Science.gov

Sample records for activity tracking system

  1. Moodog: Tracking Student Activity in Online Course Management Systems

    ERIC Educational Resources Information Center

    Zhang, Hangjin; Almeroth, Kevin

    2010-01-01

    Many universities are currently using Course Management Systems (CMSes) to conduct online learning, for example, by distributing course materials or submitting homework assignments. However, most CMSes do not include comprehensive activity tracking and analysis capabilities. This paper describes a method to track students' online learning…

  2. GT-CATS: Tracking Operator Activities in Complex Systems

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.; Mitchell, Christine M.; Palmer, Everett A.

    1999-01-01

    Human operators of complex dynamic systems can experience difficulties supervising advanced control automation. One remedy is to develop intelligent aiding systems that can provide operators with context-sensitive advice and reminders. The research reported herein proposes, implements, and evaluates a methodology for activity tracking, a form of intent inferencing that can supply the knowledge required for an intelligent aid by constructing and maintaining a representation of operator activities in real time. The methodology was implemented in the Georgia Tech Crew Activity Tracking System (GT-CATS), which predicts and interprets the actions performed by Boeing 757/767 pilots navigating using autopilot flight modes. This report first describes research on intent inferencing and complex modes of automation. It then provides a detailed description of the GT-CATS methodology, knowledge structures, and processing scheme. The results of an experimental evaluation using airline pilots are given. The results show that GT-CATS was effective in predicting and interpreting pilot actions in real time.

  3. A compact muon tracking system for didactic and outreach activities

    NASA Astrophysics Data System (ADS)

    Antolini, R.; Candela, A.; Conicella, V.; De Deo, M.; D` Incecco, M.; Sablone, D.; Arneodo, F.; Benabderrahmane, M. L.; Di Giovanni, A.; Pazos Clemens, L.; Franchi, G.; d`Inzeo, M.

    2016-07-01

    We present a cosmic ray telescope based on the use of plastic scintillator bars coupled to ASD-RGB1S-M Advansid Silicon Photomultipliers (SiPM) through wavelength shifter fibers. The system is comprised of 200 electronic channels organized into 10 couples of orthogonal planes allowing the 3D reconstruction of crossing muons. Two monolithic PCB boards have been designed to bias, readout all the SiPMs enclosed in the system, to monitor the working parameters and to remotely connect the detector. To make easier the display of muon tracks to non-expert users, two LED matrices, triggered by particle interactions, have been implemented. To improve the usability of the muon telescope, a controller board unit permits to select different levels of trigger and allows data acquisition for refined analyses for the more proficient user. A first prototype, funded by INFN and deployed in collaboration with NYUAD, is operating at the Toledo Metro station of Naples, while two further detectors will be developed and installed in Abu Dhabi in the next few months.

  4. Design of active disturbance rejection controller for space optical communication coarse tracking system

    NASA Astrophysics Data System (ADS)

    Gu, Jian; Ai, Yong

    2015-10-01

    In order to improve the dynamic tracking performance of coarse tracking system in space optical communication, a new control method based on active disturbance rejection controller (ADRC) is proposed. Firstly, based on the structure analysis of coarse tracking system, the simplified system model was obtained, and then the extended state observer was designed to calculate state variables and spot disturbance from the input and output signals. Finally, the ADRC controller of coarse tracking system is realized with the combination of nonlinear PID controller. The simulation experimental results show that compared with the PID method, this method can significantly reduce the step response overshoot and settling time. When the target angular velocity is120mrad/s, tracking error with ADRC method is 30μrad, which decreases 85% compared with the PID method. Meanwhile the disturbance rejection bandwidth is increased by 3 times with ADRC. This method can effectively improve the dynamic tracking performance of coarse tracking and disturbance rejection degree, with no need of hardware upgrade, and is of certain reference value to the wide range and high dynamic precision photoelectric tracking system.

  5. Solar tracking system

    DOEpatents

    Okandan, Murat; Nielson, Gregory N.

    2016-07-12

    Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.

  6. Tracking dynamic team activity

    SciTech Connect

    Tambe, M.

    1996-12-31

    AI researchers are striving to build complex multi-agent worlds with intended applications ranging from the RoboCup robotic soccer tournaments, to interactive virtual theatre, to large-scale real-world battlefield simulations. Agent tracking - monitoring other agent`s actions and inferring their higher-level goals and intentions - is a central requirement in such worlds. While previous work has mostly focused on tracking individual agents, this paper goes beyond by focusing on agent teams. Team tracking poses the challenge of tracking a team`s joint goals and plans. Dynamic, real-time environments add to the challenge, as ambiguities have to be resolved in real-time. The central hypothesis underlying the present work is that an explicit team-oriented perspective enables effective team tracking. This hypothesis is instantiated using the model tracing technology employed in tracking individual agents. Thus, to track team activities, team models are put to service. Team models are a concrete application of the joint intentions framework and enable an agent to track team activities, regardless of the agent`s being a collaborative participant or a non-participant in the team. To facilitate real-time ambiguity resolution with team models: (i) aspects of tracking are cast as constraint satisfaction problems to exploit constraint propagation techniques; and (ii) a cost minimality criterion is applied to constrain tracking search. Empirical results from two separate tasks in real-world, dynamic environments one collaborative and one competitive - are provided.

  7. Renewable Energy Tracking Systems

    EPA Pesticide Factsheets

    Renewable energy generation ownership can be accounted through tracking systems. Tracking systems are highly automated, contain specific information about each MWh, and are accessible over the internet to market participants.

  8. A novel active disturbance rejection based tracking design for laser system with quadrant photodetector

    NASA Astrophysics Data System (ADS)

    Manojlović, Stojadin M.; Barbarić, Žarko P.; Mitrović, Srđan T.

    2015-06-01

    A new tracking design for laser systems with different arrangements of a quadrant photodetector, based on the principle of active disturbance rejection control is suggested. The detailed models of quadrant photodetector with standard add-subtract, difference-over-sum and diagonal-difference-over-sum algorithms for displacement signals are included in the control loop. Target moving, non-linearity of a photodetector, parameter perturbations and exterior disturbances are treated as a total disturbance. Active disturbance rejection controllers with linear extended state observers for total disturbance estimation and rejection are designed. Proposed methods are analysed in frequency domain to quantify their stability characteristics and disturbance rejection performances. It is shown through simulations, that tracking errors are effectively compensated, providing the laser spot positioning in the area near the centre of quadrant photodetector where the mentioned algorithms have the highest sensitivity, which provides tracking of the manoeuvring targets with high accuracy.

  9. Active disturbance rejection controller of fine tracking system for free space optical communication

    NASA Astrophysics Data System (ADS)

    Cui, Ning; Liu, Yang; Chen, Xinglin; Wang, Yan

    2013-08-01

    Free space optical communication is one of the best approaches in future communications. Laser beam's acquisition, pointing and tracking are crucial technologies of free space optical communication. Fine tracking system is important component of APT (acquisition, pointing and tracking) system. It cooperates with the coarse pointing system in executing the APT mission. Satellite platform vibration and disturbance, which reduce received optical power, increase bit error rate and affect seriously the natural performance of laser communication. For the characteristic of satellite platform, an active disturbance rejection controller was designed to reduce the vibration and disturbance. There are three major contributions in the paper. Firstly, the effects of vibration on the inter satellite optical communications were analyzed, and the reasons and characters of vibration of the satellite platform were summarized. The amplitude-frequency response of a filter was designed according to the power spectral density of platform vibration of SILEX (Semiconductor Inter-satellite Laser Experiment), and then the signals of platform vibration were generated by filtering white Gaussian noise using the filter. Secondly, the fast steering mirror is a key component of the fine tracking system for optical communication. The mechanical design and model analysis was made to the tip/tilt mirror driven by the piezoelectric actuator and transmitted by the flexure hinge. The transfer function of the fast steering mirror, camera, D/A data acquisition card was established, and the theory model of transfer function of this system was further obtained. Finally, an active disturbance rejection control method is developed, multiple parallel extended state observers were designed for estimation of unknown dynamics and external disturbance, and the estimated states were used for nonlinear feedback control and compensation to improve system performance. The simulation results show that the designed

  10. Performance analysis of active disturbance rejection tracking control for a class of uncertain LTI systems.

    PubMed

    Xue, Wenchao; Huang, Yi

    2015-09-01

    The paper considers the tracking problem for a class of uncertain linear time invariant (LTI) systems with both uncertain parameters and external disturbances. The active disturbance rejection tracking controller is designed and the resulting closed-loop system's characteristics are comprehensively studied. In the time-domain, it is proven that the output of closed-loop system can approach its ideal trajectory in the transient process against different kinds of uncertainties by tuning the bandwidth of extended state observer (ESO). In the frequency-domain, different kinds of parameters' influences on the phase margin and the crossover frequency of the resulting control system are illuminated. Finally, the effectiveness and robustness of the controller are verified through the actuator position control system with uncertain parameters and load disturbances in the simulations.

  11. Two-level multivariable control system of dissolved oxygen tracking and aeration system for activated sludge processes.

    PubMed

    Piotrowski, Robert

    2015-01-01

    The problem of tracking dissolved oxygen is one of the most complex and fundamental issues related to biological processes. The dissolved oxygen level in aerobic tanks has a significant influence on the behavior and activity of microorganisms. Aerated tanks are supplied with air from an aeration system (blowers, pipes, throttling valves, and diffusers). It is a complex, dynamic system governed by nonlinear hybrid dynamics. Control of the aeration system is also difficult in terms of control of the dissolved oxygen. In this article, a two-level multivariable control system for tracking dissolved oxygen and controlling an aeration system is designed. A nonlinear model predictive control algorithm was applied to design controllers for each level. This overall hierarchical control system was validated by simulation based on real data records provided by a water resource recovery facility located in Kartuzy, Northern Poland. The effect of control system parameters and disturbances was also investigated.

  12. Automated time activity classification based on global positioning system (GPS) tracking data

    PubMed Central

    2011-01-01

    Background Air pollution epidemiological studies are increasingly using global positioning system (GPS) to collect time-location data because they offer continuous tracking, high temporal resolution, and minimum reporting burden for participants. However, substantial uncertainties in the processing and classifying of raw GPS data create challenges for reliably characterizing time activity patterns. We developed and evaluated models to classify people's major time activity patterns from continuous GPS tracking data. Methods We developed and evaluated two automated models to classify major time activity patterns (i.e., indoor, outdoor static, outdoor walking, and in-vehicle travel) based on GPS time activity data collected under free living conditions for 47 participants (N = 131 person-days) from the Harbor Communities Time Location Study (HCTLS) in 2008 and supplemental GPS data collected from three UC-Irvine research staff (N = 21 person-days) in 2010. Time activity patterns used for model development were manually classified by research staff using information from participant GPS recordings, activity logs, and follow-up interviews. We evaluated two models: (a) a rule-based model that developed user-defined rules based on time, speed, and spatial location, and (b) a random forest decision tree model. Results Indoor, outdoor static, outdoor walking and in-vehicle travel activities accounted for 82.7%, 6.1%, 3.2% and 7.2% of manually-classified time activities in the HCTLS dataset, respectively. The rule-based model classified indoor and in-vehicle travel periods reasonably well (Indoor: sensitivity > 91%, specificity > 80%, and precision > 96%; in-vehicle travel: sensitivity > 71%, specificity > 99%, and precision > 88%), but the performance was moderate for outdoor static and outdoor walking predictions. No striking differences in performance were observed between the rule-based and the random forest models. The random forest model was fast and easy to execute

  13. Asset tracking systems.

    PubMed

    2006-11-01

    Asset tracking systems are used in healthcare to find objects--medical devices and other hospital equipment--and to record the physical location of those objects over time. Interest in asset tracking is growing daily, but the technology is still evolving, and so far very few systems have been implemented in hospitals. This situation is likely to change over the next few years, at which point many hospitals will be faced with choosing a system. We evaluated four asset tracking systems from four suppliers: Agility Healthcare Solutions, Ekahau, Radianse, and Versus Technology. We judged the systems' performance for two "levels" of asset tracking. The first level is basic locating--simply determining where in the facility an item can be found. This may be done because the equipment needs routine inspection and preventive maintenance or because it is required for recall purposes; or the equipment may be needed, often urgently, for clinical use. The second level, which is much more involved, is inventory optimization and workflow improvement. This entails analyzing asset utilization based on historical location data to improve the use, distribution, and processing of equipment. None of the evaluated products is ideal for all uses--each has strengths and weaknesses. In many cases, hospitals will have to select a product based on their specific needs. For example, they may need to choose between a supplier whose system is easy to install and a supplier whose tags have a long battery operating life.

  14. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy

    PubMed Central

    Wang, Wei; Viswanathan, Akila N.; Damato, Antonio L.; Chen, Yue; Tse, Zion; Pan, Li; Tokuda, Junichi; Seethamraju, Ravi T.; Dumoulin, Charles L.; Schmidt, Ehud J.; Cormack, Robert A.

    2015-01-01

    Purpose: In gynecologic cancers, magnetic resonance (MR) imaging is the modality of choice for visualizing tumors and their surroundings because of superior soft-tissue contrast. Real-time MR guidance of catheter placement in interstitial brachytherapy facilitates target coverage, and would be further improved by providing intraprocedural estimates of dosimetric coverage. A major obstacle to intraprocedural dosimetry is the time needed for catheter trajectory reconstruction. Herein the authors evaluate an active MR tracking (MRTR) system which provides rapid catheter tip localization and trajectory reconstruction. The authors assess the reliability and spatial accuracy of the MRTR system in comparison to standard catheter digitization using magnetic resonance imaging (MRI) and CT. Methods: The MRTR system includes a stylet with microcoils mounted on its shaft, which can be inserted into brachytherapy catheters and tracked by a dedicated MRTR sequence. Catheter tip localization errors of the MRTR system and their dependence on catheter locations and orientation inside the MR scanner were quantified with a water phantom. The distances between the tracked tip positions of the MRTR stylet and the predefined ground-truth tip positions were calculated for measurements performed at seven locations and with nine orientations. To evaluate catheter trajectory reconstruction, fifteen brachytherapy catheters were placed into a gel phantom with an embedded catheter fixation framework, with parallel or crossed paths. The MRTR stylet was then inserted sequentially into each catheter. During the removal of the MRTR stylet from within each catheter, a MRTR measurement was performed at 40 Hz to acquire the instantaneous stylet tip position, resulting in a series of three-dimensional (3D) positions along the catheter’s trajectory. A 3D polynomial curve was fit to the tracked positions for each catheter, and equally spaced dwell points were then generated along the curve. High

  15. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy

    SciTech Connect

    Wang, Wei; Pan, Li; Tokuda, Junichi; Schmidt, Ehud J.; Seethamraju, Ravi T.; Dumoulin, Charles L.

    2015-12-15

    Purpose: In gynecologic cancers, magnetic resonance (MR) imaging is the modality of choice for visualizing tumors and their surroundings because of superior soft-tissue contrast. Real-time MR guidance of catheter placement in interstitial brachytherapy facilitates target coverage, and would be further improved by providing intraprocedural estimates of dosimetric coverage. A major obstacle to intraprocedural dosimetry is the time needed for catheter trajectory reconstruction. Herein the authors evaluate an active MR tracking (MRTR) system which provides rapid catheter tip localization and trajectory reconstruction. The authors assess the reliability and spatial accuracy of the MRTR system in comparison to standard catheter digitization using magnetic resonance imaging (MRI) and CT. Methods: The MRTR system includes a stylet with microcoils mounted on its shaft, which can be inserted into brachytherapy catheters and tracked by a dedicated MRTR sequence. Catheter tip localization errors of the MRTR system and their dependence on catheter locations and orientation inside the MR scanner were quantified with a water phantom. The distances between the tracked tip positions of the MRTR stylet and the predefined ground-truth tip positions were calculated for measurements performed at seven locations and with nine orientations. To evaluate catheter trajectory reconstruction, fifteen brachytherapy catheters were placed into a gel phantom with an embedded catheter fixation framework, with parallel or crossed paths. The MRTR stylet was then inserted sequentially into each catheter. During the removal of the MRTR stylet from within each catheter, a MRTR measurement was performed at 40 Hz to acquire the instantaneous stylet tip position, resulting in a series of three-dimensional (3D) positions along the catheter’s trajectory. A 3D polynomial curve was fit to the tracked positions for each catheter, and equally spaced dwell points were then generated along the curve. High

  16. Motion Tracking System

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Integrated Sensors, Inc. (ISI), under NASA contract, developed a sensor system for controlling robot vehicles. This technology would enable a robot supply vehicle to automatically dock with Earth-orbiting satellites or the International Space Station. During the docking phase the ISI-developed sensor must sense the satellite's relative motion, then spin so the robot vehicle can adjust its motion to align with the satellite and slowly close until docking is completed. ISI used the sensing/tracking technology as the basis of its OPAD system, which simultaneously tracks an object's movement in six degrees of freedom. Applications include human limb motion analysis, assembly line position analysis and auto crash dummy motion analysis. The NASA technology is also the basis for Motion Analysis Workstation software, a package to simplify the video motion analysis process.

  17. Satellite Tracking System

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Researchers at the Center for Aerospace Sciences of the University of North Dakota (UND), Grand Forks, used three NASA Computer programs (SANDTRACKS, ODG, NORAD) to develop a Satellite Tracking System for real time utilization of TIROS weather/environment satellite information. SANDTRACKS computes the satellite's position relative to the Earth. ODG allows plotting a view of Earth as seen by the satellite. NORAD computes sight direction, visibility times and maximum elevation angle during each orbit. With the system, UND's Earth System Science Institute will be able to routinely monitor agricultural and environmental conditions of the Northern Plains.

  18. Automated call tracking systems

    SciTech Connect

    Hardesty, C.

    1993-03-01

    User Services groups are on the front line with user support. We are the first to hear about problems. The speed, accuracy, and intelligence with which we respond determines the user`s perception of our effectiveness and our commitment to quality and service. To keep pace with the complex changes at our sites, we must have tools to help build a knowledge base of solutions, a history base of our users, and a record of every problem encountered. Recently, I completed a survey of twenty sites similar to the National Energy Research Supercomputer Center (NERSC). This informal survey reveals that 27% of the sites use a paper system to log calls, 60% employ homegrown automated call tracking systems, and 13% use a vendor-supplied system. Fifty-four percent of those using homegrown systems are exploring the merits of switching to a vendor-supplied system. The purpose of this paper is to provide guidelines for evaluating a call tracking system. In addition, insights are provided to assist User Services groups in selecting a system that fits their needs.

  19. Longwall shearer tracking system

    NASA Technical Reports Server (NTRS)

    Poulsen, P. D. (Inventor); Stein, R. J.; Pease, R. E.

    1984-01-01

    A tracking system for measuring and recording the movements of a longwall shearer vehicle includes an optical tracking assembly carried at one end of a desired vehicle path and a retroreflector assembly carried by the vehicle. Continuous horizontal and vertical light beams are alternately transmitted by means of a rotating Dove prism to the reflector assembly. A vertically reciprocating reflector interrupts the continuous light beams and converts these to discrete horizontal and vertical light beam images transmitted at spaced intervals along the path. A second rotating Dove prism rotates the vertical images to convert them to a second series of horizontal images while the first mentioned horizontal images are left unrotated and horizontal. The images are recorded on a film.

  20. Development of Automated Tracking System with Active Cameras for Figure Skating

    NASA Astrophysics Data System (ADS)

    Haraguchi, Tomohiko; Taki, Tsuyoshi; Hasegawa, Junichi

    This paper presents a system based on the control of PTZ cameras for automated real-time tracking of individual figure skaters moving on an ice rink. In the video images of figure skating, irregular trajectories, various postures, rapid movements, and various costume colors are included. Therefore, it is difficult to determine some features useful for image tracking. On the other hand, an ice rink has a limited area and uniform high intensity, and skating is always performed on ice. In the proposed system, an ice rink region is first extracted from a video image by the region growing method, and then, a skater region is extracted using the rink shape information. In the camera control process, each camera is automatically panned and/or tilted so that the skater region is as close to the center of the image as possible; further, the camera is zoomed to maintain the skater image at an appropriate scale. The results of experiments performed for 10 training scenes show that the skater extraction rate is approximately 98%. Thus, it was concluded that tracking with camera control was successful for almost all the cases considered in the study.

  1. Cassini Archive Tracking System

    NASA Technical Reports Server (NTRS)

    Conner, Diane; Sayfi, Elias; Tinio, Adrian

    2006-01-01

    The Cassini Archive Tracking System (CATS) is a computer program that enables tracking of scientific data transfers from originators to the Planetary Data System (PDS) archives. Without CATS, there is no systematic means of locating products in the archive process or ensuring their completeness. By keeping a database of transfer communications and status, CATS enables the Cassini Project and the PDS to efficiently and accurately report on archive status. More importantly, problem areas are easily identified through customized reports that can be generated on the fly from any Web-enabled computer. A Web-browser interface and clearly defined authorization scheme provide safe distributed access to the system, where users can perform functions such as create customized reports, record a transfer, and respond to a transfer. CATS ensures that Cassini provides complete science archives to the PDS on schedule and that those archives are available to the science community by the PDS. The three-tier architecture is loosely coupled and designed for simple adaptation to multimission use. Written in the Java programming language, it is portable and can be run on any Java-enabled Web server.

  2. Geo Issue Tracking System

    NASA Astrophysics Data System (ADS)

    Khakpour, Mohammad; Paulik, Christoph; Hahn, Sebastian

    2016-04-01

    Communication about remote sensing data quality between data providers and users as well as between the users is often difficult. The users have a hard time figuring out if a product has known problems over their region of interest and data providers have to spend a lot of effort to make this information available, if it exists. Scientific publications are one tool for communicating with the users base but they are static and mostly one way. As a data provider it is also often difficult to make feedback, received from users, available to the complete user base. The Geo Issue Tracking System (GeoITS) is an Open Source Web Application which has been developed to mitigate these problems. GeoITS combines a mapping interface (Google Maps) with a simple wiki platform. It allows users to give region specific feedback on a remote sensing product by drawing a polygon on the map and describing the problems they had using the remote sensing product in this area. These geolocated wiki entries are then viewable by other users as well as the data providers which can modify and extend the entries. In this way the conversations between the users and the data provider are no longer hidden in e.g. emails but open for all users of the dataset. This new kind of communication platform can enable better cooperation between users and data providers. It will also provide data providers with the ability to track problems their dataset might have in certain areas and resolve them with new product releases. The source code is available via http://github.com/TUW-GEO/geoits_dev A running instance can be tried at https://geoits.herokuapp.com/

  3. REC Tracking Systems Design Guide

    SciTech Connect

    Meredith Wingate

    2004-02-03

    OAK-B135 The Design Guide is presented in three parts. Section II describes the need for REC tracking, the two principal tracking methods available, and, in simple terms, the operation of certificate-based systems. Section III presents the major issues in the design of certificate-based tracking systems and discusses the advantages and disadvantages of alternative solutions. Finally, Section IV offers design principles or recommendations for most of these issues.

  4. Class 3 Tracking and Monitoring System Report

    SciTech Connect

    Safely, Eugene; Salamy, S. Phillip

    1999-11-29

    The objective of Class 3 tracking system are to assist DOE in tracking and performance and progress of these projects and to capture the technical and financial information collected during the projects' monitoring phase. The captured information was used by DOE project managers and BDM-Oklahoma staff for project monitoring and evaluation, and technology transfer activities. The proposed tracking system used the Class Evaluation Executive Report (CLEVER), a relation database for storing and disseminating class project data; GeoGraphix, a geological and technical analysis and mapping software system; the Tertiary Oil Recovery Information System (TORIS) database; and MS-Project, a project management software system.

  5. CONTRACT ADMINISTRATIVE TRACKING SYSTEM (CATS)

    EPA Science Inventory

    The Contract Administrative Tracking System (CATS) was developed in response to an ORD NHEERL, Mid-Continent Ecology Division (MED)-recognized need for an automated tracking and retrieval system for Cost Reimbursable Level of Effort (CR/LOE) Contracts. CATS is an Oracle-based app...

  6. Active MRI tracking for robotic assisted FUS

    NASA Astrophysics Data System (ADS)

    Xiao, Xu; Huang, Zhihong; Melzer, Andreas

    2017-03-01

    MR guided FUS is a noninvasive method producing thermal necrosis at the position of tumors with high accuracy and temperature control. Because the typical size of the ultrasound focus is smaller than the area of interested treatment tissues, focus repositioning become necessary to achieve multiple sonications to cover the whole targeted area. Using MR compatible mechanical actuators could help the ultrasound beam to reach a wider treatment range than using electrical beam steering technique and more flexibility in position the transducer. An active MR tracking technique was combined into the MRgFUS system to help locating the position of the mechanical actuator and the FUS transducer. For this study, a precise agar reference model was designed and fabricated to test the performance of the active tracking technique when it was used on the MR-compatible robotics InnoMotion™ (IBSMM, Engineering spol. s r.o. / Ltd, Czech Republic). The precision, tracking range and positioning speed of the combined robotic FUS system were evaluated in this study. Compared to the existing MR guided HIFU systems, the combined robotic system with active tracking techniques provides a potential that allows the FUS treatment to operate in a larger spatial range and with a faster speed, which is one of the main challenges for organ motion tracking.

  7. Sun Tracking Systems: A Review

    PubMed Central

    Lee, Chia-Yen; Chou, Po-Cheng; Chiang, Che-Ming; Lin, Chiu-Feng

    2009-01-01

    The output power produced by high-concentration solar thermal and photovoltaic systems is directly related to the amount of solar energy acquired by the system, and it is therefore necessary to track the sun's position with a high degree of accuracy. Many systems have been proposed to facilitate this task over the past 20 years. Accordingly, this paper commences by providing a high level overview of the sun tracking system field and then describes some of the more significant proposals for closed-loop and open-loop types of sun tracking systems. PMID:22412341

  8. Sun tracking systems: a review.

    PubMed

    Lee, Chia-Yen; Chou, Po-Cheng; Chiang, Che-Ming; Lin, Chiu-Feng

    2009-01-01

    The output power produced by high-concentration solar thermal and photovoltaic systems is directly related to the amount of solar energy acquired by the system, and it is therefore necessary to track the sun's position with a high degree of accuracy. Many systems have been proposed to facilitate this task over the past 20 years. Accordingly, this paper commences by providing a high level overview of the sun tracking system field and then describes some of the more significant proposals for closed-loop and open-loop types of sun tracking systems.

  9. Tracking system analytic calibration activities for the Mariner Mars 1971 mission

    NASA Technical Reports Server (NTRS)

    Madrid, G. A.; Chao, C. C.; Fliegel, H. F.; Leavitt, R. K.; Mottinger, N. A.; Winn, F. B.; Wimberly, R. N.; Yip, K. B.; Zielenbach, J. W.

    1974-01-01

    Data covering various planning aspects of Mariner Mars 1971 mission are summarized. Data cover calibrating procedures for tracking stations, radio signal propagation in the troposphere, effects of charged particles on radio transmission, orbit calculation, and data smoothing.

  10. Constant magnification optical tracking system

    NASA Technical Reports Server (NTRS)

    Frazer, R. E. (Inventor)

    1982-01-01

    A constant magnification optical tracking system for continuously tracking of a moving object is described. In the tracking system, a traveling objective lens maintains a fixed relationship with an object to be optically tracked. The objective lens was chosen to provide a collimated light beam oriented in the direction of travel of the moving object. A reflective surface is attached to the traveling objective lens for reflecting an image of the moving object. The object to be tracked is a free-falling object which is located at the focal point of the objective lens for at least a portion of its free-fall path. A motor and control means is provided for mantaining the traveling objective lens in a fixed relationship relative to the free-falling object, thereby keeping the free-falling object at the focal point and centered on the axis of the traveling objective lens throughout its entire free-fall path.

  11. Precision laser automatic tracking system.

    PubMed

    Lucy, R F; Peters, C J; McGann, E J; Lang, K T

    1966-04-01

    A precision laser tracker has been constructed and tested that is capable of tracking a low-acceleration target to an accuracy of about 25 microrad root mean square. In tracking high-acceleration targets, the error is directly proportional to the angular acceleration. For an angular acceleration of 0.6 rad/sec(2), the measured tracking error was about 0.1 mrad. The basic components in this tracker, similar in configuration to a heliostat, are a laser and an image dissector, which are mounted on a stationary frame, and a servocontrolled tracking mirror. The daytime sensitivity of this system is approximately 3 x 10(-10) W/m(2); the ultimate nighttime sensitivity is approximately 3 x 10(-14) W/m(2). Experimental tests were performed to evaluate both dynamic characteristics of this system and the system sensitivity. Dynamic performance of the system was obtained, using a small rocket covered with retroreflective material launched at an acceleration of about 13 g at a point 204 m from the tracker. The daytime sensitivity of the system was checked, using an efficient retroreflector mounted on a light aircraft. This aircraft was tracked out to a maximum range of 15 km, which checked the daytime sensitivity of the system measured by other means. The system also has been used to track passively stars and the Echo I satellite. Also, the system tracked passively a +7.5 magnitude star, and the signal-to-noise ratio in this experiment indicates that it should be possible to track a + 12.5 magnitude star.

  12. Automatic electronic fish tracking system

    NASA Technical Reports Server (NTRS)

    Osborne, P. W.; Hoffman, E.; Merriner, J. V.; Richards, C. E.; Lovelady, R. W.

    1976-01-01

    A newly developed electronic fish tracking system to automatically monitor the movements and migratory habits of fish is reported. The system is aimed particularly at studies of effects on fish life of industrial facilities which use rivers or lakes to dump their effluents. Location of fish is acquired by means of acoustic links from the fish to underwater Listening Stations, and by radio links which relay tracking information to a shore-based Data Base. Fish over 4 inches long may be tracked over a 5 x 5 mile area. The electronic fish tracking system provides the marine scientist with electronics which permit studies that were not practical in the past and which are cost-effective compared to manual methods.

  13. Solar tracking system

    NASA Technical Reports Server (NTRS)

    White, P. R.; Scott, D. R. (Inventor)

    1981-01-01

    A solar tracker for a solar collector is described in detail. The collector is angularly oriented by a motor wherein the outputs of two side-by-side photodetectors are discriminated as to three ranges: a first corresponding to a low light or darkness condition; a second corresponding to light intensity lying in an intermediate range; and a third corresponding to light above an intermediate range, direct sunlight. The first output drives the motor to a selected maximum easterly angular position; the second enables the motor to be driven westerly at the Earth rotational rate; and the third output, the separate outputs of the two photodetectors, differentially controls the direction of rotation of the motor to effect actual tracking of the Sun.

  14. Solar tracking system

    NASA Astrophysics Data System (ADS)

    White, P. R.; Scott, D. R.

    1981-04-01

    A solar tracker for a solar collector is described in detail. The collector is angularly oriented by a motor wherein the outputs of two side-by-side photodetectors are discriminated as to three ranges: a first corresponding to a low light or darkness condition; a second corresponding to light intensity lying in an intermediate range; and a third corresponding to light above an intermediate range, direct sunlight. The first output drives the motor to a selected maximum easterly angular position; the second enables the motor to be driven westerly at the Earth rotational rate; and the third output, the separate outputs of the two photodetectors, differentially controls the direction of rotation of the motor to effect actual tracking of the Sun.

  15. Vehicle tracking systems

    SciTech Connect

    Schwalm, R.W.

    1987-01-01

    Several systems have been developed to accomplish vehicle location. The systems consist of three types: Dead Reckoning, Satellite, and LORAN C. If the information is to be sent back to a central location, some type of radiocommunication system is needed. One can use the existing voice radio or add a radio system just for transmitting the data.

  16. Rotationally Invariant Holographic Tracking System

    NASA Astrophysics Data System (ADS)

    Lambert, James L.; Chao, Tien-Hsin; Gheen, Gregory; Johnston, Alan R.; Liu, Hua-Kuang

    1989-06-01

    A multi-channel holographic correlator has been constructed which can identify and track objects of a given shape across the input field independent of their in-plane rotation. This system, derived from the classic Vander Lugt correlator, incorporates a hololens to store an array of matched spatial filters (MSFs) on thermoplastic film. Each member of the MSF array is generated from a different incrementally rotated version of the training object. Rotational invariant tracking is achieved through superposition of the corresponding array of the correlations in the output plane. Real time tracking is accomplished by utilizing a liquid crystal light valve (LCLV) illuminated with a CRT to process video input signals. The system can be programmed to recognize different objects by recording the MSF array on re-usable thermoplastic film. Discussion of the system architecture and laboratory results are presented.

  17. NASA tracking ship navigation systems

    NASA Technical Reports Server (NTRS)

    Mckenna, J. J.

    1976-01-01

    The ship position and attitude measurement system that was installed aboard the tracking ship Vanguard is described. An overview of the entire system is given along with a description of how precise time and frequency is utilized. The instrumentation is broken down into its basic components. Particular emphasis is given to the inertial navigation system. Each navigation system used, a mariner star tracker, navigation satellite system, Loran C and OMEGA in conjunction with the inertial system is described. The accuracy of each system is compared along with their limitations.

  18. Missile tracking and range safety: Tracking Interferometer Pathfinder System (TIPS)

    NASA Astrophysics Data System (ADS)

    Dowgiallo, David J.; Rauen, Stephen; Peters, Wendy M.; Polisensky, Emil J.

    2013-05-01

    The tracking of missiles at close range proximity has been an ongoing challenge for many launch environments. The ability to provide accurate missile trajectory information is imperative for range safety and early termination of flight. In an effort to provide a potential solution to tracking issues that have plagued many traditional techniques, the Tracking Interferometer Pathfinder System (TIPS) was developed at the Naval Research Laboratory, Washington, D.C. The paper herein describes the design, field test, and results of an interferometer deployed for missile tracking.

  19. Activity Tracking for Pilot Error Detection from Flight Data

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.; Ashford, Rose (Technical Monitor)

    2002-01-01

    This report presents an application of activity tracking for pilot error detection from flight data, and describes issues surrounding such an application. It first describes the Crew Activity Tracking System (CATS), in-flight data collected from the NASA Langley Boeing 757 Airborne Research Integrated Experiment System aircraft, and a model of B757 flight crew activities. It then presents an example of CATS detecting actual in-flight crew errors.

  20. Automatic tracking sensor camera system

    NASA Astrophysics Data System (ADS)

    Tsuda, Takao; Kato, Daiichiro; Ishikawa, Akio; Inoue, Seiki

    2001-04-01

    We are developing a sensor camera system for automatically tracking and determining the positions of subjects moving in three-dimensions. The system is intended to operate even within areas as large as soccer fields. The system measures the 3D coordinates of the object while driving the pan and tilt movements of camera heads, and the degree of zoom of the lenses. Its principal feature is that it automatically zooms in as the object moves farther away and out as the object moves closer. This maintains the area of the object as a fixed position of the image. This feature makes stable detection by the image processing possible. We are planning to use the system to detect the position of a soccer ball during a soccer game. In this paper, we describe the configuration of the developing automatic tracking sensor camera system. We then give an analysis of the movements of the ball within images of games, the results of experiments on method of image processing used to detect the ball, and the results of other experiments to verify the accuracy of an experimental system. These results show that the system is sufficiently accurate in terms of obtaining positions in three-dimensions.

  1. Laser tracking system with automatic reacquisition capability.

    PubMed

    Johnson, R E; Weiss, P F

    1968-06-01

    A laser based tracking system is described that has the capability of automatically performing an acquisition search to locate the target. This work is intended for precision launch phase tracking of the Saturn V launch vehicle. System tracking accuracies limited only by the atmosphere have been demonstrated, as has acquisition over a 1 degrees x 1 degrees field of view.

  2. Office of Space Tracking and Data Systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A brief overview of the Office of Space Tracking and Data Systems support functions is given along with a description of the Spaceflight Tracking and Data Network and the Deep Space Network. Preparations for upcoming missions, wideband communications, and Tracking and Data Relay Satellite Systems are discussed.

  3. Assessment & Commitment Tracking System (ACTS)

    SciTech Connect

    Bryant, Robert A.; Childs, Teresa A.; Miller, Michael A.; Sellars, Kevin J.

    2004-12-20

    The ACTS computer code provides a centralized tool for planning and scheduling assessments, tracking and managing actions associated with assessments or that result from an event or condition, and "mining" data for reporting and analyzing information for improving performance. The ACTS application is designed to work with the MS SQL database management system. All database interfaces are written in SQL. The following software is used to develop and support the ACTS application: Cold Fusion HTML JavaScript Quest TOAD Microsoft Visual Source Safe (VSS) HTML Mailer for sending email Microsoft SQL Microsoft Internet Information Server

  4. Tracking system for solar collectors

    DOEpatents

    Butler, B.

    1980-10-01

    A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

  5. Tracking system for solar collectors

    DOEpatents

    Butler, Barry L.

    1984-01-01

    A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

  6. Advanced tracking systems design and analysis

    NASA Technical Reports Server (NTRS)

    Potash, R.; Floyd, L.; Jacobsen, A.; Cunningham, K.; Kapoor, A.; Kwadrat, C.; Radel, J.; Mccarthy, J.

    1989-01-01

    The results of an assessment of several types of high-accuracy tracking systems proposed to track the spacecraft in the National Aeronautics and Space Administration (NASA) Advanced Tracking and Data Relay Satellite System (ATDRSS) are summarized. Tracking systems based on the use of interferometry and ranging are investigated. For each system, the top-level system design and operations concept are provided. A comparative system assessment is presented in terms of orbit determination performance, ATDRSS impacts, life-cycle cost, and technological risk.

  7. Position and orientation tracking system

    DOEpatents

    Burks, Barry L.; DePiero, Fred W.; Armstrong, Gary A.; Jansen, John F.; Muller, Richard C.; Gee, Timothy F.

    1998-01-01

    A position and orientation tracking system presents a laser scanning appaus having two measurement pods, a control station, and a detector array. The measurement pods can be mounted in the dome of a radioactive waste storage silo. Each measurement pod includes dual orthogonal laser scanner subsystems. The first laser scanner subsystem is oriented to emit a first line laser in the pan direction. The second laser scanner is oriented to emit a second line laser in the tilt direction. Both emitted line lasers scan planes across the radioactive waste surface to encounter the detector array mounted on a target robotic vehicle. The angles of incidence of the planes with the detector array are recorded by the control station. Combining measurements describing each of the four planes provides data for a closed form solution of the algebraic transform describing the position and orientation of the target robotic vehicle.

  8. Position and orientation tracking system

    DOEpatents

    Burks, B.L.; DePiero, F.W.; Armstrong, G.A.; Jansen, J.F.; Muller, R.C.; Gee, T.F.

    1998-05-05

    A position and orientation tracking system presents a laser scanning apparatus having two measurement pods, a control station, and a detector array. The measurement pods can be mounted in the dome of a radioactive waste storage silo. Each measurement pod includes dual orthogonal laser scanner subsystems. The first laser scanner subsystem is oriented to emit a first line laser in the pan direction. The second laser scanner is oriented to emit a second line laser in the tilt direction. Both emitted line lasers scan planes across the radioactive waste surface to encounter the detector array mounted on a target robotic vehicle. The angles of incidence of the planes with the detector array are recorded by the control station. Combining measurements describing each of the four planes provides data for a closed form solution of the algebraic transform describing the position and orientation of the target robotic vehicle. 14 figs.

  9. Status tracking system for reports

    NASA Technical Reports Server (NTRS)

    Huffman, J. P.

    1984-01-01

    The program DGR03 Status of Langley Formal Reports was developed to aid the Research Information and Application Division (RIAD) in tracking the progress of NASA formal reports through the review cycle. This review cycle was established by Langley Management as a control for Langley's final product: its research reports. The cycle is divided into 5 main stages with substages in each. The cycle can be completed in 165 days. This program has been an aid to RIAD in eliminating manual calculation, providing visible data for everyone concerned with report processing, eliminating the need to telephone divisions when reports are delinquent. The program can also provide information on the number of reports in any stage of the system at any period.

  10. Long range position and Orientation Tracking System

    SciTech Connect

    Armstrong, G.A.; Jansen, J.F.; Burks, B.L.

    1996-02-01

    The long range Position and Orientation Tracking System is an active triangulation-based system that is being developed to track a target to a resolution of 6.35 mm (0.25 in.) and 0.009{degrees}(32.4 arcseconds) over a range of 13.72 m (45 ft.). The system update rate is currently set at 20 Hz but can be increased to 100 Hz or more. The tracking is accomplished by sweeping two pairs of orthogonal line lasers over infrared (IR) sensors spaced with known geometry with respect to one another on the target (the target being a rigid body attached to either a remote vehicle or a remote manipulator arm). The synchronization and data acquisition electronics correlates the time that an IR sensor has been hit by one of the four lasers and the angle of the respective mirror at the time of the hit. This information is combined with the known geometry of the IR sensors on the target to determine position and orientation of the target. This method has the advantage of allowing the target to be momentarily lost due to occlusions and then reacquired without having to return the target to a known reference point. The system also contains a camera with operator controlled lighting in each pod that allows the target to be continuously viewed from either pod, assuming their are no occlusions.

  11. Optical memory system having track following

    SciTech Connect

    Hsieh, D.; LaBudde, E.V.

    1984-02-14

    A high density optical storage system is disclosed which employs a laser beam for reading data in a track on a rotating optical disk containing a large number of concentric tracks. Track following is provided using a galvanometer-controlled mirror in the path of the beam which is angularly deflected during track following in response to detected track deviations, whereby the beam is controlled to accurately follow the track. Provision is also made for detecting the angular position of the mirror. A linear motor responsive to the detected angular position moves the mirror in a direction which reduces the deflection required to be provided by the mirror in order to maintain the beam accurately following the track. The mirror is also controlled in response to the rate of change of the linear motor velocity for providing greater system stability.

  12. Modular Track System For Positioning Mobile Robots

    NASA Technical Reports Server (NTRS)

    Miller, Jeff

    1995-01-01

    Conceptual system for positioning mobile robotic manipulators on large main structure includes modular tracks and ancillary structures assembled easily along with main structure. System, called "tracked robotic location system" (TROLS), originally intended for application to platforms in outer space, but TROLS concept might also prove useful on Earth; for example, to position robots in factories and warehouses. T-cross-section rail keeps mobile robot on track. Bar codes mark locations along track. Each robot equipped with bar-code-recognizing circuitry so it quickly finds way to assigned location.

  13. Magnetic Resonance-guided Active Catheter Tracking.

    PubMed

    Wang, Wei

    2015-11-01

    Several advantages of MR imaging compared with other imaging modalities have provided the rationale for increased attention to MR-guided interventions, including its excellent soft tissue contrast, its capability to show both anatomic and functional information, and no use of ionizing radiation. An important aspect of MR-guided intervention is to provide visualization and navigation of interventional devices relative to the surrounding tissues. This article focuses on the methods for MR-guided active tracking in catheter-based interventions. Practical issues about implementation of active catheter tracking in a clinical setting are discussed and several current application examples are highlighted.

  14. Sensing Human Activity: GPS Tracking

    PubMed Central

    van der Spek, Stefan; van Schaick, Jeroen; de Bois, Peter; de Haan, Remco

    2009-01-01

    The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools, but also as instruments used to capture travelled routes: as sensors that measure activity on a city scale or the regional scale. TU Delft developed a process and database architecture for collecting data on pedestrian movement in three European city centres, Norwich, Rouen and Koblenz, and in another experiment for collecting activity data of 13 families in Almere (The Netherlands) for one week. The question posed in this paper is: what is the value of GPS as ‘sensor technology’ measuring activities of people? The conclusion is that GPS offers a widely useable instrument to collect invaluable spatial-temporal data on different scales and in different settings adding new layers of knowledge to urban studies, but the use of GPS-technology and deployment of GPS-devices still offers significant challenges for future research. PMID:22574061

  15. Along-Track Reef Imaging System (ATRIS)

    USGS Publications Warehouse

    Brock, John; Zawada, Dave

    2006-01-01

    "Along-Track Reef Imaging System (ATRIS)" describes the U.S. Geological Survey's Along-Track Reef Imaging System, a boat-based sensor package for rapidly mapping shallow water benthic environments. ATRIS acquires high resolution, color digital images that are accurately geo-located in real-time.

  16. Computerized Tracking System for Underprepared Students.

    ERIC Educational Resources Information Center

    Smittle, Pat; And Others

    1989-01-01

    Describes Santa Fe Community College's (Florida) computer-based system for assessing students' basic skills, placing them into appropriate courses, and tracking their subsequent academic progress. Considers ways in which the college's tracking system has been modified in response to state mandates. (DMM)

  17. An optical tracking system for virtual reality

    NASA Astrophysics Data System (ADS)

    Hrimech, Hamid; Merienne, Frederic

    2009-03-01

    In this paper we present a low-cost 3D tracking system which we have developed and tested in order to move away from traditional 2D interaction techniques (keyboard and mouse) in an attempt to improve user's experience while using a CVE. Such a tracking system is used to implement 3D interaction techniques that augment user experience, promote user's sense of transportation in the virtual world as well as user's awareness of their partners. The tracking system is a passive optical tracking system using stereoscopy a technique allowing the reconstruction of three-dimensional information from a couple of images. We have currently deployed our 3D tracking system on a collaborative research platform for investigating 3D interaction techniques in CVEs.

  18. Ricin detection: tracking active toxin.

    PubMed

    Bozza, William P; Tolleson, William H; Rosado, Leslie A Rivera; Zhang, Baolin

    2015-01-01

    Ricin is a plant toxin with high bioterrorism potential due to its natural abundance and potency in inducing cell death. Early detection of the active toxin is essential for developing appropriate countermeasures. Here we review concepts for designing ricin detection methods, including mechanism of action of the toxin, advantages and disadvantages of current detection assays, and perspectives on the future development of rapid and reliable methods for detecting ricin in environmental samples.

  19. Authenticated Tracking and Monitoring System (ATMS) tracking shipments from an Australian uranium mine

    SciTech Connect

    Schoeneman, J.L.; Sorokowski, D.

    1997-10-01

    The Authenticated Tracking and Monitoring System (ATMS) answers the need for global monitoring of the status and location of sensitive items on a worldwide basis, 24 hours a day. The ATMS concept uses wireless sensor packs to monitor the status of the items and environmental conditions, to collect a variety of sensor event data, and to transmit the data through the INMARSAT satellite communication system, which then sends that data to appropriate ground stations for tracking and monitoring. Authentication and encryption algorithms are used throughout the system to secure the data during communication activities. A typical ATMS application would be to track and monitor the safety and security of a number of items in transit along a scheduled shipping route. The resulting tracking, timing, and status information could then be processed to ensure compliance with various agreements.

  20. Solar tracking control system Sun Chaser

    NASA Technical Reports Server (NTRS)

    Scott, D. R.; White, P. R.

    1978-01-01

    The solar tracking control system, Sun Chaser, a method of tracking the Sun in all types of weather conditions is described. The Sun Chaser follows the Sun from east to west in clear or cloudy weather, and resets itself to the east position after sundown in readiness for the next sunrise.

  1. The administration of the NASA space tracking system and the NASA space tracking system in Australia

    NASA Technical Reports Server (NTRS)

    Hollander, N.

    1973-01-01

    The international activities of the NASA space program were studied with emphasis on the development and maintenance of tracking stations in Australia. The history and administration of the tracking organization and the manning policies for the stations are discussed, and factors affecting station operation are appraised. A field study of the Australian tracking network is included.

  2. Problem reporting and tracking system: a systems engineering challenge

    NASA Astrophysics Data System (ADS)

    Cortez, Vasco; Lopez, Bernhard; Whyborn, Nicholas; Price, Roberto; Hernandez, Octavio; Gairing, Stefan; Barrios, Emilio; Alarcon, Hector

    2016-08-01

    The problem reporting and tracking system (PRTS) is the ALMA system to register operational problems, track unplanned corrective operational maintenance activities and follow the investigations of all problems or possible issues arisen in operation activities. After the PRTS implementation appeared several issues that finally produced a lack in the management of the investigations, problems to produce KPIs, loss of information, among others. In order to improve PRTS, we carried out a process to review the status of system, define a set of modifications and implement a solution; all according to the stakeholder requirements. In this work, we shall present the methodology applied to define a set of concrete actions at the basis of understanding the complexity of the problem, which finally got to improve the interactions between different subsystems and enhance the communication at different levels.

  3. In-laboratory development of an automatic track counting system for solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Uzun, Sefa Kemal; Demiröz, Işık; Ulus, İzzet

    2017-01-01

    In this study, an automatic track counting system was developed for solid state nuclear track detectors (SSNTD). Firstly the specifications of required hardware components were determined, and accordingly the CCD camera, microscope and stage motor table was supplied and integrated. The system was completed by developing parametric software with VB.Net language. Finally a set of test intended for radon activity concentration measurement was applied. According to the test results, the system was enabled for routine radon measurement. Whether the parameters of system are adjusted for another SSNTD application, it could be used for other fields of SSNTD like neutron dosimetry or heavy charged particle detection.

  4. Evolution of the SOFIA tracking control system

    NASA Astrophysics Data System (ADS)

    Fiebig, Norbert; Jakob, Holger; Pfüller, Enrico; Röser, Hans-Peter; Wiedemann, Manuel; Wolf, Jürgen

    2014-07-01

    The airborne observatory SOFIA (Stratospheric Observatory for Infrared Astronomy) is undergoing a modernization of its tracking system. This included new, highly sensitive tracking cameras, control computers, filter wheels and other equipment, as well as a major redesign of the control software. The experiences along the migration path from an aged 19" VMbus based control system to the application of modern industrial PCs, from VxWorks real-time operating system to embedded Linux and a state of the art software architecture are presented. Further, the concept is presented to operate the new camera also as a scientific instrument, in parallel to tracking.

  5. WIPP Transparency Project - container tracking and monitoring demonstration using the Authenticated Tracking and Monitoring System (ATMS)

    SciTech Connect

    SCHOENEMAN, J. LEE; SMARTT, HEIDI ANNE; HOFER, DENNIS

    2000-01-27

    The Authenticated Tracking and Monitoring System (ATMS) is designed to answer the need for global monitoring of the status and location of proliferation-sensitive items on a worldwide basis, 24 hours a day. ATMS uses wireless sensor packs to monitor the status of the items within the shipment and surrounding environmental conditions. Receiver and processing units collect a variety of sensor event data that is integrated with GPS tracking data. The collected data are transmitted to the International Maritime Satellite (INMARSAT) communication system, which then sends the data to mobile ground stations. Authentication and encryption algorithms secure the data during communication activities. A typical ATMS application would be to track and monitor the stiety and security of a number of items in transit along a scheduled shipping route. The resulting tracking, timing, and status information could then be processed to ensure compliance with various agreements.

  6. Launch vehicle tracking enhancement through Global Positioning System Metric Tracking

    NASA Astrophysics Data System (ADS)

    Moore, T. C.; Li, Hanchu; Gray, T.; Doran, A.

    United Launch Alliance (ULA) initiated operational flights of both the Atlas V and Delta IV launch vehicle families in 2002. The Atlas V and Delta IV launch vehicles were developed jointly with the US Air Force (USAF) as part of the Evolved Expendable Launch Vehicle (EELV) program. Both Launch Vehicle (LV) families have provided 100% mission success since their respective inaugural launches and demonstrated launch capability from both Vandenberg Air Force Base (VAFB) on the Western Test Range and Cape Canaveral Air Force Station (CCAFS) on the Eastern Test Range. However, the current EELV fleet communications, tracking, & control architecture & technology, which date back to the origins of the space launch business, require support by a large and high cost ground footprint. The USAF has embarked on an initiative known as Future Flight Safety System (FFSS) that will significantly reduce Test Range Operations and Maintenance (O& M) cost by closing facilities and decommissioning ground assets. In support of the FFSS, a Global Positioning System Metric Tracking (GPS MT) System based on the Global Positioning System (GPS) satellite constellation has been developed for EELV which will allow both Ranges to divest some of their radar assets. The Air Force, ULA and Space Vector have flown the first 2 Atlas Certification vehicles demonstrating the successful operation of the GPS MT System. The first Atlas V certification flight was completed in February 2012 from CCAFS, the second Atlas V certification flight from VAFB was completed in September 2012 and the third certification flight on a Delta IV was completed October 2012 from CCAFS. The GPS MT System will provide precise LV position, velocity and timing information that can replace ground radar tracking resource functionality. The GPS MT system will provide an independent position/velocity S-Band telemetry downlink to support the current man-in-the-loop ground-based commanded destruct of an anomalous flight- The system

  7. 77 FR 33489 - Draft Offender Tracking System Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... of Justice Programs Draft Offender Tracking System Standard AGENCY: National Institute of Justice. ACTION: Notice of Draft Offender Tracking System Standard, Selection and Application Guide, and... general public three draft documents: (1) A draft standard entitled, ``Offender Tracking System...

  8. Chemical Tracking Systems: Not Your Usual Global Positioning System!

    ERIC Educational Resources Information Center

    Roy, Ken

    2007-01-01

    The haphazard storing and tracking of chemicals in the laboratory is a serious safety issue facing science teachers. To get control of your chemicals, try implementing a "chemical tracking system". A chemical tracking system (CTS) is a database of chemicals used in the laboratory. If implemented correctly, a CTS will reduce purchasing costs,…

  9. UWB Tracking System Design with TDOA Algorithm

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Schwing, Alan

    2006-01-01

    This presentation discusses an ultra-wideband (UWB) tracking system design effort using a tracking algorithm TDOA (Time Difference of Arrival). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A two-stage weighted least square method is chosen to solve the TDOA non-linear equations. Matlab simulations in both two-dimensional space and three-dimensional space show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. The error analysis reveals various ways to improve the tracking resolution. Lab experiments demonstrate the UWBTDOA tracking capability with fine resolution. This research effort is motivated by a prototype development project Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS).

  10. Silicon retina for optical tracking systems

    NASA Technical Reports Server (NTRS)

    Strohbehn, K.; Jenkins, R. E.; Sun, X.; Andreou, A. G.

    1993-01-01

    There are a host of position sensors, such as quadcells and CCD's, which are candidates for detecting optical position errors and providing error signals for a mirror positioning loop. We are developing a novel, very high bandwidth, biologically inspired position sensor for optical position tracking systems. We present recent test results and design issues for the use of biologically inspired silicon retinas for spaceborne optical position tracking systems.

  11. Correlation tracking for a Planetary Pointing and Tracking System

    NASA Technical Reports Server (NTRS)

    Assefi, T.

    1978-01-01

    The Planetary Pointing and Tracking System (PPTS) is being developed to provide precision pointing for science platforms on future autonomous planetary spacecraft. The PPTS design approach using a CCD optical sensor for closed-loop control with respect to the target body, a gyro for inertial stabilization, and brushless dc torque motors for smooth and continuous platform articulation is essential for high resolution planetary imaging and automated science execution. An integral part of PPTS is the correlation tracker which has the potential to revolutionize autonomous guidance.

  12. Active illuminated space object imaging and tracking simulation

    NASA Astrophysics Data System (ADS)

    Yue, Yufang; Xie, Xiaogang; Luo, Wen; Zhang, Feizhou; An, Jianzhu

    2016-10-01

    Optical earth imaging simulation of a space target in orbit and it's extraction in laser illumination condition were discussed. Based on the orbit and corresponding attitude of a satellite, its 3D imaging rendering was built. General simulation platform was researched, which was adaptive to variable 3D satellite models and relative position relationships between satellite and earth detector system. Unified parallel projection technology was proposed in this paper. Furthermore, we denoted that random optical distribution in laser-illuminated condition was a challenge for object discrimination. Great randomicity of laser active illuminating speckles was the primary factor. The conjunction effects of multi-frame accumulation process and some tracking methods such as Meanshift tracking, contour poid, and filter deconvolution were simulated. Comparison of results illustrates that the union of multi-frame accumulation and contour poid was recommendable for laser active illuminated images, which had capacities of high tracking precise and stability for multiple object attitudes.

  13. NASA's GPS tracking system for Aristoteles

    NASA Astrophysics Data System (ADS)

    Davis, E. S.; Hajj, G.; Kursinski, E. R.; Kyriacou, C.; Meehan, T. K.; Melbourne, William G.; Neilan, R. E.; Young, L. E.; Yunck, Thomas P.

    1991-12-01

    NASA 's Global Positioning System (GPS) tracking system for Artistoteles receivers and a GPS flight receiver aboard Aristoteles is described. It will include a global network of GPS ground receivers and a GPS flight receiver aboard Aristoteles. The flight receiver will operate autonomously; it will provide real time navigation solutions for Aristoteles and tracking data needed by ESOC for operational control of the satellite. The GPS flight and ground receivers will currently and continuously track all visible GPS satellites. These observations will yield high accuracy differential positions and velocities of Aristoteles in a terrestrial frame defined by the locations of the globally distributed ground work. The precise orbits and tracking data will be made available to science investigators as part of the geophysical data record. The characteristics of the GPS receivers, both flight and ground based, that NASA will be using to support Aristoteles are described. The operational aspects of the overall tracking system, including the data functions and the resulting data products are summarized. The expected performance of the tracking system is compared to Aristoteles requirements and the need to control key error sources such as multipath is identified.

  14. Solar tracking control system Sun Chaser

    NASA Technical Reports Server (NTRS)

    Scott, D. R.; White, P. R.

    1979-01-01

    The solar tracking control system (Sun Chaser) is believed to be an improved method of tracking the Sun in all types of weather conditions. The Sun Chaser will follow the Sun from east to west in clear or cloudy weather, and reset itself to the east position after sundown in readiness for the next sunrise. A description of the Sun Chaser hardware and its operation together with results is presented.

  15. Fuzzy logic control for camera tracking system

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant

    1992-01-01

    A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.

  16. Interferometric tracking system for the tracking and data relay satellite

    NASA Technical Reports Server (NTRS)

    Effland, John E.; Knight, Curtis A.; Webber, John C.

    1993-01-01

    This report documents construction and testing of the Interferometric Tracking System project developed under the NASA SBIR contract NAS5-30313. Manuals describing the software and hardware, respectively entitled: 'Field Station Guide to Operations' and 'Field Station Hardware Manual' are included as part of this final report. The objective of this contract was to design, build, and operate a system of three ground stations using Very Long Baseline Interferometry techniques to measure the TDRS orbit. The ground stations receive signals from normal satellite traffic, store these signals in co-located computers, and transmit the information via phone lines to a central processing site which correlates the signals to determine relative time delays. Measurements from another satellite besides TDRS are used to determine clock offsets. A series of such measurements will ultimately be employed to derive the orbital parameters, yielding positions accurate to within 50 meters or possibly better.

  17. A tracking system for mobile FSO

    NASA Astrophysics Data System (ADS)

    Al-Akkoumi, Mouhammad K.; Refai, Hakki; Sluss, James J., Jr.

    2008-02-01

    Free-space optics (FSO), or Optical Wireless, is an unlicensed line-of-sight technology that uses modulated lasers to transmit information through the atmosphere. By using light beams, FSO can transmit and receive data, voice, and video, information through the air. FSO provides data rates ranging from 100Mbps to 2.5Gbps. In most applications, FSO transceivers normally remain in a static location to ensure continuous line of sight and to maintain accurate alignment. One current challenge facing FSO technology is the desire to implement mobility. As a potential solution, this study introduces an auto-tracking system that will achieve and maintain alignment between two mobile FSO nodes. This auto-tracking system can be used in many different applications, such as reducing the time needed to achieve alignment of an FSO link, and maintaining a link between an aircraft and a stationary command post to exchange real-time video and data with high-speed laser communications. After link initiation, the auto-tracking system application will send steering commands back to the positioning gimbal. These steering commands are determined by feedback from Position Sensing Diodes (PSDs). The proposed FSO auto-tracking system provides optical beam steering and capturing mechanisms to provide tracking between two transceivers, either fixed or mobile. In this paper, we illustrate the feasibility of such a system and present experimental results for a source aligned with a PSD in a mobile environment.

  18. Color Image Processing and Object Tracking System

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Wright, Ted W.; Sielken, Robert S.

    1996-01-01

    This report describes a personal computer based system for automatic and semiautomatic tracking of objects on film or video tape, developed to meet the needs of the Microgravity Combustion and Fluids Science Research Programs at the NASA Lewis Research Center. The system consists of individual hardware components working under computer control to achieve a high degree of automation. The most important hardware components include 16-mm and 35-mm film transports, a high resolution digital camera mounted on a x-y-z micro-positioning stage, an S-VHS tapedeck, an Hi8 tapedeck, video laserdisk, and a framegrabber. All of the image input devices are remotely controlled by a computer. Software was developed to integrate the overall operation of the system including device frame incrementation, grabbing of image frames, image processing of the object's neighborhood, locating the position of the object being tracked, and storing the coordinates in a file. This process is performed repeatedly until the last frame is reached. Several different tracking methods are supported. To illustrate the process, two representative applications of the system are described. These applications represent typical uses of the system and include tracking the propagation of a flame front and tracking the movement of a liquid-gas interface with extremely poor visibility.

  19. Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Mckenzie, J.; Vanek, C.

    1991-01-01

    The DSN (Deep Space Network) mission support requirements for the Tracking and Data Relay Satellite System (TDRSS) are summarized. The TDRSS consists of four identical satellites in geosynchronous orbits (35,800 km) and a dedicated ground station. The payload of each satellite is a telecommunications service system that relays communication signals between low earth-orbiting user spacecraft and the TDRSS ground terminal. Mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility.

  20. Underground communications and tracking systems update

    SciTech Connect

    Fiscor, S.

    2008-01-15

    Today, when it comes to having systems to communicate with track and locate underground coal miners, mining companies have many equipment choices, as a direct response to the USA's 2006 MINER Act and the West Virginia Legislative Rule 56-4-8. Coal Age spoke to several companies about their leaky feeder and purely wireless systems which are either approved by the US MSHA or have been submitted for approval. The article gives details of: a UHF leaky feeder system developed by Pillar Innovations, designed to exit a mine at multiple points and then tie the leads back together on the surface; the Venture/Helicomm MineTrader system for tracking, monitoring and emergency messaging for mines; Rajant Corp.'s BreadCrumb wireless system using battery-powered wireless access nodes that enable voice and data communications across a self-healing network; the SubterraCom Wireless Solution's communications systems; a wireless mesh peer-to-peer communications system and an ultra widebade (UWB)-base real-time location tracking system from L-3 Communications; and VHF and UHF leaky feeder amplifiers from Tunnel Radio. MSHA approved communications and tracking systems are tabulated. 11 photos., 1 tab.

  1. Tracking-integrated systems for concentrating photovoltaics

    NASA Astrophysics Data System (ADS)

    Apostoleris, Harry; Stefancich, Marco; Chiesa, Matteo

    2016-04-01

    Concentrating photovoltaic (CPV) systems, which use optical elements to focus light onto small-area solar cells, have the potential to minimize the costs, while improving efficiency, of photovoltaic technology. However, CPV is limited by the need to track the apparent motion of the Sun. This is typically accomplished using high-precision mechanical trackers that rotate the entire module to maintain normal light incidence. These machines are large, heavy and expensive to build and maintain, deterring commercial interest and excluding CPV from the residential market. To avoid this issue, some attention has recently been devoted to the development of tracking-integrated systems, in which tracking is performed inside the CPV module itself. This creates a compact system geometry that could be less expensive and more suitable for rooftop installation than existing CPV trackers. We review the basic tracking principles and concepts exploited in these systems, describe and categorize the existing designs, and discuss the potential impact of tracking integration on CPV cost models and commercial potential.

  2. Eliminating Tracking-System Clock Errors

    NASA Technical Reports Server (NTRS)

    Wu, Jiun-Tsong; Bertiger, William I.

    1989-01-01

    Problems of redundancy and correlation avoided. ORTHO computer program eliminates effect of clock errors in differential solutions for positions of users of Global Positioning System (GPS). Main application, elimination of clock errors in tracking system based on GPS. Written in FORTRAN 77.

  3. Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Kushpil, Svetlana; ALICE Collaboration

    2016-02-01

    ALICE detector was constructed to study the properties of hot and dense hadronic matter formed in relativistic nuclear collisions. During the second long LHC shutdown in 2019-2020, the collaboration plans to upgrade the current vertex detector, the Inner Tracking System (ITS), in order to increase the reconstruction accuracy of secondary vertices and to lower the threshold of particle transverse momentum measurement. The upgrade strategy of ITS is based on the application of new Monolithic Active Pixel Sensors (MAPS) designed in 0.18 μm CMOS technology. The 50 μm thick chip consists of a single silicon die incorporating a 0.18 μm high-resistivity silicon epitaxial layer (sensor active volume) and matrix of charge collection diodes (pixels) with readout electronics. Radiation hardness of the upgraded ITS is one of the crucial moments in the overall performance of the system. A wide set of MAPS structures with different read-out circuits was produced and is being studied by the ALICE collaboration to optimize the pixel sensor functionality. An overview of the ALICE ITS upgrade and the expected performance improvement will be presented together with selected results from a campaign that includes several irradiation and beam tests.

  4. Video Target Tracking and Ranging System

    NASA Technical Reports Server (NTRS)

    Freedman, L. A.

    1983-01-01

    Proposed target tracking and ranging system uses two automatic video target trackers to keep two TV cameras trained on object being tracked. Microcomputer calculates range and range-rate information by triangulation. Input data for calculation are position coordinates of two cameras and pan and tilt aiming angles of two cameras. System is useful for target ranging at distances up to about 1,000 feet (300 m) in such applications as vehicle collision avoidance, traffic monitoring and surveillance. Also substitutes for short-range radar in situations where radar signal can not be tolerated.

  5. PHENIX Muon Tracking Detector Gas System

    NASA Astrophysics Data System (ADS)

    Kotchenda, L.; Kravtsov, P.; Pisani, R. P.; Tretiakov, G.; Trofimov, V.

    2007-07-01

    The Muon Tracking Detector Gas System was designed and fabricated to supply Ar+30% CO 2+20% CF 4 mixture to the PHENIX [K. Adcox, S.S. Adler, M. Aizam, et al., Nucl. Instr. and Meth. A 499 (2003) 669.] [1]. Muon Tracking (MuTr) chambers located at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Nation Lab (BNL). The gas system purpose is to provide gas at the requested mixture at a constant controlled pressure and at various flow rates. The system can do this while monitoring the mixture's temperature, pressure, flow rate, and CO 2, oxygen, and moisture content. A custom computer data acquisition system collects and logs the gas system operating parameters. This system can also be alarmed to provide automatic responses to undesired system conditions.

  6. 47 CFR 64.1320 - Payphone call tracking system audits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Payphone call tracking system audits. 64.1320... call tracking system audits. (a) Unless it has entered into an alternative compensation arrangement... Certified Public Accountants, to determine whether the call tracking system accurately tracks payphone...

  7. Authenticated tracking and monitoring system (ATMS) tracking shipments from an Australian uranium mine

    SciTech Connect

    Schoeneman, J.L.

    1998-08-01

    The Authenticated Tracking and Monitoring System (ATMS) answers the need for global monitoring of the status and location of sensitive items on a worldwide basis, 24 hours a day. ATMS uses wireless sensor packs to monitor the status of the items and environmental conditions. A receiver and processing unit collect a variety of sensor event data. The collected data are transmitted to the INMARSAT satellite communication system, which then sends the data to appropriate ground stations. Authentication and encryption algorithms secure the data during communication activities. A typical ATMS application would be to track and monitor the safety and security of a number of items in transit along a scheduled shipping route. The resulting tracking, timing, and status information could then be processed to ensure compliance with various agreements. Following discussions between the Australian Safeguards Office (ASO), the US Department of Energy (DOE), and Sandia National Laboratories (SNL) in early 1995, the parties mutually agreed to conduct and evaluate a field trial prototype ATMS to track and monitor shipments of uranium ore concentrate (UOC) from an operating uranium mine in Australia to a final destination in Rotterdam, the Netherlands, with numerous stops along the way. During the months of February and March 1998, the trial was conducted on a worldwide basis, with tracking and monitoring stations located at sites in both Australia and the US. This paper describes ATMS and the trial.

  8. A coded tracking telemetry system

    USGS Publications Warehouse

    Howey, P.W.; Seegar, W.S.; Fuller, M.R.; Titus, K.; Amlaner, Charles J.

    1989-01-01

    We describe the general characteristics of an automated radio telemetry system designed to operate for prolonged periods on a single frequency. Each transmitter sends a unique coded signal to a receiving system that encodes and records only the appropriater, pre-programmed codes. A record of the time of each reception is stored on diskettes in a micro-computer. This system enables continuous monitoring of infrequent signals (e.g. one per minute or one per hour), thus extending operation life or allowing size reduction of the transmitter, compared to conventional wildlife telemetry. Furthermore, when using unique codes transmitted on a single frequency, biologists can monitor many individuals without exceeding the radio frequency allocations for wildlife.

  9. Custom active RFId solution for children tracking and identifying in a resuscitation ward.

    PubMed

    Iadanza, Ernesto; Dori, Fabrizio

    2009-01-01

    In this work is discussed an active RFId system to track and identify patients in a children's critical care ward. The technical solutions may be very different according to the patients type, age and cognitive conditions and according to the hospital shapes. The proposed system to track and identify patients has been developed taking into account all the constraints induced by the particular environment. The system is composed of five different hardware devices and a tracking software, purposely designed and realized.

  10. Optical Blade Position Tracking System Test

    SciTech Connect

    Fingersh, L. J.

    2006-01-01

    The Optical Blade Position Tracking System Test measures the blade deflection along the span of the blade using simple off-the-shelf infrared security cameras along with blade-mounted retro-reflective tape and video image processing hardware and software to obtain these measurements.

  11. Design of a Traditional Solar Tracking System

    NASA Astrophysics Data System (ADS)

    Barsoum, Nader; Vasant, Pandian

    2010-06-01

    Solar energy is rapidly advancing as an important means of renewable energy resource. More energy is produced by tracking the solar panel to remain aligned to the sun at a right angle to the rays of light. This paper describes in detail the design and construction of a prototype for solar tracking system with two degrees of freedom, which detects the sunlight using photocells. The control circuit for the solar tracker is based on a PIC16F84A microcontroller (MCU). This is programmed to detect the sunlight through the photocells and then actuate the motor to position the solar panel where it can receive maximum sunlight.

  12. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope.

    PubMed

    Sheehy, Christy K; Tiruveedhula, Pavan; Sabesan, Ramkumar; Roorda, Austin

    2015-07-01

    We demonstrate a system that combines a tracking scanning laser ophthalmoscope (TSLO) and an adaptive optics scanning laser ophthalmoscope (AOSLO) system resulting in both optical (hardware) and digital (software) eye-tracking capabilities. The hybrid system employs the TSLO for active eye-tracking at a rate up to 960 Hz for real-time stabilization of the AOSLO system. AOSLO videos with active eye-tracking signals showed, at most, an amplitude of motion of 0.20 arcminutes for horizontal motion and 0.14 arcminutes for vertical motion. Subsequent real-time digital stabilization limited residual motion to an average of only 0.06 arcminutes (a 95% reduction). By correcting for high amplitude, low frequency drifts of the eye, the active TSLO eye-tracking system enabled the AOSLO system to capture high-resolution retinal images over a larger range of motion than previously possible with just the AOSLO imaging system alone.

  13. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope

    PubMed Central

    Sheehy, Christy K.; Tiruveedhula, Pavan; Sabesan, Ramkumar; Roorda, Austin

    2015-01-01

    We demonstrate a system that combines a tracking scanning laser ophthalmoscope (TSLO) and an adaptive optics scanning laser ophthalmoscope (AOSLO) system resulting in both optical (hardware) and digital (software) eye-tracking capabilities. The hybrid system employs the TSLO for active eye-tracking at a rate up to 960 Hz for real-time stabilization of the AOSLO system. AOSLO videos with active eye-tracking signals showed, at most, an amplitude of motion of 0.20 arcminutes for horizontal motion and 0.14 arcminutes for vertical motion. Subsequent real-time digital stabilization limited residual motion to an average of only 0.06 arcminutes (a 95% reduction). By correcting for high amplitude, low frequency drifts of the eye, the active TSLO eye-tracking system enabled the AOSLO system to capture high-resolution retinal images over a larger range of motion than previously possible with just the AOSLO imaging system alone. PMID:26203370

  14. The Kinect as an interventional tracking system

    NASA Astrophysics Data System (ADS)

    Wang, Xiang L.; Stolka, Philipp J.; Boctor, Emad; Hager, Gregory; Choti, Michael

    2012-02-01

    This work explores the suitability of low-cost sensors for "serious" medical applications, such as tracking of interventional tools in the OR, for simulation, and for education. Although such tracking - i.e. the acquisition of pose data e.g. for ultrasound probes, tissue manipulation tools, needles, but also tissue, bone etc. - is well established, it relies mostly on external devices such as optical or electromagnetic trackers, both of which mandate the use of special markers or sensors attached to each single entity whose pose is to be recorded, and also require their calibration to the tracked entity, i.e. the determination of the geometric relationship between the marker's and the object's intrinsic coordinate frames. The Microsoft Kinect sensor is a recently introduced device for full-body tracking in the gaming market, but it was quickly hacked - due to its wide range of tightly integrated sensors (RGB camera, IR depth and greyscale camera, microphones, accelerometers, and basic actuation) - and used beyond this area. As its field of view and its accuracy are within reasonable usability limits, we describe a medical needle-tracking system for interventional applications based on the Kinect sensor, standard biopsy needles, and no necessary attachments, thus saving both cost and time. Its twin cameras are used as a stereo pair to detect needle-shaped objects, reconstruct their pose in four degrees of freedom, and provide information about the most likely candidate.

  15. Passive Tracking System and Method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Chen, Henry A. (Inventor); Phan, Chau T. (Inventor); Bourgeois, Brian A. (Inventor); Dusl, Jon (Inventor); Hill, Brent W. (Inventor)

    2003-01-01

    Systems and methods are disclosed for passively determining the location of a moveable transmitter utilizing a pair of phase shifts at a receiver for extracting a direction vector from a receiver to the transmitter. In a preferred embodiment, a phase difference between the transmitter and receiver is extracted utilizing a noncoherent demodulator in the receiver. The receiver includes an antenna array with three antenna elements, which preferably are patch antenna elements spaced apart by one-half wavelength. Three receiver channels are preferably utilized for simultaneously processing the received signal from each of the three antenna elements. Multipath transmission paths for each of the three receiver channels are indexed so that comparisons of the same multipath component are made for each of the three receiver channels. The phase difference for each received signal is determined by comparing only the magnitudes of received and stored modulation signals to determine a winning modulation symbol.

  16. Passive Tracking System and Method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Chen, Henry A. (Inventor); Phan, Chau T. (Inventor); Bourgeois, Brian A. (Inventor); Dusl, John (Inventor); Hill, Brent W. (Inventor)

    2005-01-01

    System and methods are disclosed for passively determining the location of a moveable transmitter utilizing a pair of phase shifts at a receiver for extracting a direction vector from a receiver to the transmitter. In a preferred embodiment, a phase difference between the transmitter and receiver is extracted utilizing a noncoherent demodulator in the receiver. The receiver includes antenna array with three antenna elements, which preferably are patch antenna elements placed apart by one-half wavelength. Three receiver channels are preferably utilized for simultaneously processing the received signal from each of the three antenna elements. Multipath transmission paths for each of the three receiver channels are indexed so that comparisons of the same multipath component are made for each of the three receiver channels. The phase difference for each received signal is determined by comparing only the magnitudes of received and stored modulation signals to determine a winning modulation symbol.

  17. NCAR Earth Observing Laboratory's Data Tracking System

    NASA Astrophysics Data System (ADS)

    Cully, L. E.; Williams, S. F.

    2014-12-01

    The NCAR Earth Observing Laboratory (EOL) maintains an extensive collection of complex, multi-disciplinary datasets from national and international, current and historical projects accessible through field project web pages (https://www.eol.ucar.edu/all-field-projects-and-deployments). Data orders are processed through the EOL Metadata Database and Cyberinfrastructure (EMDAC) system. Behind the scenes is the institutionally created EOL Computing, Data, and Software/Data Management Group (CDS/DMG) Data Tracking System (DTS) tool. The DTS is used to track the complete life cycle (from ingest to long term stewardship) of the data, metadata, and provenance for hundreds of projects and thousands of data sets. The DTS is an EOL internal only tool which consists of three subsystems: Data Loading Notes (DLN), Processing Inventory Tool (IVEN), and Project Metrics (STATS). The DLN is used to track and maintain every dataset that comes to the CDS/DMG. The DLN captures general information such as title, physical locations, responsible parties, high level issues, and correspondence. When the CDS/DMG processes a data set, IVEN is used to track the processing status while collecting sufficient information to ensure reproducibility. This includes detailed "How To" documentation, processing software (with direct links to the EOL Subversion software repository), and descriptions of issues and resolutions. The STATS subsystem generates current project metrics such as archive size, data set order counts, "Top 10" most ordered data sets, and general information on who has ordered these data. The DTS was developed over many years to meet the specific needs of the CDS/DMG, and it has been successfully used to coordinate field project data management efforts for the past 15 years. This paper will describe the EOL CDS/DMG Data Tracking System including its basic functionality, the provenance maintained within the system, lessons learned, potential improvements, and future developments.

  18. Development of an autonomous target tracking system

    NASA Astrophysics Data System (ADS)

    Gidda, Venkata Ramaiah

    In recent years, surveillance and border patrol have become one of the key research areas in UAV research. Increase in the computational capability of the computers and embedded electronics, coupled with compatibility of various commercial vision algorithms and commercial off the shelf (COTS) embedded electronics, and has further fuelled the research. The basic task in these applications is perception of environment through the available visual sensors like camera. Visual tracking, as the name implies, is tracking of objects using a camera. The process of autonomous target tracking starts with the selection of the target in a sequence of video frames transmitted from the on-board camera. We use an improved fast dynamic template matching algorithm coupled with Kalman Filter to track the selected target in consecutive video frames. The selected target is saved as a reference template. On the ground station computer, the reference template is overlaid on the live streaming video from the on-board system, starting from the upper left corner of the video frame. The template is slid pixel by pixel over the entire source image. A comparison of the pixels is performed between the template and source image. A confidence value R of the match is calculated at each pixel. Based on the method used to perform the template matching, the best match pixel location is found according to the highest or lowest confidence value R. The best match pixel location is communicated to the on-board gimbal controller over the wireless Xbee network. The software on the controller actuates the pan-tilt servos to continuously to hold the selected target at the center of the video frame. The complete system is a portable control system assembled from commercial off the shelf parts. The tracking system is tested on a target having several motion patterns.

  19. Multiple Drosophila Tracking System with Heading Direction

    PubMed Central

    Sirigrivatanawong, Pudith; Arai, Shogo; Thoma, Vladimiros; Hashimoto, Koichi

    2017-01-01

    Machine vision systems have been widely used for image analysis, especially that which is beyond human ability. In biology, studies of behavior help scientists to understand the relationship between sensory stimuli and animal responses. This typically requires the analysis and quantification of animal locomotion. In our work, we focus on the analysis of the locomotion of the fruit fly Drosophila melanogaster, a widely used model organism in biological research. Our system consists of two components: fly detection and tracking. Our system provides the ability to extract a group of flies as the objects of concern and furthermore determines the heading direction of each fly. As each fly moves, the system states are refined with a Kalman filter to obtain the optimal estimation. For the tracking step, combining information such as position and heading direction with assignment algorithms gives a successful tracking result. The use of heading direction increases the system efficiency when dealing with identity loss and flies swapping situations. The system can also operate with a variety of videos with different light intensities. PMID:28067800

  20. An autotuning respiration compensation system based on ultrasound image tracking.

    PubMed

    Kuo, Chia-Chun; Chuang, Ho-Chiao; Teng, Kuan-Ting; Hsu, Hsiao-Yu; Tien, Der-Chi; Wu, Chih-Jen; Jeng, Shiu-Chen; Chiou, Jeng-Fong

    2016-11-22

    waves, the correlation between the target displacement on the ultrasound images and the actual target displacement was around 97%, and all of the compensation rates exceeded 94% after activating the RCS. Furthermore, the diaphragm movements on the ultrasound images of three patients could be captured by our image tracking technique. The test results show that our algorithm could achieve precise point locking and tracking functions on the diaphragm. This study has demonstrated the feasibility of the proposed ultrasound image tracking technique combined with the RCS for compensating for organ displacements caused by respiratory motion.This study has shown that the proposed ultrasound image tracking technique combined with the RCS can provide real-time compensation of respiratory motion during radiation therapy, without increasing the overall treatment time. In addition, the system has modest space requirements and is easy to operate.

  1. Hacker tracking Security system for HMI

    NASA Astrophysics Data System (ADS)

    Chauhan, Rajeev Kumar

    2011-12-01

    Conventional Supervisory control and data Acquisition (SCADA) systems use PC, notebook, thin client, and PDA as a Client. Nowadays the Process Industries are following multi shift system that's why multi- client of different category have to work at a single human Machine Interface (HMI). They may hack the HMI Display and change setting of the other client. This paper introduces a Hacker tracking security (HTS) System for HMI. This is developed by using the conventional and Biometric authentication. HTS system is developed by using Numeric passwords, Smart card, biometric, blood flow and Finger temperature. This work is also able to identify the hackers.

  2. A double-loop tracking system.

    NASA Technical Reports Server (NTRS)

    Yuen, J. H.

    1972-01-01

    A nonlinear analysis which can be used to assess certain statistical characteristics of double-loop tracking systems is presented. It takes into account the mutual coupling effects of the loops in the system. Two approaches are taken to obtain steady-state probability density functions (pdf's) of the system phase errors. From these pdf's, important system performance statistics, e.g., the phase-error variances, can be calculated, thus illustrating the application and usefulness of the analysis. The analysis is applied to a satellite transponder as an example.

  3. The Rockefeller University Graduate Tracking Survey System

    PubMed Central

    Romanick, Michelle; Ng, Kwan; Lee, George; Herbert, Matthew; Coller, Barry S.

    2014-01-01

    Background It is essential to track the careers and accomplishments of the graduates of translational research training programs to assess the impact of the programs and to improve them. The major obstacle is the lack of a convenient method to collect the information in a comprehensive and standardized manner. Methods We have developed a web-based electronic Graduate Tracking Survey System (GTSS) that pre-populates the graduate’s information on publications, grants, patents, and clinical trials from public data sources, thus insuring a uniform data format, facilitating survey completion, and facilitating the aggregation of data at individual or multiple sites. GTSS questions are designed to assess whether trainees make important contributions that improve human health, and to track related “surrogate” career development indicators of likely future success. Results The GTSS has been in use at Rockefeller University since 2011 and has been adopted by 18 other Clinical and Translational Science Award programs. Conclusions The GTSS provides an efficient and convenient mechanism to track the graduates of a wide variety of training programs. It has the potential to aggregate standardized data across institutions, thus providing benchmarks for the assessment of individual training programs and data for program improvement. PMID:25393695

  4. Ultrawideband asynchronous tracking system and method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Phan, Chau T. (Inventor); Gross, Julia A. (Inventor); Ni, Jianjun (Inventor); Dusl, John (Inventor)

    2012-01-01

    A passive tracking system is provided with a plurality of ultrawideband (UWB) receivers that is asynchronous with respect to a UWB transmitter. A geometry of the tracking system may utilize a plurality of clusters with each cluster comprising a plurality of antennas. Time Difference of Arrival (TDOA) may be determined for the antennas in each cluster and utilized to determine Angle of Arrival (AOA) based on a far field assumption regarding the geometry. Parallel software communication sockets may be established with each of the plurality of UWB receivers. Transfer of waveform data may be processed by alternately receiving packets of waveform data from each UWB receiver. Cross Correlation Peak Detection (CCPD) is utilized to estimate TDOA information to reduce errors in a noisy, multipath environment.

  5. Advances in automatic electro-optical tracking systems

    NASA Astrophysics Data System (ADS)

    Moy, Anthony J. E.; Hughes, Andrew D.

    1992-11-01

    British Aerospace (Systems & Equipment) Ltd (BASE) has been working in the field of automatic electro-optical tracking (Autotrack) systems for more than 12 years. BASE Autotrack systems carry out the automatic detection, tracking and classification of missiles and targets using image processing techniques operating on data received from electro-optical sensors. Typical systems also produce control data to move the sensor platform, enabling moving targets to be tracked accurately over a wide range of conditions. BASE Autotrack systems have been well proven in land, sea and air applications. This paper discusses the relevance of Autotrack systems to modern high-technology warfare and charts the progress of their development within BASE, both with respect to current products and active research programs. Two third generation BASE Autotrack systems are described, one of which provided a sophisticated air-to-ground tracking capability in the recent Gulf War. The latest Autotrack product is also described; this uses ASIC and Transputer technology to provide a high-performance, compact, missile and target tracker. Reference is also made to BASE's research work. Topics include an ASIC correlator, point target detection and, in particular, the use of neural networks for real-time target classification.

  6. Advances in automatic electro-optical tracking systems

    NASA Astrophysics Data System (ADS)

    Hughes, Andrew D.; Moy, Anthony J. E.

    1992-11-01

    British Aerospace (Systems & Equipment) Ltd (BASE) has been working in the field of automatic electro-optical tracking (Autotrack) systems for more than 12 years. BASE Autotrack systems carry out the automatic detection, tracking and classification of missiles and targets using image processing techniques operating on data received from electro-optical sensors. Typical systems also produce control data to move the sensor platform, enabling moving targets to be tracked accurately over a wide range of conditions. BASE Autotrack systems have been well proven in land, sea and air applications. This paper discusses the relevance of Autotrack systems to modern high-technology warfare and charts the progress of their development with BASE, both with respect to current products and active research programs. Two third generation BASE Autotrack systems are described, one of which provided a sophisticated air-to-ground tracking capability in the recent Gulf War. The latest Autotrack product is also described; this uses ASIC and Transputer technology to provide a high-performance, compact, missile and target tracker. Reference is also made to BASE's research work. Topics include an ASIC correlator, point target detection and, in particular, the use of neural networks for real-time target classification.

  7. How Can I Keep Track of Physical Activity and Eating?

    MedlinePlus

    ... Weight Management How Can I Keep Track of Physical Activity and Healthy Eating? Taking care of your heart ... life. Planning a healthy diet and a regular physical activity program is the key to success. Prepare yourself ...

  8. Anomaly detection driven active learning for identifying suspicious tracks and events in WAMI video

    NASA Astrophysics Data System (ADS)

    Miller, David J.; Natraj, Aditya; Hockenbury, Ryler; Dunn, Katherine; Sheffler, Michael; Sullivan, Kevin

    2012-06-01

    We describe a comprehensive system for learning to identify suspicious vehicle tracks from wide-area motion (WAMI) video. First, since the road network for the scene of interest is assumed unknown, agglomerative hierarchical clustering is applied to all spatial vehicle measurements, resulting in spatial cells that largely capture individual road segments. Next, for each track, both at the cell (speed, acceleration, azimuth) and track (range, total distance, duration) levels, extreme value feature statistics are both computed and aggregated, to form summary (p-value based) anomaly statistics for each track. Here, to fairly evaluate tracks that travel across different numbers of spatial cells, for each cell-level feature type, a single (most extreme) statistic is chosen, over all cells traveled. Finally, a novel active learning paradigm, applied to a (logistic regression) track classifier, is invoked to learn to distinguish suspicious from merely anomalous tracks, starting from anomaly-ranked track prioritization, with ground-truth labeling by a human operator. This system has been applied to WAMI video data (ARGUS), with the tracks automatically extracted by a system developed in-house at Toyon Research Corporation. Our system gives promising preliminary results in highly ranking as suspicious aerial vehicles, dismounts, and traffic violators, and in learning which features are most indicative of suspicious tracks.

  9. Discovering Activities to Recognize and Track in a Smart Environment

    PubMed Central

    Rashidi, Parisa; Cook, Diane J.; Holder, Lawrence B.; Schmitter-Edgecombe, Maureen

    2011-01-01

    The machine learning and pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to monitor the functional health of smart home residents, we need to design technologies that recognize and track activities that people normally perform as part of their daily routines. Although approaches do exist for recognizing activities, the approaches are applied to activities that have been pre-selected and for which labeled training data is available. In contrast, we introduce an automated approach to activity tracking that identifies frequent activities that naturally occur in an individual’s routine. With this capability we can then track the occurrence of regular activities to monitor functional health and to detect changes in an individual’s patterns and lifestyle. In this paper we describe our activity mining and tracking approach and validate our algorithms on data collected in physical smart environments. PMID:21617742

  10. Eigenstate tracking in open quantum systems

    NASA Astrophysics Data System (ADS)

    Jing, Jun; Sarandy, Marcelo S.; Lidar, Daniel A.; Luo, Da-Wei; Wu, Lian-Ao

    2016-10-01

    Keeping a quantum system in a given instantaneous eigenstate is a control problem with numerous applications, e.g., in quantum information processing. The problem is even more challenging in the setting of open quantum systems, where environment-mediated transitions introduce additional decoherence channels. Adiabatic passage is a well-established solution but requires a sufficiently slow evolution time that is dictated by the adiabatic theorem. Here we develop a systematic projection theory formulation for the transitionless evolution of general open quantum systems described by time-local master equations. We derive a time-convolutionless dynamical equation for the target instantaneous eigenstate of a given time-dependent Hamiltonian. A transitionless dynamics then arises in terms of a competition between the average Hamiltonian gap and the decoherence rate, which implies optimal adiabaticity timescales. We show how eigenstate tracking can be accomplished via control pulses, without explicitly incorporating counter-diabatic driving, thus offering an alternative route to accelerate adiabaticity. We examine rectangular pulses, chaotic signals, and white noise, and find that, remarkably, the effectiveness of eigenstate tracking hardly depends on the details of the control functions. In all cases the control protocol keeps the system in the desired instantaneous eigenstate throughout the entire evolution, along an accelerated adiabatic path.

  11. Cabling for an SSC silicon tracking system

    SciTech Connect

    Ziock, H.; Boissevain, J.; Cooke, B.; Miller, W.

    1990-01-01

    As part of the Superconducting Super Collider Laboratory (SSCL) funded silicon tracking subsystem R D program, we examine the problems associated with cabling such a system. Different options for the cabling plant are discussed. A silicon microstrip tracking detector for an SSC experiment is an extremely complex system. The system consists of approximately 10{sup 7} detector channels, each of which requires a communication link with the outside world and connections to the detector bias voltage supply, to a DC power supply for the onboard electronics, and to an adjustable discrimination level. The large number of channels and the short time between beam interactions (16 nanoseconds) dictates the need for high speed and large bandwidth communication channels, and a power distribution system that can handle the high current draw of the electronics including the large AC component due to their switching. At the same time the constraints imposed by the physics measurements require that the cable plant have absolutely minimal mass and radiation length. 4 refs., 2 figs.

  12. SATS: Small, Automated Tracking System - - Elements of a Better System for Satellite Tracking and Telemetry

    NASA Technical Reports Server (NTRS)

    Srinivasan, Jeffrey M.; Lichten, Stephen M.; Haines, Bruce J.; Young, Lawrence E.

    1994-01-01

    JPL has been exploring applications of precise Global Positioning System (GPS) techniques to navigation and data communication for Earth orbiting spacecraft. GPS tracking can be exploited in several different ways, depending on the orbital altitude of the spacecraft of interest, to support orbit and trajectory determination. At low-Earth orbits below 3000 km, 'upwards-looking' GPS tracking analogous to ground-based GPS tracking can be used to provide real-time orbit determination for navigation. At Earth orbiting altitudes between 3000 km and 8000 km, visibility of GPS rapidly decreases and it becomes advantageous to add a nadir pointing antenna in order to continuously see enough GPS signals to navigate an orbiter. For orbits above 8000 km, JPL has developed the GPS-like tracking (GLT) technique which dispenses with the on-board GPS receiver in favor of a transmitting beacon whose phase is tracked, simultaneously with normal GPS signals, by a ground network of 'enhanced' GPS receivers. The systems referred to above all have the potential to provide inexpensive and autonomous navigation/orbit production and, in some cases, integrated data communication for a wide class of Earth orbiters and should be of interest to designers of NASA, military, and commercial space systems.

  13. The Mesa Arizona Pupil Tracking System

    NASA Technical Reports Server (NTRS)

    Wright, D. L.

    1973-01-01

    A computer-based Pupil Tracking/Teacher Monitoring System was designed for Mesa Public Schools, Mesa, Arizona. The established objectives of the system were to: (1) facilitate the economical collection and storage of student performance data necessary to objectively evaluate the relative effectiveness of teachers, instructional methods, materials, and applied concepts; and (2) identify, on a daily basis, those students requiring special attention in specific subject areas. The system encompasses computer hardware/software and integrated curricula progression/administration devices. It provides daily evaluation and monitoring of performance as students progress at class or individualized rates. In the process, it notifies the student and collects information necessary to validate or invalidate subject presentation devices, methods, materials, and measurement devices in terms of direct benefit to the students. The system utilizes a small-scale computer (e.g., IBM 1130) to assure low-cost replicability, and may be used for many subjects of instruction.

  14. Bar-code automated waste tracking system

    SciTech Connect

    Hull, T.E.

    1994-10-01

    The Bar-Code Automated Waste Tracking System was designed to be a site-Specific program with a general purpose application for transportability to other facilities. The system is user-friendly, totally automated, and incorporates the use of a drive-up window that is close to the areas dealing in container preparation, delivery, pickup, and disposal. The system features ``stop-and-go`` operation rather than a long, tedious, error-prone manual entry. The system is designed for automation but allows operators to concentrate on proper handling of waste while maintaining manual entry of data as a backup. A large wall plaque filled with bar-code labels is used to input specific details about any movement of waste.

  15. An improved drone tracking control system transponder

    NASA Astrophysics Data System (ADS)

    Miller, James J.; Tannenholz, Philip H.

    A small, compact, and inexpensive method of achieving frequency stability of a solid state LO to +/- 1 MHz in the MD700C-1 drone tracking and control system C-band command and control transponder is described. The methodology for realizing improved RF rejection, local oscillator stability, automatic gain control, and power supply efficiency is discussed. A switching mode regulator and a nonsaturating power supply were designed to operate at 80 percent efficiency to reduce power consumption and heat while operating over a wide voltage range.

  16. A System for Tracking Interventional Devices using Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Rosas-Trigueros, Jorge L.; Wright, Steven M.

    2002-08-01

    MRI guidance of surgical and diagnostic tools is a topic of active research. This paper describes a system being developed in a collaborative effort between BioTex Inc., the MD Anderson Cancer Center and Texas A&M to monitor the position and orientation of a straight, rigid interventional device. Tracking is needed to determine the position and orientation of the device outside the brain for insertion, locate and orient a catheter tip inside the brain, detect movement of an optical fiber placed inside the brain for laser based thermal therapy, and detect patient movement. The position tracking is based on the detection of one or two fiducial coils. Using two fiducial coils, experiments show successful tracking of the position of the device with a MSE of 0.202mm and with an update speed presently set to 1.5s. The developments have been made using National Instruments' (Austin, Texas) LabVIEW and PCI-6034E DAQ Board. The MR system consists of a 4.7 T/33 cm bore superconducting magnet and an Omega MRI system. Keywords: Interventional MRI, catheter tracking.

  17. Search and tracking system architecture using 1-D scanning sensors

    NASA Astrophysics Data System (ADS)

    Nam, Sanghoon; Choi, Byungin; Joung, Shichang; Kim, Jaein

    2010-04-01

    In the maritime environment, It is necessary for ship's self protection to search ad track approaching targets. We developed high performance search and tracking system with Infrared sensors. Our system can obtain high performance with several FPGAs and COTS processing boards. Dual band IR sensor (MWIR and LWIR) also gives two types of target detection and tracing abilities. Our system designed to automatically detect and track both air and surface targets such as sea skimming missiles, small ships, and aircrafts at a long range. In this paper, we describe technologies in our search and tracking system architecture. We describe software architecture for signal processing and target detection and tracking algorithms as well.

  18. Object tracking with stereo vision

    NASA Technical Reports Server (NTRS)

    Huber, Eric

    1994-01-01

    A real-time active stereo vision system incorporating gaze control and task directed vision is described. Emphasis is placed on object tracking and object size and shape determination. Techniques include motion-centroid tracking, depth tracking, and contour tracking.

  19. Solar powered engine and tracking system

    SciTech Connect

    Chromie, E.

    1980-04-22

    A solar powered engine and tracking system comprises a piston working within a cylinder for turning a drive shaft for driving an electrical generator or performing other useful work, a solar concentrator comprising a plurality of mirrors, each reflecting sun light on a common focal point on the end of the cylinder for heating a flash boiler located thereon, preheated water from a source is injected into the flash boiler by a pump powered by the drive shaft timed according to piston movement after operating the piston, the steam is then vented from the boiler by valve means operated from the drive shaft. A starter motor is provided to initially start the engine operating by rotating the drive shaft until the piston movement is self sustaining. The entire device is enclosed in a solar energy collector panel for elevating the temperature of the system so as to maintain the water at a sufficient temperature with a minimum of external heating. The collector may also be utilized for separate external heating purposes. Sensor controlled motors track the relative movement of the sun and earth and continually position the collector for maximum solar energy concentration.

  20. Thermal tracking in mobile robots for leak inspection activities.

    PubMed

    Ibarguren, Aitor; Molina, Jorge; Susperregi, Loreto; Maurtua, Iñaki

    2013-10-09

    Maintenance tasks are crucial for all kind of industries, especially in extensive industrial plants, like solar thermal power plants. The incorporation of robots is a key issue for automating inspection activities, as it will allow a constant and regular control over the whole plant. This paper presents an autonomous robotic system to perform pipeline inspection for early detection and prevention of leakages in thermal power plants, based on the work developed within the MAINBOT (http://www.mainbot.eu) European project. Based on the information provided by a thermographic camera, the system is able to detect leakages in the collectors and pipelines. Beside the leakage detection algorithms, the system includes a particle filter-based tracking algorithm to keep the target in the field of view of the camera and to avoid the irregularities of the terrain while the robot patrols the plant. The information provided by the particle filter is further used to command a robot arm, which handles the camera and ensures that the target is always within the image. The obtained results show the suitability of the proposed approach, adding a tracking algorithm to improve the performance of the leakage detection system.

  1. Thermal Tracking in Mobile Robots for Leak Inspection Activities

    PubMed Central

    Ibarguren, Aitor; Molina, Jorge; Susperregi, Loreto; Maurtua, Iñaki

    2013-01-01

    Maintenance tasks are crucial for all kind of industries, especially in extensive industrial plants, like solar thermal power plants. The incorporation of robots is a key issue for automating inspection activities, as it will allow a constant and regular control over the whole plant. This paper presents an autonomous robotic system to perform pipeline inspection for early detection and prevention of leakages in thermal power plants, based on the work developed within the MAINBOT (http://www.mainbot.eu) European project. Based on the information provided by a thermographic camera, the system is able to detect leakages in the collectors and pipelines. Beside the leakage detection algorithms, the system includes a particle filter-based tracking algorithm to keep the target in the field of view of the camera and to avoid the irregularities of the terrain while the robot patrols the plant. The information provided by the particle filter is further used to command a robot arm, which handles the camera and ensures that the target is always within the image. The obtained results show the suitability of the proposed approach, adding a tracking algorithm to improve the performance of the leakage detection system. PMID:24113684

  2. Ultra-Wideband Tracking System Design for Relative Navigation

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun David; Arndt, Dickey; Bgo, Phong; Dekome, Kent; Dusl, John

    2011-01-01

    This presentation briefly discusses a design effort for a prototype ultra-wideband (UWB) time-difference-of-arrival (TDOA) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being designed for use in localization and navigation of a rover in a GPS deprived environment for surface missions. In one application enabled by the UWB tracking, a robotic vehicle carrying equipments can autonomously follow a crewed rover from work site to work site such that resources can be carried from one landing mission to the next thereby saving up-mass. The UWB Systems Group at JSC has developed a UWB TDOA High Resolution Proximity Tracking System which can achieve sub-inch tracking accuracy of a target within the radius of the tracking baseline [1]. By extending the tracking capability beyond the radius of the tracking baseline, a tracking system is being designed to enable relative navigation between two vehicles for surface missions. A prototype UWB TDOA tracking system has been designed, implemented, tested, and proven feasible for relative navigation of robotic vehicles. Future work includes testing the system with the application code to increase the tracking update rate and evaluating the linear tracking baseline to improve the flexibility of antenna mounting on the following vehicle.

  3. Design of the improved cascade ADRC and its application in photoelectric tracking system

    NASA Astrophysics Data System (ADS)

    Zuo, Dan; Tang, Tao; Huang, Yongmei; Cai, Huaxiang

    2015-10-01

    According to the larger error when reversing in photoelectric tracking control system, the improved cascade Active Disturbance Rejection Controller (ADRC) is put forward to improve the system position tracking performance and tracking precision. First of all, this essay analyses the controlled object model and system control strategy; Then, it gives design method of the improved cascade ADRC; Finally, in order to analyses the improved cascade's better control performance, in the condition of the same input signal ,the improved cascade ADRC, conventional ADRC-ADRC and traditional PI-PI controller are used in photoelectric tracking control system to do comparative experiment. The experiment results show that the improved cascade ADRC's performance is better than other two algorithms, the tracking error and the steady state mean square error are significantly reduced, tracking accuracy is significantly improved. The improved cascade ADRC is an appealing solution in dealing with industrial control system problems where uncertainties and interference abound.

  4. Visually Exploring Worldwide Incidents Tracking System Data

    SciTech Connect

    Chhatwal, Shree D.; Rose, Stuart J.

    2008-01-27

    This paper presents refinements of an existing analytic tool, Juxter, which was developed for the visualization of multi-dimensional categorical data, and explores its application to support exploration and interaction with open source Worldwide Incidents Tracking System (WITS) data. The volume and complexity of data available on terrorism makes it hard to analyze. Information systems that can efficiently and effectively collect, access, analyze, and report terrorist incidents can help in further studies focused on preventing, detecting, and responding to terrorist attacks. Existing interfaces to the WITS data support advanced search capabilities, and geolocation but lack functionality for identifying patterns and trends. To better support efficient browsing we have refined Juxter’s existing capabilities for filtering, selecting, and sorting elements and categories within the visualization.

  5. The CDF-II silicon tracking system

    SciTech Connect

    Timothy K. Nelson

    2001-12-07

    The CDF silicon tracking system for Run II of the Fermilab Tevatron consists of eight layers arranged in cylinders spanning radii from 1.35cm to 28cm, and lengths from 90cm to nearly two meters for a total of six square meters of silicon and 722,000 readout channels. With an innermost layer (Layer 00) utilizing radiation tolerant p{sup +}-in-n silicon and low-mass readout cables between the sensors and readout electronics, double-sided vertexing layers (SVXII) designed for use with a deadtimeless secondary-vertex trigger, and outermost layers (ISL) utilizing mass-producible modules attached to a carbon fiber spaceframe, this system is a starting point for the next generation of silicon trackers for the LHC and Tevatron.

  6. The tracking of high level waste shipments-TRANSCOM system

    SciTech Connect

    Johnson, P.E.; Joy, D.S.; Pope, R.B.

    1995-12-31

    The TRANSCOM (transportation tracking and communication) system is the U.S. Department of Energy`s (DOE`s) real-time system for tracking shipments of spent fuel, high-level wastes, and other high-visibility shipments of radioactive material. The TRANSCOM system has been operational since 1988. The system was used during FY1993 to track almost 100 shipments within the US.DOE complex, and it is accessed weekly by 10 to 20 users.

  7. Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Belikov, Iouri

    2016-10-01

    A Large Ion Collider Experiment (ALICE) is built to study the properties of the strongly interacting matter created in heavy-ion collisions at the LHC. With the upgrade of its Inner Tracking System (ITS), the ALICE experiment is going to increase the rate of data taking by almost two orders of magnitude. At the same time, the precision of secondary vertex reconstruction will become by at least a factor 3 better than it currently is. In this talk, we briefly show some selected physics results motivating the upgrade of the ITS, describe the design goals and the layout of the new detector, and highlight a few important measurements that will be realized after the completion of this upgrade.

  8. Problem of track offset in optical disk systems.

    PubMed

    Gerber, R E; Gardner, T S; Kay, D B

    1998-12-10

    In an optical disk drive, it is well known that a tilt of the disk causes an offset in the tracking-error signal (TES). One effect of disk tilt is the introduction of a dc component to the TES, which can be largely corrected by operation of the tracking system at the midpoint between the maximum and the minimum values of the open-loop TES. However, this method of correcting for the dc shift in the TES does not correct for the effect of coma in the focused spot, which leads to track offset. The track offset of a system is defined as the distance between the peak irradiance in the focused spot and the center of the groove when the tracking system is operating at the midpoint between the maximum and the minimum values of the open-loop TES in the presence of disk tilt. Calculations are performed that show the dependence of track offset on various system parameters, including track pitch, wavelength, and numerical aperture and rim intensity of the objective lens, and on the regions of the beam used to generate the TES. The track offsets for several beam-segmentation schemes are calculated for a digital versatile disk that uses push-pull and differential phase tracking. It is shown that for differential phase tracking the value of track offset depends on the mark length.

  9. Gaze Tracking System for User Wearing Glasses

    PubMed Central

    Gwon, Su Yeong; Cho, Chul Woo; Lee, Hyeon Chang; Lee, Won Oh; Park, Kang Ryoung

    2014-01-01

    Conventional gaze tracking systems are limited in cases where the user is wearing glasses because the glasses usually produce noise due to reflections caused by the gaze tracker's lights. This makes it difficult to locate the pupil and the specular reflections (SRs) from the cornea of the user's eye. These difficulties increase the likelihood of gaze detection errors because the gaze position is estimated based on the location of the pupil center and the positions of the corneal SRs. In order to overcome these problems, we propose a new gaze tracking method that can be used by subjects who are wearing glasses. Our research is novel in the following four ways: first, we construct a new control device for the illuminator, which includes four illuminators that are positioned at the four corners of a monitor. Second, our system automatically determines whether a user is wearing glasses or not in the initial stage by counting the number of white pixels in an image that is captured using the low exposure setting on the camera. Third, if it is determined that the user is wearing glasses, the four illuminators are turned on and off sequentially in order to obtain an image that has a minimal amount of noise due to reflections from the glasses. As a result, it is possible to avoid the reflections and accurately locate the pupil center and the positions of the four corneal SRs. Fourth, by turning off one of the four illuminators, only three corneal SRs exist in the captured image. Since the proposed gaze detection method requires four corneal SRs for calculating the gaze position, the unseen SR position is estimated based on the parallelogram shape that is defined by the three SR positions and the gaze position is calculated. Experimental results showed that the average gaze detection error with 20 persons was about 0.70° and the processing time is 63.72 ms per each frame. PMID:24473283

  10. Green electricity: Tracking systems for environmental disclosure

    SciTech Connect

    Biewald, B.E.; Ramey, J.A.

    1997-12-31

    For the first time, electricity consumers in the US are beginning to choose their generation providers. One of the opportunities created by the introduction of retail choice in electricity is the chance for customers to influence the mix of generating resources through their purchasing decisions. Some environmentally aware consumers will want {open_quotes}clean,{close_quotes} {open_quotes}green,{close_quotes} or renewable power. While some suppliers will attempt to differentiate themselves according to their environmental performance, such claims for green electricity can be particularly difficult to verify given the complexity of the interconnected electric system. Because electricity is delivered over an integrated transmission grid and kilowatt-hours at the point of retail sale are indistinguishable from each other; disclosure requires tracking protocols to attribute generation at power plants to sales at the customers` meters. Fortunately, it is possible to implement a workable disclosure system. Some states have already included disclosure requirements in their electric industry restructuring orders and legislation. In this paper, a set of design criteria for an environmental disclosure system are presented along with two methods for disclosure: the company approach and the product approach. In addition, the authors discuss of power pools, data availability issues, and propose a company-based disclosure system using a {open_quotes}wholesale sales first{close_quotes} approach to transaction accounting.

  11. UWB Tracking System Design for Free-Flyers

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Phan, Chan; Ngo, Phong; Gross, Julia; Dusl, John

    2004-01-01

    This paper discusses an ultra-wideband (UWB) tracking system design effort for Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A tracking algorithm TDOA (Time Difference of Arrival) that operates cooperatively with the UWB system is developed in this research effort. Matlab simulations show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. Lab experiments demonstrate the UWB tracking capability with fine resolution.

  12. Wire chamber requirements and tracking simulation studies for tracking systems at the superconducting super collider

    SciTech Connect

    Hanson, G.G.; Niczyporuk, B.B.; Palounek, A.P.T.

    1989-02-01

    Limitations placed on wire chambers by radiation damage and rate requirements in the SSC environment are reviewed. Possible conceptual designs for wire chamber tracking systems which meet these requirements are discussed. Computer simulation studies of tracking in such systems are presented. Simulations of events from interesting physics at the SSC, including hits from minimum bias background events, are examined. Results of some preliminary pattern recognition studies are given. Such computer simulation studies are necessary to determine the feasibility of wire chamber tracking systems for complex events in a high-rate environment such as the SSC. 11 refs., 9 figs., 1 tab.

  13. Upgrade of the ALICE inner tracking system

    NASA Astrophysics Data System (ADS)

    Rossegger, Stefan

    2013-12-01

    The Inner Tracking System (ITS) is the key ALICE detector for the study of heavy flavor production at LHC. Heavy flavor can be studied via the identification of short-lived hadrons containing heavy quarks which have a mean proper decay length in the order of 100-300 μm. To accomplish this task, the ITS is composed of six cylindrical layers of silicon detectors (two pixel, two drift and two strip) with a radial coverage from 3.9 to 43 cm and an average material budget of 1.1% X0 per layer. In order to enhance the ALICE physics capabilities, and, in particular, the tracking performance for heavy-flavor detection, the possibility of an ITS upgrade has been studied in great detail. It will make use of the spectacular progress made in the field of imaging sensors over the last 10 years as well as the possibility to install a smaller radius beampipe. The upgraded detector will have greatly improved features in terms of the impact parameter resolution, standalone tracking efficiency at low pt, momentum resolution and readout capabilities. The usage of the most recent monolithic and/or hybrid pixel detector technologies allows the improvement of the detector material budget and the intrinsic spatial resolution both by a factor of three with respect to the present ITS. The installation of a smaller beam-pipe reduces the distance between the first detector layer and the interaction vertex. Under these assumptions, simulations show that an overall improvement of the impact parameter resolution by a factor of three is possible. The Conceptual Design Report for the Upgrade of the ALICE ITS, which covers the design and performance requirements, the upgrade options, as well as the necessary R&D efforts, was made public in September 2012. An intensive R&D program has been launched to review the different technological options under consideration. The new detector should be ready to be installed during the long LHC shutdown period scheduled in 2017-2018.

  14. Automated Root Tracking with "Root System Analyzer"

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    identification number, the distance between branching point to the parent root base, the root length, the root radius and the nodes that belong to each individual root path. This information is relevant for the analysis of dynamic root system development as well as the parameterisation of root architecture models. Here, we show results of Root System Analyzer applied to analyse the root systems of wheat plants grown in rhizotrons. Different treatments with respect to soil moisture and apatite concentrations were used to test the effects of those conditions on root system development. Photographs of the root systems were taken at high spatial and temporal resolution and root systems are automatically tracked.

  15. Tag-n-Track system for situation awareness for MOUTs

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Aggarwal, Manoj; Germano, Thomas E.; Zhao, Tao; Fontana, Robert; Bushika, Martin

    2006-05-01

    In order to train war fighters for urban warfare, live exercises are held at various Military Operations on Urban Terrain (MOUT) facilities. Commanders need to have situation awareness (SA) of the entire mock battlefield, and also the individual actions of the various war fighters. The commanders must be able to provide instant feedback and play through different actions and 'what-if' scenarios with the war fighters. The war fighters in their turn should be able to review their actions and rehearse different maneuvers. In this paper, we describe the technologies behind a prototype training system, which tracks war fighters around an urban site using a combination of ultra-wideband (UWB) Radio Frequency Identification (RFID) and smart video based tracking. The system is able to: (1) Tag each individual with an unique ID using an RFID system, (2) Track and locate individuals within the domain of interest, (3) Associate IDs with visual appearance derived from live videos, (4) Visualize movement and actions of individuals within the context of a 3D model, and (5) Store and review activities with (x,y,ID) information associated with each individual. Dynamic acquisition and recording of the precise location of individual troops and units during training greatly aids the analysis of the training sessions allowing improved review, critique and instruction.

  16. Standardized accuracy assessment of the calypso wireless transponder tracking system

    NASA Astrophysics Data System (ADS)

    Franz, A. M.; Schmitt, D.; Seitel, A.; Chatrasingh, M.; Echner, G.; Oelfke, U.; Nill, S.; Birkfellner, W.; Maier-Hein, L.

    2014-11-01

    Electromagnetic (EM) tracking allows localization of small EM sensors in a magnetic field of known geometry without line-of-sight. However, this technique requires a cable connection to the tracked object. A wireless alternative based on magnetic fields, referred to as transponder tracking, has been proposed by several authors. Although most of the transponder tracking systems are still in an early stage of development and not ready for clinical use yet, Varian Medical Systems Inc. (Palo Alto, California, USA) presented the Calypso system for tumor tracking in radiation therapy which includes transponder technology. But it has not been used for computer-assisted interventions (CAI) in general or been assessed for accuracy in a standardized manner, so far. In this study, we apply a standardized assessment protocol presented by Hummel et al (2005 Med. Phys. 32 2371-9) to the Calypso system for the first time. The results show that transponder tracking with the Calypso system provides a precision and accuracy below 1 mm in ideal clinical environments, which is comparable with other EM tracking systems. Similar to other systems the tracking accuracy was affected by metallic distortion, which led to errors of up to 3.2 mm. The potential of the wireless transponder tracking technology for use in many future CAI applications can be regarded as extremely high.

  17. Tracking stem cells in the cardiovascular system.

    PubMed

    Chemaly, Elie R; Yoneyama, Ryuichi; Frangioni, John V; Hajjar, Roger J

    2005-11-01

    Stem cells are a promising approach to cardiovascular therapeutics. Animal experiments have assessed the fate of injected stem cells through ex vivo methods on sacrificed animals. Approaches are needed for in vivo tracking of stem cells. Various imaging techniques and contrast agents for stem cell tracking will be reviewed.

  18. Precision CW laser automatic tracking system investigated

    NASA Technical Reports Server (NTRS)

    Lang, K. T.; Lucy, R. F.; Mcgann, E. J.; Peters, C. J.

    1966-01-01

    Precision laser tracker capable of tracking a low acceleration target to an accuracy of about 20 microradians rms is being constructed and tested. This laser tracking has the advantage of discriminating against other optical sources and the capability of simultaneously measuring range.

  19. ORTHO- ELIMINATION OF TRACKING SYSTEM CLOCK ERRORS

    NASA Technical Reports Server (NTRS)

    Wu, J. T.

    1994-01-01

    ORTHO is part of the Global Positioning System (GPS) being developed by the U.S. Air Force, a navigational system that will use 18 NAVSTAR satellites to broadcast navigation messages and achieve worldwide coverage. The normal positioning technique uses one receiver which receives signals from at least four GPS satellites. For higher accuracy work it is often necessary to use a differential technique in which more than one receiver is used. The geodetic measurement has all receivers on the ground and allows the determination of the relative locations of the ground sites. The main application of the ORTHO program is in the elimination of clock errors in a GPS based tracking system. The measured distance (pseudo-range) from a GPS receiver contains errors due to differences in the receiver and satellite clocks. The conventional way of eliminating clock errors is to difference pseudo-ranges between different GPS satellites and receivers. The Householder transformation used in this program performs a function similar to the conventional single differencing or double differencing. This method avoids the problem of redundancy and correlation encountered in a differencing scheme. It is able to keep all information contained in the measurements within the scope of a least square estimation. For multiple transmitter and receiver GPS tracking network, this method is in general more accurate than the differencing technique. This program assumes that the non-clock measurement partial derivatives for the particular application are computed earlier by another program. With the partial derivatives and information to identify the transmitters and receivers as the input, the program performs the Householder transformation on the partial derivatives. The transformed partials are output by the program and may be used as an input to the filter program in the subsequent estimation process. Clock partial derivatives are generated internally and are not part of the input to the program

  20. Real-Time Tumor Tracking in the Lung Using an Electromagnetic Tracking System

    SciTech Connect

    Shah, Amish P.; Kupelian, Patrick A.; Waghorn, Benjamin J.; Willoughby, Twyla R.; Rineer, Justin M.; Mañon, Rafael R.; Vollenweider, Mark A.; Meeks, Sanford L.

    2013-07-01

    Purpose: To describe the first use of the commercially available Calypso 4D Localization System in the lung. Methods and Materials: Under an institutional review board-approved protocol and an investigational device exemption from the US Food and Drug Administration, the Calypso system was used with nonclinical methods to acquire real-time 4-dimensional lung tumor tracks for 7 lung cancer patients. The aims of the study were to investigate (1) the potential for bronchoscopic implantation; (2) the stability of smooth-surface beacon transponders (transponders) after implantation; and (3) the ability to acquire tracking information within the lung. Electromagnetic tracking was not used for any clinical decision making and could only be performed before any radiation delivery in a research setting. All motion tracks for each patient were reviewed, and values of the average displacement, amplitude of motion, period, and associated correlation to a sinusoidal model (R{sup 2}) were tabulated for all 42 tracks. Results: For all 7 patients at least 1 transponder was successfully implanted. To assist in securing the transponder at the tumor site, it was necessary to implant a secondary fiducial for most transponders owing to the transponder's smooth surface. For 3 patients, insertion into the lung proved difficult, with only 1 transponder remaining fixed during implantation. One patient developed a pneumothorax after implantation of the secondary fiducial. Once implanted, 13 of 14 transponders remained stable within the lung and were successfully tracked with the tracking system. Conclusions: Our initial experience with electromagnetic guidance within the lung demonstrates that transponder implantation and tracking is achievable though not clinically available. This research investigation proved that lung tumor motion exhibits large variations from fraction to fraction within a single patient and that improvements to both transponder and tracking system are still necessary

  1. Dynamic tracking line: feasible tracking region of a robot in conveyor systems.

    PubMed

    Park, T H; Lee, B H

    1997-01-01

    The concept of dynamic tracking line is proposed as the feasible tracking region for a robot in a robot-conveyor system, which takes the conveyor speed into consideration. This paper presents an effective method to find the dynamic tracking line in a robotic workcell. The maximum permissible line-speed which is a quantitative measure of the robot capability for conveyor tracking, is defined on the basis of the relation between the end effector speed and the bounds on the joint velocities, accelerations, and torques. This measure is derived in an analytic form using the parameterized dynamics and kinematics of the manipulator, and some of its properties are established mathematically. The problem of finding the dynamic tracking line is then formulated as a root-solving problem for a single-variable equation, and solved by the use of a simple numerical technique. Finally, numerical examples are presented to demonstrate the methodology and its applications in workspace specification.

  2. Dynamic tracking line: feasible tracking region of a robot in conveyor systems.

    PubMed

    Park, T H; Lee, B H

    1998-01-01

    The concept of dynamic tracking line is proposed as the feasible tracking region for a robot in a robot-conveyor system, which takes the conveyor speed into consideration. This paper presents an effective method to find the dynamic tracking line in a robotic workcell. The maximum permissible line-speed which is a quantitative measure of the robot capability for conveyor tracking, is defined on the basis of the relation between the end-effector speed and the bounds on the joint velocities, accelerations, and torques. This measure is derived in an analytic form using the parameterized dynamics and kinematics of the manipulator, and some of its properties are established mathematically. The problem of finding the dynamic tracking line is then formulated as a root-solving problem for a single-variable equation, and solved by the use of a simple numerical technique. Finally, numerical examples are presented to demonstrate the methodology and its applications in workspace specification.

  3. Multitarget visual tracking based effective surveillance with cooperation of multiple active cameras.

    PubMed

    Huang, Cheng-Ming; Fu, Li-Chen

    2011-02-01

    This paper presents a tracking-based surveillance system that is capable of tracking multiple moving objects, with almost real-time response, through the effective cooperation of multiple pan-tilt cameras. To construct this surveillance system, the distributed camera agent, which tracks multiple moving objects independently, is first developed. The particle filter is extended with target depth estimate to track multiple targets that may overlap with one another. A strategy to select the suboptimal camera action is then proposed for a camera mounted on a pan-tilt platform that has been assigned to track multiple targets within its limited field of view simultaneously. This strategy is based on the mutual information and the Monte Carlo method to maintain coverage of the tracked targets. Finally, for a surveillance system with a small number of active cameras to effectively monitor a wide space, this system is aimed to maximize the number of targets to be tracked. We further propose a hierarchical camera selection and task assignment strategy, known as the online position strategy, to integrate all of the distributed camera agents. The overall performance of the multicamera surveillance system has been verified with computer simulations and extensive experiments.

  4. Active structured learning for cell tracking: algorithm, framework, and usability.

    PubMed

    Lou, Xinghua; Schiegg, Martin; Hamprecht, Fred A

    2014-04-01

    One distinguishing property of life is its temporal dynamics, and it is hence only natural that time lapse experiments play a crucial role in modern biomedical research areas such as signaling pathways, drug discovery or developmental biology. Such experiments yield a very large number of images that encode complex cellular activities, and reliable automated cell tracking emerges naturally as a prerequisite for further quantitative analysis. However, many existing cell tracking methods are restricted to using only a small number of features to allow for manual tweaking. In this paper, we propose a novel cell tracking approach that embraces a powerful machine learning technique to optimize the tracking parameters based on user annotated tracks. Our approach replaces the tedious parameter tuning with parameter learning and allows for the use of a much richer set of complex tracking features, which in turn affords superior prediction accuracy. Furthermore, we developed an active learning approach for efficient training data retrieval, which reduces the annotation effort to only 17%. In practical terms, our approach allows life science researchers to inject their expertise in a more intuitive and direct manner. This process is further facilitated by using a glyph visualization technique for ground truth annotation and validation. Evaluation and comparison on several publicly available benchmark sequences show significant performance improvement over recently reported approaches. Code and software tools are provided to the public.

  5. UWB Two-Cluster AOA Tracking Prototype System Design

    NASA Technical Reports Server (NTRS)

    Ngo, Phong H.; Arndt, D.; Phan, C.; Gross, J.; Jianjun; Rafford, Melinda

    2006-01-01

    This presentation discusses a design effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar/Mars rovers during early exploration missions when satellite navigation systems are not available. The UWB technology is exploited to implement the tracking system due to its properties such as fine time resolution, low power spectral density and multipath immunity. A two cluster prototype design using commercially available UWB radios is employed to implement the Angle of Arrival (AOA) tracking methodology in this design effort. In order to increase the tracking range, low noise amplifiers (LNA) and high gain horns are used at the receiving sides. Field tests were conducted jointly with the Science and Crew Operation Utility Testbed (SCOUT) vehicle near the Meteor Crater in Arizona to test the tracking capability for a moving target in an operational environment. These tests demonstrate that the UWB tracking system can co-exist with other on-board radio frequency (RF) communication systems (such as Global Positioning System (GPS), video, voice and telemetry systems), and that a tracking resolution less than 1% of the range can be achieved.

  6. 40 CFR 96.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.50 NOX Allowance Tracking System accounts. (a) Nature and... establish one compliance account for each NOX Budget unit and one overdraft account for each source with...

  7. 40 CFR 96.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.50 NOX Allowance Tracking System accounts. (a) Nature and... establish one compliance account for each NOX Budget unit and one overdraft account for each source with...

  8. Adaptive tracking control for a class of uncertain chaotic systems

    NASA Astrophysics Data System (ADS)

    Chen, Feng-Xiang; Wang, Wei; Zhang, Wei-Dong

    2007-09-01

    The paper is concerned with adaptive tracking problem for a class of chaotic system with time-varying uncertainty, but bounded by norm polynomial. Based on adaptive technique, it proposes a novel controller to asymptotically track the arbitrary desired bounded trajectory. Simulation on the Rossler chaotic system is performed and the result verifies the effectiveness of the proposed method.

  9. Improvement on the stabilization of a precision tracking system

    NASA Astrophysics Data System (ADS)

    Kuno, H.; Koshiba, T.

    A tracking system that operates from nonstationary platforms must be able to stabilize the tracking axis for precision tracking. Implementation of a free gyro pointing assembly which has a momentum wheel as an integral part of the inner gimbal assembly and that is oriented with its spin axis parallel to the line of sight, is the most widely used method for tactical missiles. The paper describes two methods to improve the stabilization of this tracking system by adjusting the gimbal balance during accelerated condition and adjusting gimbal friction torque at an optimium level appropriate to the applied torque. The results show a one-fifth improvement of the drift rate.

  10. Laminated track design for inductrack maglev systems

    DOEpatents

    Post, Richard F.

    2004-07-06

    A magnet configuration comprising a pair of Halbach arrays magnetically and structurally connected together are positioned with respect to each other so that a first component of their fields substantially cancels at a first plane between them, and a second component of their fields substantially adds at this first plane. A track is located between the pair of Halbach arrays and a propulsion mechanism is provided for moving the pair of Halbach arrays along the track. When the pair of Halbach arrays move along the track and the track is not located at the first plane, a current is induced in the windings and a restoring force is exerted on the pair of Halbach arrays.

  11. The Development of Sun-Tracking System Using Image Processing

    PubMed Central

    Lee, Cheng-Dar; Huang, Hong-Cheng; Yeh, Hong-Yih

    2013-01-01

    This article presents the development of an image-based sun position sensor and the algorithm for how to aim at the Sun precisely by using image processing. Four-quadrant light sensors and bar-shadow photo sensors were used to detect the Sun's position in the past years. Nevertheless, neither of them can maintain high accuracy under low irradiation conditions. Using the image-based Sun position sensor with image processing can address this drawback. To verify the performance of the Sun-tracking system including an image-based Sun position sensor and a tracking controller with embedded image processing algorithm, we established a Sun image tracking platform and did the performance testing in the laboratory; the results show that the proposed Sun tracking system had the capability to overcome the problem of unstable tracking in cloudy weather and achieve a tracking accuracy of 0.04°. PMID:23615582

  12. Low velocity tracking control-based ADRC for large-scale telescope system

    NASA Astrophysics Data System (ADS)

    Cai, Huaxiang; Huang, Yongmei; Du, Junfeng; Tang, Tao; Zuo, Dan

    2015-10-01

    In this paper, an improved Active Disturbance Rejection control (ADRC) method is proposed to enhance the tracking precision of telescope if the telescope runs in a low velocity. Low velocity telescope system usually suffers some obvious nonlinear disturbances, such as nonlinear friction and unknown external disturbance. Thereby, to ensure the tracking precision, multiple loops control structure is a common control method in telescope system, which includes current loop, velocity loop and position loop. The proposed control method is used in the velocity loop which consists of a PD controller and an Extend State Observer (ESO). The ESO is designed to estimate the disturbance involved in the telescope system. Besides, the PD controller is designed to stabilize the closed-loop system. Furthermore, this control method theoretically guarantees a prescribed tracking performance and final tracking accuracy. Finally, the experiment results show that the proposed control method has excellent performance for reducing the tracking error of low velocity.

  13. Linear tracking systems with applications to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Lee, W. H.; Athans, M.; Castanon, D.; Bacchioloni, F.

    1977-01-01

    A class of optimal linear time invariant tracking systems, both in continuous time and discrete time, of which the number of inputs (which are restricted to be step functions) is equal to the number of system outputs, is studied. Along with derivation of equations and design procedures, two discretization schemes are presented, constraining either the control or its time derivative, to be a constant over each sampling period. Descriptions are given for the linearized model of the F-8C aircraft longitudinal dynamics, and the C* handling qualities criterion, which then serve as an illustration of the applications of these linear tracking designs. A suboptimal reduced state design is also presented. Numerical results are given for both the continuous time and discrete time designs.

  14. Pointing, acquisition, and tracking system with omnivision

    NASA Astrophysics Data System (ADS)

    Ho, Tzung-Hsien; Milner, Stuart D.; Davis, Christopher C.

    2005-08-01

    A free space optical (FSO) network consists of many reconfigurable, directional, high data-rate links. Its performance can be optimized by using topology control algorithms, which involve: (1) potential neighbor information collection, (2) an optimization algorithm with given constraints, and (3) a precise pointing procedure. In general, if a sensor at each node can observe a large field of view (FOV), then more potential link targets can be detected. With more possible link choices, the optimization algorithm will have greater degrees of freedom in determining the optimum topology. The intuitive way to acquire a wide spatial acquisition range is to use a camera with a wide FOV. However, for such a wide angle lens/mirror, there are inevitable large aberrations, which cause errors in a pointing procedure based on image analysis. To mitigate these aberrations, a possible solution is to build a correction procedure from the wide FOV lens imaging model to a pinhole imaging model. In this context, a mapping model is proposed, based on analyses of several wide angle lens sets using CodeV. The proposed model also compensates for the effect of deviations between the center lines of the lens and a CCD imaging array. To obtain the optimum parameters of the model, an off-line calibration procedure based on geometrical constraints is introduced. A sensor system consisting of a widely available fisheye converter (Nikon FC-E8) and a high-resolution CCD camera (1392x1040 pixels) has been built for evaluating the model's performance, as part of our pointing, acquisition and tracking (PAT) system.

  15. Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Riedler, P.

    2016-12-01

    During the long shutdown of the Large Hadron Collider (LHC) in 2019-20 (LS2) the present Inner Tracking System (ITS) of the ALICE experiment based on silicon pixel, silicon drift and silicon strip detectors, will be entirely replaced by a new tracker using novel monolithic silicon pixel chips. This new tracker will significantly enhance heavy flavour measurements, which are out of reach for the present system, e.g. charmed baryons, such as the ΛC, and will allow studying hadrons containing a beauty quark. The new tracker will provide an improved pointing resolution in rϕ and z, decreasing the present values by a factor 3 and 5, respectively, to about 40 μm for a pT of 500 MeV/c. Each of the seven layers will be constructed using 50 μm, respectively 100 μm thin silicon chips on a very light weight carbon fibre based support structure for the innermost and the outer layers. The material budget for the first three layers corresponds to 0.3% X0/layer while the four outer layers will have an average material budget of 1% X0/layer. The innermost layer will be placed at 23 mm radius, compared to presently 39 mm. Furthermore, the readout rate of the new ITS will increase from presently 1 kHz to 50 kHz for Pb-Pb collisions and 400 kHz for p-p collisions, thus matching the expected event rate for Pb-Pb collisions after LS2. This contribution will provide an overview of the upgrade of the ALICE ITS and the expected performance improvement and will present the actual status of the R&D.

  16. Readiness Certification Assurance Process Tracking System

    SciTech Connect

    Cook, G. A.

    2011-06-08

    Without the use of an electronic system for managing Readiness activities, the effort to complete large Readiness reviews would be overwhelming. This system is intended to replace or supplement paper-based administrative tasks performed by Readiness personnel and other involved organizations. RCAPTS helps manage issues and affirmations pertaining to Readiness projects and reviews. This is accomplished through a series of web scripts and a Microsoft Access database.

  17. Real-time active MR-tracking of metallic stylets in MR-guided radiation therapy

    PubMed Central

    Wang, Wei; Dumoulin, Charles L.; Viswanathan, Akila N.; Tse, Zion T. H.; Mehrtash, Alireza; Loew, Wolfgang; Norton, Isaiah; Tokuda, Junichi; Seethamraju, Ravi T.; Kapur, Tina; Damato, Antonio L.; Cormack, Robert A.; Schmidt, Ehud J.

    2014-01-01

    Purpose To develop an active MR-tracking system to guide placement of metallic devices for radiation therapy. Methods An actively tracked metallic stylet for brachytherapy was constructed by adding printed-circuit micro-coils to a commercial stylet. The coil design was optimized by electromagnetic simulation, and has a radio-frequency lobe pattern extending ~5 mm beyond the strong B0 inhomogeneity region near the metal surface. An MR-tracking sequence with phase-field dithering was used to overcome residual effects of B0 and B1 inhomogeneities caused by the metal, as well as from inductive coupling to surrounding metallic stylets. The tracking system was integrated with a graphical workstation for real-time visualization. 3T MRI catheter-insertion procedures were tested in phantoms and ex-vivo animal tissue, and then performed in three patients during interstitial brachytherapy. Results The tracking system provided high-resolution (0.6 × 0.6 × 0.6 mm3) and rapid (16 to 40 frames per second, with three to one phase-field dithering directions) catheter localization in phantoms, animals, and three gynecologic cancer patients. Conclusion This is the first demonstration of active tracking of the shaft of metallic stylet in MR-guided brachytherapy. It holds the promise of assisting physicians to achieve better targeting and improving outcomes in interstitial brachytherapy. PMID:24903165

  18. Renewable Energy Certificate (REC) Tracking Systems: Costs & Verification Issues (Presentation)

    SciTech Connect

    Heeter, J.

    2013-10-01

    This document provides information on REC tracking systems: how they are used in the voluntary REC market, a comparison of REC systems fees and information regarding how they treat environmental attributes.

  19. Tracked Active Region Patches for MDI and HMI

    NASA Astrophysics Data System (ADS)

    Turmon, Michael; Hoeksema, J. Todd; Bobra, Monica

    2014-06-01

    We describe tracked active-region patch data products that have been developed for HMI (HMI Active Region Patches, or HARPs) and for MDI (MDI Tracked Active Region Patches, or MDI TARPs). Both data products consist of tracked magnetic features on the scale of solar active regions. The now-released HARP data product covers 2010-present (>2000 regions to date). Like the HARPs, the MDI TARP data set is a catalog of active regions (ARs), indexed by a region ID number, analogous to a NOAA AR number, and time. The TARPs contain 6170 regions spanning 72000 images taken over 1996-2010, and will be availablein the MDI resident archive (RA).MDI TARPs are computed based on the 96-minute synoptic magnetograms and intensitygrams. As with the related HARP data product, the approximate threshold for significance is 100G. Use of both image types together allows faculae and sunspots to be separated out as sub-classes of activity, in addition to identifying the overall active region that they are in. After being identified in single images, the magnetically-active patches are grouped and tracked from image to image. Merges among growing active regions, as well as faint active regions hovering at the threshold of detection, are handled automatically. Regions are tracked from their inception until they decay within view, or transit off the visible disk. For each active region and for each time, a bitmap image is stored containing the precise outline of the active region. Also, metadata such as areas and integrated fluxes are stored for each AR and for each time. Because there is a cross-calibration between the HMI and MDI magnetograms (Liu et al. 2012), it is straightforward to use the same classification and tracking rules for the HMI HARPs and the MDI TARPs. We show results demonstrating region correspondence, region boundary agreement, and agreement of flux metadata using the approximately 140 regions in the May 2010-October 2010 time period. We envision several uses for these data

  20. UWB Tracking System Design for Lunar/Mars Exploration

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Gross, Julia

    2006-01-01

    This paper describes a design effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar/Mars rovers during early exploration missions when satellite navigation systems are not available. The UWB technology is exploited to implement the tracking system due to its properties such as high data rate, fine time resolution, low power spectral density, and multipath immunity. A two-cluster prototype design using commercially available UWB products is proposed to implement the Angle Of Arrival (AOA) tracking methodology in this research effort. An AOA technique using the Time Difference Of Arrival (TDOA) information is utilized for location estimation in the prototype system, not only to exploit the precise time resolution possible with UWB signals, but also to eliminate the need for synchronization between the transmitter and the receiver. After the UWB radio at each cluster is used to obtain the TDOA estimates from the UWB signal sent from the target, the TDOA data is converted to AOA data to find the angle of arrival, assuming this is a far field application. Since the distance between two clusters is known, the target position is computed by a simple triangulation. Simulations show that the average tracking error at a range of 610 meters is 2.7595 meters, less than 0.5% of the tracking range. Outdoor tests to track the SCOUT vehicle (The Science Crew Operations and Utility Testbed) near the Meteor Crater, Flagstaff, Arizona were performed on September 12-13, 2005. The tracking performance was obtained with less than 1% tracking error at ranges up to 2000 feet. No RF interference with on-board GPS, video, voice and telemetry systems was detected. Outdoor tests demonstrated the UWB tracking capability.

  1. Advanced spacecraft tracking techniques using the Tracking and Data Relay Satellite System /TDRSS/

    NASA Technical Reports Server (NTRS)

    Teles, J.; Ayres, C.

    1977-01-01

    The TDRSS will consist initially of two geosynchronous satellites and a common ground station at White Sands, New Mexico. According to current schedules, operations are to begin in November 1980. The overall TDRSS will provide high and low bit-rate telemetry, commands, and satellite-to-satellite tracking services. Each Tracking and Data Relay Satellite (TDRS) will have four antenna systems for NASA use. The common ground station at White Sands will have three 18-meter K-band antennas. The tracking equipment at the ground station is required to meet the following specifications: (1) 0.1-radian root-mean-square (rms) phase noise on nondestruct Doppler measurements; (2) 10-nanosecond rms range noise; (3) 50-nanosecond maximum systematic range error. Attention is given to two-way range and Doppler measurements, the bilateration tracking of TDRS, and an experiment using differenced one-way Doppler measurements.

  2. Tracking of physical activity and fitness during the early years.

    PubMed

    Caldwell, Hilary A T; Proudfoot, Nicole A; King-Dowling, Sara; Di Cristofaro, Natascja A; Cairney, John; Timmons, Brian W

    2016-05-01

    The early years are characterized by rapid physical growth and the development of behaviours such as physical activity. The objectives of this study were to assess the 12-month changes in and the tracking of physical activity and fitness in 400 preschoolers (201 boys, 4.5 ± 0.9 years of age). Physical activity data, expressed as minutes per day and as the percentage of time spent at various intensities while wearing an accelerometer, were collected in 3-s epochs for 7 days. Short-term muscle power, assessed with a 10-s modified Wingate Anaerobic Test, was expressed as absolute (W) and relative (W/kg) peak power (PP) and mean power (MP). Aerobic fitness, assessed with the Bruce Protocol progressive treadmill test, was expressed as maximal treadmill time and heart rate recovery (HRR). Light physical activity decreased by 3.2 min/day (p < 0.05), whereas vigorous physical activity increased by 3.7 min/day (p < 0.001), from year 1 to year 2. Physical activity exhibited moderate tracking on the basis of Spearman correlations (r = 0.45-0.59, p < 0.001) and fair tracking on the basis of κ statistics (κ = 0.26-0.38). PP and MP increased from year 1 (PP, 94.1 ± 37.3 W; MP, 84.1 ± 30.9 W) to year 2 (PP, 125.6 ± 36.2 W; MP, 112.3 ± 32.2 W) (p < 0.001) and tracked moderately to substantially (PP, r = 0.89, κ = 0.61; MP, r = 0.86, κ = 0.56). Time to exhaustion on the treadmill increased from 9.4 ± 2.3 min to 11.8 ± 2.3 min (p < 0.001) and tracked strongly (r = 0.82, κ = 0.56). HRR was unchanged at 65 ± 14 beats/min (p = 0.297) and tracked fairly (r = 0.52, κ = 0.23). The findings indicate that fitness tracks better than physical activity over a 12-month period during the early years.

  3. Effect of vertical active vibration isolation on tracking performance and on ride qualities

    NASA Technical Reports Server (NTRS)

    Dimasi, F. P.; Allen, R. E.; Calcaterra, P. C.

    1972-01-01

    An investigation to determine the effect on pilot performance and comfort of an active vibration isolation system for a commercial transport pilot seat is reported. The test setup consisted of: a hydraulic shaker which produced random vertical vibration inputs; the active vibration isolation system; the pilot seat; the pilot control wheel and column; the side-arm controller; and a two-axis compensatory tracking task. The effects of various degrees of pilot isolation on short-term (two-minute) tracking performance and comfort were determined.

  4. Tonopah Test Range EGS graphics tracking display system: HP370

    SciTech Connect

    Meyer, R.H.; Bauhs, K.C.

    1994-08-01

    This report describes the HP370 component of the Enhanced Graphics System (EGS) used at Tonopah Test Range (TTR). Selected Radar data is fed into the computer systems and the resulting tracking symbols are displayed on high-resolution video monitors in real time. These tracking symbols overlay background maps and are used for monitoring/controlling various flight vehicles. This report discusses both the operational aspects and the internal configuration of the HP370 Workstation portion of the EGS system.

  5. Markerless monocular tracking system for guided external eye surgery.

    PubMed

    Monserrat, C; Rupérez, M J; Alcañiz, M; Mataix, J

    2014-12-01

    This paper presents a novel markerless monocular tracking system aimed at guiding ophthalmologists during external eye surgery. This new tracking system performs a very accurate tracking of the eye by detecting invariant points using only textures that are present in the sclera, i.e., without using traditional features like the pupil and/or cornea reflections, which remain partially or totally occluded in most surgeries. Two known algorithms that compute invariant points and correspondences between pairs of images were implemented in our system: Scalable Invariant Feature Transforms (SIFT) and Speed Up Robust Features (SURF). The results of experiments performed on phantom eyes show that, with either algorithm, the developed system tracks a sphere at a 360° rotation angle with an error that is lower than 0.5%. Some experiments have also been carried out on images of real eyes showing promising behavior of the system in the presence of blood or surgical instruments during real eye surgery.

  6. 78 FR 74162 - Draft Criminal Justice Offender Tracking System Standard and Companion Documents

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ... of Justice Programs Draft Criminal Justice Offender Tracking System Standard and Companion Documents... draft documents: (1) A draft standard entitled, ``Criminal Justice Offender Tracking System Standard''; (2) a draft companion document entitled, ``Criminal Justice Offender Tracking System...

  7. Tracking "Large" or "Smal": Boundaries and their Consequences for Veterinary Students within the Tracking System

    NASA Astrophysics Data System (ADS)

    Vermilya, Jenny R.

    In this dissertation, I use 42 in-depth qualitative interviews with veterinary medical students to explore the experience of being in an educational program that tracks students based on the species of non-human animals that they wish to treat. Specifically, I examine how tracking produces multiple boundaries for veterinary students. The boundaries between different animal species produce consequences for the treatment of those animals; this has been well documented. Using a symbolic interactionist perspective, my research extends the body of knowledge on species boundaries by revealing other consequences of this boundary work. For example, I analyze the symbolic boundaries involved in the gendering of animals, practitioners, and professions. I also examine how boundaries influence the collective identity of students entering an occupation segmented into various specialties. The collective identity of veterinarian is one characterized by care, thus students have to construct different definitions of care to access and maintain the collective identity. The tracking system additionally produces consequences for the knowledge created and reproduced in different areas of animal medicine, creating a system of power and inequality based on whose knowledge is privileged, how, and why. Finally, socially constructed boundaries generated from tracking inevitably lead to cases that do not fit. In particular, horses serve as a "border species" for veterinary students who struggle to place them into the tracking system. I argue that border species, like other metaphorical borders, have the potential to challenge discourses and lead to social change.

  8. Implantable acoustic-beacon automatic fish-tracking system

    NASA Technical Reports Server (NTRS)

    Mayhue, R. J.; Lovelady, R. W.; Ferguson, R. L.; Richards, C. E.

    1977-01-01

    A portable automatic fish tracking system was developed for monitoring the two dimensional movements of small fish within fixed areas of estuarine waters and lakes. By using the miniature pinger previously developed for this application, prototype tests of the system were conducted in the York River near the Virginia Institute of Marine Science with two underwater listening stations. Results from these tests showed that the tracking system could position the miniature pinger signals to within + or - 2.5 deg and + or - 135 m at ranges up to 2.5 km. The pingers were implanted in small fish and were successfully tracked at comparable ranges. No changes in either fish behavior or pinger performance were observed as a result of the implantation. Based on results from these prototype tests, it is concluded that the now commercially available system provides an effective approach to underwater tracking of small fish within a fixed area of interest.

  9. Multi Admin/System Tracking-Environment Resource

    SciTech Connect

    2011-02-01

    Master stores information about each node in a computer cluster, similar to an asset tracking program. Records changes and events happening on the system. Master is a networked client/server with a database backend.

  10. Privacy Impact Assessment for the Enforcement Superfund Tracking System

    EPA Pesticide Factsheets

    This Enforcement Superfund Tracking System (ESTS) collects publicly available information from the California Secretary of State on businesses. Learn how this data is collected, how it will be used, access to the data, and the purpose of data collection.

  11. A technology transfer tracking system for NREL: Overview and results

    SciTech Connect

    Chapman, R.L.; Chapman, M.J.

    1996-07-01

    The purpose of this study has been to assess the National Renewable Energy Laboratory`s (NREL) technology, transfer--both the activities and the system, with the objective of developing a system to track the benefits of NREL-sponsored or conducted research. There were two factors which facilitated this study and which were important in the ability to make a detailed analysis and series of recommendations. First, was the nature of the lab, being one which, from its beginning, has worked closely with industry and, therefore has been directed toward research which would be of value to industry and hopefully commercialized. Second, the size of the laboratory made it relatively more easy to address issues and to become familiar with the organization and with the scientists themselves.

  12. Design of a novel laser tracking measuring system

    NASA Astrophysics Data System (ADS)

    Zhang, G. X.; Sui, X. W.; Zhao, S. Z.; Liu, L. Y.; Chen, X.; Li, X. H.; Lin, Y. B.

    2005-12-01

    A novel laser tracking measuring system based on the principle of multi-lateration is developed. The system consists of a four-quadrant silicon photoelectric cell measuring the position of reflected beam from the target with sensitivity of 200mv/mm, a rotational tracking mirrror with a solid angle of 35 degrees driven by two motors and a new type of closed-loop control with digital PID and analog PID. The experiment shows that it works reliably with tracking speed 0.7m/s, and the standard deviation of measurement is 1.2μm.

  13. The Tracking System in the Panda Apparatus

    NASA Astrophysics Data System (ADS)

    Wintz, P.

    2012-08-01

    The bar {P}ANDA experiment at the new FAIR facility at Darmstadt (Germany) will investigate antiproton collisions on proton and nuclear targets in the charm quark mass regime. The wide-range physics program requires a universal detector concept, combining state-of-the-art and novel techniques in particle measurements and data readout. This paper gives an overview of the detector setup and summarizes the status, in particular of the charged particle tracking detectors in the bar {P}ANDA spectrometer.

  14. Phase-field dithering for active catheter tracking.

    PubMed

    Dumoulin, Charles L; Mallozzi, Richard P; Darrow, Robert D; Schmidt, Ehud J

    2010-05-01

    A strategy to increase the robustness of active MR tracking of microcoils in low signal-to-noise ratio conditions was developed and tested. The method employs dephasing magnetic field gradient pulses that are applied orthogonal to the frequency-encoding gradient pulse used in conventional point-source MR tracking. In subsequent acquisitions, the orthogonal dephasing gradient pulse is rotated while maintaining a perpendicular orientation with respect to the frequency-encoding gradient. The effect of the dephasing gradient is to apply a spatially dependent phase shift in directions perpendicular to the frequency-encoding gradient. Since the desired MR signal for robust MR tracking comes from the small volume of nuclear spins near the small detection coil, the desired signal is not dramatically altered by the dephasing gradient. Undesired MR signals arising from larger volumes (e.g., due to coupling with the body coil or surface coils), on the other hand, are dephased and reduced in signal intensity. Since the approach requires no a priori knowledge of the microcoil orientation with respect to the main magnetic field, data from several orthogonal dephasing gradients are acquired and analyzed in real time. One of several selection algorithms is employed to identify the "best" data for use in the coil localization algorithm. This approach was tested in flow phantoms and animal models, with several multiplexing schemes, including the Hadamard and zero-phase reference approaches. It was found to provide improved MR tracking of untuned microcoils. It also dramatically improved MR tracking robustness in low signal-to-noise-ratio conditions and permitted tracking of microcoils that were inductively coupled to the body coil.

  15. The role of gravitation-dependent systems in visual tracking.

    PubMed

    Kornilova, L N

    2004-10-01

    The effects of prolonged microgravity conditions on the performance of visual tracking functions such as fixational rotations of the eyes (saccades), smooth tracking of linear and curved movements of a foveal point stimulus, and following a vertical pendulum-like movement of foveoretinal optokinetic stimuli were studied. Experiments were performed on 31 cosmonauts in freefall conditions, in ten cases followed by additional studies after a cycle of head movements and in 14 after resting. These experiments showed that while intrinsic visual functions were retained in microgravity conditions, there were decreases in the precision and speed measures of all types of visual tracking (fixational rotations of the eyes, smooth tracking) and, in some cases, complete degradation of the smooth tracking reflex, an increase in the time taken to fix the gaze on a target (by factors of 2 or more), and decreases in the frequency of stimulus tracking. During the initial period of adaptation to the altered gravitational conditions and periodically during prolonged flight, the system of smooth visual tracking was found to undergo a transition to a strategy of saccadic approximation, in which gaze tracks the movement of the target using a set of macro- or microsaccadic movements. These impairments, seen in virtually all the cosmonauts, resulted from vestibular deprivation (functional deafferentation of the otolith input) in conditions of weightlessness, while in cosmonauts conceptualizing space on the basis of perceiving the positions of the feet and head additionally showed support-tactile deprivation.

  16. A novel track imaging system as a range counter

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Matsufuji, N.; Kanayama, S.; Ishida, A.; Kohno, T.; Koba, Y.; Sekiguchi, M.; Kitagawa, A.; Murakami, T.

    2016-05-01

    An image-intensified, camera-based track imaging system has been developed to measure the tracks of ions in a scintillator block. To study the performance of the detector unit in the system, two types of scintillators, a dosimetrically tissue-equivalent plastic scintillator EJ-240 and a CsI(Tl) scintillator, were separately irradiated with carbon ion (12C) beams of therapeutic energy from HIMAC at NIRS. The images of individual ion tracks in the scintillators were acquired by the newly developed track imaging system. The ranges reconstructed from the images are reported here. The range resolution of the measurements is 1.8 mm for 290 MeV/u carbon ions, which is considered a significant improvement on the energy resolution of the conventional ΔE/E method. The detector is compact and easy to handle, and it can fit inside treatment rooms for in-situ studies, as well as satisfy clinical quality assurance purposes.

  17. Consensus tracking for multiagent systems with nonlinear dynamics.

    PubMed

    Dong, Runsha

    2014-01-01

    This paper concerns the problem of consensus tracking for multiagent systems with a dynamical leader. In particular, it proposes the corresponding explicit control laws for multiple first-order nonlinear systems, second-order nonlinear systems, and quite general nonlinear systems based on the leader-follower and the tree shaped network topologies. Several numerical simulations are given to verify the theoretical results.

  18. Video tracking algorithm of long-term experiment using stand-alone recording system

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jen; Li, Yan-Chay; Huang, Ke-Nung; Jen, Sun-Lon; Young, Ming-Shing

    2008-08-01

    Many medical and behavioral applications require the ability to monitor and quantify the behavior of small animals. In general these animals are confined in small cages. Often these situations involve very large numbers of cages. Modern research facilities commonly monitor simultaneously thousands of animals over long periods of time. However, conventional systems require one personal computer per monitoring platform, which is too complex, expensive, and increases power consumption for large laboratory applications. This paper presents a simplified video tracking algorithm for long-term recording using a stand-alone system. The feature of the presented tracking algorithm revealed that computation speed is very fast data storage requirements are small, and hardware requirements are minimal. The stand-alone system automatically performs tracking and saving acquired data to a secure digital card. The proposed system is designed for video collected at a 640×480 pixel with 16 bit color resolution. The tracking result is updated every 30 frames/s. Only the locomotive data are stored. Therefore, the data storage requirements could be minimized. In addition, detection via the designed algorithm uses the Cb and Cr values of a colored marker affixed to the target to define the tracked position and allows multiobject tracking against complex backgrounds. Preliminary experiment showed that such tracking information stored by the portable and stand-alone system could provide comprehensive information on the animal's activity.

  19. Marine asset security and tracking (MAST) system

    DOEpatents

    Hanson, Gregory Richard; Smith, Stephen Fulton; Moore, Michael Roy; Dobson, Eric Lesley; Blair, Jeffrey Scott; Duncan, Christopher Allen; Lenarduzzi, Roberto

    2008-07-01

    Methods and apparatus are described for marine asset security and tracking (MAST). A method includes transmitting identification data, location data and environmental state sensor data from a radio frequency tag. An apparatus includes a radio frequency tag that transmits identification data, location data and environmental state sensor data. Another method includes transmitting identification data and location data from a radio frequency tag using hybrid spread-spectrum modulation. Another apparatus includes a radio frequency tag that transmits both identification data and location data using hybrid spread-spectrum modulation.

  20. Human supervision and microprocessor control of an optical tracking system

    NASA Technical Reports Server (NTRS)

    Bigley, W. J.; Vandenberg, J. D.

    1981-01-01

    Gunners using small calibre anti-aircraft systems have not been able to track high-speed air targets effectively. Substantial improvement in the accuracy of surface fire against attacking aircraft has been realized through the design of a director-type weapon control system. This system concept frees the gunner to exercise a supervisory/monitoring role while the computer takes over continuous target tracking. This change capitalizes on a key consideration of human factors engineering while increasing system accuracy. The advanced system design, which uses distributed microprocessor control, is discussed at the block diagram level and is contrasted with the previous implementation.

  1. Tracking Epithelial Cell Junctions in C. elegans Embryogenesis With Active Contours Guided by SIFT Flow

    PubMed Central

    Lee, Chen-Yu; Gonçalves, Monira; Chisholm, Andrew D.; Cosman, Pamela C.

    2015-01-01

    Quantitative analysis of cell shape in live samples is an important goal in developmental biology. Automated or semiautomated segmentation and tracking of cell nuclei has been successfully implemented in several biological systems. Segmentation and tracking of cell surfaces has been more challenging. Here, we present a new approach to tracking cell junctions in the developing epidermis of C. elegans embryos. Epithelial junctions as visualized with DLG-1::GFP form lines at the subapical circumference of differentiated epidermal cells and delineate changes in epidermal cell shape and position. We develop and compare two approaches for junction segmentation. For the first method (projection approach), 3-D cell boundaries are projected into 2D for segmentation using active contours with a nonintersecting force, and subsequently tracked using scale-invariant feature transform (SIFT) flow. The resulting 2-D tracked boundaries are then back-projected into 3-D space. The second method (volumetric approach) uses a 3-D extended version of active contours guided by SIFT flow in 3-D space. In both methods, cell junctions are manually located at the first time point and tracked in a fully automated way for the remainder of the video. Using these methods, we have generated the first quantitative description of ventral epidermal cell movements and shape changes during epidermal enclosure. PMID:24771564

  2. Telecommunication systems engineering. [Book on tracking, command, telemetry, data acquisition

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Simon, M. K.

    1973-01-01

    Telecommunication network concepts are discussed together with carrier-tracking loops employing the phase-lock principle, phase and Doppler measurements in two-way phase-coherent tracking systems, range measurements by phase-coherent techniques, and questions of phase-coherent detection with perfect reference signals and with noisy reference signals. The design of one-way and two-way phase-coherent communication systems is considered, giving attention to the optimal design of single-channel systems, the design of two-channel systems, and the design of multichannel systems. Other topics explored include the design and the performance of phase-coherent systems preceded by band-pass limiters, symbol synchronization and its effects on data detection, noncoherent communication over the Gaussian channel, and tracking loops with improved performance.

  3. The OSU 275 system of satellite tracking station coordinates

    NASA Technical Reports Server (NTRS)

    Mueller, I. I.; Kumar, M.

    1975-01-01

    A brief review of the methods and data used in the OSU 275 geodetic system is given along with the summary of the results. Survey information regarding the tracking stations in the system is given in tabular form along with the geodetic and geophysical parameters, origin and orientation, Cartisian coordinates, and systematic differences with global and nonglobal geodetic systems.

  4. Feedforward Tracking Control of Flat Recurrent Fuzzy Systems

    NASA Astrophysics Data System (ADS)

    Gering, Stefan; Adamy, Jürgen

    2014-12-01

    Flatness based feedforward control has proven to be a feasible solution for the problem of tracking control, which may be applied to a broad class of nonlinear systems. If a flat output of the system is known, the control is often based on a feedforward controller generating a nominal input in combination with a linear controller stabilizing the linearized error dynamics around the trajectory. We show in this paper that the very same idea may be incorporated for tracking control of MIMO recurrent fuzzy systems. Their dynamics is given by means of linguistic differential equations but may be converted into a hybrid system representation, which then serves as the basis for controller synthesis.

  5. Navigation and geo-tracking system of UAV EO payload

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Zhen, Kang; Xue, Yuanyuan; Zhang, Xiajiang; Li, Yingjuan; Tang, Chao

    2016-01-01

    A multi-function system based on inertial measurement unit (IMU) is introduced, which can fulfill navigation, attitude measurement of LOS in payload, platform stabilization and tracking control. The IMU is integrated with electro-optical sensors and a laser range finder on gimbals, which performs attitude calculation and navigation by constructing navigation coordinates in a mathematic platform, and the platform navigation information is obtained by transformation matrix between platform and gimbal coordinates. The platform comprising of gyros, electro-optical sensors and servo mechanism is capable of stabilizing line of sight and could be used to geo-tracking in the relevant field of view (FOV).The system can determine geography coordinates of the host platform and target only with navigation information and laser ranging data. The geo-tracking system always locked the target image at the center of FOV by calculating spatial geometry and adjusting LOS attitude. This tracking is different from TV tracking and geographical reference image tracking, which may be influenced by fog and obscurant. When the UAV is flying over urban or mountain areas for rescue missions, it can avoid the loss of targets due to strong maneuver or LOS obscuration, and reduce the operation load and improve rescue efficiency.

  6. Study of a Tracking and Data Acquisition System (TDAS) in the 1990's

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Progress in concept definition studies, operational assessments, and technology demonstrations for the Tracking and Data Acquisition System (TDAS) is reported. The proposed TDAS will be the follow-on to the Tracking and Data Relay Satellite System and will function as a key element of the NASA End-to-End Data System, providing the tracking and data acquisition interface between user accessible data ports on Earth and the user's spaceborne equipment. Technical activities of the "spacecraft data system architecture' task and the "communication mission model' task are emphasized. The objective of the first task is to provide technology forecasts for sensor data handling, navigation and communication systems, and estimate corresponding costs. The second task is concerned with developing a parametric description of the required communication channels. Other tasks with significant activity include the "frequency plan and radio interference model' and the "Viterbi decoder/simulator study'.

  7. TARPs: Tracked Active Region Patches from SoHO/MDI

    NASA Astrophysics Data System (ADS)

    Turmon, M.; Hoeksema, J. T.; Bobra, M.

    2013-12-01

    We describe progress toward creating a retrospective MDI data product consisting of tracked magnetic features on the scale of solar active regions, abbreviated TARPs (Tracked Active Region Patches). The TARPs are being developed as a backward-looking extension (covering approximately 3500 regions spanning 1996-2010) to the HARP (HMI Active Region Patch) data product that has already been released for HMI (2010-present). Like the HARPs, the MDI TARP data set is designed to be a catalog of active regions (ARs), indexed by a region ID number, analogous to a NOAA AR number, and time. TARPs from MDI are computed based on the 96-minute synoptic magnetograms and pseudo-continuum intensitygrams. As with the related HARP data product, the approximate threshold for significance is 100G. Use of both image types together allows faculae and sunspots to be separated out as sub-classes of activity, in addition to identifying the overall active region that the faculae/sunspots are part of. After being identified in single images, the magnetically-active patches are grouped and tracked from image to image. Merges among growing active regions, as well as faint active regions hovering at the threshold of detection, are handled automatically. Regions are tracked from their inception until they decay within view, or transit off the visible disk. The final data product is indexed by a nominal AR number and time. For each active region and for each time, a bitmap image is stored containing the precise outline of the active region. Additionaly, metadata such as areas and integrated fluxes are stored for each AR and for each time. Because there is a calibration between the HMI and MDI magnetograms (Liu, Hoeksema et al. 2012), it is straightforward to use the same classification and tracking rules for the HARPs (from HMI) and the MDI TARPs. We anticipate that this will allow a consistent catalog spanning both instruments. We envision several uses for the TARP data product, which will be

  8. NGSI: FUNCTION REQUIREMENTS FOR A CYLINDER TRACKING SYSTEM

    SciTech Connect

    Branney, S.

    2012-06-06

    While nuclear suppliers currently track uranium hexafluoride (UF{sub 6}) cylinders in various ways, for their own purposes, industry practices vary significantly. The NNSA Office of Nonproliferation and International Security's Next Generation Safeguards Initiative (NGSI) has begun a 5-year program to investigate the concept of a global monitoring scheme that uniquely identifies and tracks UF{sub 6} cylinders. As part of this effort, NGSI's multi-laboratory team has documented the 'life of a UF{sub 6} cylinder' and reviewed IAEA practices related to UF{sub 6} cylinders. Based on this foundation, this paper examines the functional requirements of a system that would uniquely identify and track UF{sub 6} cylinders. There are many considerations for establishing a potential tracking system. Some of these factors include the environmental conditions a cylinder may be expected to be exposed to, where cylinders may be particularly vulnerable to diversion, how such a system may be integrated into the existing flow of commerce, how proprietary data generated in the process may be protected, what a system may require in terms of the existing standard for UF{sub 6} cylinder manufacture or modifications to it and what the limiting technology factors may be. It is desirable that a tracking system should provide benefit to industry while imposing as few additional constraints as possible and still meeting IAEA safeguards objectives. This paper includes recommendations for this system and the analysis that generated them.

  9. Tracking dynamics of magma migration in open-conduit systems

    NASA Astrophysics Data System (ADS)

    Valade, Sébastien; Lacanna, Giorgio; Coppola, Diego; Laiolo, Marco; Pistolesi, Marco; Donne, Dario Delle; Genco, Riccardo; Marchetti, Emanuele; Ulivieri, Giacomo; Allocca, Carmine; Cigolini, Corrado; Nishimura, Takeshi; Poggi, Pasquale; Ripepe, Maurizio

    2016-11-01

    Open-conduit volcanic systems are typically characterized by unsealed volcanic conduits feeding permanent or quasi-permanent volcanic activity. This persistent activity limits our ability to read changes in the monitored parameters, making the assessment of possible eruptive crises more difficult. We show how an integrated approach to monitoring can solve this problem, opening a new way to data interpretation. The increasing rate of explosive transients, tremor amplitude, thermal emissions of ejected tephra, and rise of the very-long-period (VLP) seismic source towards the surface are interpreted as indicating an upward migration of the magma column in response to an increased magma input rate. During the 2014 flank eruption of Stromboli, this magma input preceded the effusive eruption by several months. When the new lateral effusive vent opened on the Sciara del Fuoco slope, the effusion was accompanied by a large ground deflation, a deepening of the VLP seismic source, and the cessation of summit explosive activity. Such observations suggest the drainage of a superficial magma reservoir confined between the crater terrace and the effusive vent. We show how this model successfully reproduces the measured rate of effusion, the observed rate of ground deflation, and the deepening of the VLP seismic source. This study also demonstrates the ability of the geophysical network to detect superficial magma recharge within an open-conduit system and to track magma drainage during the effusive crisis, with a great impact on hazard assessment.

  10. Tracking variations in the alpha activity in an electroencephalogram

    NASA Technical Reports Server (NTRS)

    Prabhu, K. S.

    1971-01-01

    The problem of tracking Alpha voltage variations in an electroencephalogram is discussed. This problem is important in encephalographic studies of sleep and effects of different stimuli on the brain. Very often the Alpha voltage is tracked by passing the EEG signal through a bandpass filter centered at the Alpha frequency, which hopefully will filter out unwanted noise from the Alpha activity. Some alternative digital techniques are suggested and their performance is compared with the standard technique. These digital techniques can be used in an environment where an electroencephalograph is interfaced with a small digital computer via an A/D convertor. They have the advantage that statistical statements about their variability can sometimes be made so that the effect sought can be assessed correctly in the presence of random fluctuations.

  11. Applying dual-laser spot positions measurement technology on a two-dimensional tracking measurement system

    NASA Astrophysics Data System (ADS)

    Lee, Hau-Wei; Chen, Chieh-Li

    2009-12-01

    This paper presents a two-dimensional tracking measurement system with a tracking module, which consists of two stepping motors, two laser diodes and a four separated active areas segmented position sensitive detector (PSD). The PSD was placed on a two-dimensional moving stage and used as a tracking target. The two laser diodes in the tracking module were directly rotated to keep the laser spots on the origin of the PSD. The two-dimensional position of the target PSD on the moving stage is determined from the distance between the two motors and the tracking angles of the two laser diodes, which are rotated by the two stepping motors, respectively. In order to separate the four positional values of the two laser spots on one PSD, the laser diodes were modulated by two distinct frequencies. Multiple-laser spot position measurement technology was used to separate the four positional values of the two laser spots on the PSD. The experimental results show that the steady-state voltage shift rate is about 0.2% and dynamic cross-talk rate is smaller than 2% when the two laser spots are projected on one PSD at the same time. The measurement errors of the x and y axial positions of the two-dimensional tracking system were less than 1% in the measuring range of 20 mm. The results demonstrate that multiple-laser spot position measurement technology can be employed in a two-dimensional tracking measurement system.

  12. Motion tracking and analysis system for magnetotactic bacteria

    NASA Astrophysics Data System (ADS)

    Mankiewicz, Martin; Martel, Sylvain

    2007-10-01

    The possibility to conceive a nanorobot propelled by flagellated magnetotactic bacteria is becoming a reality. But the development of such complex systems requires the implementation of various functionalities, one of which being the tracking of such devices with sufficient speed and accuracy. In this paper, we present an automated tracking system developed with modern computational and microscopy equipment designed to follow a bacterium through various swimming paths. The results obtained with such system are presented in order to asses the platform real-time performance in tracking MC-1 magnetotactic bacteria. This system is also used to record data related to the movement of the bacteria which may prove to be useful in other field of research besides nanorobotics.

  13. Tracking and location technologies for the criminal justice system

    NASA Astrophysics Data System (ADS)

    Murphy, John H.

    1995-05-01

    Electronic monitoring systems are being used by the criminal justice system to effect behavioral modifications of persons in pre-release prgrams, on parole, and on probation. State-of-the-art electronic monitoring systems are merely radio frequency proximity detection systems that operate over limited ranges, on the order of 45 to 70 meters. One major defect with proximity detection systems is that when the clients leave the area being monitored, there is no way to ensure that the clients are behaving properly. As a result, electronic monitoring systems are only applied to a restricted number of cases of low risk criminal offenders. There is a growing need for community-wide tracking and location technologies to increase the safety and security provided by the electronic monitoring systems, and to expand the number of cliets monitored by these systems. In this paper, a review is made of the tracking and location technologies that are currently available or under development. Also presented is a brief overview of Westinghouse's program with the National Institute of Justice. This program aims to demonstrate the practicality of one possible tracking and location technology, spread spectrum based time-of-arrival location systems, for intelligently tracking people on probation and parole.

  14. Ranging/tracking system for proximity operations

    NASA Technical Reports Server (NTRS)

    Nilsen, P.; Udalov, S.

    1982-01-01

    The hardware development and testing phase of a hand held radar for the ranging and tracking for Shuttle proximity operations are considered. The radar is to measure range to a 3 sigma accuracy of 1 m (3.28 ft) to a maximum range of 1850 m (6000 ft) and velocity to a 3 sigma accuracy of 0.03 m/s (0.1 ft/s). Size and weight are similar to hand held radars, frequently seen in use by motorcycle police officers. Meeting these goals for a target in free space was very difficult to obtain in the testing program; however, at a range of approximately 700 m, the 3 sigma range error was found to be 0.96 m. It is felt that much of this error is due to clutter in the test environment. As an example of the velocity accuracy, at a range of 450 m, a 3 sigma velocity error of 0.02 m/s was measured. The principles of the radar and recommended changes to its design are given. Analyses performed in support of the design process, the actual circuit diagrams, and the software listing are included.

  15. Tracking and Data Relay Satellite System (TDRSS) frequency plan

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The functions of the Tracking and Data Relay Satellite System (TDRSS) are discussed. The primary purpose of the system is to transmit signals to and receive signals from earth orbiting user spacecraft, and provide data from which user spacecraft ephemerides can be calculated. The system configuration is described and illustrated. The frequency plan is analyzed to show the frequency coverage and the signal handling capability of the system. The characteristics of the components of the system are tabulated.

  16. An MRI-Compatible Robotic System With Hybrid Tracking for MRI-Guided Prostate Intervention

    PubMed Central

    Krieger, Axel; Iordachita, Iulian I.; Guion, Peter; Singh, Anurag K.; Kaushal, Aradhana; Ménard, Cynthia; Pinto, Peter A.; Camphausen, Kevin; Fichtinger, Gabor

    2012-01-01

    This paper reports the development, evaluation, and first clinical trials of the access to the prostate tissue (APT) II system—a scanner independent system for magnetic resonance imaging (MRI)-guided transrectal prostate interventions. The system utilizes novel manipulator mechanics employing a steerable needle channel and a novel six degree-of-freedom hybrid tracking method, comprising passive fiducial tracking for initial registration and subsequent incremental motion measurements. Targeting accuracy of the system in prostate phantom experiments and two clinical human-subject procedures is shown to compare favorably with existing systems using passive and active tracking methods. The portable design of the APT II system, using only standard MRI image sequences and minimal custom scanner interfacing, allows the system to be easily used on different MRI scanners. PMID:22009867

  17. Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy

    NASA Astrophysics Data System (ADS)

    Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina

    2015-03-01

    Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.

  18. Chemical and Metallurgy Research (CMR) Sample Tracking System Design Document

    SciTech Connect

    Bargelski, C. J.; Berrett, D. E.

    1998-09-01

    The purpose of this document is to describe the system architecture of the Chemical and Metallurgy Research (CMR) Sample Tracking System at Los Alamos National Laboratory. During the course of the document observations are made concerning the objectives, constraints and limitations, technical approaches, and the technical deliverables.

  19. Tracking system performance tests in the MDS era

    NASA Technical Reports Server (NTRS)

    Buckles, B. J.

    1977-01-01

    Tracking system performance tests as developed to support DSN Mark III Data Subsystem implementation project and prepass readiness tests are described. The system test design, the rationale chosen for implementation, and the inevitable compromises imposed by schedule constraints and reserves are discussed.

  20. TILT. Trip Information Log Tracking System

    SciTech Connect

    Jones, J.F.

    1992-06-01

    The system is focused on the Employee Business Travel Event. The system must be able to CRUD (Create, Retrieve, Update, Delete) instances of the Travel Event as well as the ability to CRUD frequent flyer milage associated with airline travel. Additionally the system must provide for a compliance reporting system to monitor reductions in travel costs and lost opportunity costs (i.e., not taking advantage of business class or 7 day advance tickets).

  1. Vehicle Tracking System using Nanotechnology Satellites and Tags

    NASA Technical Reports Server (NTRS)

    Lorenzini, Dino A.; Tubis, Chris

    1995-01-01

    This paper describes a joint project to design, develop, and deploy a satellite based tracking system incorporating micro-nanotechnology components. The system consists of a constellation of 'nanosats', a satellite command station and data collection sites, and a large number of low-cost electronic 'tags'. Both government and commercial applications are envisioned for the satellite based tracking system. The projected low price for the tracking service is made possible by the lightweight nanosats and inexpensive electronic tags which use high production volume single chip transceivers and microprocessor devices. The nanosat consists of a five inch aluminum cube with body mounted solar panels (GaAs solar cells) on all six faces. A UHF turnstile antenna and a simple, spring release mechanism complete the external configuration of the spacecraft.

  2. Synchronization using pulsed edge tracking in optical PPM communication system

    NASA Technical Reports Server (NTRS)

    Gagliardi, R.

    1972-01-01

    A pulse position modulated (PPM) optical communication system using narrow pulses of light for data transmission requires accurate time synchronization between transmitter and receiver. The presence of signal energy in the form of optical pulses suggests the use of a pulse edge tracking method of maintaining the necessary timing. The edge tracking operation in a binary PPM system is examined, taking into account the quantum nature of the optical transmissions. Consideration is given first to pure synchronization using a periodic pulsed intensity, then extended to the case where position modulation is present and auxiliary bit decisioning is needed to aid the tracking operation. Performance analysis is made in terms of timing error and its associated statistics. Timing error variances are shown as a function of system signal to noise ratio.

  3. Active Fish Tracking Sonar (AFTS) for Assessing Fish Behavior

    SciTech Connect

    Hedgepeth, J; Johnson, Gary E. ); Skalski, John R.; Burczynski, J

    2002-11-01

    Active fish tracking sonars (AFTS) were used in 2001 to study fish movement in response to intake occlusion plates at The Dalles Dam on the Columbia River. AFTS provides three-dimensional fish tracks by aligning the axis of a split-beam transducer with a fish target. High-speed stepper motors move the transducer so that a tracked target remains on-axis. Occlusion plates with lateral extensions covered the top half of the turbine intakes to produce a fish friendly near-dam environment. Two AFTS were positioned at the center of Main Unit 1, one each for monitoring installed and removed plate conditions. A regression analysis showed that occlusion plates had pronounced effects on fish movement along the dam. The plates appeared to inhibit movement toward the spillway, movement toward the dam (especially in front of the turbine intake), and movement downward toward the turbines. Fish fate (as opposed to movement directions from regression slopes) into particular areas was determined using Markov-chain analysis. The sluiceway (a safer passage route above the turbine intake) zone of influence was larger with the occlusion plates installed, contrary to the regression results. In addition, the probability of passage out the near turbine and bottom sides of the sample volume was about 50% lower with occlusion plates installed.

  4. A buyer's guide to electromagnetic tracking systems for clinical applications

    NASA Astrophysics Data System (ADS)

    Wilson, Emmanuel; Yaniv, Ziv; Lindisch, David; Cleary, Kevin

    2008-03-01

    When choosing an Electromagnetic Tracking System (EMTS) for image-guided procedures, it is desirable for the system to be usable for different procedures and environments. Several factors influence this choice. To date, the only factors that have been studied extensively, are the accuracy and the susceptibility of electromagnetic tracking systems to distortions caused by ferromagnetic materials. In this paper we provide a holistic overview of the factors that should be taken into account when choosing an EMTS. These factors include: the system's refresh rate, the number of sensors that need to be tracked, the size of the navigated region, system interaction with the environment, can the sensors be embedded into the tools and provide the desired transformation data, and tracking accuracy and robustness. We evaluate the Aurora EMTS (Northern Digital Inc., Waterloo, Ontario, Canada; the 3D Guidance EMTS with the flat-panel and the short-range field generators (Ascension Technology Corp., Burlington, Vermont, USA) in three clinical environments. We show that these systems are applicable to specific procedures or in specific environments, but that, no single system is currently optimal for all environments and procedures we evaluated.

  5. Space Shuttle/TDRSS communication and tracking systems analysis

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Chie, C. M.; Cideciyan, R.; Dessouky, K.; Su, Y. T.; Tsang, C. S.

    1986-01-01

    In order to evaluate the technical and operational problem areas and provide a recommendation, the enhancements to the Tracking and Data Delay Satellite System (TDRSS) and Shuttle must be evaluated through simulation and analysis. These enhancement techniques must first be characterized, then modeled mathematically, and finally updated into LinCsim (analytical simulation package). The LinCsim package can then be used as an evaluation tool. Three areas of potential enhancements were identified: shuttle payload accommodations, TDRSS SSA and KSA services, and shuttle tracking system and navigation sensors. Recommendations for each area were discussed.

  6. Smithsonian Astrophysical Observatory laser tracking systems

    NASA Technical Reports Server (NTRS)

    Pearlman, M. R.; Lanham, N. W.; Lehr, C. G.; Wohn, J.

    1977-01-01

    The four SAO laser satellite-ranging systems, located in Brazil, Peru, Australia, and Arizona, have been in operation for more than five years and have provided ranging data at accuracy levels of a meter or better. The paper examines system hardware (laser transmitter, the electronics, mount, photoreceiver, minicomputer, and station timing) and software (prediction program, calibration programs, and data handling and quick-look programs) and also considers calibration, station operation, and system performance.

  7. Tethered Vehicle Control and Tracking System

    NASA Technical Reports Server (NTRS)

    North, David D. (Inventor); Aull, Mark J. (Inventor)

    2017-01-01

    A kite system includes a kite and a ground station. The ground station includes a sensor that can be utilized to determine an angular position and velocity of the kite relative to the ground station. A controller utilizes a fuzzy logic control system to autonomously fly the kite. The system may include a ground station having powered winding units that generate power as the lines to the kite are unreeled. The control system may be configured to fly the kite in a crosswind trajectory to increase line tension for power generation. The sensors for determining the position of the kite are preferably ground-based.

  8. Tethered Vehicle Control and Tracking System

    NASA Technical Reports Server (NTRS)

    North, David D. (Inventor); Aull, Mark J. (Inventor)

    2014-01-01

    A kite system includes a kite and a ground station. The ground station includes a sensor that can be utilized to determine an angular position and velocity of the kite relative to the ground station. A controller utilizes a fuzzy logic control system to autonomously fly the kite. The system may include a ground station having powered winding units that generate power as the lines to the kite are unreeled. The control system may be configured to fly the kite in a crosswind trajectory to increase line tension for power generation. The sensors for determining the position of the kite are preferably ground-based.

  9. Particle Tracking Model (PTM) with Coastal Modeling System (CMS)

    DTIC Science & Technology

    2014-10-31

    System ( CMS ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER...www.erdc.usace.army.mil/Missions/WaterResources/CIRP.aspx Coastal Inlets Research Program Particle Tracking Model (PTM) with Coastal Modeling System ( CMS ) The...System ( CMS ), which provides coupled wave and current forcing for PTM simulations. CMS -PTM is implemented in the Surface-water Modeling System, a

  10. Consensus Tracking for Multiagent Systems with Nonlinear Dynamics

    PubMed Central

    2014-01-01

    This paper concerns the problem of consensus tracking for multiagent systems with a dynamical leader. In particular, it proposes the corresponding explicit control laws for multiple first-order nonlinear systems, second-order nonlinear systems, and quite general nonlinear systems based on the leader-follower and the tree shaped network topologies. Several numerical simulations are given to verify the theoretical results. PMID:25197689

  11. A middleware approach to integrate referent tracking in EHR systems.

    PubMed

    Manzoor, Shahid; Ceusters, Werner M; Rudnicki, Ron

    2007-10-11

    The purpose of a Referent Tracking System (RTS) is to manage the representation of particulars in a database and to share this information with Electronic Health Record (EHR) systems. We describe how an implementation of such a RTS can be integrated in an EHR system using middleware technology based on web services. We describe the functional and technical requirements of such an approach and document our experiences with MedtuityEMR, an EHR system that stores patient data in XML.

  12. Tumor tracking and motion compensation with an adaptive tumor tracking system (ATTS): system description and prototype testing.

    PubMed

    Wilbert, Jürgen; Meyer, Jürgen; Baier, Kurt; Guckenberger, Matthias; Herrmann, Christian; Hess, Robin; Janka, Christian; Ma, Lei; Mersebach, Torben; Richter, Anne; Roth, Michael; Schilling, Klaus; Flentje, Michael

    2008-09-01

    A novel system for real-time tumor tracking and motion compensation with a robotic HexaPOD treatment couch is described. The approach is based on continuous tracking of the tumor motion in portal images without implanted fiducial markers, using the therapeutic megavoltage beam, and tracking of abdominal breathing motion with optical markers. Based on the two independently acquired data sets the table movements for motion compensation are calculated. The principle of operation of the entire prototype system is detailed first. In the second part the performance of the HexaPOD couch was investigated with a robotic four-dimensional-phantom capable of simulating real patient tumor trajectories in three-dimensional space. The performance and limitations of the HexaPOD table and the control system were characterized in terms of its dynamic behavior. The maximum speed and acceleration of the HexaPOD were 8 mm/s and 34.5 mm/s2 in the lateral direction, and 9.5 mm/s and 29.5 mm/s2 in longitudinal and anterior-posterior direction, respectively. Base line drifts of the mean tumor position of realistic lung tumor trajectories could be fully compensated. For continuous tumor tracking and motion compensation a reduction of tumor motion up to 68% of the original amplitude was achieved. In conclusion, this study demonstrated that it is technically feasible to compensate breathing induced tumor motion in the lung with the adaptive tumor tracking system.

  13. Exact-Output Tracking Theory for Systems with Parameter Jumps

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh; Paden, Brad; Rossi, Carlo

    1996-01-01

    In this paper we consider the exact output tracking problem for systems with parameter jumps. Necessary and sufficient conditions are derived for the elimination of switching-introduced output transient. Previous works have studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches). Such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is applicable to nonminimum-phase systems and obtains bounded but possibly non-causal solutions. If the reference trajectories are generated by an exo-system, then we develop an exact-tracking controller in a feedback form. As in standard regulator theory, we obtain a linear map from the states of the exo-system to the desired system state which is defined via a matrix differential equation. The constant solution of this differential equation provides asymptotic tracking, and coincides with the feedback law used in standard regulator theory. The obtained results are applied to a simple flexible manipulator with jumps in the pay-load mass.

  14. ESAM: Endocrine inspired Sensor Activation Mechanism for multi-target tracking in WSNs

    NASA Astrophysics Data System (ADS)

    Adil Mahdi, Omar; Wahab, Ainuddin Wahid Abdul; Idris, Mohd Yamani Idna; Znaid, Ammar Abu; Khan, Suleman; Al-Mayouf, Yusor Rafid Bahar

    2016-10-01

    Target tracking is a significant application of wireless sensor networks (WSNs) in which deployment of self-organizing and energy efficient algorithms is required. The tracking accuracy increases as more sensor nodes are activated around the target but more energy is consumed. Thus, in this study, we focus on limiting the number of sensors by forming an ad-hoc network that operates autonomously. This will reduce the energy consumption and prolong the sensor network lifetime. In this paper, we propose a fully distributed algorithm, an Endocrine inspired Sensor Activation Mechanism for multi target-tracking (ESAM) which reflecting the properties of real life sensor activation system based on the information circulating principle in the endocrine system of the human body. Sensor nodes in our network are secreting different hormones according to certain rules. The hormone level enables the nodes to regulate an efficient sleep and wake up cycle of nodes to reduce the energy consumption. It is evident from the simulation results that the proposed ESAM in autonomous sensor network exhibits a stable performance without the need of commands from a central controller. Moreover, the proposed ESAM generates more efficient and persistent results as compared to other algorithms for tracking an invading object.

  15. Testing TRANSCOM - U. S. Department of Energy's radmat tracking system

    SciTech Connect

    Carlson, R.D.; Koehl, E.R.; Harmon, L.H.; Habib, E.J.; Mignone, T.A.; Dutt, S.

    1988-01-01

    A transportation tracking system has been developed by the Department of Energy (DOE) in response to three institutional concerns about shipments of large quantities of radioactive materials: routing, prenotification, and emergency response. This tracking system consists of a location system, a communication system with the carrier, and an information management system which appropriately distributes shipment information to DOE headquarters, field offices, and key state officials. The DOE prototype system developed for this purpose is called TRANSCOM. This paper presents some of the tests that have been performed to demonstrate that LORAN-C is acceptable as a location system for TRANSCOM, and that satellite communications techniques can provide timely results regarding location and communication with carrier vehicles.

  16. A Novel Open-Loop Tracking Strategy for Photovoltaic Systems

    PubMed Central

    Alexandru, Cătălin

    2013-01-01

    This paper approaches a dual-axis equatorial tracking system that is used to increase the photovoltaic efficiency by maximizing the degree of use of the solar radiation. The innovative aspect in the solar tracker design consists in considering the tracking mechanism as a perturbation for the DC motors. The goal is to control the DC motors, which are perturbed with the motor torques whose computation is based on the dynamic model of the mechanical structure on which external forces act. The daily and elevation angles of the PV module represent the input parameters in the mechanical device, while the outputs transmitted to the controller are the motor torques. The controller tuning is approached by a parametric optimization process, using design of experiments and response surface methodology techniques, in a multiple regression. The simulation and experimental results demonstrate the operational performance of the tracking system. PMID:24327803

  17. A novel open-loop tracking strategy for photovoltaic systems.

    PubMed

    Alexandru, Cătălin

    2013-01-01

    This paper approaches a dual-axis equatorial tracking system that is used to increase the photovoltaic efficiency by maximizing the degree of use of the solar radiation. The innovative aspect in the solar tracker design consists in considering the tracking mechanism as a perturbation for the DC motors. The goal is to control the DC motors, which are perturbed with the motor torques whose computation is based on the dynamic model of the mechanical structure on which external forces act. The daily and elevation angles of the PV module represent the input parameters in the mechanical device, while the outputs transmitted to the controller are the motor torques. The controller tuning is approached by a parametric optimization process, using design of experiments and response surface methodology techniques, in a multiple regression. The simulation and experimental results demonstrate the operational performance of the tracking system.

  18. Getting Youth Started Tracking and Stalking: Sample Activities for Ages 6 to 17.

    ERIC Educational Resources Information Center

    Rain, Dan

    2002-01-01

    Presents activities on tracking and stalking wildlife that can be incorporated into the elementary secondary education curriculum. Includes activities such as Tracking and Questioning, Trail Detectives, Magic Tracking Stick, Trailing, Cast Collecting, Animal Forms Relay, Firekeeper, Bat and Moth, Grazing Deer, and Sneaking. (YDS)

  19. CMOS VLSI Active-Pixel Sensor for Tracking

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Sun, Chao; Yang, Guang; Heynssens, Julie

    2004-01-01

    An architecture for a proposed active-pixel sensor (APS) and a design to implement the architecture in a complementary metal oxide semiconductor (CMOS) very-large-scale integrated (VLSI) circuit provide for some advanced features that are expected to be especially desirable for tracking pointlike features of stars. The architecture would also make this APS suitable for robotic- vision and general pointing and tracking applications. CMOS imagers in general are well suited for pointing and tracking because they can be configured for random access to selected pixels and to provide readout from windows of interest within their fields of view. However, until now, the architectures of CMOS imagers have not supported multiwindow operation or low-noise data collection. Moreover, smearing and motion artifacts in collected images have made prior CMOS imagers unsuitable for tracking applications. The proposed CMOS imager (see figure) would include an array of 1,024 by 1,024 pixels containing high-performance photodiode-based APS circuitry. The pixel pitch would be 9 m. The operations of the pixel circuits would be sequenced and otherwise controlled by an on-chip timing and control block, which would enable the collection of image data, during a single frame period, from either the full frame (that is, all 1,024 1,024 pixels) or from within as many as 8 different arbitrarily placed windows as large as 8 by 8 pixels each. A typical prior CMOS APS operates in a row-at-a-time ( grolling-shutter h) readout mode, which gives rise to exposure skew. In contrast, the proposed APS would operate in a sample-first/readlater mode, suppressing rolling-shutter effects. In this mode, the analog readout signals from the pixels corresponding to the windows of the interest (which windows, in the star-tracking application, would presumably contain guide stars) would be sampled rapidly by routing them through a programmable diagonal switch array to an on-chip parallel analog memory array. The

  20. Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton.

    PubMed

    Long, Yi; Du, Zhijiang; Cong, Lin; Wang, Weidong; Zhang, Zhiming; Dong, Wei

    2017-03-01

    This paper presents an active disturbance rejection control (ADRC) based strategy, which is applied to track the human gait trajectory for a lower limb rehabilitation exoskeleton. The desired human gait trajectory is derived from the Clinical Gait Analysis (CGA). In ADRC, the total external disturbance can be estimated by the extended state observer (ESO) and canceled by the designed control law. The observer bandwidth and the controller bandwidth are determined by the practical principles. We simulated the proposed methodology in MATLAB. The numerical simulation shows the tracking error comparison and the estimated errors of the extended state observer. Two experimental tests were carried out to prove the performance of the algorithm presented in this paper. The experiment results show that the proposed ADRC behaves a better performance than the regular proportional integral derivative (PID) controller. With the proposed ADRC, the rehabilitation system is capable of tracking the target gait more accurately.

  1. Track-to-track association for object matching in an inter-vehicle communication system

    NASA Astrophysics Data System (ADS)

    Yuan, Ting; Roth, Tobias; Chen, Qi; Breu, Jakob; Bogdanovic, Miro; Weiss, Christian A.

    2015-09-01

    Autonomous driving poses unique challenges for vehicle environment perception due to the complex driving environment the autonomous vehicle finds itself in and differentiates from remote vehicles. Due to inherent uncertainty of the traffic environments and incomplete knowledge due to sensor limitation, an autonomous driving system using only local onboard sensor information is generally not sufficiently enough for conducting a reliable intelligent driving with guaranteed safety. In order to overcome limitations of the local (host) vehicle sensing system and to increase the likelihood of correct detections and classifications, collaborative information from cooperative remote vehicles could substantially facilitate effectiveness of vehicle decision making process. Dedicated Short Range Communication (DSRC) system provides a powerful inter-vehicle wireless communication channel to enhance host vehicle environment perceiving capability with the aid of transmitted information from remote vehicles. However, there is a major challenge before one can fuse the DSRC-transmitted remote information and host vehicle Radar-observed information (in the present case): the remote DRSC data must be correctly associated with the corresponding onboard Radar data; namely, an object matching problem. Direct raw data association (i.e., measurement-to-measurement association - M2MA) is straightforward but error-prone, due to inherent uncertain nature of the observation data. The uncertainties could lead to serious difficulty in matching decision, especially, using non-stationary data. In this study, we present an object matching algorithm based on track-to-track association (T2TA) and evaluate the proposed approach with prototype vehicles in real traffic scenarios. To fully exploit potential of the DSRC system, only GPS position data from remote vehicle are used in fusion center (at host vehicle), i.e., we try to get what we need from the least amount of information; additional feature

  2. Optical communication system performance with tracking error induced signal fading.

    NASA Technical Reports Server (NTRS)

    Tycz, M.; Fitzmaurice, M. W.; Premo, D. A.

    1973-01-01

    System performance is determined for an optical communication system using noncoherent detection in the presence of tracking error induced signal fading assuming (1) binary on-off modulation (OOK) with both fixed and adaptive threshold receivers, and (2) binary polarization modulation (BPM). BPM is shown to maintain its inherent 2- to 3-dB advantage over OOK when adaptive thresholding is used, and to have a substantially greater advantage when the OOK system is restricted to a fixed decision threshold.

  3. Non-tracking solar energy collector system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1978-01-01

    A solar energy collector system characterized by an improved concentrator for directing incident rays of solar energy on parallel vacuum-jacketed receivers or absorbers is described. Numerous individually mounted reflector modules of a common asymmetrical triangular cross-sectional configuration are supported for independent reorientation. Asymmetric vee-trough concentrators are defined.

  4. Non-tracking solar energy collector system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1978-01-01

    A solar energy collector system is described characterized by an improved concentrator for directing incident rays of solar energy on parallel strip-like segments of a flatplate receiver. Individually mounted reflector modules of a common asymmetrical triangular cross-sectional configuration supported for independent orientation are asymmetric included with vee-trough concentrators for deflecting incident solar energy toward the receiver.

  5. Astronaut William Pogue using Skylab Viewfinder Tracking System experiment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut William R. Pogue, Skylab 4 pilot, using the Skylab Viewfinder Tracking System (S191 experiment) during a training exercise in the Multiple docking adapter (MDA) one-G trainer at JSC. In the background is Astronaut Gerald P. Carr, seated at the control panel for the Earth Resources Experiments Package (EREP). Carr is Skylab 4 crew commander, and Gibson is Science pilot.

  6. Exact-Output Tracking Theory for Systems with Parameter Jumps

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh; Paden, Brad; Rossi, Carlo

    1997-01-01

    We consider the exact output tracking problem for systems with parameter jumps. Necessary and sufficient conditions are derived for the elimination of switching-introduced output transient. Previous works have studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches). Such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is applicable to non-minimum-phase systems and it obtains bounded but possibly non-causal solutions. If the reference trajectories are generated by an exosystem, then we develop an exact-tracking controller in a feed-back form. As in standard regulator theory, we obtain a linear map from the states of the exosystem to the desired system state which is defined via a matrix differential equation. The constant solution of this differential equation provides asymptotic tracking, and coincides with the feedback law used in standard regulator theory. The obtained results are applied to a simple flexible manipulator with jumps in the pay-load mass.

  7. The Track-System: Its Socializing Impact on Student Teachers.

    ERIC Educational Resources Information Center

    O'Donnell, James

    The purpose of the study described in this paper was to explore the experience of student teachers working in a track-system and the meaning drawn from that experience. In order to gain access to this meaning, the method of in-depth, phenomenological interviewing was utilized. This research model is based on a format that one makes meaning of his…

  8. Student Tracking Systems in Community Colleges. ERIC Digest, September 1989.

    ERIC Educational Resources Information Center

    Quimbita, Grace

    Student tracking systems are enabling increasing numbers of community colleges to respond to external demands for accountability with tangible measurements of student progress and institutional outcomes. Several recent trends in marketing, accountability, communications with students, and internal competition for resources have prompted interest…

  9. The Tracking & Data Relay Satellite System. The New Space Network.

    ERIC Educational Resources Information Center

    Froehlich, Walter

    This publication describes the giant-capacity space communications installation called the "Tracking and Data Relay Satellite System" (TDRSS). Chapters include: (1) "A New Communications Bridge to Orbit" (illustrating what it is and how it looks); (2) "TDRSS Goes to Work" (describing how it functions); (3) "The…

  10. Space Shuttle program communication and tracking systems interface analysis

    NASA Technical Reports Server (NTRS)

    Dodds, J. G.; Holmes, J. K.; Huth, G. K.; Iwasaki, R. S.; Nilsen, P. W.; Polydoros, A.; Sampaio, D. R.; Udalov, S.

    1984-01-01

    The Space Shuttle Program Communications and Tracking Systems Interface Analysis began April 18, 1983. During this time, the shuttle communication and tracking systems began flight testing. Two areas of analysis documented were a result of observations made during flight tests. These analyses involved the Ku-band communication system. First, there was a detailed analysis of the interface between the solar max data format and the Ku-band communication system including the TDRSS ground station. The second analysis involving the Ku-band communication system was an analysis of the frequency lock loop of the Gunn oscillator used to generate the transmit frequency. The stability of the frequency lock loop was investigated and changes to the design were reviewed to alleviate the potential loss of data due the loop losing lock and entering the reacquisition mode. Other areas of investigation were the S-band antenna analysis and RF coverage analysis.

  11. High-Speed Noninvasive Eye-Tracking System

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; LaBaw, Clayton; Michael-Morookian, John; Monacos, Steve; Serviss, Orin

    2007-01-01

    The figure schematically depicts a system of electronic hardware and software that noninvasively tracks the direction of a person s gaze in real time. Like prior commercial noninvasive eye-tracking systems, this system is based on (1) illumination of an eye by a low-power infrared light-emitting diode (LED); (2) acquisition of video images of the pupil, iris, and cornea in the reflected infrared light; (3) digitization of the images; and (4) processing the digital image data to determine the direction of gaze from the centroids of the pupil and cornea in the images. Relative to the prior commercial systems, the present system operates at much higher speed and thereby offers enhanced capability for applications that involve human-computer interactions, including typing and computer command and control by handicapped individuals,and eye-based diagnosis of physiological disorders that affect gaze responses.

  12. Resource Tracking and Workflow System - part of the CORE system

    SciTech Connect

    2009-10-02

    Resource management and workflow capability applied to engineering design situational awareness, providing the ability to make assignments and track progress through the construction and maintenance life cycle of an engineered structure.

  13. Design of a retinal tracking system for jumping spiders

    NASA Astrophysics Data System (ADS)

    Canavesi, Cristina; Long, Skye; Fantone, Dennis; Jakob, Elizabeth; Jackson, Robert R.; Harland, Duane; Rolland, Jannick P.

    2011-10-01

    We designed an optical system for tracking the retinal movement of a jumping spider as a stimulus is presented to it. The system, using all off-the-shelf optical components except for one custom aspheric plate, consists of three sub-systems that share a common path: a visible stimuli presentation sub-system, a NIR illumination sub-system, and a NIR retinal imaging sub-system. A 25 mm clearance between the last element and the spider ensures a stable positioning of the spider. The stimuli presentation system relays an image from a display to the spider eye, matching the 15 arcmin resolution of the two principal eyes and producing a virtual image at a distance of 255 mm from the spider, with a visual full field of view of 52°. When viewing a stimulus, the spider moves its retinas, which cover a full field of view of only 0.6°, and directs them to view different places in the visual field. The retinal imaging system uses a NIR camera to track changes of 0.5° in the field of view seen by the spider. By tracking retinal movement across images presented to spiders, we will learn how they search for visual cues to identify prey, rivals, and potential mates.

  14. Accuracy of the LPM tracking system considering dynamic position changes.

    PubMed

    Ogris, Georg; Leser, Roland; Horsak, Brian; Kornfeind, Philipp; Heller, Mario; Baca, Arnold

    2012-01-01

    This study investigates the accuracy of the tracking system LPM (local position measurement). The goal was to determine detailed error values of the system in the context of sports performance analyses. Six moderately trained male soccer players (amateur level) performed 276 runs on three different courses at six different speeds. Additionally, ten small-sided game plays were carried out. All runs and game plays were recorded with the LPM tracking system and the motion capture system VICON simultaneously. VICON served as the reference system. The absolute error of all LPM position estimations was on average 23.4±20.7 cm. The estimation for average velocities varied between 0.01 km h(-1) and 0.23 km h(-1), the maximum speed estimations differed by up to 2.71 km h(-1). In addition, the results showed that the accuracy of the LPM system is highly dependent on the instantaneous dynamics of the player and decreases in the margins of the observation field. These dependencies were quantified. Considering commonly used applications of position tracking systems in sports (Leser, Ogris, & Baca, 2011), the accuracy of LPM is acceptable for position and velocity estimations. The system provides valuable results for average velocities but seems to be far less reliable when dealing with high dynamic movements and measuring instantaneous velocities.

  15. Indoor Tracking to Understand Physical Activity and Sedentary Behaviour: Exploratory Study in UK Office Buildings

    PubMed Central

    Spinney, Richard; Smith, Lee; Ucci, Marcella; Fisher, Abigail; Konstantatou, Marina; Sawyer, Alexia; Wardle, Jane; Marmot, Alexi

    2015-01-01

    Little is known of the patterns of physical activity, standing and sitting by office workers. However, insight into these behaviours is of growing interest, notably in regard to public health priorities to reduce non-communicable disease risk factors associated with high levels of sitting time and low levels of physical activity. With the advent and increasing availability of indoor tracking systems it is now becoming possible to build detailed pictures of the usage of indoor spaces. This paper reports initial results of indoor tracking used in conjunction with the ActivPAL activity monitoring device. In this paper we give an overview of the usage of the tracking system and its installation and illustrate some of the resultant data. We also provide preliminary results that investigate the relationship between location, light physical activity and sitting in a small sample of office workers (n=33) from two separate office environments in order to demonstrate the relevance and explanatory power of the technique. PMID:25993515

  16. 21 CFR 821.25 - Device tracking system and content requirements: manufacturer requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES MEDICAL DEVICE TRACKING REQUIREMENTS Tracking Requirements § 821.25 Device tracking system and content requirements: manufacturer requirements. (a) A... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Device tracking system and content...

  17. 78 FR 48642 - Privacy Act Systems of Records; Phytosanitary Certificate Issuance and Tracking System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... Issuance and Tracking System AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice of a... system of records is the Phytosanitary Certificate Issuance and Tracking System, USDA-APHIS-13. This... the USDA South Building, 14th Street and Independence Avenue SW., Washington, DC. Normal reading...

  18. Designing a Field Experience Tracking System in the Area of Special Education

    ERIC Educational Resources Information Center

    He, Wu; Watson, Silvana

    2014-01-01

    Purpose: To improve the quality of field experience, support field experience cooperation and streamline field experience management, the purpose of this paper is to describe the experience in using Activity Theory to design and develop a web-based field experience tracking system for a special education program. Design/methodology/approach: The…

  19. Using geographic information systems to track polio vaccination team performance: pilot project report.

    PubMed

    Gammino, Victoria M; Nuhu, Adamu; Chenoweth, Paul; Manneh, Fadinding; Young, Randall R; Sugerman, David E; Gerber, Sue; Abanida, Emmanuel; Gasasira, Alex

    2014-11-01

    The application of geospatial data to public health problems has expanded significantly with increased access to low-cost handheld global positioning system (GPS) receivers and free programs for geographic information systems analysis. In January 2010, we piloted the application of geospatial analysis to polio supplementary immunization activities (SIAs) in northern Nigeria. SIA teams carried GPS receivers to compare hand-drawn catchment area route maps with GPS tracks of actual vaccination teams. Team tracks overlaid on satellite imagery revealed that teams commonly missed swaths of contiguous households and indicated that geospatial data can improve microplanning and provide nearly real-time monitoring of team performance.

  20. Full-time equivalency tracking system

    USGS Publications Warehouse

    Klesert, Stephen

    1982-01-01

    To help meet the goals of the Surface-Mining Control and Reclamation Act of 1977, the U.S. Geological Survey is assessing the physical, chemical, and biological characteristics of surface water within the coal-mining region of southwestern Indiana. This report discussed benthic-invertebrate and periphytic-algal communities in streams draining homogeneous agricultural, forested, active/reclaimed-mine, and unreclaimed mine watersheds, and relates the biological communities to the physical and chemical characteristics of the streams. Alkalinity and pH were lower and the concentrations of dissolved solids, calcium, magnesium, sodium, potassium, sulfate, iron, manganese, aluminum, and zinc were higher in unreclaimed-mine watersheds than in the other land-use watersheds. Numbers and community diversity of benthic invertebrates were less at sites affected by mining than at agricultural or forested sites, owing to (1) synergistic effects of pH, metals, and unsuitable habitat and (2) lack of colonizing drift organisms because of the small drainage area upstream from the mined area. Only a few organisms , such as the caddisflies Cheumatopsyche and Hydrosyche and the chironomids Chironomus and Cricotopus were found in streams draining mine areas. (USGS)

  1. Testing TRANSCOM: US Department of Energy's Radmat tracking system

    SciTech Connect

    Carlson, R.D.; Koehl, E.R.; Harmon, L.H.; Habib, E.J.; Mignone, T.A.; Dutt, S.

    1988-01-01

    A transportation tracking system has been developed by the Department of Energy (DOE) in response to three institutional concerns about shipments of large quantities of radioactive materials: routing, prenotification, and emergency response. This tracking system consists of a location system, a communication system with the carrier, and an information management system which appropriately distributes shipment information to DOE headquarters, field officers, and key state officials. The DOE prototype system developed for this purpose is called TRANSCOM. This paper presents some of all tests that have been performed to demonstrate that LORAN-C is acceptable as a location system for TRANSCOM, and that satellite communications techniques can provide timely results regarding location and communication with carrier vehicles. Three separate tracking tests have been performed to date: 3177 location data points were recorded during a cross-country test from Savannah River, SC to Idaho Falls, ID via Albuquerque, NM; 802 data points were recorded along the Union Pacific Railroad from Omaha, NE to North Platte, NE; 4540 location data points, as well as 2636 satellite-transmitted locations and messages, were recorded on a trip from San Diego, CA; through Albuquerque, NM; Cheyenne, WY; Idaho Falls, ID; and back through Cheyenne to Chicago, IL. 3 refs., 11 figs., 1 tab.

  2. The Authenticated Tracking and Monitoring System (ATMS) concept

    SciTech Connect

    Schoeneman, J.L.

    1993-08-01

    The Authenticated Tracking and Monitoring System (ATMS) has been designed to address the need for global monitoring of the status and location of proliferation-sensitive items. Conceived to utilize the proposed Global Verification and Location System (GVLS) satellite link, ATMS could use the existing International Maritime Satellite commercial communication system until GVLS is operational. The ATMS concept uses sensor packs to monitor items and environmental conditions, collects a variety of events data through a sensor processing unit, and transmits the data to a satellite, which then sends data to ground stations. Authentication and encryption algorithms will be used to secure the data. A typical ATMS application would be to track and monitor the safety and security of a number of items in transit along a scheduled shipping route. This paper also discusses a possible proof-of-concept system demonstration.

  3. A real-time cardiac surface tracking system using Subspace Clustering.

    PubMed

    Singh, Vimal; Tewfik, Ahmed H; Gowreesunker, B

    2010-01-01

    Catheter based radio frequency ablation of atrial fibrillation requires real-time 3D tracking of cardiac surfaces with sub-millimeter accuracy. To best of our knowledge, there are no commercial or non-commercial systems capable to do so. In this paper, a system for high-accuracy 3D tracking of cardiac surfaces in real-time is proposed and results applied to a real patient dataset are presented. Proposed system uses Subspace Clustering algorithm to identify the potential deformation subspaces for cardiac surfaces during the training phase from pre-operative MRI scan based training set. In Tracking phase, using low-density outer cardiac surface samples, active deformation subspace is identified and complete inner & outer cardiac surfaces are reconstructed in real-time under a least squares formulation.

  4. Gamma-ray tracking method for pet systems

    DOEpatents

    Mihailescu, Lucian; Vetter, Kai M.

    2010-06-08

    Gamma-ray tracking methods for use with granular, position sensitive detectors identify the sequence of the interactions taking place in the detector and, hence, the position of the first interaction. The improved position resolution in finding the first interaction in the detection system determines a better definition of the direction of the gamma-ray photon, and hence, a superior source image resolution. A PET system using such a method will have increased efficiency and position resolution.

  5. Ultra-Wideband Angle-of-Arrival Tracking Systems

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey; Ngo, Phong H.; Phan, Chau T.; Gross, Julia; Ni, Jianjun; Dusl, John

    2010-01-01

    Systems that measure the angles of arrival of ultra-wideband (UWB) radio signals and perform triangulation by use of those angles in order to locate the sources of those signals are undergoing development. These systems were originally intended for use in tracking UWB-transmitter-equipped astronauts and mobile robots on the surfaces of remote planets during early stages of exploration, before satellite-based navigation systems become operational. On Earth, these systems could be adapted to such uses as tracking UWB-transmitter-equipped firefighters inside buildings or in outdoor wildfire areas obscured by smoke. The same characteristics that have made UWB radio advantageous for fine resolution ranging, covert communication, and ground-penetrating radar applications in military and law-enforcement settings also contribute to its attractiveness for the present tracking applications. In particular, the waveform shape and the short duration of UWB pulses make it possible to attain the high temporal resolution (of the order of picoseconds) needed to measure angles of arrival with sufficient precision, and the low power spectral density of UWB pulses enables UWB radio communication systems to operate in proximity to other radio communication systems with little or no perceptible mutual interference.

  6. Experimental monitoring of geotechnical response of railway track systems

    NASA Astrophysics Data System (ADS)

    Alsabhan, Abdullah H.

    An important issue that compromises rail track operations and safety is ballast fouling. Ballast fouling may lead to track deformation, reduction of track load capacity and train speed, and ultimately train derailment. This problem is quite costly for the railway industry thus, assessing and controlling ballast fouling and then preventing train derailment while optimizing maintenance operation is very important for reducing the overall cost of freight and passenger transportation. This study presents a proposed holistic methodology that extends assessing fouling while monitoring rail track deformation. The techniques uses deformation monitoring instruments (e.g., fiber optic (FO) sensors and LVDTs) coupled with Electromagnetic (EM) surveying: Ground penetrating radar (GPR) and a time domain reflectometry (TDR). The methodology aims at gathering data to create an early warning system that would allow railway engineers to develop a symptomatic approach to ballast maintenance procedures. This proposed methodology was tested on a full scale track model (FSTM). This model comprises 2.45 m rail supported by five ties embedded in ballast layer that was fouled under controlled conditions. The testing program considered three common types of fouling: mineral fouling, clay fouling, and silica sand fouling. A comparison between rail settlement measurements measured by LVDTs and rail bending strain measurement measured by FO sensors showed that FO sensors do not provide an indication of track deterioration due to cyclic loading, moisture content, and fouling depth. In addition, results showed a high correlation between rate of plastic settlement and amount of fouling detected by EM survey. Experimental results also showed that EM survey results can be used to determine depth and type of fouling.

  7. Differential Flatness and Cooperative Tracking in the Lorenz System

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.

    2002-01-01

    In this paper the control of the Lorenz system for both stabilization and tracking problems is studied via feedback linearization and differential flatness. By using the Rayleigh number as the control, only variable physically tunable, a barrier in the controllability of the system is incidentally imposed. This is reflected in the appearance of a singularity in the state transformation. Composite controllers that overcome this difficulty are designed and evaluated. The transition through the manifold defined by such a singularity is achieved by inducing a chaotic response within a boundary layer that contains it. Outside this region, a conventional feedback nonlinear control is applied. In this fashion, the authority of the control is enlarged to the whole. state space and the need for high control efforts is mitigated. In addition, the differential parametrization of the problem is used to track nonlinear functions of one state variable (single tracking) as well as several state variables (cooperative tracking). Control tasks that lead to integrable and non-integrable differential equations for the nominal flat output in steady-state are considered. In particular, a novel numerical strategy to deal with the non-integrable case is proposed. Numerical results validate very well the control design.

  8. Three-Dimensional Concentration Measurements around Actively Tracking Blue Crabs

    NASA Astrophysics Data System (ADS)

    Dickman, B. D.; Jackson, J. L.; Weissburg, M. J.; Webster, D. R.

    2006-11-01

    Many aquatic arthropods locate food, suitable habitats, and mates solely through information extracted by chemical signals in their environment. Chemical plumes detected by larger animals are influenced by turbulence that creates an intermittent and unpredictable chemical stimulus environment. To link the stimulus pattern to behavior, we have developed a measurement system to quantify the instantaneous odor concentration surrounding a freely tracking blue crab through three-dimensional laser-induced fluorescence (3DLIF). A blue crab receives chemical stimulus at several locations, including the antennules near the mouth region and the distal tips of the legs and claws. Hence, three-dimensional measurements of the concentration field are required to link behavior to plume structure. During trials, crabs began their search 150 cm downstream of a source, and walking kinematics were recording simultaneously. The crabs were reversibly ``blindfolded'' during tracking to prevent aversive reactions to the intense laser light. Our experiments allow us to examine how hypothesized navigational cues, such as concentration bursts at the antennules and spatial asymmetry in concentration at the distributed chemosensory organs on the legs and claws, results in particular decisions during navigation.

  9. Privacy Act System of Records: Confidential Business Information Tracking System, EPA-20

    EPA Pesticide Factsheets

    Learn about the Confidential Business Information Tracking System, including who is covered in the system, the purpose of data collection, routine uses for the system's records, and other security procedures.

  10. Masseter Muscle Activity in Track and Field Athletes: A Pilot Study.

    PubMed

    Nukaga, Hideyuki; Takeda, Tomotaka; Nakajima, Kazunori; Narimatsu, Keishiro; Ozawa, Takamitsu; Ishigami, Keiichi; Funato, Kazuo

    2016-01-01

    Teeth clenching has been shown to improve remote muscle activity (by augmentation of the Hoffmann reflex), and joint fixation (by decreased reciprocal inhibition) in the entire body. Clenching could help maintain balance, improve systemic function, and enhance safety. Teeth clenching from a sports dentistry viewpoint was thought to be important and challenging. Therefore, it is quite important to investigate mastication muscles' activity and function during sports events for clarifying a physiological role of the mastication muscle itself and involvement of mastication muscle function in whole body movement. Running is a basic motion of a lot of sports; however, a mastication muscles activity during this motion was not clarified. Throwing and jumping operation were in a same situation. The purpose of this study was to investigate the presence or absence of masseter muscle activity during track and field events. In total, 28 track and field athletes took part in the study. The Multichannel Telemetry system was used to monitor muscle activity, and the electromyograms obtained were synchronized with digital video imaging. The masseter muscle activity threshold was set 15% of maximum voluntary clenching. As results, with few exceptions, masseter muscle activity were observed during all analyzed phases of the 5 activities, and that phases in which most participants showed masseter muscle activity were characterized by initial acceleration, such as in the short sprint, from the commencement of throwing to release in both the javelin throw and shot put, and at the take-off and landing phases in both jumps.

  11. Masseter Muscle Activity in Track and Field Athletes: A Pilot Study

    PubMed Central

    Nukaga, Hideyuki; Takeda, Tomotaka; Nakajima, Kazunori; Narimatsu, Keishiro; Ozawa, Takamitsu; Ishigami, Keiichi; Funato, Kazuo

    2016-01-01

    Teeth clenching has been shown to improve remote muscle activity (by augmentation of the Hoffmann reflex), and joint fixation (by decreased reciprocal inhibition) in the entire body. Clenching could help maintain balance, improve systemic function, and enhance safety. Teeth clenching from a sports dentistry viewpoint was thought to be important and challenging. Therefore, it is quite important to investigate mastication muscles’ activity and function during sports events for clarifying a physiological role of the mastication muscle itself and involvement of mastication muscle function in whole body movement. Running is a basic motion of a lot of sports; however, a mastication muscles activity during this motion was not clarified. Throwing and jumping operation were in a same situation. The purpose of this study was to investigate the presence or absence of masseter muscle activity during track and field events. In total, 28 track and field athletes took part in the study. The Multichannel Telemetry system was used to monitor muscle activity, and the electromyograms obtained were synchronized with digital video imaging. The masseter muscle activity threshold was set 15% of maximum voluntary clenching. As results, with few exceptions, masseter muscle activity were observed during all analyzed phases of the 5 activities, and that phases in which most participants showed masseter muscle activity were characterized by initial acceleration, such as in the short sprint, from the commencement of throwing to release in both the javelin throw and shot put, and at the take-off and landing phases in both jumps. PMID:27708727

  12. Solid Waste Information and Tracking System (SWITS) Software Requirements Specification

    SciTech Connect

    MAY, D.L.

    2000-03-22

    This document is the primary document establishing requirements for the Solid Waste Information and Tracking System (SWITS) as it is converted to a client-server architecture. The purpose is to provide the customer and the performing organizations with the requirements for the SWITS in the new environment. This Software Requirement Specification (SRS) describes the system requirements for the SWITS Project, and follows the PHMC Engineering Requirements, HNF-PRO-1819, and Computer Software Qualify Assurance Requirements, HNF-PRO-309, policies. This SRS includes sections on general description, specific requirements, references, appendices, and index. The SWITS system defined in this document stores information about the solid waste inventory on the Hanford site. Waste is tracked as it is generated, analyzed, shipped, stored, and treated. In addition to inventory reports a number of reports for regulatory agencies are produced.

  13. [Program for stimulating and recording eye movements in in complex expert assessment of the state of the vestibular system, vestibulo-visual interactions and the quality of operator's tracking activities].

    PubMed

    Chernobyl'skiĭ, L M

    1995-01-01

    The article gives an account of an original integral software enabling to acquire objective information about different level oculomotor and vestibular systems, detail vestibulo-visual interactions, make topic diagnosis and predict the quality of operator's tracking efficiency. The software can be useful in aerospace, transport, underwater, and sports medicine for selection and medical checking of sensory systems in respective contingents. It may also be introduced into the clinical practice of differential diagnostics of vestibular disorders, i.e. otorhinolaryngology, neurosurgery, and neurology.

  14. Maximum collectible solar energy by different solar tracking systems

    SciTech Connect

    Helwa, N.H.; Bahgat, A.B.G.; El Shafee, A.M.R.; El Shenawy, E.T.

    2000-01-01

    The output energy from any solar energy system depends on the solar energy input to that system. Using different ways to track the solar energy system to follow the sun can increase solar energy input according to the type of the tracker. A practical study was carried out on difference solar tract systems. The layout of these systems are a fixed system facing south and tilted 40{degree}, a vertical-axis tracker, a 6{degree} tilted-axis tracker, and a two-axis tracker. All the trackers are microprocessor controlled systems, and all systems have photovoltaic arrays for electric energy production. The evaluation of the different systems is based on a complete year of measurements for solar radiation input to the systems and the electric power output from them. The study also includes the effect of some operating parameters on the tracker operation. These studies showed that the collected solar energy as well as the electrical output energy of the tracking solar system are more than that of the stationary system. These gains are higher in the case of the two-axis tracker and decrease gradually from the vertical-axis tracker to the tilted-axis tracker.

  15. A real-time tracking system for monitoring shipments of hazardous materials

    NASA Astrophysics Data System (ADS)

    Womble, Phillip; Paschal, Jon; Hopper, Lindsay; Pinson, Dudley; Schultz, Frederick; Whitfield Humphrey, Melinda

    2007-04-01

    Due to the ever increasing use of radioactive materials in day to day living from the treatment of cancer patients and irradiation of food for preservation to industrial radiography to check for defects in the welding of pipelines and buildings there is a growing concern over the tracking and monitoring of these sources in transit prior to use as well as the waste produced by such use. The prevention of lost sealed sources is important in reducing the environmental and health risk posed by direct exposure, co-mingling in the metal recycling stream, use in contaminated consumer products, and use in terrorist activities. Northwest Nuclear, LLC (NWN) and the Applied Physics Institute (API) at Western Kentucky University have developed a tracking technology using active radio frequency identification (RFID) tags. This system provides location information by measuring the time of arrival of packets from a set of RFID tags to a set of location receivers. The system can track and graphically display the location on maps, drawings or photographs of tagged items on any 802.11- compliant device (PDAs, laptops, computers, WiFi telephones) situated both outside and inside structures. This location information would be vital for tracking the location of high level radiological sources while in transit. RFID technology would reduce the number of lost sources by tracking them from origination to destination. Special tags which indicate tampering or sudden movement have also been developed.

  16. Comparative accuracy of radiostereometric and optical tracking systems.

    PubMed

    Kedgley, Angela E; Birmingham, Trevor; Jenkyn, Thomas R

    2009-06-19

    This study aims to quantify and compare the accuracy of traditional radiostereometric analysis (RSA), fluoroscopic RSA (fRSA), and optical tracking systems. Three phantoms were constructed, each having three stainless steel spheres and three reflective markers. One phantom was mounted to the base of a precision cross-slide table, one to the base of a precision rotation table, and the third was mounted to each moveable tabletop. Two dial-gauges, rigidly mounted to the cross-slide table and rotation table, quantified translations and rotations. Two fluoroscopy units placed orthogonally tracked the steel spheres while a four-camera optical motion capture system tracked the reflective markers in three-dimensional space. RSA was performed with both digital radiography and fluoroscopy. Three axes of translation were tested: parallel to one fluoroscopy image, parallel to the other fluoroscopy image, and at approximately 45 degrees to each image. One axis of rotation was tested. Intraclass correlation coefficients indicated excellent agreement between the actual (dial-gauge) and measured translations for all modalities (ICCs>0.99) and excellent agreement between actual and measured rotations for RSA and fRSA (ICCs>0.99). Standard errors of measurement ranged from 0.032 mm and 0.121 degrees for RSA, to 0.040 mm and 0.229 degrees for fRSA, and to 0.109 mm and 0.613 degrees for optical tracking. Differences between actual and measured translations along the 45 degrees axis were significantly smaller than the two parallel axes. These findings suggest that under ideal conditions, accuracy of fRSA is comparable to traditional RSA, and superior to optical tracking. Accuracy is highest when measured at 45 degrees to the fluoroscopy units.

  17. Evaluation of a BGO-Based PET System for Single-Cell Tracking Performance by Simulation and Phantom Studies.

    PubMed

    Ouyang, Yu; Kim, Tae Jin; Pratx, Guillem

    2016-01-01

    A recent method based on positron emission was reported for tracking moving point sources using the Inveon PET system. However, the effect of scanner background noise was not further explored. Here, we evaluate tracking with the Genisys4, a bismuth germanate-based PET system, which has no significant intrinsic background and may be better suited to tracking lower and/or faster activity sources. Position-dependent sensitivity of the Genisys4 was simulated in Geant4 Application for Tomographic Emission (GATE) using a static (18)F point source. Trajectories of helically moving point sources with varying activity and rotation speed were reconstructed from list-mode data as described previously. Simulations showed that the Inveon's ability to track sources within 2 mm of localization error is limited to objects with a velocity-to-activity ratio < 0.13 mm/decay, compared to < 0.29 mm/decay for the Genisys4. Tracking with the Genisys4 was then validated using a physical phantom of helically moving [(18)F] fluorodeoxyglucose-in-oil droplets (< 0.24 mm diameter, 139-296 Bq), yielding < 1 mm localization error under the tested conditions, with good agreement between simulated sensitivity and measured activity (Pearson correlation R = .64, P < .05 in a representative example). We have investigated the tracking performance with the Genisys4, and results suggest the feasibility of tracking low activity, point source-like objects with this system.

  18. Evaluation of a BGO-based PET System for Single-Cell Tracking Performance by Simulation and Phantom Studies

    PubMed Central

    Ouyang, Yu; Kim, Tae Jin; Pratx, Guillem

    2017-01-01

    A recent method based on positron emission was reported for tracking moving point sources using the Inveon PET system. However, the effect of scanner background noise was not further explored. Here, we evaluate tracking with the Genisys4, a bismuth germanate (BGO) based PET system, which has no significant intrinsic background and may be better suited to tracking lower and/or faster activity sources. Position-dependent sensitivity of the Genisys4 was simulated in GATE using a static 18F point source. Trajectories of helically moving point sources with varying activity and rotation speed were reconstructed from list-mode data as previously described. Simulations showed that the Inveon’s ability to track sources within 2 mm of localization error is limited to objects with a velocity-to-activity ratio < 0.13 mm/decay, compared to < 0.29 mm/decay for the Genisys4. Tracking with the Genisys4 was then validated using a physical phantom of helically moving [18F]FDG-in-oil droplets (< 0.24 mm diameter, 139 to 296 Bq), yielding < 1 mm localization error under the tested conditions, with good agreement between simulated sensitivity and measured activity (Pearson’s correlation R = 0.64, P ≪ 0.05 in a representative example). We have investigated the tracking performance with the Genisys4, and results suggest the feasibility of tracking low activity, point source-like objects with this system. PMID:27175009

  19. New registry and tracking system for renal transplantation in Japan.

    PubMed

    Yuzawa, K; Takahara, S; Kanmochi, T; Takahashi, K; Teraoka, S

    2010-12-01

    Following The Declaration of Istanbul 2008, a registration committees of The Japan Society for Transplantation and The Japanese Society for Clinical Renal Transplantation planned to establish a new registry and tracking system for renal transplant recipients and donors supported by a Health Labor Sciences Research Grant by The Ministry of Health Labour and Welfare. In place of the previous paper-based system, we established the new registry and tracking system, JARTRE (Japan Renal Transplantation Registry), using USB memory in 2009. Recipient and donor data were inputted into the USB memory at the transplantation centers. The memory was reviewed a yearly by committees. The recipient and donor registration included details from both. The tracking is performed centrally 3 months, 1 year, and every year after the operation. The advantages of this system are the ease of input, adequacy of the data, and rapid statistical processing. In 2009, we registered 97.9% of new renal transplantation recipients and donors; in 2008 it was more than 81.9% of all past renal transplantation recipients in Japan.

  20. Remote Gaze Tracking System on a Large Display

    PubMed Central

    Lee, Hyeon Chang; Lee, Won Oh; Cho, Chul Woo; Gwon, Su Yeong; Park, Kang Ryoung; Lee, Heekyung; Cha, Jihun

    2013-01-01

    We propose a new remote gaze tracking system as an intelligent TV interface. Our research is novel in the following three ways: first, because a user can sit at various positions in front of a large display, the capture volume of the gaze tracking system should be greater, so the proposed system includes two cameras which can be moved simultaneously by panning and tilting mechanisms, a wide view camera (WVC) for detecting eye position and an auto-focusing narrow view camera (NVC) for capturing enlarged eye images. Second, in order to remove the complicated calibration between the WVC and NVC and to enhance the capture speed of the NVC, these two cameras are combined in a parallel structure. Third, the auto-focusing of the NVC is achieved on the basis of both the user's facial width in the WVC image and a focus score calculated on the eye image of the NVC. Experimental results showed that the proposed system can be operated with a gaze tracking accuracy of ±0.737°∼±0.775° and a speed of 5∼10 frames/s. PMID:24105351

  1. Remote gaze tracking system on a large display.

    PubMed

    Lee, Hyeon Chang; Lee, Won Oh; Cho, Chul Woo; Gwon, Su Yeong; Park, Kang Ryoung; Lee, Heekyung; Cha, Jihun

    2013-10-07

    We propose a new remote gaze tracking system as an intelligent TV interface. Our research is novel in the following three ways: first, because a user can sit at various positions in front of a large display, the capture volume of the gaze tracking system should be greater, so the proposed system includes two cameras which can be moved simultaneously by panning and tilting mechanisms, a wide view camera (WVC) for detecting eye position and an auto-focusing narrow view camera (NVC) for capturing enlarged eye images. Second, in order to remove the complicated calibration between the WVC and NVC and to enhance the capture speed of the NVC, these two cameras are combined in a parallel structure. Third, the auto-focusing of the NVC is achieved on the basis of both the user's facial width in the WVC image and a focus score calculated on the eye image of the NVC. Experimental results showed that the proposed system can be operated with a gaze tracking accuracy of ±0.737°~±0.775° and a speed of 5~10 frames/s.

  2. On-track tests of active vertical suspension on a passenger train

    NASA Astrophysics Data System (ADS)

    Qazizadeh, Alireza; Persson, Rickard; Stichel, Sebastian

    2015-06-01

    The classic way to design the suspension of a rail vehicle is to use passive elements such as dampers and springs; however, as sensors and actuators are getting more affordable and reliable, their potential benefit in the suspension system is increasingly studied. Active suspension can be used to keep ride comfort at an acceptable level or even improve it, while allowing tougher operation conditions or usage of lighter carbodies. Tougher conditions could be interpreted as higher speed or lower track quality, and lighter carbody means higher level of elastic vibrations. This paper is focused on the implementation and tests of active vertical suspension on the secondary suspension of a high-speed passenger electric multiple unit using hydraulic actuators and the skyhook method as the controller. Results from on-track tests indicate large ride comfort improvements.

  3. Development of a Water Recovery System Resource Tracking Model

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Stambaugh, Imelda; Sargusingh, Miriam; Shull, Sarah; Moore, Michael

    2015-01-01

    A simulation model has been developed to track water resources in an exploration vehicle using Regenerative Life Support (RLS) systems. The Resource Tracking Model (RTM) integrates the functions of all the vehicle components that affect the processing and recovery of water during simulated missions. The approach used in developing the RTM enables its use as part of a complete vehicle simulation for real time mission studies. Performance data for the components in the RTM is focused on water processing. The data provided to the model has been based on the most recent information available regarding the technology of the component. This paper will describe the process of defining the RLS system to be modeled, the way the modeling environment was selected, and how the model has been implemented. Results showing how the RLS components exchange water are provided in a set of test cases.

  4. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    SciTech Connect

    Anderson, Robert Stephen

    2001-02-01

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of management flexibility.

  5. Passive optical computerized tracking system with graphic replay

    NASA Astrophysics Data System (ADS)

    Johnston, Donald R.

    1993-01-01

    The system has been designed for instant sports replay. The passive unit utilizes two video cameras, an image processor, and a graphics computer to track the baseball pitch and provide an instant graphic replay of the pitch, showing the ball's trajectory, speed, and movement. Shown on the 1991 World Series, it has applications for both team training and game broadcasting as well as other sports.

  6. Establishing an evoked-potential vision-tracking system

    NASA Technical Reports Server (NTRS)

    Skidmore, Trent A.

    1991-01-01

    This paper presents experimental evidence to support the feasibility of an evoked-potential vision-tracking system. The topics discussed are stimulator construction, verification of the photic driving response in the electroencephalogram, a method for performing frequency separation, and a transient-analysis example. The final issue considered is that of object multiplicity (concurrent visual stimuli with different flashing rates). The paper concludes by discussing several applications currently under investigation.

  7. System and Method for Tracking Vehicles Using Random Search Algorithms.

    DTIC Science & Technology

    1997-01-31

    patent application is available for licensing. Requests for information should be addressed to: OFFICE OF NAVAL RESEARCH DEPARTMENT OF THE NAVY...relates to a system and a method for 22 tracking vehicles using random search algorithm methodolgies . 23 (2) Description of the Prior Art 24 Contact...algorithm methodologies for finding peaks in non-linear 14 functions. U.S. Patent No. 5,148,513 to Koza et al., for 15 example, relates to a non-linear

  8. The Analytical Labortory sample tracking and reporting system

    SciTech Connect

    Colvin, W.J.

    1996-06-01

    Regulatory and project requirements stipulate that samples submitted for chemical/physical analysis be owed throughout the analytical process. The Analytical Laboratory (AL) began tracking sample request information electronically using a simple dBASE{trademark} database in 1992. In mid 1993, AL chemists formed a committee to determine the software requirements for a formal sample tracking system. The requirements were outlined for a multi-user FoxPro{trademark} application which tracked sample logins, login templates, worksheets, and sample results and also provided standardized reporting capabilities. The Analytical Laboratory Sample Tracking and Reporting System became available to AL chemists and management in February, 1994. Chemists now had quick, easy access to organized and readable sample data. Up to date, on-line access to sample status information also benefitted AL management. The ability to closely monitor samples decreased sample process time. AL customers also benefitted by receiving standardized Final reports for their samples. Eventually, system performance began to deteriorate as the database grew and network traffic increased. To improve performance, ANL-W Information Services recommended upgrading the system. Upgrading to a fully relational, client/server Oracle{trademark} database accessed from a front-end application developed using Visual Basio{trademark}, one of the many Graphical User Interface (GUI) design tools available today, would improve performance times by greater than 50%. The move to Oracle would improve throughput times of transactions and employ a more efficient use of resources. Visual Basic front-and application development began in May, 1995. In October 1995, the first prototype of the Visual Basic application was made available for testing. AL users were pleased with the added ease-of-use the GUI interface provided. The production version is scheduled for release mid May, 1996.

  9. Standardization in Performance Assessment of Telemetry Tracking Systems

    DTIC Science & Technology

    2013-09-01

    after having to go back to the drawing board is priceless. To Mr. Antonio Cardoso from the Naval Surface Warfare Center, Corona Division, and my JAP...mission checks on the systems by performing solar calibrations and tracking available satellites. Once the ships arrive in port, hard copies of data...to port after supporting FTI-01, a problem was discovered during the post-mission checkouts. During solar calibrations, the antenna was not

  10. Advanced technology for space communications and tracking systems

    NASA Astrophysics Data System (ADS)

    Krishen, Kumar

    1988-10-01

    Technological advances in the communications and tracking areas being developed by NASA and applicable to future missions and associated space operations are discussed. The applications scenarios considered include the Space Shuttle, Space Station, lunar base, and Mars missions. Performance goals and conceptual designs are discussed, and the relevance of optical, laser, and millimeter wave-based implementations to the various applications are examined. Recommendations for future systems developments are addressed.

  11. Quantifying the tracking capability of space-based AIS systems

    NASA Astrophysics Data System (ADS)

    Skauen, Andreas Nordmo

    2016-01-01

    The Norwegian Defence Research Establishment (FFI) has operated three Automatic Identification System (AIS) receivers in space. Two are on dedicated nano-satellites, AISSat-1 and AISSat-2. The third, the NORAIS Receiver, was installed on the International Space Station. A general method for calculating the upper bound on the tracking capability of a space-based AIS system has been developed and the results from the algorithm applied to AISSat-1 and the NORAIS Receiver individually. In addition, a constellation of AISSat-1 and AISSat-2 is presented. The tracking capability is defined as the probability of re-detecting ships as they move around the globe and is explained to represent and upper bound on a space-based AIS system performance. AISSat-1 and AISSat-2 operates on the nominal AIS1 and AIS2 channels, while the NORAIS Receiver data used are from operations on the dedicated space AIS channels, AIS3 and AIS4. The improved tracking capability of operations on the space AIS channels is presented.

  12. Prototype readout electronics for the upgraded ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Sielewicz, K. M.; Aglieri Rinella, G.; Bonora, M.; Ferencei, J.; Giubilato, P.; Rossewij, M. J.; Schambach, J.; Vanat, T.

    2017-01-01

    The ALICE Collaboration is preparing a major upgrade to the experimental apparatus. A key element of the upgrade is the construction of a new silicon-based Inner Tracking System containing 12 Gpixels in an area of 10 m2. Its readout system consists of 192 readout units that control the pixel sensors and the power units, and deliver the sensor data to the counting room. A prototype readout board has been designed to test: the interface between the sensor modules and the readout electronics, the signal integrity and reliability of data transfer, the interface to the ALICE DAQ and trigger, and the susceptibility of the system to the expected radiation level.

  13. The tracking control system of the VLT Survey Telescope.

    PubMed

    Schipani, P; Arcidiacono, C; Argomedo, J; Dall'Ora, M; D'Orsi, S; Farinato, J; Magrin, D; Marty, L; Ragazzoni, R; Umbriaco, G

    2012-09-01

    The VLT survey telescope is the latest telescope installed at European Southern Observatory's Paranal observatory that is considered one of the best sites for optical astronomy for the excellent seeing conditions. The exceptional quality of the site imposes tight requirements for the telescope tracking system that shall perform very well to fully exploit the extreme sharpness of the Chilean sky. We describe the specific solutions adopted for pointing, servo and guiding systems and the results obtained during the commissioning of the telescope. The hardware implementation relies on industry components and the control solutions privilege both the performance and the future maintainability of the system.

  14. GPS-based system for satellite tracking and geodesy

    NASA Technical Reports Server (NTRS)

    Bertiger, Willy I.; Thornton, Catherine L.

    1989-01-01

    High-performance receivers and data processing systems developed for GPS are reviewed. The GPS Inferred Positioning System (GIPSY) and the Orbiter Analysis and Simulation Software (OASIS) are described. The OASIS software is used to assess GPS system performance using GIPSY for data processing. Consideration is given to parameter estimation for multiday arcs, orbit repeatability, orbit prediction, daily baseline repeatability, agreement with VLBI, and ambiguity resolution. Also, the dual-frequency Rogue receiver, which can track up to eight GPS satellites simultaneously, is discussed.

  15. Multiview 3-D Echocardiography Fusion with Breath-Hold Position Tracking Using an Optical Tracking System.

    PubMed

    Punithakumar, Kumaradevan; Hareendranathan, Abhilash R; McNulty, Alexander; Biamonte, Marina; He, Allen; Noga, Michelle; Boulanger, Pierre; Becher, Harald

    2016-08-01

    Recent advances in echocardiography allow real-time 3-D dynamic image acquisition of the heart. However, one of the major limitations of 3-D echocardiography is the limited field of view, which results in an acquisition insufficient to cover the whole geometry of the heart. This study proposes the novel approach of fusing multiple 3-D echocardiography images using an optical tracking system that incorporates breath-hold position tracking to infer that the heart remains at the same position during different acquisitions. In six healthy male volunteers, 18 pairs of apical/parasternal 3-D ultrasound data sets were acquired during a single breath-hold as well as in subsequent breath-holds. The proposed method yielded a field of view improvement of 35.4 ± 12.5%. To improve the quality of the fused image, a wavelet-based fusion algorithm was developed that computes pixelwise likelihood values for overlapping voxels from multiple image views. The proposed wavelet-based fusion approach yielded significant improvement in contrast (66.46 ± 21.68%), contrast-to-noise ratio (49.92 ± 28.71%), signal-to-noise ratio (57.59 ± 47.85%) and feature count (13.06 ± 7.44%) in comparison to individual views.

  16. A novel sensor-assisted RFID-based indoor tracking system for the elderly living alone.

    PubMed

    Hsu, Chien-Chang; Chen, Jun-Hao

    2011-01-01

    The population of elderly people is increasing rapidly in many developed nations. Providing safe and comfortable care to aging people is an important social goal. Moreover, obtaining correct activity and location information for an elderly person is an important research goal. This work proposes a novel intelligent RFID-based indoor tracking system for elderly people living alone. The proposed system uses environment information for inhabitants and received signal strength of an RFID reader to estimate the probable location of an inhabitant. The proposed system then coordinates with the wireless sensor node of a three-axis accelerometer and uses a genetic algorithm to compute the location of the inhabitant. The proposed system also uses context and gait information to improve inhabitant-tracking accuracy. Experiment results show that the accuracy of the proposed system is better than that of existing RFID-based systems.

  17. A Novel Sensor-Assisted RFID-Based Indoor Tracking System for the Elderly Living Alone

    PubMed Central

    Hsu, Chien-Chang; Chen, Jun-Hao

    2011-01-01

    The population of elderly people is increasing rapidly in many developed nations. Providing safe and comfortable care to aging people is an important social goal. Moreover, obtaining correct activity and location information for an elderly person is an important research goal. This work proposes a novel intelligent RFID-based indoor tracking system for elderly people living alone. The proposed system uses environment information for inhabitants and received signal strength of an RFID reader to estimate the probable location of an inhabitant. The proposed system then coordinates with the wireless sensor node of a three-axis accelerometer and uses a genetic algorithm to compute the location of the inhabitant. The proposed system also uses context and gait information to improve inhabitant-tracking accuracy. Experiment results show that the accuracy of the proposed system is better than that of existing RFID-based systems. PMID:22346631

  18. Quantifying the 3D Odorant Concentration Field Used by Actively Tracking Blue Crabs

    NASA Astrophysics Data System (ADS)

    Webster, D. R.; Dickman, B. D.; Jackson, J. L.; Weissburg, M. J.

    2007-11-01

    Blue crabs and other aquatic organisms locate food and mates by tracking turbulent odorant plumes. The odorant concentration fluctuates unpredictably due to turbulent transport, and many characteristics of the fluctuation pattern have been hypothesized as useful cues for orienting to the odorant source. To make a direct linkage between tracking behavior and the odorant concentration signal, we developed a measurement system based the laser induced fluorescence technique to quantify the instantaneous 3D concentration field surrounding actively tracking blue crabs. The data suggest a correlation between upstream walking speed and the concentration of the odorant signal arriving at the antennule chemosensors, which are located near the mouth region. More specifically, we note an increase in upstream walking speed when high concentration bursts arrive at the antennules location. We also test hypotheses regarding the ability of blue crabs to steer relative to the plume centerline based on the signal contrast between the chemosensors located on their leg appendages. These chemosensors are located much closer to the substrate compared to the antennules and are separated by the width of the blue crab. In this case, it appears that blue crabs use the bilateral signal comparison to track along the edge of the plume.

  19. Tracking Accuracy of a Real-Time Fiducial Tracking System for Patient Positioning and Monitoring in Radiation Therapy

    SciTech Connect

    Shchory, Tal; Schifter, Dan; Lichtman, Rinat; Neustadter, David; Corn, Benjamin W.

    2010-11-15

    Purpose: In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. Methods and Materials: The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive tracking system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. Results: The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. Conclusions: This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy.

  20. The Missile Defense Agency's space tracking and surveillance system

    NASA Astrophysics Data System (ADS)

    Watson, John; Zondervan, Keith

    2008-10-01

    The Ballistic Missile Defense System (BMDS) is a layered system incorporating elements in space. In addition to missile warning systems at geosynchronous altitudes, an operational BMDS will include a low Earth orbit (LEO) system-the Space Tracking and Surveillance System (STSS). It will use infrared sensing technologies synergistically with the Space Based Infrared Systems (SBIRS) and will provide a seamless adjunct to radars and sensors on the ground and in airborne platforms. STSS is being designed for a future operational capability to defend against evolving threats. STSS development is divided into phases, commencing with a two-satellite demonstration constellation scheduled for launch in 2008. The demonstration satellites will conduct a menu of tests and experiments to prove the system concept, including the ground segment. They will have limited operational capability within the integrated BMDS. Data from the demonstration satellites will be received and processed by the Missile Defense Space Experiment Center (MDSEC), a part of the Missile Defense Integration and Operations Center (MDIOC). MDA launched in 2007 into LEO a satellite (NFIRE) designed to make near-field multispectral measurements of boosting targets and to demonstrate laser communication, the latter in conjunction with the German satellite TerraSAR-X. The gimbaled, lightweight laser terminal has demonstrated on orbit a 5.5 gbps rate in both directions. The filter passbands of NFIRE are similar to the STSS demonstrator track sensor. While providing useful phenomenology during its time on orbit, NFIRE will also serve as a pathfinder in the development of STSS operations procedures.

  1. Assessing manual pursuit tracking in Parkinson's disease via linear dynamical systems.

    PubMed

    Oishi, Meeko M K; TalebiFard, Pouria; McKeown, Martin J

    2011-08-01

    Quantitative assessment of motor performance is important for diseases of motor control, such as Parkinson's disease (PD). Manual tracking tasks are well suited for motor assessment, as they can be performed concomitantly with brain mapping techniques. Here we propose utilizing second-order linear dynamical systems to assess manual pursuit tracking performance. With the desired trajectory as the input, and the subject's actual motor response as the output, a linear model characterized by natural frequency and damping ratio is identified for each subject. We applied this method to 10 PD subjects (on and off L: -dopa medication) and 10 normal subjects performing a multi-frequency sinusoidal tracking task. Model parameters were more sensitive than overall tracking errors in determining significant differences between groups. The effect of L: -dopa medication was to reduce the damping ratio and make the range in natural frequency across individuals approach that of normal subjects. We interpret the changes in damping ratio and natural frequency as possibly related to suppression of compensatory cerebellar activity and/or improvement of motor program selection, and the changes in natural frequency as an implicit strategy to maintain settling time in the face of reduce damping ratio. Our results suggest that simple linear dynamical system models can be a powerful method to assess tracking performance in Parkinson's disease because of the additional insight they can provide into neurological processes.

  2. Prototype LPDA Tracking System for the Gauribidanur Radioheliograph

    NASA Astrophysics Data System (ADS)

    Sundaram, G. A. S.; Subramanian, K. R.; Rajan, M. S. S.; Chellaswamy, E. E.; Ramesh, R.

    2005-12-01

    In order to observe transient and time-varying solar coronal events like intense radio bursts and Coronal Mass Ejections at metric wavelengths over a prolonged duration, the current meridian-transit instrument, that is the Gauribidanur Radioheliograph (GRH), requires upgradation to a mode, that would track their spatio-spectral and temporal evolution. The scheme has been deployed on the scale of a prototype to the GRH, so that multi-frequency radio imaging and spectral observations could be carried-out unhindered for about four hours every day, in the 30 - 150 MHz range. The "tracking system" is implemented based on electronic beam-steering techniques, employing the time-delay control concept, at an interference-free frequency of 77.5 MHz

  3. 76 FR 22919 - National Institute of Justice Offender Tracking System Standard Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... Offender Tracking System Standard that is under development and to receive input and feedback. All... of Justice Programs National Institute of Justice Offender Tracking System Standard Workshop AGENCY: National Institute of Justice, DOJ. ACTION: Notice of Meeting of the NIJ Offender Tracking System...

  4. Video and film analysis with correlation tracking and active result presentation (Abstract Only)

    NASA Astrophysics Data System (ADS)

    Rowa, Per

    1990-08-01

    Experience with a turnkey analysis system featuring high resolution video input and display, a modular video disc system and a 16 mm cine film scanner with 2600-point resolution, is presented. Tracking is performed with a high-speed correlation process, requiring no special markers. Software packages for evaluating two and three-dimensional results are interactively accessible. Combining the original image sequence with real-time graphic overlays and active drawing of graphic diagrams, provides for an excellent understanding and documentation of the motion sequences.

  5. Design analysis tracking and data relay satellite simulation system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design and development of the equipment necessary to simulate the S-band multiple access link between user spacecraft, the Tracking and Data Relay Satellite, and a ground control terminal are discussed. The core of the S-band multiple access concept is the use of an Adaptive Ground Implemented Phased Array. The array contains thirty channels and provides the multiplexing and demultiplexing equipment required to demonstrate the ground implemented beam forming feature. The system provided will make it possible to demonstrate the performance of a desired user and ten interfering sources attempting to pass data through the multiple access system.

  6. A Customized Vision System for Tracking Humans Wearing Reflective Safety Clothing from Industrial Vehicles and Machinery

    PubMed Central

    Mosberger, Rafael; Andreasson, Henrik; Lilienthal, Achim J.

    2014-01-01

    This article presents a novel approach for vision-based detection and tracking of humans wearing high-visibility clothing with retro-reflective markers. Addressing industrial applications where heavy vehicles operate in the vicinity of humans, we deploy a customized stereo camera setup with active illumination that allows for efficient detection of the reflective patterns created by the worker's safety garments. After segmenting reflective objects from the image background, the interest regions are described with local image feature descriptors and classified in order to discriminate safety garments from other reflective objects in the scene. In a final step, the trajectories of the detected humans are estimated in 3D space relative to the camera. We evaluate our tracking system in two industrial real-world work environments on several challenging video sequences. The experimental results indicate accurate tracking performance and good robustness towards partial occlusions, body pose variation, and a wide range of different illumination conditions. PMID:25264956

  7. Random Noise Monopulse Radar System for Covert Tracking of Targets

    NASA Astrophysics Data System (ADS)

    Narayanan, Ram M.

    2002-07-01

    The University of Nebraska is currently developing a unique monopulse radar concept based on the use of random noise signal for covert tracking applications. This project is funded by the Missile Defense Agency (MDA). The advantage of this system over conventional frequency-modulated continuous wave (FMCW) or short pulse systems is its covertness resulting from the random waveform's immunity from interception and jamming. The system integrates a novel heterodyne correlation receiver with conventional monopulse architecture. Based on the previous work such as random noise interferometry, a series of theoretical analysis and simulations were conducted to examine the potential performance of this monopulse system. Furthermore, a prototype system is under development to exploit practical design aspects of phase comparison angle measurement. It is revealed that random noise monopulse radar can provide the same function as traditional monopulse radar, i.e., implement range and angular estimation and tracking in real time. The bandwidth of random noise signal can be optimized to achieve the best range resolution as well as the angular accuracy.

  8. Site Enforcement Tracking System (SETS) (National) (on diskette). Data file

    SciTech Connect

    1997-11-01

    When expending Superfund monies at a CERCLA (Comprehensive Environmental Response, Compensation and Liability Act) site, EPA must conduct a search to identify parties with potential financial responsibility for remediation of uncontrolled hazardous waste sites. EPA regional Superfund Waste Management Staff issue a notice letter to the potentially responsible party (PRP). Data from this notice letter are used to form the Site Enforcement Tracking System (SETS). These data includes PRP name and address, a company contact person, the date the notice was issued, and the related CERCLA site name and identification number. SETS was created by EPA to track PRP identification at both NPL (National Priority List) and non-NPL sites. SETS does not address the range of other administrative duties related to tracking the PRP. These lists represent EPA`s preliminary findings on the identities of PRPs. Inclusion on these lists does not constitute a final determination concerning the liability of any party for the hazard or contamination at any CERCLA site.

  9. Site Enforcement Tracking System (SETS): National PRP listing by site

    SciTech Connect

    Not Available

    1992-04-01

    When expending Superfund monies at a CERCLA (Comprehensive Environmental Response, Compensation and Liability Act) site, EPA must conduct a search to identify parties with potential financial responsibility for remediation of uncontrolled hazardous waste sites. EPA regional Superfund Waste Management Staff issue a notice letter to the potentially responsible party (PRP). Data from the notice letter are used to form the Site Enforcement Tracking System (SETS). The data include PRP name and address, a company contact person, the date the notice was issued, and the related CERCLA site name and identification number. SETS was created to track PRP identification at both NPL (National Priorities List) and non-NPL sites. SETS does not address the range of other administrative duties related to tracking the PRP. These lists (updated quarterly) represent EPA's preliminary findings on the identities of potentially responsible parties. The site report is designed to provide PRP information linked by the associated site, which appears according to the state where the site is located.

  10. Site Enforcement Tracking System (SETS): National PRP listing by site

    SciTech Connect

    Not Available

    1992-07-01

    When expending Superfund monies at a CERCLA (Comprehensive Environmental Response, Compensation and Liability Act) site, EPA must conduct a search to identify parties with potential financial responsibility for remediation of uncontrolled hazardous waste sites. EPA regional Superfund Waste Management Staff issue a notice letter to the potentially responsible party (PRP). Data from the notice letter is used to form the Site Enforcement Tracking System (SETS). The data includes PRP name and address, a company contact person, the date the notice was issued, and the related CERCLA site name and identification number. SETS was created to track PRP identification at both NPL (National Priorities List) and non-NPL sites. SETS does not address the range of other administrative duties related to tracking the PRP. The listing by site name is organized in the following manner. Sites are sorted by state, as indicated in the site ID number. The first two characters of the site ID number constitute the state abbreviation of the site location. The listing by party name is arranged alphabetically by the name of the party and provides a company contact and address. Within each record, the sites associated with the PRP are listed. The first two characters of the site ID number constitute the state abbreviation of the site location.

  11. Mobile gaze tracking system for outdoor walking behavioral studies

    PubMed Central

    Tomasi, Matteo; Pundlik, Shrinivas; Bowers, Alex R.; Peli, Eli; Luo, Gang

    2016-01-01

    Most gaze tracking techniques estimate gaze points on screens, on scene images, or in confined spaces. Tracking of gaze in open-world coordinates, especially in walking situations, has rarely been addressed. We use a head-mounted eye tracker combined with two inertial measurement units (IMU) to track gaze orientation relative to the heading direction in outdoor walking. Head movements relative to the body are measured by the difference in output between the IMUs on the head and body trunk. The use of the IMU pair reduces the impact of environmental interference on each sensor. The system was tested in busy urban areas and allowed drift compensation for long (up to 18 min) gaze recording. Comparison with ground truth revealed an average error of 3.3° while walking straight segments. The range of gaze scanning in walking is frequently larger than the estimation error by about one order of magnitude. Our proposed method was also tested with real cases of natural walking and it was found to be suitable for the evaluation of gaze behaviors in outdoor environments. PMID:26894511

  12. Integrated laser/radar satellite ranging and tracking system

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.

    1974-01-01

    A laser satellite ranging system that is mounted upon and integrated with a microwave tracking radar is reported. The 1-pulse/sec ruby laser transmitter is attached directly to the radar's elevation axis and radiates through a new opening in the radar's parabolic dish. The laser photomultiplier tube receiver utilizes the radar's existing 20-cm diam f/11 boresight telescope and observes through a similar symmetrically located opening in the dish. The laser system possesses separate ranging system electronics but shares the radar's timing, computer, and data handling/recording systems. The basic concept of the laser/radar is outlined together with a listing of the numerous advantages over present singular laser range-finding systems. The developmental laser hardware is described along with preliminary range-finding results and expectations.

  13. Compact-optical-correlator-based helmet tracking system

    NASA Astrophysics Data System (ADS)

    New, Nicholas J.; Wilkinson, Tim D.

    2001-03-01

    We present a high-speed compact Binary Phase Joint Transform Correlator system based on a single liquid crystal over silicon spatial light modulator. The system is capable of processing images of 320*120 pixel resolution at frame rates currently limited to around 40 frames per second by the choice of camera within the system. The system is presented in the context of an image comparator system in a fighter aircraft cockpit, which is used to track the view of the pilot. This is achieved by using a helmet-mounted camera to provide the input scenes and some of the inherent properties of the Joint Transform Correlator. Results from an experimental prototype are presented.

  14. Model tracking system for low-level radioactive waste disposal facilities: License application interrogatories and responses

    SciTech Connect

    Benbennick, M.E.; Broton, M.S.; Fuoto, J.S.; Novgrod, R.L.

    1994-08-01

    This report describes a model tracking system for a low-level radioactive waste (LLW) disposal facility license application. In particular, the model tracks interrogatories (questions, requests for information, comments) and responses. A set of requirements and desired features for the model tracking system was developed, including required structure and computer screens. Nine tracking systems were then reviewed against the model system requirements and only two were found to meet all requirements. Using Kepner-Tregoe decision analysis, a model tracking system was selected.

  15. Tracker: Image-Processing and Object-Tracking System Developed

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Wright, Theodore W.

    1999-01-01

    extracting numerical instrumentation data that are embedded in images. All the results are saved in files for further data reduction and graphing. There are currently three Tracking Systems (workstations) operating near the laboratories and offices of Lewis Microgravity Science Division researchers. These systems are used independently by students, scientists, and university-based principal investigators. The researchers bring their tapes or films to the workstation and perform the tracking analysis. The resultant data files generated by the tracking process can then be analyzed on the spot, although most of the time researchers prefer to transfer them via the network to their offices for further analysis or plotting. In addition, many researchers have installed Tracker on computers in their office for desktop analysis of digital image sequences, which can be digitized by the Tracking System or some other means. Tracker has not only provided a capability to efficiently and automatically analyze large volumes of data, saving many hours of tedious work, but has also provided new capabilities to extract valuable information and phenomena that was heretofore undetected and unexploited.

  16. CERBEROS: A tracking system for secondary pion beams at the HADES spectrometer

    NASA Astrophysics Data System (ADS)

    Wirth, J.; Fabbietti, L.; Lalik, R.; Maier, L.; Scordo, A.

    2016-07-01

    In 2014 the HADES collaboration performed two successful physics production runs with secondary pion beams. Since secondary pion beams are strongly defocussed in position and momentum, two fast tracking stations were installed along the pion beam chicane following the pion production target providing the momentum measurement of each individual pion. The momentum is reconstructed using the position information of every hit detected by the tracking stations and the beam optics transport calculation with a resolution below 0.5% playing an important role in terms of the exclusive analysis of investigated reactions. Both tracking stations consist of a double-sided silicon strip sensor with a large active area (10 × 10cm2). To guarantee fast tracking, the sensors are read out with the n-XYTER ASIC chip. Due to its self-triggering architecture and local storage capability, the chip enables on-line tracking at high rates (dN / dt >106 part / s). The TRB3 read out board on which the trigger logic is implemented integrates the system into the HADES DAQ. In this report we are showing the results obtained during the calibration experiment with a monochromatic proton beam set at seven different momenta centred around 2.68 GeV/c. Also the excellent performance achieved during the production campaign with a pion beam are presented.

  17. MetaTracker: integration and abstraction of 3D motion tracking data from multiple hardware systems

    NASA Astrophysics Data System (ADS)

    Kopecky, Ken; Winer, Eliot

    2014-06-01

    Motion tracking has long been one of the primary challenges in mixed reality (MR), augmented reality (AR), and virtual reality (VR). Military and defense training can provide particularly difficult challenges for motion tracking, such as in the case of Military Operations in Urban Terrain (MOUT) and other dismounted, close quarters simulations. These simulations can take place across multiple rooms, with many fast-moving objects that need to be tracked with a high degree of accuracy and low latency. Many tracking technologies exist, such as optical, inertial, ultrasonic, and magnetic. Some tracking systems even combine these technologies to complement each other. However, there are no systems that provide a high-resolution, flexible, wide-area solution that is resistant to occlusion. While frameworks exist that simplify the use of tracking systems and other input devices, none allow data from multiple tracking systems to be combined, as if from a single system. In this paper, we introduce a method for compensating for the weaknesses of individual tracking systems by combining data from multiple sources and presenting it as a single tracking system. Individual tracked objects are identified by name, and their data is provided to simulation applications through a server program. This allows tracked objects to transition seamlessly from the area of one tracking system to another. Furthermore, it abstracts away the individual drivers, APIs, and data formats for each system, providing a simplified API that can be used to receive data from any of the available tracking systems. Finally, when single-piece tracking systems are used, those systems can themselves be tracked, allowing for real-time adjustment of the trackable area. This allows simulation operators to leverage limited resources in more effective ways, improving the quality of training.

  18. SCATS: SRB Cost Accounting and Tracking System handbook

    NASA Technical Reports Server (NTRS)

    Zorv, R. B.; Stewart, R. D.; Coley, G.; Higginbotham, M.

    1978-01-01

    The Solid Rocket Booster Cost Accounting and Tracking System (SCATS) which is an automatic data processing system designed to keep a running account of the number, description, and estimated cost of Level 2, 3, and 4 changes is described. Although designed specifically for the Space Shuttle Solid Rocket Booster Program, the ADP system can be used for any other program that has a similar structure for recording, reporting, and summing numbers and costs of changes. The program stores the alpha-numeric designators for changes, government estimated costs, proposed costs, and negotiated value in a MIRADS (Marshall Information Retrieval and Display System) format which permits rapid access, manipulation, and reporting of current change status. Output reports listing all changes, totals of each level, and totals of all levels, can be derived for any calendar interval period.

  19. Active vibration control using optimized modified acceleration feedback with Adaptive Line Enhancer for frequency tracking

    NASA Astrophysics Data System (ADS)

    Nima Mahmoodi, S.; Craft, Michael J.; Southward, Steve C.; Ahmadian, Mehdi

    2011-03-01

    Modified acceleration feedback (MAF) control, an active vibration control method that uses collocated piezoelectric actuators and accelerometer is developed and its gains optimized using an optimal controller. The control system consists of two main parts: (1) frequency adaptation that uses Adaptive Line Enhancer (ALE) and (2) an optimized controller. Frequency adaptation method tracks the frequency of vibrations using ALE. The obtained frequency is then fed to MAF compensators. This provides a unique feature for MAF, by extending its domain of capabilities from controlling a certain mode of vibrations to any excited mode. The optimized MAF controller can provide optimal sets of gains for a wide range of frequencies, based on the characteristics of the system. The experimental results show that the frequency tracking method works quite well and fast enough to be used in a real-time controller. ALE parameters are numerically and experimentally investigated and tuned for optimized frequency tracking. The results also indicate that the MAF can provide significant vibration reduction using the optimized controller. The control power varies for vibration suppression at different resonance frequencies; however, it is always optimized.

  20. Integrating different tracking systems in football: multiple camera semi-automatic system, local position measurement and GPS technologies.

    PubMed

    Buchheit, Martin; Allen, Adam; Poon, Tsz Kit; Modonutti, Mattia; Gregson, Warren; Di Salvo, Valter

    2014-12-01

    Abstract During the past decade substantial development of computer-aided tracking technology has occurred. Therefore, we aimed to provide calibration equations to allow the interchangeability of different tracking technologies used in soccer. Eighty-two highly trained soccer players (U14-U17) were monitored during training and one match. Player activity was collected simultaneously with a semi-automatic multiple-camera (Prozone), local position measurement (LPM) technology (Inmotio) and two global positioning systems (GPSports and VX). Data were analysed with respect to three different field dimensions (small, <30 m(2) to full-pitch, match). Variables provided by the systems were compared, and calibration equations (linear regression models) between each system were calculated for each field dimension. Most metrics differed between the 4 systems with the magnitude of the differences dependant on both pitch size and the variable of interest. Trivial-to-small between-system differences in total distance were noted. However, high-intensity running distance (>14.4 km · h(-1)) was slightly-to-moderately greater when tracked with Prozone, and accelerations, small-to-very largely greater with LPM. For most of the equations, the typical error of the estimate was of a moderate magnitude. Interchangeability of the different tracking systems is possible with the provided equations, but care is required given their moderate typical error of the estimate.

  1. ARIADNE: a Tracking System for Relationships in LHCb Metadata

    NASA Astrophysics Data System (ADS)

    Shapoval, I.; Clemencic, M.; Cattaneo, M.

    2014-06-01

    The data processing model of the LHCb experiment implies handling of an evolving set of heterogeneous metadata entities and relationships between them. The entities range from software and databases states to architecture specificators and software/data deployment locations. For instance, there is an important relationship between the LHCb Conditions Database (CondDB), which provides versioned, time dependent geometry and conditions data, and the LHCb software, which is the data processing applications (used for simulation, high level triggering, reconstruction and analysis of physics data). The evolution of CondDB and of the LHCb applications is a weakly-homomorphic process. It means that relationships between a CondDB state and LHCb application state may not be preserved across different database and application generations. These issues may lead to various kinds of problems in the LHCb production, varying from unexpected application crashes to incorrect data processing results. In this paper we present Ariadne - a generic metadata relationships tracking system based on the novel NoSQL Neo4j graph database. Its aim is to track and analyze many thousands of evolving relationships for cases such as the one described above, and several others, which would otherwise remain unmanaged and potentially harmful. The highlights of the paper include the system's implementation and management details, infrastructure needed for running it, security issues, first experience of usage in the LHCb production and potential of the system to be applied to a wider set of LHCb tasks.

  2. Tracking Data Acquisition System (TDAS) for the 1990's. Volume 6: TDAS navigation system architecture

    NASA Technical Reports Server (NTRS)

    Elrod, B. D.; Jacobsen, A.; Cook, R. A.; Singh, R. N. P.

    1983-01-01

    One-way range and Doppler methods for providing user orbit and time determination are examined. Forward link beacon tracking, with on-board processing of independent navigation signals broadcast continuously by TDAS spacecraft; forward link scheduled tracking; with on-board processing of navigation data received during scheduled TDAS forward link service intervals; and return link scheduled tracking; with ground-based processing of user generated navigation data during scheduled TDAS return link service intervals are discussed. A system level definition and requirements assessment for each alternative, an evaluation of potential navigation performance and comparison with TDAS mission model requirements is included. TDAS satellite tracking is also addressed for two alternatives: BRTS and VLBI tracking.

  3. Integrating Multiple Space Ground Sensors to Track Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Davies, Ashley; Doubleday, Joshua; Tran, Daniel; Jones, Samuel; Kjartansson, Einar; Thorsteinsson, Hrobjartur; Vogfjord, Kristin; Guomundsson, Magnus; Thordarson, Thor; Mandl, Daniel

    2011-01-01

    Volcanic activity can occur with little or no warning. Increasing numbers of space borne assets can enable coordinated measurements of volcanic events to enhance both scientific study and hazard response. We describe the use of space and ground measurements to target further measurements as part of a worldwide volcano monitoring system. We utilize a number of alert systems including the MODVOLC, GOESVOLC, US Air Force Weather Advisory, and Volcanic Ash Advisory Center (VAAC) alert systems. Additionally we use in-situ data from ground instrumentation at a number of volcanic sites, including Iceland.

  4. Helicopter In-Flight Tracking System (HITS) for the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Martone, Patrick; Tucker, George; Aiken, Edwin W. (Technical Monitor)

    2001-01-01

    The National Aeronautics and Space Administration (NASA) Ames Research Center (ARC) is sponsoring deployment and testing of the Helicopter In-flight Tracking System (HITS) in a portion of the Gulf of Mexico offshore area. Using multilateration principles, HITS determines the location and altitude of all transponder-equipped aircraft without requiring changes to current Mode A, C or S avionics. HITS tracks both rotary and fixed-wing aircraft operating in the 8,500 sq. mi. coverage region. The minimum coverage altitude of 100 ft. is beneficial for petroleum industry, allowing helicopters to be tracked onto the pad of most derricks. In addition to multilateration, HITS provides surveillance reports for aircraft equipped for Automatic Dependent Surveillance - Broadcast (ADS-B), a new surveillance system under development by the Federal Aviation Administration (FAA). The U.S. Department of Transportation (DOT) Volpe National Transportation Systems Center (Volpe Center) is supporting NASA in managing HITS installation and operation, and in evaluating the system's effectiveness. Senses Corporation is supplying, installing and maintaining the HITS ground system. Project activities are being coordinated with the FAA and local helicopter operators. Flight-testing in the Gulf will begin in early 2002. This paper describes the HITS project - specifically, the system equipment (architecture, remote sensors, central processing system at Intracoastal City, LA, and communications) and its performance (accuracy, coverage, and reliability). The paper also presents preliminary results of flight tests.

  5. Mobile Aerial Tracking and Imaging System (MATRIS) for Aeronautical Research

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Blanchard, R. C.; Miller, G. M.

    2004-01-01

    A mobile, rapidly deployable ground-based system to track and image targets of aeronautical interest has been developed. Targets include reentering reusable launch vehicles (RLVs) as well as atmospheric and transatmospheric vehicles. The optics were designed to image targets in the visible and infrared wavelengths. To minimize acquisition cost and development time, the system uses commercially available hardware and software where possible. The conception and initial funding of this system originated with a study of ground-based imaging of global aerothermal characteristics of RLV configurations. During that study NASA teamed with the Missile Defense Agency/Innovative Science and Technology Experimentation Facility (MDA/ISTEF) to test techniques and analysis on two Space Shuttle flights.

  6. Development of algorithm for single axis sun tracking system

    NASA Astrophysics Data System (ADS)

    Yi, Lim Zi; Singh, Balbir Singh Mahinder; Ching, Dennis Ling Chuan; Jin, Calvin Low Eu

    2016-11-01

    The output power from a solar panel depends on the amount of sunlight that is intercepted by the photovoltaic (PV) solar panel. The value of solar irradiance varies due to the change of position of sun and the local meteorological conditions. This causes the output power of a PV based solar electricity generating system (SEGS) to fluctuate as well. In this paper, the focus is on the integration of solar tracking system with performance analyzer system through the development of an algorithm for optimizing the performance of SEGS. The proposed algorithm displays real-time processed data that would enable users to understand the trend of the SEGS output for maintenance prediction and optimization purposes.

  7. OmniSense: visually enhanced tracking system (OVETS)

    NASA Astrophysics Data System (ADS)

    Thomas, Russell L.; Porter, Richard D.

    2003-09-01

    McQ Associates, Inc. has worked on a number of efforts to develop practical, fieldable infrared imaging systems which are intended to be used as an integral part of low power remote sensor and surveillance systems. Recent efforts contributing to such an integrated system have been funded through the Office of Naval Research, the U.S. Army Picatinny Arsenal, and the Air Force Research Lab in Rome, NY. The efforts have culminated in developing a digital signal processor based platform capable of detecting, tracking, and extracting multiple targets within either a 360 degree or fixed field of view. This paper discusses the challenges in the developments of such a sensor, focusing on extending achieving reasonable operating ranges, achieving low power, lowering size and cost, and applications for this technology.

  8. Space tracking and data systems; Proceedings of the Symposium, Arlington, VA, June 16-18, 1981

    NASA Astrophysics Data System (ADS)

    Grey, J.; Hamdan, L. A.

    The AIAA/NASA Symposium on Space Tracking and Data Systems, held in Pentagon City, Virginia, on June 16-18, 1981, had the purpose of reviewing international activities in space tracking and data systems for civil use in the 1980-2000 time frame. Participants included 225 representatives from industrial and government organizations in eight nations. The nations represented include the United States, France, Germany, India, Japan, Norway, Spain, and Sweden. The major functions of the systems described at the Symposium are related to the initial downlink of telemetry and spacecraft status data, attendant tracking activities, and uplink of spacecraft commands; communication between the associated acquisition sites and central processing and control stations; formulation and implementation of commands that control the spacecraft and its payload; and processing of spacecraft data needed to make command decisions. Attention is given to an overview of current activities and plans, and supporting developments, taking into account the time from 1980 to 1990. New developments are also considered.

  9. Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex

    PubMed Central

    Reimer, Jacob; McGinley, Matthew J; Liu, Yang; Rodenkirch, Charles; Wang, Qi; McCormick, David A; Tolias, Andreas S

    2016-01-01

    Rapid variations in cortical state during wakefulness have a strong influence on neural and behavioural responses and are tightly coupled to changes in pupil size across species. However, the physiological processes linking cortical state and pupil variations are largely unknown. Here we demonstrate that these rapid variations, during both quiet waking and locomotion, are highly correlated with fluctuations in the activity of corticopetal noradrenergic and cholinergic projections. Rapid dilations of the pupil are tightly associated with phasic activity in noradrenergic axons, whereas longer-lasting dilations of the pupil, such as during locomotion, are accompanied by sustained activity in cholinergic axons. Thus, the pupil can be used to sensitively track the activity in multiple neuromodulatory transmitter systems as they control the state of the waking brain. PMID:27824036

  10. Performance of a Motion Tracking System During Cyberknife Robotic Radiosurgery

    NASA Astrophysics Data System (ADS)

    Cavedon, Carlo; Francescon, Paolo; Cora, Stefania; Moschini, Giuliano; Rossi, Paolo

    2009-03-01

    Cyberknife (Accuracy Inc., Ca) is a robotic radio-surgery system that includes a compact 6 MV linac delivering up to 800 cGy per minute, and an automate arm to aim at any part of the body from any angle. An essential tool is the guidance system based on x-ray imaging cameras located on supports around the patient. A Cyberknife system has been operational at the Vicenza (Italy) Hospital for years and is mainly employed for treating benign and malignant tumors, and Arterior-Venous Malformations. In radiation therapy, delivery of high doses to targets that move with respiration is challenging because of possible spatial inaccuracies. The purpose of this work was to estimate the accuracy of the prediction algorithm used to compensate for system latency in a real-time respiratory tracking system. We have analyzed respiratory signals of 30 patients who had lung or liver Cyberknife treatments. The "Synchrony" (Accuracy Inc.) motion tracking system we use is based on the correlation between the position of LED markers, detected in real time, and the position of internal markers, sampled through x-ray imaging. The position of the external LED signals, though read in real time, must be predicted to compensate for a few hundred ms time lag in the feedback loop that redirects the beam to the current target position. The respiratory signals were described by employing their frequency power spectrum, as recently proposed by other authors. Prediction errors above 1.5 mm, lasting for periods longer than 5 seconds were observed for irregular breathers. These episodes correlate to the presence of a bimodal distribution in the power spectral density, and of very low frequencies contribution. A more refined approach would include a personalized choice of the prediction algorithm based on the very first minutes of treatment. Patient training aimed at reducing breathing irregularities might also result in improved spatial accuracy.

  11. Performance of a Motion Tracking System During Cyberknife Robotic Radiosurgery

    SciTech Connect

    Cavedon, Carlo; Francescon, Paolo; Cora, Stefania; Moschini, Giuliano; Rossi, Paolo

    2009-03-10

    Cyberknife (Accuracy Inc., Ca) is a robotic radio-surgery system that includes a compact 6 MV linac delivering up to 800 cGy per minute, and an automate arm to aim at any part of the body from any angle. An essential tool is the guidance system based on x-ray imaging cameras located on supports around the patient. A Cyberknife system has been operational at the Vicenza (Italy) Hospital for years and is mainly employed for treating benign and malignant tumors, and Arterior-Venous Malformations. In radiation therapy, delivery of high doses to targets that move with respiration is challenging because of possible spatial inaccuracies. The purpose of this work was to estimate the accuracy of the prediction algorithm used to compensate for system latency in a real-time respiratory tracking system. We have analyzed respiratory signals of 30 patients who had lung or liver Cyberknife treatments. The 'Synchrony'(Accuracy Inc.) motion tracking system we use is based on the correlation between the position of LED markers, detected in real time, and the position of internal markers, sampled through x-ray imaging. The position of the external LED signals, though read in real time, must be predicted to compensate for a few hundred ms time lag in the feedback loop that redirects the beam to the current target position. The respiratory signals were described by employing their frequency power spectrum, as recently proposed by other authors. Prediction errors above 1.5 mm, lasting for periods longer than 5 seconds were observed for irregular breathers. These episodes correlate to the presence of a bimodal distribution in the power spectral density, and of very low frequencies contribution. A more refined approach would include a personalized choice of the prediction algorithm based on the very first minutes of treatment. Patient training aimed at reducing breathing irregularities might also result in improved spatial accuracy.

  12. Integrated laser/radar satellite ranging and tracking system.

    PubMed

    Hoge, F E

    1974-10-01

    A laser satellite ranging system that is mounted upon and integrated with a microwave tracking radar is reported. The 1-pulse sec/ruby laser transmitter is attached directly to the radar's elevation axis and radiates through a new opening in the radar's parabolic dish. The laser photomultiplier tube receiver utilizes the radar's existing 20-cm diam f11 boresight telescope and observes through a similar symmetrically located opening in the dish. The laser system possesses separate ranging system electronics but shares the radar's timing, computer, and data handling[equation]recording systems. The basic concept of the laser[equation]radar is outlined together with a listing of the numerous advantages over present singular laser rangefinding systems. The developmental laser hardware is described along with preliminary rangefinding results and expectations. The prototype system was assembled to investigate the feasibility of such systems and aid in the development of detailed specifications for an operational system. Both the feasibility and desirability of such systems integrations have been adequately demonstrated.

  13. Office of Tracking and Data Acquisition. [deep space network and spacecraft tracking

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Office of Tracking and Data Acquisition (OTDA) and its two worldwide tracking network facilities, the Spaceflight Tracking and Data Network and the Deep Space Network, are described. Other topics discussed include the NASA communications network, the tracking and data relay satellite system, other OTDA tracking activities, and OTDA milestones.

  14. Tracking and data system support for the Viking 1975 mission to Mars. Volume 2: Launch through landing of Viking 1

    NASA Technical Reports Server (NTRS)

    Mudgway, D. J.; Traxler, M. R.

    1977-01-01

    Problems inherent in the deployment and management of a worldwide tracking and data acquisition network to support the two Viking Orbiters and two Viking Landers simultaneously over 320 million kilometers (200 million miles) of deep space are discussed. Activities described include tracking coverage of the launch phase, the deep space operations during the long cruise phase that occupied approximately 11 months, and the implementation of the a vast worldwide network of tracking sttions and global communications systems. The performance of the personnel, hardware, and software involved in this vast undertaking are evaluated.

  15. The precision of video and photocell tracking systems and the elimination of tracking errors with infrared backlighting.

    PubMed

    Bailoo, Jeremy D; Bohlen, Martin O; Wahlsten, Douglas

    2010-04-30

    Automated tracking offers a number of advantages over both manual and photocell tracking methodologies, including increased reliability, validity, and flexibility of application. Despite the advantages that video offers, our experience has been that video systems cannot track a mouse consistently when its coat color is in low contrast with the background. Furthermore, the local lab lighting can influence how well results are quantified. To test the effect of lighting, we built devices that provide a known path length for any given trial duration, at a velocity close to the average speed of a mouse in the open-field and the circular water maze. We found that the validity of results from two commercial video tracking systems (ANY-maze and EthoVision XT) depends greatly on the level of contrast and the quality of the lighting. A photocell detection system was immune to lighting problems but yielded a path length that deviated from the true length. Excellent precision was achieved consistently, however, with video tracking using infrared backlighting in both the open field and water maze. A high correlation (r=0.98) between the two software systems was observed when infrared backlighting was used with live mice.

  16. A satellite-tracking millimeter-wave reflector antenna system for mobile satellite-tracking

    NASA Technical Reports Server (NTRS)

    Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)

    1995-01-01

    A miniature dual-band two-way mobile satellite tracking antenna system mounted on a movable ground vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  17. Satellite-Tracking Millimeter-Wave Reflector Antenna System For Mobile Satellite-Tracking

    NASA Technical Reports Server (NTRS)

    Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)

    2001-01-01

    A miniature dual-band two-way mobile satellite-tracking antenna system mounted on a movable vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  18. Flux Tensor Constrained Geodesic Active Contours with Sensor Fusion for Persistent Object Tracking.

    PubMed

    Bunyak, Filiz; Palaniappan, Kannappan; Nath, Sumit Kumar; Seetharaman, Gunasekaran

    2007-08-01

    This paper makes new contributions in motion detection, object segmentation and trajectory estimation to create a successful object tracking system. A new efficient motion detection algorithm referred to as the flux tensor is used to detect moving objects in infrared video without requiring background modeling or contour extraction. The flux tensor-based motion detector when applied to infrared video is more accurate than thresholding "hot-spots", and is insensitive to shadows as well as illumination changes in the visible channel. In real world monitoring tasks fusing scene information from multiple sensors and sources is a useful core mechanism to deal with complex scenes, lighting conditions and environmental variables. The object segmentation algorithm uses level set-based geodesic active contour evolution that incorporates the fusion of visible color and infrared edge informations in a novel manner. Touching or overlapping objects are further refined during the segmentation process using an appropriate shape-based model. Multiple object tracking using correspondence graphs is extended to handle groups of objects and occlusion events by Kalman filter-based cluster trajectory analysis and watershed segmentation. The proposed object tracking algorithm was successfully tested on several difficult outdoor multispectral videos from stationary sensors and is not confounded by shadows or illumination variations.

  19. Flux Tensor Constrained Geodesic Active Contours with Sensor Fusion for Persistent Object Tracking

    PubMed Central

    Bunyak, Filiz; Palaniappan, Kannappan; Nath, Sumit Kumar; Seetharaman, Gunasekaran

    2007-01-01

    This paper makes new contributions in motion detection, object segmentation and trajectory estimation to create a successful object tracking system. A new efficient motion detection algorithm referred to as the flux tensor is used to detect moving objects in infrared video without requiring background modeling or contour extraction. The flux tensor-based motion detector when applied to infrared video is more accurate than thresholding ”hot-spots”, and is insensitive to shadows as well as illumination changes in the visible channel. In real world monitoring tasks fusing scene information from multiple sensors and sources is a useful core mechanism to deal with complex scenes, lighting conditions and environmental variables. The object segmentation algorithm uses level set-based geodesic active contour evolution that incorporates the fusion of visible color and infrared edge informations in a novel manner. Touching or overlapping objects are further refined during the segmentation process using an appropriate shape-based model. Multiple object tracking using correspondence graphs is extended to handle groups of objects and occlusion events by Kalman filter-based cluster trajectory analysis and watershed segmentation. The proposed object tracking algorithm was successfully tested on several difficult outdoor multispectral videos from stationary sensors and is not confounded by shadows or illumination variations. PMID:19096530

  20. Tracking of EEG activity using motion estimation to understand brain wiring.

    PubMed

    Nisar, Humaira; Malik, Aamir Saeed; Ullah, Rafi; Shim, Seong-O; Bawakid, Abdullah; Khan, Muhammad Burhan; Subhani, Ahmad Rauf

    2015-01-01

    The fundamental step in brain research deals with recording electroencephalogram (EEG) signals and then investigating the recorded signals quantitatively. Topographic EEG (visual spatial representation of EEG signal) is commonly referred to as brain topomaps or brain EEG maps. In this chapter, full search full search block motion estimation algorithm has been employed to track the brain activity in brain topomaps to understand the mechanism of brain wiring. The behavior of EEG topomaps is examined throughout a particular brain activation with respect to time. Motion vectors are used to track the brain activation over the scalp during the activation period. Using motion estimation it is possible to track the path from the starting point of activation to the final point of activation. Thus it is possible to track the path of a signal across various lobes.

  1. A deformable lung tumor tracking method in fluoroscopic video using active shape models: a feasibility study.

    PubMed

    Xu, Qianyi; Hamilton, Russell J; Schowengerdt, Robert A; Jiang, Steve B

    2007-09-07

    A dynamic multi-leaf collimator (DMLC) can be used to track a moving target during radiotherapy. One of the major benefits for DMLC tumor tracking is that, in addition to the compensation for tumor translational motion, DMLC can also change the aperture shape to conform to a deforming tumor projection in the beam's eye view. This paper presents a method that can track a deforming lung tumor in fluoroscopic video using active shape models (ASM) (Cootes et al 1995 Comput. Vis. Image Underst. 61 38-59). The method was evaluated by comparing tracking results against tumor projection contours manually edited by an expert observer. The evaluation shows the feasibility of using this method for precise tracking of lung tumors with deformation, which is important for DMLC-based real-time tumor tracking.

  2. Functional design specification for Stowage List And Hardware Tracking System (SLAHTS). [space shuttles

    NASA Technical Reports Server (NTRS)

    Keltner, D. J.

    1975-01-01

    This functional design specification defines the total systems approach to meeting the requirements stated in the Detailed Requirements Document for Stowage List and Hardware Tracking System for the space shuttle program. The stowage list and hardware tracking system is identified at the system and subsystem level with each subsystem defined as a function of the total system.

  3. Multifunctional Concentric FRET-Quantum Dot Probes for Tracking and Imaging of Proteolytic Activity.

    PubMed

    Massey, Melissa; Li, Jia Jun; Algar, W Russ

    2017-01-01

    Proteolysis has many important roles in physiological regulation. It is involved in numerous cell signaling processes and the pathogenesis of many diseases, including cancers. Methods of visualizing and assaying proteolytic activity are therefore in demand. Förster resonance energy transfer (FRET) probes offer several advantages in this respect. FRET supports end-point or real-time measurements, does not require washing or separation steps, and can be implemented in various assay or imaging formats. In this chapter, we describe methodology for preparing self-assembled concentric FRET (cFRET) probes for multiplexed tracking and imaging of proteolytic activity. The cFRET probe comprises a green-emitting semiconductor quantum dot (QD) conjugated with multiple copies of two different peptide substrates for two target proteases. The peptide substrates are labeled with different fluorescent dyes, Alexa Fluor 555 and Alexa Fluor 647, and FRET occurs between the QD and both dyes, as well as between the two dyes. This design enables a single QD probe to track the activity of two proteases simultaneously. Fundamental cFRET theory is presented, and procedures for using the cFRET probe for quantitative measurement of the activity of two model proteases are given, including calibration, fluorescence plate reader or microscope imaging assays, and data analysis. Sufficient detail is provided for other researchers to adapt this method to their specific requirements and proteolytic systems of interest.

  4. Development of a Water Recovery System Resource Tracking Model

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Stambaugh, Imelda; Sarguishm, Miriam; Shull, Sarah; Moore, Michael

    2014-01-01

    A simulation model has been developed to track water resources in an exploration vehicle using regenerative life support (RLS) systems. The model integrates the functions of all the vehicle components that affect the processing and recovery of water during simulated missions. The approach used in developing the model results in the RTM being a part of of a complete vehicle simulation that can be used in real time mission studies. Performance data for the variety of components in the RTM is focused on water processing and has been defined based on the most recent information available for the technology of the component. This paper will describe the process of defining the RLS system to be modeled and then the way the modeling environment was selected and how the model has been implemented. Results showing how the variety of RLS components exchange water are provided in a set of test cases.

  5. Oceanic Situational Awareness Over the Western Atlantic Track Routing System

    NASA Technical Reports Server (NTRS)

    Welch, Bryan; Greenfeld, Israel

    2005-01-01

    Air traffic control (ATC) mandated, aircraft separations over the oceans impose a limitation on traffic capacity for a given corridor, given the projected traffic growth over the Western Atlantic Track Routing System (WATRS). The separations result from a lack of acceptable situational awareness over oceans where radar position updates are not available. This study considers the use of Automatic Dependent Surveillance (ADS) data transmitted over a commercial satellite communications system as an approach to provide ATC with the needed situational awareness and thusly allow for reduced aircraft separations. This study uses Federal Aviation Administration data from a single day for the WATRS corridor to analyze traffic loading to be used as a benchmark against which to compare several approaches for coordinating data transmissions from the aircraft to the satellites.

  6. Human engineering of multisensor and multisource tracking systems

    NASA Astrophysics Data System (ADS)

    Svenmarck, Peter

    2000-08-01

    A pressing concern in modern fighter aircraft cockpit design is how to present and reduce large amounts of information obtained from several sensor observations of the same object. Currently, sensor observations are presented individually as overlays or in different displays requiring the pilot to control each sensor and integrate observations. The increased number of sensors and communication networks covering extensive ranges has, however, led to an unacceptable situation that hampers pilots' situation awareness and decision-making. Therefore, some from of automatic information management is necessary to support the pilot. Although considerable technological research has been conducted on automatic sensor fusion and management of multisensor and multi source tracking systems, only little is known about how to integrate systems capabilities with pilots' decision-making.

  7. Ultra-Wideband Time-Difference-of-Arrival High Resolution 3D Proximity Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dekome, Kent; Dusl, John

    2010-01-01

    This paper describes a research and development effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar./Mars rovers and astronauts during early exploration missions when satellite navigation systems are not available. U IATB impulse radio (UWB-IR) technology is exploited in the design and implementation of the prototype location and tracking system. A three-dimensional (3D) proximity tracking prototype design using commercially available UWB products is proposed to implement the Time-Difference- Of-Arrival (TDOA) tracking methodology in this research effort. The TDOA tracking algorithm is utilized for location estimation in the prototype system, not only to exploit the precise time resolution possible with UWB signals, but also to eliminate the need for synchronization between the transmitter and the receiver. Simulations show that the TDOA algorithm can achieve the fine tracking resolution with low noise TDOA estimates for close-in tracking. Field tests demonstrated that this prototype UWB TDOA High Resolution 3D Proximity Tracking System is feasible for providing positioning-awareness information in a 3D space to a robotic control system. This 3D tracking system is developed for a robotic control system in a facility called "Moonyard" at Honeywell Defense & System in Arizona under a Space Act Agreement.

  8. Development of the Inventory Management and Tracking System (IMATS) to Track the Availability of Public Health Department Medical Countermeasures During Public Health Emergencies

    PubMed Central

    Sahar, Liora; Faler, Guy; Hristov, Emil; Hughes, Susan; Lee, Leslie; Westnedge, Caroline; Erickson, Benjamin; Nichols, Barbara

    2015-01-01

    Objective To bridge gaps identified during the 2009 H1N1 influenza pandemic by developing a system that provides public health departments improved capability to manage and track medical countermeasures at the state and local levels and to report their inventory levels to the Centers for Disease Control and Prevention (CDC). Materials and Methods The CDC Countermeasure Tracking Systems (CTS) program designed and implemented the Inventory Management and Tracking System (IMATS) to manage, track, and report medical countermeasure inventories at the state and local levels. IMATS was designed by CDC in collaboration with state and local public health departments to ensure a “user-centered design approach.” A survey was completed to assess functionality and user satisfaction. Results IMATS was deployed in September 2011 and is provided at no cost to public health departments. Many state and local public health departments nationwide have adopted IMATS and use it to track countermeasure inventories during public health emergencies and daily operations. Discussion A successful response to public health emergencies requires efficient, accurate reporting of countermeasure inventory levels. IMATS is designed to support both emergency operations and everyday activities. Future improvements to the system include integrating barcoding technology and streamlining user access. To maintain system readiness, we continue to collect user feedback, improve technology, and enhance its functionality. Conclusion IMATS satisfies the need for a system for monitoring and reporting health departments’ countermeasure quantities so that decision makers are better informed. The “user-centered design approach” was successful, as evident by the many public health departments that adopted IMATS. PMID:26392843

  9. Hentschel random access tracking system HSG 84.30

    NASA Astrophysics Data System (ADS)

    Zamzow, Heinz

    1990-08-01

    The development of the Random Access Tracking System was initiated at the University of Muenster, Department of Orthopaedic Physiology by Dr. Theysohn. This system is a real-time high-speed and high-resolution multi-point tracking system. The moving objects are identified with retro-reflective markers which are illuminated by halogen spotlights placed around the camera lens. The video interface generates deflection signals which are fed to unique Random Access Cameras manufactured by Hamamatsu Corporation. These signals perform high speed window scanning and can sample up to 7,500 markers per second. Under certain circumstances this can be increased to 15,000 markers per second. From 1 to 126 markers can be detected in a line scan search mode. Window size may be varied in steps from 0.5% to 4.0% of the field of view. Using a small window it is possible to obtain 1 part in 32,768 in each direction of the field of view. The raw data are reduced to 2-D centroids of the targets. On-line data storage and display are possible using an industry-standard ATPC with DMA interface. Real-time feed-back is also possible. The video interface provides for off-line 3-D reconstructions using the data from two or more synchronized cameras. The system can be adapted to meet the needs of particular applications by modifying sample-rate, data transfer rate, and the number and the dimensions of the windows.

  10. Calibration of tracking systems in a surgical environment.

    PubMed

    Birkfellner, W; Watzinger, F; Wanschitz, F; Ewers, R; Bergmann, H

    1998-10-01

    The purpose of this paper was to assess to what extent an optical tracking system (OTS) used for position determination in computer-aided surgery (CAS) can be enhanced by combining it with a direct current (dc) driven electromagnetic tracking system (EMTS). The main advantage of the EMTS is the fact that it is not dependent on a free line-of-sight. Unfortunately, the accuracy of the EMTS is highly affected by nearby ferromagnetic materials. We have explored to what extent the influence of the metallic equipment in the operating room (OR) can be compensated by collecting precise information on the nonlinear local error in the EMTS by using the OTS for setting up a calibration look-up table. After calibration of the EMTS and registration of the sensor systems in the OR we have found the average euclidean deviation in position readings between the dc tracker and the OTS reduced from 2.9+/-1.0 mm to 2.1+/-0.8 mm within a half-sphere of 530-mm radius around the magnetic field emitter. Furthermore we have found the calibration to be stable after re-registration of the sensors under varying conditions such as different heights of the OR table and varying positions of the OR equipment over a longer time interval. These results encourage the further development of a hybrid magnetooptical tracker for computer-aided surgery where the electromagnetic tracker acts as an auxiliary source of position information for the optical system. Strategies for enhancing the reliability of the proposed hybrid magnetooptic tracker by detecting artifacts induced by mobile ferromagnetic objects such as surgical tools are discussed.

  11. Advanced technology for space communications and tracking systems

    NASA Astrophysics Data System (ADS)

    Krishen, Kumar

    The communications needs for the Growth Space Station (GSS) are envisioned to drive NASA to seek unique concepts and capability to establish this permanent presence in space. Furthermore, it will provide a facility to assemble, test, and deploy rather large and unique communications systems/subsystems. GSS is envisioned to need or desire the capability to communicate with many more satellites and spacecraft than the initial operating capability (IOC). The increased interconnectivity will include links with numerous NASA and other U.S. Government satellites, commercial satellites, foreign spacecraft, and deep space missions. In parallel, the payloads/experiments on Space Station are expected to increase in numbers and in terms of data gathering capabilities. The use of automation and robotics will require high data rate and extremely reliable links. The GSS will need to accommodate continually evolving and largely unknown future requirements for coverage, data rates, number of users, etc. This requirement for flexibility over a long term will provide a unique challenge to develop systems which are user transparent and which are quickly reconfigurable. Deep space communications are driven by the relatively near-term envisioned missions to the Moon and Mars. In addition to these, projected NASA missions include Saturn, Uranus, Neptune, and comet/asteroid probes. These future deep space missions will require highly reliable, long life, and very efficient communications and tracking systems to ensure success. Additionally, for space proximity operations, systems capable of supporting rendezvous, station keeping, and soft docking between various vehicles, Shuttle, satellites, unknown objects, and Space Stations are needed. In this paper, technology advancements in the communications and tracking areas being pursued within NASA, as applicable to future missions and associated space operations, are presented. The relevance of optical-, laser-, and millimeter-wave based

  12. A Remote Characterization System and a fault-tolerant tracking system for subsurface mapping of buried waste sites

    SciTech Connect

    Sandness, G.A.; Bennett, D.W. ); Martinson, L. ); Bingham, D.N.; Anderson, A.A. )

    1992-08-01

    This paper describes two closely related projects that will provide new technology for characterizing hazardous waste burial sites. The first project, a collaborative effort by five of the national laboratories, involves the development and demonstration of a remotely controlled site characterization system. The Remote Characterization System (RCS) includes a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for noninvasive inspection of the surface and subsurface. The second project, conducted by the Idaho National Engineering Laboratory (INEL), involves the development of a position sensing system that can track a survey vehicle or instrument in the field. This system can coordinate updates at a rate of 200/s with an accuracy better than 0.1% of the distance separating the target and the sensor. It can employ acoustic or electromagnetic signals in a wide range of frequencies and can be operated as a passive or active device.

  13. A GPS measurement system for precise satellite tracking and geodesy

    NASA Technical Reports Server (NTRS)

    Yunck, T. P.; Wu, S.-C.; Lichten, S. M.

    1985-01-01

    NASA is pursuing two key applications of differential positioning with the Global Positioning System (GPS): sub-decimeter tracking of earth satellites and few-centimeter determination of ground-fixed baselines. Key requirements of the two applications include the use of dual-frequency carrier phase data, multiple ground receivers to serve as reference points, simultaneous solution for use position and GPS orbits, and calibration of atmospheric delays using water vapor radiometers. Sub-decimeter tracking will be first demonstrated on the TOPEX oceanographic satellite to be launched in 1991. A GPS flight receiver together with at least six ground receivers will acquire delta range data from the GPS carriers for non-real-time analysis. Altitude accuracies of 5 to 10 cm are expected. For baseline measurements, efforts will be made to obtain precise differential pseudorange by resolving the cycle ambiguity in differential carrier phase. This could lead to accuracies of 2 or 3 cm over a few thousand kilometers. To achieve this, a high-performance receiver is being developed, along with improved calibration and data processing techniques. Demonstrations may begin in 1986.

  14. An Optical Pen Tracking System as Alternative Pointing Device

    NASA Astrophysics Data System (ADS)

    Seeliger, Ingmar; Schwanecke, Ulrich; Barth, Peter

    A webcam together with a pen can replace a mouse as pointing device for many common user interaction tasks. We have implemented an image-processing component integrated in a tool that acts as mouse alternative. The image-processing component tracks the head of a pen based on shape and colour information retrieved in a quick, integrated initial pen-calibration phase using Hough transform triggered by a motion detection cycle. The tracked 2D position of the pen-head seen by the webcam is used to smoothly position the mouse cursor. Combined with auto-clicking we can replace mouse-based user interaction. The system tolerates changing lighting conditions, does not need time-consuming camera calibration and works with off-the-shelf webcams. First user experiences show that this technology can partially replace mouse interaction for Repetitive Strain Injury (RSI) patients as well as completely replace mouse interaction within dedicated environments such as presentation booths or simple games.

  15. Advanced Lyapunov control of a novel laser beam tracking system

    NASA Astrophysics Data System (ADS)

    Nikulin, Vladimir V.; Sofka, Jozef; Skormin, Victor A.

    2005-05-01

    Laser communication systems developed for mobile platforms, such as satellites, aircraft, and terrain vehicles, require fast wide-range beam-steering devices to establish and maintain a communication link. Conventionally, the low-bandwidth, high-steering-range part of the beam-positioning task is performed by gimbals that inherently constitutes the system bottleneck in terms of reliability, accuracy and dynamic performance. Omni-WristTM, a novel robotic sensor mount capable of carrying a payload of 5 lb and providing a full 180-deg hemisphere of azimuth/declination motion is known to be free of most of the deficiencies of gimbals. Provided with appropriate controls, it has the potential to become a new generation of gimbals systems. The approach we demonstrate describes an adaptive controller enabling Omni-WristTM to be utilized as a part of a laser beam positioning system. It is based on a Lyapunov function that ensures global asymptotic stability of the entire system while achieving high tracking accuracy. The proposed scheme is highly robust, does not require knowledge of complex system dynamics, and facilitates independent control of each channel by full decoupling of the Omni-WristTM dynamics. We summarize the basic algorithm and demonstrate the results obtained in the simulation environment.

  16. The Silicon Tracking System of the CBM Experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Heuser, Johann M.

    The Compressed Baryonic Matter (CBM) experiment at FAIR will conduct a systematic research program to explore the phase diagram of strongly interacting matter at highest net baryon densities and moderate temperatures. These conditions are to be created in collisions of heavy-ion beams with nuclear targets in the projectile beam energy range of 2 to 45 GeV/nucleon, initially coming from the SIS 100 synchrotron (up to 14 GeV/nucleon) and in a next step from SIS 300 enabling studies at the highest net baryon densities. Collision rates up to 107 per second are required to produce very rare probes with unprecedented statistics in this energy range. Their signatures are complex. These conditions call for detector systems designed to meet the extreme requirements in terms of rate capability, momentum and spatial resolution, and a novel data acquisition and trigger concept which is not limited by latency but by throughput. In the paper we describe the concept and development status of CBM's central detector, the Silicon Tracking System (STS). The detector realizes a large, highly granular and redundant detector system with fast read-out, and lays specific emphasis on low material budget in its physics aperture to achieve for charged particle tracks a momentum resolution of δp/p ≈ 1% at p > 1 GeV/c, at >95% track reconstruction efficiency. The detector employs 1220 highly segmented double-sided silicon micro-strip sensors of 300 µm thickness, mounted into 896 modular structures of various types that are aggregated on 106 low-mass carbon fiber ladders of different sizes that build up the tracking stations. The read-out electronics with its supply and cooling infrastructure is arranged at the periphery of the ladders, and provides a total channel count of 1.8 million. The signal transmission from the silicon sensors to the electronics is realized through ultra-thin multi-line aluminum-polyimide cables of up to half a meter length. The electronics generates a free

  17. Winter Westerly Disturbance Activity in High Mountain Asia: A Wave Tracking Approach

    NASA Astrophysics Data System (ADS)

    Cannon, F.; Carvalho, L. V.; Jones, C.; Norris, J.

    2014-12-01

    Extra-tropical cyclones, including Winter Westerly Disturbances (WWD) over central Asia, are fundamental features of the atmosphere that maintain energy, momentum, and moisture at global scales while intimately linking large-scale circulation to regional-scale meteorology. Within High Mountain Asia (HMA), there is no mechanism that is more important in contributing to water supply during winter, and therefore it is important that we create a baseline climatology of these disturbances and further explore variability over time. Eulerian methods of investigating variance of fields related to WWD at synoptic scales are typically employed as a general measure of storm track activity. However, Eulerian statistics cannot convey important information regarding the specifics of individual systems, nor can the attributes of a cyclone be taken directly. Thus, a Lagrangian method of automatically tracking WWD, which can provide complementary information about individual systems and allows us to investigate track activity, is desired. Currently, there is no technique that adequately captures WWD, which often propagate along relatively low latitudes, encounter highly variable topography, exhibit strong tropical influences, and are highly asymmetric. In this study, we utilize the atmospheric wave signature of WWD in upper-level geopotential height to identify individual systems responsible for HMA precipitation and track their life cycles. This provides a valuable link between the large-scale climate, transient disturbances, and hydrologic processes within HMA, and allows us to evaluate WWD on a per-case basis while considering all factors that relate these systems to precipitation in the mountains. This framework enables us to consider the relative contribution of dynamically forced orographic precipitation in HMA associated with cyclone intensity and wind speed, as well as the contribution of convective instability, which may facilitate heavy precipitation with weak mechanical

  18. Tracking Vaccination Teams During Polio Campaigns in Northern Nigeria by Use of Geographic Information System Technology: 2013–2015

    PubMed Central

    Touray, Kebba; Mkanda, Pascal; Tegegn, Sisay G.; Nsubuga, Peter; Erbeto, Tesfaye B.; Banda, Richard; Etsano, Andrew; Shuaib, Faisal; Vaz, Rui G.

    2016-01-01

    Introduction. Nigeria is among the 3 countries in which polio remains endemic. The country made significant efforts to reduce polio transmission but remains challenged by poor-quality campaigns and poor team performance in some areas. This article demonstrates the application of geographic information system technology to track vaccination teams to monitor settlement coverage, reduce the number of missed settlements, and improve team performance. Methods. In each local government area where tracking was conducted, global positioning system–enabled Android phones were given to each team on a daily basis and were used to record team tracks. These tracks were uploaded to a dashboard to show the level of coverage and identify areas missed by the teams. Results. From 2012 to June 2015, tracking covered 119 immunization days. A total of 1149 tracking activities were conducted. Of these, 681 (59%) were implemented in Kano state. There was an improvement in the geographic coverage of settlements and an overall reduction in the number of missed settlements. Conclusions. The tracking of vaccination teams provided significant feedback during polio campaigns and enabled supervisors to evaluate performance of vaccination teams. The reports supported other polio program activities, such as review of microplans and the deployment of other interventions, for increasing population immunity in northern Nigeria. PMID:26609004

  19. Individual Module Maximum Power Point Tracking for Thermoelectric Generator Systems

    NASA Astrophysics Data System (ADS)

    Vadstrup, Casper; Schaltz, Erik; Chen, Min

    2013-07-01

    In a thermoelectric generator (TEG) system the DC/DC converter is under the control of a maximum power point tracker which ensures that the TEG system outputs the maximum possible power to the load. However, if the conditions, e.g., temperature, health, etc., of the TEG modules are different, each TEG module will not produce its maximum power. If each TEG module is controlled individually, each TEG module can be operated at its maximum power point and the TEG system output power will therefore be higher. In this work a power converter based on noninverting buck-boost converters capable of handling four TEG modules is presented. It is shown that, when each module in the TEG system is operated under individual maximum power point tracking, the system output power for this specific application can be increased by up to 8.4% relative to the situation when the modules are connected in series and 16.7% relative to the situation when the modules are connected in parallel.

  20. An adaptive tracking observer for failure-detection systems

    NASA Technical Reports Server (NTRS)

    Sidar, M.

    1982-01-01

    The design problem of adaptive observers applied to linear, constant and variable parameters, multi-input, multi-output systems, is considered. It is shown that, in order to keep the observer's (or Kalman filter) false-alarm rate (FAR) under a certain specified value, it is necessary to have an acceptable proper matching between the observer (or KF) model and the system parameters. An adaptive observer algorithm is introduced in order to maintain desired system-observer model matching, despite initial mismatching and/or system parameter variations. Only a properly designed adaptive observer is able to detect abrupt changes in the system (actuator, sensor failures, etc.) with adequate reliability and FAR. Conditions for convergence for the adaptive process were obtained, leading to a simple adaptive law (algorithm) with the possibility of an a priori choice of fixed adaptive gains. Simulation results show good tracking performance with small observer output errors and accurate and fast parameter identification, in both deterministic and stochastic cases.

  1. Space station communications and tracking equipment management/control system

    NASA Technical Reports Server (NTRS)

    Kapell, M. H.; Seyl, J. W.

    1982-01-01

    Design details of a communications and tracking (C and T) local area network and the distribution system requirements for the prospective space station are described. The hardware will be constructed of LRUs, including those for baseband, RF, and antenna subsystems. It is noted that the C and T equipment must be routed throughout the station to accommodate growth of the station. Configurations of the C and T modules will therefore be dependent on the function of the space station module where they are located. A block diagram is provided of a sample C and T hardware distribution configuration. A topology and protocol will be needed to accommodate new terminals, wide bandwidths, bidirectional message transmission, and distributed functioning. Consideration will be given to collisions occurring in the data transmission channels.

  2. Visual tracking in stereo. [by computer vision system

    NASA Technical Reports Server (NTRS)

    Saund, E.

    1981-01-01

    A method is described for visual object tracking by a computer vision system using TV cameras and special low-level image processing hardware. The tracker maintains an internal model of the location, orientation, and velocity of the object in three-dimensional space. This model is used to predict where features of the object will lie on the two-dimensional images produced by stereo TV cameras. The differences in the locations of features in the two-dimensional images as predicted by the internal model and as actually seen create an error signal in the two-dimensional representation. This is multiplied by a generalized inverse Jacobian matrix to deduce the error in the internal model. The procedure repeats to update the internal model of the object's location, orientation and velocity continuously.

  3. Reliability measurement during software development. [for a multisensor tracking system

    NASA Technical Reports Server (NTRS)

    Hecht, H.; Sturm, W. A.; Trattner, S.

    1977-01-01

    During the development of data base software for a multi-sensor tracking system, reliability was measured. The failure ratio and failure rate were found to be consistent measures. Trend lines were established from these measurements that provided good visualization of the progress on the job as a whole as well as on individual modules. Over one-half of the observed failures were due to factors associated with the individual run submission rather than with the code proper. Possible application of these findings for line management, project managers, functional management, and regulatory agencies is discussed. Steps for simplifying the measurement process and for use of these data in predicting operational software reliability are outlined.

  4. An interactive VR system based on full-body tracking and gesture recognition

    NASA Astrophysics Data System (ADS)

    Zeng, Xia; Sang, Xinzhu; Chen, Duo; Wang, Peng; Guo, Nan; Yan, Binbin; Wang, Kuiru

    2016-10-01

    Most current virtual reality (VR) interactions are realized with the hand-held input device which leads to a low degree of presence. There is other solutions using sensors like Leap Motion to recognize the gestures of users in order to interact in a more natural way, but the navigation in these systems is still a problem, because they fail to map the actual walking to virtual walking only with a partial body of the user represented in the synthetic environment. Therefore, we propose a system in which users can walk around in the virtual environment as a humanoid model, selecting menu items and manipulating with the virtual objects using natural hand gestures. With a Kinect depth camera, the system tracks the joints of the user, mapping them to a full virtual body which follows the move of the tracked user. The movements of the feet can be detected to determine whether the user is in walking state, so that the walking of model in the virtual world can be activated and stopped by means of animation control in Unity engine. This method frees the hands of users comparing to traditional navigation way using hand-held device. We use the point cloud data getting from Kinect depth camera to recognize the gestures of users, such as swiping, pressing and manipulating virtual objects. Combining the full body tracking and gestures recognition using Kinect, we achieve our interactive VR system in Unity engine with a high degree of presence.

  5. 77 FR 1697 - Agency Information Collection Activities: Fast Track Generic Clearance for the Collection of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Indian Health Service Agency Information Collection Activities: Fast Track Generic Clearance for the Collection of Qualitative Feedback on Agency Service Delivery: IHS Web Site...

  6. Cortical fMRI activation produced by attentive tracking of moving targets.

    PubMed

    Culham, J C; Brandt, S A; Cavanagh, P; Kanwisher, N G; Dale, A M; Tootell, R B

    1998-11-01

    Attention can be used to keep track of moving items, particularly when there are multiple targets of interest that cannot all be followed with eye movements. Functional magnetic resonance imaging (fMRI) was used to investigate cortical regions involved in attentive tracking. Cortical flattening techniques facilitated within-subject comparisons of activation produced by attentive tracking, visual motion, discrete attention shifts, and eye movements. In the main task, subjects viewed a display of nine green "bouncing balls" and used attention to mentally track a subset of them while fixating. At the start of each attentive-tracking condition, several target balls (e.g., 3/9) turned red for 2 s and then reverted to green. Subjects then used attention to keep track of the previously indicated targets, which were otherwise indistinguishable from the nontargets. Attentive-tracking conditions alternated with passive viewing of the same display when no targets had been indicated. Subjects were pretested with an eye-movement monitor to ensure they could perform the task accurately while fixating. For seven subjects, functional activation was superimposed on each individual's cortically unfolded surface. Comparisons between attentive tracking and passive viewing revealed bilateral activation in parietal cortex (intraparietal sulcus, postcentral sulcus, superior parietal lobule, and precuneus), frontal cortex (frontal eye fields and precentral sulcus), and the MT complex (including motion-selective areas MT and MST). Attentional enhancement was absent in early visual areas and weak in the MT complex. However, in parietal and frontal areas, the signal change produced by the moving stimuli was more than doubled when items were tracked attentively. Comparisons between attentive tracking and attention shifting revealed essentially identical activation patterns that differed only in the magnitude of activation. This suggests that parietal cortex is involved not only in discrete

  7. Ground Data System Analysis Tools to Track Flight System State Parameters for the Mars Science Laboratory (MSL) and Beyond

    NASA Technical Reports Server (NTRS)

    Allard, Dan; Deforrest, Lloyd

    2014-01-01

    Flight software parameters enable space mission operators fine-tuned control over flight system configurations, enabling rapid and dynamic changes to ongoing science activities in a much more flexible manner than can be accomplished with (otherwise broadly used) configuration file based approaches. The Mars Science Laboratory (MSL), Curiosity, makes extensive use of parameters to support complex, daily activities via commanded changes to said parameters in memory. However, as the loss of Mars Global Surveyor (MGS) in 2006 demonstrated, flight system management by parameters brings with it risks, including the possibility of losing track of the flight system configuration and the threat of invalid command executions. To mitigate this risk a growing number of missions have funded efforts to implement parameter tracking parameter state software tools and services including MSL and the Soil Moisture Active Passive (SMAP) mission. This paper will discuss the engineering challenges and resulting software architecture of MSL's onboard parameter state tracking software and discuss the road forward to make parameter management tools suitable for use on multiple missions.

  8. Decoupling directed and passive motion in dynamic systems: particle tracking microrheology of sputum.

    PubMed

    Fong, Erika J; Sharma, Yasha; Fallica, Brian; Tierney, Dylan B; Fortune, Sarah M; Zaman, Muhammad H

    2013-04-01

    Probing the physical properties of heterogeneous materials is essential to understand the structure, function and dynamics of complex fluids including cells, mucus, and polymer solutions. Particle tracking microrheology is a useful method to passively probe viscoelastic properties on micron length scales by tracking the thermal motion of beads embedded in the sample. However, errors associated with active motion have limited the implementation to dynamic systems. We present a simple method to decouple active and Brownian motion, enabling particle tracking to be applied to fluctuating heterogeneous systems. We use the movement perpendicular to the major axis of motion in time to calculate rheological properties. Through simulated data we demonstrate that this method removes directed motion and performs equally well when there is no directed motion, with an average percent error of <1%. We use this method to measure glycerol-water mixtures to show the capability to measure a range of materials. Finally, we use this technique to characterize the compliance of human sputum. We also investigate the effect of a liquefaction agent used to prepare sputum for diagnostic purposes. Our results suggest that the addition of high concentration sodium hydroxide increases sample heterogeneity by increasing the maximum observed creep compliance.

  9. Development of a pointing, acquisition, and tracking system for a CubeSat optical communication module

    NASA Astrophysics Data System (ADS)

    Nguyen, Tam; Riesing, Kathleen; Kingsbury, Ryan; Cahoy, Kerri

    2015-03-01

    Miniaturized satellites such as CubeSats continue to improve their capabilities to enable missions that can produce significant amounts of data. For most CubeSat missions, data must be downlinked during short low-earth orbit ground station passes, a task currently performed using traditional radio systems. Free-space optical communications take advantage of the high gain of a narrow optical beam to achieve better link efficiency, allowing more valuable data to be downlinked over the mission lifetime. We present the Nanosatellite Optical Downlink Experiment (NODE) design, capable of providing a typical 3U (30 x 10 x 10 cm) CubeSat with a comparatively high data-rate downlink. The NODE optical communication module is designed to fit within a 5 x 10 x 10 cm volume, weigh less than 1 kg, and consume no more than 10Wof power during active communication periods. Our design incorporates a fine-steering mechanism and beacon-tracking system to achieve a 10 Mbps link rate. We describe the system-level requirements and designs for key components, including a transmitter, a beacon tracking camera, and a fast-steering mirror. We present simulation results of the uplink beacon tracking and fine steering of the downlink beam, including the effects of atmospheric fading and on-orbit environmental disturbances to demonstrate the feasibility of this approach.

  10. 28 CFR 16.105 - Exemption of Foreign Terrorist Tracking Task Force System.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Exemption of Foreign Terrorist Tracking Task Force System. 16.105 Section 16.105 Judicial Administration DEPARTMENT OF JUSTICE PRODUCTION OR... of Foreign Terrorist Tracking Task Force System. (a) The following system of records is exempt from...

  11. 28 CFR 16.105 - Exemption of Foreign Terrorist Tracking Task Force System.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Exemption of Foreign Terrorist Tracking Task Force System. 16.105 Section 16.105 Judicial Administration DEPARTMENT OF JUSTICE PRODUCTION OR... of Foreign Terrorist Tracking Task Force System. (a) The following system of records is exempt from...

  12. A Portable Low-Power Harmonic Radar System and Conformal Tag for Insect Tracking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harmonic radar systems provide an effective modality for tracking insect behavior. This paper presents a harmonic radar system proposed to track the migration of the Emerald Ash Borer (EAB). The system offers a unique combination of portability, low power and small tag design. It is comprised of a...

  13. A Laminated Track for the Inductrack System: Theory and Experiment

    SciTech Connect

    Post, R F; Hoburg, J F

    2004-01-12

    A laminated structure, composed of stacks of thin conducting sheets, has several advantages over a litz-wire ladder as the ''track'' wherein levitating currents are induced by a permanent magnet array on a moving vehicle. Modeling and experimental results for the laminated track are described and evaluated in this paper.

  14. In Vivo Biosensor Tracks Non-apoptotic Caspase Activity in Drosophila

    PubMed Central

    Tang, Ho Lam; Tang, Ho Man; Fung, Ming Chiu; Hardwick, J. Marie

    2017-01-01

    Caspases are the key mediators of apoptotic cell death via their proteolytic activity. When caspases are activated in cells to levels detectable by available technologies, apoptosis is generally assumed to occur shortly thereafter. Caspases can cleave many functional and structural components to cause rapid and complete cell destruction within a few minutes. However, accumulating evidence indicates that in normal healthy cells the same caspases have other functions, presumably at lower enzymatic levels. Studies of non-apoptotic caspase activity have been hampered by difficulties with detecting low levels of caspase activity and with tracking ultimate cell fate in vivo. Here, we illustrate the use of an ultrasensitive caspase reporter, CaspaseTracker, which permanently labels cells that have experienced caspase activity in whole animals. This in vivo dual color CaspaseTracker biosensor for Drosophila melanogaster transiently expresses red fluorescent protein (RFP) to indicate recent or on-going caspase activity, and permanently expresses green fluorescent protein (GFP) in cells that have experienced caspase activity at any time in the past yet did not die. Importantly, this caspase-dependent in vivo biosensor readily reveals the presence of non-apoptotic caspase activity in the tissues of organ systems throughout the adult fly. This is demonstrated using whole mount dissections of individual flies to detect biosensor activity in healthy cells throughout the brain, gut, malpighian tubules, cardia, ovary ducts and other tissues. CaspaseTracker detects non-apoptotic caspase activity in long-lived cells, as biosensor activity is detected in adult neurons and in other tissues at least 10 days after caspase activation. This biosensor serves as an important tool to uncover the roles and molecular mechanisms of non-apoptotic caspase activity in live animals. PMID:27929458

  15. Tracking the Inside Intruder Using Net Log on Debug Logging in Microsoft Windows Server Operating Systems

    SciTech Connect

    Davis, CS

    2004-01-20

    In today's well-connected environments of the Internet, intranets, and extranets, protecting the Microsoft Windows network can be a daunting task for the security engineer. Intrusion Detection Systems are a must-have for most companies, but few have either the financial resources or the people resources to implement and maintain full-scale intrusion detection systems for their networks and hosts. Many will at least invest in intrusion detection for their Internet presence, but others have not yet stepped up to the plate with regard to internal intrusion detection. Unfortunately, most attacks will come from within. Microsoft Windows server operating systems are widely used across both large and small enterprises. Unfortunately, there is no intrusion detection built-in to the Windows server operating system. The security logs are valuable but can be difficult to manage even in a small to medium sized environment. So the question arises, can one effectively detect and identify an in side intruder using the native tools that come with Microsoft Windows Server operating systems? One such method is to use Net Logon Service debug logging to identify and track malicious user activity. This paper discusses how to use Net Logon debug logging to identify and track malicious user activity both in real-time and for forensic analysis.

  16. Differenced Range Versus Integrated Doppler (DRVID) ionospheric analysis of metric tracking in the Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Radomski, M. S.; Doll, C. E.

    1995-01-01

    The Differenced Range (DR) Versus Integrated Doppler (ID) (DRVID) method exploits the opposition of high-frequency signal versus phase retardation by plasma media to obtain information about the plasma's corruption of simultaneous range and Doppler spacecraft tracking measurements. Thus, DR Plus ID (DRPID) is an observable independent of plasma refraction, while actual DRVID (DR minus ID) measures the time variation of the path electron content independently of spacecraft motion. The DRVID principle has been known since 1961. It has been used to observe interplanetary plasmas, is implemented in Deep Space Network tracking hardware, and has recently been applied to single-frequency Global Positioning System user navigation This paper discusses exploration at the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) of DRVID synthesized from simultaneous two-way range and Doppler tracking for low Earth-orbiting missions supported by the Tracking and Data Relay Satellite System (TDRSS) The paper presents comparisons of actual DR and ID residuals and relates those comparisons to predictions of the Bent model. The complications due to the pilot tone influence on relayed Doppler measurements are considered. Further use of DRVID to evaluate ionospheric models is discussed, as is use of DRPID in reducing dependence on ionospheric modeling in orbit determination.

  17. Using Fisher information to track stability in multivariate systems

    PubMed Central

    Derrible, Sybil; Eason, Tarsha; Cabezas, Heriberto

    2016-01-01

    With the current proliferation of data, the proficient use of statistical and mining techniques offer substantial benefits to capture useful information from any dataset. As numerous approaches make use of information theory concepts, here, we discuss how Fisher information (FI) can be applied to sustainability science problems and used in data mining applications by analysing patterns in data. FI was developed as a measure of information content in data, and it has been adapted to assess order in complex system behaviour. The main advantage of the approach is the ability to collapse multiple variables into an index that can be used to assess stability and track overall trends in a system, including its regimes and regime shifts. Here, we provide a brief overview of FI theory, followed by a simple step-by-step numerical example on how to compute FI. Furthermore, we introduce an open source Python library that can be freely downloaded from GitHub and we use it in a simple case study to evaluate the evolution of FI for the global-mean temperature from 1880 to 2015. Results indicate significant declines in FI starting in 1978, suggesting a possible regime shift. PMID:28018650

  18. Using Fisher information to track stability in multivariate systems.

    PubMed

    Ahmad, Nasir; Derrible, Sybil; Eason, Tarsha; Cabezas, Heriberto

    2016-11-01

    With the current proliferation of data, the proficient use of statistical and mining techniques offer substantial benefits to capture useful information from any dataset. As numerous approaches make use of information theory concepts, here, we discuss how Fisher information (FI) can be applied to sustainability science problems and used in data mining applications by analysing patterns in data. FI was developed as a measure of information content in data, and it has been adapted to assess order in complex system behaviour. The main advantage of the approach is the ability to collapse multiple variables into an index that can be used to assess stability and track overall trends in a system, including its regimes and regime shifts. Here, we provide a brief overview of FI theory, followed by a simple step-by-step numerical example on how to compute FI. Furthermore, we introduce an open source Python library that can be freely downloaded from GitHub and we use it in a simple case study to evaluate the evolution of FI for the global-mean temperature from 1880 to 2015. Results indicate significant declines in FI starting in 1978, suggesting a possible regime shift.

  19. Finite interval tracking algorithm for nonlinear multi-agent systems with communication delays

    NASA Astrophysics Data System (ADS)

    Dong, Lijing; Chai, Senchun; Zhang, Baihai; Li, Xiangshun; Kiong Nguang, Sing

    2016-11-01

    We propose an iterative learning control (ILC) tracking strategy to solve the tracking problem of multi-agent systems with nonlinear dynamics and time-varying communication delays. The distributed tracking strategy, in which each tracking agent only utilises its own and neighbours' information, enables the tracking agents successfully track a maneuvering target in a finite time interval although with presence of time delays. Compared with the existing related work, the quantitative relationship between the boundary of tracking errors and the estimation of time delays is derived. Furthermore, in many practical control problems, identical initialisation condition may not be satisfied, which is called initial-shift problem. Hence, a forgetting factor is introduced to deal with that problem. It is proved that the presented results are effective via conducting numerical examples.

  20. Study on Sensor Design Technique for Real-Time Robotic Welding Tracking System

    NASA Astrophysics Data System (ADS)

    Liu, C. J.; Li, Y. B.; Zhu, J. G.; Ye, S. H.

    2006-10-01

    Based on visual measurement techniques, the real-time robotic welding tracking system achieves real-time adjustment for robotic welding according to the position and shape changes of a workpiece. In system design, the sensor design technique is so important that its performance directly affects the precision and stability of the tracking system. Through initiative visual measurement technology, a camera unit for real-time sampling is built with multiple-strip structured light and a high-performance CMOS image sensor including 1.3 million pixels; to realize real-time data process and transmission, an image process unit is built with FPGA and DSP. Experiments show that the precision of this sensor reaches 0.3mm, and band rate comes up to 10Mbps, which effectively improves robot welding quality.With the development of advanced manufacturing technology, it becomes an inexorable trend to realize the automatic, flexible and intelligent welding product manufacture. With the advantage of interchangeability and reliability, robotic welding can boost productivity, improve work condition, stabilize and guarantee weld quality, and realize welding automation of the short run products [1]. At present, robotic welding has already become the application trend of automatic welding technology. Traditional welding robots are play-back ones, which cannot adapt environment and weld distortion. Especially in the more and more extensive arc-welding course, the deficiency and limitation of play-back welding technology becomes more prominent because of changeable welding condition. It becomes one of the key technology influencing the development of modern robotic welding technology to eliminate or decrease uncertain influence on quality of welding such as changing welding condition etc [2]. Based on visual measuring principle, this text adopts active visual measuring technology, cooperated with high-speed image process and transmission technology to structure a tracking sensor, to realize

  1. Testbeam results of the first real-time embedded tracking system with artificial retina

    NASA Astrophysics Data System (ADS)

    Neri, N.; Abba, A.; Caponio, F.; Citterio, M.; Coelli, S.; Fu, J.; Merli, A.; Monti, M.; Petruzzo, M.

    2017-02-01

    We present the testbeam results of the first real-time embedded tracking system based on artificial retina algorithm. The tracking system prototype is capable of fast track reconstruction with a latency of the response below 1 μs and track parameter resolutions that are comparable with the offline results. The artificial retina algorithm was implemented in hardware in a custom data acquisition board based on commercial FPGA. The system was tested successfully using a 180 GeV/c proton beam at the CERN SPS with a maximum track rate of about 280 kHz. Online track parameters were found in good agreement with offline results and with the simulated response.

  2. Algorithms for High-Speed Noninvasive Eye-Tracking System

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Morookian, John-Michael; Lambert, James

    2010-01-01

    Two image-data-processing algorithms are essential to the successful operation of a system of electronic hardware and software that noninvasively tracks the direction of a person s gaze in real time. The system was described in High-Speed Noninvasive Eye-Tracking System (NPO-30700) NASA Tech Briefs, Vol. 31, No. 8 (August 2007), page 51. To recapitulate from the cited article: Like prior commercial noninvasive eyetracking systems, this system is based on (1) illumination of an eye by a low-power infrared light-emitting diode (LED); (2) acquisition of video images of the pupil, iris, and cornea in the reflected infrared light; (3) digitization of the images; and (4) processing the digital image data to determine the direction of gaze from the centroids of the pupil and cornea in the images. Most of the prior commercial noninvasive eyetracking systems rely on standard video cameras, which operate at frame rates of about 30 Hz. Such systems are limited to slow, full-frame operation. The video camera in the present system includes a charge-coupled-device (CCD) image detector plus electronic circuitry capable of implementing an advanced control scheme that effects readout from a small region of interest (ROI), or subwindow, of the full image. Inasmuch as the image features of interest (the cornea and pupil) typically occupy a small part of the camera frame, this ROI capability can be exploited to determine the direction of gaze at a high frame rate by reading out from the ROI that contains the cornea and pupil (but not from the rest of the image) repeatedly. One of the present algorithms exploits the ROI capability. The algorithm takes horizontal row slices and takes advantage of the symmetry of the pupil and cornea circles and of the gray-scale contrasts of the pupil and cornea with respect to other parts of the eye. The algorithm determines which horizontal image slices contain the pupil and cornea, and, on each valid slice, the end coordinates of the pupil and cornea

  3. Technical Design Report for the Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    ALICE Collaboration; Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Masoodi, A. Ahmad; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Anderssen, E. C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badala, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bairathi, V.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J..; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastian Van Beelen, J.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Battistin, M.; Batyunya, B.; Batzing, P. C.; Baudot, J.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Benettoni, M.; Benotto, F.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Besson, A.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhatti, A.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Boehmer, F. V.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bornschein, J.; Borshchov, V. N.; Bortolin, C.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Carena, F.; Carena, W.; Cariola, P.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Caudron, T.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Claus, G.; Cleymans, J.; Colamaria, F.; Colella, D.; Coli, S.; Colledani, C.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Da Riva, E.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Decosse, C.; DelagrangeI, H.; Deloff, A.; Déenes, E.; D'Erasmo, G.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Robertis, G.; De Roo, K.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Divia, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dorheim, S.; Dorokhov, A.; Doziere, G.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dulinski, W.; Dupieux, P.; Dutta Majumdar, A. K.; Ehlers, R. J., III; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernádez Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fiorenza, G.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Franco, M.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gajanana, D.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubilato, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Gomez Marzoa, M.; Gonzáalez-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Greiner, L. C.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grondin, D.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Hennes, E.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hicks, B.; Hillemanns, H.; Himmi, A.; Hippolyte, B.; Hladky, J.; Hristov, P.; Huang, M.; Hu-Guo, C.; Humanic, T. J.; Hutter, D.; Hwang, D. S.; Igolkin, S.; Ijzermans, P.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G. M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Ivanytskyi, O.; Jachołkowski, A.; Jadlovsky, J.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Junique, A.; Jusko, A.; Kalcher, S.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keil, M.; Ketzer, B.; Khan, M. Mohisin.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. W.; Kim, D. J.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Krymov, E. B.; Kryshen, E.; Krzewicki, M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kweon, M. J.; Kwon, Y.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; La Pointe, S. L.; La Rocca, P.; Lea, R.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenhardt, M.; Lenti, V.; Leogrande, E.; Leoncino, M.; León Monzón, I.; Lesenechal, Y.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Listratenko, O. M.; Ljunggren, H. M.; Lodato, D. F.; Loddo, F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Lopez, X.; López Torres, E.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luzzi, C.; Gago, A. M.; Jacobs, P. M.; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'kevich, D.; Maltsev, N. A.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Mapelli, A.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Marin Tobon, C. A.; Markert, C.; Marquard, M.; Marras, D.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Blanco, J. Martin; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Maslov, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Mattiazzo, S.; Matyja, A.; Mayer, C.; Mazer, J.; Mazumder, R.; Mazza, G.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitu, C. M.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Mongelli, M.; Montanõ Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Morel, F.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Bhopal, F. Muhammad; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paíc, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Panati, S.; Pant, D.; Pantano, D.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Pastore, C.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Peryt, I. W.; Pesci, A.; Pestov, Y.; Petagna, P.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Pham, H.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Pohjoisaho, E. H. O.; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Protsenko, M. A.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Puggioni, C.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rasson, J. E.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossegger, S.; Rossewij, M. J.; Rossi, A.; Roudier, S.; Rousset, J.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sacchetti, M.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Santoro, R.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schipper, J. D.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Seger, J. E.; Selyuzhenkov, I.; Senyukhov, S.; Seo, J.; Serradilla, E.; Sevcenco, A.; Sgura, I.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J. M.; Snoeys, W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, V. Sooden F.; Sorensen, S.; Spacek, M.; Špalek, J.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A. P.; Subieta Vasquez, M. A.; Sugitate, T.; Suire, C.; Suleymanov, M.; Šuljić, M.; Sultanov, R.; Šumbera, M.; Sun, X.; Susa, T.; Symons, T. J. M.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Ter Minasyan, A.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turchetta, R.; Turrisi, R.; Tveter, T. S.; Tymchuk, I. T.; Ulery, J.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Palomo, L. Valencia; Valentino, V.; Valin, I.; Vallero, S.; Vande Vyvre, P.; Vannucci, L.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vasta, P.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Verlaat, B.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Winter, M.; Xiang, C.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.-K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, F.; Zhang, H.; Zhang, X.

    2014-08-01

    ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma (QGP), using proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018-2019. A key element of the ALICE upgrade is the construction of a new, ultra-light, high-resolution Inner Tracking System (ITS) based on monolithic CMOS pixel detectors. The primary focus of the ITS upgrade is on improving the performance for detection of heavy-flavour hadrons, and of thermal photons and low-mass di-electrons emitted by the QGP. With respect to the current detector, the new Inner Tracking System will significantly enhance the determination of the distance of closest approach to the primary vertex, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a 50 μm thick CMOS pixel sensor with a pixel pitch of about 30×30 μm2. This document, submitted to the LHCC (LHC experiments Committee) in September 2013, presents the design goals, a summary of the R&D activities, with focus on the technical implementation of the main detector components, and the projected detector and physics performance.

  4. 78 FR 12298 - Privacy Act of 1974; System of Records-School Participation Division Complaints Tracking System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... Privacy Act of 1974; System of Records--School Participation Division Complaints Tracking System AGENCY... proposing to add a new system of records entitled ``School Participation Division Complaints Tracking System... result of public comment or OMB review. ] ADDRESSES: Address all comments about the School...

  5. Air-Track: a real-world floating environment for active sensing in head-fixed mice.

    PubMed

    Nashaat, Mostafa A; Oraby, Hatem; Sachdev, Robert N S; Winter, York; Larkum, Matthew E

    2016-10-01

    Natural behavior occurs in multiple sensory and motor modalities and in particular is dependent on sensory feedback that constantly adjusts behavior. To investigate the underlying neuronal correlates of natural behavior, it is useful to have access to state-of-the-art recording equipment (e.g., 2-photon imaging, patch recordings, etc.) that frequently requires head fixation. This limitation has been addressed with various approaches such as virtual reality/air ball or treadmill systems. However, achieving multimodal realistic behavior in these systems can be challenging. These systems are often also complex and expensive to implement. Here we present "Air-Track," an easy-to-build head-fixed behavioral environment that requires only minimal computational processing. The Air-Track is a lightweight physical maze floating on an air table that has all the properties of the "real" world, including multiple sensory modalities tightly coupled to motor actions. To test this system, we trained mice in Go/No-Go and two-alternative forced choice tasks in a plus maze. Mice chose lanes and discriminated apertures or textures by moving the Air-Track back and forth and rotating it around themselves. Mice rapidly adapted to moving the track and used visual, auditory, and tactile cues to guide them in performing the tasks. A custom-controlled camera system monitored animal location and generated data that could be used to calculate reaction times in the visual and somatosensory discrimination tasks. We conclude that the Air-Track system is ideal for eliciting natural behavior in concert with virtually any system for monitoring or manipulating brain activity.

  6. Demonstration (DEMO) of Radio Frequency Identification (RFID) system for tracking and monitoring of nuclear materials.

    SciTech Connect

    Tsai, H. C.; Chen, K.; Liu, Y. Y.; Shuler, J.

    2010-01-01

    The US Department of Energy (DOE) [Environmental Management (EM), Office of Packaging and Transportation (EM-45)] Packaging Certification Program (PCP) has developed a radiofrequency identification (RFID) tracking and monitoring system for the management of nuclear materials packages during storage and transportation. The system, developed by the PCP team at Argonne National Laboratory, involves hardware modification, application software development, secured database and web server development, and irradiation experiments. In April 2008, Argonne tested key features of the RFID tracking and monitoring system in a weeklong, 1700 mile (2736 km) demonstration employing 14 empty type B fissile material drums of three designs (models 9975, 9977 and ES-3100) that have been certified for shipment by the DOE and the US Nuclear Regulatory Commission. The demonstration successfully integrated global positioning system (GPS) technology for vehicle tracking, satellite/cellular (general packet radio service, or GPRS) technologies for wireless communication, and active RFID tags with multiple sensors (seal integrity, shock, temperature, humidity and battery status) on drums. In addition, the demonstration integrated geographic information system (GIS) technology with automatic alarm notifications of incidents and generated buffer zone reports for emergency response and management of staged incidents. The demonstration was sponsored by EM and the US National Nuclear Security Administration, with the participation of Argonne, Savannah River and Oak Ridge National Laboratories. Over 50 authorised stakeholders across the country observed the demonstration via secured Internet access. The DOE PCP and national laboratories are working on several RFID system implementation projects at selected DOE sites, as well as continuing device and systems development and widening applications beyond DOE sites and possibly beyond nuclear materials to include other radioactive materials.

  7. Adaptive tracking for complex systems using reduced-order models

    NASA Technical Reports Server (NTRS)

    Carnigan, Craig R.

    1990-01-01

    Reduced-order models are considered in the context of parameter adaptive controllers for tracking workspace trajectories. A dual-arm manipulation task is used to illustrate the methodology and provide simulation results. A parameter adaptive controller is designed to track a payload trajectory using a four-parameter model instead of the full-order, nine-parameter model. Several simulations with different payload-to-arm mass ratios are used to illustrate the capabilities of the reduced-order model in tracking the desired trajectory.

  8. Adaptive tracking for complex systems using reduced-order models

    NASA Technical Reports Server (NTRS)

    Carignan, Craig R.

    1990-01-01

    Reduced-order models are considered in the context of parameter adaptive controllers for tracking workspace trajectories. A dual-arm manipulation task is used to illustrate the methodology and provide simulation results. A parameter adaptive controller is designed to track the desired position trajectory of a payload using a four-parameter model instead of a full-order, nine-parameter model. Several simulations with different payload-to-arm mass ratios are used to illustrate the capabilities of the reduced-order model in tracking the desired trajectory.

  9. Active disturbance rejection control for drag tracking in mars entry guidance

    NASA Astrophysics Data System (ADS)

    Xia, Yuanqing; Chen, Rongfang; Pu, Fan; Dai, Li

    2014-03-01

    Future Mars missions will require precision landing capability, which motivates the need for entry closed-loop guidance schemes. A new tracking law - active disturbance rejection control (ADRC) - is presented in this paper. The ability of the ADRC tracking law to handle the atmospheric models and the vehicle’s aerodynamic errors is investigated. Monte Carlo simulations with dispersions in entry state variables, drag and lift coefficients, and atmospheric density show effectiveness of the proposed algorithm.

  10. Ultra-Wideband Time-Difference-of-Arrival Two-Point-Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun David; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dekome, Kent; Dusl, John

    2009-01-01

    A UWB TDOA Two-Point-Tracking System has been conceived and developed at JSC. This system can provide sub-inch tracking capability of two points on one target. This capability can be applied to guide a docking process in a 2D space. Lab tests demonstrate the feasibility of this technology.

  11. Capability of patch antennas in a portable harmonic radar system to track insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monitoring technologies are needed to track insects and gain a better understanding of their behavior, population, migration and movement. A portable microwave harmonic-radar tracking system that utilizes antenna miniaturization techniques was investigated to achieve this goal. The system mainly con...

  12. 21 CFR 821.25 - Device tracking system and content requirements: manufacturer requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Device tracking system and content requirements... Requirements § 821.25 Device tracking system and content requirements: manufacturer requirements. (a) A... distributes that enables a manufacturer to provide FDA with the following information in writing for...

  13. Tenure Track Career System as a Strategic Instrument for Academic Leaders

    ERIC Educational Resources Information Center

    Pietilä, Maria

    2015-01-01

    This study examines the purposes for which leaders in universities use academic career systems. It focuses on the tenure track system which is new to Finland. Tenure track represents a newly established internal career path in a situation in which Finnish universities' organizational autonomy increased via new legislation from 2010. Drawing…

  14. Optimal Configuration of Human Motion Tracking Systems: A Systems Engineering Approach

    NASA Technical Reports Server (NTRS)

    Henderson, Steve

    2005-01-01

    Human motion tracking systems represent a crucial technology in the area of modeling and simulation. These systems, which allow engineers to capture human motion for study or replication in virtual environments, have broad applications in several research disciplines including human engineering, robotics, and psychology. These systems are based on several sensing paradigms, including electro-magnetic, infrared, and visual recognition. Each of these paradigms requires specialized environments and hardware configurations to optimize performance of the human motion tracking system. Ideally, these systems are used in a laboratory or other facility that was designed to accommodate the particular sensing technology. For example, electromagnetic systems are highly vulnerable to interference from metallic objects, and should be used in a specialized lab free of metal components.

  15. Scheduler software for tracking and data relay satellite system loading analysis: User manual and programmer guide

    NASA Technical Reports Server (NTRS)

    Craft, R.; Dunn, C.; Mccord, J.; Simeone, L.

    1980-01-01

    A user guide and programmer documentation is provided for a system of PRIME 400 minicomputer programs. The system was designed to support loading analyses on the Tracking Data Relay Satellite System (TDRSS). The system is a scheduler for various types of data relays (including tape recorder dumps and real time relays) from orbiting payloads to the TDRSS. Several model options are available to statistically generate data relay requirements. TDRSS time lines (representing resources available for scheduling) and payload/TDRSS acquisition and loss of sight time lines are input to the scheduler from disk. Tabulated output from the interactive system includes a summary of the scheduler activities over time intervals specified by the user and overall summary of scheduler input and output information. A history file, which records every event generated by the scheduler, is written to disk to allow further scheduling on remaining resources and to provide data for graphic displays or additional statistical analysis.

  16. A Cabled Acoustic Telemetry System for Detecting and Tracking Juvenile Salmon: Part 2. Three-Dimensional Tracking and Passage Outcomes

    SciTech Connect

    Deng, Zhiqun; Weiland, Mark A.; Fu, Tao; Seim, Thomas A.; Lamarche, Brian L.; Choi, Eric Y.; Carlson, Thomas J.; Eppard, Matthew B.

    2011-05-26

    In Part 1 of this paper [1], we presented the engineering design and instrumentation of the Juvenile Salmon Acoustic Telemetry System (JSATS) cabled system, a nonproprietary technology developed by the U.S. Army Corps of Engineers, Portland District, to meet the needs for monitoring the survival of juvenile salmonids through the 31 dams in the Federal Columbia River Power System. Here in Part 2, we describe how the JSATS cabled system was employed as a reference sensor network for detecting and tracking juvenile salmon. Time-of-arrival data for valid detections on four hydrophones were used to solve for the three-dimensional (3D) position of fish surgically implanted with JSATS acoustic transmitters. Validation tests demonstrated high accuracy of 3D tracking up to 100 m from the John Day Dam spillway. The along-dam component, used for assigning the route of fish passage, had the highest accuracy; the median errors ranged from 0.06 to 0.22 m, and root mean square errors ranged from 0.05 to 0.56 m at distances up to 100 m. For the case study at John Day Dam during 2008, the range for 3D tracking was more than 100 m upstream of the dam face where hydrophones were deployed, and detection and tracking probabilities of fish tagged with JSATS acoustic transmitters were higher than 98%. JSATS cabled systems have been successfully deployed on several major dams to acquire information for salmon protection and for development of more “fish-friendly” hydroelectric facilities.

  17. A Cabled Acoustic Telemetry System for Detecting and Tracking Juvenile Salmon: Part 2. Three-Dimensional Tracking and Passage Outcomes

    PubMed Central

    Deng, Z. Daniel; Weiland, Mark A.; Fu, Tao; Seim, Tom A.; LaMarche, Brian L.; Choi, Eric Y.; Carlson, Thomas J.; Eppard, M. Brad

    2011-01-01

    In Part 1 of this paper, we presented the engineering design and instrumentation of the Juvenile Salmon Acoustic Telemetry System (JSATS) cabled system, a nonproprietary sensing technology developed by the U.S. Army Corps of Engineers, Portland District (Oregon, USA) to meet the needs for monitoring the survival of juvenile salmonids through the hydroelectric facilities within the Federal Columbia River Power System. Here in Part 2, we describe how the JSATS cabled system was employed as a reference sensor network for detecting and tracking juvenile salmon. Time-of-arrival data for valid detections on four hydrophones were used to solve for the three-dimensional (3D) position of fish surgically implanted with JSATS acoustic transmitters. Validation tests demonstrated high accuracy of 3D tracking up to 100 m upstream from the John Day Dam spillway. The along-dam component, used for assigning the route of fish passage, had the highest accuracy; the median errors ranged from 0.02 to 0.22 m, and root mean square errors ranged from 0.07 to 0.56 m at distances up to 100 m. For the 2008 case study at John Day Dam, the range for 3D tracking was more than 100 m upstream of the dam face where hydrophones were deployed, and detection and tracking probabilities of fish tagged with JSATS acoustic transmitters were higher than 98%. JSATS cabled systems have been successfully deployed on several major dams to acquire information for salmon protection and for development of more “fish-friendly” hydroelectric facilities. PMID:22163919

  18. A cabled acoustic telemetry system for detecting and tracking juvenile salmon: part 2. Three-dimensional tracking and passage outcomes.

    PubMed

    Deng, Z Daniel; Weiland, Mark A; Fu, Tao; Seim, Tom A; LaMarche, Brian L; Choi, Eric Y; Carlson, Thomas J; Eppard, M Brad

    2011-01-01

    In Part 1 of this paper, we presented the engineering design and instrumentation of the Juvenile Salmon Acoustic Telemetry System (JSATS) cabled system, a nonproprietary sensing technology developed by the U.S. Army Corps of Engineers, Portland District (Oregon, USA) to meet the needs for monitoring the survival of juvenile salmonids through the hydroelectric facilities within the Federal Columbia River Power System. Here in Part 2, we describe how the JSATS cabled system was employed as a reference sensor network for detecting and tracking juvenile salmon. Time-of-arrival data for valid detections on four hydrophones were used to solve for the three-dimensional (3D) position of fish surgically implanted with JSATS acoustic transmitters. Validation tests demonstrated high accuracy of 3D tracking up to 100 m upstream from the John Day Dam spillway. The along-dam component, used for assigning the route of fish passage, had the highest accuracy; the median errors ranged from 0.02 to 0.22 m, and root mean square errors ranged from 0.07 to 0.56 m at distances up to 100 m. For the 2008 case study at John Day Dam, the range for 3D tracking was more than 100 m upstream of the dam face where hydrophones were deployed, and detection and tracking probabilities of fish tagged with JSATS acoustic transmitters were higher than 98%. JSATS cabled systems have been successfully deployed on several major dams to acquire information for salmon protection and for development of more "fish-friendly" hydroelectric facilities.

  19. The Environmental-Data Automated Track Annotation (Env-DATA) System: Linking Animal Tracks with Environmental Data

    NASA Astrophysics Data System (ADS)

    Bohrer, G.; Dodge, S.; Weinzierl, R.; Davidson, S. C.; Kays, R.; Douglas, D. C.; Brandes, D.; Bildstein, K.; Wikelski, M.

    2013-12-01

    The movement of animals is strongly influenced by external factors in their surrounding environment such as weather, habitat types, and human land use. With the advances in positioning and sensor technologies, it is now possible to capture data of animal locations at high spatial and temporal granularities. Likewise, modern technology provides us with an increasing access to large volumes of environmental data, some of which changes on an hourly basis. Although there have been strong developments in computational methods for the analysis of movement in its environmental context, there remain challenges in efficiently linking the spatiotemporal locations of animals with the appropriate environmental conditions along their trajectories. To this end, our new Environmental-Data Automated Track Annotation (Env-DATA) system enhances Movebank, an open portal of animal tracking data, by automating access to environmental variables from global remote sensing, weather, and ecosystem products. The system automates the download and decryption of the data from open web resources of remote sensing and weather data, and provides several interpolation methods from the native grid resolution and structure to a global regular grid linked with the movement tracks in space and time. The system is open and free to any user with movement data. The aim is to facilitate new understanding and predictive capabilities of spatiotemporal patterns of animal movement in response to dynamic and changing environments from local to global scales. The system is illustrated with a series of case studies of pan-American migrations of turkey vultures, and foraging flights of Galapagos Albatross.

  20. Using a low-noise interferometric fiber optic gyro in a pointing, acquisition, and tracking system

    NASA Astrophysics Data System (ADS)

    Kaufmann, John; Hakimi, Farhad; Boroson, Don

    2013-03-01

    Heritage pointing, acquisition, and tracking (PAT) systems have relied on optical tracking with a cooperative remote terminal to stabilize the line-of-sight of optical communications links. A hybrid approach, using new interferometric fiberoptic gyro (IFOG) technology to sense and correct local angular disturbances, blended with optical tracking, is shown to yield two significant advantages over traditional all-optical tracking: (1) line-of-sight stabilization over a very wide disturbance frequency range, down to extremely low frequencies (<<1 Hz), without the need for any optical signal power or cooperation from the remote terminal, and (2) a significant reduction in signal power required for the optical tracker. This paper will present fundamental performance analyses of a hybrid IFOG/optical tracking system and will derive simple design rules that the system designer can use to architect an optimal hybrid IFOG/optical PAT system. In addition, flow-down benefits that can simplify PAT system hardware will be discussed.

  1. A Formative Program Evaluation of Electronic Clinical Tracking System Documentation to Meet National Core Competencies.

    PubMed

    Smith, Lynette S; Branstetter, M Laurie

    2016-09-01

    Electronic clinical tracking systems are used in many educational institutions of higher learning to document advanced practice registered nursing students' clinical experiences. Students' clinical experiences are constructed according to the National Organization of Nurse Practitioner Faculties core competencies. These competencies form a basis for evaluation of advanced practice registered nursing programs. However, no previous studies have evaluated the use of electronic clinical tracking systems to validate students' clinical experiences in meeting national core competencies. Medatrax, an electronic clinical tracking system, is evaluated using a formative program evaluation approach to determine if students' clinical documentations meet Family/Across the Lifespan Nurse Practitioner Competencies in a midsouthern family nurse practitioner program. This formative program evaluation supports the use of an electronic clinical tracking system in facilitating accreditation and program outcome goals. The significance of this study is that it provides novel evidence to support the use of an electronic clinical tracking system to assist a midsouthern school of nursing in meeting national core competencies.

  2. Phytotracker, an information management system for easy recording and tracking of plants, seeds and plasmids

    PubMed Central

    2012-01-01

    Background A large number of different plant lines are produced and maintained in a typical plant research laboratory, both as seed stocks and in active growth. These collections need careful and consistent management to track and maintain them properly, and this is a particularly pressing issue in laboratories undertaking research involving genetic manipulation due to regulatory requirements. Researchers and PIs need to access these data and collections, and therefore an easy-to-use plant-oriented laboratory information management system that implements, maintains and displays the information in a simple and visual format would be of great help in both the daily work in the lab and in ensuring regulatory compliance. Results Here, we introduce ‘Phytotracker’, a laboratory management system designed specifically to organise and track plasmids, seeds and growing plants that can be used in mixed platform environments. Phytotracker is designed with simplicity of user operation and ease of installation and management as the major factor, whilst providing tracking tools that cover the full range of activities in molecular genetics labs. It utilises the cross-platform Filemaker relational database, which allows it to be run as a stand-alone or as a server-based networked solution available across all workstations in a lab that can be internet accessible if desired. It can also be readily modified or customised further. Phytotracker provides cataloguing and search functions for plasmids, seed batches, seed stocks and plants growing in pots or trays, and allows tracking of each plant from seed sowing, through harvest to the new seed batch and can print appropriate labels at each stage. The system enters seed information as it is transferred from the previous harvest data, and allows both selfing and hybridization (crossing) to be defined and tracked. Transgenic lines can be linked to their plasmid DNA source. This ease of use and flexibility helps users to reduce their

  3. The ARGOS system used for tracking gray whales

    NASA Technical Reports Server (NTRS)

    Mate, B. R.; Beaty, D.; Hoisington, C.; Kutz, R.; Mate, M. L.

    1983-01-01

    The development of satellite whale tags used to track gray whales in the eastern north Pacific Ocean is summarized. Two gray whales were radio-tagged in San Ignacio Lagoon (Mexico) and tracked on their northbound migration. One of the transmitters was modified to record and relay depth-of-dive information at 15 sec intervals throughout the course of the dive. Technical elements of data acquisition and analysis are outlined. The major biological findings are discussed.

  4. 77 FR 67348 - Privacy Act of 1974; System of Records-Alternative Dispute Resolution (ADR) Center Case Tracking...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... Privacy Act of 1974; System of Records--Alternative Dispute Resolution (ADR) Center Case Tracking System... (ADR) Center Case Tracking System.'' DATES: Submit your comments on this proposed altered system of... comments about the ADR Center Case Tracking system of records to Debra A. Bennett, Director,...

  5. Ground Simulation of an Autonomous Satellite Rendezvous and Tracking System Using Dual Robotic Systems

    NASA Technical Reports Server (NTRS)

    Trube, Matthew J.; Hyslop, Andrew M.; Carignan, Craig R.; Easley, Joseph W.

    2012-01-01

    A hardware-in-the-loop ground system was developed for simulating a robotic servicer spacecraft tracking a target satellite at short range. A relative navigation sensor package "Argon" is mounted on the end-effector of a Fanuc 430 manipulator, which functions as the base platform of the robotic spacecraft servicer. Machine vision algorithms estimate the pose of the target spacecraft, mounted on a Rotopod R-2000 platform, relay the solution to a simulation of the servicer spacecraft running in "Freespace", which performs guidance, navigation and control functions, integrates dynamics, and issues motion commands to a Fanuc platform controller so that it tracks the simulated servicer spacecraft. Results will be reviewed for several satellite motion scenarios at different ranges. Key words: robotics, satellite, servicing, guidance, navigation, tracking, control, docking.

  6. Development of an Expert System Based on the Systematic Approach To Tropical Cyclone Track Forecasting

    DTIC Science & Technology

    2016-06-07

    benefit of hindsight; (iv) determining the circumstances under which SCON track forecasts may be produced that are significantly more accurate than a...1 Development Of An Expert System Based On The Systematic Approach To Tropical Cyclone Track Forecasting Lester E. Carr III Department of Meteorology...are to improve the quantitative accuracy and interpretative utility of official tropical cyclone (TC) track forecasts by enabling forecasters to

  7. Seam tracking performance of a Coaxial Weld Vision System and pulsed welding

    NASA Technical Reports Server (NTRS)

    Gangl, K. J.; Weeks, J. L.; Todd, D.

    1986-01-01

    This report describes a continuation of a series of tests on the Coaxial Weld Vision System at MSFC. The ability of the system to compensate for transients associated with pulsed current welding is analyzed. Using the standard image processing approach for root pass seam tracking, the system is also tested for the ability to track the toe of a previous weld bead, for tracking multiple pass weld joints. This Coaxial Weld Vision System was developed by the Ohio State University (OSU) Center for Welding Research and is a part of the Space Shuttle Main Engine Robotic Welding Development System at MSFC.

  8. Ionospheric refraction effects on TOPEX orbit determination accuracy using the Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Radomski, M. S.; Doll, C. E.

    1991-01-01

    This investigation concerns the effects on Ocean Topography Experiment (TOPEX) spacecraft operational orbit determination of ionospheric refraction error affecting tracking measurements from the Tracking and Data Relay Satellite System (TDRSS). Although tracking error from this source is mitigated by the high frequencies (K-band) used for the space-to-ground links and by the high altitudes for the space-to-space links, these effects are of concern for the relatively high-altitude (1334 kilometers) TOPEX mission. This concern is due to the accuracy required for operational orbit-determination by the Goddard Space Flight Center (GSFC) and to the expectation that solar activity will still be relatively high at TOPEX launch in mid-1992. The ionospheric refraction error on S-band space-to-space links was calculated by a prototype observation-correction algorithm using the Bent model of ionosphere electron densities implemented in the context of the Goddard Trajectory Determination System (GTDS). Orbit determination error was evaluated by comparing parallel TOPEX orbit solutions, applying and omitting the correction, using the same simulated TDRSS tracking observations. The tracking scenarios simulated those planned for the observation phase of the TOPEX mission, with a preponderance of one-way return-link Doppler measurements. The results of the analysis showed most TOPEX operational accuracy requirements to be little affected by space-to-space ionospheric error. The determination of along-track velocity changes after ground-track adjustment maneuvers, however, is significantly affected when compared with the stringent 0.1-millimeter-per-second accuracy requirements, assuming uncoupled premaneuver and postmaneuver orbit determination. Space-to-space ionospheric refraction on the 24-hour postmaneuver arc alone causes 0.2 millimeter-per-second errors in along-track delta-v determination using uncoupled solutions. Coupling the premaneuver and postmaneuver solutions

  9. A Simulation Study of a Radiofrequency Localization System for Tracking Patient Motion in Radiotherapy.

    PubMed

    Ostyn, Mark; Kim, Siyong; Yeo, Woon-Hong

    2016-04-13

    One of the most widely used tools in cancer treatment is external beam radiotherapy. However, the major risk involved in radiotherapy is excess radiation dose to healthy tissue, exacerbated by patient motion. Here, we present a simulation study of a potential radiofrequency (RF) localization system designed to track intrafraction motion (target motion during the radiation treatment). This system includes skin-wearable RF beacons and an external tracking system. We develop an analytical model for direction of arrival measurement with radio frequencies (GHz range) for use in a localization estimate. We use a Monte Carlo simulation to investigate the relationship between a localization estimate and angular resolution of sensors (signal receivers) in a simulated room. The results indicate that the external sensor needs an angular resolution of about 0.03 degrees to achieve millimeter-level localization accuracy in a treatment room. This fundamental study of a novel RF localization system offers the groundwork to design a radiotherapy-compatible patient positioning system for active motion compensation.

  10. A Simulation Study of a Radiofrequency Localization System for Tracking Patient Motion in Radiotherapy

    PubMed Central

    Ostyn, Mark; Kim, Siyong; Yeo, Woon-Hong

    2016-01-01

    One of the most widely used tools in cancer treatment is external beam radiotherapy. However, the major risk involved in radiotherapy is excess radiation dose to healthy tissue, exacerbated by patient motion. Here, we present a simulation study of a potential radiofrequency (RF) localization system designed to track intrafraction motion (target motion during the radiation treatment). This system includes skin-wearable RF beacons and an external tracking system. We develop an analytical model for direction of arrival measurement with radio frequencies (GHz range) for use in a localization estimate. We use a Monte Carlo simulation to investigate the relationship between a localization estimate and angular resolution of sensors (signal receivers) in a simulated room. The results indicate that the external sensor needs an angular resolution of about 0.03 degrees to achieve millimeter-level localization accuracy in a treatment room. This fundamental study of a novel RF localization system offers the groundwork to design a radiotherapy-compatible patient positioning system for active motion compensation. PMID:27089342

  11. Preliminary Orbit Determination System (PODS) for Tracking and Data Relay Satellite System (TDRSS)-tracked target Spacecraft using the homotopy continuation method

    NASA Astrophysics Data System (ADS)

    Kirschner, S. M.; Samii, M. V.; Broaddus, S. R.; Doll, C. E.

    1988-09-01

    The Preliminary Orbit Determination System (PODS) provides early orbit determination capability in the Trajectory Computation and Orbital Products System (TCOPS) for a Tracking and Data Relay Satellite System (TDRSS)-tracked spacecraft. PODS computes a set of orbit states from an a priori estimate and six tracking measurements, consisting of any combination of TDRSS range and Doppler tracking measurements. PODS uses the homotopy continuation method to solve a set of nonlinear equations, and it is particularly effective for the case when the a priori estimate is not well known. Since range and Doppler measurements produce multiple states in PODS, a screening technique selects the desired state. PODS is executed in the TCOPS environment and can directly access all operational data sets. At the completion of the preliminary orbit determination, the PODS-generated state, along with additional tracking measurements, can be directly input to the differential correction (DC) process to generate an improved state. To validate the computational and operational capabilities of PODS, tests were performed using simulated TDRSS tracking measurements for the Cosmic Background Explorer (COBE) satellite and using real TDRSS measurements for the Earth Radiation Budget Satellite (ERBS) and the Solar Mesosphere Explorer (SME) spacecraft. The effects of various measurement combinations, varying arc lengths, and levels of degradation of the a priori state vector on the PODS solutions were considered.

  12. Preliminary Orbit Determination System (PODS) for Tracking and Data Relay Satellite System (TDRSS)-tracked target Spacecraft using the homotopy continuation method

    NASA Technical Reports Server (NTRS)

    Kirschner, S. M.; Samii, M. V.; Broaddus, S. R.; Doll, C. E.

    1988-01-01

    The Preliminary Orbit Determination System (PODS) provides early orbit determination capability in the Trajectory Computation and Orbital Products System (TCOPS) for a Tracking and Data Relay Satellite System (TDRSS)-tracked spacecraft. PODS computes a set of orbit states from an a priori estimate and six tracking measurements, consisting of any combination of TDRSS range and Doppler tracking measurements. PODS uses the homotopy continuation method to solve a set of nonlinear equations, and it is particularly effective for the case when the a priori estimate is not well known. Since range and Doppler measurements produce multiple states in PODS, a screening technique selects the desired state. PODS is executed in the TCOPS environment and can directly access all operational data sets. At the completion of the preliminary orbit determination, the PODS-generated state, along with additional tracking measurements, can be directly input to the differential correction (DC) process to generate an improved state. To validate the computational and operational capabilities of PODS, tests were performed using simulated TDRSS tracking measurements for the Cosmic Background Explorer (COBE) satellite and using real TDRSS measurements for the Earth Radiation Budget Satellite (ERBS) and the Solar Mesosphere Explorer (SME) spacecraft. The effects of various measurement combinations, varying arc lengths, and levels of degradation of the a priori state vector on the PODS solutions were considered.

  13. A Space Based Internet Protocol System for Sub-Orbital Tracking and Control

    NASA Technical Reports Server (NTRS)

    Bull, Barton; Grant, Charles; Morgan, Dwayne; Streich, Ron; Bauer, Frank (Technical Monitor)

    2001-01-01

    Personnel from the Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF) in Virginia are responsible for the overall management of the NASA Sounding Rocket Program. Payloads are generally in support of NASA's Space Science Enterprise's missions and return a variety of scientific data as well as providing a reasonably economical means of conducting engineering tests for instruments and devices used on satellites and other spacecraft. The fifteen types of sounding rockets used by NASA can carry payloads of various weights to altitudes from 50 km to more than 1,300 km. Launch activities are conducted not only from established missile ranges, but also from remote locations worldwide requiring mobile tracking and command equipment to be transported and set up at considerable expense. The advent of low earth orbit (LEO) commercial communications satellites provides an opportunity to dramatically reduce tracking and control costs of launch vehicles and Unpiloted Aerial Vehicles (UAVs) by reducing or eliminating this ground infrastructure. Additionally, since data transmission is by packetized Internet Protocol (IP), data can be received and commands initiated from practically any location. A low cost Commercial Off The Shelf (COTS) system is currently under development for sounding rockets which also has application to UAVs and scientific balloons. Due to relatively low data rate (9600 baud) currently available, the system will first be used to provide GPS data for tracking and vehicle recovery. Range safety requirements for launch vehicles usually stipulate at least two independent tracking sources. Most sounding rockets flown by NASA now carry GPS receivers that output position data via the payload telemetry system to the ground station. The Flight Modem can be configured as a completely separate link thereby eliminating requirement for tracking radar. The system architecture which integrates antennas, GPS receiver, commercial satellite packet data modem, and a

  14. A Space Based Internet Protocol System for Launch Vehicle Tracking and Control

    NASA Technical Reports Server (NTRS)

    Bull, Barton; Grant, Charles; Morgan, Dwayne; Streich, Ron; Bauer, Frank (Technical Monitor)

    2001-01-01

    Personnel from the Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF) in Virginia are responsible for the overall management of the NASA Sounding Rocket and Scientific Balloon Programs. Payloads are generally in support of NASA's Space Science Enterprise's missions and return a variety of scientific data as well as providing a reasonably economical means of conducting engineering tests for instruments and devices used on satellites and other spacecraft. Sounding rockets used by NASA can carry payloads of various weights to altitudes from 50 km to more than 1,300 km. Scientific balloons can carry a payload weighing as much as 3,630 Kg to an altitude of 42 km. Launch activities for both are conducted not only from established ranges, but also from remote locations worldwide requiring mobile tracking and command equipment to be transported and set up at considerable expense. The advent of low earth orbit (LEO) commercial communications satellites provides an opportunity to dramatically reduce tracking and control costs of these launch vehicles and Unpiloted Aerial Vehicles (UAVs) by reducing or eliminating this ground infrastructure. Additionally, since data transmission is by packetized Internet Protocol (IP), data can be received and commands initiated from practically any location. A low cost Commercial Off The Shelf (COTS) system is currently under development for sounding rockets that also has application to UAVs and scientific balloons. Due to relatively low data rate (9600 baud) currently available, the system will first be used to provide GPS data for tracking and vehicle recovery. Range safety requirements for launch vehicles usually stipulate at least two independent tracking sources. Most sounding rockets flown by NASA now carry GP receivers that output position data via the payload telemetry system to the ground station. The Flight Modem can be configured as a completely separate link thereby eliminating the requirement for tracking radar. The

  15. Global Positioning System Synchronized Active Light Autonomous Docking System

    NASA Technical Reports Server (NTRS)

    Howard, Richard (Inventor)

    1994-01-01

    A Global Positioning System Synchronized Active Light Autonomous Docking System (GPSSALADS) for automatically docking a chase vehicle with a target vehicle comprises at least one active light emitting target which is operatively attached to the target vehicle. The target includes a three-dimensional array of concomitantly flashing lights which flash at a controlled common frequency. The GPSSALADS further comprises a visual tracking sensor operatively attached to the chase vehicle for detecting and tracking the target vehicle. Its performance is synchronized with the flash frequency of the lights by a synchronization means which is comprised of first and second internal clocks operatively connected to the active light target and visual tracking sensor, respectively, for providing timing control signals thereto, respectively. The synchronization means further includes first and second Global Positioning System receivers operatively connected to the first and second internal clocks, respectively, for repeatedly providing simultaneous synchronization pulses to the internal clocks, respectively. In addition, the GPSSALADS includes a docking process controller means which is operatively attached to the chase vehicle and is responsive to the visual tracking sensor for producing commands for the guidance and propulsion system of the chase vehicle.

  16. Global Positioning System Synchronized Active Light Autonomous Docking System

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor); Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor); Bell, Joseph L. (Inventor)

    1996-01-01

    A Global Positioning System Synchronized Active Light Autonomous Docking System (GPSSALADS) for automatically docking a chase vehicle with a target vehicle comprising at least one active light emitting target which is operatively attached to the target vehicle. The target includes a three-dimensional array of concomitantly flashing lights which flash at a controlled common frequency. The GPSSALADS further comprises a visual tracking sensor operatively attached to the chase vehicle for detecting and tracking the target vehicle. Its performance is synchronized with the flash frequency of the lights by a synchronization means which is comprised of first and second internal clocks operatively connected to the active light target and visual tracking sensor, respectively, for providing timing control signals thereto, respectively. The synchronization means further includes first and second Global Positioning System receivers operatively connected to the first and second internal clocks, respectively, for repeatedly providing simultaneous synchronization pulses to the internal clocks, respectively. In addition, the GPSSALADS includes a docking process controller means which is operatively attached to the chase vehicle and is responsive to the visual tracking sensor for producing commands for the guidance and propulsion system of the chase vehicle.

  17. Interactive Diet and Activity Tracking in AARP (IDATA) Study Data | Division of Cancer Prevention

    Cancer.gov

    The Interactive Diet and Activity Tracking in AARP (IDATA) Study is a methodologic study of device-based, internet-based, and conventional self-report instrum | Device-based and intensive self-report physical activity and diet data with biomarkers

  18. Exploitation of inter-track interference in a shingled replay system

    NASA Astrophysics Data System (ADS)

    Jermey, P. M.; Shute, H. A.; Ahmed, M. Z.; Wilton, D. T.

    2009-10-01

    The expected increase in areal density in hard drives will require very narrow tracks. Tracks which are of a similar width to the read head and which are not separated by guardbands normally suffer from large inter-track interference (ITI) or crosstalk. Here, we show that it is possible to read from tracks which are not separated by guardbands and that are narrower than the head. In addition to the significant increase in areal density obtainable by reducing the unrecorded area of the disk and narrowing the tracks, such a system would also lead to a decrease in data retrieval times. We have identified across-track magnetization constraints for future coding across three adjacent tracks so that it will be possible to read from tracks which are only 73% as wide as the read head. Reading from tracks not separated by guardbands which have been written under these constraints yields an increase in track density of at least 47% greater than that possible in conventional drives.

  19. Tracking and data relay satellite system - NASA's new spacecraft data acquisition system

    NASA Technical Reports Server (NTRS)

    Schneider, W. C.; Garman, A. A.

    1979-01-01

    This paper describes NASA's new spacecraft acquisition system provided by the Tracking and Data Relay Satellite System (TDRSS). Four satellites in geostationary orbit and a ground terminal will provide complete tracking, telemetry, and command service for all of NASA's orbital satellites below a 12,000 km altitude. Western Union will lease the system, operate the ground terminal and provide operational satellite control. NASA's network control center will be the focal point for scheduling user services and controlling the interface between TDRSS and the NASA communications network, project control centers, and data processing. TDRSS single access user spacecraft data systems will be designed for time shared data relay support, and reimbursement policy and rate structure for non-NASA users are being developed.

  20. Tracking small mountainous river derived terrestrial organic carbon across the active margin marine environment

    NASA Astrophysics Data System (ADS)

    Childress, L. B.; Blair, N. E.; Orpin, A. R.

    2015-12-01

    Active margins are particularly efficient in the burial of organic carbon due to the close proximity of highland sources to marine sediment sinks and high sediment transport rates. Compared with passive margins, active margins are dominated by small mountainous river systems, and play a unique role in marine and global carbon cycles. Small mountainous rivers drain only approximately 20% of land, but deliver approximately 40% of the fluvial sediment to the global ocean. Unlike large passive margin systems where riverine organic carbon is efficiently incinerated on continental shelves, small mountainous river dominated systems are highly effective in the burial and preservation of organic carbon due to the rapid and episodic delivery of organic carbon sourced from vegetation, soil, and rock. To investigate the erosion, transport, and burial of organic carbon in active margin small mountainous river systems we use the Waipaoa River, New Zealand. The Waipaoa River, and adjacent marine depositional environment, is a system of interest due to a large sediment yield (6800 tons km-2 yr-1) and extensive characterization. Previous studies have considered the biogeochemistry of the watershed and tracked the transport of terrestrially derived sediment and organics to the continental shelf and slope by biogeochemical proxies including stable carbon isotopes, lignin phenols, n-alkanes, and n-fatty acids. In this work we expand the spatial extent of investigation to include deep sea sediments of the Hikurangi Trough. Located in approximately 3000 m water depth 120 km from the mouth of the Waipaoa River, the Hikurangi Trough is the southern extension of the Tonga-Kermadec-Hikurangi subduction system. Piston core sediments collected by the National Institute of Water and Atmospheric Research (NIWA, NZ) in the Hikurangi Trough indicate the presence of terrestrially derived material (lignin phenols), and suggest a continuum of deposition, resuspension, and transport across the margin

  1. Automatic Association of Chats and Video Tracks for Activity Learning and Recognition in Aerial Video Surveillance

    PubMed Central

    Hammoud, Riad I.; Sahin, Cem S.; Blasch, Erik P.; Rhodes, Bradley J.; Wang, Tao

    2014-01-01

    We describe two advanced video analysis techniques, including video-indexed by voice annotations (VIVA) and multi-media indexing and explorer (MINER). VIVA utilizes analyst call-outs (ACOs) in the form of chat messages (voice-to-text) to associate labels with video target tracks, to designate spatial-temporal activity boundaries and to augment video tracking in challenging scenarios. Challenging scenarios include low-resolution sensors, moving targets and target trajectories obscured by natural and man-made clutter. MINER includes: (1) a fusion of graphical track and text data using probabilistic methods; (2) an activity pattern learning framework to support querying an index of activities of interest (AOIs) and targets of interest (TOIs) by movement type and geolocation; and (3) a user interface to support streaming multi-intelligence data processing. We also present an activity pattern learning framework that uses the multi-source associated data as training to index a large archive of full-motion videos (FMV). VIVA and MINER examples are demonstrated for wide aerial/overhead imagery over common data sets affording an improvement in tracking from video data alone, leading to 84% detection with modest misdetection/false alarm results due to the complexity of the scenario. The novel use of ACOs and chat messages in video tracking paves the way for user interaction, correction and preparation of situation awareness reports. PMID:25340453

  2. Automatic association of chats and video tracks for activity learning and recognition in aerial video surveillance.

    PubMed

    Hammoud, Riad I; Sahin, Cem S; Blasch, Erik P; Rhodes, Bradley J; Wang, Tao

    2014-10-22

    We describe two advanced video analysis techniques, including video-indexed by voice annotations (VIVA) and multi-media indexing and explorer (MINER). VIVA utilizes analyst call-outs (ACOs) in the form of chat messages (voice-to-text) to associate labels with video target tracks, to designate spatial-temporal activity boundaries and to augment video tracking in challenging scenarios. Challenging scenarios include low-resolution sensors, moving targets and target trajectories obscured by natural and man-made clutter. MINER includes: (1) a fusion of graphical track and text data using probabilistic methods; (2) an activity pattern learning framework to support querying an index of activities of interest (AOIs) and targets of interest (TOIs) by movement type and geolocation; and (3) a user interface to support streaming multi-intelligence data processing. We also present an activity pattern learning framework that uses the multi-source associated data as training to index a large archive of full-motion videos (FMV). VIVA and MINER examples are demonstrated for wide aerial/overhead imagery over common data sets affording an improvement in tracking from video data alone, leading to 84% detection with modest misdetection/false alarm results due to the complexity of the scenario. The novel use of ACOs and chat Sensors 2014, 14 19844 messages in video tracking paves the way for user interaction, correction and preparation of situation awareness reports.

  3. Analysis for dynamics decoupling of photoelectric tracking system with collimated axis eccentricity

    NASA Astrophysics Data System (ADS)

    Xu, Zhengfeng; Chen, Jinling; Chen, Hongbin; Tang, Tao

    2007-12-01

    The horizontal or X-Y tracking gimbal of photoelectric system has spatial blind region because of themselves framework limit, In order to solve the problem of blind region and also track object with high-precision and speediness, a new three-axis photoelectric theodolite system with collimation axis eccentricity is brought forward, It can achieve large-scale space tracking by means of mutual conversion of tracking modes. There is dynamics and inertia coupling in the three-axis photoelectric tracking system, the kind of coupling will directly affect the static state, dynamic state characteristics and indeed system stability. To get high performance photoelectric tracking system, dynamics coupling must be took into account in three-axis photoelectric tracking system. The matrix transformation of angle velocity and moment can be derived from the reference frame relation of three-axis photoelectric tracking system with collimation axis eccentricity; the kinematics property is analyzed by momentum theorem and angular momentum theorem. Through the analysis of inertia coupling in axes, their object differential equation is gained. In the last, the system nonlinear coupling dynamics model is built using multi-body system theory and Lagrange-Eula equation. From the analysis of dynamic equation, it is evident that the photoelectric tracking system with three input and three output contain complicated nonlinear coupling factor, the study of decoupling control must be carried through in order to get high-precision control system. By importing the geometry coordinate transformation, dynamic compensation and nonlinear state feedback, the nonlinear factor can get accurate elimination on base of the system reversibility of input and output, the three-axis photoelectric tracking system control differential equation can be got nonlinear decoupling by static state feedback, several variable photoelectric tracking system turn into three respective self-governed singularity input and

  4. The research on algorithms for optoelectronic tracking servo control systems

    NASA Astrophysics Data System (ADS)

    Zhu, Qi-Hai; Zhao, Chang-Ming; Zhu, Zheng; Li, Kun

    2016-10-01

    The photoelectric servo control system based on PC controllers is mainly used to control the speed and position of the load. This paper analyzed the mathematical modeling and the system identification of the servo system. In the aspect of the control algorithm, the IP regulator, the fuzzy PID, the Active Disturbance Rejection Control (ADRC) and the adaptive algorithms were compared and analyzed. The PI-P control algorithm was proposed in this paper, which not only has the advantages of the PI regulator that can be quickly saturated, but also overcomes the shortcomings of the IP regulator. The control system has a good starting performance and the anti-load ability in a wide range. Experimental results show that the system has good performance under the guarantee of the PI-P control algorithm.

  5. System and method for tracking a signal source. [employing feedback control

    NASA Technical Reports Server (NTRS)

    Mogavero, L. N.; Johnson, E. G.; Evans, J. M., Jr.; Albus, J. S. (Inventor)

    1978-01-01

    A system for tracking moving signal sources is disclosed which is particularly adaptable for use in tracking stage performers. A miniature transmitter is attached to the person or object to be tracked and emits a detectable signal of a predetermined frequency. A plurality of detectors positioned in a preset pattern sense the signal and supply output information to a phase detector which applies signals representing the angular orientation of the transmitter to a computer. The computer provides command signals to a servo network which drives a device such as a motor driven mirror reflecting the beam of a spotlight, to track the moving transmitter.

  6. Effects of earthquake ground motion on tracking characteristics of new Global Navigation Satellite System receivers

    NASA Astrophysics Data System (ADS)

    Berglund, Henry T.; Blume, Frederick; Prantner, Andrea

    2015-05-01

    We use a shake table capable of large (7 G) three-dimensional accelerations with large payloads to simulate ground motion reconstructed from acceleration data collected during the February 2010 Mw = 8.8 Maule, Chile, earthquake. The tracking performance of five modern geodetic GNSS receiver and antenna combinations was investigated while undergoing simulated seismic shaking at three two levels of amplification. Individual system performance was characterized by the number of tracked GNSS observations. The L1 and L2 GPS signal tracking was significantly impacted for the majority of the receiver models during simulations with maximum accelerations of 4 G, and the tracking performance for all of the tested receiver types was significantly impaired during the 7 G simulations. Results show improved tracking when only the antenna was shaken suggesting that vibration-induced oscillator phase noise may contribute significantly to tracking degradation during shaking.

  7. Tracking and data system support for the Mariner Mars 1971 mission. Volume 3: Orbit insertion through end of primary mission

    NASA Technical Reports Server (NTRS)

    Barnum, P. W.; Renzetti, N. A.; Textor, G. P.; Kelly, L. B.

    1973-01-01

    The Tracking and Data System (TDS) Support for the Mariner Mars 1971 Mission final report contains the deep space tracking and data acquisition activities in support of orbital operations. During this period a major NASA objective was accomplished: completion of the 180th revolution and 90th day of data gathering with the spacecraft about the planet Mars. Included are presentations of the TDS flight support pass chronology data for each of the Deep Space Stations used, and performance evaluation for the Deep Space Network Telemetry, Tracking, Command, and Monitor Systems. With the loss of Mariner 8 at launch, Mariner 9 assumed the mission plan of Mariner 8, which included the TV mapping cycles and a 12-hr orbital period. The mission plan was modified as a result of a severe dust storm on the surface of Mars, which delayed the start of the TV mapping cycles. Thus, the end of primary mission date was extended to complete the TV mapping cycles.

  8. Development and evaluation of a prototype tracking system using the treatment couch

    SciTech Connect

    Lang, Stephanie Riesterer, Oliver; Klöck, Stephan; Zeimetz, Jörg; Ochsner, Gregor; Schmid Daners, Marianne

    2014-02-15

    Purpose: Tumor motion increases safety margins around the clinical target volume and leads to an increased dose to the surrounding healthy tissue. The authors have developed and evaluated a one-dimensional treatment couch tracking system to counter steer respiratory tumor motion. Three different motion detection sensors with different lag times were evaluated. Methods: The couch tracking system consists of a motion detection sensor, which can be the topometrical system Topos (Cyber Technologies, Germany), the respiratory gating system RPM (Varian Medical Systems) or a laser triangulation system (Micro Epsilon), and the Protura treatment couch (Civco Medical Systems). The control of the treatment couch was implemented in the block diagram environment Simulink (MathWorks). To achieve real time performance, the Simulink models were executed on a real time engine, provided by Real-Time Windows Target (MathWorks). A proportional-integral control system was implemented. The lag time of the couch tracking system using the three different motion detection sensors was measured. The geometrical accuracy of the system was evaluated by measuring the mean absolute deviation from the reference (static position) during motion tracking. This deviation was compared to the mean absolute deviation without tracking and a reduction factor was defined. A hexapod system was moving according to seven respiration patterns previously acquired with the RPM system as well as according to a sin{sup 6} function with two different frequencies (0.33 and 0.17 Hz) and the treatment table compensated the motion. Results: A prototype system for treatment couch tracking of respiratory motion was developed. The laser based tracking system with a small lag time of 57 ms reduced the residual motion by a factor of 11.9 ± 5.5 (mean value ± standard deviation). An increase in delay time from 57 to 130 ms (RPM based system) resulted in a reduction by a factor of 4.7 ± 2.6. The Topos based tracking system

  9. Research on the laser tracking system for measuring moving target based on APD

    NASA Astrophysics Data System (ADS)

    Liu, Hua; Miao, Yinxiao; Gao, Yue

    2016-11-01

    In order to measure the coordinate of moving target, the laser tracking system for moving target was proposed, in which the receiver of four-quadrant APD was adopted as the detector and the DC motor was used to drive the reflector to move in two dimensions. The principle of the measurement system was analyzed first. Then the main part of the system was introduced. The tracking experiment showed that, this system could realized the function of automatic tracking and measuring the coordinate of moving target according to the pulsed laser ranging and angle sensors.

  10. Optimal modified tracking performance for networked control systems with QoS constraint.

    PubMed

    Zhan, Xi-Sheng; Sun, Xin-Xiang; Wu, Jie; Han, Tao

    2016-11-01

    This paper investigates the optimal modified tracking performance of networked control systems with a constraint on quality of service (QoS). The QoS is characterized by two parameters of the system, viz. data dropout and the additive white Gaussian noise. The proposed modified tracking performance index prevents the probability of invalid data arising from the variations in the tracking error in the absence of an integrator in the plant. The derived optimal filter eliminates the influence of channel noise in the feedback channel. The optimal modified tracking performance expression is obtained by using the co-prime factorization. Results indicate that the optimal modified tracking performance is influenced by the non-minimum phase zeros, modification factor, packet dropout probability, and the characteristics of the reference signals. The obtained results will give some guidance for the design of networked control systems. The efficiency of the model is verified using some typical examples.

  11. Multimodality image guidance system integrating X-ray fluoroscopy and ultrasound image streams with electromagnetic tracking

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Luis F.; Shechter, Guy; Stanton, Douglas; Dalal, Sandeep; Elgort, Daniel; Manzke, Robert; Chan, Raymond C.; Zagorchev, Lyubomir

    2007-03-01

    This work presents an integrated system for multimodality image guidance of minimally invasive medical procedures. This software and hardware system offers real-time integration and registration of multiple image streams with localization data from navigation systems. All system components communicate over a local area Ethernet network, enabling rapid and flexible deployment configurations. As a representative configuration, we use X-ray fluoroscopy (XF) and ultrasound (US) imaging. The XF imaging system serves as the world coordinate system, with gantry geometry derived from the imaging system, and patient table position tracked with a custom-built measurement device using linear encoders. An electromagnetic (EM) tracking system is registered to the XF space using a custom imaging phantom that is also tracked by the EM system. The RMS fiducial registration error for the EM to X-ray registration was 2.19 mm, and the RMS target registration error measured with an EM-tracked catheter was 8.81 mm. The US image stream is subsequently registered to the XF coordinate system using EM tracking of the probe, following a calibration of the US image within the EM coordinate system. We present qualitative results of the system in operation, demonstrating the integration of live ultrasound imaging spatially registered to X-ray fluoroscopy with catheter localization using electromagnetic tracking.

  12. Using Student Tracking Systems Effectively. New Directions for Community Colleges, Number 66.

    ERIC Educational Resources Information Center

    Bers, Trudy H., Ed.

    1989-01-01

    This collection of essays discusses some of the general concerns and issues related to tracking the flow of community college students through higher education. The chapters in the volume include: (1) "Tracking Systems and Student Flow," by Trudy H. Bers; (2) "Beyond the College: State Policy Impact on Student Tracking…

  13. Intelligent adaptive control of the vehicle-span/track system

    NASA Astrophysics Data System (ADS)

    Dyniewicz, Bartłomiej; Konowrocki, Robert; Bajer, Czesław I.

    2015-06-01

    This paper presents the strategy of semi-active damping of vibrations of a beam span subjected to a moving load. Intermediate supports as controlled dampers significantly decrease transverse displacements in comparison with a system with permanently active dampers. The gain can reach 40% in the case of high speed loads. In a real structure with a load moving at 3 m/s, considered in this paper, the improvement is about 10%. The control is determined by a minimization procedure. Numerical simulations are confirmed experimentally on a stand with a length of 4 m. Controlled dampers can be replaced with an intelligent material. The potential applications are in transport or robotics.

  14. Active optical zoom system

    DOEpatents

    Wick, David V.

    2005-12-20

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  15. Sunspots and Coronal Bright Points Tracking using a Hybrid Algorithm of PSO and Active Contour Model

    NASA Astrophysics Data System (ADS)

    Dorotovic, I.; Shahamatnia, E.; Lorenc, M.; Rybansky, M.; Ribeiro, R. A.; Fonseca, J. M.

    2014-02-01

    In the last decades there has been a steady increase of high-resolution data, from ground-based and space-borne solar instruments, and also of solar data volume. These huge image archives require efficient automatic image processing software tools capable of detecting and tracking various features in the solar atmosphere. Results of application of such tools are essential for studies of solar activity evolution, climate change understanding and space weather prediction. The follow up of interplanetary and near-Earth phenomena requires, among others, automatic tracking algorithms that can determine where a feature is located, on successive images taken along the period of observation. Full-disc solar images, obtained both with the ground-based solar telescopes and the instruments onboard the satellites, provide essential observational material for solar physicists and space weather researchers for better understanding the Sun, studying the evolution of various features in the solar atmosphere, and also investigating solar differential rotation by tracking such features along time. Here we demonstrate and discuss the suitability of applying a hybrid Particle Swarm Optimization (PSO) algorithm and Active Contour model for tracking and determining the differential rotation of sunspots and coronal bright points (CBPs) on a set of selected solar images. The results obtained confirm that the proposed approach constitutes a promising tool for investigating the evolution of solar activity and also for automating tracking features on massive solar image archives.

  16. An animal tracking system for behavior analysis using radio frequency identification.

    PubMed

    Catarinucci, Luca; Colella, Riccardo; Mainetti, Luca; Patrono, Luigi; Pieretti, Stefano; Secco, Andrea; Sergi, Ilaria

    2014-09-01

    Evaluating the behavior of mice and rats has substantially contributed to the progress of research in many scientific fields. Researchers commonly observe recorded video of animal behavior and manually record their observations for later analysis, but this approach has several limitations. The authors developed an automated system for tracking and analyzing the behavior of rodents that is based on radio frequency identification (RFID) in an ultra-high-frequency bandwidth. They provide an overview of the system's hardware and software components as well as describe their technique for surgically implanting passive RFID tags in mice. Finally, the authors present the findings of two validation studies to compare the accuracy of the RFID system versus commonly used approaches for evaluating the locomotor activity and object exploration of mice.

  17. Active microcoil tracking in the lungs using a semisolid rubber as signal source.

    PubMed

    Alt, Stefan; Homagk, Ann-Kathrin; Umathum, Reiner; Semmler, Wolfhard; Bock, Michael

    2010-07-01

    A new method to localize and track medical devices in air-filled body cavities is proposed that uses active microcoils with a semisolid filling. In air spaces, e.g., the lung, microcoils require an independent signal source, which should be made of a biocompatible, solid and sterilizable material with a long shelf time. In a measurement of the T(1) and T*(2) and the relative spin density of several semisolid materials, latex was identified as a suitable material from which a prototype catheter was constructed with a microcoil at its tip. In a dual-echo tracking pulse sequence, the very short T*(2) of the rubber material allowed suppressing the background signal from surrounding tissue with a subtraction technique and additional dephasing gradients. With a roadmapping reconstruction, the microcoil's trajectory could be visualized on a previously acquired reference image set with a tracking rate of up to 60 Hz at a spatial resolution of better than 2mm. In a real-time tracking implementation, an image update rate of 4 Hz was achieved by combining the tracking with a fast real-time imaging sequence. Both methods were successfully applied in vivo to track the catheter in the lung of a pig.

  18. Comparison of global positioning and computer-based tracking systems for measuring player movement distance during Australian football.

    PubMed

    Edgecomb, S J; Norton, K I

    2006-05-01

    Sports scientists require a thorough understanding of the energy demands of sports and physical activities so that optimal training strategies and game simulations can be constructed. A range of techniques has been used to both directly assess and estimate the physiological and biochemical changes during competition. A fundamental approach to understanding the contribution of the energy systems in physical activity has involved the use of time-motion studies. A number of tools have been used from simple pen and paper methods, the use of video recordings, to sophisticated electronic tracking devices. Depending on the sport, there may be difficulties in using electronic tracking devices because of concerns of player safety. This paper assesses two methods currently used to measure player movement patterns during competition: (1) global positioning technology (GPS) and (2) a computer-based tracking (CBT) system that relies on a calibrated miniaturised playing field and mechanical movements of the tracker. A range of ways was used to determine the validity and reliability of these methods for tracking Australian footballers for distance covered during games. Comparisons were also made between these methods. The results indicate distances measured using CBT overestimated the actual values (measured with a calibrated trundle wheel) by an average of about 5.8%. The GPS system overestimated the actual values by about 4.8%. Distances measured using CBT in experienced hands were as accurate as the GPS technology. Both systems showed relatively small errors in true distances.

  19. Investigating the Potential of Activity Tracking App Data to Estimate Cycle Flows in Urban Areas

    NASA Astrophysics Data System (ADS)

    Haworth, J.

    2016-06-01

    Traffic congestion and its associated environmental effects pose a significant problem for large cities. Consequently, promoting and investing in green travel modes such as cycling is high on the agenda for many transport authorities. In order to target investment in cycling infrastructure and improve the experience of cyclists on the road, it is important to know where they are. Unfortunately, investment in intelligent transportation systems over the years has mainly focussed on monitoring vehicular traffic, and comparatively little is known about where cyclists are on a day to day basis. In London, for example, there are a limited number of automatic cycle counters installed on the network, which provide only part of the picture. These are supplemented by surveys that are carried out infrequently. Activity tracking apps on smart phones and GPS devices such as Strava have become very popular over recent years. Their intended use is to track physical activity and monitor training. However, many people routinely use such apps to record their daily commutes by bicycle. At the aggregate level, these data provide a potentially rich source of information about the movement and behaviour of cyclists. Before such data can be relied upon, however, it is necessary to examine their representativeness and understand their potential biases. In this study, the flows obtained from Strava Metro (SM) are compared with those obtained during the 2013 London Cycle Census (LCC). A set of linear regression models are constructed to predict LCC flows using SM flows along with a number of dummy variables including road type, hour of day, day of week and presence/absence of cycle lane. Cross-validation is used to test the fitted models on unseen LCC sites. SM flows are found to be a statistically significant (p<0.0001) predictor of total flows as measured by the LCC and the models yield R squared statistics of ~0.7 before considering spatio-temporal variation. The initial results indicate

  20. Symplectic analysis of vertical random vibration for coupled vehicle track systems

    NASA Astrophysics Data System (ADS)

    Lu, F.; Kennedy, D.; Williams, F. W.; Lin, J. H.

    2008-10-01

    A computational model for random vibration analysis of vehicle-track systems is proposed and solutions use the pseudo excitation method (PEM) and the symplectic method. The vehicle is modelled as a mass, spring and damping system with 10 degrees of freedom (dofs) which consist of vertical and pitching motion for the vehicle body and its two bogies and vertical motion for the four wheelsets. The track is treated as an infinite Bernoulli-Euler beam connected to sleepers and hence to ballast and is regarded as a periodic structure. Linear springs couple the vehicle and the track. Hence, the coupled vehicle-track system has only 26 dofs. A fixed excitation model is used, i.e. the vehicle does not move along the track but instead the track irregularity profile moves backwards at the vehicle velocity. This irregularity is assumed to be a stationary random process. Random vibration theory is used to obtain the response power spectral densities (PSDs), by using PEM to transform this random multiexcitation problem into a deterministic harmonic excitation one and then applying symplectic solution methodology. Numerical results for an example include verification of the proposed method by comparing with finite element method (FEM) results; comparison between the present model and the traditional rigid track model and; discussion of the influences of track damping and vehicle velocity.

  1. Tracking systems for virtual rehabilitation: objective performance vs. subjective experience. A practical scenario.

    PubMed

    Lloréns, Roberto; Noé, Enrique; Naranjo, Valery; Borrego, Adrián; Latorre, Jorge; Alcañiz, Mariano

    2015-03-19

    Motion tracking systems are commonly used in virtual reality-based interventions to detect movements in the real world and transfer them to the virtual environment. There are different tracking solutions based on different physical principles, which mainly define their performance parameters. However, special requirements have to be considered for rehabilitation purposes. This paper studies and compares the accuracy and jitter of three tracking solutions (optical, electromagnetic, and skeleton tracking) in a practical scenario and analyzes the subjective perceptions of 19 healthy subjects, 22 stroke survivors, and 14 physical therapists. The optical tracking system provided the best accuracy (1.074 ± 0.417 cm) while the electromagnetic device provided the most inaccurate results (11.027 ± 2.364 cm). However, this tracking solution provided the best jitter values (0.324 ± 0.093 cm), in contrast to the skeleton tracking, which had the worst results (1.522 ± 0.858 cm). Healthy individuals and professionals preferred the skeleton tracking solution rather than the optical and electromagnetic solution (in that order). Individuals with stroke chose the optical solution over the other options. Our results show that subjective perceptions and preferences are far from being constant among different populations, thus suggesting that these considerations, together with the performance parameters, should be also taken into account when designing a rehabilitation system.

  2. Tracking Systems for Virtual Rehabilitation: Objective Performance vs. Subjective Experience. A Practical Scenario

    PubMed Central

    Lloréns, Roberto; Noé, Enrique; Naranjo, Valery; Borrego, Adrián; Latorre, Jorge; Alcañiz, Mariano

    2015-01-01

    Motion tracking systems are commonly used in virtual reality-based interventions to detect movements in the real world and transfer them to the virtual environment. There are different tracking solutions based on different physical principles, which mainly define their performance parameters. However, special requirements have to be considered for rehabilitation purposes. This paper studies and compares the accuracy and jitter of three tracking solutions (optical, electromagnetic, and skeleton tracking) in a practical scenario and analyzes the subjective perceptions of 19 healthy subjects, 22 stroke survivors, and 14 physical therapists. The optical tracking system provided the best accuracy (1.074 ± 0.417 cm) while the electromagnetic device provided the most inaccurate results (11.027 ± 2.364 cm). However, this tracking solution provided the best jitter values (0.324 ± 0.093 cm), in contrast to the skeleton tracking, which had the worst results (1.522 ± 0.858 cm). Healthy individuals and professionals preferred the skeleton tracking solution rather than the optical and electromagnetic solution (in that order). Individuals with stroke chose the optical solution over the other options. Our results show that subjective perceptions and preferences are far from being constant among different populations, thus suggesting that these considerations, together with the performance parameters, should be also taken into account when designing a rehabilitation system. PMID:25808765

  3. Evaluation of a video-based head motion tracking system for dedicated brain PET

    NASA Astrophysics Data System (ADS)

    Anishchenko, S.; Beylin, D.; Stepanov, P.; Stepanov, A.; Weinberg, I. N.; Schaeffer, S.; Zavarzin, V.; Shaposhnikov, D.; Smith, M. F.

    2015-03-01

    Unintentional head motion during Positron Emission Tomography (PET) data acquisition can degrade PET image quality and lead to artifacts. Poor patient compliance, head tremor, and coughing are examples of movement sources. Head motion due to patient non-compliance can be an issue with the rise of amyloid brain PET in dementia patients. To preserve PET image resolution and quantitative accuracy, head motion can be tracked and corrected in the image reconstruction algorithm. While fiducial markers can be used, a contactless approach is preferable. A video-based head motion tracking system for a dedicated portable brain PET scanner was developed. Four wide-angle cameras organized in two stereo pairs are used for capturing video of the patient's head during the PET data acquisition. Facial points are automatically tracked and used to determine the six degree of freedom head pose as a function of time. The presented work evaluated the newly designed tracking system using a head phantom and a moving American College of Radiology (ACR) phantom. The mean video-tracking error was 0.99±0.90 mm relative to the magnetic tracking device used as ground truth. Qualitative evaluation with the ACR phantom shows the advantage of the motion tracking application. The developed system is able to perform tracking with accuracy close to millimeter and can help to preserve resolution of brain PET images in presence of movements.

  4. Tracking system options for future altimeter satellite missions

    NASA Technical Reports Server (NTRS)

    Davis, G. W.; Rim, H. J.; Ries, J. C.; Tapley, B. D.

    1994-01-01

    Follow-on missions to provide continuity in the observation of the sea surface topography once the successful TOPEX/POSEIDON (T/P) oceanographic satellite mission has ended are discussed. Candidates include orbits which follow the ground tracks of T/P GEOSAT or ERS-1. The T/P precision ephemerides, estimated to be near 3 cm root-mean-square, demonstrate the radial orbit accuracy that can be achieved at 1300 km altitude. However, the radial orbit accuracy which can be achieved for a mission at the 800 km altitudes of GEOSAT and ERS-1 has not been established, and achieving an accuracy commensurate with T/P will pose a great challenge. This investigation focuses on the radial orbit accuracy that can be achieved for a mission in the GEOSAT orbit. Emphasis is given to characterizing the effects of force model errors on the estimated radial orbit accuracy, particularly those due to gravity and drag. The importance of global, continuous tracking of the satellite for reduction in these sources of orbit error is demonstrated with simulated GPS tracking data. A gravity tuning experiment is carried out to show how the effects of gravity error may be reduced. Assuming a GPS flight receiver with a full-sky tracking capability, the simulation results indicate that a 5 cm radial orbit accuracy for an altimeter satellite in GEOSAT orbit should be achievable during low-drag atmospheric conditions and after an acceptable tuning of the gravity model.

  5. Arizona State University: Student Tracking in a University System.

    ERIC Educational Resources Information Center

    Porter, John D.; Gebel, Melinda A.

    1995-01-01

    Arizona State University has created longitudinal student files capable of tracking each student's curricular and financial aid history from entry until graduation. The structure of the files, their creation and maintenance, and their evolution over the years are described. Uses of the files to conduct different kinds of studies to inform…

  6. 49 CFR 213.345 - Vehicle/track system qualification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the wheel/rail force safety limits and the carbody and truck acceleration criteria specified in § 213... representative of the route. (3) Carbody acceleration. For vehicle types intended to operate at track Class 6... not exceed the carbody lateral and vertical acceleration safety limits specified in § 213.333....

  7. A Classroom Activity: Tracking El Niño

    ERIC Educational Resources Information Center

    Ribbe, Joachim

    2016-01-01

    This paper aims to introduce an activity for teachers to assist in meeting learning outcomes as defined in the earth and environmental science units of the Australian Curriculum. The focus of the classroom tasks is on a global ocean feature referred to as El Niño. This phenomenon is part of the El Niño Southern Oscillation, which is largely…

  8. Geometry-Of-Fire Tracking Algorithm for Direct-Fire Weapon Systems

    DTIC Science & Technology

    2015-09-01

    TRACKING ALGORITHM FOR DIRECT -FIRE WEAPON SYSTEMS by Caleb K. Khan September 2015 Thesis Advisor: Zachary Staples Co-Advisor: Xiaoping...2015 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE GEOMETRY-OF-FIRE TRACKING ALGORITHM FOR DIRECT -FIRE WEAPON SYSTEMS... direct -fire weapon systems. This is the first attempt to develop technology for this specific application. Prototyping the system’s overall design

  9. High-resolution tracking of motor disorders in Parkinson's disease during unconstrained activity.

    PubMed

    Roy, Serge H; Cole, Bryan T; Gilmore, L Don; De Luca, Carlo J; Thomas, Cathi A; Saint-Hilaire, Marie M; Nawab, S Hamid

    2013-07-01

    Parkinson's disease (PD) can present with a variety of motor disorders that fluctuate throughout the day, making assessment a challenging task. Paper-based measurement tools can be burdensome to the patient and clinician and lack the temporal resolution needed to accurately and objectively track changes in motor symptom severity throughout the day. Wearable sensor-based systems that continuously monitor PD motor disorders may help to solve this problem, although critical shortcomings persist in identifying multiple disorders at high temporal resolution during unconstrained activity. The purpose of this study was to advance the current state of the art by (1) introducing hybrid sensor technology to concurrently acquire surface electromyographic (sEMG) and accelerometer data during unconstrained activity and (2) analyzing the data using dynamic neural network algorithms to capture the evolving temporal characteristics of the sensor data and improve motor disorder recognition of tremor and dyskinesia. Algorithms were trained (n=11 patients) and tested (n=8 patients; n=4 controls) to recognize tremor and dyskinesia at 1-second resolution based on sensor data features and expert annotation of video recording during 4-hour monitoring periods of unconstrained daily activity. The algorithms were able to make accurate distinctions between tremor, dyskinesia, and normal movement despite the presence of diverse voluntary activity. Motor disorder severity classifications averaged 94.9% sensitivity and 97.1% specificity based on 1 sensor per symptomatic limb. These initial findings indicate that new sensor technology and software algorithms can be effective in enhancing wearable sensor-based system performance for monitoring PD motor disorders during unconstrained activities.

  10. Design and Performance Evaluation on Ultra-Wideband Time-Of-Arrival 3D Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Dusl, John

    2012-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time--of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide and felt upset. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested in the Wireless Habitat Testbed which simulates the ISS module environment. In this presentation, we discuss the 3D TOA tracking algorithm and the performance evaluation based on different tracking baseline configurations. The simulation results show that two configurations of the tracking baseline are feasible. With 100 picoseconds standard deviation (STD) of TOA estimates, the average tracking error 0.2392 feet (about 7 centimeters) can be achieved for configuration Twisted Rectangle while the average tracking error 0.9183 feet (about 28 centimeters) can be achieved for configuration Slightly-Twisted Top Rectangle . The tracking accuracy can be further improved with the improvement of the STD of TOA estimates. With 10 picoseconds STD of TOA estimates, the average tracking error 0.0239 feet (less than 1 centimeter) can be achieved for configuration "Twisted Rectangle".

  11. Object tracking via background subtraction for monitoring illegal activity in crossroad

    NASA Astrophysics Data System (ADS)

    Ghimire, Deepak; Jeong, Sunghwan; Park, Sang Hyun; Lee, Joonwhoan

    2016-07-01

    In the field of intelligent transportation system a great number of vision-based techniques have been proposed to prevent pedestrians from being hit by vehicles. This paper presents a system that can perform pedestrian and vehicle detection and monitoring of illegal activity in zebra crossings. In zebra crossing, according to the traffic light status, to fully avoid a collision, a driver or pedestrian should be warned earlier if they possess any illegal moves. In this research, at first, we detect the traffic light status of pedestrian and monitor the crossroad for vehicle pedestrian moves. The background subtraction based object detection and tracking is performed to detect pedestrian and vehicles in crossroads. Shadow removal, blob segmentation, trajectory analysis etc. are used to improve the object detection and classification performance. We demonstrate the experiment in several video sequences which are recorded in different time and environment such as day time and night time, sunny and raining environment. Our experimental results show that such simple and efficient technique can be used successfully as a traffic surveillance system to prevent accidents in zebra crossings.

  12. A feasibility study of stationary and dual-axis tracking grid-connected photovoltaic systems in the Upper Midwest

    NASA Astrophysics Data System (ADS)

    Warren, Ryan Duwain

    Three primary objectives were defined for this work. The first objective was to determine, assess, and compare the performance, heat transfer characteristics, economics, and feasibility of real-world stationary and dual-axis tracking grid-connected photovoltaic (PV) systems in the Upper Midwest. This objective was achieved by installing two grid-connected PV systems with different mounting schemes in central Iowa, implementing extensive data acquisition systems, monitoring operation of the PV systems for one full year, and performing detailed experimental performance and economic studies. The two PV systems that were installed, monitored, and analyzed included a 4.59 kWp roof-mounted stationary system oriented for maximum annual energy production, and a 1.02 kWp pole-mounted actively controlled dual-axis tracking system. The second objective was to demonstrate the actual use and performance of real-world stationary and dual-axis tracking grid-connected PV systems used for building energy generation applications. This objective was achieved by offering the installed PV systems to the public for demonstration purposes and through the development of three computer-based tools: a software interface that has the ability to display real-time and historical performance and meteorological data of both systems side-by-side, a software interface that shows real-time and historical video and photographs of each system, and a calculator that can predict performance and economics of stationary and dual-axis tracking grid-connected PV systems at various locations in the United States. The final objective was to disseminate this work to social, professional, scientific, and academic communities in a way that is applicable, objective, accurate, accessible, and comprehensible. This final objective will be addressed by publishing the results of this work and making the computer-based tools available on a public website (www.energy.iastate.edu/Renewable/solar). Detailed experimental

  13. Integration of an On-Axis General Sun-Tracking Formula in the Algorithm of an Open-Loop Sun-Tracking System

    PubMed Central

    Chong, Kok-Keong; Wong, Chee-Woon; Siaw, Fei-Lu; Yew, Tiong-Keat; Ng, See-Seng; Liang, Meng-Suan; Lim, Yun-Seng; Lau, Sing-Liong

    2009-01-01

    A novel on-axis general sun-tracking formula has been integrated in the algorithm of an open-loop sun-tracking system in order to track the sun accurately and cost effectively. Sun-tracking errors due to installation defects of the 25 m2 prototype solar concentrator have been analyzed from recorded solar images with the use of a CCD camera. With the recorded data, misaligned angles from ideal azimuth-elevation axes have been determined and corrected by a straightforward changing of the parameters' values in the general formula of the tracking algorithm to improve the tracking accuracy to 2.99 mrad, which falls below the encoder resolution limit of 4.13 mrad. PMID:22408483

  14. Design and Performance Evaluation of a UWB Communication and Tracking System for Mini-AERCam

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.

    2005-01-01

    NASA Johnson Space Center (JSC) is developing a low-volume, low-mass, robotic free-flying camera known as Mini-AERCam (Autonomous Extra-vehicular Robotic Camera) to assist the International Space Station (ISS) operations. Mini-AERCam is designed to provide astronauts and ground control real-time video for camera views of ISS. The system will assist ISS crewmembers and ground personnel to monitor ongoing operations and perform visual inspections of exterior ISS components without requiring extravehicular activity (EAV). Mini-AERCam consists of a great number of subsystems. Many institutions and companies have been involved in the R&D for this project. A Mini-AERCam ground control system has been studied at Texas A&M University [3]. The path planning and control algorithms that direct the motions of Mini-AERCam have been developed through the joint effort of Carnegie Mellon University and the Texas Robotics and Automation Center [5]. NASA JSC has designed a layered control architecture that integrates all functions of Mini-AERCam [8]. The research described in this report is part of a larger effort focused on the communication and tracking subsystem that is designed to perform three major tasks: 1. To transmit commands from ISS to Mini-AERCam for control of robotic camera motions (downlink); 2. To transmit real-time video from Mini-AERCam to ISS for inspections (uplink); 3. To track the position of Mini-AERCam for precise motion control. The ISS propagation environment is unique due to the nature of the ISS structure and multiple RF interference sources [9]. The ISS is composed of various truss segments, solar panels, thermal radiator panels, and modules for laboratories and crew accommodations. A tracking system supplemental to GPS is desirable both to improve accuracy and to eliminate the structural blockage due to the close proximity of the ISS which could at times limit the number of GPS satellites accessible to the Mini-AERCam. Ideally, the tracking system will

  15. Two interacting active dimers on a rigid track

    NASA Astrophysics Data System (ADS)

    Mayett, David; Das, Moumita; Schwarz, J. M.

    Cell migration in morphogenesis and cancer metastasis typically involves an interplay between different cell types. The rules governing such interplay remain largely unknown; however, a recent experiment studying the interaction between neural crest (NC) cells and placodal cells reveals an example of such rules. The study found that NC cells chase the placodal cells by chemotaxis, while placodal cells run away from NC cells when contacted by them. Motivated by this observation, we construct and study a minimal one-dimensional cell-cell model comprised of two cells with each cell represented by two-beads-connected-by-an-active spring. The active spring for each moving cell models the stress fibers with their myosin-driven Contractility (and alpha-actinin extendability), while the friction coefficients of the beads describe the catch/slip bond behavior of the integrins in focal adhesions. We also include a dynamic contact interaction between the two cells to decipher the chase-and-run dynamics observed in the experiment. We then use our model to construct a ''phase diagram'' consisting of chase-and-run behavior, clumping (of the two cells) with repolarization behavior and clumping with no repolarization behavior that can be qualitatively compared to experiments.

  16. HARPs: Tracked Active Region Patch Data Product from SDO/HMI

    NASA Astrophysics Data System (ADS)

    Turmon, M.; Hoeksema, J. T.; Sun, X.; Bobra, M.

    2012-12-01

    We describe an HMI data product consisting of tracked magnetic features on the scale of solar active regions, abbreviated HARPs (HMI Active Region Patches). The HARP data series has been helpful for subsetting individual active regions, for development of near-real-time (NRT) space weather indices for individual active regions, and for defining closed magnetic structures for computationally-intensive algorithms like vector field disambiguation. The data series builds upon the 720s cadence activity masks, which identify large-scale instantaneously-observed magnetic features. Using these masks as a starting point, large spatially-coherent structures are identified using convolution with a longitudinally-extended kernel on a spherical domain. The resulting set of identified regions is then tracked from image to image. The metric for inter-image association is area of overlap between the best current estimate of AR location, as predicted by temporally extrapolating each currently tracked object, and the set of instantaneously-observed magnetic structures. Once completed tracks have been extracted, they are made into a standardized HARP data series by finding the smallest constant-angular-velocity box, of constant width in latitude and longitude, that encompasses all appearances of the active region. This data product is currently available, in definitive and near-real-time forms, with accompanying region-strength, location, and NOAA-AR metadata, on HMI's Joint Science Operations Center (JSOC) data portal.; HARP outlines for three days (2001 February 14, 15, and 16, 00:00 TAI, flipped N-S, selected from the 12-minute cadence original data product). HARPs are shown in the same color (some colors repeated) with a thin white box surrounding each HARP. HARPs are tracked and associated from image to image. HARPs, such as the yellow one in the images above, need not be connected regions. Merges and splits, such as the light blue region, are accounted for automatically.

  17. 14 CFR 11.33 - How can I track FAA's rulemaking activities?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false How can I track FAA's rulemaking activities? 11.33 Section 11.33 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES GENERAL RULEMAKING PROCEDURES Rulemaking Procedures General § 11.33 How can...

  18. Making Tracks 1.0: Action Researching an Active Transportation Education Program

    ERIC Educational Resources Information Center

    Robinson, Daniel; Foran, Andrew; Robinson, Ingrid

    2014-01-01

    This paper reports on the results of the first cycle of an action research project. The objective of this action research was to examine the implementation of a school-based active transportation education program (Making Tracks). A two-cycle action research design was employed in which elementary school students' (ages 7-9), middle school…

  19. A bibliography of wildlife movements and tracking systems

    NASA Technical Reports Server (NTRS)

    Werber, M.

    1970-01-01

    A bibliography is presented consisting of 1,005 references concerned with animal orientation, homing, navigation, migration, and home range movements, and the various methods of tracking and monitoring such behavior through biotelemetry, radar, and various banding and tagging techniques. A majority of the publications appeared between 1950 and 1970, although the most intensive search was made of the 1965-1970 period. A small number of older articles and books were included because they appeared to have some special or unusual value. The references have been organized in two ways. First, they are grouped in primary categories on the basis of the behavior involved such as orientation, homing, etc., and the methods of tracking. Second, within each of the resulting major areas, the items are arranged in terms of the species of animal. This sequence is maintained throughout the bibliography and in many cases represents a rank order according to the number of publications found.

  20. 40 CFR 96.52 - NOX Allowance Tracking System responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.52...

  1. 40 CFR 96.52 - NOX Allowance Tracking System responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.52...

  2. The evolution of electronic tracking, optical, telemetry, and command systems at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Mcmurran, W. R. (Editor)

    1973-01-01

    A history is presented of the major electronic tracking, optical, telemetry, and command systems used at ETR in support of Apollo-Saturn and its forerunner vehicles launched under the jurisdiction of the Kennedy Space Center and its forerunner organizations.

  3. Performance of a 10 Gbps FSO System Implementing Novel Beam Tracking a Dynamic Buffering Modem

    NASA Technical Reports Server (NTRS)

    Kiriazes, John; Valencia, J. Emilio; Peach, Robert; Visone, Chris; Burdge, Geoffrey; Vickers, John; Leclerc, Troy; Sauer, Paul; Andrews, Larry; Phillips, Ron

    2012-01-01

    A 10 Gbps Free space optical (FSO) system implements beam tracking, a high dynamic range optical receiver, and a dynamic buffering packet modem. Performance was characterized at the 4.5 km Shuttle Landing Facility at Kennedy Space Center Florida.

  4. Privacy Impact Assessment for the Registration and Tracking System for SunWise

    EPA Pesticide Factsheets

    The Registration and Tracking System for SunWise collects contact information and demographics about each educator. Learn how this data is collected, used, access to the data, the purpose of data collection, and record retention policies.

  5. A coupled phase-locked loops system for carrier tracking improvement

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Yuen, J. H.

    1982-01-01

    A system that couples several phase-locked loops to improve carrier tracking performance is considered. It coherently combines the received carrier signals at geographically separated ground antennas to increase the total effective aperture. The received carrier's phases are automatically aligned to enhance the received carrier signal-to-noise ratio. The system's tracking performance is assessed in terms of rms phase jitter. It is shown that the phase-locked loop in the first receiver, where the carrier arraying is performed, tracks the received carrier phase using the received carrier power from all receivers.

  6. a Low-Cost Markerless Tracking System for Trajectory Interpretation

    NASA Astrophysics Data System (ADS)

    Laggis, A.; Doulamis, N.; Protopapadakis, E.; Georgopoulos, A.

    2017-02-01

    The tracking abilities of 1st generation Kinect sensors have been tested over common trajectories of folk dances. Trajectories related errors, including offset, curve shape, noisy points are investigated and mitigated using well-known signal processing filters. Low cost depth trackers can contribute towards the remote tutoring of folk dances, by providing adequate data to instructors and explicit details to the trainees which segments of their dance trajectories need more work.

  7. A measurement system for quick rail inspection and effective track maintenance strategy

    NASA Astrophysics Data System (ADS)

    Bocciolone, M.; Caprioli, A.; Cigada, A.; Collina, A.

    2007-04-01

    Safety and environment impact of urban railway play a primary role in the management of Public Transportation Companies. One of the critical problem is track maintenance activity, requiring a reliable knowledge of the rail status (such as, for urban transport system, corrugation and localised damage) so that a proper intervention can be performed only when necessary. The public transportation company of Milan (ATM S.p.A.) has started a cooperation with Politecnico di Milano to develop new techniques for track condition inspection, through accelerometer measurements performed on standard operating bogies. This avoids the use of special cars that can operate only when traffic is stopped and permits the collection of a large amount of data improving reliability through measurement repetitions. A feasibility study of a foolproof diagnostic tool is developed in this paper. In particular, it shows the best measurement points, how the sub-structure on which the train is travelling, and the travelling conditions influence the recorded vibration levels. Signal processing techniques, at this stage, are still off-line. Anyway the system has already been designed in order to work under "real time" conditions (a prototype is already existing), also reducing the huge amount of collected data to keep only the essential ones. The attentions have been focused here on the measurement problem, postponing the theoretical aspects to a future paper.

  8. Three-dimensional tracking of cardiac catheters using an inverse geometry x-ray fluoroscopy system

    SciTech Connect

    Speidel, Michael A.; Tomkowiak, Michael T.; Raval, Amish N.; Van Lysel, Michael S.

    2010-12-15

    Purpose: Scanning beam digital x-ray (SBDX) is an inverse geometry fluoroscopic system with high dose efficiency and the ability to perform continuous real-time tomosynthesis at multiple planes. This study describes a tomosynthesis-based method for 3D tracking of high-contrast objects and present the first experimental investigation of cardiac catheter tracking using a prototype SBDX system. Methods: The 3D tracking algorithm utilizes the stack of regularly spaced tomosynthetic planes that are generated by SBDX after each frame period (15 frames/s). Gradient-filtered versions of the image planes are generated, the filtered images are segmented into object regions, and then a 3D coordinate is calculated for each object region. Two phantom studies of tracking performance were conducted. In the first study, an ablation catheter in a chest phantom was imaged as it was pulled along a 3D trajectory defined by a catheter sheath (10, 25, and 50 mm/s pullback speeds). SBDX tip tracking coordinates were compared to the 3D trajectory of the sheath as determined from a CT scan of the phantom after the registration of the SBDX and CT coordinate systems. In the second study, frame-to-frame tracking precision was measured for six different catheter configurations as a function of image noise level (662-7625 photons/mm{sup 2} mean detected x-ray fluence at isocenter). Results: During catheter pullbacks, the 3D distance between the tracked catheter tip and the sheath centerline was 1.0{+-}0.8 mm (mean {+-}one standard deviation). The electrode to centerline distances were comparable to the diameter of the catheter tip (2.3 mm), the confining sheath (4 mm outside diameter), and the estimated SBDX-to-CT registration error ({+-}0.7 mm). The tip position was localized for all 332 image frames analyzed and 83% of tracked positions were inside the 3D sheath volume derived from CT. The pullback speeds derived from the catheter trajectories were within 5% of the programed pullback speeds

  9. Thoron activity level and radon measurement by a nuclear track detector.

    PubMed

    Planinić, J; Faj, Z; Vuković, B

    1993-03-01

    Radon activity concentrations in the air were measured with LR-115 nuclear track detectors at three locations in Osijek. The respective equilibrium factors and the effective dose equivalents were determined. Indoor concentrations were from 9.8 to 58.2 Bq m-3 and relative errors of the track etching method were near 19 per cent. The indoor alpha potential energy of the radon and thoron progenies was measured with an ISD detector. Independent measurements, performed with a Radhome semiconductor detector, showed that the indoor thoron concentration was nearly 20 per cent of the radon one.

  10. Tracking and registration method based on vector operation for augmented reality system

    NASA Astrophysics Data System (ADS)

    Gao, Yanfei; Wang, Hengyou; Bian, Xiaoning

    2015-08-01

    Tracking and registration is one key issue for an augmented reality (AR) system. For the marker-based AR system, the research focuses on detecting the real-time position and orientation of camera. In this paper, we describe a method of tracking and registration using the vector operations. Our method is proved to be stable and accurate, and have a good real-time performance.

  11. Development of a microprocessor-based Sun-tracking system for solar collectors

    NASA Astrophysics Data System (ADS)

    Kohler, S. M.; Wilcoxen, J. L.

    1980-04-01

    The development of a prototype Sun-tracking system and the tests performed on it on an east-west trough solar collector array are described. The system includes a controller built around an RCA1802 microprocessor, a digital shaft encoder, and a heat flux sensor. The heat flux sensor consists of a fine resistance wire wrapped around the receiver tube. The wire is used to correct errors in calculated tracking angles arising from reflector imperfections and misalignments.

  12. Modeling of the internal tracking system of the NICA/MPD detector

    NASA Astrophysics Data System (ADS)

    Zinchenko, A. I.; Murin, Yu. A.; Kondrat'ev, V. P.; Prokof'ev, N. A.

    2016-07-01

    The internal tracking system of the NICA/MPD detector is aimed at efficiently detecting the short-lived products of nucleus-nucleus collisions. We consider various geometries of the internal tracking system based on microstrip silicon sensors and simulate its identification power in reconstructing the Λ0 hyperons formed in central Au + Au collisions at √ {{S_{NN}}} = 9GeV.

  13. Radiation-hardened fast acquisition/weak signal tracking system and method

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke (Inventor); Boegner, Gregory J. (Inventor); Sirotzky, Steve (Inventor)

    2009-01-01

    A global positioning system (GPS) receiver and method of acquiring and tracking GPS signals comprises an antenna adapted to receive GPS signals; an analog radio frequency device operatively connected to the antenna and adapted to convert the GPS signals from an analog format to a digital format; a plurality of GPS signal tracking correlators operatively connected to the analog RF device; a GPS signal acquisition component operatively connected to the analog RF device and the plurality of GPS signal tracking correlators, wherein the GPS signal acquisition component is adapted to calculate a maximum vector on a databit correlation grid; and a microprocessor operatively connected to the plurality of GPS signal tracking correlators and the GPS signal acquisition component, wherein the microprocessor is adapted to compare the maximum vector with a predetermined correlation threshold to allow the GPS signal to be fully acquired and tracked.

  14. The Integrated Waste Tracking Systems (IWTS) - A Comprehensive Waste Management Tool

    SciTech Connect

    Robert S. Anderson

    2005-09-01

    The US Department of Energy (DOE) Idaho National Laboratory (INL) site located near Idaho Falls, ID USA, has developed a comprehensive waste management and tracking tool that integrates multiple operational activities with characterization data from waste declaration through final waste disposition. The Integrated Waste Tracking System (IWTS) provides information necessary to help facility personnel properly manage their waste and demonstrate a wide range of legal and regulatory compliance. As a client?server database system, the IWTS is a proven tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of flexibility. This paper describes some of the history involved with the development and current use of IWTS as a comprehensive waste management tool as well as a discussion of IWTS deployments performed by the INL for outside clients. Waste management spans a wide range of activities including: work group interactions, regulatory compliance management, reporting, procedure management, and similar activities. The IWTS documents these activities and performs tasks in a computer-automated environment. Waste characterization data, container characterization data, shipments, waste processing, disposals, reporting, and limit compliance checks are just a few of the items that IWTS documents and performs to help waste management personnel perform their jobs. Throughout most hazardous and radioactive waste generating, storage and disposal sites, waste management is performed by many different groups of people in many facilities. Several organizations administer their areas of waste management using their own procedures and documentation independent of other organizations. Files are kept, some of which are treated as quality records, others not as stringent. Quality records maintain a history of: changes performed after approval, the reason for the change(s), and a record of whom and when

  15. Hand, belt, pocket or bag: Practical activity tracking with mobile phones

    PubMed Central

    Antos, Stephen A.; Albert, Mark V.; Kording, Konrad P.

    2013-01-01

    For rehabilitation and diagnoses, an understanding of patient activities and movements is important. Modern smartphones have built in accelerometers which promise to enable quantifying minute-by-minute what patients do (e.g. walk or sit). Such a capability could inform recommendations of physical activities and improve medical diagnostics. However, a major problem is that during everyday life, we carry our phone in different ways, e.g. on our belt, in our pocket, in our hand, or in a bag. The recorded accelerations are not only affected by our activities but also by the phone’s location. Here we develop a method to solve this kind of problem, based on the intuition that activities change rarely, and phone locations change even less often. A Hidden Markov Model (HMM) tracks changes across both activities and locations, enabled by a static Support Vector Machine (SVM) classifier that probabilistically identifies activity-location pairs. We find that this approach improves tracking accuracy on healthy subjects as compared to a static classifier alone. The obtained method can be readily applied to patient populations. Our research enables the use of phones as activity tracking devices, without the need of previous approaches to instruct subjects to always carry the phone in the same location. PMID:24091138

  16. QUANTITATIVE CELL MOTILITY FOR IN VITRO WOUND HEALING USING LEVEL SET-BASED ACTIVE CONTOUR TRACKING.

    PubMed

    Bunyak, Filiz; Palaniappan, Kannappan; Nath, Sumit K; Baskin, Tobias I; Dong, Gang

    2006-04-06

    Quantifying the behavior of cells individually, and in clusters as part of a population, under a range of experimental conditions, is a challenging computational task with many biological applications. We propose a versatile algorithm for segmentation and tracking of multiple motile epithelial cells during wound healing using time-lapse video. The segmentation part of the proposed method relies on a level set-based active contour algorithm that robustly handles a large number of cells. The tracking part relies on a detection-based multiple-object tracking method with delayed decision enabled by multi-hypothesis testing. The combined method is robust to complex cell behavior including division and apoptosis, and to imaging artifacts such as illumination changes.

  17. Adaptive tracking of weld joints using active contour model in arc-welding processes

    NASA Astrophysics Data System (ADS)

    Kim, Jaeseon; Koh, Kyoungchul; Cho, Hyungsuck

    2001-02-01

    12 This paper presents a vision processing scheme to automatic weld joint tracking in robotic arc welding process. Particular attention is concentrated on its robustness against various optical disturbances, such as arc glares and weld spatters radiating from the melted weld pool. Underlying the developed vision processing is a kind of model-based pattern searching, which is necessarily accompanied by two separate stages of modeling and tracking. In the modeling stage, a syntactic approach is adopted to identify unknown weld joint structure. The joint profile identified in the modeling stage is used as a starting point for successive tracking of variations in the geometry of weld joint during welding, which is automatically achieved by an active contour model technology following feature- based template matching. The performance of the developed scheme is investigated through a series of practical welding experiments.

  18. Tracking C. elegans and its neuromuscular activity using NemaFlex

    NASA Astrophysics Data System (ADS)

    van Bussel, Frank; Rahman, Mizanur; Hewitt, Jennifer; Blawzdziewicz, Jerzy; Driscoll, Monica; Szewczyk, Nathaniel; Vanapalli, Siva

    Recently, a novel platform has been developed for studying the behavior and physical characteristics of the nematode C. elegans. This is NemaFlex, developed by the Vanapalli group at Texas Tech University to analyze movement and muscular strength of crawling C. elegans. NemaFlex is a microfluidic device consisting of an array of deformable PDMS pillars, with which the C. elegans interacts in the course of moving through the system. Deflection measurements then allow us to calculate the force exerted by the worm via Euler-Bernoulli beam theory. For the procedure to be fully automated a fairly sophisticated software analysis has to be developed in tandem with the physical device. In particular, the usefulness of the force calculations is highly dependent on the accuracy and volume of the deflection measurements, which would be prohibitively time-consuming if carried out by hand/eye. In order to correlate the force results with muscle activations the C. elegans itself has to be tracked simultaneously, and pillar deflections precisely associated with mechanical-contact on the worm's body. Here we will outline the data processing and analysis routines that have been implemented in order to automate the calculation of these forces and muscular activations.

  19. Incorporating system latency associated with real-time target tracking radiotherapy in the dose prediction step

    NASA Astrophysics Data System (ADS)

    Roland, Teboh; Mavroidis, Panayiotis; Shi, Chengyu; Papanikolaou, Nikos

    2010-05-01

    System latency introduces geometric errors in the course of real-time target tracking radiotherapy. This effect can be minimized, for example by the use of predictive filters, but cannot be completely avoided. In this work, we present a convolution technique that can incorporate the effect as part of the treatment planning process. The method can be applied independently or in conjunction with the predictive filters to compensate for residual latency effects. The implementation was performed on TrackBeam (Initia Ltd, Israel), a prototype real-time target tracking system assembled and evaluated at our Cancer Institute. For the experimental system settings examined, a Gaussian distribution attributable to the TrackBeam latency was derived with σ = 3.7 mm. The TrackBeam latency, expressed as an average response time, was deduced to be 172 ms. Phantom investigations were further performed to verify the convolution technique. In addition, patient studies involving 4DCT volumes of previously treated lung cancer patients were performed to incorporate the latency effect in the dose prediction step. This also enabled us to effectively quantify the dosimetric and radiobiological impact of the TrackBeam and other higher latency effects on the clinical outcome of a real-time target tracking delivery.

  20. Comparative system identification of flower tracking performance in three hawkmoth species reveals adaptations for dim light vision.

    PubMed

    Stöckl, Anna L; Kihlström, Klara; Chandler, Steven; Sponberg, Simon

    2017-04-05

    Flight control in insects is heavily dependent on vision. Thus, in dim light, the decreased reliability of visual signal detection also prompts consequences for insect flight. We have an emerging understanding of the neural mechanisms that different species employ to adapt the visual system to low light. However, much less explored are comparative analyses of how low light affects the flight behaviour of insect species, and the corresponding links between physiological adaptations and behaviour. We investigated whether the flower tracking behaviour of three hawkmoth species with different diel activity patterns revealed luminance-dependent adaptations, using a system identification approach. We found clear luminance-dependent differences in flower tracking in all three species, which were explained by a simple luminance-dependent delay model, which generalized across species. We discuss physiological and anatomical explanations for the variance in tracking responses, which could not be explained by such simple models. Differences between species could not be explained by the simple delay model. However, in several cases, they could be explained through the addition on a second model parameter, a simple scaling term, that captures the responsiveness of each species to flower movements. Thus, we demonstrate here that much of the variance in the luminance-dependent flower tracking responses of hawkmoths with different diel activity patterns can be captured by simple models of neural processing.This article is part of the themed issue 'Vision in dim light'.

  1. Tracking wildlife by satellite: Current systems and performance

    USGS Publications Warehouse

    Harris, Richard B.; Fancy, Steven G.; Douglas, David C.; Garner, Gerald W.; Amstrup, Steven C.; McCabe, Thomas R.; Pank, Larry F.

    1990-01-01

    Since 1984, the U.S. Fish and Wildlife Service has used the Argos Data Collection and Location System (DCLS) and Tiros-N series satellites to monitor movements and activities of 10 species of large mammals in Alaska and the Rocky Mountain region. Reliability of the entire system was generally high. Data were received from instrumented caribou (Rangifer tarandus) during 91% of 318 possible transmitter-months. Transmitters failed prematurely on 5 of 45 caribou, 2 of 6 muskoxen (Ovibos moschatus), and 1 of 2 gray wolves (Canis lupus). Failure rates were considerably higher for polar (Ursus maritimus) and brown (U. arctos) bears than for caribou (Rangifer tarandus). Efficiency of gathering both locational and sensor data was related to both latitude and topography.Mean error of locations was estimated to be 954 m (median = 543 m) for transmitters on captive animals; 90% of locations were <1,732 m from the true location. Argos's new location class zero processing provided many more locations than normal processing, but mean location error was much higher than locations estimated normally. Locations were biased when animals were at elevations other than those used in Argos's calculations.Long-term and short-term indices of animal activity were developed and evaluated. For several species, the long-term index was correlated with movement patterns and the short-term index was calibrated to specific activity categories (e.g., lying, feeding, walking).Data processing and sampling considerations were evaluated. Algorithms for choosing the most reliable among a series of reported locations were investigated. Applications of satellite telemetry data and problems with lack of independence among locations are discussed.

  2. Survey of tracking systems and rotary joints for coolant piping. Final report, August 15, 1978-August 14, 1978. [Includes patents

    SciTech Connect

    Furaus, J P; Gruchalla, M E; Sower, G D

    1980-01-01

    Problems were surveyed and evaluated with respect to solar tracking mechanisms and rotary joints for coolant piping. An analytical development of celestial mechanics, one- and two-axis tracking configurations and the effect of tracking accuracy versus collector efficiency are reported. Daily operational requirements and tracking modes were defined and evaluated. A literature and patent search on solar tracking technology was performed. Tracking system and control system performance specifications were determined. Alternative conceptual tracking approaches were defined and a cost and performance evaluation of a mechanical tracking concept was performed. Fluid coupling service specifications were determined. The cost and performance of several types of actuators and error detectors were evaluated with respect to solar tracking mechanisms.

  3. Using a partnership barometer to evaluate environmental public health tracking activities.

    PubMed

    Bekkedal, Marni Y V; Malecki, Kristen M; Werner, Mark A; Anderson, Henry A

    2008-01-01

    High-quality environmental health surveillance is challenged by a system in which environmental and health agencies often function with insufficient coordination to routinely address critical issues. The Environmental Public Health Tracking program is working to build a more cohesive system with the capacity for integrated data and information. This work requires a significant amount of effort dedicated to establishing strong partnerships between agencies. Such a task requires skills and activities that differ significantly from the more technical skills needed to physically link data and information from environmental and health resources. Although the work to link people is different from linking data, it is of primary importance because the development of strong partnerships almost invariably provides the necessary foundation for the future integration of data and expertise. As such, the development of partnerships between environmental and health agencies needs to be recognized as a priority product. One approach for moving partnerships into the fore is the creation of assessment tools, or "partnership barometers," that objectively quantify the collaborative process for monitoring progress between and within partners over time. Such measurement would provide a realistic indicator of progress toward tangible products but more importantly emphasizes the importance of building sustainable relationships.

  4. Modeling of the Mode S tracking system in support of aircraft safety research

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.

    1982-01-01

    This report collects, documents, and models data relating the expected accuracies of tracking variables to be obtained from the FAA's Mode S Secondary Surveillance Radar system. The data include measured range and azimuth to the tracked aircraft plus the encoded altitude transmitted via the Mode S data link. A brief summary is made of the Mode S system status and its potential applications for aircraft safety improvement including accident analysis. FAA flight test results are presented demonstrating Mode S range and azimuth accuracy and error characteristics and comparing Mode S to the current ATCRBS radar tracking system. Data are also presented that describe the expected accuracy and error characteristics of encoded altitude. These data are used to formulate mathematical error models of the Mode S variables and encoded altitude. A brief analytical assessment is made of the real-time tracking accuracy available from using Mode S and how it could be improved with down-linked velocity.

  5. Parameter Estimation in Communication System Tracking Satellite Observations.

    DTIC Science & Technology

    1984-12-01

    of the K.F, another storm was created. The equations for this simulated storm were: BLAT(s) = BLAT(s-l)-V *Tx BLONG (s) BLONG (s-l)-V *T y LAT(s) = BLAT...s) + V(s) LONG(s) = BLONG (s) + V(s) where T=6hr, V -100 /24hr, V =50 /24hr and V = measurementX y . p noise (created by a random generator subroutine...34tracks" the measurements closely. As far as the latitude and longitude errors are concerned it can be seen that EBI (YH-BLAT) and EB2(XH- BLONG ) are

  6. Tracking human activity and well-being in natural environments using wearable sensors and experience sampling.

    PubMed

    Doherty, Sean T; Lemieux, Christopher J; Canally, Culum

    2014-04-01

    A growing range of studies have begun to document the health and well-being benefits associated with contact with nature. Most studies rely on generalized self-reports following engagement in the natural environment. The actual in-situ experience during contact with nature, and the environmental features and factors that evoke health benefits have remained relatively unexplored. Smartphones offer a new opportunity to monitor and interact with human subjects during everyday life using techniques such as Experience Sampling Methods (ESM) that involve repeated self-reports of experiences as they occur in-situ. Additionally, embedded sensors in smartphones such as Global Positioning Systems (GPS) and accelerometers can accurately trace human activities. This paper explores how these techniques can be combined to comprehensively explore the perceived health and well-being impacts of contact with nature. Custom software was developed to passively track GPS and accelerometer data, and actively prompt subjects to complete an ESM survey at regular intervals throughout their visit to a provincial park in Ontario, Canada. The ESM survey includes nine scale questions concerning moods and emotions, followed by a series of open-ended experiential questions that subjects provide recorded audio responses to. Pilot test results are used to illustrate the nature, quantity and quality of data obtained. Participant activities were clearly evident from GPS maps, including especially walking, cycling and sedate activities. From the ESM surveys, participants reported an average of 25 words per question, taking an average of 15 s to record them. Further qualitative analysis revealed that participants were willing to provide considerable insights into their experiences and perceived health impacts. The combination of passive and interactive techniques is sure to make larger studies of this type more affordable and less burdensome in the future, further enhancing the ability to understand

  7. Accuracy of optical navigation systems for automatic head surgery: optical tracking versus optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Díaz Díaz, Jesús; Riva, Mauro H.; Majdani, Omid; Ortmaier, Tobias

    2014-03-01

    The choice of a navigation system highly depends on the medical intervention and its accuracy demands. The most commonly used systems for image guided surgery (IGS) are based on optical and magnetic tracking systems. This paper compares two optical systems in terms of accuracy: state of the art triangulation-based optical tracking (OT) and optical coherence tomography (OCT). We use an experimental setup with a combined OCT and cutting laser, and an external OT. We simulate a robotic assisted surgical intervention, including planning, navigation, and processing, and compare the accuracies reached at a specific target with each navigation system.

  8. Development of mass-producible line-focus tracking concentrating solar collectors. Category 2: Control systems

    NASA Astrophysics Data System (ADS)

    Hickman, T. E.

    1984-08-01

    The system design criteria and concept of a mass producible modular electronic control system for solar industrial process heating installations are discussed. The control system consists of: the master controller; the weather tower, including a solar tracking angle reference; and overtemperature switch, group control box, tracker/controller, and drive motor for each group of single axis tracking parabolic trough solar collectors. System automatic operation is outlined for unattended installations. The production approach and cost estimates, both based on a production rate of 5 million ft(2) of collector aperature per year, are discussed here. The potential for further development of the system is also presented.

  9. Performance advantages of two-axis tracking for large flat-plate photovoltaic energy systems

    SciTech Connect

    Gay, C.F.; Wilson, J.H.; Yerkes, J.W.

    1982-09-01

    Daily and annual energy-delivery performance is compared for large-scale fixed-array and two-axis tracking photovoltaic generating systems similar to the ASI Project at Lugo, California. Systems of equal peak-watt rating and systems of different sizes but equal annual energy output are compared in the Lugo setting. Site sensitivities are discussed. For the site studied, it is observed that a fixed-array system would use about 40% more modules than a two-axis tracking system, for equal annual energy.

  10. Performance advantages of two-axis tracking for large flat-plate photovoltaic energy systems

    NASA Astrophysics Data System (ADS)

    Gay, C. F.; Yerkes, J. W.; Wilson, J. H.

    Daily and annual energy-delivery performance is compared for large-scale fixed-array and two-axis tracking photovoltaic generating systems similar to the ASI Project at Lugo, CA. Systems of equal peak-watt rating and systems of different sizes but equal annual energy output are compared in the Lugo setting. Site sensitivities are discussed. For the site studied, it is observed that a fixed-array system would use about 40 percent more modules than a two-axis tracking system, for equal annual energy.

  11. Study of a tracking and data acquisition system for the 1990's. Volume 3: TDAS Communication Mission Model

    NASA Technical Reports Server (NTRS)

    Mccreary, T.

    1983-01-01

    A parametric description of the communication channels required between the user spacecraft to be supported and the user ground data systems is developed. Scenarios of mission models, which reflect a range of free flyers vs space platform usage as well as levels of NASA activity and potential support for military missions, and potential channel requirements which identify: (1) bounds on TDAS forward and return link data communication demand, and (2) the additional demand for providing navigation/tracking support are covered.

  12. Segmentation and tracking in echocardiographic sequences: active contours guided by optical flow estimates

    NASA Technical Reports Server (NTRS)

    Mikic, I.; Krucinski, S.; Thomas, J. D.

    1998-01-01

    This paper presents a method for segmentation and tracking of cardiac structures in ultrasound image sequences. The developed algorithm is based on the active contour framework. This approach requires initial placement of the contour close to the desired position in the image, usually an object outline. Best contour shape and position are then calculated, assuming that at this configuration a global energy function, associated with a contour, attains its minimum. Active contours can be used for tracking by selecting a solution from a previous frame as an initial position in a present frame. Such an approach, however, fails for large displacements of the object of interest. This paper presents a technique that incorporates the information on pixel velocities (optical flow) into the estimate of initial contour to enable tracking of fast-moving objects. The algorithm was tested on several ultrasound image sequences, each covering one complete cardiac cycle. The contour successfully tracked boundaries of mitral valve leaflets, aortic root and endocardial borders of the left ventricle. The algorithm-generated outlines were compared against manual tracings by expert physicians. The automated method resulted in contours that were within the boundaries of intraobserver variability.

  13. Real-time skeleton tracking for embedded systems

    NASA Astrophysics Data System (ADS)

    Coleca, Foti; Klement, Sascha; Martinetz, Thomas; Barth, Erhardt

    2013-03-01

    Touch-free gesture technology is beginning to become more popular with consumers and may have a significant future impact on interfaces for digital photography. However, almost every commercial software framework for gesture and pose detection is aimed at either desktop PCs or high-powered GPUs, making mobile implementations for gesture recognition an attractive area for research and development. In this paper we present an algorithm for hand skeleton tracking and gesture recognition that runs on an ARM-based platform (Pandaboard ES, OMAP 4460 architecture). The algorithm uses self-organizing maps to fit a given topology (skeleton) into a 3D point cloud. This is a novel way of approaching the problem of pose recognition as it does not employ complex optimization techniques or data-based learning. After an initial background segmentation step, the algorithm is ran in parallel with heuristics, which detect and correct artifacts arising from insufficient or erroneous input data. We then optimize the algorithm for the ARM platform using fixed-point computation and the NEON SIMD architecture the OMAP4460 provides. We tested the algorithm with two different depth-sensing devices (Microsoft Kinect, PMD Camboard). For both input devices we were able to accurately track the skeleton at the native framerate of the cameras.

  14. Strategy for accurate liver intervention by an optical tracking system

    PubMed Central

    Lin, Qinyong; Yang, Rongqian; Cai, Ken; Guan, Peifeng; Xiao, Weihu; Wu, Xiaoming

    2015-01-01

    Image-guided navigation for radiofrequency ablation of liver tumors requires the accurate guidance of needle insertion into a tumor target. The main challenge of image-guided navigation for radiofrequency ablation of liver tumors is the occurrence of liver deformations caused by respiratory motion. This study reports a strategy of real-time automatic registration to track custom fiducial markers glued onto the surface of a patient’s abdomen to find the respiratory phase, in which the static preoperative CT is performed. Custom fiducial markers are designed. Real-time automatic registration method consists of the automatic localization of custom fiducial markers in the patient and image spaces. The fiducial registration error is calculated in real time and indicates if the current respiratory phase corresponds to the phase of the static preoperative CT. To demonstrate the feasibility of the proposed strategy, a liver simulator is constructed and two volunteers are involved in the preliminary experiments. An ex-vivo porcine liver model is employed to further verify the strategy for liver intervention. Experimental results demonstrate that real-time automatic registration method is rapid, accurate, and feasible for capturing the respiratory phase from which the static preoperative CT anatomical model is generated by tracking the movement of the skin-adhered custom fiducial markers. PMID:26417501

  15. Development of CMOS pixel sensors for the upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Molnar, L.

    2014-12-01

    The ALICE Collaboration is preparing a major upgrade of the current detector, planned for installation during the second long LHC shutdown in the years 2018-19, in order to enhance its low-momentum vertexing and tracking capability, and exploit the planned increase of the LHC luminosity with Pb beams. One of the cornerstones of the ALICE upgrade strategy is to replace the current Inner Tracking System in its entirety with a new, high resolution, low-material ITS detector. The new ITS will consist of seven concentric layers equipped with Monolithic Active Pixel Sensors (MAPS) implemented using the 0.18 μm CMOS technology of TowerJazz. In this contribution, the main key features of the ITS upgrade will be illustrated with emphasis on the functionality of the pixel chip. The ongoing developments on the readout architectures, which have been implemented in several fabricated prototypes, will be discussed. The operational features of these prototypes as well as the results of the characterisation tests before and after irradiation will also be presented.

  16. Field test results of the three-dimensional acquisition and tracking (3DATA) sensor system

    NASA Astrophysics Data System (ADS)

    Fairchild, Paul W.; Lilly, David; Matkin, William B.

    2004-01-01

    Trex has developed two innovative MWIR tracking systems, the Rapid Optical Beam Steering (ROBS) system and the Fast InfraRed Sniper Tracker (FIRST). ROBS was developed by Trex in the mid 1980"s for BMDO and the Navy as a prototype 0.5 meter aperture, wide-angle, multiple target detection, tracking, and imaging system with laser ranging. The smaller FIRST system was developed in the mid 1990"s by Trex for DARPA to acquire and track small caliber bullets. Both systems utilize innovative fast steering methods for achieving very high acceleration rates, ~ 1,000 radians/sec2 for ROBS and ~ 40,000 radians/sec2 for the FIRST system. Each can provide high precision 3D tracking over a large field of regard and both have been demonstrated in field tests. Presently the capabilities of these systems are being expanded. A newer version of the ROBS, 3DATA, is being completed which will provide a capability to precisely track in three dimensions up to 20 targets per second, simultaneously. In addition, an upgraded FIRST system is being designed and built which will handle multiple slow targets in addition to the faster bullets.

  17. Spherical Gaussian mixture model and object tracking system for PTZ camera

    NASA Astrophysics Data System (ADS)

    Hwangbo, Seok; Lee, Chan-Su

    2015-05-01

    Recently, pan-tilt-zoom(PTZ) camera is widely used in extensive-area surveillance applications. A number of background modeling methods have been proposed within existing object detection and tracking systems. However, conventional background modeling methods for PTZ camera have difficulties in covering extensive field of view(FOV). This paper presents a novel object tracking system based on a spherical background model for PTZ camera. The proposed system has two components: The first one is the spherical Gaussian mixture model(S-GMM) that learns background for all the view angles in the PTZ camera. Also, Gaussian parameters in each pixel in the S-GMM are learned and updated. The second one is object tracking system with foreground detection using the S-GMM in real-time. The proposed system is suitable to cover wide FOV compared to a conventional background modeling system for PTZ camera, and is able to exactly track moving objects. We demonstrate the advantages of the proposed S-GMM for object tracking system using PTZ camera. Also, we expect to build a more advanced surveillance applications via the proposed system.

  18. PITBUL: a physics-based modeling package for imaging and tracking of airborne targets for HEL applications including active illumination

    NASA Astrophysics Data System (ADS)

    Van Zandt, Noah R.; McCrae, Jack E.; Fiorino, Steven T.

    2013-05-01

    Aimpoint acquisition and maintenance is critical to high energy laser (HEL) system performance. This study demonstrates the development by the AFIT/CDE of a physics-based modeling package, PITBUL, for tracking airborne targets for HEL applications, including atmospheric and sensor effects and active illumination, which is a focus of this work. High-resolution simulated imagery of the 3D airborne target in-flight as seen from the laser position is generated using the HELSEEM model, and includes solar illumination, laser illumination, and thermal emission. Both CW and pulsed laser illumination are modeled, including the effects of illuminator scintillation, atmospheric backscatter, and speckle, which are treated at a first-principles level. Realistic vertical profiles of molecular and aerosol absorption and scattering, as well as optical turbulence, are generated using AFIT/CDE's Laser Environmental Effects Definition and Reference (LEEDR) model. The spatially and temporally varying effects of turbulence are calculated and applied via a fast-running wave optical method known as light tunneling. Sensor effects, for example blur, sampling, read-out noise, and random photon arrival, are applied to the imagery. Track algorithms, including centroid and Fitts correlation, as a part of a closed loop tracker are applied to the degraded imagery and scored, to provide an estimate of overall system performance. To gauge performance of a laser system against a UAV target, tracking results are presented as a function of signal to noise ratio. Additionally, validation efforts to date involving comparisons between simulated and experimental tracking of UAVs are presented.

  19. Two-stage feedforward tracking control system with error-based disturbance observer for optical discs

    NASA Astrophysics Data System (ADS)

    Sakimura, Naohide; Ohashi, Takahiro; Ohishi, Kiyoshi; Miyazaki, Toshimasa

    2014-09-01

    Recently, the scaling up of the storage capacity and data transfer rate of digital storage media has been required. However, increasing in the storage capacity and transfer rate makes optical head control more difficult. Thus, a tracking control system for optical discs must exhibit a high degree of precision control. Consequently, a new two-stage feedforward control (TSFFC) system for high-precision control is proposed in this paper. The proposed system is constructed using two zero phase error tracking (ZPET) control systems based on error prediction and an error-based disturbance observer (EDOB) that uses a notch filter to suppress non periodic disturbances. The proposed control system is designed for DDU-1000 for digital versatile discs (DVDs). The experimental results demonstrate that the proposed system effectively suppresses tracking errors.

  20. Design of a holographic tracking module for long-range retroreflector free-space systems.

    PubMed

    Quintana, C; Erry, G; Gomez, A; Thueux, Y; Faulkner, G E; O'Brien, D C

    2016-09-01

    Weight reduction and low power consumption are key requirements in the next generation of unmanned aerial vehicles (UAVs). To communicate with an operator, a secured link between the UAV and a ground-based station is desirable. To realize these links, retroreflecting free-space optics is potentially attractive as it offers light weight and low complexity at the UAV. However, the base station requires a high-performance tracking module to enable a steady illumination of the UAV retroreflector. In this paper, we present the design and implementation of a tracking system, which consists of coarse tracking and holographic fine tracking modules working cooperatively. Using this system, experimental field trials were carried out by mounting a multiple-quantum-well-based modulated retroreflector on a commercial UAV. A 2 Mbps optical link was achieved with a bit error rate of ∼2×10-4 at a link range of 300 m.

  1. Comparison of RFID systems for tracking clinical interventions at the bedside.

    PubMed

    Ohashi, Kumiko; Ota, Sakiko; Ohno-Machado, Lucila; Tanaka, Hiroshi

    2008-11-06

    In recent years, there have been high expectations for RFID technologies applied in the medical field, particularly for automatic identification and location of patients and medical supplies. However, few studies have measured the applicability of currently available RFID technologies in a medical environment. To determine the technical factors that affect the performance of RFID systems, we examined the performance of different types of tags for medications, medical equipment, nurses, and patients under different experimental conditions. Three kinds of passive RFID tags and one active RFID tag were used in our study. Passive tags were affected by materials such as liquid and metal. Tags based on 13.56MHz were most suited for identifying medications. Tag placement was one of the main factors involved in correct identification of nurses, patients, and medical equipment. The results of this study may help decision makers decide whether (which) RFID technologies are useful for tracking clinical workflow.

  2. Target-Tracking Camera for a Metrology System

    NASA Technical Reports Server (NTRS)

    Liebe, Carl; Bartman, Randall; Chapsky, Jacob; Abramovici, Alexander; Brown, David

    2009-01-01

    An analog electronic camera that is part of a metrology system measures the varying direction to a light-emitting diode that serves as a bright point target. In the original application for which the camera was developed, the metrological system is used to determine the varying relative positions of radiating elements of an airborne synthetic aperture-radar (SAR) antenna as the airplane flexes during flight; precise knowledge of the relative positions as a function of time is needed for processing SAR readings. It has been common metrology system practice to measure the varying direction to a bright target by use of an electronic camera of the charge-coupled-device or active-pixel-sensor type. A major disadvantage of this practice arises from the necessity of reading out and digitizing the outputs from a large number of pixels and processing the resulting digital values in a computer to determine the centroid of a target: Because of the time taken by the readout, digitization, and computation, the update rate is limited to tens of hertz. In contrast, the analog nature of the present camera makes it possible to achieve an update rate of hundreds of hertz, and no computer is needed to determine the centroid. The camera is based on a position-sensitive detector (PSD), which is a rectangular photodiode with output contacts at opposite ends. PSDs are usually used in triangulation for measuring small distances. PSDs are manufactured in both one- and two-dimensional versions. Because it is very difficult to calibrate two-dimensional PSDs accurately, the focal-plane sensors used in this camera are two orthogonally mounted one-dimensional PSDs.

  3. On the Right Track.

    ERIC Educational Resources Information Center

    Bieber, Ed

    1983-01-01

    Suggests thinking of "tracks" as clues and using them as the focus of outdoor activities in the urban environment. Provides 24 examples of possible track activities, including: seeds on the ground (track of a nearby tree), litter (track of a litterbug), and peeling paint (track of weathering forces). (JN)

  4. A self-directing elastic backscatter lidar system for debris cloud tracking and characterization

    SciTech Connect

    Clark, D.A.; Dighe, K.A.; Tunnell, T.W.

    1996-06-01

    An elastic backscatter lidar that utilizes the lidar signal itself to direct the system towards fast moving isolated aerosol clouds has been developed. However, detecting and tracking invisible transient effluents from unknown locations, though conceptually straightforward, has still remained experimentally challenging. Accurate cloud volume, cloud density distribution, and track information have been obtained on small, fast moving, subvisible debris clouds resulting from above ground tests in which conventional explosives were detonated.

  5. [Image tracking system. A new technique for safe and cost-saving laparoscopic operation].

    PubMed

    Niebuhr, H; Born, O

    2000-05-01

    The potential for improvement of the results of laparoscopic operations as well as necessity of enhanced efficiency in the health-care systems are the main reasons for development and practical use of robotic systems in the field of laparoscopic surgery. While robotic systems imitate the human camera-holder the Image Tracking System (ImagTrac, Olympus, Tokio) is based on another principle: A voice-activated zoom function allows change between overview and detailed view. In the zoom-in position it is possible to select four different fields of view. The results of a clinical trial with control group show that the system: 1. Makes it possible to dispense with the human camera-holder without compromising patient safety, sometimes at greater convenience to the surgeon. 2. Makes it possible for routine laparoscopic operations such as laparoscopic cholecystectomy and laparoscopic hernia repair to be performed (as solo surgery) by a team of a surgeon and a nurse only. 3. Is more cost-effective than robotic systems with a similar range of features.

  6. Beam width and transmitter power adaptive to tracking system performance for free-space optical communication.

    PubMed

    Arnon, S; Rotman, S; Kopeika, N S

    1997-08-20

    The basic free-space optical communication system includes at least two satellites. To communicate between them, the transmitter satellite must track the beacon of the receiver satellite and point the information optical beam in its direction. Optical tracking and pointing systems for free space suffer during tracking from high-amplitude vibration because of background radiation from interstellar objects such as the Sun, Moon, Earth, and stars in the tracking field of view or the mechanical impact from satellite internal and external sources. The vibrations of beam pointing increase the bit error rate and jam communication between the two satellites. One way to overcome this problem is to increase the satellite receiver beacon power. However, this solution requires increased power consumption and weight, both of which are disadvantageous in satellite development. Considering these facts, we derive a mathematical model of a communication system that adapts optimally the transmitter beam width and the transmitted power to the tracking system performance. Based on this model, we investigate the performance of a communication system with discrete element optical phased array transmitter telescope gain. An example for a practical communication system between a Low Earth Orbit Satellite and a Geostationary Earth Orbit Satellite is presented. From the results of this research it can be seen that a four-element adaptive transmitter telescope is sufficient to compensate for vibration amplitude doubling. The benefits of the proposed model are less required transmitter power and improved communication system performance.

  7. Multileaf collimator tracking integrated with a novel x-ray imaging system and external surrogate monitoring

    NASA Astrophysics Data System (ADS)

    Krauss, Andreas; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe

    2012-04-01

    We have previously developed a tumour tracking system, which adapts the aperture of a Siemens 160 MLC to electromagnetically monitored target motion. In this study, we exploit the use of a novel linac-mounted kilovoltage x-ray imaging system for MLC tracking. The unique in-line geometry of the imaging system allows the detection of target motion perpendicular to the treatment beam (i.e. the directions usually featuring steep dose gradients). We utilized the imaging system either alone or in combination with an external surrogate monitoring system. We equipped a Siemens ARTISTE linac with two flat panel detectors, one directly underneath the linac head for motion monitoring and the other underneath the patient couch for geometric tracking accuracy assessments. A programmable phantom with an embedded metal marker reproduced three patient breathing traces. For MLC tracking based on x-ray imaging alone, marker position was detected at a frame rate of 7.1 Hz. For the combined external and internal motion monitoring system, a total of only 85 x-ray images were acquired prior to or in between the delivery of ten segments of an IMRT beam. External motion was monitored with a potentiometer. A correlation model between external and internal motion was established. The real-time component of the MLC tracking procedure then relied solely on the correlation model estimations of internal motion based on the external signal. Geometric tracking accuracies were 0.6 mm (1.1 mm) and 1.8 mm (1.6 mm) in directions perpendicular and parallel to the leaf travel direction for the x-ray-only (the combined external and internal) motion monitoring system in spite of a total system latency of ˜0.62 s (˜0.51 s). Dosimetric accuracy for a highly modulated IMRT beam-assessed through radiographic film dosimetry-improved substantially when tracking was applied, but depended strongly on the respective geometric tracking accuracy. In conclusion, we have for the first time integrated MLC tracking

  8. Evolution of registry and tracking system for organ transplantation in Japan.

    PubMed

    Yuzawa, K; Takahara, S; Kanmochi, T; Takahashio, K; Umeshita, H; Monden, M; Teraoka, S

    2012-05-01

    Previously, the renal and liver transplantation registry in Japan was enforced yearly using registration and tracking papers only on recipients. The input of all patient data and announcement of statistical analysis to the public required a long time. Following The Declaration of Istanbul 2008, the committees planned to establish new registry and tracking systems for renal and liver transplantations on both recipients and donors. As the first step, for renal transplantation, we established a new registry and tracking system, JARTRE (JApan Renal Transplantation REgistry), using flash (USB) memory in 2009. The recipient and donor data were inputted into the USB memory in the transplantation centers. The memory was collected once a year by the committees with performed at 3 months at 1 year and every year after, the operation. As the second step, for liver transplantation, we established an online registry and tracking system, LITRE-J (LIver Transplantation REgistry in Japan), using the Internet in 2011. The recipient and donor data are inputted online in the centers just after transplantation. The tracking is performed at 3 months, at 1 year and every year after the operation. In 2012, we will convert the JARTRE system to an online registration and tracking system using the Internet like LITRE-J. The advantages of these system are the ease of input, scope of the data, and rapidly for statistical processing. Herein we have reported the details of JARTRE and LITRE-J, as well as the evaluation of the registry and tracking systems for renal and liver transplantation in Japan.

  9. Analyses of trawling track and fishing activity based on the data of vessel monitoring system (VMS): A case study of the single otter trawl vessels in the Zhoushan fishing ground

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Wang, Yingbin; Zheng, Ji

    2015-02-01

    The original purpose of Vessel Monitoring System (VMS) is for enforcement and control of vessel sailing. With the application of VMS in fishing vessels, more and more population dynamic studies have used VMS data to improve the accuracy of fisheries stock assessment. In this paper, we simulated the trawl trajectory under different time intervals using the cubic Hermite spline (cHs) interpolation method based on the VMS data of 8 single otter trawl vessels (totally 36000 data items) fishing in Zhoushan fishing ground from September 2012 to December 2012, and selected the appropriate time interval. We then determined vessels' activities (fishing or non-fishing) by comparing VMS speed data with the corresponding speeds from logbooks. The results showed that the error of simulated trajectory greatly increased with the increase of time intervals of VMS data when they were longer than 30 minutes. Comparing the speeds from VMS with those from the corresponding logbooks, we found that the vessels' speeds were between 2.5 kn and 5.0 kn in fishing. The cHs interpolation method is a new choice for improving the accuracy of estimation of sailing trajectory, and the VMS can be used to determine the vessels' activities with the analysis of their trajectories and speeds. Therefore, when the fishery information is limited, VMS can be one of the important data sources for fisheries stock assessment, and more attention should be paid to its construction and application to fisheries stock assessment and management.

  10. Tracking and visualization of space-time activities for a micro-scale flu transmission study

    PubMed Central

    2013-01-01

    Background Infectious diseases pose increasing threats to public health with increasing population density and more and more sophisticated social networks. While efforts continue in studying the large scale dissemination of contagious diseases, individual-based activity and behaviour study benefits not only disease transmission modelling but also the control, containment, and prevention decision making at the local scale. The potential for using tracking technologies to capture detailed space-time trajectories and model individual behaviour is increasing rapidly, as technological advances enable the manufacture of small, lightweight, highly sensitive, and affordable receivers and the routine use of location-aware devices has become widespread (e.g., smart cellular phones). The use of low-cost tracking devices in medical research has also been proved effective by more and more studies. This study describes the use of tracking devices to collect data of space-time trajectories and the spatiotemporal processing of such data to facilitate micro-scale flu transmission study. We also reports preliminary findings on activity patterns related to chances of influenza infection in a pilot study. Methods Specifically, this study employed A-GPS tracking devices to collect data on a university campus. Spatiotemporal processing was conducted for data cleaning and segmentation. Processed data was validated with traditional activity diaries. The A-GPS data set was then used for visual explorations including density surface visualization and connection analysis to examine space-time activity patterns in relation to chances of influenza infection. Results When compared to diary data, the segmented tracking data demonstrated to be an effective alternative and showed greater accuracies in time as well as the details of routes taken by participants. A comparison of space-time activity patterns between participants who caught seasonal influenza and those who did not revealed interesting

  11. An Overview of Major Terrestrial, Celestial, and Temporal Coordinate Systems for Target Tracking

    DTIC Science & Technology

    2016-08-10

    DaviD FreDeric crouse Surveillance Technology Branch Radar Division An Overview of Major Terrestrial, Celestial, and Temporal Coordinate Systems for...2016 Formal Report An Overview of Major Terrestrial, Celestial, and Temporal Coordinate Systems for Target Tracking David Frederic Crouse Naval...Coordinate systems Position measurement Geomagnetism Time Gravity WGS 84 Standards organization Orientation estimation

  12. Long-Term Tracking of a Specific Vehicle Using Airborne Optical Camera Systems

    NASA Astrophysics Data System (ADS)

    Kurz, F.; Rosenbaum, D.; Runge, H.; Cerra, D.; Mattyus, G.; Reinartz, P.

    2016-06-01

    In this paper we present two low cost, airborne sensor systems capable of long-term vehicle tracking. Based on the properties of the sensors, a method for automatic real-time, long-term tracking of individual vehicles is presented. This combines the detection and tracking of the vehicle in low frame rate image sequences and applies the lagged Cell Transmission Model (CTM) to handle longer tracking outages occurring in complex traffic situations, e.g. tunnels. The CTM model uses the traffic conditions in the proximities of the target vehicle and estimates its motion to predict the position where it reappears. The method is validated on an airborne image sequence acquired from a helicopter. Several reference vehicles are tracked within a range of 500m in a complex urban traffic situation. An artificial tracking outage of 240m is simulated, which is handled by the CTM. For this, all the vehicles in the close proximity are automatically detected and tracked to estimate the basic density-flow relations of the CTM model. Finally, the real and simulated trajectories of the reference vehicles in the outage are compared showing good correspondence also in congested traffic situations.

  13. Model emulates human smooth pursuit system producing zero-latency target tracking.

    PubMed

    Bahill, A T; McDonald, J D

    1983-01-01

    Humans can overcome the 150 ms time delay of the smooth pursuit eye movement system and track smoothly moving visual targets with zero-latency. Our target-selective adaptive control model can also overcome an inherent time delay and produce zero-latency tracking. No other model or man-made system can do this. Our model is physically realizable and physiologically realistic. The technique used in our model should be useful for analyzing other time-delay systems, such as man-machine systems and robots.

  14. Minimum-Time Trajectory Tracking of an Under-Actuated System

    SciTech Connect

    DRIESSEN,BRIAN; SADEGH,NADER

    1999-10-26

    Minimum-time trajectory tracking of an under-actuated mechanical system called the Acrobot is presented. The success of the controller is demonstrated by the fact that the tracking error is reduced by more than an order of magnitude when compared to the open-loop system response. The control law is obtained by linearizing the system about the nominal trajectory and applying differential dynamic programming to the resulting linear time-varying system, while using a weighted sum of the state-deviation and input-deviation as the cost function.

  15. The smart IV stand design through human tracking mobile robot system by CDS cell

    NASA Astrophysics Data System (ADS)

    Jo, Seong-Hyeon; Choe, Jong-Hun; Seo, Suk-Hyun; Kim, Won-Hoe; Lee, Hong-Kyu; Park, Se-Ho

    2015-03-01

    Vision-based recognition of the object as a general interface gives us high cost and complicated problem. This research suggests human tracking system by Arduino, and Laser-CdS cell system track wire that pass laser line. In this paper, we review existing literature on application systems of recognition which involves many interdisciplinary studies. We conclude that our method can only reduce cost, but is easy way to trace people's location with the use of wire. Furthermore, we apply several recognition systems including CdS-based mobile robot that is applied IV stand used at the hospital effectively.

  16. Performance of the LHCb tracking system in Run I of the LHC

    NASA Astrophysics Data System (ADS)

    Davis, Adam C. S.

    2016-07-01

    The LHCb tracking system consists of a Vertex Locator around the interaction point, a tracking station with four layers of silicon strip detectors in front of the magnet, and three straw-tube and silicon strip tracking stations behind the magnet. This system allows reconstruction of charged particles with a high efficiency (> 95 % for particles with momentum p > 5 GeV) and excellent momentum resolution (0.5% for particles with p < 20 GeV). The high momentum resolution results in narrow mass peaks, leading to a high signal-to-background ratio in such key channels as Bs0 → μμ. The excellent performance of the tracking system yields a decay time resolution of 50 fs, allowing to resolve the fast B0s oscillation with a mixing frequency of 17.7 ps-1. Such a decay time resolution is an essential element in studies of time dependent CP violation. I present an overview of the track reconstruction in LHCb and its performance in Run I of the LHC. I highlight the challenges and improvements of the track reconstruction from Run II onward, including efforts to improve the timing of the online reconstruction and approaches to unify the online and offline reconstruction.

  17. Actor-critic-based optimal tracking for partially unknown nonlinear discrete-time systems.

    PubMed

    Kiumarsi, Bahare; Lewis, Frank L

    2015-01-01

    This paper presents a partially model-free adaptive optimal control solution to the deterministic nonlinear discrete-time (DT) tracking control problem in the presence of input constraints. The tracking error dynamics and reference trajectory dynamics are first combined to form an augmented system. Then, a new discounted performance function based on the augmented system is presented for the optimal nonlinear tracking problem. In contrast to the standard solution, which finds the feedforward and feedback terms of the control input separately, the minimization of the proposed discounted performance function gives both feedback and feedforward parts of the control input simultaneously. This enables us to encode the input constraints into the optimization problem using a nonquadratic performance function. The DT tracking Bellman equation and tracking Hamilton-Jacobi-Bellman (HJB) are derived. An actor-critic-based reinforcement learning algorithm is used to learn the solution to the tracking HJB equation online without requiring knowledge of the system drift dynamics. That is, two neural networks (NNs), namely, actor NN and critic NN, are tuned online and simultaneously to generate the optimal bounded control policy. A simulation example is given to show the effectiveness of the proposed method.

  18. Policy iteration optimal tracking control for chaotic systems by using an adaptive dynamic programming approach

    NASA Astrophysics Data System (ADS)

    Wei, Qing-Lai; Liu, De-Rong; Xu, Yan-Cai

    2015-03-01

    A policy iteration algorithm of adaptive dynamic programming (ADP) is developed to solve the optimal tracking control for a class of discrete-time chaotic systems. By system transformations, the optimal tracking problem is transformed into an optimal regulation one. The policy iteration algorithm for discrete-time chaotic systems is first described. Then, the convergence and admissibility properties of the developed policy iteration algorithm are presented, which show that the transformed chaotic system can be stabilized under an arbitrary iterative control law and the iterative performance index function simultaneously converges to the optimum. By implementing the policy iteration algorithm via neural networks, the developed optimal tracking control scheme for chaotic systems is verified by a simulation. Project supported by the National Natural Science Foundation of China (Grant Nos. 61034002, 61233001, 61273140, 61304086, and 61374105) and the Beijing Natural Science Foundation, China (Grant No. 4132078).

  19. Installing and Commissioning a New Radioactive Waste Tracking System - Lessons Learned

    SciTech Connect

    Robert S. Anderson; Miklos Garamszeghy; Fred Rodrigues; Ed Nicholls

    2005-05-01

    Ontario Power Generation (OPG) recognizes the importance of information management particularly with regards to its low and intermediate level waste program. Various computer based waste tracking systems have been used in OPG since the 1980s. These systems tracked the physical receipt, processing, storage, and inventory of the waste. As OPG moved towards long-term management (e.g. disposal), it was recognized that tracking of more detailed waste characterization information was important. This required either substantial modification of the existing system to include a waste characterization module or replacing it entirely with a new system. After a detailed review of available options, it was decided that the existing waste tracking application would be replaced with the Idaho National Laboratory’s (INL) Integrated Waste Tracking System (IWTS). Installing and commissioning a system which must receive historical operational waste management information (data) and provide new features, required much more attention than was originally considered. The operational readiness of IWTS required extensive vetting and preparation of historic data (which itself had been created from multiple databases in varied formats) to ensure a consistent format for import of some 30,000-container records, and merging and linking these container records to a waste stream based characterization database. This paper will discuss some of the strengths and weaknesses contributing to project success or hindrance so that others can understand and minimize the difficulties inherent in a project of this magnitude.

  20. Intelligent Photovoltaic Systems by Combining the Improved Perturbation Method of Observation and Sun Location Tracking.

    PubMed

    Wang, Yajie; Shi, Yunbo; Yu, Xiaoyu; Liu, Yongjie

    2016-01-01

    Currently, tracking in photovoltaic (PV) systems suffers from some problems such as high energy consumption, poor anti-interference performance, and large tracking errors. This paper presents a solar PV tracking system on the basis of an improved perturbation and observation method, which maximizes photoelectric conversion efficiency. According to the projection principle, we design a sensor module with a light-intensity-detection module for environmental light-intensity measurement. The effect of environmental factors on the system operation is reduced, and intelligent identification of the weather is realized. This system adopts the discrete-type tracking method to reduce power consumption. A mechanical structure with a level-pitch double-degree-of-freedom is designed, and attitude correction is performed by closed-loop control. A worm-and-gear mechanism is added, and the reliability, stability, and precision of the system are improved. Finally, the perturbation and observation method designed and improved by this study was tested by simulated experiments. The experiments verified that the photoelectric sensor resolution can reach 0.344°, the tracking error is less than 2.5°, the largest improvement in the charge efficiency can reach 44.5%, and the system steadily and reliably works.