonant frequency of a quasi-active membrane increases with increasing density of active channels. This might be one of the biophysical mechanisms generating the large range over which hair cells in the vertebrate cochlea display frequency tuning. 2. The voltage recorded from a cable with a quasi-active membrane can be proportional to the temporal derivative of the injected current. 3. We modeled a highly branched dendritic tree (delta-ganglion cell of the cat retina) using a quasi-active membrane. The voltage attenuation from a given synaptic site to the soma decreases with increasing frequency up to the resonant frequency, in sharp contrast to the behaviour of passive membranes.(ABSTRACT TRUNCATED AT 400 WORDS)
Alliance: a common factor of psychotherapy modeled by structural theory
Tschacher, Wolfgang; Haken, Hermann; Kyselo, Miriam
2015-01-01
There is broad consensus that the therapeutic alliance constitutes a core common factor for all modalities of psychotherapy. Meta-analyses corroborated that alliance, as it emerges from therapeutic process, is a significant predictor of therapy outcome. Psychotherapy process is traditionally described and explored using two categorically different approaches, the experiential (first-person) perspective and the behavioral (third-person) perspective. We propose to add to this duality a third, structural approach. Dynamical systems theory and synergetics on the one hand and enactivist theory on the other together can provide this structural approach, which contributes in specific ways to a clarification of the alliance factor. Systems theory offers concepts and tools for the modeling of the individual self and, building on this, of alliance processes. In the enactive perspective, the self is conceived as a socially enacted autonomous system that strives to maintain identity by observing a two-fold goal: to exist as an individual self in its own right (distinction) while also being open to others (participation). Using this conceptualization, we formalized the therapeutic alliance as a phase space whose potential minima (attractors) can be shifted by the therapist to approximate therapy goals. This mathematical formalization is derived from probability theory and synergetics. We draw the conclusion that structural theory provides powerful tools for the modeling of how therapeutic change is staged by the formation, utilization, and dissolution of the therapeutic alliance. In addition, we point out novel testable hypotheses and future applications. PMID:25954215
Alliance: a common factor of psychotherapy modeled by structural theory.
Tschacher, Wolfgang; Haken, Hermann; Kyselo, Miriam
2015-01-01
There is broad consensus that the therapeutic alliance constitutes a core common factor for all modalities of psychotherapy. Meta-analyses corroborated that alliance, as it emerges from therapeutic process, is a significant predictor of therapy outcome. Psychotherapy process is traditionally described and explored using two categorically different approaches, the experiential (first-person) perspective and the behavioral (third-person) perspective. We propose to add to this duality a third, structural approach. Dynamical systems theory and synergetics on the one hand and enactivist theory on the other together can provide this structural approach, which contributes in specific ways to a clarification of the alliance factor. Systems theory offers concepts and tools for the modeling of the individual self and, building on this, of alliance processes. In the enactive perspective, the self is conceived as a socially enacted autonomous system that strives to maintain identity by observing a two-fold goal: to exist as an individual self in its own right (distinction) while also being open to others (participation). Using this conceptualization, we formalized the therapeutic alliance as a phase space whose potential minima (attractors) can be shifted by the therapist to approximate therapy goals. This mathematical formalization is derived from probability theory and synergetics. We draw the conclusion that structural theory provides powerful tools for the modeling of how therapeutic change is staged by the formation, utilization, and dissolution of the therapeutic alliance. In addition, we point out novel testable hypotheses and future applications.
Chaos and order in non-integrable model field theories
Campbell, D.K.; Peyrard, M.
1989-01-01
We illustrate the presence of chaos and order in non-integrable, classical field theories, which we view as many-degree-of-freedom Hamiltonian nonlinear dynamical systems. For definiteness, we focus on the {chi}{sup 4} theory and compare and contrast it with the celebrated integrable sine-Gordon equation. We introduce and investigate two specific problems: the interactions of solitary kink''-like waves in non-integrable theories; and the existence of stable breather'' solutions -- spatially-localized, time-periodic nonlinear waves -- in the {chi}{sup 4} theory. For the former problem we review the rather well developed understanding, based on a combination of computational simulations and heuristic analytic models, of the presence of a sequence of resonances in the kink-antikink interactions as a function of the relative velocity of the interaction. For the latter problem we discuss first the case of the continuum {chi}{sup 4} theory. We discuss the multiple-scale asymptotic perturbation theory arguments which first suggested the existence of {chi}{sup 4} breathers, then the subsequent discovery of terms beyond-all-orders'' in the perturbation expansion which destroy the putative breather, and finally, the recent rigorous proofs of the non-existence of breathers in the continuum theory. We then present some very recent numerical results on the existence of breathers in discrete {chi}{sup 4} theories which show an intricate interweaving of stable and unstable breather solutions on finite discrete lattices. We develop a heuristic theoretical explanation of the regions of stability and instability.
Theory and modelling of diamond fracture from an atomic perspective.
Brenner, Donald W; Shenderova, Olga A
2015-03-28
Discussed in this paper are several theoretical and computational approaches that have been used to better understand the fracture of both single-crystal and polycrystalline diamond at the atomic level. The studies, which include first principles calculations, analytic models and molecular simulations, have been chosen to illustrate the different ways in which this problem has been approached, the conclusions and their reliability that have been reached by these methods, and how these theory and modelling methods can be effectively used together.
A model of resurgence based on behavioral momentum theory.
Shahan, Timothy A; Sweeney, Mary M
2011-01-01
Resurgence is the reappearance of an extinguished behavior when an alternative behavior reinforced during extinction is subsequently placed on extinction. Resurgence is of particular interest because it may be a source of relapse to problem behavior following treatments involving alternative reinforcement. In this article we develop a quantitative model of resurgence based on the augmented model of extinction provided by behavioral momentum theory. The model suggests that alternative reinforcement during extinction of a target response acts as both an additional source of disruption during extinction and as a source of reinforcement in the context that increases the future strength of the target response. The model does a good job accounting for existing data in the resurgence literature and makes novel and testable predictions. Thus, the model appears to provide a framework for understanding resurgence and serves to integrate the phenomenon into the existing theoretical account of persistence provided by behavioral momentum theory. In addition, we discuss some potential implications of the model for further development of behavioral momentum theory.
Active-Passive-Intuitive Learning Theory: A Unified Theory of Learning and Development
ERIC Educational Resources Information Center
Sigette, Tyson
2009-01-01
This paper addresses many theories of learning and human development which are very similar with regards as to how they suggest learning occurs. The differences in most of the theories exist in how they treat the development of the learner compared to methods of teaching. Most of the major learning theories taught to educators today are based on…
Modeling irradiation creep of graphite using rate theory
NASA Astrophysics Data System (ADS)
Sarkar, Apu; Eapen, Jacob; Raj, Anant; Murty, K. L.; Burchell, T. D.
2016-05-01
We have examined irradiation induced creep of graphite in the framework of transition state rate theory. Experimental data for two grades of nuclear graphite (H-337 and AGOT) have been analyzed to determine the stress exponent (n) and activation energy (Q) for plastic flow under irradiation. We show that the mean activation energy lies between 0.14 and 0.32 eV with a mean stress-exponent of 1.0 ± 0.2. A stress exponent of unity and the unusually low activation energies strongly indicate a diffusive defect transport mechanism for neutron doses in the range of 3-4 × 1022 n/cm2.
Modeling Activities in Earth Science
NASA Astrophysics Data System (ADS)
Malone, Kathy
2014-05-01
Students usually find science to be quite abstract. This is especially true of disciplines like Earth Science where it is difficult for the students to conduct and design hands-on experiments in areas such as Plate Tectonics that would allow them to develop predictive models. In the United States the new Next Generation Science Standards explicitly requires students to experience the science disciplines via modeling based activities. This poster presentation will discuss an activity that demonstrates how modeling, plate tectonics and student discourse converge in the earth science classroom. The activities featured on the poster will include using cardboard and shaving cream to demonstrate convergent plate boundaries, a Milky Way candy bar to demonstrate divergent boundaries and silly putty to demonstrate a strike slip boundary. I will discuss how students report back to the group about the findings from the lab and the techniques that can be used to heighten the student discourse. The activities outlined in this poster were originally designed for a middle school Earth Science class by Suzi Shoemaker for a graduate thesis at Arizona State University.
Theory-based Bayesian models of inductive learning and reasoning.
Tenenbaum, Joshua B; Griffiths, Thomas L; Kemp, Charles
2006-07-01
Inductive inference allows humans to make powerful generalizations from sparse data when learning about word meanings, unobserved properties, causal relationships, and many other aspects of the world. Traditional accounts of induction emphasize either the power of statistical learning, or the importance of strong constraints from structured domain knowledge, intuitive theories or schemas. We argue that both components are necessary to explain the nature, use and acquisition of human knowledge, and we introduce a theory-based Bayesian framework for modeling inductive learning and reasoning as statistical inferences over structured knowledge representations.
a Higher Order Theory for STATIC-DYNAMIC Analysis of Laminated Plates Using a Warping Model
NASA Astrophysics Data System (ADS)
HASSIS, H.
2000-08-01
A higher order theory is developed to model the behaviour of laminated plates. This theory is based on a warping theory of plate deformation developed by Hassis [1]. Through comparison with elasticity solutions obtained with classical models [2-6] and the higher order theory of Lo et al.[7, 8], it is shown that the present theory correctly models effects not attainable by the low order theories.
Theory of simple biochemical ``shape recognition'' via diffusion from activator coated nanoshapes
NASA Astrophysics Data System (ADS)
Daniels, D. R.
2008-09-01
Inspired by recent experiments, we model the shape sensitivity, via a typical threshold initiation response, of an underlying complex biochemical reaction network to activator coated nanoshapes. Our theory re-emphasizes that shape effects can be vitally important for the onset of functional behavior in nanopatches and nanoparticles. For certain critical or particular shapes, activator coated nanoshapes do not evoke a threshold response in a complex biochemical network setting, while for different critical or specific shapes, the threshold response is rapidly achieved. The model thus provides a general theoretical understanding for how activator coated nanoshapes can enable a chemical system to perform simple "shape recognition," with an associated "all or nothing" response. The novel and interesting cases of the chemical response due to a nanoshape that shrinks with time is additionally considered, as well as activator coated nanospheres. Possible important applications of this work include the initiation of blood clotting by nanoshapes, nanoshape effects in nanocatalysis, physiological toxicity to nanoparticles, as well as nanoshapes in nanomedicine, drug delivery, and T cell immunological response. The aim of the theory presented here is that it inspires further experimentation on simple biochemical shape recognition via diffusion from activator coated nanoshapes.
Cluster density functional theory for lattice models based on the theory of Möbius functions
NASA Astrophysics Data System (ADS)
Lafuente, Luis; Cuesta, José A.
2005-08-01
Rosenfeld's fundamental-measure theory for lattice models is given a rigorous formulation in terms of the theory of Möbius functions of partially ordered sets. The free-energy density functional is expressed as an expansion in a finite set of lattice clusters. This set is endowed with a partial order, so that the coefficients of the cluster expansion are connected to its Möbius function. Because of this, it is rigorously proven that a unique such expansion exists for any lattice model. The low-density analysis of the free-energy functional motivates a redefinition of the basic clusters (zero-dimensional cavities) which guarantees a correct zero-density limit of the pair and triplet direct correlation functions. This new definition extends Rosenfeld's theory to lattice models with any kind of short-range interaction (repulsive or attractive, hard or soft, one or multicomponent ...). Finally, a proof is given that these functionals have a consistent dimensional reduction, i.e. the functional for dimension d' can be obtained from that for dimension d (d' < d) if the latter is evaluated at a density profile confined to a d'-dimensional subset.
Finite Element and Plate Theory Modeling of Acoustic Emission Waveforms
NASA Technical Reports Server (NTRS)
Prosser, W. H.; Hamstad, M. A.; Gary, J.; OGallagher, A.
1998-01-01
A comparison was made between two approaches to predict acoustic emission waveforms in thin plates. A normal mode solution method for Mindlin plate theory was used to predict the response of the flexural plate mode to a point source, step-function load, applied on the plate surface. The second approach used a dynamic finite element method to model the problem using equations of motion based on exact linear elasticity. Calculations were made using properties for both isotropic (aluminum) and anisotropic (unidirectional graphite/epoxy composite) materials. For simulations of anisotropic plates, propagation along multiple directions was evaluated. In general, agreement between the two theoretical approaches was good. Discrepancies in the waveforms at longer times were caused by differences in reflections from the lateral plate boundaries. These differences resulted from the fact that the two methods used different boundary conditions. At shorter times in the signals, before reflections, the slight discrepancies in the waveforms were attributed to limitations of Mindlin plate theory, which is an approximate plate theory. The advantages of the finite element method are that it used the exact linear elasticity solutions, and that it can be used to model real source conditions and complicated, finite specimen geometries as well as thick plates. These advantages come at a cost of increased computational difficulty, requiring lengthy calculations on workstations or supercomputers. The Mindlin plate theory solutions, meanwhile, can be quickly generated on personal computers. Specimens with finite geometry can also be modeled. However, only limited simple geometries such as circular or rectangular plates can easily be accommodated with the normal mode solution technique. Likewise, very limited source configurations can be modeled and plate theory is applicable only to thin plates.
sigma model approach to the heterotic string theory
Sen, A.
1985-09-01
Relation between the equations of motion for the massless fields in the heterotic string theory, and the conformal invariance of the sigma model describing the propagation of the heterotic string in arbitrary background massless fields is discussed. It is emphasized that this sigma model contains complete information about the string theory. Finally, we discuss the extension of the Hull-Witten proof of local gauge and Lorentz invariance of the sigma-model to higher order in ..cap alpha..', and the modification of the transformation laws of the antisymmetric tensor field under these symmetries. Presence of anomaly in the naive N = 1/2 supersymmetry transformation is also pointed out in this context. 12 refs.
From local to global in F-theory model building
NASA Astrophysics Data System (ADS)
Andreas, Björn; Curio, Gottfried
2010-09-01
When locally engineering F-theory models some D7-branes for the gauge group factors are specified and matter is localized on the intersection curves of the compact parts of the world-volumes. In this note, we discuss to what extent one can draw conclusions about F-theory models by just restricting the attention locally to a particular seven-brane. Globally, the possible D7-branes are not independent from each other and the (compact part of the) D7-brane can have unavoidable intrinsic singularities. Many special intersecting loci which were not chosen by hand occur inevitably, notably codimension-three loci which are not intersections of matter curves. We describe these complications specifically in a global SU(5) model and also their impact on the tadpole cancellation condition.
Measuring Nursing Practice Models using Multi-Attribute Utility theory.
Brennan, P F; Anthony, M K
2000-10-01
Nursing Practice Models (NPMs) represent the structural and contextual features that exist within any group practice of nursing. Currently, measurement of NPMs relies on costly and nonreproducible global judgments by experts. Quantitative measurement techniques are needed to provide a useful evaluation of nursing practice. Guided by Multi-Attribute Utility theory (MAU theory), an expert panel identified 24 factors representative of N PMs. The factors became elements in a computational index that, when summed, assigns a score to a given nursing unit reflecting the extent to which that unit's nursing practice model achieves the nursing professional ideal. Initial validation of the index and its elements consisted of comparing assessments of 40 nursing units generated by the index with a global evaluation provided by each of the expert panelists who proposed the model factors. Pearson correlations between the index-generated scores and the global assigned scores provided evidence supporting the preliminary validation of the index.
Matrix models and stochastic growth in Donaldson-Thomas theory
NASA Astrophysics Data System (ADS)
Szabo, Richard J.; Tierz, Miguel
2012-10-01
We show that the partition functions which enumerate Donaldson-Thomas invariants of local toric Calabi-Yau threefolds without compact divisors can be expressed in terms of specializations of the Schur measure. We also discuss the relevance of the Hall-Littlewood and Jack measures in the context of BPS state counting and study the partition functions at arbitrary points of the Kähler moduli space. This rewriting in terms of symmetric functions leads to a unitary one-matrix model representation for Donaldson-Thomas theory. We describe explicitly how this result is related to the unitary matrix model description of Chern-Simons gauge theory. This representation is used to show that the generating functions for Donaldson-Thomas invariants are related to tau-functions of the integrable Toda and Toeplitz lattice hierarchies. The matrix model also leads to an interpretation of Donaldson-Thomas theory in terms of non-intersecting paths in the lock-step model of vicious walkers. We further show that these generating functions can be interpreted as normalization constants of a corner growth/last-passage stochastic model.
Matrix models and stochastic growth in Donaldson-Thomas theory
Szabo, Richard J.; Tierz, Miguel
2012-10-15
We show that the partition functions which enumerate Donaldson-Thomas invariants of local toric Calabi-Yau threefolds without compact divisors can be expressed in terms of specializations of the Schur measure. We also discuss the relevance of the Hall-Littlewood and Jack measures in the context of BPS state counting and study the partition functions at arbitrary points of the Kaehler moduli space. This rewriting in terms of symmetric functions leads to a unitary one-matrix model representation for Donaldson-Thomas theory. We describe explicitly how this result is related to the unitary matrix model description of Chern-Simons gauge theory. This representation is used to show that the generating functions for Donaldson-Thomas invariants are related to tau-functions of the integrable Toda and Toeplitz lattice hierarchies. The matrix model also leads to an interpretation of Donaldson-Thomas theory in terms of non-intersecting paths in the lock-step model of vicious walkers. We further show that these generating functions can be interpreted as normalization constants of a corner growth/last-passage stochastic model.
Should the model for risk-informed regulation be game theory rather than decision theory?
Bier, Vicki M; Lin, Shi-Woei
2013-02-01
deception), to identify optimal regulatory strategies. Therefore, we believe that the types of regulatory interactions analyzed in this article are better modeled using game theory rather than decision theory. In particular, the goals of this article are to review the relevant literature in game theory and regulatory economics (to stimulate interest in this area among risk analysts), and to present illustrative results showing how the application of game theory can provide useful insights into the theory and practice of risk-informed regulation.
Gauge invariant perturbation theory and non-critical string models of Yang-Mills theories
NASA Astrophysics Data System (ADS)
Lugo, Adrián R.; Sturla, Mauricio B.
2010-04-01
We carry out a gauge invariant analysis of certain perturbations of D - 2-branes solutions of low energy string theories. We get generically a system of second order coupled differential equations, and show that only in very particular cases it is possible to reduce it to just one differential equation. Later, we apply it to a multi-parameter, generically singular family of constant dilaton solutions of non-critical string theories in D dimensions, a generalization of that recently found in arXiv:0709.0471 [hep-th]. According to arguments coming from the holographic gauge theory-gravity correspondence, and at least in some region of the parameters space, we obtain glue-ball spectra of Yang-Mills theories in diverse dimensions, putting special emphasis in the scalar metric perturbations not considered previously in the literature in the non critical setup. We compare our numerical results to those studied previously and to lattice results, finding qualitative and in some cases, tuning properly the parameters, quantitative agreement. These results seem to show some kind of universality of the models, as well as an irrelevance of the singular character of the solutions. We also develop the analysis for the T-dual, non trivial dilaton family of solutions, showing perfect agreement between them.
Testing a Theoretical Model of Immigration Transition and Physical Activity.
Chang, Sun Ju; Im, Eun-Ok
2015-01-01
The purposes of the study were to develop a theoretical model to explain the relationships between immigration transition and midlife women's physical activity and test the relationships among the major variables of the model. A theoretical model, which was developed based on transitions theory and the midlife women's attitudes toward physical activity theory, consists of 4 major variables, including length of stay in the United States, country of birth, level of acculturation, and midlife women's physical activity. To test the theoretical model, a secondary analysis with data from 127 Hispanic women and 123 non-Hispanic (NH) Asian women in a national Internet study was used. Among the major variables of the model, length of stay in the United States was negatively associated with physical activity in Hispanic women. Level of acculturation in NH Asian women was positively correlated with women's physical activity. Country of birth and level of acculturation were significant factors that influenced physical activity in both Hispanic and NH Asian women. The findings support the theoretical model that was developed to examine relationships between immigration transition and physical activity; it shows that immigration transition can play an essential role in influencing health behaviors of immigrant populations in the United States. The NH theoretical model can be widely used in nursing practice and research that focus on immigrant women and their health behaviors. Health care providers need to consider the influences of immigration transition to promote immigrant women's physical activity.
WLWL scattering in Higgsless models: Identifying better effective theories
NASA Astrophysics Data System (ADS)
Belyaev, Alexander S.; Chivukula, R. Sekhar; Christensen, Neil D.; He, Hong-Jian; Kurachi, Masafumi; Simmons, Elizabeth H.; Tanabashi, Masaharu
2009-09-01
The three-site model has been offered as a benchmark for studying the collider phenomenology of Higgsless models. In this paper we analyze how well the three-site model performs as a general exemplar of Higgsless models in describing WLWL scattering, and which modifications can make it more representative. We employ general sum rules relating the masses and couplings of the Kaluza-Klein modes of the gauge fields in continuum and deconstructed Higgsless models as a way to compare the different theories. We show that the size of the four-point vertex for the (unphysical) Nambu-Goldstone modes and the degree to which the sum rules are saturated by contributions from the lowest-lying Kaluza-Klein resonances both provide good measures of the extent to which a highly deconstructed theory can accurately describe the low-energy physics of a continuum 5D Higgsless model. After comparing the three-site model to flat and warped continuum models, we analyze extensions of the three-site model to a longer open linear moose with an additional U(1) group and to a ring (“breaking electroweak symmetry strongly” or “hidden local symmetry”) model with three sites and three links. Both cases may be readily analyzed in the framework of the general sum rules. We demonstrate that WLWL scattering in the ring model can very closely approximate scattering in the continuum models, provided that the hidden local symmetry parameter a is chosen to mimic ρ-meson dominance of ππ scattering in QCD. The hadron and lepton collider phenomenology of both extended models is briefly discussed, with a focus on the complementary information to be gained from precision measurements of the Z' line shape and ZWW coupling at a high-energy lepton collider.
Circuit theory and model-based inference for landscape connectivity
Hanks, Ephraim M.; Hooten, Mevin B.
2013-01-01
Circuit theory has seen extensive recent use in the field of ecology, where it is often applied to study functional connectivity. The landscape is typically represented by a network of nodes and resistors, with the resistance between nodes a function of landscape characteristics. The effective distance between two locations on a landscape is represented by the resistance distance between the nodes in the network. Circuit theory has been applied to many other scientific fields for exploratory analyses, but parametric models for circuits are not common in the scientific literature. To model circuits explicitly, we demonstrate a link between Gaussian Markov random fields and contemporary circuit theory using a covariance structure that induces the necessary resistance distance. This provides a parametric model for second-order observations from such a system. In the landscape ecology setting, the proposed model provides a simple framework where inference can be obtained for effects that landscape features have on functional connectivity. We illustrate the approach through a landscape genetics study linking gene flow in alpine chamois (Rupicapra rupicapra) to the underlying landscape.
Kubelka-Munk theory for efficient spectral printer modeling
NASA Astrophysics Data System (ADS)
Abebe, Mekides; Gerhardt, Jérémie; Hardeberg, Jon Y.
2011-01-01
In the context of spectral color image reproduction by multi-channel inkjet printing a key challenge is to accurately model the colorimetric and spectral behavior of the printer. A common approach for this modeling is to assume that the resulting spectral reflectance of a certain ink combination can be modeled as a convex combination of the so-called Neugebauer Primaries (NPs); this is known as the Neugebauer Model. Several extensions of this model exist, such as the Yule-Nielsen Modified Spectral Neugebauer (YNSN) model. However, as the number of primaries increases, the number of NPs increases exponentially; this poses a practical problem for multi-channel spectral reproduction. In this work, the well known Kubelka-Munk theory is used to estimate the spectral reflectances of the Neugebauer Primaries instead of printing and measuring them, and subsequently we use these estimated NPs as the basis of our printer modeling. We have evaluated this approach experimentally on several different paper types and on the HP Deskjet 1220C CMYK inkjet printer and the Xerox Phaser 7760 CMYK laser printer, using both the conventional spectral Neugebauer model and the YNSN model. We have also investigated a hybrid model with mixed NPs, half measured and half estimated. Using this approach we find that we achieve not only cheap and less time consuming model establishment, but also, somewhat unexpectedly, improved model precision over the models using the real measurements of the NPs.
Spatially random models, estimation theory, and robot arm dynamics
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1987-01-01
Spatially random models provide an alternative to the more traditional deterministic models used to describe robot arm dynamics. These alternative models can be used to establish a relationship between the methodologies of estimation theory and robot dynamics. A new class of algorithms for many of the fundamental robotics problems of inverse and forward dynamics, inverse kinematics, etc. can be developed that use computations typical in estimation theory. The algorithms make extensive use of the difference equations of Kalman filtering and Bryson-Frazier smoothing to conduct spatial recursions. The spatially random models are very easy to describe and are based on the assumption that all of the inertial (D'Alembert) forces in the system are represented by a spatially distributed white-noise model. The models can also be used to generate numerically the composite multibody system inertia matrix. This is done without resorting to the more common methods of deterministic modeling involving Lagrangian dynamics, Newton-Euler equations, etc. These methods make substantial use of human knowledge in derivation and minipulation of equations of motion for complex mechanical systems.
Bui, Linh; Mullan, Barbara; McCaffery, Kirsten
2013-01-01
An appropriate theoretical framework may be useful for guiding the development of physical activity interventions. This review investigates the effectiveness of the protection motivation theory (PMT), a model based on the cognitive mediation processes of behavioral change, in the prediction and promotion of physical activity participation. A literature search was conducted using the databases MEDLINE, PsycINFO, PubMed, and Web of Science, and a manual search was conducted on relevant reference lists. Studies were included if they tested or applied the PMT, measured physical activity, and sampled from healthy populations. A total of 20 studies were reviewed, grouped into four design categories: prediction, stage discrimination, experimental manipulation, and intervention. The results indicated that the PMT's coping appraisal construct of self-efficacy generally appears to be the most effective in predicting and promoting physical activity participation. In conclusion, the PMT shows some promise, however, there are still substantial gaps in the evidence.
Modeling Electrically Active Viscoelastic Membranes
Roy, Sitikantha; Brownell, William E.; Spector, Alexander A.
2012-01-01
The membrane protein prestin is native to the cochlear outer hair cell that is crucial to the ear's amplification and frequency selectivity throughout the whole acoustic frequency range. The outer hair cell exhibits interrelated dimensional changes, force generation, and electric charge transfer. Cells transfected with prestin acquire unique active properties similar to those in the native cell that have also been useful in understanding the process. Here we propose a model describing the major electromechanical features of such active membranes. The model derived from thermodynamic principles is in the form of integral relationships between the history of voltage and membrane resultants as independent variables and the charge density and strains as dependent variables. The proposed model is applied to the analysis of an active force produced by the outer hair cell in response to a harmonic electric field. Our analysis reveals the mechanism of the outer hair cell active (isometric) force having an almost constant amplitude and phase up to 80 kHz. We found that the frequency-invariance of the force is a result of interplay between the electrical filtering associated with prestin and power law viscoelasticity of the surrounding membrane. Paradoxically, the membrane viscoelasticity boosts the force balancing the electrical filtering effect. We also consider various modes of electromechanical coupling in membrane with prestin associated with mechanical perturbations in the cell. We consider pressure or strains applied step-wise or at a constant rate and compute the time course of the resulting electric charge. The results obtained here are important for the analysis of electromechanical properties of membranes, cells, and biological materials as well as for a better understanding of the mechanism of hearing and the role of the protein prestin in this mechanism. PMID:22701528
An immunological model for detecting bot activities
NASA Astrophysics Data System (ADS)
Karim, Md E.; Phoha, Vir V.; Sultan, Md A.
2009-05-01
We develop a hierarchical immunological model to detect bot activities in a computer network. In the proposed model antibody (detector)-antigen (foreign object) reactions are defined using negative selection based approach and negative systems-properties are defined by various temporal as well as non-temporal systems features. Theory of sequential hypothesis testing has been used in the literature for identifying spatial-temporal correlations among malicious remote hosts and among the bots within a botnet. We use it for combining multiple immunocomputing based decisions too. Negative selection based approach defines a self and helps identifying non-selves. We define non-selves with respect to various systems characteristics and then use different combinations of non-selves to design bot detectors. Each detector operates at the client sites of the network under surveillance. A match with any of the detectors suggests presence of a bot. Preliminary results suggest that the proposed model based solutions can improve the identification of bot activities.
The Systemic-Structural Theory of Activity: Applications to the Study of Human Work
ERIC Educational Resources Information Center
Bedny, Gregory Z.; Harris, Steven Robert
2005-01-01
This article offers an introduction to the central concepts and principles of the Systemic-Structural Theory of Activity (SSTA), an activity-theoretical approach specifically tailored to the analysis and design of human work. In activity theory, cognition is understood both as a process and as a structured system of actions. Building on the…
Ranking streamflow model performance based on Information theory metrics
NASA Astrophysics Data System (ADS)
Martinez, Gonzalo; Pachepsky, Yakov; Pan, Feng; Wagener, Thorsten; Nicholson, Thomas
2016-04-01
The accuracy-based model performance metrics not necessarily reflect the qualitative correspondence between simulated and measured streamflow time series. The objective of this work was to use the information theory-based metrics to see whether they can be used as complementary tool for hydrologic model evaluation and selection. We simulated 10-year streamflow time series in five watersheds located in Texas, North Carolina, Mississippi, and West Virginia. Eight model of different complexity were applied. The information-theory based metrics were obtained after representing the time series as strings of symbols where different symbols corresponded to different quantiles of the probability distribution of streamflow. The symbol alphabet was used. Three metrics were computed for those strings - mean information gain that measures the randomness of the signal, effective measure complexity that characterizes predictability and fluctuation complexity that characterizes the presence of a pattern in the signal. The observed streamflow time series has smaller information content and larger complexity metrics than the precipitation time series. Watersheds served as information filters and and streamflow time series were less random and more complex than the ones of precipitation. This is reflected the fact that the watershed acts as the information filter in the hydrologic conversion process from precipitation to streamflow. The Nash Sutcliffe efficiency metric increased as the complexity of models increased, but in many cases several model had this efficiency values not statistically significant from each other. In such cases, ranking models by the closeness of the information-theory based parameters in simulated and measured streamflow time series can provide an additional criterion for the evaluation of hydrologic model performance.
Theory-Based Bayesian Models of Inductive Inference
2010-06-30
Oxford University Press . 28. Griffiths, T. L. and Tenenbaum, J.B. (2007). Two proposals for causal grammar. In A. Gopnik and L. Schulz (eds.). ( ausal Learning. Oxford University Press . 29. Tenenbaum. J. B.. Kemp, C, Shafto. P. (2007). Theory-based Bayesian models for inductive reasoning. In A. Feeney and E. Heit (eds.). Induction. Cambridge University Press. 30. Goodman, N. D., Tenenbaum, J. B., Griffiths. T. L.. & Feldman, J. (2008). Compositionality in rational analysis: Grammar-based induction for concept
Theories of Expertise as Models for Understanding Situation Awareness
1992-04-17
3 DTIC-TID AD-P006 943 CD CO Theories ot Expertise as Models for Understanding Situation Awareness Peter M. Crane, PhD Aircrew Training...reference in directly accessible long term memory. 3 . As memory skill increases, the time required to encode and retrieve task relevant information...recall events will be correlated with increasing ability to maintain situation awareness and ultimately to increasing combat success. 3 . The
Catalytic activity of nuclease P1: Experiment and theory
Miller, J.H.; Falcone, J.M.; Shibata, M.; Box, H.C.
1994-10-01
Nuclease P1 from Penicillium citrinum is a zinc dependent glyco-enzyme that recognizes single stranded DNA and RNA as substrates and hydrolyzes the phosphate ester bond. Nuclease Pl seems to recognize particular conformations of the phosphodiester backbone and shows significant variation in the rate of hydrolytic activity depending upon which nucleosides are coupled by the phosphodiester bond. The efficiency of nuclease Pl in hydrolyzing the phosphodiester bonds of a substrate can be altered by modifications to one of the substrate bases induced by ionizing radiation or oxidative stress. Measurements have been made of the effect of several radiation induced lesions on the catalytic rate of nuclease Pl. A model of the structure of the enzyme has been constructed in order to better understand the binding and activity of this enzyme on various ssDNA substrates.
Percolation Theory and Models of Unsaturated Porous Media
NASA Astrophysics Data System (ADS)
Golden, J. M.
1980-02-01
Concepts from percolation theory (Broadbent and Hammersley, 1957) are applied to a model of unsaturated flow through porous media. This approach in principle allows one to build into the model aspects of the topological structure of pore space. At a very general level the input of results from percolation theory gives a relationship between minimum and maximum saturation values for a medium which should be experimentally checkable, though probably not without sophisticated techniques. Also, it gives some qualitative insight into known properties of unsaturated flow. Furthermore, there emerges a way of looking at the phenomenon of hysteresis that is quite different from the standard approach. This aspect is explored in some detail, and two possible new models are presented. A subsidiary result obtained from the detailed model used is that in a simple pore model the inclusion of a pore length parameter, statistically correlated with pore radius, is equivalent, at least in a restricted sense, to incorporating into the model the concept of tortuosity.
Modelling mechanical characteristics of microbial biofilms by network theory
Ehret, Alexander E.; Böl, Markus
2013-01-01
In this contribution, we present a constitutive model to describe the mechanical behaviour of microbial biofilms based on classical approaches in the continuum theory of polymer networks. Although the model is particularly developed for the well-studied biofilms formed by mucoid Pseudomonas aeruginosa strains, it could easily be adapted to other biofilms. The basic assumption behind the model is that the network of extracellular polymeric substances can be described as a superposition of worm-like chain networks, each connected by transient junctions of a certain lifetime. Several models that were applied to biofilms previously are included in the presented approach as special cases, and for small shear strains, the governing equations are those of four parallel Maxwell elements. Rheological data given in the literature are very adequately captured by the proposed model, and the simulated response for a series of compression tests at large strains is in good qualitative agreement with reported experimental behaviour. PMID:23034354
Renormalizable Models in Rank Tensorial Group Field Theory
NASA Astrophysics Data System (ADS)
Geloun, Joseph Ben
2014-11-01
Classes of renormalizable models in the Tensorial Group Field Theory framework are investigated. The rank d tensor fields are defined over d copies of a group manifold or with no symmetry and no gauge invariance assumed on the fields. In particular, we explore the space of renormalizable models endowed with a kinetic term corresponding to a sum of momenta of the form . This study is tailored for models equipped with Laplacian dynamics on G D (case a = 1) but also for more exotic nonlocal models in quantum topology (case 0 < a < 1). A generic model can be written , where k is the maximal valence of its interactions. Using a multi-scale analysis for the generic situation, we identify several classes of renormalizable actions, including matrix model actions. In this specific instance, we find a tower of renormalizable matrix models parametrized by . In a second part of this work, we study the UV behavior of the models up to maximal valence of interaction k = 6. All rank tensor models proved renormalizable are asymptotically free in the UV. All matrix models with k = 4 have a vanishing β-function at one-loop and, very likely, reproduce the same feature of the Grosse-Wulkenhaar model (Commun Math Phys 256:305, 2005).
Leukfeldt, E Rutger
2014-08-01
This article investigates phishing victims, especially the increased or decreased risk of victimization, using data from a cybercrime victim survey in the Netherlands (n=10,316). Routine activity theory provides the theoretical perspective. According to routine activity theory, several factors influence the risk of victimization. A multivariate analysis was conducted to assess which factors actually lead to increased risk of victimization. The model included background and financial data of victims, their Internet activities, and the degree to which they were "digitally accessible" to an offender. The analysis showed that personal background and financial characteristics play no role in phishing victimization. Among eight Internet activities, only "targeted browsing" led to increased risk. As for accessibility, using popular operating systems and web browsers does not lead to greater risk, while having up-to-date antivirus software as a technically capable guardian has no effect. The analysis showed no one, clearly defined group has an increased chance of becoming a victim. Target hardening may help, but opportunities for prevention campaigns aimed at a specific target group or dangerous online activities are limited. Therefore, situational crime prevention will have to come from a different angle. Banks could play the role of capable guardian.
The Bourgeoisie Dream Factory: Teaching Marx's Theory of Alienation through an Experiential Activity
ERIC Educational Resources Information Center
Windsor, Elroi J.; Carroll, Alana M.
2015-01-01
Effectively teaching sociological theories to undergraduate students is challenging. Students often enroll in theory courses due to major requirements, not personal interest. Consequently, many students approach the study of theory with anxiety. This study examined the effectiveness of an experiential learning activity designed to teach Karl…
ERIC Educational Resources Information Center
Sawchuk, Peter H.; Stetsenko, Anna
2008-01-01
Following a discussion of activity theory as an approach to human development originally rooted in transformational change, we review the historical context and diverse conceptualizations of social conduct from the field of sociology. The discussion of social conduct is broken into theories of social action, theories of enactment, and contemporary…
ERIC Educational Resources Information Center
Lazarou, D.
2011-01-01
The aim of this paper is to describe a methodology for using Cultural-Historical Activity Theory (CHAT) at the initial stages of the design process of an educational game, by exploring how the theory can be used as a framework for producing not only usable but also useful computer tools. The research also aimed to investigate how the theory could…
Metacommunity speciation models and their implications for diversification theory.
Hubert, Nicolas; Calcagno, Vincent; Etienne, Rampal S; Mouquet, Nicolas
2015-08-01
The emergence of new frameworks combining evolutionary and ecological dynamics in communities opens new perspectives on the study of speciation. By acknowledging the relative contribution of local and regional dynamics in shaping the complexity of ecological communities, metacommunity theory sheds a new light on the mechanisms underlying the emergence of species. Three integrative frameworks have been proposed, involving neutral dynamics, niche theory, and life history trade-offs respectively. Here, we review these frameworks of metacommunity theory to emphasise that: (1) studies on speciation and community ecology have converged towards similar general principles by acknowledging the central role of dispersal in metacommunities dynamics, (2) considering the conditions of emergence and maintenance of new species in communities has given rise to new models of speciation embedded in the metacommunity theory, (3) studies of diversification have shifted from relating phylogenetic patterns to landscapes spatial and ecological characteristics towards integrative approaches that explicitly consider speciation in a mechanistic ecological framework. We highlight several challenges, in particular the need for a better integration of the eco-evolutionary consequences of dispersal and the need to increase our understanding on the relative rates of evolutionary and ecological changes in communities.
ERIC Educational Resources Information Center
Dubois, Daniele
1975-01-01
Delineates and elaborates upon the underlying psychological postulates in linguistic and information-processing models, and shows the interdependence of psycholinguistics and linguistic analysis. (Text is in French.) (DB)
Renormalized parameters and perturbation theory in dynamical mean-field theory for the Hubbard model
NASA Astrophysics Data System (ADS)
Hewson, A. C.
2016-11-01
We calculate the renormalized parameters for the quasiparticles and their interactions for the Hubbard model in the paramagnetic phase as deduced from the low-energy Fermi-liquid fixed point using the results of a numerical renormalization-group calculation (NRG) and dynamical mean-field theory (DMFT). Even in the low-density limit there is significant renormalization of the local quasiparticle interaction U ˜, in agreement with estimates based on the two-particle scattering theory of J. Kanamori [Prog. Theor. Phys. 30, 275 (1963), 10.1143/PTP.30.275]. On the approach to the Mott transition we find a finite ratio for U ˜/D ˜ , where 2 D ˜ is the renormalized bandwidth, which is independent of whether the transition is approached by increasing the on-site interaction U or on increasing the density to half filling. The leading ω2 term in the self-energy and the local dynamical spin and charge susceptibilities are calculated within the renormalized perturbation theory (RPT) and compared with the results calculated directly from the NRG-DMFT. We also suggest, more generally from the DMFT, how an approximate expression for the q ,ω spin susceptibility χ (q ,ω ) can be derived from repeated quasiparticle scattering with a local renormalized scattering vertex.
Refined pipe theory for mechanistic modeling of wood development.
Deckmyn, Gaby; Evans, Sam P; Randle, Tim J
2006-06-01
We present a mechanistic model of wood tissue development in response to changes in competition, management and climate. The model is based on a refinement of the pipe theory, where the constant ratio between sapwood and leaf area (pipe theory) is replaced by a ratio between pipe conductivity and leaf area. Simulated pipe conductivity changes with age, stand density and climate in response to changes in allocation or pipe radius, or both. The central equation of the model, which calculates the ratio of carbon (C) allocated to leaves and pipes, can be parameterized to describe the contrasting stem conductivity behavior of different tree species: from constant stem conductivity (functional homeostasis hypothesis) to height-related reduction in stem conductivity with age (hydraulic limitation hypothesis). The model simulates the daily growth of pipes (vessels or tracheids), fibers and parenchyma as well as vessel size and simulates the wood density profile and the earlywood to latewood ratio from these data. Initial runs indicate the model yields realistic seasonal changes in pipe radius (decreasing pipe radius from spring to autumn) and wood density, as well as realistic differences associated with the competitive status of trees (denser wood in suppressed trees).
Activity Theory: Quest for the Unattainable and Hope for the Future (Reply to Commentaries).
Mironenko, Irina A
2016-09-01
In reference to commentaries on the paper (Mammen and Mironenko, Integrative Psychological and Behavioral Science 49(4):681-713, 2015) some clarifications are introduced concerning the general landmarks and objectives in the development of psychological science, in respect to which activity theories (AT) can be assessed and evaluated. Contemporary psychological science is developing along the path of integration, as part of the emerging global world. AT has some special value and importance in this respect. It can contribute to the development of the emerging multi-paradigmatic system of the global psychological science because it combines two aspirations, which are rarely combined in psychological theories: a) consistent focus on scientific method, objectivity and conclusiveness; b) the pursuit of a holistic and complete, not simplified and not one-sided comprehension of the subject. The former provides good bases for dialogue with "objective" psychological approaches, close to natural sciences. The latter is suggesting dialogue with teleological humanitarian psychologies. Therefore, AT can engage in networking with a wide range of theories, facilitating the integration of psychological knowledge. It can contribute to resolve the much discussed collision of reductionist "scientific" theoretical models and loose "comprehensive" descriptions in contemporary psychological science. Developing dialogue and cooperation with other schools is of special importance for the RAT, which should return to the international science, where it was rooted, overcoming the language and conceptual barriers. Some new considerations are suggested regarding the theory of the two types of categories of Jens Mammen.
Reasoning with Conditionals: A Test of Formal Models of Four Theories
ERIC Educational Resources Information Center
Oberauer, Klaus
2006-01-01
The four dominant theories of reasoning from conditionals are translated into formal models: The theory of mental models (Johnson-Laird, P. N., & Byrne, R. M. J. (2002). Conditionals: a theory of meaning, pragmatics, and inference. "Psychological Review," 109, 646-678), the suppositional theory (Evans, J. S. B. T., & Over, D. E. (2004). "If."…
Toward a General Research Process for Using Dubin's Theory Building Model
ERIC Educational Resources Information Center
Holton, Elwood F.; Lowe, Janis S.
2007-01-01
Dubin developed a widely used methodology for theory building, which describes the components of the theory building process. Unfortunately, he does not define a research process for implementing his theory building model. This article proposes a seven-step general research process for implementing Dubin's theory building model. An example of a…
Renfree, Andrew; Martin, Louise; Micklewright, Dominic; St Clair Gibson, Alan
2014-02-01
Successful participation in competitive endurance activities requires continual regulation of muscular work rate in order to maximise physiological performance capacities, meaning that individuals must make numerous decisions with regards to the muscular work rate selected at any point in time. Decisions relating to the setting of appropriate goals and the overall strategic approach to be utilised are made prior to the commencement of an event, whereas tactical decisions are made during the event itself. This review examines current theories of decision-making in an attempt to explain the manner in which regulation of muscular work is achieved during athletic activity. We describe rational and heuristic theories, and relate these to current models of regulatory processes during self-paced exercise in an attempt to explain observations made in both laboratory and competitive environments. Additionally, we use rational and heuristic theories in an attempt to explain the influence of the presence of direct competitors on the quality of the decisions made during these activities. We hypothesise that although both rational and heuristic models can plausibly explain many observed behaviours in competitive endurance activities, the complexity of the environment in which such activities occur would imply that effective rational decision-making is unlikely. However, at present, many proposed models of the regulatory process share similarities with rational models. We suggest enhanced understanding of the decision-making process during self-paced activities is crucial in order to improve the ability to understand regulation of performance and performance outcomes during athletic activity.
Theory of electronic relaxation in solution in the absence of an activation barrier
NASA Astrophysics Data System (ADS)
Bagchi, Biman; Fleming, Graham R.; Oxtoby, David W.
1983-06-01
We present a theory which describes the effects of viscosity on those electronic relaxation processes in solution in which the intramolecular potential surface does not present a barrier to the motion leading to the decay of the initially formed excited state. We model the reactive motion as the motion of a solute particle on the excited state potential surface with a position dependent sink which gives rise to the decay of the excited state population. Three different types of sinks are considered: (A) a pinhole sink at the minimum of the potential surface; this models the situation when the molecule decays to ground state as soon as it reaches the potential minimum; (B) a Gaussian sink with probability of decay maximum at the potential minimum; (C) a Lorentzian sink with maximum decay at the potential minimum. For case (A) an explicit analytic solution is obtained for the decay rate, but for cases (B) and (C) we obtained the decay rate numerically. Model (A) predicts nonexponential decay at all viscosities except at long times when the decay is single exponential. For cases (B) and (C) the decay is single exponential at low viscosities but becomes multiexponential at high viscosities. We show that the experimentally observed fractional viscosity dependence of fluorescence quantum yield arises naturally in this theory due to the position dependence of the sink as well as due to the competition between radiative and nonradiative relaxation. Our model also predicts a crossover from an apparent negative (constant viscosity) activation energy at low viscosities to a positive activation energy at high viscosity. The physical significance of these results is discussed in light of the available experimental results on TPM dye relaxation. Some possible generalizations of our theory to more realistic cases are indicated.
A catastrophe-theory model for simulating behavioral accidents
Souder, W.E.
1988-01-01
Behavioral accidents are a particular type of accident. They are caused by inappropriate individual behaviors and faulty reactions. Catastrophe theory is a means for mathematically modeling the dynamic processes that underlie behavioral accidents. Based on a comprehensive data base of mining accidents, a computerized catastrophe model has been developed by the Bureau of Mines. This model systematically links individual psychological, group behavioral, and mine environmental variables with other accident causing factors. It answers several longstanding questions about why some normally safe behaving persons may spontaneously engage in unsafe acts that have high risks of serious injury. Field tests with the model indicate that it has three imnportant uses: it can be used as a effective training aid for increasing employee safety consciousness; it can be used as a management laboratory for testing decision alternatives and policies; and it can be used to help design the most effective work teams.
General topology meets model theory, on p and t.
Malliaris, Maryanthe; Shelah, Saharon
2013-08-13
Cantor proved in 1874 [Cantor G (1874) J Reine Angew Math 77:258-262] that the continuum is uncountable, and Hilbert's first problem asks whether it is the smallest uncountable cardinal. A program arose to study cardinal invariants of the continuum, which measure the size of the continuum in various ways. By Gödel [Gödel K (1939) Proc Natl Acad Sci USA 25(4):220-224] and Cohen [Cohen P (1963) Proc Natl Acad Sci USA 50(6):1143-1148], Hilbert's first problem is independent of ZFC (Zermelo-Fraenkel set theory with the axiom of choice). Much work both before and since has been done on inequalities between these cardinal invariants, but some basic questions have remained open despite Cohen's introduction of forcing. The oldest and perhaps most famous of these is whether " p = t," which was proved in a special case by Rothberger [Rothberger F (1948) Fund Math 35:29-46], building on Hausdorff [Hausdorff (1936) Fund Math 26:241-255]. In this paper we explain how our work on the structure of Keisler's order, a large-scale classification problem in model theory, led to the solution of this problem in ZFC as well as of an a priori unrelated open question in model theory.
Symmetry-guided large-scale shell-model theory
NASA Astrophysics Data System (ADS)
Launey, Kristina D.; Dytrych, Tomas; Draayer, Jerry P.
2016-07-01
In this review, we present a symmetry-guided strategy that utilizes exact as well as partial symmetries for enabling a deeper understanding of and advancing ab initio studies for determining the microscopic structure of atomic nuclei. These symmetries expose physically relevant degrees of freedom that, for large-scale calculations with QCD-inspired interactions, allow the model space size to be reduced through a very structured selection of the basis states to physically relevant subspaces. This can guide explorations of simple patterns in nuclei and how they emerge from first principles, as well as extensions of the theory beyond current limitations toward heavier nuclei and larger model spaces. This is illustrated for the ab initio symmetry-adapted no-core shell model (SA-NCSM) and two significant underlying symmetries, the symplectic Sp(3 , R) group and its deformation-related SU(3) subgroup. We review the broad scope of nuclei, where these symmetries have been found to play a key role-from the light p-shell systems, such as 6Li, 8B, 8Be, 12C, and 16O, and sd-shell nuclei exemplified by 20Ne, based on first-principle explorations; through the Hoyle state in 12C and enhanced collectivity in intermediate-mass nuclei, within a no-core shell-model perspective; up to strongly deformed species of the rare-earth and actinide regions, as investigated in earlier studies. A complementary picture, driven by symmetries dual to Sp(3 , R) , is also discussed. We briefly review symmetry-guided techniques that prove useful in various nuclear-theory models, such as Elliott model, ab initio SA-NCSM, symplectic model, pseudo- SU(3) and pseudo-symplectic models, ab initio hyperspherical harmonics method, ab initio lattice effective field theory, exact pairing-plus-shell model approaches, and cluster models, including the resonating-group method. Important implications of these approaches that have deepened our understanding of emergent phenomena in nuclei, such as enhanced
NASA Technical Reports Server (NTRS)
Hesse, Michael; Birn, J.; Denton, Richard E.; Drake, J.; Gombosi, T.; Hoshino, M.; Matthaeus, B.; Sibeck, D.
2005-01-01
When targeting physical understanding of space plasmas, our focus is gradually shifting away from discovery-type investigations to missions and studies that address our basic understanding of processes we know to be important. For these studies, theory and models provide physical predictions that need to be verified or falsified by empirical evidence. Within this paradigm, a tight integration between theory, modeling, and space flight mission design and execution is essential. NASA's Magnetospheric MultiScale (MMS) mission is a pathfinder in this new era of space research. The prime objective of MMS is to understand magnetic reconnection, arguably the most fundamental of plasma processes. In particular, MMS targets the microphysical processes, which permit magnetic reconnection to operate in the collisionless plasmas that permeate space and astrophysical systems. More specifically, MMS will provide closure to such elemental questions as how particles become demagnetized in the reconnection diffusion region, which effects determine the reconnection rate, and how reconnection is coupled to environmental conditions such as magnetic shear angles. Solutions to these problems have remained elusive in past and present spacecraft missions primarily due to instrumental limitations - yet they are fundamental to the large-scale dynamics of collisionless plasmas. Owing to the lack of measurements, most of our present knowledge of these processes is based on results from modern theory and modeling studies of the reconnection process. Proper design and execution of a mission targeting magnetic reconnection should include this knowledge and have to ensure that all relevant scales and effects can be resolved by mission measurements. The SMART mission has responded to this need through a tight integration between instrument and theory and modeling teams. Input from theory and modeling is fed into all aspects of science mission design, and theory and modeling activities are tailored
NASA Astrophysics Data System (ADS)
Hesse, M.; Birn, J.; Denton, R.; Drake, J.; Gombosi, T.; Hoshino, M.; Matthaeus, B.; Sibeck, D.
2005-12-01
When targeting physical understanding of space plasmas, our focus is gradually shifting away from discovery-type investigations to missions and studies that address our basic understanding of processes we know to be important. For these studies, theory and models provide physical predictions that need to be verified or falsified by empirical evidence. Within this paradigm, a tight integration between theory, modeling, and space flight mission design and execution is essential. NASA's Magnetospheric MultiScale (MMS) mission is a pathfinder in this new era of space research. The prime objective of MMS is to understand magnetic reconnection, arguably the most fundamental of plasma processes. In particular, MMS targets the microphysical processes, which permit magnetic reconnection to operate in the collisionless plasmas that permeate space and astrophysical systems. More specifically, MMS will provide closure to such elemental questions as how particles become demagnetized in the reconnection diffusion region, which effects determine the reconnection rate, and how reconnection is coupled to environmental conditions such as magnetic shear angles. Solutions to these problems have remained elusive in past and present spacecraft missions primarily due to instrumental limitations - yet they are fundamental to the large-scale dynamics of collisionless plasmas. Owing to the lack of measurements, most of our present knowledge of these processes is based on results from modern theory and modeling studies of the reconnection process. Proper design and execution of a mission targeting magnetic reconnection should include this knowledge and have to ensure that all relevant scales and effects can be resolved by mission measurements. The SMART mission has responded to this need through a tight integration between instrument and theory and modeling teams. Input from theory and modeling is fed into all aspects of science mission design, and theory and modeling activities are tailored
Modeling irradiation creep of graphite using rate theory
Sarkar, Apu; Eapen, Jacob; Raj, Anant; Murty, K. L.; Burchell, T. D.
2016-02-20
In this work we examined irradiation induced creep of graphite in the framework of transition state rate theory. Experimental data for two grades of nuclear graphite (H-337 and AGOT) were analyzed to determine the stress exponent (n) and activation energy (Q) for plastic flow under irradiation. Here we show that the mean activation energy lies between 0.14 and 0.32 eV with a mean stress-exponent of 1.0 ± 0.2. A stress exponent of unity and the unusually low activation energies strongly indicate a diffusive defect transport mechanism for neutron doses in the range of 3-4 x 10^{22} n/cm^{2}.
Modeling irradiation creep of graphite using rate theory
Sarkar, Apu; Eapen, Jacob; Raj, Anant; ...
2016-02-20
In this work we examined irradiation induced creep of graphite in the framework of transition state rate theory. Experimental data for two grades of nuclear graphite (H-337 and AGOT) were analyzed to determine the stress exponent (n) and activation energy (Q) for plastic flow under irradiation. Here we show that the mean activation energy lies between 0.14 and 0.32 eV with a mean stress-exponent of 1.0 ± 0.2. A stress exponent of unity and the unusually low activation energies strongly indicate a diffusive defect transport mechanism for neutron doses in the range of 3-4 x 1022 n/cm2.
A cellular automaton model for evacuation flow using game theory
NASA Astrophysics Data System (ADS)
Guan, Junbiao; Wang, Kaihua; Chen, Fangyue
2016-11-01
Game theory serves as a good tool to explore crowd dynamic conflicts during evacuation processes. The purpose of this study is to simulate the complicated interaction behavior among the conflicting pedestrians in an evacuation flow. Two types of pedestrians, namely, defectors and cooperators, are considered, and two important factors including fear index and cost coefficient are taken into account. By combining the snowdrift game theory with a cellular automaton (CA) model, it is shown that the increase of fear index and cost coefficient will lengthen the evacuation time, which is more apparent for large values of cost coefficient. Meanwhile, it is found that the defectors to cooperators ratio could always tend to consistent states despite different values of parameters, largely owing to self-organization effects.
Visceral obesity and psychosocial stress: a generalised control theory model
NASA Astrophysics Data System (ADS)
Wallace, Rodrick
2016-07-01
The linking of control theory and information theory via the Data Rate Theorem and its generalisations allows for construction of necessary conditions statistical models of body mass regulation in the context of interaction with a complex dynamic environment. By focusing on the stress-related induction of central obesity via failure of HPA axis regulation, we explore implications for strategies of prevention and treatment. It rapidly becomes evident that individual-centred biomedical reductionism is an inadequate paradigm. Without mitigation of HPA axis or related dysfunctions arising from social pathologies of power imbalance, economic insecurity, and so on, it is unlikely that permanent changes in visceral obesity for individuals can be maintained without constant therapeutic effort, an expensive - and likely unsustainable - public policy.
Applications of queueing theory to stochastic models of gene expression
NASA Astrophysics Data System (ADS)
Kulkarni, Rahul
2012-02-01
The intrinsic stochasticity of cellular processes implies that analysis of fluctuations (`noise') is often essential for quantitative modeling of gene expression. Recent single-cell experiments have carried out such analysis to characterize moments and entire probability distributions for quantities of interest, e.g. mRNA and protein levels across a population of cells. Correspondingly, there is a need to develop general analytical tools for modeling and interpretation of data obtained from such single-cell experiments. One such approach involves the mapping between models of stochastic gene expression and systems analyzed in queueing theory. The talk will provide an overview of this approach and discuss how theorems from queueing theory (e.g. Little's Law) can be used to derive exact results for general stochastic models of gene expression. In the limit that gene expression occurs in bursts, analytical results can be obtained which provide insight into the effects of different regulatory mechanisms on the noise in protein steady-state distributions. In particular, the approach can be used to analyze the effect of post-transcriptional regulation by non-coding RNAs leading to new insights and experimentally testable predictions.
Application of non-linear control theory to a model of deep brain stimulation.
Davidson, Clare M; Lowery, Madeleine M; de Paor, Annraoi M
2011-01-01
Deep brain stimulation (DBS) effectively alleviates the pathological neural activity associated with Parkinson's disease. Its exact mode of action is not entirely understood. This paper explores theoretically the optimum stimulation parameters necessary to quench oscillations in a neural-mass type model with second order dynamics. This model applies well established nonlinear control system theory to DBS. The analysis here determines the minimum criteria in terms of amplitude and pulse duration of stimulation, necessary to quench the unwanted oscillations in a closed loop system, and outlines the relationship between this model and the actual physiological system.
ERIC Educational Resources Information Center
Maurino, Paula San Millan
2007-01-01
This paper presents a study which involved researching student interaction and participation under the lens of Activity Theory and Social Computing. Activity Theory is a philosophical framework that integrates the objective, the sociocultural, and the ecological, while Social Computing describes any type of computing application in which software…
Divisions of Labour: Activity Theory, Multi-Professional Working and Intervention Research
ERIC Educational Resources Information Center
Warmington, Paul
2011-01-01
This article draws upon, but also critiques, activity theory by combining analysis of how an activity theory derived research intervention attempted to address both everyday work practices and organisational power relationships among children's services professionals. It offers two case studies of developmental work research (DWR) interventions in…
NASA Astrophysics Data System (ADS)
van Aalsvoort, Joke
In a previous article, the problem of chemistry's lack of relevance in secondary chemical education was analysed using logical positivism as a tool. This article starts with the hypothesis that the problem can be addressed by means of activity theory, one of the important theories within the sociocultural school. The reason for this expectation is that, while logical positivism creates a divide between science and society, activity theory offers a model of society in which science and society are related. With the use of this model, a new course for grade nine has been constructed. This results in a confirmation of the hypothesis, at least at a theoretical level. A comparison with the Salters' approach is made in order to demonstrate the relative merits of a mediated way of dealing with the problem of the lack of relevance of chemistry in chemical education.
Theory, modelling and simulation in origins of life studies.
Coveney, Peter V; Swadling, Jacob B; Wattis, Jonathan A D; Greenwell, H Christopher
2012-08-21
Origins of life studies represent an exciting and highly multidisciplinary research field. In this review we focus on the contributions made by theory, modelling and simulation to addressing fundamental issues in the domain and the advances these approaches have helped to make in the field. Theoretical approaches will continue to make a major impact at the "systems chemistry" level based on the analysis of the remarkable properties of nonlinear catalytic chemical reaction networks, which arise due to the auto-catalytic and cross-catalytic nature of so many of the putative processes associated with self-replication and self-reproduction. In this way, we describe inter alia nonlinear kinetic models of RNA replication within a primordial Darwinian soup, the origins of homochirality and homochiral polymerization. We then discuss state-of-the-art computationally-based molecular modelling techniques that are currently being deployed to investigate various scenarios relevant to the origins of life.
Rigid rotor as a toy model for Hodge theory
NASA Astrophysics Data System (ADS)
Gupta, Saurabh; Malik, R. P.
2010-07-01
We apply the superfield approach to the toy model of a rigid rotor and show the existence of the nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations, under which, the kinetic term and the action remain invariant. Furthermore, we also derive the off-shell nilpotent and absolutely anticommuting (anti-) co-BRST symmetry transformations, under which, the gauge-fixing term and the Lagrangian remain invariant. The anticommutator of the above nilpotent symmetry transformations leads to the derivation of a bosonic symmetry transformation, under which, the ghost terms and the action remain invariant. Together, the above transformations (and their corresponding generators) respect an algebra that turns out to be a physical realization of the algebra obeyed by the de Rham cohomological operators of differential geometry. Thus, our present model is a toy model for the Hodge theory.
Mortality and morbidity peaks modeling: An extreme value theory approach.
Chiu, Y; Chebana, F; Abdous, B; Bélanger, D; Gosselin, P
2016-09-01
Hospitalizations and deaths belong to the most studied health variables in public health. Those variables are usually analyzed through mean events and trends, based on the whole dataset. However, this approach is not appropriate to comprehend health outcome peaks which are unusual events that strongly impact the health care network (e.g. overflow in hospital emergency rooms). Peaks can also be of interest in etiological research, for instance when analyzing relationships with extreme exposures (meteorological conditions, air pollution, social stress, etc.). Therefore, this paper aims at modeling health variables exclusively through the peaks, which is rarely done except over short periods. Establishing a rigorous and general methodology to identify peaks is another goal of this study. To this end, the extreme value theory appears adequate with statistical tools for selecting and modeling peaks. Selection and analysis for deaths and hospitalizations peaks using extreme value theory have not been applied in public health yet. Therefore, this study also has an exploratory goal. A declustering procedure is applied to the raw data in order to meet extreme value theory requirements. The application is done on hospitalization and death peaks for cardiovascular diseases, in the Montreal and Quebec metropolitan communities (Canada) for the period 1981-2011. The peak return levels are obtained from the modeling and can be useful in hospital management or planning future capacity needs for health care facilities, for example. This paper focuses on one class of diseases in two cities, but the methodology can be applied to any other health peaks series anywhere, as it is data driven.
Baars, Bernard J; Franklin, Stan
2007-11-01
While neural net models have been developed to a high degree of sophistication, they have some drawbacks at a more integrative, "architectural" level of analysis. We describe a "hybrid" cognitive architecture that is implementable in neuronal nets, and which has uniform brainlike features, including activation-passing and highly distributed "codelets," implementable as small-scale neural nets. Empirically, this cognitive architecture accounts qualitatively for the data described by Baars' Global Workspace Theory (GWT), and Franklin's LIDA architecture, including state-of-the-art models of conscious contents in action-planning, Baddeley-style Working Memory, and working models of episodic and semantic longterm memory. These terms are defined both conceptually and empirically for the current theoretical domain. The resulting architecture meets four desirable goals for a unified theory of cognition: practical workability, autonomous agency, a plausible role for conscious cognition, and translatability into plausible neural terms. It also generates testable predictions, both empirical and computational.
Multiagent model and mean field theory of complex auction dynamics
NASA Astrophysics Data System (ADS)
Chen, Qinghua; Huang, Zi-Gang; Wang, Yougui; Lai, Ying-Cheng
2015-09-01
Recent years have witnessed a growing interest in analyzing a variety of socio-economic phenomena using methods from statistical and nonlinear physics. We study a class of complex systems arising from economics, the lowest unique bid auction (LUBA) systems, which is a recently emerged class of online auction game systems. Through analyzing large, empirical data sets of LUBA, we identify a general feature of the bid price distribution: an inverted J-shaped function with exponential decay in the large bid price region. To account for the distribution, we propose a multi-agent model in which each agent bids stochastically in the field of winner’s attractiveness, and develop a theoretical framework to obtain analytic solutions of the model based on mean field analysis. The theory produces bid-price distributions that are in excellent agreement with those from the real data. Our model and theory capture the essential features of human behaviors in the competitive environment as exemplified by LUBA, and may provide significant quantitative insights into complex socio-economic phenomena.
Assembly models for Papovaviridae based on tiling theory
NASA Astrophysics Data System (ADS)
Keef, T.; Taormina, A.; Twarock, R.
2005-09-01
A vital constituent of a virus is its protein shell, called the viral capsid, that encapsulates and hence provides protection for the viral genome. Assembly models are developed for viral capsids built from protein building blocks that can assume different local bonding structures in the capsid. This situation occurs, for example, for viruses in the family of Papovaviridae, which are linked to cancer and are hence of particular interest for the health sector. More specifically, the viral capsids of the (pseudo-) T = 7 particles in this family consist of pentamers that exhibit two different types of bonding structures. While this scenario cannot be described mathematically in terms of Caspar-Klug theory (Caspar D L D and Klug A 1962 Cold Spring Harbor Symp. Quant. Biol. 27 1), it can be modelled via tiling theory (Twarock R 2004 J. Theor. Biol. 226 477). The latter is used to encode the local bonding environment of the building blocks in a combinatorial structure, called the assembly tree, which is a basic ingredient in the derivation of assembly models for Papovaviridae along the lines of the equilibrium approach of Zlotnick (Zlotnick A 1994 J. Mol. Biol. 241 59). A phase space formalism is introduced to characterize the changes in the assembly pathways and intermediates triggered by the variations in the association energies characterizing the bonds between the building blocks in the capsid. Furthermore, the assembly pathways and concentrations of the statistically dominant assembly intermediates are determined. The example of Simian virus 40 is discussed in detail.
Rigorously testing multialternative decision field theory against random utility models.
Berkowitsch, Nicolas A J; Scheibehenne, Benjamin; Rieskamp, Jörg
2014-06-01
Cognitive models of decision making aim to explain the process underlying observed choices. Here, we test a sequential sampling model of decision making, multialternative decision field theory (MDFT; Roe, Busemeyer, & Townsend, 2001), on empirical grounds and compare it against 2 established random utility models of choice: the probit and the logit model. Using a within-subject experimental design, participants in 2 studies repeatedly choose among sets of options (consumer products) described on several attributes. The results of Study 1 showed that all models predicted participants' choices equally well. In Study 2, in which the choice sets were explicitly designed to distinguish the models, MDFT had an advantage in predicting the observed choices. Study 2 further revealed the occurrence of multiple context effects within single participants, indicating an interdependent evaluation of choice options and correlations between different context effects. In sum, the results indicate that sequential sampling models can provide relevant insights into the cognitive process underlying preferential choices and thus can lead to better choice predictions.
The Gaussian streaming model and convolution Lagrangian effective field theory
NASA Astrophysics Data System (ADS)
Vlah, Zvonimir; Castorina, Emanuele; White, Martin
2016-12-01
We update the ingredients of the Gaussian streaming model (GSM) for the redshift-space clustering of biased tracers using the techniques of Lagrangian perturbation theory, effective field theory (EFT) and a generalized Lagrangian bias expansion. After relating the GSM to the cumulant expansion, we present new results for the real-space correlation function, mean pairwise velocity and pairwise velocity dispersion including counter terms from EFT and bias terms through third order in the linear density, its leading derivatives and its shear up to second order. We discuss the connection to the Gaussian peaks formalism. We compare the ingredients of the GSM to a suite of large N-body simulations, and show the performance of the theory on the low order multipoles of the redshift-space correlation function and power spectrum. We highlight the importance of a general biasing scheme, which we find to be as important as higher-order corrections due to non-linear evolution for the halos we consider on the scales of interest to us.
Collective field theory of a singular supersymmetric matrix model
de Mello Koch, R.; Rodrigues, J.P.
1995-05-15
The supersymmetric collective field theory with the potential {ital v}{prime}({ital x})={omega}{ital x}{minus}{eta}/{ital x} is studied. Consistency with supersymmetry enforces a two band solution. A supersymmetric classical configuration is found, and interpreted in terms of the density of zeroes of certain Laguerre polynomials. The spectrum of the model is then studied and is seen to correspond to a massless scalar and a Majorana fermion. The {ital x} space eigenfunctions are constructed and expressed in terms of Chebyshev polynomials. Higher order interactions are also discussed.
Theory and Modeling of High-Power Gyrotrons
Nusinovich, Gregory Semeon
2016-04-29
This report summarized results of the work performed at the Institute for Research in Electronics and Applied Physics of the University of Maryland (College Park, MD) in the framework of the DOE Grant “Theory and Modeling of High-Power Gyrotrons”. The report covers the work performed in 2011-2014. The research work was performed in three directions: - possibilities of stable gyrotron operation in very high-order modes offering the output power exceeding 1 MW level in long-pulse/continuous-wave regimes, - effect of small imperfections in gyrotron fabrication and alignment on the gyrotron efficiency and operation, - some issues in physics of beam-wave interaction in gyrotrons.
Stochastical modeling for Viral Disease: Statistical Mechanics and Network Theory
NASA Astrophysics Data System (ADS)
Zhou, Hao; Deem, Michael
2007-04-01
Theoretical methods of statistical mechanics are developed and applied to study the immunological response against viral disease, such as dengue. We use this theory to show how the immune response to four different dengue serotypes may be sculpted. It is the ability of avian influenza, to change and to mix, that has given rise to the fear of a new human flu pandemic. Here we propose to utilize a scale free network based stochastic model to investigate the mitigation strategies and analyze the risk.
ERIC Educational Resources Information Center
Dyehouse, Melissa A.
2009-01-01
This study compared the model-data fit of a parametric item response theory (PIRT) model to a nonparametric item response theory (NIRT) model to determine the best-fitting model for use with ordinal-level alternate assessment ratings. The PIRT Generalized Graded Unfolding Model (GGUM) was compared to the NIRT Mokken model. Chi-square statistics…
The Model-Based View of Scientific Theories and the Structuring of School Science Programmes
ERIC Educational Resources Information Center
Develaki, Maria
2007-01-01
Model theory in contemporary philosophy of science interprets scientific theories as sets of models, and contributes significantly to the understanding of the relation between theories, models, and the real world. The clarification of this relation is fundamental for the understanding of the nature of scientific methods and scientific knowledge…
Corvid re-caching without 'theory of mind': a model.
van der Vaart, Elske; Verbrugge, Rineke; Hemelrijk, Charlotte K
2012-01-01
Scrub jays are thought to use many tactics to protect their caches. For instance, they predominantly bury food far away from conspecifics, and if they must cache while being watched, they often re-cache their worms later, once they are in private. Two explanations have been offered for such observations, and they are intensely debated. First, the birds may reason about their competitors' mental states, with a 'theory of mind'; alternatively, they may apply behavioral rules learned in daily life. Although this second hypothesis is cognitively simpler, it does seem to require a different, ad-hoc behavioral rule for every caching and re-caching pattern exhibited by the birds. Our new theory avoids this drawback by explaining a large variety of patterns as side-effects of stress and the resulting memory errors. Inspired by experimental data, we assume that re-caching is not motivated by a deliberate effort to safeguard specific caches from theft, but by a general desire to cache more. This desire is brought on by stress, which is determined by the presence and dominance of onlookers, and by unsuccessful recovery attempts. We study this theory in two experiments similar to those done with real birds with a kind of 'virtual bird', whose behavior depends on a set of basic assumptions about corvid cognition, and a well-established model of human memory. Our results show that the 'virtual bird' acts as the real birds did; its re-caching reflects whether it has been watched, how dominant its onlooker was, and how close to that onlooker it has cached. This happens even though it cannot attribute mental states, and it has only a single behavioral rule assumed to be previously learned. Thus, our simulations indicate that corvid re-caching can be explained without sophisticated social cognition. Given our specific predictions, our theory can easily be tested empirically.
Applied PhD Research in a Work-Based Environment: An Activity Theory-Based Analysis
ERIC Educational Resources Information Center
Granata, S. N.; Dochy, F.
2016-01-01
Activity theory is used to compare PhD undertaken at university, that is, academic PhD, with PhD performed in collaboration with industry, that is, semi-industrial PhD. The research is divided into a literature review and a case study. Semi-industrial and academic PhD are modelled as activity systems, and differences are highlighted in terms of…
Modeling the Pineapple Express phenomenon via Multivariate Extreme Value Theory
NASA Astrophysics Data System (ADS)
Weller, G.; Cooley, D. S.
2011-12-01
The pineapple express (PE) phenomenon is responsible for producing extreme winter precipitation events in the coastal and mountainous regions of the western United States. Because the PE phenomenon is also associated with warm temperatures, the heavy precipitation and associated snowmelt can cause destructive flooding. In order to study impacts, it is important that regional climate models from NARCCAP are able to reproduce extreme precipitation events produced by PE. We define a daily precipitation quantity which captures the spatial extent and intensity of precipitation events produced by the PE phenomenon. We then use statistical extreme value theory to model the tail dependence of this quantity as seen in an observational data set and each of the six NARCCAP regional models driven by NCEP reanalysis. We find that most NCEP-driven NARCCAP models do exhibit tail dependence between daily model output and observations. Furthermore, we find that not all extreme precipitation events are pineapple express events, as identified by Dettinger et al. (2011). The synoptic-scale atmospheric processes that drive extreme precipitation events produced by PE have only recently begun to be examined. Much of the current work has focused on pattern recognition, rather than quantitative analysis. We use daily mean sea-level pressure (MSLP) fields from NCEP to develop a "pineapple express index" for extreme precipitation, which exhibits tail dependence with our observed precipitation quantity for pineapple express events. We build a statistical model that connects daily precipitation output from the WRFG model, daily MSLP fields from NCEP, and daily observed precipitation in the western US. Finally, we use this model to simulate future observed precipitation based on WRFG output driven by the CCSM model, and our pineapple express index derived from future CCSM output. Our aim is to use this model to develop a better understanding of the frequency and intensity of extreme
Acoustic Propagation Modeling in Shallow Water Using Ray Theory.
NASA Astrophysics Data System (ADS)
Westwood, Evan Kruse
A ray method is developed for modeling acoustic propagation in low-frequency, shallow water ocean environments. The theoretical foundation is laid by studying the reflected and transmitted fields due to a point source in the presence of a plane, penetrable interface. Each field is expressed as a plane wave integral. The approach for solving the integral is based on the classical method of steepest descent, but the plane wave reflection and transmission coefficients are allowed to influence the location of the saddle points and their steepest descent paths. As a consequence, saddle points are, in general, complex, and complicated processes such as the reflected lateral wave field and the transmitted evanescent field are incorporated in the saddle point formulation. The saddle point criterion may be expressed in terms of eigenrays and their characteristics, providing physical insight into the paths and mechanisms of propagation. The method developed for solving the single interface problem is then applied to two simple models for shallow water ocean environments: the flat, isovelocity waveguide (the Pekeris model) and the sloping-bottom, isovelocity waveguide (the penetrable wedge). For the flat waveguide, near perfect agreement is found between the ray model and a model whose algorithm solves the wave equation numerically (the SAFARI fast field model). The ray method proves to be accurate even when the water depth is only half of the acoustic wavelength. For the sloping-bottom waveguide, ray model solutions to benchmark problems proposed by the Acoustical Society of America are compared to solutions from a model based on two-way coupled mode theory. For cases of upslope propagation in shallow-water penetrable wedges, agreement between the two independent models is excellent, both in the water and in the bottom. The ray method for the three-dimensional wedge problem is discussed, and the method is also extended to model directional sources by placing a point source
Applications of Information Theory for Ecohydrology Model Diagnostics
NASA Astrophysics Data System (ADS)
Ruddell, B. L.; Drewry, D.
2013-12-01
Earth System Models are becoming more complicated and complex as detailed formulations of physical and biological processes operating at multiple scales are integrated together to simulate the connections and feedbacks of the whole system. A prime example of this increase in process fidelity is the terrestrial land surface, where meteorological and hydrological processes drive and interact with the biological functioning of vegetation, together controlling carbon, water, and energy fluxes with the atmosphere. Ecohydrological models that capture these couplings and feedbacks may intentionally or unintentionally create self-organizing or "emergent" dynamics that do not exist when a single model component is used in isolation. It is therefore critical that model diagnostics begin to directly inspect model output for its fidelity to emergent system-scale patterns including observed couplings, feedbacks, thresholds, and controls. Information Theory provides a general class of methods that are able to directly measure coupling, control, and feedback. We apply these methods to compare observations and model results in the context of the Midwest US agro-ecosystem. We utilize a state-of-the-art ecohydrological model, MLCan, which has been extensively validated against eddy covariance observations of carbon, water and energy exchange collected at the Bondville, Illinois FLUXNET site. Using a dynamical process network approach in which system couplings are resolved as directional information flows, we show that MLCan does well at reproducing observed system-scale couplings, feedbacks, thresholds, and controls. We identify important exceptions that point to necessary model improvements. By applying these methods in addition to the standard residual error analysis, it is possible to move beyond asking whether an Earth System Model gets the "right answers", and to instead examine whether the model captures the emergent system-scale structures necessary to be correct for the
Oizumi, Ryo; Kuniya, Toshikazu; Enatsu, Yoichi
2016-01-01
Despite the fact that density effects and individual differences in life history are considered to be important for evolution, these factors lead to several difficulties in understanding the evolution of life history, especially when population sizes reach the carrying capacity. r/K selection theory explains what types of life strategies evolve in the presence of density effects and individual differences. However, the relationship between the life schedules of individuals and population size is still unclear, even if the theory can classify life strategies appropriately. To address this issue, we propose a few equations on adaptive life strategies in r/K selection where density effects are absent or present. The equations detail not only the adaptive life history but also the population dynamics. Furthermore, the equations can incorporate temporal individual differences, which are referred to as internal stochasticity. Our framework reveals that maximizing density effects is an evolutionarily stable strategy related to the carrying capacity. A significant consequence of our analysis is that adaptive strategies in both selections maximize an identical function, providing both population growth rate and carrying capacity. We apply our method to an optimal foraging problem in a semelparous species model and demonstrate that the adaptive strategy yields a lower intrinsic growth rate as well as a lower basic reproductive number than those obtained with other strategies. This study proposes that the diversity of life strategies arises due to the effects of density and internal stochasticity.
Oizumi, Ryo; Kuniya, Toshikazu; Enatsu, Yoichi
2016-01-01
Despite the fact that density effects and individual differences in life history are considered to be important for evolution, these factors lead to several difficulties in understanding the evolution of life history, especially when population sizes reach the carrying capacity. r/K selection theory explains what types of life strategies evolve in the presence of density effects and individual differences. However, the relationship between the life schedules of individuals and population size is still unclear, even if the theory can classify life strategies appropriately. To address this issue, we propose a few equations on adaptive life strategies in r/K selection where density effects are absent or present. The equations detail not only the adaptive life history but also the population dynamics. Furthermore, the equations can incorporate temporal individual differences, which are referred to as internal stochasticity. Our framework reveals that maximizing density effects is an evolutionarily stable strategy related to the carrying capacity. A significant consequence of our analysis is that adaptive strategies in both selections maximize an identical function, providing both population growth rate and carrying capacity. We apply our method to an optimal foraging problem in a semelparous species model and demonstrate that the adaptive strategy yields a lower intrinsic growth rate as well as a lower basic reproductive number than those obtained with other strategies. This study proposes that the diversity of life strategies arises due to the effects of density and internal stochasticity. PMID:27336169
The Interface Between Theory and Data in Structural Equation Models
Grace, James B.; Bollen, Kenneth A.
2006-01-01
Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite, for representing general concepts. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling general relationships of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially reduced form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influences of suites of variables are often of interest.
Corner, Michael A
2013-05-22
In the early 1960s intrinsically generated widespread neuronal discharges were discovered to be the basis for the earliest motor behavior throughout the animal kingdom. The pattern generating system is in fact programmed into the developing nervous system, in a regionally specific manner, already at the early neural plate stage. Such rhythmically modulated phasic bursts were next discovered to be a general feature of developing neural networks and, largely on the basis of experimental interventions in cultured neural tissues, to contribute significantly to their morpho-physiological maturation. In particular, the level of spontaneous synchronized bursting is homeostatically regulated, and has the effect of constraining the development of excessive network excitability. After birth or hatching, this "slow-wave" activity pattern becomes sporadically suppressed in favor of sensory oriented "waking" behaviors better adapted to dealing with environmental contingencies. It nevertheless reappears periodically as "sleep" at several species-specific points in the diurnal/nocturnal cycle. Although this "default" behavior pattern evolves with development, its essential features are preserved throughout the life cycle, and are based upon a few simple mechanisms which can be both experimentally demonstrated and simulated by computer modeling. In contrast, a late onto- and phylogenetic aspect of sleep, viz., the intermittent "paradoxical" activation of the forebrain so as to mimic waking activity, is much less well understood as regards its contribution to brain development. Some recent findings dealing with this question by means of cholinergically induced "aroused" firing patterns in developing neocortical cell cultures, followed by quantitative electrophysiological assays of immediate and longterm sequelae, will be discussed in connection with their putative implications for sleep ontogeny.
Standard Model in multiscale theories and observational constraints
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca; Nardelli, Giuseppe; Rodríguez-Fernández, David
2016-08-01
We construct and analyze the Standard Model of electroweak and strong interactions in multiscale spacetimes with (i) weighted derivatives and (ii) q -derivatives. Both theories can be formulated in two different frames, called fractional and integer picture. By definition, the fractional picture is where physical predictions should be made. (i) In the theory with weighted derivatives, it is shown that gauge invariance and the requirement of having constant masses in all reference frames make the Standard Model in the integer picture indistinguishable from the ordinary one. Experiments involving only weak and strong forces are insensitive to a change of spacetime dimensionality also in the fractional picture, and only the electromagnetic and gravitational sectors can break the degeneracy. For the simplest multiscale measures with only one characteristic time, length and energy scale t*, ℓ* and E*, we compute the Lamb shift in the hydrogen atom and constrain the multiscale correction to the ordinary result, getting the absolute upper bound t*<10-23 s . For the natural choice α0=1 /2 of the fractional exponent in the measure, this bound is strengthened to t*<10-29 s , corresponding to ℓ*<10-20 m and E*>28 TeV . Stronger bounds are obtained from the measurement of the fine-structure constant. (ii) In the theory with q -derivatives, considering the muon decay rate and the Lamb shift in light atoms, we obtain the independent absolute upper bounds t*<10-13 s and E*>35 MeV . For α0=1 /2 , the Lamb shift alone yields t*<10-27 s , ℓ*<10-19 m and E*>450 GeV .
Active Learning with Monty Hall in a Game Theory Class
ERIC Educational Resources Information Center
Brokaw, Alan J.; Merz, Thomas E.
2004-01-01
The authors describe a game that students can play on the first day of a game theory class. The game introduces the 4 essential elements of any game and is designed so that its sequel, also played on the first day of class, has students playing the well-known Monty Hall game, which raises the question: Should you switch doors? By implementing a…
Do Differences in Brain Activation Challenge Universal Theories of Dyslexia?
ERIC Educational Resources Information Center
Ziegler, Johannes C.
2006-01-01
It has been commonly agreed that developmental dyslexia in different languages has a common biological origin: a dysfunction of left posterior temporal brain regions dealing with phonological processes. Siok, Perfetti, Jin, and Tan (2004, "Nature," 431, 71-76) challenge this biological unity theory of dyslexia: Chinese dyslexics show no deficits…
Wickham, Robert E; Knee, C Raymond
2012-11-01
This work describes an application of the actor-partner interdependence model (APIM) that allows researchers to test hypotheses in terms of interdependence theory (IT). The authors' goal is to move beyond the obvious similarities of these two frameworks by providing a detailed conceptual integration. This analysis demonstrates that aspects of APIM analysis reveal a useful perspective on interdependence not explicitly articulated by IT. They also expand on ideas presented by Kenny and Ledermann by exploring the relationship between their ratio parameter k and IT, and introducing two additional ratios (h and c) also suggested by IT. A complete worked example of APIM analysis from the perspective of IT, along with a SAS MACRO that produces confidence intervals for k, h, and c, is provided.
Theory and Modeling for the Magnetospheric Multiscale Mission
NASA Astrophysics Data System (ADS)
Hesse, M.; Aunai, N.; Birn, J.; Cassak, P.; Denton, R. E.; Drake, J. F.; Gombosi, T.; Hoshino, M.; Matthaeus, W.; Sibeck, D.; Zenitani, S.
2016-03-01
The Magnetospheric Multiscale (MMS) mission will provide measurement capabilities, which will exceed those of earlier and even contemporary missions by orders of magnitude. MMS will, for the first time, be able to measure directly and with sufficient resolution key features of the magnetic reconnection process, down to the critical electron scales, which need to be resolved to understand how reconnection works. Owing to the complexity and extremely high spatial resolution required, no prior measurements exist, which could be employed to guide the definition of measurement requirements, and consequently set essential parameters for mission planning and execution. Insight into expected details of the reconnection process could hence only been obtained from theory and modern kinetic modeling. This situation was recognized early on by MMS leadership, which supported the formation of a fully integrated Theory and Modeling Team (TMT). The TMT participated in all aspects of mission planning, from the proposal stage to individual aspects of instrument performance characteristics. It provided and continues to provide to the mission the latest insights regarding the kinetic physics of magnetic reconnection, as well as associated particle acceleration and turbulence, assuring that, to the best of modern knowledge, the mission is prepared to resolve the inner workings of the magnetic reconnection process. The present paper provides a summary of key recent results or reconnection research by TMT members.
Modeling Adversaries in Counterterrorism Decisions Using Prospect Theory.
Merrick, Jason R W; Leclerc, Philip
2016-04-01
Counterterrorism decisions have been an intense area of research in recent years. Both decision analysis and game theory have been used to model such decisions, and more recently approaches have been developed that combine the techniques of the two disciplines. However, each of these approaches assumes that the attacker is maximizing its utility. Experimental research shows that human beings do not make decisions by maximizing expected utility without aid, but instead deviate in specific ways such as loss aversion or likelihood insensitivity. In this article, we modify existing methods for counterterrorism decisions. We keep expected utility as the defender's paradigm to seek for the rational decision, but we use prospect theory to solve for the attacker's decision to descriptively model the attacker's loss aversion and likelihood insensitivity. We study the effects of this approach in a critical decision, whether to screen containers entering the United States for radioactive materials. We find that the defender's optimal decision is sensitive to the attacker's levels of loss aversion and likelihood insensitivity, meaning that understanding such descriptive decision effects is important in making such decisions.
Diagram theory for the twofold-degenerate Anderson impurity model
NASA Astrophysics Data System (ADS)
Moskalenko, V. A.; Dohotaru, L. A.; Digor, D. F.; Cebotari, I. D.
2014-02-01
We develop a diagram technique for investigating the twofold-degenerate Anderson impurity model in the normal state with the strong electronic correlations of d electrons of the impurity ion taken into account. We discuss the properties of the Slater-Kanamori model of d electrons. After finding the eigenfunctions and eigenvalues of all 16 local states, we determine the local one-particle propagator. We construct the perturbation theory around the atomic limit of the impurity ion and obtain a Dyson-type equation establishing the relation between the impurity electron propagator and the normal correlation function. As a result of summing infinite series of ladder diagrams, we obtain an approximation for the correlation function.
TOPICAL REVIEW: Modelling polycrystalline solidification using phase field theory
NASA Astrophysics Data System (ADS)
Gránásy, László; Pusztai, Tamás; Warren, James A.
2004-10-01
We review recent advances made in the phase field modelling of polycrystalline solidification. Areas covered include the development of theory from early approaches that allow for only a few crystal orientations, to the latest models relying on a continuous orientation field and a free energy functional that is invariant to the rotation of the laboratory frame. We discuss a variety of phenomena, including homogeneous nucleation and competitive growth of crystalline particles having different crystal orientations, the kinetics of crystallization, grain boundary dynamics, and the formation of complex polycrystalline growth morphologies including disordered ('dizzy') dendrites, spherulites, fractal-like polycrystalline aggregates, etc. Finally, we extend the approach by incorporating walls, and explore phenomena such as heterogeneous nucleation, particle-front interaction, and solidification in confined geometries (in channels or porous media).
Models of neural networks with fuzzy activation functions
NASA Astrophysics Data System (ADS)
Nguyen, A. T.; Korikov, A. M.
2017-02-01
This paper investigates the application of a new form of neuron activation functions that are based on the fuzzy membership functions derived from the theory of fuzzy systems. On the basis of the results regarding neuron models with fuzzy activation functions, we created the models of fuzzy-neural networks. These fuzzy-neural network models differ from conventional networks that employ the fuzzy inference systems using the methods of neural networks. While conventional fuzzy-neural networks belong to the first type, fuzzy-neural networks proposed here are defined as the second-type models. The simulation results show that the proposed second-type model can successfully solve the problem of the property prediction for time – dependent signals. Neural networks with fuzzy impulse activation functions can be widely applied in many fields of science, technology and mechanical engineering to solve the problems of classification, prediction, approximation, etc.
From Status to Power: New Models at the Intersection of Two Theories
ERIC Educational Resources Information Center
Thye, Shane R.; Willer, David; Markovsky, Barry
2006-01-01
The study of group processes has benefited from longstanding programs of theory-driven research on status and power. The present work constructs a bridge between two formal theories of status and power: Status Characteristics Theory and Network Exchange Theory. Two theoretical models, one for "status value" and one for "status influence,"…
Nature, theory and modelling of geophysical convective planetary boundary layers
NASA Astrophysics Data System (ADS)
Zilitinkevich, Sergej
2015-04-01
Geophysical convective planetary boundary layers (CPBLs) are still poorly reproduced in oceanographic, hydrological and meteorological models. Besides the mean flow and usual shear-generated turbulence, CPBLs involve two types of motion disregarded in conventional theories: 'anarchy turbulence' comprised of the buoyancy-driven plumes, merging to form larger plumes instead of breaking down, as postulated in conventional theory (Zilitinkevich, 1973), large-scale organised structures fed by the potential energy of unstable stratification through inverse energy transfer in convective turbulence (and performing non-local transports irrespective of mean gradients of transporting properties). C-PBLs are strongly mixed and go on growing as long as the boundary layer remains unstable. Penetration of the mixed layer into the weakly turbulent, stably stratified free flow causes turbulent transports through the CPBL outer boundary. The proposed theory, taking into account the above listed features of CPBL, is based on the following recent developments: prognostic CPBL-depth equation in combination with diagnostic algorithm for turbulence fluxes at the CPBL inner and outer boundaries (Zilitinkevich, 1991, 2012, 2013; Zilitinkevich et al., 2006, 2012), deterministic model of self-organised convective structures combined with statistical turbulence-closure model of turbulence in the CPBL core (Zilitinkevich, 2013). It is demonstrated that the overall vertical transports are performed mostly by turbulence in the surface layer and entrainment layer (at the CPBL inner and outer boundaries) and mostly by organised structures in the CPBL core (Hellsten and Zilitinkevich, 2013). Principal difference between structural and turbulent mixing plays an important role in a number of practical problems: transport and dispersion of admixtures, microphysics of fogs and clouds, etc. The surface-layer turbulence in atmospheric and marine CPBLs is strongly enhanced by the velocity shears in
Eye growth and myopia development: Unifying theory and Matlab model.
Hung, George K; Mahadas, Kausalendra; Mohammad, Faisal
2016-03-01
The aim of this article is to present an updated unifying theory of the mechanisms underlying eye growth and myopia development. A series of model simulation programs were developed to illustrate the mechanism of eye growth regulation and myopia development. Two fundamental processes are presumed to govern the relationship between physiological optics and eye growth: genetically pre-programmed signaling and blur feedback. Cornea/lens is considered to have only a genetically pre-programmed component, whereas eye growth is considered to have both a genetically pre-programmed and a blur feedback component. Moreover, based on the Incremental Retinal-Defocus Theory (IRDT), the rate of change of blur size provides the direction for blur-driven regulation. The various factors affecting eye growth are shown in 5 simulations: (1 - unregulated eye growth): blur feedback is rendered ineffective, as in the case of form deprivation, so there is only genetically pre-programmed eye growth, generally resulting in myopia; (2 - regulated eye growth): blur feedback regulation demonstrates the emmetropization process, with abnormally excessive or reduced eye growth leading to myopia and hyperopia, respectively; (3 - repeated near-far viewing): simulation of large-to-small change in blur size as seen in the accommodative stimulus/response function, and via IRDT as well as nearwork-induced transient myopia (NITM), leading to the development of myopia; (4 - neurochemical bulk flow and diffusion): release of dopamine from the inner plexiform layer of the retina, and the subsequent diffusion and relay of neurochemical cascade show that a decrease in dopamine results in a reduction of proteoglycan synthesis rate, which leads to myopia; (5 - Simulink model): model of genetically pre-programmed signaling and blur feedback components that allows for different input functions to simulate experimental manipulations that result in hyperopia, emmetropia, and myopia. These model simulation programs
Dynamic modeling of electrochemical systems using linear graph theory
NASA Astrophysics Data System (ADS)
Dao, Thanh-Son; McPhee, John
An electrochemical cell is a multidisciplinary system which involves complex chemical, electrical, and thermodynamical processes. The primary objective of this paper is to develop a linear graph-theoretical modeling for the dynamic description of electrochemical systems through the representation of the system topologies. After a brief introduction to the topic and a review of linear graphs, an approach to develop linear graphs for electrochemical systems using a circuitry representation is discussed, followed in turn by the use of the branch and chord transformation techniques to generate final dynamic equations governing the system. As an example, the application of linear graph theory to modeling a nickel metal hydride (NiMH) battery will be presented. Results show that not only the number of equations are reduced significantly, but also the linear graph model simulates faster compared to the original lumped parameter model. The approach presented in this paper can be extended to modeling complex systems such as an electric or hybrid electric vehicle where a battery pack is interconnected with other components in many different domains.
Purposeful Program Theory: Effective Use of Theories of Change and Logic Models
ERIC Educational Resources Information Center
Funnell, Sue C.; Rogers, Patricia J.
2011-01-01
Between good intentions and great results lies a program theory--not just a list of tasks but a vision of what needs to happen, and how. Now widely used in government and not-for-profit organizations, program theory provides a coherent picture of how change occurs and how to improve performance. "Purposeful Program Theory" shows how to develop,…
NASA Technical Reports Server (NTRS)
Ashrafi, S.
1991-01-01
K. Schatten (1991) recently developed a method for combining his prediction model with our chaotic model. The philosophy behind this combined model and his method of combination is explained. Because the Schatten solar prediction model (KS) uses a dynamo to mimic solar dynamics, accurate prediction is limited to long-term solar behavior (10 to 20 years). The Chaotic prediction model (SA) uses the recently developed techniques of nonlinear dynamics to predict solar activity. It can be used to predict activity only up to the horizon. In theory, the chaotic prediction should be several orders of magnitude better than statistical predictions up to that horizon; beyond the horizon, chaotic predictions would theoretically be just as good as statistical predictions. Therefore, chaos theory puts a fundamental limit on predictability.
Multiscale Multiphysics and Multidomain Models I: Basic Theory.
Wei, Guo-Wei
2013-12-01
This work extends our earlier two-domain formulation of a differential geometry based multiscale paradigm into a multidomain theory, which endows us the ability to simultaneously accommodate multiphysical descriptions of aqueous chemical, physical and biological systems, such as fuel cells, solar cells, nanofluidics, ion channels, viruses, RNA polymerases, molecular motors and large macromolecular complexes. The essential idea is to make use of the differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain of solvent from the microscopic domain of solute, and dynamically couple continuum and discrete descriptions. Our main strategy is to construct energy functionals to put on an equal footing of multiphysics, including polar (i.e., electrostatic) solvation, nonpolar solvation, chemical potential, quantum mechanics, fluid mechanics, molecular mechanics, coarse grained dynamics and elastic dynamics. The variational principle is applied to the energy functionals to derive desirable governing equations, such as multidomain Laplace-Beltrami (LB) equations for macromolecular morphologies, multidomain Poisson-Boltzmann (PB) equation or Poisson equation for electrostatic potential, generalized Nernst-Planck (NP) equations for the dynamics of charged solvent species, generalized Navier-Stokes (NS) equation for fluid dynamics, generalized Newton's equations for molecular dynamics (MD) or coarse-grained dynamics and equation of motion for elastic dynamics. Unlike the classical PB equation, our PB equation is an integral-differential equation due to solvent-solute interactions. To illustrate the proposed formalism, we have explicitly constructed three models, a multidomain solvation model, a multidomain charge transport model and a multidomain chemo-electro-fluid-MD-elastic model. Each solute domain is equipped with distinct surface tension, pressure, dielectric function, and charge density distribution. In addition to long
Multiscale Multiphysics and Multidomain Models I: Basic Theory
Wei, Guo-Wei
2013-01-01
This work extends our earlier two-domain formulation of a differential geometry based multiscale paradigm into a multidomain theory, which endows us the ability to simultaneously accommodate multiphysical descriptions of aqueous chemical, physical and biological systems, such as fuel cells, solar cells, nanofluidics, ion channels, viruses, RNA polymerases, molecular motors and large macromolecular complexes. The essential idea is to make use of the differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain of solvent from the microscopic domain of solute, and dynamically couple continuum and discrete descriptions. Our main strategy is to construct energy functionals to put on an equal footing of multiphysics, including polar (i.e., electrostatic) solvation, nonpolar solvation, chemical potential, quantum mechanics, fluid mechanics, molecular mechanics, coarse grained dynamics and elastic dynamics. The variational principle is applied to the energy functionals to derive desirable governing equations, such as multidomain Laplace-Beltrami (LB) equations for macromolecular morphologies, multidomain Poisson-Boltzmann (PB) equation or Poisson equation for electrostatic potential, generalized Nernst-Planck (NP) equations for the dynamics of charged solvent species, generalized Navier-Stokes (NS) equation for fluid dynamics, generalized Newton's equations for molecular dynamics (MD) or coarse-grained dynamics and equation of motion for elastic dynamics. Unlike the classical PB equation, our PB equation is an integral-differential equation due to solvent-solute interactions. To illustrate the proposed formalism, we have explicitly constructed three models, a multidomain solvation model, a multidomain charge transport model and a multidomain chemo-electro-fluid-MD-elastic model. Each solute domain is equipped with distinct surface tension, pressure, dielectric function, and charge density distribution. In addition to long
Phospholipid interactions in model membrane systems. II. Theory.
Stigter, D; Mingins, J; Dill, K A
1992-01-01
We describe statistical thermodynamic theory for the lateral interactions among phospholipid head groups in monolayers and bilayers. Extensive monolayer experiments show that at low surface densities, PC head groups have strong lateral repulsions which increase considerably with temperature, whereas PE interactions are much weaker and have no significant temperature dependence (see the preceding paper). In previous work, we showed that the second virial coefficients for these interactions can be explained by: (a) steric repulsions among the head groups, and (b) a tilting of the P-N+ dipole of PC so that the N+ end enters the oil phase, to an extent that increases with temperature. It was also predicted that PE interactions should be weaker and less temperature dependent because the N+ terminal of the PE head-group is hydrophilic, hence, it is tilted into the water phase, so dipolar contributions among PE's are negligible due to the high dielectric constant of water. In the present work, we broaden the theory to treat phospholipid interactions up to higher lateral surface densities. We generalize the Hill interfacial virial expansion to account for dipoles and to include the third virial term. We show that to account for the large third virial coefficients for both PC and PE requires that the short range lateral attractions among the head groups also be taken into account. In addition, the third virial coefficient includes fluctuating head group dipoles, computed by Monte Carlo integration assuming pairwise additivity of the instantaneous pair potentials. We find that because the dipole fluctuations are correlated, the average triplet interactions do not equal the sum of the average dipole pair potentials. This is important for predicting, the magnitude and the independence of temperature of the third virial coefficients for PC. The consistency of the theory with data of both the second and the third virial coefficients extends the applicability of the head
Using behavioural activation in the treatment of depression: a control theory perspective.
McEvoy, P; Law, A; Bates, R; Hylton, K; Mansell, W
2013-12-01
Behavioural activation is an intervention that can be used to counteract the typical patterns of withdrawal, avoidance and inactivity that characterize depression. This paper examines the processes of change that may occur during behavioural activation from the perspective of control theory. Some of the key concepts that are associated with control theory are introduced and the process of change that may occur during behavioural activation is illustrated using two case studies. The case studies provide anecdotal evidence which supports the hypothesis that the effective implementation of behavioural activation may depend upon clients being able to retain or regain the sense of control that they value. The differences between a control-theory-based approach and more orthodox behavioural and cognitive approaches are highlighted and the implications of these differences are discussed. Flexible approaches that are informed by control theory, may offer a useful alternative to the more established behavioural and cognitive approaches towards behavioural activation.
Theory, Investigation and Stability of Cathode Electrocatalytic Activity
Ding, Dong; Liu, Mingfei; Lai, Samson; Blinn, Kevin; Liu, Meilin
2012-09-30
conditions. This was also confirmed by x-ray analyses. For example, soft x-ray XANES data reveal that Co cations displace the Mn cations as being more favored to be reduced. Variations in the Sr-O in the annealed LSCF Fourier-transformed (FT) EXAFS suggest that some Sr segregation is occurring, but is not present in the annealed LSM-infiltrated LSCF cathode materials. Further, a surface enhanced Raman technique was also developed into to probe and map LSM and LSCF phase on underlying YSZ substrate, enabling us to capture important chemical information of cathode surfaces under practical operating conditions. Electrochemical models for the design of test cells and understanding of mechanism have been developed for the exploration of fundamental properties of electrode materials. Novel catalyst coatings through particle depositions (SDC, SSC, and LCC) or continuous thin films (PSM and PSCM) were successfully developed to improve the activity and stability of LSCF cathodes. Finally, we have demonstrated enhanced activity and stability of LSCF cathodes over longer periods of time in homemade and commercially available cells by an optimized LSM infiltration process. Microstructure examination of the tested cells did not show obvious differences between blank and infiltrated cells, suggesting that the infiltrated LSM may form a coherent film on the LSCF cathodes. There was no significant change in the morphology or microstructure of the LSCF cathode due to the structural similarity of LSCF and LSM. Raman analysis of the tested cells indicated small peaks emerging on the blank cells that correspond to trace amounts of secondary phase formation during operation (e.g., CoO{sub x}). The formation of this secondary phase might be attributed to performance degradation. In contrast, there was no such secondary phase observed in the LSM infiltrated cells, indicating that the LSM modification staved off secondary phase formation and thus improved the stability.
ERIC Educational Resources Information Center
Trifiletti, L. B.; Gielen, A. C.; Sleet, D. A.; Hopkins, K.
2005-01-01
Behavioral and social sciences theories and models have the potential to enhance efforts to reduce unintentional injuries. The authors reviewed the published literature on behavioral and social science theory applications to unintentional injury problems to enumerate and categorize the ways different theories and models are used in injury…
The Scientific Theory Profile: A Philosophy of Science Model for Science Teachers.
ERIC Educational Resources Information Center
Loving, Cathleen
The model developed for use with science teachers--called the Scientific Theory Profile--consists of placing three well-known philosophers of science on a grid, with the x-axis being their methods for judging theories (rational vs. natural) and the y-axis being their views on scientific theories representing the Truth versus mere models of what…
A New Theory-to-Practice Model for Student Affairs: Integrating Scholarship, Context, and Reflection
ERIC Educational Resources Information Center
Reason, Robert D.; Kimball, Ezekiel W.
2012-01-01
In this article, we synthesize existing theory-to-practice approaches within the student affairs literature to arrive at a new model that incorporates formal and informal theory, institutional context, and reflective practice. The new model arrives at a balance between the rigor necessary for scholarly theory development and the adaptability…
Paek, Hye-Jin; Oh, Hyun Jung; Hove, Thomas
2012-01-01
This study explicates mechanisms of media campaign effectiveness in the context of children's physical activity. The authors' model expands the theory of planned behavior by integrating injunctive and descriptive norms into its normative mechanism. Analysis of a 3-wave nationally representative evaluation survey among 1,623 tweens indicates that campaign exposure is significantly related, but only indirectly, to both physical activity intention and physical activity behavior. Instead, campaign exposure seems more strongly related to perceived behavioral control and attitudes toward physical activity. By contrast, perceived behavioral control and descriptive norms are strongly related to behavioral intention. The findings suggest that integrating normative mechanisms with the theory of planned behavior can improve efforts to predict and explain a health behavior.
Tavares, Leonor S; Plotnikoff, Ronald C; Loucaides, Constantinos
2009-03-01
Chronic disease interventions for women have been understudied in the workplace domain. Understanding the role of cognitions in individual behaviour can help motivate change and suggest directions for achieving improvements in health. The purpose of this study was to identify psychosocial constructs and social-cognitive theories [e.g. Transtheoretical model (TTM), Theory of Planned Behaviour (TPB), Protection Motivation Theory (PMT) and Social Cognitive Theory (SCT)] that are most salient for explaining physical activity behaviour among employed women (n = 1183). Demographic information, and social-cognitive measures related to physical activity, intention and behaviours (e.g. stage of change, energy expenditure) were assessed. A series of multiple regression analyses predicting intention, energy expenditure and stage of change were conducted separately for: (1) women with young children (n = 302), and (2) women without young children (n = 881) for each of the respective social-cognitive theories. Although taken as a whole the results were relatively similar between the two sub-groups of women for each of the socio-cognitive theories examined in this study, differences were observed in the relative contributions of the theoretical constructs between the two sub-groups. Results also indicate that self-efficacy and intention were the strongest predictors of behaviour among both women with and without young children. The explained variances (R(2)) for the theories examined in this study for different sub-groups ranged from 16 to 60%, generally reflecting what has been reported in other studies within the physical activity domain. The results of this study could be useful in guiding future research and in designing physical activity intervention programs for these specific population groups. Integrating approaches of individual lifestyle change while addressing issues related to creating supportive environments for women in various life stages is a suggested strategy
Job Search and Social Cognitive Theory: The Role of Career-Relevant Activities
ERIC Educational Resources Information Center
Zikic, Jelena; Saks, Alan M.
2009-01-01
Social cognitive theory was used to explain the relationships between career-relevant activities (environmental and self career exploration, career resources, and training), self-regulatory variables (job search self-efficacy and job search clarity), variables from the Theory of Planned Behavior (job search attitude, subjective norm, job search…
Changing Investment in Activities and Interests in Elders' Lives: Theory and Measurement
ERIC Educational Resources Information Center
Adams, Kathryn Betts
2004-01-01
Socioemotional selectivity and gerotranscendence, newer theories with roots in the disengagement theory of aging, provided the theoretical framework for a new measure of perceived change in investment in a variety of pursuits. The 30-item Change in Activity and Interest Index (CAII) was given to a sample of 327 outpatients aged 65-94. Items with…
ERIC Educational Resources Information Center
Roth, Wolff-Michael
2012-01-01
Cultural-historical activity theory--with historical roots in dialectical materialism and the social psychology to which it has given rise--has experienced exponential growth in its acceptance by scholars interested in understanding knowing and learning writ large. In education, this theory has constituted something like a well kept secret that is…
Development and Evaluation of a Theory-Based Physical Activity Guidebook for Breast Cancer Survivors
ERIC Educational Resources Information Center
Vallance, Jeffrey K.; Courneya, Kerry S.; Taylor, Lorian M.; Plotnikoff, Ronald C.; Mackey, John R.
2008-01-01
This study's objective was to develop and evaluate the suitability and appropriateness of a theory-based physical activity (PA) guidebook for breast cancer survivors. Guidebook content was constructed based on the theory of planned behavior (TPB) using salient exercise beliefs identified by breast cancer survivors in previous research. Expert…
Presenting Theoretical Ideas Prior to Inquiry Activities Fosters Theory-Level Knowledge
ERIC Educational Resources Information Center
Wecker, Christof; Rachel, Alexander; Heran-Dörr, Eva; Waltner, Christine; Wiesner, Hartmut; Fischer, Frank
2013-01-01
In the course of inquiry activities similar to those of real scientists, learners are supposed to develop knowledge both on the level of observable phenomena and on the level of explanatory theories. However, some theories involve theoretical entities (e.g., "Weiss domains") that cannot be observed directly and therefore may be hard to…
Discourse and Identity in Cultural-Historical Activity Theory: A Response
ERIC Educational Resources Information Center
Daniels, Harry
2007-01-01
This article provides a response to two of the papers in the collection. In doing so it takes up two issues: the conceptualization and analysis of discourse within Cultural Historical Activity Theory (CHAT) and notions of identity and subject positioning within CHAT. Bernstein [(2000). "Pedagogy, symbolic control and identity: Theory research…
Induced starburst and nuclear activity: Faith, facts, and theory
NASA Technical Reports Server (NTRS)
Shlosman, Isaac
1990-01-01
The problem of the origin of starburst and nuclear (nonstellar) activity in galaxies is reviewed. A physical understanding of the mechanism(s) that induce both types of activity requires one to address the following issues: (1) what is the source of fuel that powers starbursts and active galactic nuclei; and (2) how is it channeled towards the central regions of host galaxies? As a possible clue, the author examines the role of non-axisymmetric perturbations of galactic disks and analyzes their potential triggers. Global gravitational instabilities in the gas on scales approx. 100 pc appear to be crucial for fueling the active galactic nuclei.
Chatzisarantis, Nikos L D; Hagger, Martin S
2008-01-01
Previous research has suggested that the theory of planned behaviour is insufficient in capturing all the antecedents of physical activity participation and that continuation intentions or personality traits may improve the predictive validity of the model. The present study examined the combined effects of continuation intentions and personality traits on health behaviour within the theory of planned behaviour. To examine these effects, 180 university students (N = 180, Male = 87, Female = 93, Age = 19.14 years, SD = 0.94) completed self-report measures of the theory of planned behaviour, personality traits and continuation intentions. After 5 weeks, perceived achievement of behavioural outcomes and actual participation in physical activities were assessed. Results supported discriminant validity between continuation intentions, conscientiousness and extroversion and indicated that perceived achievement of behavioural outcomes and continuation intentions of failure predicted physical activity participation after controlling for personality effects, past behaviour and other variables in the theory of planned behaviour. In addition, results indicated that conscientiousness moderated the effects of continuation intentions of failure on physical activity such that continuation intentions of failure predicted physical activity participation among conscientious and not among less conscientious individuals. These findings suggest that the effects of continuation intentions on health behaviour are contingent on personality characteristics.
Gholamnia Shirvani, Zeinab; Ghofranipour, Fazlollah; Gharakhanlou, Reza; Kazemnejad, Anoshirvan
2014-11-30
Level of physical activity as a key determinant of healthy lifestyle less than is required in individuals particularly women. Applying theories of behavioral change about complex behaviors such as physical activity leads to identify effective factors and their relations. The aim of this study was to determine predictors of physical activity behavior based on the Theory of Planned Behavior in military staff's wives in Tehran. This cross-sectional study was performed in 180 military personnel's spouses residing in organizational houses, in Tehran, Iran in 2014. The participants were randomly selected with multi-stage cluster sampling. The validity and reliability of the theory based scale evaluated before conducting the path analysis. Statistical analysis was carried out using SPSS16 and LISREL8.8. The results indicated the model explained 77% and 17% of intention and behavior variance. Subjective norms (Beta=0.83) and intention (Beta=0.37) were the strongest predictors of intention and behavior, respectively. The instrumental and affective attitude had no significant path to intention and behavior. The direct relation of perceived behavioral control to behavior was non-significant. This research demonstrated relative importance and relationships of Theory of Planned Behavior constructs in physical activity behavior of military personnel's spouses in Tehran. It is essential to consider these determinants in designing of educational interventions for promoting and maintaining physical activity behavior in this target group.
Probing flame chemistry with MBMS, theory, and modeling
Westmoreland, P.R.
1993-12-01
The objective is to establish kinetics of combustion and molecular-weight growth in C{sub 3} hydrocarbon flames as part of an ongoing study of flame chemistry. Specific reactions being studied are (1) the growth reactions of C{sub 3}H{sub 5} and C{sub 3}H{sub 3} with themselves and with unsaturated hydrocarbons and (2) the oxidation reactions of O and OH with C{sub 3}`s. This approach combines molecular-beam mass spectrometry (MBMS) experiments on low-pressure flat flames; theoretical predictions of rate constants by thermochemical kinetics, Bimolecular Quantum-RRK, RRKM, and master-equation theory; and whole-flame modeling using full mechanisms of elementary reactions.
Theories and models on the biological of cells in space
NASA Technical Reports Server (NTRS)
Todd, P.; Klaus, D. M.
1996-01-01
A wide variety of observations on cells in space, admittedly made under constraining and unnatural conditions in may cases, have led to experimental results that were surprising or unexpected. Reproducibility, freedom from artifacts, and plausibility must be considered in all cases, even when results are not surprising. The papers in symposium on 'Theories and Models on the Biology of Cells in Space' are dedicated to the subject of the plausibility of cellular responses to gravity -- inertial accelerations between 0 and 9.8 m/sq s and higher. The mechanical phenomena inside the cell, the gravitactic locomotion of single eukaryotic and prokaryotic cells, and the effects of inertial unloading on cellular physiology are addressed in theoretical and experimental studies.
Nonequilibrium Anderson model made simple with density functional theory
NASA Astrophysics Data System (ADS)
Kurth, S.; Stefanucci, G.
2016-12-01
The single-impurity Anderson model is studied within the i-DFT framework, a recently proposed extension of density functional theory (DFT) for the description of electron transport in the steady state. i-DFT is designed to give both the steady current and density at the impurity, and it requires the knowledge of the exchange-correlation (xc) bias and on-site potential (gate). In this work we construct an approximation for both quantities which is accurate in a wide range of temperatures, gates, and biases, thus providing a simple and unifying framework to calculate the differential conductance at negligible computational cost in different regimes. Our results mark a substantial advance for DFT and may inform the construction of functionals applicable to other correlated systems.
Geometric model from microscopic theory for nuclear absorption
NASA Technical Reports Server (NTRS)
John, Sarah; Townsend, Lawrence W.; Wilson, John W.; Tripathi, Ram K.
1993-01-01
A parameter-free geometric model for nuclear absorption is derived herein from microscopic theory. The expression for the absorption cross section in the eikonal approximation, taken in integral form, is separated into a geometric contribution that is described by an energy-dependent effective radius and two surface terms that cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived from harmonic oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half-density radius for the harmonic oscillator functions. Coulomb corrections are incorporated, and a simplified geometric form of the Bradt-Peters type is obtained. Results spanning the energy range from 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained.
Job, Veronika; Bernecker, Katharina; Miketta, Stefanie; Friese, Malte
2015-10-01
Past research indicates that peoples' implicit theories about the nature of willpower moderate the ego-depletion effect. Only people who believe or were led to believe that willpower is a limited resource (limited-resource theory) showed lower self-control performance after an initial demanding task. As of yet, the underlying processes explaining this moderating effect by theories about willpower remain unknown. Here, we propose that the exertion of self-control activates the goal to preserve and replenish mental resources (rest goal) in people with a limited-resource theory. Five studies tested this hypothesis. In Study 1, individual differences in implicit theories about willpower predicted increased accessibility of a rest goal after self-control exertion. Furthermore, measured (Study 2) and manipulated (Study 3) willpower theories predicted an increased preference for rest-conducive objects. Finally, Studies 4 and 5 provide evidence that theories about willpower predict actual resting behavior: In Study 4, participants who held a limited-resource theory took a longer break following self-control exertion than participants with a nonlimited-resource theory. Longer resting time predicted decreased rest goal accessibility afterward. In Study 5, participants with an induced limited-resource theory sat longer on chairs in an ostensible product-testing task when they had engaged in a task requiring self-control beforehand. This research provides consistent support for a motivational shift toward rest after self-control exertion in people holding a limited-resource theory about willpower.
Two-factor theory, the actor-critic model, and conditioned avoidance.
Maia, Tiago V
2010-02-01
Two-factor theory (Mowrer, 1947, 1951, 1956) remains one of the most influential theories of avoidance, but it is at odds with empirical findings that demonstrate sustained avoidance responding in situations in which the theory predicts that the response should extinguish. This article shows that the well-known actor-critic model seamlessly addresses the problems with two-factor theory, while simultaneously being consistent with the core ideas that underlie that theory. More specifically, the article shows that (1) the actor-critic model bears striking similarities to two-factor theory and explains all of the empirical phenomena that two-factor theory explains, in much the same way, and (2) there are subtle but important differences between the actor-critic model and two-factor theory, which result in the actor-critic model predicting the persistence of avoidance responses that is found empirically.
Surface matching for correlation of virtual models: Theory and application
NASA Technical Reports Server (NTRS)
Caracciolo, Roberto; Fanton, Francesco; Gasparetto, Alessandro
1994-01-01
Virtual reality can enable a robot user to off line generate and test in a virtual environment a sequence of operations to be executed by the robot in an assembly cell. Virtual models of objects are to be correlated to the real entities they represent by means of a suitable transformation. A solution to the correlation problem, which is basically a problem of 3-dimensional adjusting, has been found exploiting the surface matching theory. An iterative algorithm has been developed, which matches the geometric surface representing the shape of the virtual model of an object, with a set of points measured on the surface in the real world. A peculiar feature of the algorithm is to work also if there is no one-to-one correspondence between the measured points and those representing the surface model. Furthermore the problem of avoiding convergence to local minima is solved, by defining a starting point of states ensuring convergence to the global minimum. The developed algorithm has been tested by simulation. Finally, this paper proposes a specific application, i.e., correlating a robot cell, equipped for biomedical use with its virtual representation.
Theory, Modeling and Simulation: Research progress report 1994--1995
Garrett, B.C.; Dixon, D.A.; Dunning, T.H.
1997-01-01
The Pacific Northwest National Laboratory (PNNL) has established the Environmental Molecular Sciences Laboratory (EMSL). In April 1994, construction began on the new EMSL, a collaborative research facility devoted to advancing the understanding of environmental molecular science. Research in the Theory, Modeling, and Simulation (TM and S) program will play a critical role in understanding molecular processes important in restoring DOE`s research, development, and production sites, including understanding the migration and reactions of contaminants in soils and ground water, developing processes for isolation and processing of pollutants, developing improved materials for waste storage, understanding the enzymatic reactions involved in the biodegradation of contaminants, and understanding the interaction of hazardous chemicals with living organisms. The research objectives of the TM and S program are fivefold: to apply available electronic structure and dynamics techniques to study fundamental molecular processes involved in the chemistry of natural and contaminated systems; to extend current electronic structure and dynamics techniques to treat molecular systems of future importance and to develop new techniques for addressing problems that are computationally intractable at present; to apply available molecular modeling techniques to simulate molecular processes occurring in the multi-species, multi-phase systems characteristic of natural and polluted environments; to extend current molecular modeling techniques to treat ever more complex molecular systems and to improve the reliability and accuracy of such simulations; and to develop technologies for advanced parallel architectural computer systems. Research highlights of 82 projects are given.
Super no-scale models in string theory
NASA Astrophysics Data System (ADS)
Kounnas, Costas; Partouche, Hervé
2016-12-01
We consider "super no-scale models" in the framework of the heterotic string, where the N = 4 , 2 , 1 → 0 spontaneous breaking of supersymmetry is induced by geometrical fluxes realizing a stringy Scherk-Schwarz perturbative mechanism. Classically, these backgrounds are characterized by a boson/fermion degeneracy at the massless level, even if supersymmetry is broken. At the 1-loop level, the vacuum energy is exponentially suppressed, provided the supersymmetry breaking scale is small, m3/2 ≪Mstring. We show that the "super no-scale string models" under consideration are free of Hagedorn-like tachyonic singularities, even when the supersymmetry breaking scale is large, m3/2 ≃Mstring. The vacuum energy decreases monotonically and converges exponentially to zero, when m3/2 varies from Mstring to 0. We also show that all Wilson lines associated to asymptotically free gauge symmetries are dynamically stabilized by the 1-loop effective potential, while those corresponding to non-asymptotically free gauge groups lead to instabilities and condense. The Wilson lines of the conformal gauge symmetries remain massless. When stable, the stringy super no-scale models admit low energy effective actions, where decoupling gravity yields theories in flat spacetime, with softly broken supersymmetry.
An instanton toolbox for F-theory model building
NASA Astrophysics Data System (ADS)
Marsano, Joseph; Saulina, Natalia; Schäfer-Nameki, Sakura
2010-01-01
Several dimensionful parameters needed for model building can be engineered in a certain class of SU(5) F-theory GUTs by adding extra singlet fields which are localized along pairwise intersections of D7-branes. The values of these parameters, however, depend on dynamics external to the GUT which causes the singlets to acquire suitable masses or expectation values. In this note, we demonstrate that D3-instantons which wrap one of the intersecting D7’s can provide precisely the needed dynamics to generate several important scales, including the supersymmetry-breaking scale and the right-handed neutrino mass. Furthermore, these instantons seem unable to directly generate the μ term suggesting that, at least in this class of models, it should perhaps be tied to one of the other scales in the problem. More specifically, we study the simple system consisting of a pair of D7-branes wrapping del Pezzo surfaces which intersect along a curve Σ of genus 0 or 1 and classify all instanton configurations which can potentially contribute to the superpotential. This allows one to formulate topological conditions which must be imposed on Σ for various model-building applications.
Linear theory for filtering nonlinear multiscale systems with model error
Berry, Tyrus; Harlim, John
2014-01-01
In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online, as part of a filtering procedure
Matrix formulation of the surface-enhanced Raman optical activity theory
NASA Astrophysics Data System (ADS)
Bouř, Petr
2007-04-01
The surface-enhanced Raman optical activity theory [J. Chem. Phys.125, 124704 (2006)] is formulated in a matrix form, which makes the formalism simpler and allows to extend it for more complicated colloid and molecular systems.
ERIC Educational Resources Information Center
Jaradat, Suhair; Qablan, Ahmad; Barham, Areej
2011-01-01
This paper explains how the activity theory is used as a framework to analyze the barriers to a virtual Management Information Stream (MIS) Curriculum in Jordanian schools, from both the sociocultural and pedagogical perspectives. Taking the activity system as a unit of analysis, this study documents the processes by which activities shape and are…
Comparing Multiple Discrepancies Theory to Affective Models of Subjective Wellbeing
ERIC Educational Resources Information Center
Blore, Jed D.; Stokes, Mark A.; Mellor, David; Firth, Lucy; Cummins, Robert A.
2011-01-01
The Subjective Wellbeing (SWB) literature is replete with competing theories detailing the mechanisms underlying the construction and maintenance of SWB. The current study aimed to compare and contrast two of these approaches: multiple discrepancies theory (MDT) and an affective-cognitive theory of SWB. MDT posits SWB to be the result of perceived…
Manpower Planning and Personnel Management Models Based on Utility Theory,
1980-08-01
and Morgenstern [1947]. 2.3 Assessment of Utility Functions For decision problems with multiple objectives, multiattribute utility theory provides... multiattribute utility theory and applications. In Multiple Criteria Decision Making, M.K. Starr and M. Zelany (eds.), North Holland, Amsterdam. Fishburn...Princeton University Press, Princeton, NJ. Fishburn, P.C. (1977). Multiattribute utilities in expected utility theory . In Conflicting Objectives in
Teodorczuk, Andrew; Mukaetova-Ladinska, Elizabeta; Corbett, Sally; Welfare, Mark
2015-08-01
Older patients with dementia and delirium receive suboptimal hospital care. Policy calls for more effective education to address this though there is little consensus on what this entails. The purpose of this clarification study is to explore how practice gaps are constructed in relation to managing the confused hospitalised older patient. The intent is to inform educational processes in the work-place beyond traditional approaches such as training. Adopting grounded theory as a research method and working within a social constructionist paradigm we explored the practice gaps of 15 healthcare professionals by interview and conducted five focus groups with patients, carers and Liaison mental health professionals. Data were thematically analysed by constant comparison and theoretical sampling was undertaken until saturation reached. Categories were identified and pragmatic concepts developed grounded within the data. Findings were then further analysed using cultural historical activity theory as a deductive lens. Practice gaps in relation to managing the confused older patient are determined by factors operating at individual (knowledge and skill gaps, personal philosophy, task based practice), team (leadership, time and ward environmental factors) and organisational (power relationships, dominance of medical model, fragmentation of care services) levels. Conceptually, practice appeared to be influenced by socio-cultural ward factors and compounded by a failure to join up existing "patient" knowledge amongst professionals. Applying cultural historical activity theory to further illuminate the findings, the central object is defined as learning about the patient and the mediating artifacts are the care relationships. The overarching medical dominance emerges as an important cultural historical factor at play and staff rules and divisions of labour are exposed. Lastly key contradictions and tensions in the system that work against learning about the patient are
Theory and Low-Order Modeling of Unsteady Airfoil Flows
NASA Astrophysics Data System (ADS)
Ramesh, Kiran
Unsteady flow phenomena are prevalent in a wide range of problems in nature and engineering. These include, but are not limited to, aerodynamics of insect flight, dynamic stall in rotorcraft and wind turbines, leading-edge vortices in delta wings, micro-air vehicle (MAV) design, gust handling and flow control. The most significant characteristics of unsteady flows are rapid changes in the circulation of the airfoil, apparent-mass effects, flow separation and the leading-edge vortex (LEV) phenomenon. Although experimental techniques and computational fluid dynamics (CFD) methods have enabled the detailed study of unsteady flows and their underlying features, a reliable and inexpensive loworder method for fast prediction and for use in control and design is still required. In this research, a low-order methodology based on physical principles rather than empirical fitting is proposed. The objective of such an approach is to enable insights into unsteady phenomena while developing approaches to model them. The basis of the low-order model developed here is unsteady thin-airfoil theory. A time-stepping approach is used to solve for the vorticity on an airfoil camberline, allowing for large amplitudes and nonplanar wakes. On comparing lift coefficients from this method against data from CFD and experiments for some unsteady test cases, it is seen that the method predicts well so long as LEV formation does not occur and flow over the airfoil is attached. The formation of leading-edge vortices (LEVs) in unsteady flows is initiated by flow separation and the formation of a shear layer at the airfoil's leading edge. This phenomenon has been observed to have both detrimental (dynamic stall in helicopters) and beneficial (high-lift flight in insects) effects. To predict the formation of LEVs in unsteady flows, a Leading Edge Suction Parameter (LESP) is proposed. This parameter is calculated from inviscid theory and is a measure of the suction at the airfoil's leading edge. It
Investigating the self-organization of debris flows: theory, modelling, and empirical work
NASA Astrophysics Data System (ADS)
von Elverfeldt, Kirsten; Keiler, Margreth; Elmenreich, Wilfried; Fehárvári, István; Zhevzhyk, Sergii
2014-05-01
elements are local and simple, but are at the same time leading to a coordinated system-wide activity and pattern. Existing modelling approaches are very limited in reproducing this activity and pattern, which is why we apply an evolutionary design approach via the tool FREVO. It applies heuristic search methods to derive the microscopic interaction rules between agents, which produce the desired macroscopic behaviour. For a given behaviour, this approach can be used to fine-tune a manually given rule set or to search for possible rule sets in order to create a hypothesis of how micro-components interact. A CA model will serve as basis for this heuristic modelling approach. Theory application and development as well as the search for suitable parameter sets with an evolutionary algorithm will be accompanied, cross-checked and validated by field observations.
Kriz, Igor; Loebl, Martin; Somberg, Petr
2013-05-15
We study various mathematical aspects of discrete models on graphs, specifically the Dimer and the Ising models. We focus on proving gluing formulas for individual summands of the partition function. We also obtain partial results regarding conjectured limits realized by fermions in rational conformal field theories.
Integrating Beck's cognitive model and the response style theory in an adolescent sample.
Winkeljohn Black, Stephanie; Pössel, Patrick
2015-01-01
Depression becomes more prevalent as individuals progress from childhood to adulthood. Thus, empirically supported and popular cognitive vulnerability theories to explain depression in adulthood have begun to be tested in younger age groups, particularly adolescence, a time of significant cognitive development. Beck's cognitive theory and the response style theory are well known, empirically supported theories of depression. The current, two-wave longitudinal study (N = 462; mean age = 16.01 years; SD = 0.69; 63.9% female) tested various proposed integrative models of Beck's cognitive theory and the response style theory, as well as the original theories themselves, to determine if and how these cognitive vulnerabilities begin to intertwine in adolescence. Of the integrative models tested-all with structural equation modeling in AMOS 21-the best-fitting integrative model was a moderation model wherein schemata influenced rumination, and rumination then influenced other cognitive variables in Beck's model. Findings revealed that this integrated model fit the data better than the response style theory and explained 1.2% more variance in depressive symptoms. Additionally, multigroup analyses comparing the fit of the best-fitting integrated model across adolescents with clinical and subclinical depressive symptoms revealed that the model was not stable between these two subsamples. However, of the hypotheses relevant to the integrative model, only 1 of the 18 associations was significantly different between the clinical and subclinical samples. Regardless, the integrated model was not superior to the more parsimonious model from Beck's cognitive theory. Implications and limitations are discussed.
Growing up and role modeling: a theory in Iranian nursing students' education.
Mokhtari Nouri, Jamileh; Ebadi, Abbas; Alhani, Fatemeh; Rejeh, Nahid
2014-11-16
One of the key strategies in students' learning is being affected by models. Understanding the role-modeling process in education will help to make greater use of this training strategy. The aim of this grounded theory study was to explore Iranian nursing students and instructors' experiences about role modeling process. Data was analyzed by Glaserian's Grounded Theory methodology through semi-structured interviews with 7 faculty members, 2 nursing students; the three focus group discussions with 20 nursing students based on purposive and theoretical sampling was done for explaining role modeling process from four nursing faculties in Tehran. Through basic coding, an effort to comprehensive growth and excellence was made with the basic social process consisting the core category and through selective coding three phases were identified as: realizing and exposure to inadequate human and professional growth, facilitating human and professional growth and evolution. The role modeling process is taking place unconscious, involuntary, dynamic and with positive progressive process in order to facilitate overall growth in nursing student. Accordingly, the design and implementation of the designed model can be used to make this unconscious to conscious, active and voluntarily processes a process to help education administrators of nursing colleges and supra organization to prevent threats to human and professional in nursing students' education and promote nursing students' growth.
ERIC Educational Resources Information Center
Kohli, Nidhi; Koran, Jennifer; Henn, Lisa
2015-01-01
There are well-defined theoretical differences between the classical test theory (CTT) and item response theory (IRT) frameworks. It is understood that in the CTT framework, person and item statistics are test- and sample-dependent. This is not the perception with IRT. For this reason, the IRT framework is considered to be theoretically superior…
Attachment Theory and Theory of Planned Behavior: An Integrative Model Predicting Underage Drinking
ERIC Educational Resources Information Center
Lac, Andrew; Crano, William D.; Berger, Dale E.; Alvaro, Eusebio M.
2013-01-01
Research indicates that peer and maternal bonds play important but sometimes contrasting roles in the outcomes of children. Less is known about attachment bonds to these 2 reference groups in young adults. Using a sample of 351 participants (18 to 20 years of age), the research integrated two theoretical traditions: attachment theory and theory of…
Using the Theory of Elasticity to Model the Structure of DNA Loops
NASA Astrophysics Data System (ADS)
Balaeff, Alexander; Mahadevan, L.; Schulten, Klaus
2000-03-01
A fast computational method to study the conformation and energetics of short DNA loops is presented. The DNA is modeled as an electrically charged elastic rod. The ensemble of equilibrium conformations of the DNA loop, attainable for given boundary conditions, is generated as a set of numerical solutions to the equations of the Kirchhoff-Love theory of elasticity. The equations are augmented by electrostatic and van der Waals force terms. These modifications allow one to account for the DNA self-repulsion and to model the DNA loop interactions with other macromolecules, involved in a biomolecular system. We demonstrate the application of the method to the test system: the looped lac operon promoter of E. coli clamped by the repressor protein and stabilized by the catabolite gene activator protein. The developed coarse-grained modeling method provides the basis for multi-resolution modeling of protein-DNA complexes, e.g., in combination with all-atom molecular dynamics simulations.
A network model for activity-dependent sleep regulation.
Roy, Sandip; Krueger, James M; Rector, David M; Wan, Yan
2008-08-07
We develop and characterize a dynamical network model for activity-dependent sleep regulation. Specifically, in accordance with the activity-dependent theory for sleep, we view organism sleep as emerging from the local sleep states of functional units known as cortical columns; these local sleep states evolve through integration of local activity inputs, loose couplings with neighboring cortical columns, and global regulation (e.g. by the circadian clock). We model these cortical columns as coupled or networked activity-integrators that transition between sleep and waking states based on thresholds on the total activity. The model dynamics for three canonical experiments (which we have studied both through simulation and system-theoretic analysis) match with experimentally observed characteristics of the cortical-column network. Most notably, assuming connectedness of the network graph, our model predicts the recovery of the columns to a synchronized state upon temporary overstimulation of a single column and/or randomization of the initial sleep and activity-integration states. In analogy with other models for networked oscillators, our model also predicts the possibility for such phenomena as mode-locking.
Dynamic Models of Insurgent Activity
2014-05-19
for repeat activity in security applications. The research team has made great strides in applying such ideas to urban domestic crime applications...developed new basic research to extend many of these ideas beyond domestic crime applications to problems abroad involving insurgents and also to other...for repeat activity in security applications. The research team has made great strides in applying such ideas to urban domestic crime applications
Cohomological gauge theory, quiver matrix models and Donaldson-Thomas theory
NASA Astrophysics Data System (ADS)
Cirafici, Michele; Sinkovics, Annamaria; Szabo, Richard J.
2009-03-01
We study the relation between Donaldson-Thomas theory of Calabi-Yau threefolds and a six-dimensional topological Yang-Mills theory. Our main example is the topological U(N) gauge theory on flat space in its Coulomb branch. To evaluate its partition function we use equivariant localization techniques on its noncommutative deformation. As a result the gauge theory localizes on noncommutative instantons which can be classified in terms of N-coloured three-dimensional Young diagrams. We give to these noncommutative instantons a geometrical description in terms of certain stable framed coherent sheaves on projective space by using a higher-dimensional generalization of the ADHM formalism. From this formalism we construct a topological matrix quantum mechanics which computes an index of BPS states and provides an alternative approach to the six-dimensional gauge theory.
The physical theory and propagation model of THz atmospheric propagation
NASA Astrophysics Data System (ADS)
Wang, R.; Yao, J. Q.; Xu, D. G.; Wang, J. L.; Wang, P.
2011-02-01
Terahertz (THz) radiation is extensively applied in diverse fields, such as space communication, Earth environment observation, atmosphere science, remote sensing and so on. And the research on propagation features of THz wave in the atmosphere becomes more and more important. This paper firstly illuminates the advantages and outlook of THz in space technology. Then it introduces the theoretical framework of THz atmospheric propagation, including some fundamental physical concepts and processes. The attenuation effect (especially the absorption of water vapor), the scattering of aerosol particles and the effect of turbulent flow mainly influence THz atmosphere propagation. Fundamental physical laws are illuminated as well, such as Lamber-beer law, Mie scattering theory and radiative transfer equation. The last part comprises the demonstration and comparison of THz atmosphere propagation models like Moliere(V5), SARTre and AMATERASU. The essential problems are the deep analysis of physical mechanism of this process, the construction of atmospheric propagation model and databases of every kind of material in the atmosphere, and the standardization of measurement procedures.
NASA Astrophysics Data System (ADS)
Hatch, C. D.; Greenaway, A.; Christie, M. J.; Baltrusaitis, J.
2013-12-01
Recently, fresh, unprocessed mineral aerosol has been found to contribute to the number of available cloud condensation nuclei (CCN) and cloud droplets in the atmosphere due to the effect of water adsorption on CCN activation. The work described here uses experimental water adsorption measurements on montmorillonite and illite clay to determine empirical adsorption parameters for a recently derived theoretical framework (Frenkel-Halsey-Hill Activation Theory, FHH-AT) used to calculate CCN activities of clay minerals. Upon fitting the Frenkel-Halsey-Hill (FHH) adsorption model to experimental water adsorption measurements, we find FHH adsorption parameters, AFHH and BFHH, to be 98×22 and 1.79×0.11 for Na-montmorillonite and 75×17 and 1.77×0.11 for illite, respectively. The AFHH and BFHH values obtained for these clays are significantly different from FHH adsorption parameters derived from CCN activation measurements reported previously for similar clay minerals. Differences in FHH adsorption parameters were attributed to the different approaches used, the hydratable nature of the clays and the relative difficulty in measuring CCN activation of hydratable clays due to relatively long adsorption and desorption equilibration times. However, despite these differences, the calculated CCN activities of montmorillonite and illite are quite similar and are in excellent agreement with experimental CCN activation measurements reported previously for similar clays. The different FHH adsorption parameters, however, translate to lower sc-Ddry CCN activation curve exponents (xFHH = -0.61 and -0.64 for montmorillonite and illite, respectively) than have been reported previously. The lower exponent suggests that the CCN activity of hydratable clay aerosol is less sensitive to changes in dry particle diameter (Ddry) and the hygroscopicity parameter exhibits a broader variability with Ddry compared to more soluble aerosols. This study illustrates that FHH-AT using adsorption
ERIC Educational Resources Information Center
Barhoumi, Chokri
2015-01-01
This research paper explores the effectiveness of using mobile technologies to support a blended learning course titled Scientific Research Methods in Information Science. Specifically, it discusses the effects of WhatsApp mobile learning activities guided by activity theory on students' knowledge Management (KM). During the 2014 academic year,…
Radiative transfer theory applied to ocean bottom modeling.
Quijano, Jorge E; Zurk, Lisa M
2009-10-01
Research on the propagation of acoustic waves in the ocean bottom sediment is of interest for active sonar applications such as target detection and remote sensing. The interaction of acoustic energy with the sea floor sublayers is usually modeled with techniques based on the full solution of the wave equation, which sometimes leads to mathematically intractable problems. An alternative way to model wave propagation in layered media containing random scatterers is the radiative transfer (RT) formulation, which is a well established technique in the electromagnetics community and is based on the principle of conservation of energy. In this paper, the RT equation is used to model the backscattering of acoustic energy from a layered elastic bottom sediment containing distributions of independent scatterers due to a constant single frequency excitation in the water column. It is shown that the RT formulation provides insight into the physical phenomena of scattering and conversion of energy between waves of different polarizations.
Theory and Modeling of Gamma-Ray Pulsars
NASA Astrophysics Data System (ADS)
Yadigaroglu, Ion-Alexis George
Newborn neutron stars from supernovae explosions radiate brightly in γ rays, outshining all other objects in the Galaxy. The γ rays are emitted in a beam, and a flash of emission is observed at every rotation of the star; hence these objects are called γ-ray pulsars. A great amount of energy is radiated in this form (~ 1035 erg/s), originating from the kinetic energy associated with the rapid (~100 ms) rotation of the neutron star. As this energy is sapped and converted to γ rays, the star slows down, to ~1 s period after a million years. At this time, the γ-ray emission suddenly stops. Driven by the explosion in number and quality of γ-ray pulsar observations with the launch of the EGRET instrument aboard the Compton Gamma Ray Observatory in 1991, we have revisited the theory and modeling of γ-ray pulsars. We adopt a particular point of view in our efforts, refraining from detailed computations of the radiation spectra and looking instead to establish a number of important features of the magnetosphere and emission zones. Building on previous efforts, I have developed an outer gap model of the emission geometry and physics which is successful in explaining many of the key features of the observations. In particular the complex light curves find a natural explanation in this model. Several important puzzles remain and are presented as a challenge for future investigations. If one can successfully model the γ-ray emissions, γ-ray pulsars as a group can be used to explore general properties of our Galaxy. Initial applications of this idea are presented. We enlarge the sample of γ-ray pulsars by searching for associations of unidentified Galactic plane EGRET sources with tracers of massive stars. The characteristics of the candidate identifications are compared to detailed Galactic population syntheses using our pulsar emission model. We find good agreement with model predictions. A constraint is derived on the minimum mass a star must have in order to form
Testing Ecological Theories of Offender Spatial Decision Making Using a Discrete Choice Model
Summers, Lucia
2015-01-01
Research demonstrates that crime is spatially concentrated. However, most research relies on information about where crimes occur, without reference to where offenders reside. This study examines how the characteristics of neighborhoods and their proximity to offender home locations affect offender spatial decision making. Using a discrete choice model and data for detected incidents of theft from vehicles (TFV), we test predictions from two theoretical perspectives—crime pattern and social disorganization theories. We demonstrate that offenders favor areas that are low in social cohesion and closer to their home, or other age-related activity nodes. For adult offenders, choices also appear to be influenced by how accessible a neighborhood is via the street network. The implications for criminological theory and crime prevention are discussed. PMID:25866412
Modeling biological activities of nanoparticles.
Epa, V Chandana; Burden, Frank R; Tassa, Carlos; Weissleder, Ralph; Shaw, Stanley; Winkler, David A
2012-11-14
Products are increasingly incorporating nanomaterials, but we have a poor understanding of their adverse effects. To assess risk, regulatory authorities need more experimental testing of nanoparticles. Computational models play a complementary role in allowing rapid prediction of potential toxicities of new and modified nanomaterials. We generated quantitative, predictive models of cellular uptake and apoptosis induced by nanoparticles for several cell types. We illustrate the potential of computational methods to make a contribution to nanosafety.
Activity Theory and the Transformation of Pedagogic Practice
ERIC Educational Resources Information Center
Yamazumi, Katsuhiro
2006-01-01
Today, work and other societal practices are experiencing accelerating paradigm shifts from mass-production-based systems toward new systems based on networking between organizations, collaboration, and partnerships. This shift requires new paradigms in the fields of education, learning, and development. As human activity quickly changes to…
Exploring Formative Assessment Using Cultural Historical Activity Theory
ERIC Educational Resources Information Center
Asghar, Mandy
2013-01-01
Formative assessment is a pedagogic practice that has been the subject of much research and debate, as to how it can be used most effectively to deliver enhanced student learning in the higher education setting. Often described as a complex concept it embraces activities that range from facilitating students understanding of assessment standards,…
A Conceptual Framework Based on Activity Theory for Mobile CSCL
ERIC Educational Resources Information Center
Zurita, Gustavo; Nussbaum, Miguel
2007-01-01
There is a need for collaborative group activities that promote student social interaction in the classroom. Handheld computers interconnected by a wireless network allow people who work on a common task to interact face to face while maintaining the mediation afforded by a technology-based system. Wirelessly interconnected handhelds open up new…
Quantum Theory, Active Information and the Mind-Matter Problem
NASA Astrophysics Data System (ADS)
Pylkkänen, Paavo
Bohm and Hiley suggest that a certain new type of active information plays a key objective role in quantum processes. This chapter discusses the implications of this suggestion to our understanding of the relation between the mental and the physical aspects of reality.
Active Player Modeling in the Iterated Prisoner's Dilemma.
Park, Hyunsoo; Kim, Kyung-Joong
2016-01-01
The iterated prisoner's dilemma (IPD) is well known within the domain of game theory. Although it is relatively simple, it can also elucidate important problems related to cooperation and trust. Generally, players can predict their opponents' actions when they are able to build a precise model of their behavior based on their game playing experience. However, it is difficult to make such predictions based on a limited number of games. The creation of a precise model requires the use of not only an appropriate learning algorithm and framework but also a good dataset. Active learning approaches have recently been introduced to machine learning communities. The approach can usually produce informative datasets with relatively little effort. Therefore, we have proposed an active modeling technique to predict the behavior of IPD players. The proposed method can model the opponent player's behavior while taking advantage of interactive game environments. This experiment used twelve representative types of players as opponents, and an observer used an active modeling algorithm to model these opponents. This observer actively collected data and modeled the opponent's behavior online. Most of our data showed that the observer was able to build, through direct actions, a more accurate model of an opponent's behavior than when the data were collected through random actions.
Active Player Modeling in the Iterated Prisoner's Dilemma
Park, Hyunsoo; Kim, Kyung-Joong
2016-01-01
The iterated prisoner's dilemma (IPD) is well known within the domain of game theory. Although it is relatively simple, it can also elucidate important problems related to cooperation and trust. Generally, players can predict their opponents' actions when they are able to build a precise model of their behavior based on their game playing experience. However, it is difficult to make such predictions based on a limited number of games. The creation of a precise model requires the use of not only an appropriate learning algorithm and framework but also a good dataset. Active learning approaches have recently been introduced to machine learning communities. The approach can usually produce informative datasets with relatively little effort. Therefore, we have proposed an active modeling technique to predict the behavior of IPD players. The proposed method can model the opponent player's behavior while taking advantage of interactive game environments. This experiment used twelve representative types of players as opponents, and an observer used an active modeling algorithm to model these opponents. This observer actively collected data and modeled the opponent's behavior online. Most of our data showed that the observer was able to build, through direct actions, a more accurate model of an opponent's behavior than when the data were collected through random actions. PMID:26989405
NASA Astrophysics Data System (ADS)
Hatch, Courtney D.; Greenaway, Ann L.; Christie, Matthew J.; Baltrusaitis, Jonas
2014-04-01
Fresh mineral aerosol has recently been found to be effective cloud condensation nuclei (CCN) and contribute to the number of cloud droplets in the atmosphere due to the effect of water adsorption on CCN activation. The work described here uses experimental water adsorption measurements on Na-montmorillonite and illite clay to determine empirical adsorption parameters that can be used in a recently derived theoretical framework (Frenkel-Halsey-Hill Activation Theory, FHH-AT) that accounts for the effect of water adsorption on CCN activation. Upon fitting the Frenkel-Halsey-Hill (FHH) adsorption model to water adsorption measurements, we find FHH adsorption parameters, AFHH and BFHH, to be 98 ± 22 and 1.79 ± 0.11 for montmorillonite and 75 ± 17 and 1.77 ± 0.11 for illite, respectively. The AFHH and BFHH values obtained from water adsorption measurements differ from values reported previously determined by applying FHH-AT to CCN activation measurements. Differences in FHH adsorption parameters were attributed to different methods used to obtain them and the hydratable nature of the clays. FHH adsorption parameters determined from water adsorption measurements were then used to calculate the critical super-saturation (sc) for CCN activation using FHH-AT. The relationship between sc and the dry particle diameter (Ddry) gave CCN activation curve exponents (xFHH) of -0.61 and -0.64 for montmorillonite and illite, respectively. The xFHH values were slightly lower than reported previously for mineral aerosol. The lower exponent suggests that the CCN activity of hydratable clays is less sensitive to changes in Ddry and the hygroscopicity parameter exhibits a broader variability with Ddry compared to more soluble aerosols. Despite the differences in AFHH, BFHH and xFHH, the FHH-AT derived CCN activities of montmorillonite and illite are quite similar to each other and in excellent agreement with experimental CCN measurements resulting from wet-generated clay aerosol
Lattice Discrete Particle Model (LDPM) for Failure Behavior of Concrete. 1: Theory (PREPRINT)
2010-12-18
Lattice Discrete Particle Model (LDPM) for Failure Behavior of Concrete. I: Theory . By Gianluca Cusatis 1, Daniele Pelessone 2, Andrea Mencarelli 3...Lattice Discrete Particle Model (LDPM) For Failure Behavior Of Concrete. I: Theory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...proposing new multiscale theories have flourished, especially for modeling nano-composite materials and atomistic and molecular systems [23]. The same kind
Discursive Positionings and Emotions in Modelling Activities
ERIC Educational Resources Information Center
Daher, Wajeeh
2015-01-01
Mathematical modelling is suggested as an activity through which students engage in meaningful mathematics. In the current research, the modelling activity of a group of four seventh-grade students was analysed using the discursive analysis framework. The research findings show that the positionings and emotions of the group members during their…
Using Spreadsheets To Implement the One-Parameter Item Response Theory (IRT) Model.
ERIC Educational Resources Information Center
Henard, David H.
Item response theory models arose from the inherent limitations of classical test theory methods of test analysis. A brief description of those limitations and the corresponding enhancements provided by item response models is provided. Further, an examination of the popular Rasch one-parameter latent trait model is undertaken. Specific…
T-cell activation: A queuing theory analysis at low agonist density.
Wedagedera, J R; Burroughs, N J
2006-09-01
We analyze a simple linear triggering model of the T-cell receptor (TCR) within the framework of queuing theory, in which TCRs enter the queue upon full activation and exit by downregulation. We fit our model to four experimentally characterized threshold activation criteria and analyze their specificity and sensitivity: the initial calcium spike, cytotoxicity, immunological synapse formation, and cytokine secretion. Specificity characteristics improve as the time window for detection increases, saturating for time periods on the timescale of downregulation; thus, the calcium spike (30 s) has low specificity but a sensitivity to single-peptide MHC ligands, while the cytokine threshold (1 h) can distinguish ligands with a 30% variation in the complex lifetime. However, a robustness analysis shows that these properties are degraded when the queue parameters are subject to variation-for example, under stochasticity in the ligand number in the cell-cell interface and population variation in the cellular threshold. A time integration of the queue over a period of hours is shown to be able to control parameter noise efficiently for realistic parameter values when integrated over sufficiently long time periods (hours), the discrimination characteristics being determined by the TCR signal cascade kinetics (a kinetic proofreading scheme). Therefore, through a combination of thresholds and signal integration, a T cell can be responsive to low ligand density and specific to agonist quality. We suggest that multiple threshold mechanisms are employed to establish the conditions for efficient signal integration, i.e., coordinate the formation of a stable contact interface.
O the Use of Modern Control Theory for Active Structural Acoustic Control.
NASA Astrophysics Data System (ADS)
Saunders, William Richard
A modern control theory formulation of Active Structural Acoustic Control (ASAC) of simple structures radiating acoustic energy into light or heavy fluid mediums is discussed in this dissertation. ASAC of a baffled, simply-supported plate subject to mechanical disturbances is investigated. For the case of light fluid loading, a finite element modelling approach is used to extend previous ASAC design methods. Vibration and acoustic controllers are designed for the plate. Comparison of the controller performance shows distinct advantages of the ASAC method for minimizing radiated acoustic power. A novel approach to the modelling of the heavy fluid-loaded plate is developed here. Augmenting structural and acoustic dynamics using state vector formalism allows the design of both vibration and ASAC controllers for the fluid-loaded plate. This modern control approach to active structural acoustic control is unique in its ability to suppress both persistent and transient disturbances on a plate in a heavy fluid. Numerical simulations of the open-loop and closed-loop plate response are provided to support the theoretical developments.
Cold and hot cognition: quantum probability theory and realistic psychological modeling.
Corr, Philip J
2013-06-01
Typically, human decision making is emotionally "hot" and does not conform to "cold" classical probability (CP) theory. As quantum probability (QP) theory emphasises order, context, superimposition states, and nonlinear dynamic effects, one of its major strengths may be its power to unify formal modeling and realistic psychological theory (e.g., information uncertainty, anxiety, and indecision, as seen in the Prisoner's Dilemma).
B. Julia-Diaz, H. Kamano, T.-S. H. Lee, A. Matsuyama, T. Sato, N. Suzuki
2009-04-01
Within the relativistic quantum field theory, we analyze the differences between the $\\pi N$ reaction models constructed from using (1) three-dimensional reductions of Bethe-Salpeter Equation, (2) method of unitary transformation, and (3) time-ordered perturbation theory. Their relations with the approach based on the dispersion relations of S-matrix theory are dicusssed.
ERIC Educational Resources Information Center
Loft, Shayne; Bolland, Scott; Humphreys, Michael S.; Neal, Andrew
2009-01-01
A performance theory for conflict detection in air traffic control is presented that specifies how controllers adapt decisions to compensate for environmental constraints. This theory is then used as a framework for a model that can fit controller intervention decisions. The performance theory proposes that controllers apply safety margins to…
NASA Astrophysics Data System (ADS)
Reinisch, Bianca; Krüger, Dirk
2016-11-01
In research on the nature of science, there is a need to investigate the role and status of different scientific knowledge forms. Theories and models are two of the most important knowledge forms within biology and are the focus of this study. During interviews, preservice biology teachers (N = 10) were asked about their understanding of theories and models. They were requested to give reasons why they see theories and models as either tentative or certain constructs. Their conceptions were then compared to philosophers' positions (e.g., Popper, Giere). A category system was developed from the qualitative content analysis of the interviews. These categories include 16 conceptions for theories (n tentative = 11; n certain = 5) and 18 conceptions for models (n tentative = 10; n certain = 8). The analysis of the interviews showed that the preservice teachers gave reasons for the tentativeness or certainty of theories and models either due to their understanding of the terms or due to their understanding of the generation or evaluation of theories and models. Therefore, a variety of different terminology, from different sources, should be used in learning-teaching situations. Additionally, an understanding of which processes lead to the generation, evaluation, and refinement or rejection of theories and models should be discussed with preservice teachers. Within philosophy of science, there has been a shift from theories to models. This should be transferred to educational contexts by firstly highlighting the role of models and also their connections to theories.
Critique of fluid theory of magnetospheric phenomena. [kinetic theory vs two fluid models
NASA Technical Reports Server (NTRS)
Heikkila, W. J.
1973-01-01
Discussion of the limitations and shortcomings of the fluid theory of magnetospheric phenomena. Following a brief qualitative review of the various theoretical approaches and of their interrelation, some of the limitations of the fluid theory with respect to magnetospheric problems are outlined, and the subsequent fallacies are exposed. The idea of frozen field convection and the concept of field line annihilation or merging are criticized. In conclusion, a plea is made for a more balanced approach to magnetospheric problems.
Modelling Typical Online Language Learning Activity
ERIC Educational Resources Information Center
Montoro, Carlos; Hampel, Regine; Stickler, Ursula
2014-01-01
This article presents the methods and results of a four-year-long research project focusing on the language learning activity of individual learners using online tasks conducted at the University of Guanajuato (Mexico) in 2009-2013. An activity-theoretical model (Blin, 2010; Engeström, 1987) of the typical language learning activity was used to…
Evaluating a Model of Youth Physical Activity
ERIC Educational Resources Information Center
Heitzler, Carrie D.; Lytle, Leslie A.; Erickson, Darin J.; Barr-Anderson, Daheia; Sirard, John R.; Story, Mary
2010-01-01
Objective: To explore the relationship between social influences, self-efficacy, enjoyment, and barriers and physical activity. Methods: Structural equation modeling examined relationships between parent and peer support, parent physical activity, individual perceptions, and objectively measured physical activity using accelerometers among a…
Associative memory model with spontaneous neural activity
NASA Astrophysics Data System (ADS)
Kurikawa, Tomoki; Kaneko, Kunihiko
2012-05-01
We propose a novel associative memory model wherein the neural activity without an input (i.e., spontaneous activity) is modified by an input to generate a target response that is memorized for recall upon the same input. Suitable design of synaptic connections enables the model to memorize input/output (I/O) mappings equaling 70% of the total number of neurons, where the evoked activity distinguishes a target pattern from others. Spontaneous neural activity without an input shows chaotic dynamics but keeps some similarity with evoked activities, as reported in recent experimental studies.
Jekauc, Darko; Völkle, Manuel; Wagner, Matthias O; Mess, Filip; Reiner, Miriam; Renner, Britta
2015-01-01
In the processes of physical activity (PA) maintenance specific predictors are effective, which differ from other stages of PA development. Recently, Physical Activity Maintenance Theory (PAMT) was specifically developed for prediction of PA maintenance. The aim of the present study was to evaluate the predictability of the future behavior by the PAMT and compare it with the Theory of Planned Behavior (TPB) and Social Cognitive Theory (SCT). Participation rate in a fitness center was observed for 101 college students (53 female) aged between 19 and 32 years (M = 23.6; SD = 2.9) over 20 weeks using a magnetic card. In order to predict the pattern of participation TPB, SCT and PAMT were used. A latent class zero-inflated Poisson growth curve analysis identified two participation patterns: regular attenders and intermittent exercisers. SCT showed the highest predictive power followed by PAMT and TPB. Impeding aspects as life stress and barriers were the strongest predictors suggesting that overcoming barriers might be an important aspect for working out on a regular basis. Self-efficacy, perceived behavioral control, and social support could also significantly differentiate between the participation patterns.
Sustainable theory of a logistic model - Fisher information approach.
Al-Saffar, Avan; Kim, Eun-Jin
2017-03-01
Information theory provides a useful tool to understand the evolution of complex nonlinear systems and their sustainability. In particular, Fisher information has been evoked as a useful measure of sustainability and the variability of dynamical systems including self-organising systems. By utilising Fisher information, we investigate the sustainability of the logistic model for different perturbations in the positive and/or negative feedback. Specifically, we consider different oscillatory modulations in the parameters for positive and negative feedback and investigate their effect on the evolution of the system and Probability Density Functions (PDFs). Depending on the relative time scale of the perturbation to the response time of the system (the linear growth rate), we demonstrate the maintenance of the initial condition for a long time, manifested by a broad bimodal PDF. We present the analysis of Fisher information in different cases and elucidate its implications for the sustainability of population dynamics. We also show that a purely oscillatory growth rate can lead to a finite amplitude solution while self-organisation of these systems can break down with an exponentially growing solution due to the periodic fluctuations in negative feedback.
Gambler Risk Perception: A Mental Model and Grounded Theory Analysis.
Spurrier, Michael; Blaszczynski, Alexander; Rhodes, Paul
2015-09-01
Few studies have investigated how gamblers perceive risk or the role of risk perception in disordered gambling. The purpose of the current study therefore was to obtain data on lay gamblers' beliefs on these variables and their effects on decision-making, behaviour, and disordered gambling aetiology. Fifteen regular lay gamblers (non-problem/low risk, moderate risk and problem gamblers) completed a semi-structured interview following mental models and grounded theory methodologies. Gambler interview data was compared to an expert 'map' of risk-perception, to identify comparative gaps or differences associated with harmful or safe gambling. Systematic overlapping processes of data gathering and analysis were used to iteratively extend, saturate, test for exception, and verify concepts and themes emerging from the data. The preliminary findings suggested that gambler accounts supported the presence of expert conceptual constructs, and to some degree the role of risk perception in protecting against or increasing vulnerability to harm and disordered gambling. Gambler accounts of causality, meaning, motivation, and strategy were highly idiosyncratic, and often contained content inconsistent with measures of disordered gambling. Disordered gambling appears heavily influenced by relative underestimation of risk and overvaluation of gambling, based on explicit and implicit analysis, and deliberate, innate, contextual, and learned processing evaluations and biases.
Pt +-mediated activation of methane: theory and experiment
NASA Astrophysics Data System (ADS)
Heinemann, Christoph; Wesendrup, Ralf; Schwarz, Helmut
1995-06-01
A combined theoretical and experimental study on the Pt +-mediated activation of methane is presented. Dehydrogenation of CH 4 by thermalized Pt + cations (Pt + + CH 4 ← PtCH 2+ + H 2) proceeds along a doublet ground state potential energy surface and is found to be reversible under the conditions of Fourier transform ion-cyclotron resonance mass spectrometry. The recently reported oxidation of the cationic platinum carbene PtCH 2+ by O 2 produces electronically excited Pt + cations, which are detected in the 4F9/2 state by means of charge-transfer bracketing experiments.
Wu, Ya-Ke; Chu, Nain-Feng
2015-01-01
Overweight and obesity are serious public health and medical problems among children and adults worldwide. Behavioural change has been demonstrably contributory to weight management programs. Behavioural change-based weight loss programs require a theoretical framework. We will review the transtheoretical model and the organisational development theory in weight management. The transtheoretical model is a behaviour theory of individual level frequently used for weight management programs. The organisational development theory is a more complicated behaviour theory that applies to behavioural change on the system level. Both of these two theories have their respective strengths and weaknesses. In this manuscript, we try to introduce the transtheoretical model and the organisational development theory in the context of weight loss programs among population that are overweight or obese. Ultimately, we wish to present a new framework/strategy of weight management by integrating these two theories together.
Social cognitive theory and physical activity: a systematic review and meta-analysis.
Young, M D; Plotnikoff, R C; Collins, C E; Callister, R; Morgan, P J
2014-12-01
This review investigated three research questions (i) What is the utility of social cognitive theory (SCT) to explain physical activity (PA)?; (ii) Is the effectiveness of SCT moderated by sample or methodological characteristics? and (iii) What is the frequency of significant associations between the core SCT constructs and PA? Ten electronic databases were searched with no date or sample restrictions. Forty-four studies were retrieved containing 55 SCT models of PA. Methodological quality was assessed using a standardized tool. A random-effects meta-analysis revealed that SCT accounted for 31% of the variance in PA. However, methodological quality was mostly poor for these models. Methodological quality and sample age moderated the PA effect size, with increases in both associated with greater variance explained. Although self-efficacy and goals were consistently associated with PA, outcome expectations and socio-structural factors were not. This review determined that SCT is a useful framework to explain PA behaviour. Higher quality models explained more PA variance, but overall methodological quality was poor. As such, high-quality studies examining the utility of SCT to explain PA are warranted.
Understanding Preschool Emergent Science in a Cultural Historical Context through Activity Theory
ERIC Educational Resources Information Center
Sundberg, Bodil; Areljung, Sofie; Due, Karin; Ekström, Kenneth; Ottander, Christina; Tellgren, Britt
2016-01-01
The aim of this study is to explore how cultural factors interact with preschool teachers' shaping of activities with science content, and also how Activity Theory (AT) as a theoretical framework can be useful for examining interrelations within preschool systems. Qualitative data was collected from three preschools in the form of guided group…
ERIC Educational Resources Information Center
Murphy, Elizabeth; Manzanares, Maria A. Rodriguez
2008-01-01
This paper uses a third-generation Activity Theory perspective to gain insight into the contradictions between the activity systems of the physical and virtual high school classroom from the perspective of teachers who had transitioned from one system to the other. Data collection relied on semi-structured interviews conducted with e-teachers as…
Theory-based Health Education Activities for Third to Sixth Grade Children.
ERIC Educational Resources Information Center
Jaycox, Sharon; And Others
1983-01-01
Eight educational activities based on social learning and social support theory were used as part of a comprehensive cardiovascular risk reduction program for families with children in the elementary grades. Activities focused on changing behavior with regard to diet and exercise. (Author/PP)
ERIC Educational Resources Information Center
Keh, Claudia L.
1988-01-01
Smith's approach to reading comprehension is used as the basis of an activity related to the Use of English Exam in Hong Kong. The eight-step activity is described and shown to combine sound reading theory with an academic, test-oriented syllabus. (3 references) (LB)
ERIC Educational Resources Information Center
Thompson, Ian
2015-01-01
This article argues that Cultural Historical Activity Theory (CHAT) is an appropriate theoretical and methodological framework for researchers in English interested in the social contexts of culture and its relationship with the formation of mind and activity in the English classroom. Two key concepts in Vygotsky's thought central to understanding…
Brief Report: The Theory of Planned Behaviour Applied to Physical Activity in Young People Who Smoke
ERIC Educational Resources Information Center
Everson, Emma S.; Daley, Amanda J.; Ussher, Michael
2007-01-01
It has been hypothesised that physical activity may be useful as a smoking cessation intervention for young adults. In order to inform such interventions, this study evaluated the theory of planned behaviour (TPB) for understanding physical activity behaviour in young smokers. Regular smokers aged 16-19 years (N=124), self-reported physical…
Exploration of Tensions in a Mobile-Technology Supported Fieldtrip: An Activity Theory Perspective
ERIC Educational Resources Information Center
Lai, Chih-Hung; Chen, Fei-Ching; Yang, Jie-Chi
2014-01-01
The purpose of this study was to analyze how mobile technologies were incorporated and implemented in an outdoor learning activity. Two classes of primary school students participated in the experiment. Using activity theory as an analytical framework, it is found that underlying tensions provided rich insights into system dynamics and that…
Modeling and Performing Relational Theories in the Classroom
ERIC Educational Resources Information Center
Suter, Elizabeth A.; West, Carrie L.
2011-01-01
Although directly related to students' everyday lives, the abstract and even intimidating nature of relational theories often bars students from recognizing the immediate relevance to their relationships. The theories of symbolic interactionism, social exchange, relational dialectics, social penetration, and uncertainty reduction offer students…
Social Construction Theory and the Satir Model: Toward a Synthesis.
ERIC Educational Resources Information Center
Cheung, Maria
1997-01-01
Synthesizes social construction theory and the Satir approach to family therapy as a process of cocreation of reality, the use of language and narrative, and the therapist's role as a participant-facilitator. Presents a theory-building process of the Satir approach to family therapy. (Author/MKA)
Naive Probability: A Mental Model Theory of Extensional Reasoning.
ERIC Educational Resources Information Center
Johnson-Laird, P. N.; Legrenzi, Paolo; Girotto, Vittorio; Legrenzi, Maria Sonino; Caverni, Jean-Paul
1999-01-01
Outlines a theory of naive probability in which individuals who are unfamiliar with the probability calculus can infer the probabilities of events in an "extensional" way. The theory accommodates reasoning based on numerical premises, and explains how naive reasoners can infer posterior probabilities without relying on Bayes's theorem.…
A Model for a Grand Theory: Creativity in Art.
ERIC Educational Resources Information Center
McWhinnie, Harold J.
This paper presents a collection of thoughts and observations about a grand theory of creativity in the arts. The theory elaborated in the paper is based upon the following five major bodies of psychological knowledge and research: (1) hemisphere differences and cerebral lateralization; (2) chemical balance in the brain and bipolar factors; (3)…
Unidimensional and Multidimensional Models for Item Response Theory.
ERIC Educational Resources Information Center
McDonald, Roderick P.
This paper provides an up-to-date review of the relationship between item response theory (IRT) and (nonlinear) common factor theory and draws out of this relationship some implications for current and future research in IRT. Nonlinear common factor analysis yields a natural embodiment of the weak principle of local independence in appropriate…
Towards a theory of stochastic vorticity-augmentation. [tornado model
NASA Technical Reports Server (NTRS)
Liu, V. C.
1977-01-01
A new hypothesis to account for the formation of tornadoes is presented. An elementary one-dimensional theory is formulated for vorticity transfer between an ambient sheared wind and a transverse penetrating jet. The theory points out the relevant quantities to be determined in describing the present stochastic mode of vorticity augmentation.
NASA Astrophysics Data System (ADS)
Roth, Wolff-Michael
2012-03-01
Cultural-historical activity theory—with historical roots in dialectical materialism and the social psychology to which it has given rise—has experienced exponential growth in its acceptance by scholars interested in understanding knowing and learning writ large. In education, this theory has constituted something like a well kept secret that is only in the process of gaining larger levels of acceptance. Mathematics educators are only beginning to realise the tremendous advantages that the theory provides over other theories. In this review essay, I articulate the theory as it may relate to the issues that concern mathematics education and educators with a particular focus on the way in which it addresses logical contradictions in existing theories.
ERIC Educational Resources Information Center
Martin, Emma; McKenzie, Karen; Newman, Emily; Bowden, Keith; Morris, Paul Graham
2011-01-01
Researchers suggest that people with an intellectual disability (ID) undertake less physical activity than the general population and many rely, to some extent, on others to help them to access activities. The Theory of Planned Behaviour (TPB) model was previously found to significantly predict the intention of care staff to facilitate a healthy…
Discovery of Fur binding site clusters in Escherichia coli by information theory models
Chen, Zehua; Lewis, Karen A.; Shultzaberger, Ryan K.; Lyakhov, Ilya G.; Zheng, Ming; Doan, Bernard; Storz, Gisela; Schneider, Thomas D.
2007-01-01
Fur is a DNA binding protein that represses bacterial iron uptake systems. Eleven footprinted Escherichia coli Fur binding sites were used to create an initial information theory model of Fur binding, which was then refined by adding 13 experimentally confirmed sites. When the refined model was scanned across all available footprinted sequences, sequence walkers, which are visual depictions of predicted binding sites, frequently appeared in clusters that fit the footprints (∼83% coverage). This indicated that the model can accurately predict Fur binding. Within the clusters, individual walkers were separated from their neighbors by exactly 3 or 6 bases, consistent with models in which Fur dimers bind on different faces of the DNA helix. When the E. coli genome was scanned, we found 363 unique clusters, which includes all known Fur-repressed genes that are involved in iron metabolism. In contrast, only a few of the known Fur-activated genes have predicted Fur binding sites at their promoters. These observations suggest that Fur is either a direct repressor or an indirect activator. The Pseudomonas aeruginosa and Bacillus subtilis Fur models are highly similar to the E. coli Fur model, suggesting that the Fur–DNA recognition mechanism may be conserved for even distantly related bacteria. PMID:17921503
Matto, Holly
2005-01-01
A bio-behavioral approach to drug addiction treatment is outlined. The presented treatment model uses dual representation theory as a guiding framework for understanding the bio-behavioral processes activated during the application of expressive therapeutic methods. Specifically, the treatment model explains how visual processing techniques can supplement traditional relapse prevention therapy protocols, to help clients better manage cravings and control triggers in hard-to-treat populations such as chronic substance-dependent persons.
New light on the Co-C bond activation in B 12-dependent enzymes from density functional theory
NASA Astrophysics Data System (ADS)
Andruniow, Tadeusz; Zgierski, Marek Z.; Kozlowski, Pawel M.
2000-12-01
Density functional theory (DFT) is applied to the calculation of activation of the Co-C R bond in models of vitamin B 12, B-[Co III(corrin)]-R. It is shown that there is a positive correlation of the bond lengths between the Co atom and the two axial ligands, B and R. The electron donation from axial ligands to the cobalt atom either by electron donating substituents or by a properly oriented external electric field caused by external electric charges is argued to be the main trigger for the activation of the Co-C R bond.
Ziegler, Sigurd; Pedersen, Mads L; Mowinckel, Athanasia M; Biele, Guido
2016-12-01
Attention deficit hyperactivity disorder (ADHD) is characterized by altered decision-making (DM) and reinforcement learning (RL), for which competing theories propose alternative explanations. Computational modelling contributes to understanding DM and RL by integrating behavioural and neurobiological findings, and could elucidate pathogenic mechanisms behind ADHD. This review of neurobiological theories of ADHD describes predictions for the effect of ADHD on DM and RL as described by the drift-diffusion model of DM (DDM) and a basic RL model. Empirical studies employing these models are also reviewed. While theories often agree on how ADHD should be reflected in model parameters, each theory implies a unique combination of predictions. Empirical studies agree with the theories' assumptions of a lowered DDM drift rate in ADHD, while findings are less conclusive for boundary separation. The few studies employing RL models support a lower choice sensitivity in ADHD, but not an altered learning rate. The discussion outlines research areas for further theoretical refinement in the ADHD field.
Nonclassical models of the theory of plates and shells
NASA Astrophysics Data System (ADS)
Annin, B. D.; Volchkov, Yu. M.
2016-09-01
Publications dealing with the study of methods of reducing a three-dimensional problem of the elasticity theory to a two-dimensional problem of the theory of plates and shells are reviewed. Two approaches are considered: the use of kinematic and force hypotheses and expansion of solutions of the three-dimensional elasticity theory in terms of the complete system of functions. Papers where a three-dimensional problem is reduced to a two-dimensional problem with the use of several approximations of each sought function (stresses and displacements) by segments of Legendre polynomials are also reviewed.
Brooks, Jessica M; Iwanaga, Kanako; Chiu, Chung-Yi; Cotton, Brandi Parker; Deiches, Jon; Morrison, Blaise; Moser, Erin; Chan, Fong
2017-01-22
This study examined the relationships between self-determination theory (SDT) and theory of planned behavior (TpB) applied to physical activity and exercise behavior (PA&E) in people with chronic pain. Two hundred and eleven adults with chronic musculoskeletal pain (28 males and 183 females, age range 18 to 82 years, mean age 43 years) were recruited from online support groups and clinic networks in the United States. Participants completed SDT measures relevant to PA&E on perceived autonomy support, autonomy, competence, and relatedness, as well as TpB measures relevant to PA&E on intention, attitudes, subjective norms, and perceived behavioral control. Correlational techniques and canonical correlation analysis were performed to examine the relationships and variance within and between theoretical dimensions. Overall, the SDT set accounted for 37% of the TpB variance and the TpB set accounted for 32% of the SDT set variance. The results indicate there are statistical similarities and differences between concepts in SDT and TpB models for PA&E. Using both empirical guidance and clinical expertise, researchers and practitioners should attempt to select and integrate non-redundant and complementary components from SDT, TpB, and other related health behavior theories.
NASA Astrophysics Data System (ADS)
Nguyen Lan, Tran; Chalupský, Jakub; Yanai, Takeshi
2015-07-01
The molecular g-tensor is an important spectroscopic parameter provided by electron para magnetic resonance (EPR) measurement and often needs to be interpreted using computational methods. Here, we present two new implementations based on the first-order and second-order perturbation theories to calculate the g-tensors within the complete-active space self-consistent field (CASSCF) wave function model. In the first-order method, the quasi-degenerate perturbation theory (QDPT) is employed for constructing relativistic CASSCF states perturbed with the spin-orbit coupling operator, which is described effectively in one-electron form with the flexible nuclear screening spin-orbit approximation introduced recently by us. The second-order method is a newly reported approach built upon the linear response theory which accounts for the perturbation with respect to external magnetic field. It is implemented with the coupled-perturbed CASSCF (CP-CASSCF) approach, which provides an equivalent of untruncated sum-over-states expansion. The comparison of the performances between the first-order and second-order methods is shown for various molecules containing light to heavy elements, highlighting their relative strength and weakness. The formulations of QDPT and CP-CASSCF approaches as well as the derivation of the second-order Douglas-Kroll-Hess picture change of Zeeman operators are given in detail.
Discursive positionings and emotions in modelling activities
NASA Astrophysics Data System (ADS)
Daher, Wajeeh
2015-11-01
Mathematical modelling is suggested as an activity through which students engage in meaningful mathematics. In the current research, the modelling activity of a group of four seventh-grade students was analysed using the discursive analysis framework. The research findings show that the positionings and emotions of the group members during their participation in the modelling activity changed as the activity proceeded. Overall, it can be said that three of the four group members acted as insiders, while the fourth acted as an outsider, and only, towards the end of the group's work on the activity, he acted as an insider. Moreover, the research findings point at four factors that affected the group members' positionings and emotions during the modelling activity: the member's characteristics, the member's history of learning experiences, the activity characteristics and the modelling phases. Furthermore, the different positionings of the group members in the different modelling phases were accompanied by different emotions experienced by them, where being an insider and a collaborator resulted in positive emotions, while being an outsider resulted in negative emotions.
Maximum Likelihood Item Easiness Models for Test Theory without an Answer Key
ERIC Educational Resources Information Center
France, Stephen L.; Batchelder, William H.
2015-01-01
Cultural consensus theory (CCT) is a data aggregation technique with many applications in the social and behavioral sciences. We describe the intuition and theory behind a set of CCT models for continuous type data using maximum likelihood inference methodology. We describe how bias parameters can be incorporated into these models. We introduce…
Reasoning with conditionals: a test of formal models of four theories.
Oberauer, Klaus
2006-11-01
The four dominant theories of reasoning from conditionals are translated into formal models: The theory of mental models (Johnson-Laird, P. N., & Byrne, R. M. J. (2002). Conditionals: a theory of meaning, pragmatics, and inference. Psychological Review, 109, 646-678), the suppositional theory (Evans, J. S. B. T., & Over, D. E. (2004). If. Oxford: Oxford University Press), a dual-process variant of the model theory (Verschueren, N., Schaeken, W., & d'Ydewalle, G. (2005). A dual-process specification of causal conditional reasoning. Thinking &Reasoning, 11, 278-293), and the probabilistic theory (Oaksford, M., Chater, N., & Larkin, J. (2000). Probabilities and polarity biases in conditional inference. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 883-899). The first three theories are formalized as multinomial models. The models are applied to the frequencies of patterns of acceptance or rejection across the four basic inferences modus ponens, acceptance of the consequent, denial of the antecedent, and modus tollens. Model fits are assessed for two large data sets, one representing reasoning with abstract, basic conditionals, the other reflecting reasoning with pseudo-realistic causal and non-causal conditionals. The best account of the data was provided by a modified version of the mental-model theory, augmented by directionality, and by the dual-process model.
Design of Learning Model of Logic and Algorithms Based on APOS Theory
ERIC Educational Resources Information Center
Hartati, Sulis Janu
2014-01-01
This research questions were "how do the characteristics of learning model of logic & algorithm according to APOS theory" and "whether or not these learning model can improve students learning outcomes". This research was conducted by exploration, and quantitative approach. Exploration used in constructing theory about the…
Bao, Junwei Lucas; Zheng, Jingjing; Truhlar, Donald G
2016-03-02
Pressure-dependent reactions are ubiquitous in combustion and atmospheric chemistry. We employ a new calibration procedure for quantum Rice-Ramsperger-Kassel (QRRK) unimolecular rate theory within a chemical activation mechanism to calculate the pressure-falloff effect of a radical association with an aromatic ring. The new theoretical framework is applied to the reaction of H with toluene, which is a prototypical reaction in the combustion chemistry of aromatic hydrocarbons present in most fuels. Both the hydrogen abstraction reactions and the hydrogen addition reactions are calculated. Our system-specific (SS) QRRK approach is adjusted with SS parameters to agree with multistructural canonical variational transition state theory with multidimensional tunneling (MS-CVT/SCT) at the high-pressure limit. The new method avoids the need for the usual empirical estimations of the QRRK parameters, and it eliminates the need for variational transition state theory calculations as a function of energy, although in this first application we do validate the falloff curves by comparing SS-QRRK results without tunneling to multistructural microcanonical variational transition state theory (MS-μVT) rate constants without tunneling. At low temperatures, the two approaches agree well with each other, but at high temperatures, SS-QRRK tends to overestimate falloff slightly. We also show that the variational effect is important in computing the energy-resolved rate constants. Multiple-structure anharmonicity, torsional-potential anharmonicity, and high-frequency-mode vibrational anharmonicity are all included in the rate computations, and torsional anharmonicity effects on the density of states are investigated. Branching fractions, which are both temperature- and pressure-dependent (and for which only limited data is available from experiment), are predicted as a function of pressure.
Guell, C.; Panter, J.; Jones, N.R.; Ogilvie, D.
2012-01-01
Fostering physical activity is an established public health priority for the primary prevention of a variety of chronic diseases. One promising population approach is to seek to embed physical activity in everyday lives by promoting walking and cycling to and from work (‘active commuting’) as an alternative to driving. Predominantly quantitative epidemiological studies have investigated travel behaviours, their determinants and how they may be changed towards more active choices. This study aimed to depart from narrow behavioural approaches to travel and investigate the social context of commuting with qualitative social research methods. Within a social practice theory framework, we explored how people describe their commuting experiences and make commuting decisions, and how travel behaviour is embedded in and shaped by commuters' complex social worlds. Forty-nine semi-structured interviews and eighteen photo-elicitation interviews with accompanying field notes were conducted with a subset of the Commuting and Health in Cambridge study cohort, based in the UK. The findings are discussed in terms of three particularly pertinent facets of the commuting experience. Firstly, choice and decisions are shaped by the constantly changing and fluid nature of commuters' social worlds. Secondly, participants express ambiguities in relation to their reasoning, ambitions and identities as commuters. Finally, commuting needs to be understood as an embodied and emotional practice. With this in mind, we suggest that everyday decision-making in commuting requires the tactical negotiation of these complexities. This study can help to explain the limitations of more quantitative and static models and frameworks in predicting travel behaviour and identify future research directions. PMID:22486840
Guell, C; Panter, J; Jones, N R; Ogilvie, D
2012-07-01
Fostering physical activity is an established public health priority for the primary prevention of a variety of chronic diseases. One promising population approach is to seek to embed physical activity in everyday lives by promoting walking and cycling to and from work ('active commuting') as an alternative to driving. Predominantly quantitative epidemiological studies have investigated travel behaviours, their determinants and how they may be changed towards more active choices. This study aimed to depart from narrow behavioural approaches to travel and investigate the social context of commuting with qualitative social research methods. Within a social practice theory framework, we explored how people describe their commuting experiences and make commuting decisions, and how travel behaviour is embedded in and shaped by commuters' complex social worlds. Forty-nine semi-structured interviews and eighteen photo-elicitation interviews with accompanying field notes were conducted with a subset of the Commuting and Health in Cambridge study cohort, based in the UK. The findings are discussed in terms of three particularly pertinent facets of the commuting experience. Firstly, choice and decisions are shaped by the constantly changing and fluid nature of commuters' social worlds. Secondly, participants express ambiguities in relation to their reasoning, ambitions and identities as commuters. Finally, commuting needs to be understood as an embodied and emotional practice. With this in mind, we suggest that everyday decision-making in commuting requires the tactical negotiation of these complexities. This study can help to explain the limitations of more quantitative and static models and frameworks in predicting travel behaviour and identify future research directions.
A conceptual framework for organismal biology: linking theories, models, and data.
Zamer, William E; Scheiner, Samuel M
2014-11-01
Implicit or subconscious theory is especially common in the biological sciences. Yet, theory plays a variety of roles in scientific inquiry. First and foremost, it determines what does and does not count as a valid or interesting question or line of inquiry. Second, theory determines the background assumptions within which inquiries are pursued. Third, theory provides linkages among disciplines. For these reasons, it is important and useful to develop explicit theories for biology. A general theory of organisms is developed, which includes 10 fundamental principles that apply to all organisms, and 6 that apply to multicellular organisms only. The value of a general theory comes from its utility to help guide the development of more specific theories and models. That process is demonstrated by examining two domains: ecoimmunology and development. For the former, a constitutive theory of ecoimmunology is presented, and used to develop a specific model that explains energetic trade-offs that may result from an immunological response of a host to a pathogen. For the latter, some of the issues involved in trying to devise a constitutive theory that covers all of development are explored, and a more narrow theory of phenotypic novelty is presented. By its very nature, little of a theory of organisms will be new. Rather, the theory presented here is a formal expression of nearly two centuries of conceptual advances and practice in research. Any theory is dynamic and subject to debate and change. Such debate will occur as part of the present, initial formulation, as the ideas presented here are refined. The very process of debating the form of the theory acts to clarify thinking. The overarching goal is to stimulate debate about the role of theory in the study of organisms, and thereby advance our understanding of them.
An improved thermodiffusion model for ternary mixtures using Fujita's free volume theory
NASA Astrophysics Data System (ADS)
Abbasi, Alireza; Saghir, M. Ziad; Kawaji, Masahiro
2011-09-01
Thermodiffusion along molecular diffusion is one of the major mechanisms of transport phenomena. They have an important role in displacement of hydrocarbon fluid components in an oil reservoir. Free volume controls the diffusivity of the molecule in diffusion-limited systems. It states that the transfer kinetics of molecules depends greatly on molecular size and shape as well as the concentration. A new proposed model based on Fujita-type model is used to predict the thermodiffusion coefficients in ternary mixtures such as n-dodecane (nC12), n-butane (nC4), methane (C1), n-dodecane (nC12), isobutylbenzene (IBB), tetrahydronaphtalene (THN) and n-octane (C8), n-decane (nC10), 1-methylnaphtalene (MN). The ratio of evaporation energy to activation energy required for estimating the thermodiffusion coefficients is calculated by the available free volume theory. In particular, the combination of available free volume theory and Shukla and Firoozabadi's model is applied to predict the thermodiffusion coefficient. The results show a good performance of the new approach in estimating the thermodiffusion coefficients.
Short-Range Correlation Models in Electronic Structure Theory
NASA Astrophysics Data System (ADS)
Goldey, Matthew Bryant
fraction of MP2/CBS computational cost. Second, attenuated MP2 is developed within the larger aug-cc-pVTZ (aTZ) basis set for inter- and intramolecular non-bonded interactions. A single attenuation parameter is optimized on the S66 database of 66 intermolecular interactions, leading to a very large RMS error reduction by a factor of greater than 5 relative to standard MP2/aTZ. Attenuation introduces an error of opposite sign to basis set superposition error (BSSE) and overestimation of dispersion interactions in finite basis MP2. A variety of tests including the S22 set, conformer energies of peptides, alkanes, sugars, sulfate-water clusters, and the coronene dimer establish the transferability of the MP2(terfc, aTZ) model to other inter and intra-molecular interactions. Direct comparisons against attenuation in the smaller aug-cc-pVDZ basis shows that MP2(terfc, aTZ) often significantly outperforms MP2(terfc, aDZ), although at higher computational cost. MP2(terfc, aDZ) and MP2(terfc, aTZ) often outperform MP2 at the complete basis set limit. Comparison of the two attenuated MP2 models against each other and against attenuation using non-augmented basis sets gives insight into the error cancellation responsible for their remarkable success. Third, I present an improved algorithm for single-node multi-threaded computation of the correlation energy using resolution of the identity second-order Moller-Plesset perturbation theory (RI-MP2). This algorithm is based on shared memory parallelization of the rate-limiting steps and an overall reduction in the number of disk reads. The requisite fifth-order computation in RI-MP2 calculations is efficiently parallelized within this algorithm, with improvements in overall parallel efficiency as the system size increases. Fourth-order steps are also parallelized. As an application, I present energies and timings for several large, noncovalently interacting systems with this algorithm, and demonstrate that the RI-MP2 cost is still
Fluxon Modeling of Active Region Evolution
NASA Astrophysics Data System (ADS)
Deforest, C. E.; Kankelborg, C. C.; Davey, A. R.; Rachmeler, L.
2006-12-01
We present current results and status on fluxon modeling of free energy buildup and release in active regions. Our publicly available code, FLUX, has the unique ability to track magnetic energy buildup with a truly constrained topology in evolving, nonlinear force-free conditions. Recent work includes validation of the model against Low &Lou force-free field solutions, initial evolution studies of idealized active regions, and inclusion of locally parameterized reconnection into the model. FLUX is uniquely able to simulate complete active regions in 3-D on a single workstation; we estimate that a parallelized fluxon model, together with computer vision code to ingest solar data, could run faster than real time on a cluster of \\textasciitilde 30 CPUs and hence provide a true predictive space weather model in the style of predictive simulations of terrestrial weather.
Wojcik, Mariusz; Tachiya, M
2009-03-14
This paper deals with the exact extension of the original Onsager theory of the escape probability to the case of finite recombination rate at nonzero reaction radius. The empirical theories based on the Eigen model and the Braun model, which are applicable in the absence and presence of an external electric field, respectively, are based on a wrong assumption that both recombination and separation processes in geminate recombination follow exponential kinetics. The accuracies of the empirical theories are examined against the exact extension of the Onsager theory. The Eigen model gives the escape probability in the absence of an electric field, which is different by a factor of 3 from the exact one. We have shown that this difference can be removed by operationally redefining the volume occupied by the dissociating partner before dissociation, which appears in the Eigen model as a parameter. The Braun model gives the escape probability in the presence of an electric field, which is significantly different from the exact one over the whole range of electric fields. Appropriate modification of the original Braun model removes the discrepancy at zero or low electric fields, but it does not affect the discrepancy at high electric fields. In all the above theories it is assumed that recombination takes place only at the reaction radius. The escape probability in the case when recombination takes place over a range of distances is also calculated and compared with that in the case of recombination only at the reaction radius.
Modeling Sexual Activity among Schoolgirls in Zambia.
ERIC Educational Resources Information Center
Pillai, Vijayan K.; Gupta, Rashmi
2000-01-01
Proposes a model of sexual activity among secondary school-going Zambian girls. Identifies the role of dating as an intervening variable in explaining the variation in sexual activity among teenagers. Schools are an important setting for the young to meet and initiate sexual relationships. Theoretical and policy implications are discussed.…