Science.gov

Sample records for activity tracking system

  1. Moodog: Tracking Student Activity in Online Course Management Systems

    ERIC Educational Resources Information Center

    Zhang, Hangjin; Almeroth, Kevin

    2010-01-01

    Many universities are currently using Course Management Systems (CMSes) to conduct online learning, for example, by distributing course materials or submitting homework assignments. However, most CMSes do not include comprehensive activity tracking and analysis capabilities. This paper describes a method to track students' online learning…

  2. Field-Testing of an Active Laser Tracking System

    NASA Astrophysics Data System (ADS)

    Markov, V.; Khiznyak, A.; Woll, D.; Liu, S.

    Comprehensive space surveillance demands a more accurate technique in tracking multi-dimensional state vector (3D coordinate, velocity, vibration, etc.) of the space objects. RF radiometric techniques typically can not provide the needed accuracy, while passive optical (and laser) tracking systems can provide distance to the object and its angular position, but not a direct reading of velocity, the parameter of primary importance for space object tracking and characterization. Addressing this problem with active optical tracking techniques is challenging because of the great distances involved, the high velocity of the satellites, and the optical aberrations induced by the atmosphere. We have proposed a phase conjugation based laser tracking concept, and accomplished the first version of design and engineering of a prototype for an Active Laser Tracking System (ALTS). In its current state the ALTS is capable to demonstrate the very basics operational principles of the proposed active tracking technique. We then performed a number of experiments to prove operational capabilities of this prototype both at MetroLaser's lab environment and at Edwards AFB Test Range. In its current architecture the ALTS is comprised of two laser cavities, Master and Slave that are coupled through a Phase Conjugate Mirror (PCM) formed in a non-linear medium (NLM) set at Master laser cavity. By pumping NLM and forming PCM, Master laser establishes the cavities coupling mode and injects the photons in the slave cavity. It is essential that the specific features of the PCM not only serve to couple ALTS cavities, but also serves to compensate optical aberrations of the ALTS (gain media and optical elements of the laser resonator). Due to its ability to compensate optical aberrations, phase conjugate resonators are capable of sustaining oscillation with a remote target as an output coupler. The entire system comprises of several modules, including a laser, emitting/receiving telescope, gimbal

  3. GT-CATS: Tracking Operator Activities in Complex Systems

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.; Mitchell, Christine M.; Palmer, Everett A.

    1999-01-01

    Human operators of complex dynamic systems can experience difficulties supervising advanced control automation. One remedy is to develop intelligent aiding systems that can provide operators with context-sensitive advice and reminders. The research reported herein proposes, implements, and evaluates a methodology for activity tracking, a form of intent inferencing that can supply the knowledge required for an intelligent aid by constructing and maintaining a representation of operator activities in real time. The methodology was implemented in the Georgia Tech Crew Activity Tracking System (GT-CATS), which predicts and interprets the actions performed by Boeing 757/767 pilots navigating using autopilot flight modes. This report first describes research on intent inferencing and complex modes of automation. It then provides a detailed description of the GT-CATS methodology, knowledge structures, and processing scheme. The results of an experimental evaluation using airline pilots are given. The results show that GT-CATS was effective in predicting and interpreting pilot actions in real time.

  4. A compact muon tracking system for didactic and outreach activities

    NASA Astrophysics Data System (ADS)

    Antolini, R.; Candela, A.; Conicella, V.; De Deo, M.; D` Incecco, M.; Sablone, D.; Arneodo, F.; Benabderrahmane, M. L.; Di Giovanni, A.; Pazos Clemens, L.; Franchi, G.; d`Inzeo, M.

    2016-07-01

    We present a cosmic ray telescope based on the use of plastic scintillator bars coupled to ASD-RGB1S-M Advansid Silicon Photomultipliers (SiPM) through wavelength shifter fibers. The system is comprised of 200 electronic channels organized into 10 couples of orthogonal planes allowing the 3D reconstruction of crossing muons. Two monolithic PCB boards have been designed to bias, readout all the SiPMs enclosed in the system, to monitor the working parameters and to remotely connect the detector. To make easier the display of muon tracks to non-expert users, two LED matrices, triggered by particle interactions, have been implemented. To improve the usability of the muon telescope, a controller board unit permits to select different levels of trigger and allows data acquisition for refined analyses for the more proficient user. A first prototype, funded by INFN and deployed in collaboration with NYUAD, is operating at the Toledo Metro station of Naples, while two further detectors will be developed and installed in Abu Dhabi in the next few months.

  5. Design of active disturbance rejection controller for space optical communication coarse tracking system

    NASA Astrophysics Data System (ADS)

    Gu, Jian; Ai, Yong

    2015-10-01

    In order to improve the dynamic tracking performance of coarse tracking system in space optical communication, a new control method based on active disturbance rejection controller (ADRC) is proposed. Firstly, based on the structure analysis of coarse tracking system, the simplified system model was obtained, and then the extended state observer was designed to calculate state variables and spot disturbance from the input and output signals. Finally, the ADRC controller of coarse tracking system is realized with the combination of nonlinear PID controller. The simulation experimental results show that compared with the PID method, this method can significantly reduce the step response overshoot and settling time. When the target angular velocity is120mrad/s, tracking error with ADRC method is 30μrad, which decreases 85% compared with the PID method. Meanwhile the disturbance rejection bandwidth is increased by 3 times with ADRC. This method can effectively improve the dynamic tracking performance of coarse tracking and disturbance rejection degree, with no need of hardware upgrade, and is of certain reference value to the wide range and high dynamic precision photoelectric tracking system.

  6. Solar tracking system

    DOEpatents

    Okandan, Murat; Nielson, Gregory N.

    2016-07-12

    Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.

  7. Mixed Tracking and Projective Synchronization of 5D Hyperchaotic System Using Active Control

    NASA Astrophysics Data System (ADS)

    Ojo, Kayode; Ogunjo, Samuel T.; Williams, Oluwafemi

    2013-08-01

    This paper examines mixed tracking control and hy- brid synchronization of two identical 5-D hyperchaotic Lorenz systems via active control technique. The de- signed control functions for the mixed tracking enable each of the system state variables to stabilize at differ- ent chosen positions as well as control each state vari- ables of the system to track different desired smooth function of time. Also, the active control technique is used to design control functions which achieve projec- tive synchronization between the slave state variables and the master state variables. We also show that the coupling strength is inversely proportional to the syn- chronization time. Numerical simulations are carried out to validate the effectiveness of the analytical tech- nique.

  8. Tracking dynamic team activity

    SciTech Connect

    Tambe, M.

    1996-12-31

    AI researchers are striving to build complex multi-agent worlds with intended applications ranging from the RoboCup robotic soccer tournaments, to interactive virtual theatre, to large-scale real-world battlefield simulations. Agent tracking - monitoring other agent`s actions and inferring their higher-level goals and intentions - is a central requirement in such worlds. While previous work has mostly focused on tracking individual agents, this paper goes beyond by focusing on agent teams. Team tracking poses the challenge of tracking a team`s joint goals and plans. Dynamic, real-time environments add to the challenge, as ambiguities have to be resolved in real-time. The central hypothesis underlying the present work is that an explicit team-oriented perspective enables effective team tracking. This hypothesis is instantiated using the model tracing technology employed in tracking individual agents. Thus, to track team activities, team models are put to service. Team models are a concrete application of the joint intentions framework and enable an agent to track team activities, regardless of the agent`s being a collaborative participant or a non-participant in the team. To facilitate real-time ambiguity resolution with team models: (i) aspects of tracking are cast as constraint satisfaction problems to exploit constraint propagation techniques; and (ii) a cost minimality criterion is applied to constrain tracking search. Empirical results from two separate tasks in real-world, dynamic environments one collaborative and one competitive - are provided.

  9. Active disturbance rejection controller of fine tracking system for free space optical communication

    NASA Astrophysics Data System (ADS)

    Cui, Ning; Liu, Yang; Chen, Xinglin; Wang, Yan

    2013-08-01

    Free space optical communication is one of the best approaches in future communications. Laser beam's acquisition, pointing and tracking are crucial technologies of free space optical communication. Fine tracking system is important component of APT (acquisition, pointing and tracking) system. It cooperates with the coarse pointing system in executing the APT mission. Satellite platform vibration and disturbance, which reduce received optical power, increase bit error rate and affect seriously the natural performance of laser communication. For the characteristic of satellite platform, an active disturbance rejection controller was designed to reduce the vibration and disturbance. There are three major contributions in the paper. Firstly, the effects of vibration on the inter satellite optical communications were analyzed, and the reasons and characters of vibration of the satellite platform were summarized. The amplitude-frequency response of a filter was designed according to the power spectral density of platform vibration of SILEX (Semiconductor Inter-satellite Laser Experiment), and then the signals of platform vibration were generated by filtering white Gaussian noise using the filter. Secondly, the fast steering mirror is a key component of the fine tracking system for optical communication. The mechanical design and model analysis was made to the tip/tilt mirror driven by the piezoelectric actuator and transmitted by the flexure hinge. The transfer function of the fast steering mirror, camera, D/A data acquisition card was established, and the theory model of transfer function of this system was further obtained. Finally, an active disturbance rejection control method is developed, multiple parallel extended state observers were designed for estimation of unknown dynamics and external disturbance, and the estimated states were used for nonlinear feedback control and compensation to improve system performance. The simulation results show that the designed

  10. Sled tracking system

    NASA Astrophysics Data System (ADS)

    Downey, George A., Jr.; Fountain, Hubert W.; Riding, Thomas J.; Eggleston, James; Hopkins, Michael; Adams, Billy

    1991-08-01

    The Sled Tracking System (STS) represents the successful merger of several technologies, including IR and visual sensors, real-time image processing, and real-time data processing and control. STS was developed to solve the dynamics of tracking seat ejection and vehicle tests at the Air Force's High Speed Test Track Facility at Holloman AFB, New Mexico. The system has the ability to track vehicles at transverse speeds exceeding Mach 1, while ignoring momentary loss of track due to background clutter. STS can discriminate among up to four seats sequentially ejected from a single vehicle and track only the event of interest. The system also maintains the track point of interest in the primary sensor's field-of-view while tracking an offset aim point and transitions from a transverse trajectory to a vertical trajectory while maintaining track through seat-mannequin separation and chute deployment. This paper discusses the hardware and software architectures implemented to solve these problems.

  11. Front end optimization for the monolithic active pixel sensor of the ALICE Inner Tracking System upgrade

    NASA Astrophysics Data System (ADS)

    Kim, D.; Aglieri Rinella, G.; Cavicchioli, C.; Chanlek, N.; Collu, A.; Degerli, Y.; Dorokhov, A.; Flouzat, C.; Gajanana, D.; Gao, C.; Guilloux, F.; Hillemanns, H.; Hristozkov, S.; Junique, A.; Keil, M.; Kofarago, M.; Kugathasan, T.; Kwon, Y.; Lattuca, A.; Mager, M.; Sielewicz, K. M.; Marin Tobon, C. A.; Marras, D.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Pham, T. H.; Puggioni, C.; Reidt, F.; Riedler, P.; Rousset, J.; Siddhanta, S.; Snoeys, W.; Song, M.; Usai, G.; Van Hoorne, J. W.; Yang, P.

    2016-02-01

    ALICE plans to replace its Inner Tracking System during the second long shut down of the LHC in 2019 with a new 10 m2 tracker constructed entirely with monolithic active pixel sensors. The TowerJazz 180 nm CMOS imaging Sensor process has been selected to produce the sensor as it offers a deep pwell allowing full CMOS in-pixel circuitry and different starting materials. First full-scale prototypes have been fabricated and tested. Radiation tolerance has also been verified. In this paper the development of the charge sensitive front end and in particular its optimization for uniformity of charge threshold and time response will be presented.

  12. A Standard-Compliant Virtual Meeting System with Active Video Object Tracking

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Wen; Chang, Yao-Jen; Wang, Chih-Ming; Chen, Yung-Chang; Sun, Ming-Ting

    2002-12-01

    This paper presents an H.323 standard compliant virtual video conferencing system. The proposed system not only serves as a multipoint control unit (MCU) for multipoint connection but also provides a gateway function between the H.323 LAN (local-area network) and the H.324 WAN (wide-area network) users. The proposed virtual video conferencing system provides user-friendly object compositing and manipulation features including 2D video object scaling, repositioning, rotation, and dynamic bit-allocation in a 3D virtual environment. A reliable, and accurate scheme based on background image mosaics is proposed for real-time extracting and tracking foreground video objects from the video captured with an active camera. Chroma-key insertion is used to facilitate video objects extraction and manipulation. We have implemented a prototype of the virtual conference system with an integrated graphical user interface to demonstrate the feasibility of the proposed methods.

  13. NASA activities and plans. [on satellite tracking, data acquisition, communication and mission control systems and capabilities

    NASA Technical Reports Server (NTRS)

    Smylie, R. E.

    1981-01-01

    An overview is provided of the NASA tracking, data acquisition, communications, and mission control systems and capabilities. These systems include the NASA Spaceflight Tracking and Data Network (STDN) which supports earth-orbital spacecraft, the Deep Space Network (DSN) which supports the planetary exploration and deep space missions, and the Tracking and Data Relay Satellite System (TDRSS) currently under development and scheduled to come into service in 1983. TDRSS will then displace STDN for support of low earth orbital spacecraft. A description is presented of the current status of the considered systems, and plans are discussed for future developments and new capabilities.

  14. Integrated Management Tracking System

    SciTech Connect

    Garrett, Terrance

    2000-03-30

    The Integrated Management Tracking System (IMTS) is a "Web Enabled" Client/Server Business application that provides for the Identification and Resolution of commitments, situations, events and problems. The IMTS engine is written with Microsoft Active Server Pages (ASP) for IIS4. The system provides for reporting, entering, editing, closing and administration over a Intranet, Extranet or Internet. This Application facilitates: Electronic assignment, acceptance and tracking to completion. Email notifications of assigned action. Establishment of Due Dates. Electronic search and retrieval based on keywords in combination with user specified database parameters (Document Type, Date Ranges, etc.). Coded for Trending and Reporting. User selected reports. Various levels of access for reports and administration. The "Server" side of this application consists of a Microsoft Access database running on a NT Server with Internet Information Server (IIS). As the "Client" side of the application runs on any Web browser, this solution is a cost effective, user friendly application that lends itself to organizations not physically colocated in one location providing information immediately available to everyone at once.

  15. Integrated Management Tracking System

    2000-03-30

    The Integrated Management Tracking System (IMTS) is a "Web Enabled" Client/Server Business application that provides for the Identification and Resolution of commitments, situations, events and problems. The IMTS engine is written with Microsoft Active Server Pages (ASP) for IIS4. The system provides for reporting, entering, editing, closing and administration over a Intranet, Extranet or Internet. This Application facilitates: Electronic assignment, acceptance and tracking to completion. Email notifications of assigned action. Establishment of Due Dates. Electronicmore » search and retrieval based on keywords in combination with user specified database parameters (Document Type, Date Ranges, etc.). Coded for Trending and Reporting. User selected reports. Various levels of access for reports and administration. The "Server" side of this application consists of a Microsoft Access database running on a NT Server with Internet Information Server (IIS). As the "Client" side of the application runs on any Web browser, this solution is a cost effective, user friendly application that lends itself to organizations not physically colocated in one location providing information immediately available to everyone at once.« less

  16. CTS. Commitment Tracking System

    SciTech Connect

    Stucki, F.K.

    1992-06-01

    CTS is a micro based prototype of the data elements, screens, and information processing rules that apply to the Commitment and Non-compliance Tracking Program. The system is focused on the non-compliance or commitment. When some group is out of compliance they need a way of tracking that occurrence. The system must be able to CRUD (Create, Retrieve, Update, Delete) instances of the non-compliance Event. Additionally, the system must provide data integrity. This is done through a set up of tables and data validation.

  17. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy

    SciTech Connect

    Wang, Wei; Pan, Li; Tokuda, Junichi; Schmidt, Ehud J.; Seethamraju, Ravi T.; Dumoulin, Charles L.

    2015-12-15

    Purpose: In gynecologic cancers, magnetic resonance (MR) imaging is the modality of choice for visualizing tumors and their surroundings because of superior soft-tissue contrast. Real-time MR guidance of catheter placement in interstitial brachytherapy facilitates target coverage, and would be further improved by providing intraprocedural estimates of dosimetric coverage. A major obstacle to intraprocedural dosimetry is the time needed for catheter trajectory reconstruction. Herein the authors evaluate an active MR tracking (MRTR) system which provides rapid catheter tip localization and trajectory reconstruction. The authors assess the reliability and spatial accuracy of the MRTR system in comparison to standard catheter digitization using magnetic resonance imaging (MRI) and CT. Methods: The MRTR system includes a stylet with microcoils mounted on its shaft, which can be inserted into brachytherapy catheters and tracked by a dedicated MRTR sequence. Catheter tip localization errors of the MRTR system and their dependence on catheter locations and orientation inside the MR scanner were quantified with a water phantom. The distances between the tracked tip positions of the MRTR stylet and the predefined ground-truth tip positions were calculated for measurements performed at seven locations and with nine orientations. To evaluate catheter trajectory reconstruction, fifteen brachytherapy catheters were placed into a gel phantom with an embedded catheter fixation framework, with parallel or crossed paths. The MRTR stylet was then inserted sequentially into each catheter. During the removal of the MRTR stylet from within each catheter, a MRTR measurement was performed at 40 Hz to acquire the instantaneous stylet tip position, resulting in a series of three-dimensional (3D) positions along the catheter’s trajectory. A 3D polynomial curve was fit to the tracked positions for each catheter, and equally spaced dwell points were then generated along the curve. High

  18. State Longitudinal Data Systems for Tracking Outcomes for Students with Disabilities through Postsecondary Activities. inForum

    ERIC Educational Resources Information Center

    Muller, Eve

    2010-01-01

    In recent years, an increasing number of states have been moving towards the development and implementation of longitudinal data systems for tracking the progress of individual K-12 students with disabilities across their academic careers up to and including their postsecondary activities. In an effort to avoid duplication of data collection…

  19. Monolithic active pixel sensor development for the upgrade of the ALICE inner tracking system

    NASA Astrophysics Data System (ADS)

    Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Giubilato, P.; Hillemanns, H.; Junique, A.; Keil, M.; Kim, D.; Kim, J.; Kugathasan, T.; Lattuca, A.; Mager, M.; Marin Tobon, C. A.; Marras, D.; Martinengo, P.; Mattiazzo, S.; Mazza, G.; Mugnier, H.; Musa, L.; Pantano, D.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Siddhanta, S.; Snoeys, W.; Usai, G.; van Hoorne, J. W.; Yang, P.; Yi, J.

    2013-12-01

    ALICE plans an upgrade of its Inner Tracking System for 2018. The development of a monolithic active pixel sensor for this upgrade is described. The TowerJazz 180 nm CMOS imaging sensor process has been chosen as it is possible to use full CMOS in the pixel due to the offering of a deep pwell and also to use different starting materials. The ALPIDE development is an alternative to approaches based on a rolling shutter architecture, and aims to reduce power consumption and integration time by an order of magnitude below the ALICE specifications, which would be quite beneficial in terms of material budget and background. The approach is based on an in-pixel binary front-end combined with a hit-driven architecture. Several prototypes have already been designed, submitted for fabrication and some of them tested with X-ray sources and particles in a beam. Analog power consumption has been limited by optimizing the Q/C of the sensor using Explorer chips. Promising but preliminary first results have also been obtained with a prototype ALPIDE. Radiation tolerance up to the ALICE requirements has also been verified.

  20. Automated call tracking systems

    SciTech Connect

    Hardesty, C.

    1993-03-01

    User Services groups are on the front line with user support. We are the first to hear about problems. The speed, accuracy, and intelligence with which we respond determines the user`s perception of our effectiveness and our commitment to quality and service. To keep pace with the complex changes at our sites, we must have tools to help build a knowledge base of solutions, a history base of our users, and a record of every problem encountered. Recently, I completed a survey of twenty sites similar to the National Energy Research Supercomputer Center (NERSC). This informal survey reveals that 27% of the sites use a paper system to log calls, 60% employ homegrown automated call tracking systems, and 13% use a vendor-supplied system. Fifty-four percent of those using homegrown systems are exploring the merits of switching to a vendor-supplied system. The purpose of this paper is to provide guidelines for evaluating a call tracking system. In addition, insights are provided to assist User Services groups in selecting a system that fits their needs.

  1. Longwall shearer tracking system

    NASA Technical Reports Server (NTRS)

    Poulsen, P. D. (Inventor); Stein, R. J.; Pease, R. E.

    1984-01-01

    A tracking system for measuring and recording the movements of a longwall shearer vehicle includes an optical tracking assembly carried at one end of a desired vehicle path and a retroreflector assembly carried by the vehicle. Continuous horizontal and vertical light beams are alternately transmitted by means of a rotating Dove prism to the reflector assembly. A vertically reciprocating reflector interrupts the continuous light beams and converts these to discrete horizontal and vertical light beam images transmitted at spaced intervals along the path. A second rotating Dove prism rotates the vertical images to convert them to a second series of horizontal images while the first mentioned horizontal images are left unrotated and horizontal. The images are recorded on a film.

  2. Cassini Archive Tracking System

    NASA Technical Reports Server (NTRS)

    Conner, Diane; Sayfi, Elias; Tinio, Adrian

    2006-01-01

    The Cassini Archive Tracking System (CATS) is a computer program that enables tracking of scientific data transfers from originators to the Planetary Data System (PDS) archives. Without CATS, there is no systematic means of locating products in the archive process or ensuring their completeness. By keeping a database of transfer communications and status, CATS enables the Cassini Project and the PDS to efficiently and accurately report on archive status. More importantly, problem areas are easily identified through customized reports that can be generated on the fly from any Web-enabled computer. A Web-browser interface and clearly defined authorization scheme provide safe distributed access to the system, where users can perform functions such as create customized reports, record a transfer, and respond to a transfer. CATS ensures that Cassini provides complete science archives to the PDS on schedule and that those archives are available to the science community by the PDS. The three-tier architecture is loosely coupled and designed for simple adaptation to multimission use. Written in the Java programming language, it is portable and can be run on any Java-enabled Web server.

  3. Geo Issue Tracking System

    NASA Astrophysics Data System (ADS)

    Khakpour, Mohammad; Paulik, Christoph; Hahn, Sebastian

    2016-04-01

    Communication about remote sensing data quality between data providers and users as well as between the users is often difficult. The users have a hard time figuring out if a product has known problems over their region of interest and data providers have to spend a lot of effort to make this information available, if it exists. Scientific publications are one tool for communicating with the users base but they are static and mostly one way. As a data provider it is also often difficult to make feedback, received from users, available to the complete user base. The Geo Issue Tracking System (GeoITS) is an Open Source Web Application which has been developed to mitigate these problems. GeoITS combines a mapping interface (Google Maps) with a simple wiki platform. It allows users to give region specific feedback on a remote sensing product by drawing a polygon on the map and describing the problems they had using the remote sensing product in this area. These geolocated wiki entries are then viewable by other users as well as the data providers which can modify and extend the entries. In this way the conversations between the users and the data provider are no longer hidden in e.g. emails but open for all users of the dataset. This new kind of communication platform can enable better cooperation between users and data providers. It will also provide data providers with the ability to track problems their dataset might have in certain areas and resolve them with new product releases. The source code is available via http://github.com/TUW-GEO/geoits_dev A running instance can be tried at https://geoits.herokuapp.com/

  4. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  5. REC Tracking Systems Design Guide

    SciTech Connect

    Meredith Wingate

    2004-02-03

    OAK-B135 The Design Guide is presented in three parts. Section II describes the need for REC tracking, the two principal tracking methods available, and, in simple terms, the operation of certificate-based systems. Section III presents the major issues in the design of certificate-based tracking systems and discusses the advantages and disadvantages of alternative solutions. Finally, Section IV offers design principles or recommendations for most of these issues.

  6. Class 3 Tracking and Monitoring System Report

    SciTech Connect

    Safely, Eugene; Salamy, S. Phillip

    1999-11-29

    The objective of Class 3 tracking system are to assist DOE in tracking and performance and progress of these projects and to capture the technical and financial information collected during the projects' monitoring phase. The captured information was used by DOE project managers and BDM-Oklahoma staff for project monitoring and evaluation, and technology transfer activities. The proposed tracking system used the Class Evaluation Executive Report (CLEVER), a relation database for storing and disseminating class project data; GeoGraphix, a geological and technical analysis and mapping software system; the Tertiary Oil Recovery Information System (TORIS) database; and MS-Project, a project management software system.

  7. Using GPA-based, animal tracking systems to evaluate effects on landscape-scale disturbance on livestock distribution and activity patterns:Demo.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evolving GPS-based, animal tracking technologies have now made it possible to make season-long evaluations of livestock distribution and activity patterns at very fine-scale temporal (< 60 sec) and spatial (<1 m) resolution. We used the Clark Animal Tracking System (Clark ATS) to evaluate cattle be...

  8. CONTRACT ADMINISTRATIVE TRACKING SYSTEM (CATS)

    EPA Science Inventory

    The Contract Administrative Tracking System (CATS) was developed in response to an ORD NHEERL, Mid-Continent Ecology Division (MED)-recognized need for an automated tracking and retrieval system for Cost Reimbursable Level of Effort (CR/LOE) Contracts. CATS is an Oracle-based app...

  9. Sun Tracking Systems: A Review

    PubMed Central

    Lee, Chia-Yen; Chou, Po-Cheng; Chiang, Che-Ming; Lin, Chiu-Feng

    2009-01-01

    The output power produced by high-concentration solar thermal and photovoltaic systems is directly related to the amount of solar energy acquired by the system, and it is therefore necessary to track the sun's position with a high degree of accuracy. Many systems have been proposed to facilitate this task over the past 20 years. Accordingly, this paper commences by providing a high level overview of the sun tracking system field and then describes some of the more significant proposals for closed-loop and open-loop types of sun tracking systems. PMID:22412341

  10. Tracking system analytic calibration activities for the Mariner Mars 1971 mission

    NASA Technical Reports Server (NTRS)

    Madrid, G. A.; Chao, C. C.; Fliegel, H. F.; Leavitt, R. K.; Mottinger, N. A.; Winn, F. B.; Wimberly, R. N.; Yip, K. B.; Zielenbach, J. W.

    1974-01-01

    Data covering various planning aspects of Mariner Mars 1971 mission are summarized. Data cover calibrating procedures for tracking stations, radio signal propagation in the troposphere, effects of charged particles on radio transmission, orbit calculation, and data smoothing.

  11. An Active Model for Facial Feature Tracking

    NASA Astrophysics Data System (ADS)

    Ahlberg, Jörgen

    2002-12-01

    We present a system for finding and tracking a face and extract global and local animation parameters from a video sequence. The system uses an initial colour processing step for finding a rough estimate of the position, size, and inplane rotation of the face, followed by a refinement step drived by an active model. The latter step refines the pre­vious estimate, and also extracts local animation parame­ters. The system is able to track the face and some facial features in near real-time, and can compress the result to a bitstream compliant to MPEG-4 face and body animation.

  12. Precision laser automatic tracking system.

    PubMed

    Lucy, R F; Peters, C J; McGann, E J; Lang, K T

    1966-04-01

    A precision laser tracker has been constructed and tested that is capable of tracking a low-acceleration target to an accuracy of about 25 microrad root mean square. In tracking high-acceleration targets, the error is directly proportional to the angular acceleration. For an angular acceleration of 0.6 rad/sec(2), the measured tracking error was about 0.1 mrad. The basic components in this tracker, similar in configuration to a heliostat, are a laser and an image dissector, which are mounted on a stationary frame, and a servocontrolled tracking mirror. The daytime sensitivity of this system is approximately 3 x 10(-10) W/m(2); the ultimate nighttime sensitivity is approximately 3 x 10(-14) W/m(2). Experimental tests were performed to evaluate both dynamic characteristics of this system and the system sensitivity. Dynamic performance of the system was obtained, using a small rocket covered with retroreflective material launched at an acceleration of about 13 g at a point 204 m from the tracker. The daytime sensitivity of the system was checked, using an efficient retroreflector mounted on a light aircraft. This aircraft was tracked out to a maximum range of 15 km, which checked the daytime sensitivity of the system measured by other means. The system also has been used to track passively stars and the Echo I satellite. Also, the system tracked passively a +7.5 magnitude star, and the signal-to-noise ratio in this experiment indicates that it should be possible to track a + 12.5 magnitude star.

  13. Automatic electronic fish tracking system

    NASA Technical Reports Server (NTRS)

    Osborne, P. W.; Hoffman, E.; Merriner, J. V.; Richards, C. E.; Lovelady, R. W.

    1976-01-01

    A newly developed electronic fish tracking system to automatically monitor the movements and migratory habits of fish is reported. The system is aimed particularly at studies of effects on fish life of industrial facilities which use rivers or lakes to dump their effluents. Location of fish is acquired by means of acoustic links from the fish to underwater Listening Stations, and by radio links which relay tracking information to a shore-based Data Base. Fish over 4 inches long may be tracked over a 5 x 5 mile area. The electronic fish tracking system provides the marine scientist with electronics which permit studies that were not practical in the past and which are cost-effective compared to manual methods.

  14. Tracking and treating activated T cells

    PubMed Central

    Kim, N.H.; Nadithe, V.; Elsayed, M.; Merkel, O.M.

    2014-01-01

    Upon activation, T cells of various subsets are the most important mediators in cell-mediated immune responses. Activated T cells play an important role in immune system related diseases such as chronic inflammatory diseases, viral infections, autoimmune disease, transplant rejection, Crohn disease, diabetes, and many more. Therefore, efforts have been made to both visualize and treat activated T cells specifically. This review summarizes imaging approaches and selective therapeutics for activated T cells and gives an outlook on how tracking and treating can be combined into theragnositc agents for activated T cells. PMID:24660025

  15. Solar tracking system

    SciTech Connect

    White, P.R.; Scott, D.R.

    1981-04-01

    A solar tracker for a solar collector is described in detail. The collector is angularly oriented by a motor wherein the outputs of two side-by-side photodetectors are discriminated as to three ranges: a first corresponding to a low light or darkness condition a second corresponding to light intensity lying in an intermediate range and a third corresponding to light above an intermediate range, direct sunlight. The first output drives the motor to a selected maximum easterly angular position the second enables the motor to be driven westerly at the Earth rotational rate and the third output, the separate outputs of the two photodetectors, differentially controls the direction of rotation of the motor to effect actual tracking of the Sun. Official Gazette of the U.S. Patent and Trademark Office

  16. Decontamination & Decommissioning Equipment Tracking System (DDETS)

    SciTech Connect

    Cook, S.

    1994-07-01

    At the request of the Department of Energy (DOE)(EM-50), the Scientific Computing Unit developed a prototype system to track information and data relevant to equipment and tooling removed during decontamination and decommissioning activities. The DDETS proof-of-concept tracking system utilizes a one-dimensional (1D) and two-dimensional (2D) bar coding technology to retain and track information such as identification number, manufacturer, requisition information, and various contaminant information, etc. The information is encoded in a bar code, printed on a label and can be attached to corresponding equipment. The DDETS was developed using a proven relational database management system which allows the addition, modification, printing, and deletion of data. In addition, communication interfaces with bar code printers and bar code readers were developed. Additional features of the system include: (a) Four different reports available for the user (REAPS, transaction, and two inventory), (b) Remote automated inventory tracking capabilities, (c) Remote automated inventory tracking capability (2D bar codes allow equipment to be scanned/tracked without being linked to the DDETS database), (d) Edit, update, delete, and query capabilities, (e) On-line bar code label printing utility (data from 2D bar codes can be scanned directly into the data base simplifying data entry), and (f) Automated data backup utility. Compatibility with the Reportable Excess Automated Property System (REAPS) to upload data from DDETS is planned.

  17. Airborne optical tracking control system design study

    NASA Astrophysics Data System (ADS)

    1992-09-01

    The Kestrel LOS Tracking Program involves the development of a computer and algorithms for use in passive tracking of airborne targets from a high altitude balloon platform. The computer receivers track error signals from a video tracker connected to one of the imaging sensors. In addition, an on-board IRU (gyro), accelerometers, a magnetometer, and a two-axis inclinometer provide inputs which are used for initial acquisitions and course and fine tracking. Signals received by the control processor from the video tracker, IRU, accelerometers, magnetometer, and inclinometer are utilized by the control processor to generate drive signals for the payload azimuth drive, the Gimballed Mirror System (GMS), and the Fast Steering Mirror (FSM). The hardware which will be procured under the LOS tracking activity is the Controls Processor (CP), the IRU, and the FSM. The performance specifications for the GMS and the payload canister azimuth driver are established by the LOS tracking design team in an effort to achieve a tracking jitter of less than 3 micro-rad, 1 sigma for one axis.

  18. NASA tracking ship navigation systems

    NASA Technical Reports Server (NTRS)

    Mckenna, J. J.

    1976-01-01

    The ship position and attitude measurement system that was installed aboard the tracking ship Vanguard is described. An overview of the entire system is given along with a description of how precise time and frequency is utilized. The instrumentation is broken down into its basic components. Particular emphasis is given to the inertial navigation system. Each navigation system used, a mariner star tracker, navigation satellite system, Loran C and OMEGA in conjunction with the inertial system is described. The accuracy of each system is compared along with their limitations.

  19. Activity Tracking for Pilot Error Detection from Flight Data

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.; Ashford, Rose (Technical Monitor)

    2002-01-01

    This report presents an application of activity tracking for pilot error detection from flight data, and describes issues surrounding such an application. It first describes the Crew Activity Tracking System (CATS), in-flight data collected from the NASA Langley Boeing 757 Airborne Research Integrated Experiment System aircraft, and a model of B757 flight crew activities. It then presents an example of CATS detecting actual in-flight crew errors.

  20. A Fast MEANSHIFT Algorithm-Based Target Tracking System

    PubMed Central

    Sun, Jian

    2012-01-01

    Tracking moving targets in complex scenes using an active video camera is a challenging task. Tracking accuracy and efficiency are two key yet generally incompatible aspects of a Target Tracking System (TTS). A compromise scheme will be studied in this paper. A fast mean-shift-based Target Tracking scheme is designed and realized, which is robust to partial occlusion and changes in object appearance. The physical simulation shows that the image signal processing speed is >50 frame/s. PMID:22969397

  1. Laser tracking system with automatic reacquisition capability.

    PubMed

    Johnson, R E; Weiss, P F

    1968-06-01

    A laser based tracking system is described that has the capability of automatically performing an acquisition search to locate the target. This work is intended for precision launch phase tracking of the Saturn V launch vehicle. System tracking accuracies limited only by the atmosphere have been demonstrated, as has acquisition over a 1 degrees x 1 degrees field of view.

  2. Assessment & Commitment Tracking System (ACTS)

    2004-12-20

    The ACTS computer code provides a centralized tool for planning and scheduling assessments, tracking and managing actions associated with assessments or that result from an event or condition, and "mining" data for reporting and analyzing information for improving performance. The ACTS application is designed to work with the MS SQL database management system. All database interfaces are written in SQL. The following software is used to develop and support the ACTS application: Cold Fusion HTMLmore » JavaScript Quest TOAD Microsoft Visual Source Safe (VSS) HTML Mailer for sending email Microsoft SQL Microsoft Internet Information Server« less

  3. Tracking system for solar collectors

    DOEpatents

    Butler, Barry L.

    1984-01-01

    A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

  4. Tracking system for solar collectors

    DOEpatents

    Butler, B.

    1980-10-01

    A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

  5. Assessment & Commitment Tracking System (ACTS)

    SciTech Connect

    Bryant, Robert A.; Childs, Teresa A.; Miller, Michael A.; Sellars, Kevin J.

    2004-12-20

    The ACTS computer code provides a centralized tool for planning and scheduling assessments, tracking and managing actions associated with assessments or that result from an event or condition, and "mining" data for reporting and analyzing information for improving performance. The ACTS application is designed to work with the MS SQL database management system. All database interfaces are written in SQL. The following software is used to develop and support the ACTS application: Cold Fusion HTML JavaScript Quest TOAD Microsoft Visual Source Safe (VSS) HTML Mailer for sending email Microsoft SQL Microsoft Internet Information Server

  6. Subaru FATS (fault tracking system)

    NASA Astrophysics Data System (ADS)

    Winegar, Tom W.; Noumaru, Junichi

    2000-07-01

    The Subaru Telescope requires a fault tracking system to record the problems and questions that staff experience during their work, and the solutions provided by technical experts to these problems and questions. The system records each fault and routes it to a pre-selected 'solution-provider' for each type of fault. The solution provider analyzes the fault and writes a solution that is routed back to the fault reporter and recorded in a 'knowledge-base' for future reference. The specifications of our fault tracking system were unique. (1) Dual language capacity -- Our staff speak both English and Japanese. Our contractors speak Japanese. (2) Heterogeneous computers -- Our computer workstations are a mixture of SPARCstations, Macintosh and Windows computers. (3) Integration with prime contractors -- Mitsubishi and Fujitsu are primary contractors in the construction of the telescope. In many cases, our 'experts' are our contractors. (4) Operator scheduling -- Our operators spend 50% of their work-month operating the telescope, the other 50% is spent working day shift at the base facility in Hilo, or day shift at the summit. We plan for 8 operators, with a frequent rotation. We need to keep all operators informed on the current status of all faults, no matter the operator's location.

  7. The coordinate systems used in visual tracking

    PubMed Central

    Howe, Piers D. L.; Pinto, Yair; Horowitz, Todd S.

    2010-01-01

    Tracking moving objects is a fundamental attentional operation. Here we ask which coordinate system is used to track objects: retinal (retinotopic), scene-centered (allocentric), or both? Observers tracked three of six disks that were confined to move within an imaginary square. By moving either the imaginary square (and thus the disks contained within), the fixation cross, or both, we could dramatically increase the disks' speeds in one coordinate system while leaving them unchanged in the other, so as to impair tracking in only one coordinate system at a time. Hindering tracking in either coordinate system reduced tracking ability by an equal amount, suggesting that observers are compelled to use both coordinate systems and cannot choose to track only in the unimpaired coordinate system. PMID:20887744

  8. Advanced tracking systems design and analysis

    NASA Technical Reports Server (NTRS)

    Potash, R.; Floyd, L.; Jacobsen, A.; Cunningham, K.; Kapoor, A.; Kwadrat, C.; Radel, J.; Mccarthy, J.

    1989-01-01

    The results of an assessment of several types of high-accuracy tracking systems proposed to track the spacecraft in the National Aeronautics and Space Administration (NASA) Advanced Tracking and Data Relay Satellite System (ATDRSS) are summarized. Tracking systems based on the use of interferometry and ranging are investigated. For each system, the top-level system design and operations concept are provided. A comparative system assessment is presented in terms of orbit determination performance, ATDRSS impacts, life-cycle cost, and technological risk.

  9. Active walker models: tracks and landscapes

    NASA Astrophysics Data System (ADS)

    Kayser, D. R.; Aberle, L. K.; Pochy, R. D.; Lam, L.

    1992-12-01

    The track patterns from the active walker models (AWMs) are compared with experimental retinal neuron and dielectric breakdown of liquid patterns, respectively. Excellent qualitative and quantitative agreements are obtained. The landscapes from the Boltzmann AWM in 1 + 1 dimensions form rough surfaces, with a first-order phase transition as the height of the landscaping function W0 is varied. Landscapes and statistics of the tracks from the probabilistic AWM in 2 + 1 dimensions are presented.

  10. Position and orientation tracking system

    DOEpatents

    Burks, B.L.; DePiero, F.W.; Armstrong, G.A.; Jansen, J.F.; Muller, R.C.; Gee, T.F.

    1998-05-05

    A position and orientation tracking system presents a laser scanning apparatus having two measurement pods, a control station, and a detector array. The measurement pods can be mounted in the dome of a radioactive waste storage silo. Each measurement pod includes dual orthogonal laser scanner subsystems. The first laser scanner subsystem is oriented to emit a first line laser in the pan direction. The second laser scanner is oriented to emit a second line laser in the tilt direction. Both emitted line lasers scan planes across the radioactive waste surface to encounter the detector array mounted on a target robotic vehicle. The angles of incidence of the planes with the detector array are recorded by the control station. Combining measurements describing each of the four planes provides data for a closed form solution of the algebraic transform describing the position and orientation of the target robotic vehicle. 14 figs.

  11. Position and orientation tracking system

    DOEpatents

    Burks, Barry L.; DePiero, Fred W.; Armstrong, Gary A.; Jansen, John F.; Muller, Richard C.; Gee, Timothy F.

    1998-01-01

    A position and orientation tracking system presents a laser scanning appaus having two measurement pods, a control station, and a detector array. The measurement pods can be mounted in the dome of a radioactive waste storage silo. Each measurement pod includes dual orthogonal laser scanner subsystems. The first laser scanner subsystem is oriented to emit a first line laser in the pan direction. The second laser scanner is oriented to emit a second line laser in the tilt direction. Both emitted line lasers scan planes across the radioactive waste surface to encounter the detector array mounted on a target robotic vehicle. The angles of incidence of the planes with the detector array are recorded by the control station. Combining measurements describing each of the four planes provides data for a closed form solution of the algebraic transform describing the position and orientation of the target robotic vehicle.

  12. Long range position and Orientation Tracking System

    SciTech Connect

    Armstrong, G.A.; Jansen, J.F.; Burks, B.L.

    1996-02-01

    The long range Position and Orientation Tracking System is an active triangulation-based system that is being developed to track a target to a resolution of 6.35 mm (0.25 in.) and 0.009{degrees}(32.4 arcseconds) over a range of 13.72 m (45 ft.). The system update rate is currently set at 20 Hz but can be increased to 100 Hz or more. The tracking is accomplished by sweeping two pairs of orthogonal line lasers over infrared (IR) sensors spaced with known geometry with respect to one another on the target (the target being a rigid body attached to either a remote vehicle or a remote manipulator arm). The synchronization and data acquisition electronics correlates the time that an IR sensor has been hit by one of the four lasers and the angle of the respective mirror at the time of the hit. This information is combined with the known geometry of the IR sensors on the target to determine position and orientation of the target. This method has the advantage of allowing the target to be momentarily lost due to occlusions and then reacquired without having to return the target to a known reference point. The system also contains a camera with operator controlled lighting in each pod that allows the target to be continuously viewed from either pod, assuming their are no occlusions.

  13. Optical memory system having track following

    SciTech Connect

    Hsieh, D.; LaBudde, E.V.

    1984-02-14

    A high density optical storage system is disclosed which employs a laser beam for reading data in a track on a rotating optical disk containing a large number of concentric tracks. Track following is provided using a galvanometer-controlled mirror in the path of the beam which is angularly deflected during track following in response to detected track deviations, whereby the beam is controlled to accurately follow the track. Provision is also made for detecting the angular position of the mirror. A linear motor responsive to the detected angular position moves the mirror in a direction which reduces the deflection required to be provided by the mirror in order to maintain the beam accurately following the track. The mirror is also controlled in response to the rate of change of the linear motor velocity for providing greater system stability.

  14. Modular Track System For Positioning Mobile Robots

    NASA Technical Reports Server (NTRS)

    Miller, Jeff

    1995-01-01

    Conceptual system for positioning mobile robotic manipulators on large main structure includes modular tracks and ancillary structures assembled easily along with main structure. System, called "tracked robotic location system" (TROLS), originally intended for application to platforms in outer space, but TROLS concept might also prove useful on Earth; for example, to position robots in factories and warehouses. T-cross-section rail keeps mobile robot on track. Bar codes mark locations along track. Each robot equipped with bar-code-recognizing circuitry so it quickly finds way to assigned location.

  15. Decontamination and Decommisioning Equipment Tracking System

    1994-08-26

    DDETS is Relational Data Base Management System (RDBMS) which incorporates 1-D (code 39) and 2-D (PDF417) bar codes into its equipment tracking capabilities. DDETS is compatible with the Reportable Excess Automated Property System (REAPS), and has add, edit, delete and query capabilities for tracking equipment being decontaminated and decommissioned. In addition, bar code technology is utilized in the inventory tracking and shipping of equipment.

  16. Sensing Human Activity: GPS Tracking

    PubMed Central

    van der Spek, Stefan; van Schaick, Jeroen; de Bois, Peter; de Haan, Remco

    2009-01-01

    The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools, but also as instruments used to capture travelled routes: as sensors that measure activity on a city scale or the regional scale. TU Delft developed a process and database architecture for collecting data on pedestrian movement in three European city centres, Norwich, Rouen and Koblenz, and in another experiment for collecting activity data of 13 families in Almere (The Netherlands) for one week. The question posed in this paper is: what is the value of GPS as ‘sensor technology’ measuring activities of people? The conclusion is that GPS offers a widely useable instrument to collect invaluable spatial-temporal data on different scales and in different settings adding new layers of knowledge to urban studies, but the use of GPS-technology and deployment of GPS-devices still offers significant challenges for future research. PMID:22574061

  17. Stem cell tracking with optically active nanoparticles

    PubMed Central

    Gao, Yu; Cui, Yan; Chan, Jerry KY; Xu, Chenjie

    2013-01-01

    Stem-cell-based therapies hold promise and potential to address many unmet clinical needs. Cell tracking with modern imaging modalities offers insight into the underlying biological process of the stem-cell-based therapies, with the goal to reveal cell survival, migration, homing, engraftment, differentiation, and functions. Adaptability, sensitivity, resolution, and non-invasiveness have contributed to the longstanding use of optical imaging for stem cell tracking and analysis. To identify transplanted stem cells from the host tissue, optically active probes are usually used to label stem cells before the administration. In comparison to the traditional fluorescent probes like fluorescent proteins and dyes, nanoparticle-based probes are advantageous in terms of the photo-stabilities and minimal changes to the cell phenotype. The main focus here is to overview the recent development of optically active nanoparticles for stem cells tracking. The related optical imaging modalities include fluorescence imaging, photoacoustic imaging, Raman and surface enhanced Raman spectroscopy imaging. PMID:23638335

  18. Along-Track Reef Imaging System (ATRIS)

    USGS Publications Warehouse

    Brock, John; Zawada, Dave

    2006-01-01

    "Along-Track Reef Imaging System (ATRIS)" describes the U.S. Geological Survey's Along-Track Reef Imaging System, a boat-based sensor package for rapidly mapping shallow water benthic environments. ATRIS acquires high resolution, color digital images that are accurately geo-located in real-time.

  19. Comparing the Activity Profiles of Wheelchair Rugby Using a Miniaturised Data Logger and Radio-Frequency Tracking System

    PubMed Central

    Lenton, John; Goosey-Tolfrey, Victoria

    2014-01-01

    The current study assessed the validity and reliability of a miniaturised data logger (MDL) against a radio-frequency-based indoor tracking system (ITS) for quantifying key aspects of mobility performance during wheelchair rugby. Eleven international wheelchair rugby players were monitored by both devices during four wheelchair rugby matches. MDL data were averaged over both 1-second (MDL-1) and 5-second (MDL-5) intervals to calculate distance, mean, and peak speeds. The results revealed no significant differences between devices for the distance covered or mean speeds, although random errors of 10% and 12%, respectively, were identified in relation to the mean values. No significant differences in peak speed were revealed between ITS (3.91 ± 0.32 m·s−1) and MDL-1 (3.85 ± 0.45 m·s−1). Whereas peak speeds in MDL-5 (2.75 ± 0.29 m·s−1) were significantly lower than ITS. Errors in peak speed led to large random errors in time and distance spent in speed zones relative to peak speed, especially in MDL-5. The current study revealed that MDL provide a reasonable representation of the distance and mean speed reported during wheelchair rugby. However, inaccuracy in the detection of peak speeds limits its use for monitoring performance and prescribing wheelchair rugby training programmes. PMID:24987678

  20. Comparing the activity profiles of wheelchair rugby using a miniaturised data logger and radio-frequency tracking system.

    PubMed

    Mason, Barry; Lenton, John; Rhodes, James; Cooper, Rory; Goosey-Tolfrey, Victoria

    2014-01-01

    The current study assessed the validity and reliability of a miniaturised data logger (MDL) against a radio-frequency-based indoor tracking system (ITS) for quantifying key aspects of mobility performance during wheelchair rugby. Eleven international wheelchair rugby players were monitored by both devices during four wheelchair rugby matches. MDL data were averaged over both 1-second (MDL-1) and 5-second (MDL-5) intervals to calculate distance, mean, and peak speeds. The results revealed no significant differences between devices for the distance covered or mean speeds, although random errors of 10% and 12%, respectively, were identified in relation to the mean values. No significant differences in peak speed were revealed between ITS (3.91 ± 0.32 m·s(-1)) and MDL-1 (3.85 ± 0.45 m·s(-1)). Whereas peak speeds in MDL-5 (2.75 ± 0.29 m·s(-1)) were significantly lower than ITS. Errors in peak speed led to large random errors in time and distance spent in speed zones relative to peak speed, especially in MDL-5. The current study revealed that MDL provide a reasonable representation of the distance and mean speed reported during wheelchair rugby. However, inaccuracy in the detection of peak speeds limits its use for monitoring performance and prescribing wheelchair rugby training programmes.

  1. An Incredible Tool for Tracking Seizure Activity

    ERIC Educational Resources Information Center

    Hollingsworth, Jan Carter

    2007-01-01

    Eric Schumacher knows all too well the trials and tribulations of tracking seizures and daily activities in the ongoing attempt to gain seizure control. Diagnosed with epilepsy in his teens, he is now bringing a new and innovative tool to the market that could help countless people with epilepsy gain better control over their seizures and thus…

  2. Design and development of an acquisition, tracking, pointing, and fire control system

    NASA Astrophysics Data System (ADS)

    Johnson, Carey J.; VanAllen, Robert; Dimmler, W. Michael; Dillow, James D.

    1999-08-01

    The ABL Acquisition, Tracking, Pointing and Fire Control systems functions are described. The key to the design process is a detailed situation that models the controls, algorithms, engagement sequence, mode logic, passive track sensors, active track sensor, plume phenomenology, active return from the target, and the effects of atmosphere. The application of the simulation to the design process is described, including passive track, active track, and kill assessment. Two field tests used to validate the simulation are briefly described.

  3. Authenticated Tracking and Monitoring System (ATMS) tracking shipments from an Australian uranium mine

    SciTech Connect

    Schoeneman, J.L.; Sorokowski, D.

    1997-10-01

    The Authenticated Tracking and Monitoring System (ATMS) answers the need for global monitoring of the status and location of sensitive items on a worldwide basis, 24 hours a day. The ATMS concept uses wireless sensor packs to monitor the status of the items and environmental conditions, to collect a variety of sensor event data, and to transmit the data through the INMARSAT satellite communication system, which then sends that data to appropriate ground stations for tracking and monitoring. Authentication and encryption algorithms are used throughout the system to secure the data during communication activities. A typical ATMS application would be to track and monitor the safety and security of a number of items in transit along a scheduled shipping route. The resulting tracking, timing, and status information could then be processed to ensure compliance with various agreements.

  4. Solar tracking control system Sun Chaser

    NASA Technical Reports Server (NTRS)

    Scott, D. R.; White, P. R.

    1978-01-01

    The solar tracking control system, Sun Chaser, a method of tracking the Sun in all types of weather conditions is described. The Sun Chaser follows the Sun from east to west in clear or cloudy weather, and resets itself to the east position after sundown in readiness for the next sunrise.

  5. The administration of the NASA space tracking system and the NASA space tracking system in Australia

    NASA Technical Reports Server (NTRS)

    Hollander, N.

    1973-01-01

    The international activities of the NASA space program were studied with emphasis on the development and maintenance of tracking stations in Australia. The history and administration of the tracking organization and the manning policies for the stations are discussed, and factors affecting station operation are appraised. A field study of the Australian tracking network is included.

  6. WIPP Transparency Project - container tracking and monitoring demonstration using the Authenticated Tracking and Monitoring System (ATMS)

    SciTech Connect

    SCHOENEMAN, J. LEE; SMARTT, HEIDI ANNE; HOFER, DENNIS

    2000-01-27

    The Authenticated Tracking and Monitoring System (ATMS) is designed to answer the need for global monitoring of the status and location of proliferation-sensitive items on a worldwide basis, 24 hours a day. ATMS uses wireless sensor packs to monitor the status of the items within the shipment and surrounding environmental conditions. Receiver and processing units collect a variety of sensor event data that is integrated with GPS tracking data. The collected data are transmitted to the International Maritime Satellite (INMARSAT) communication system, which then sends the data to mobile ground stations. Authentication and encryption algorithms secure the data during communication activities. A typical ATMS application would be to track and monitor the stiety and security of a number of items in transit along a scheduled shipping route. The resulting tracking, timing, and status information could then be processed to ensure compliance with various agreements.

  7. Launch vehicle tracking enhancement through Global Positioning System Metric Tracking

    NASA Astrophysics Data System (ADS)

    Moore, T. C.; Li, Hanchu; Gray, T.; Doran, A.

    United Launch Alliance (ULA) initiated operational flights of both the Atlas V and Delta IV launch vehicle families in 2002. The Atlas V and Delta IV launch vehicles were developed jointly with the US Air Force (USAF) as part of the Evolved Expendable Launch Vehicle (EELV) program. Both Launch Vehicle (LV) families have provided 100% mission success since their respective inaugural launches and demonstrated launch capability from both Vandenberg Air Force Base (VAFB) on the Western Test Range and Cape Canaveral Air Force Station (CCAFS) on the Eastern Test Range. However, the current EELV fleet communications, tracking, & control architecture & technology, which date back to the origins of the space launch business, require support by a large and high cost ground footprint. The USAF has embarked on an initiative known as Future Flight Safety System (FFSS) that will significantly reduce Test Range Operations and Maintenance (O& M) cost by closing facilities and decommissioning ground assets. In support of the FFSS, a Global Positioning System Metric Tracking (GPS MT) System based on the Global Positioning System (GPS) satellite constellation has been developed for EELV which will allow both Ranges to divest some of their radar assets. The Air Force, ULA and Space Vector have flown the first 2 Atlas Certification vehicles demonstrating the successful operation of the GPS MT System. The first Atlas V certification flight was completed in February 2012 from CCAFS, the second Atlas V certification flight from VAFB was completed in September 2012 and the third certification flight on a Delta IV was completed October 2012 from CCAFS. The GPS MT System will provide precise LV position, velocity and timing information that can replace ground radar tracking resource functionality. The GPS MT system will provide an independent position/velocity S-Band telemetry downlink to support the current man-in-the-loop ground-based commanded destruct of an anomalous flight- The system

  8. Development of a Sunspot Tracking System

    NASA Technical Reports Server (NTRS)

    Taylor, Jaime R.

    1998-01-01

    Large solar flares produce a significant amount of energetic particles which pose a hazard for human activity in space. In the hope of understanding flare mechanisms and thus better predicting solar flares, NASA's Marshall Space Flight Center (MSFC) developed an experimental vector magnetograph (EXVM) polarimeter to measure the Sun's magnetic field. The EXVM will be used to perform ground-based solar observations and will provide a proof of concept for the design of a similar instrument for the Japanese Solar-B space mission. The EXVM typically operates for a period of several minutes. During this time there is image motion due to atmospheric fluctuation and telescope wind loading. To optimize the EXVM performance an image motion compensation device (sunspot tracker) is needed. The sunspot tracker consists of two parts, an image motion determination system and an image deflection system. For image motion determination a CCD or CID camera is used to digitize an image, than an algorithm is applied to determine the motion. This motion or error signal is sent to the image deflection system which moves the image back to its original location. Both of these systems are under development. Two algorithms are available for sunspot tracking which require the use of only one row and one column of image data. To implement these algorithms, two identical independent systems are being developed, one system for each axis of motion. Two CID cameras have been purchased; the data from each camera will be used to determine image motion for each direction. The error signal generated by the tracking algorithm will be sent to an image deflection system consisting of an actuator and a mirror constrained to move about one axis. Magnetostrictive actuators were chosen to move the mirror over piezoelectrics due to their larger driving force and larger range of motion. The actuator and mirror mounts are currently under development.

  9. Chemical Tracking Systems: Not Your Usual Global Positioning System!

    ERIC Educational Resources Information Center

    Roy, Ken

    2007-01-01

    The haphazard storing and tracking of chemicals in the laboratory is a serious safety issue facing science teachers. To get control of your chemicals, try implementing a "chemical tracking system". A chemical tracking system (CTS) is a database of chemicals used in the laboratory. If implemented correctly, a CTS will reduce purchasing costs,…

  10. UWB Tracking System Design with TDOA Algorithm

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Schwing, Alan

    2006-01-01

    This presentation discusses an ultra-wideband (UWB) tracking system design effort using a tracking algorithm TDOA (Time Difference of Arrival). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A two-stage weighted least square method is chosen to solve the TDOA non-linear equations. Matlab simulations in both two-dimensional space and three-dimensional space show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. The error analysis reveals various ways to improve the tracking resolution. Lab experiments demonstrate the UWBTDOA tracking capability with fine resolution. This research effort is motivated by a prototype development project Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS).

  11. NASA's GPS tracking system for Aristoteles

    NASA Astrophysics Data System (ADS)

    Davis, E. S.; Hajj, G.; Kursinski, E. R.; Kyriacou, C.; Meehan, T. K.; Melbourne, William G.; Neilan, R. E.; Young, L. E.; Yunck, Thomas P.

    1991-12-01

    NASA 's Global Positioning System (GPS) tracking system for Artistoteles receivers and a GPS flight receiver aboard Aristoteles is described. It will include a global network of GPS ground receivers and a GPS flight receiver aboard Aristoteles. The flight receiver will operate autonomously; it will provide real time navigation solutions for Aristoteles and tracking data needed by ESOC for operational control of the satellite. The GPS flight and ground receivers will currently and continuously track all visible GPS satellites. These observations will yield high accuracy differential positions and velocities of Aristoteles in a terrestrial frame defined by the locations of the globally distributed ground work. The precise orbits and tracking data will be made available to science investigators as part of the geophysical data record. The characteristics of the GPS receivers, both flight and ground based, that NASA will be using to support Aristoteles are described. The operational aspects of the overall tracking system, including the data functions and the resulting data products are summarized. The expected performance of the tracking system is compared to Aristoteles requirements and the need to control key error sources such as multipath is identified.

  12. Musculoskeletal disorders in construction: A review and a novel system for activity tracking with body area network.

    PubMed

    Valero, Enrique; Sivanathan, Aparajithan; Bosché, Frédéric; Abdel-Wahab, Mohamed

    2016-05-01

    Human body motions have been analysed for decades with a view on enhancing occupational well-being and performance of workers. On-going progresses in miniaturised wearable sensors are set to revolutionise biomechanical analysis by providing accurate and real-time quantitative motion data. The construction industry has a poor record of occupational health, in particular with regard to work-related musculoskeletal disorders (WMSDs). In this article, we therefore focus on the study of human body motions that could cause WMSDs in construction-related activities. We first present an in-depth review of existing assessment frameworks used in practice for the evaluation of human body motion. Subsequently different methods for measuring working postures and motions are reviewed and compared, pointing out the technological developments, limitations and gaps; Inertial Measurement Units (IMUs) are particularly investigated. Finally, we introduce a new system to detect and characterise unsafe postures of construction workers based on the measurement of motion data from wearable wireless IMUs integrated in a body area network. The potential of this system is demonstrated through experiments conducts in a laboratory as well as in a college with actual construction trade trainees.

  13. Interferometric tracking system for the tracking and data relay satellite

    NASA Technical Reports Server (NTRS)

    Effland, John E.; Knight, Curtis A.; Webber, John C.

    1993-01-01

    This report documents construction and testing of the Interferometric Tracking System project developed under the NASA SBIR contract NAS5-30313. Manuals describing the software and hardware, respectively entitled: 'Field Station Guide to Operations' and 'Field Station Hardware Manual' are included as part of this final report. The objective of this contract was to design, build, and operate a system of three ground stations using Very Long Baseline Interferometry techniques to measure the TDRS orbit. The ground stations receive signals from normal satellite traffic, store these signals in co-located computers, and transmit the information via phone lines to a central processing site which correlates the signals to determine relative time delays. Measurements from another satellite besides TDRS are used to determine clock offsets. A series of such measurements will ultimately be employed to derive the orbital parameters, yielding positions accurate to within 50 meters or possibly better.

  14. Fuzzy logic control for camera tracking system

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant

    1992-01-01

    A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.

  15. Explosives Classifications Tracking System User Manual

    SciTech Connect

    Genoni, R.P.

    1993-10-01

    The Explosives Classification Tracking System (ECTS) presents information and data for U.S. Department of Energy (DOE) explosives classifications of interest to EM-561, Transportation Management Division, other DOE facilities, and contractors. It is intended to be useful to the scientist, engineer, and transportation professional, who needs to classify or transport explosives. This release of the ECTS reflects upgrading of the software which provides the user with an environment that makes comprehensive retrieval of explosives related information quick and easy. Quarterly updates will be provided to the ECTS throughout its development in FY 1993 and thereafter. The ECTS is a stand alone, single user system that contains unclassified, publicly available information, and administrative information (contractor names, product descriptions, transmittal dates, EX-Numbers, etc.) information from many sources for non-decisional engineering and shipping activities. The data is the most up-to-date and accurate available to the knowledge of the system developer. The system is designed to permit easy revision and updating as new information and data become available. These, additions and corrections are welcomed by the developer. This user manual is intended to help the user install, understand, and operate the system so that the desired information may be readily obtained, reviewed, and reported.

  16. Color Image Processing and Object Tracking System

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Wright, Ted W.; Sielken, Robert S.

    1996-01-01

    This report describes a personal computer based system for automatic and semiautomatic tracking of objects on film or video tape, developed to meet the needs of the Microgravity Combustion and Fluids Science Research Programs at the NASA Lewis Research Center. The system consists of individual hardware components working under computer control to achieve a high degree of automation. The most important hardware components include 16-mm and 35-mm film transports, a high resolution digital camera mounted on a x-y-z micro-positioning stage, an S-VHS tapedeck, an Hi8 tapedeck, video laserdisk, and a framegrabber. All of the image input devices are remotely controlled by a computer. Software was developed to integrate the overall operation of the system including device frame incrementation, grabbing of image frames, image processing of the object's neighborhood, locating the position of the object being tracked, and storing the coordinates in a file. This process is performed repeatedly until the last frame is reached. Several different tracking methods are supported. To illustrate the process, two representative applications of the system are described. These applications represent typical uses of the system and include tracking the propagation of a flame front and tracking the movement of a liquid-gas interface with extremely poor visibility.

  17. Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Mckenzie, J.; Vanek, C.

    1991-01-01

    The DSN (Deep Space Network) mission support requirements for the Tracking and Data Relay Satellite System (TDRSS) are summarized. The TDRSS consists of four identical satellites in geosynchronous orbits (35,800 km) and a dedicated ground station. The payload of each satellite is a telecommunications service system that relays communication signals between low earth-orbiting user spacecraft and the TDRSS ground terminal. Mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility.

  18. Underground communications and tracking systems update

    SciTech Connect

    Fiscor, S.

    2008-01-15

    Today, when it comes to having systems to communicate with track and locate underground coal miners, mining companies have many equipment choices, as a direct response to the USA's 2006 MINER Act and the West Virginia Legislative Rule 56-4-8. Coal Age spoke to several companies about their leaky feeder and purely wireless systems which are either approved by the US MSHA or have been submitted for approval. The article gives details of: a UHF leaky feeder system developed by Pillar Innovations, designed to exit a mine at multiple points and then tie the leads back together on the surface; the Venture/Helicomm MineTrader system for tracking, monitoring and emergency messaging for mines; Rajant Corp.'s BreadCrumb wireless system using battery-powered wireless access nodes that enable voice and data communications across a self-healing network; the SubterraCom Wireless Solution's communications systems; a wireless mesh peer-to-peer communications system and an ultra widebade (UWB)-base real-time location tracking system from L-3 Communications; and VHF and UHF leaky feeder amplifiers from Tunnel Radio. MSHA approved communications and tracking systems are tabulated. 11 photos., 1 tab.

  19. Tracking-integrated systems for concentrating photovoltaics

    NASA Astrophysics Data System (ADS)

    Apostoleris, Harry; Stefancich, Marco; Chiesa, Matteo

    2016-04-01

    Concentrating photovoltaic (CPV) systems, which use optical elements to focus light onto small-area solar cells, have the potential to minimize the costs, while improving efficiency, of photovoltaic technology. However, CPV is limited by the need to track the apparent motion of the Sun. This is typically accomplished using high-precision mechanical trackers that rotate the entire module to maintain normal light incidence. These machines are large, heavy and expensive to build and maintain, deterring commercial interest and excluding CPV from the residential market. To avoid this issue, some attention has recently been devoted to the development of tracking-integrated systems, in which tracking is performed inside the CPV module itself. This creates a compact system geometry that could be less expensive and more suitable for rooftop installation than existing CPV trackers. We review the basic tracking principles and concepts exploited in these systems, describe and categorize the existing designs, and discuss the potential impact of tracking integration on CPV cost models and commercial potential.

  20. Trip Information Log Tracking System

    SciTech Connect

    Jones, Jeffrey F.

    1992-06-23

    The system is focused on the Employee Business Travel Event. The system must be able to CRUD (Create, Retrieve, Update, Delete) instances of the Travel Event as well as the ability to CRUD frequent flyer milage associated with airline travel. Additionally the system must provide for a compliance reporting system to monitor reductions in travel costs and lost opportunity costs (i.e., not taking advantage of business class or 7 day advance tickets).

  1. Introduction to the Graduation Tracking System (GTS)

    ERIC Educational Resources Information Center

    Alabama Department of Education, 2011

    2011-01-01

    This guide is a training and supportive tool for use by local education agencies (LEAs) in the state of Alabama that are utilizing the Science, Technology and Innovation (STI) Information-INow-INFocus information system software. The Graduation Tracking System (GTS) utilizes existing STI technology to capture student information pertaining to…

  2. Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Kushpil, Svetlana; ALICE Collaboration

    2016-02-01

    ALICE detector was constructed to study the properties of hot and dense hadronic matter formed in relativistic nuclear collisions. During the second long LHC shutdown in 2019-2020, the collaboration plans to upgrade the current vertex detector, the Inner Tracking System (ITS), in order to increase the reconstruction accuracy of secondary vertices and to lower the threshold of particle transverse momentum measurement. The upgrade strategy of ITS is based on the application of new Monolithic Active Pixel Sensors (MAPS) designed in 0.18 μm CMOS technology. The 50 μm thick chip consists of a single silicon die incorporating a 0.18 μm high-resistivity silicon epitaxial layer (sensor active volume) and matrix of charge collection diodes (pixels) with readout electronics. Radiation hardness of the upgraded ITS is one of the crucial moments in the overall performance of the system. A wide set of MAPS structures with different read-out circuits was produced and is being studied by the ALICE collaboration to optimize the pixel sensor functionality. An overview of the ALICE ITS upgrade and the expected performance improvement will be presented together with selected results from a campaign that includes several irradiation and beam tests.

  3. Accountability Reporting and Tracking System

    1992-07-02

    ARTS is a micro based prototype of the data elements, screens, and information processing rules that apply to the Accountability Reporting Program. The system focuses on the Accountability Event. The Accountability Event is an occurrence of incurring avoidable costs. The system must be able to CRUD (Create, Retrieve, Update, Delete) instances of the Accountability Event. Additionally, the system must provide for a review committee to update the ''event record'' with findings and determination information. Lastly,more » the system must provide for financial representatives to perform a cost reporting process.« less

  4. Accountability Reporting and Tracking System

    SciTech Connect

    Jones, Jeffery

    1992-07-02

    ARTS is a micro based prototype of the data elements, screens, and information processing rules that apply to the Accountability Reporting Program. The system focuses on the Accountability Event. The Accountability Event is an occurrence of incurring avoidable costs. The system must be able to CRUD (Create, Retrieve, Update, Delete) instances of the Accountability Event. Additionally, the system must provide for a review committee to update the ''event record'' with findings and determination information. Lastly, the system must provide for financial representatives to perform a cost reporting process.

  5. Stereo Electro-optical Tracking System (SETS)

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1984-01-01

    The SETS is a remote, non-contacting, high-accuracy tracking system for the measurement of deflection of models in the National Transonic Facility at Langley Research Center. The system consists of four electronically scanned image dissector trackers which locate the position of Light Emitting Diodes embedded in the wing or body of aircraft models. Target location data is recorded on magnetic tape for later 3-D processing. Up to 63 targets per model may be tracked at typical rates of 1280 targets per second and to precision of 0.02mm at the target under the cold (-193 C) environment of the NTF tunnel.

  6. Tracking system of the upgraded LHCb

    NASA Astrophysics Data System (ADS)

    Obłąkowska-Mucha, A.; Szumlak, T.

    2016-07-01

    The upgrade of the LHCb experiment will run at an instantaneous luminosity up to 2 ×1033cm-2s-1 with a fully software based trigger, allowing us to read out the detector at a rate of 40 MHz. For this purpose, the full tracking system will be newly developed: the vertex locator (VELO) will be replaced by a pixel-based detector providing an excellent track reconstruction with an efficiency of above 99%. Upstream of the magnet, a silicon micro-strip detector with a high granularity and an improved acceptance, called the Upstream Tracker (UT) will be placed. The tracking system downstream of the magnet will be replaced by the Scintillating Fibre tracker (SciFi), which will consist of 12 layers using 2.5 m long scintillating fibres read out by silicon photo-multipliers.

  7. Hybrid retinal tracking and coagulation system

    NASA Astrophysics Data System (ADS)

    Wright, Cameron H. G.; Oberg, Erik D.; Barrett, Steven F.

    1998-06-01

    Laser photocoagulation is used extensively by ophthalmologists to treat retinal disorders such as diabetic retinopathy and retinal breaks and tears. Currently, the procedure is performed manually and suffers from several drawbacks: it often requires many clinical visits, it is very tedious for both patient and physician, the laser pointing accuracy and safety margin are limited by a combination of the physician's manual dexterity and the patient's ability to hold their eye still, and there is a wide variability in retinal tissue absorption parameters. A computer-assisted hybrid system is under development that will rapidly and safely place multiple therapeutic lesions at desired locations on the retina in a matter of seconds. In the past, one of the main obstacles to such a system has been the ability to track the retina and compensate for any movement with sufficient speed during photocoagulation. Two different tracking modalities (digital image-based tracking and analog confocal tracking) were designed and tested in vivo on pigmented rabbits. These two systems are being seamlessly combined into a hybrid system which provides real-time, motion stabilized lesion placement for typical irradiation times (100 ms). This paper will detail the operation of the hybrid system and efforts toward controlling the depth of coagulation on the retinal surface.

  8. Authenticated tracking and monitoring system (ATMS) tracking shipments from an Australian uranium mine

    SciTech Connect

    Schoeneman, J.L.

    1998-08-01

    The Authenticated Tracking and Monitoring System (ATMS) answers the need for global monitoring of the status and location of sensitive items on a worldwide basis, 24 hours a day. ATMS uses wireless sensor packs to monitor the status of the items and environmental conditions. A receiver and processing unit collect a variety of sensor event data. The collected data are transmitted to the INMARSAT satellite communication system, which then sends the data to appropriate ground stations. Authentication and encryption algorithms secure the data during communication activities. A typical ATMS application would be to track and monitor the safety and security of a number of items in transit along a scheduled shipping route. The resulting tracking, timing, and status information could then be processed to ensure compliance with various agreements. Following discussions between the Australian Safeguards Office (ASO), the US Department of Energy (DOE), and Sandia National Laboratories (SNL) in early 1995, the parties mutually agreed to conduct and evaluate a field trial prototype ATMS to track and monitor shipments of uranium ore concentrate (UOC) from an operating uranium mine in Australia to a final destination in Rotterdam, the Netherlands, with numerous stops along the way. During the months of February and March 1998, the trial was conducted on a worldwide basis, with tracking and monitoring stations located at sites in both Australia and the US. This paper describes ATMS and the trial.

  9. A coded tracking telemetry system

    USGS Publications Warehouse

    Howey, P.W.; Seegar, W.S.; Fuller, M.R.; Titus, K.

    1989-01-01

    We describe the general characteristics of an automated radio telemetry system designed to operate for prolonged periods on a single frequency. Each transmitter sends a unique coded signal to a receiving system that encodes and records only the appropriater, pre-programmed codes. A record of the time of each reception is stored on diskettes in a micro-computer. This system enables continuous monitoring of infrequent signals (e.g. one per minute or one per hour), thus extending operation life or allowing size reduction of the transmitter, compared to conventional wildlife telemetry. Furthermore, when using unique codes transmitted on a single frequency, biologists can monitor many individuals without exceeding the radio frequency allocations for wildlife.

  10. Optical Blade Position Tracking System Test

    SciTech Connect

    Fingersh, L. J.

    2006-01-01

    The Optical Blade Position Tracking System Test measures the blade deflection along the span of the blade using simple off-the-shelf infrared security cameras along with blade-mounted retro-reflective tape and video image processing hardware and software to obtain these measurements.

  11. Communications and Tracking Distributed Systems Evolution Study

    NASA Technical Reports Server (NTRS)

    Culpepper, William

    1990-01-01

    The Communications and Tracking (C & T) techniques and equipment to support evolutionary space station concepts are being analyzed. Evolutionary space station configurations and operational concepts are used to derive the results to date. A description of the C & T system based on future capability needs is presented. Included are the hooks and scars currently identified to support future growth.

  12. The Kinect as an interventional tracking system

    NASA Astrophysics Data System (ADS)

    Wang, Xiang L.; Stolka, Philipp J.; Boctor, Emad; Hager, Gregory; Choti, Michael

    2012-02-01

    This work explores the suitability of low-cost sensors for "serious" medical applications, such as tracking of interventional tools in the OR, for simulation, and for education. Although such tracking - i.e. the acquisition of pose data e.g. for ultrasound probes, tissue manipulation tools, needles, but also tissue, bone etc. - is well established, it relies mostly on external devices such as optical or electromagnetic trackers, both of which mandate the use of special markers or sensors attached to each single entity whose pose is to be recorded, and also require their calibration to the tracked entity, i.e. the determination of the geometric relationship between the marker's and the object's intrinsic coordinate frames. The Microsoft Kinect sensor is a recently introduced device for full-body tracking in the gaming market, but it was quickly hacked - due to its wide range of tightly integrated sensors (RGB camera, IR depth and greyscale camera, microphones, accelerometers, and basic actuation) - and used beyond this area. As its field of view and its accuracy are within reasonable usability limits, we describe a medical needle-tracking system for interventional applications based on the Kinect sensor, standard biopsy needles, and no necessary attachments, thus saving both cost and time. Its twin cameras are used as a stereo pair to detect needle-shaped objects, reconstruct their pose in four degrees of freedom, and provide information about the most likely candidate.

  13. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope.

    PubMed

    Sheehy, Christy K; Tiruveedhula, Pavan; Sabesan, Ramkumar; Roorda, Austin

    2015-07-01

    We demonstrate a system that combines a tracking scanning laser ophthalmoscope (TSLO) and an adaptive optics scanning laser ophthalmoscope (AOSLO) system resulting in both optical (hardware) and digital (software) eye-tracking capabilities. The hybrid system employs the TSLO for active eye-tracking at a rate up to 960 Hz for real-time stabilization of the AOSLO system. AOSLO videos with active eye-tracking signals showed, at most, an amplitude of motion of 0.20 arcminutes for horizontal motion and 0.14 arcminutes for vertical motion. Subsequent real-time digital stabilization limited residual motion to an average of only 0.06 arcminutes (a 95% reduction). By correcting for high amplitude, low frequency drifts of the eye, the active TSLO eye-tracking system enabled the AOSLO system to capture high-resolution retinal images over a larger range of motion than previously possible with just the AOSLO imaging system alone.

  14. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope

    PubMed Central

    Sheehy, Christy K.; Tiruveedhula, Pavan; Sabesan, Ramkumar; Roorda, Austin

    2015-01-01

    We demonstrate a system that combines a tracking scanning laser ophthalmoscope (TSLO) and an adaptive optics scanning laser ophthalmoscope (AOSLO) system resulting in both optical (hardware) and digital (software) eye-tracking capabilities. The hybrid system employs the TSLO for active eye-tracking at a rate up to 960 Hz for real-time stabilization of the AOSLO system. AOSLO videos with active eye-tracking signals showed, at most, an amplitude of motion of 0.20 arcminutes for horizontal motion and 0.14 arcminutes for vertical motion. Subsequent real-time digital stabilization limited residual motion to an average of only 0.06 arcminutes (a 95% reduction). By correcting for high amplitude, low frequency drifts of the eye, the active TSLO eye-tracking system enabled the AOSLO system to capture high-resolution retinal images over a larger range of motion than previously possible with just the AOSLO imaging system alone. PMID:26203370

  15. Passive Tracking System and Method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Chen, Henry A. (Inventor); Phan, Chau T. (Inventor); Bourgeois, Brian A. (Inventor); Dusl, Jon (Inventor); Hill, Brent W. (Inventor)

    2003-01-01

    Systems and methods are disclosed for passively determining the location of a moveable transmitter utilizing a pair of phase shifts at a receiver for extracting a direction vector from a receiver to the transmitter. In a preferred embodiment, a phase difference between the transmitter and receiver is extracted utilizing a noncoherent demodulator in the receiver. The receiver includes an antenna array with three antenna elements, which preferably are patch antenna elements spaced apart by one-half wavelength. Three receiver channels are preferably utilized for simultaneously processing the received signal from each of the three antenna elements. Multipath transmission paths for each of the three receiver channels are indexed so that comparisons of the same multipath component are made for each of the three receiver channels. The phase difference for each received signal is determined by comparing only the magnitudes of received and stored modulation signals to determine a winning modulation symbol.

  16. Magnetic tracking system for radiation therapy.

    PubMed

    Wing-Fai Loke; Tae-Young Choi; Maleki, Teimour; Papiez, Lech; Ziaie, Babak; Byunghoo Jung

    2010-08-01

    Intensity-modulated radiation therapy (IMRT) requires precise delivery of the prescribed dose of radiation to the target and surrounding tissue. Irradiation of moving body anatomy is possible only if stable, accurate, and reliable information about the moving body structures are provided in real time. This paper presents a magnetic position tracking system for radiation therapy. The proposed system uses only four transmitting coils and an implantable transponder. The four transmitting coils generate a magnetic field which is sensed and measured by a biaxial magnetoresistive sensor in the transponder in the tumor. The transponder transmits the information back to a computer to determine the position of the transponder allowing it to track the tumor in real time. The transmission of the information from the transponder to the computer can be wired or wireless. Measurements using a biaxial sensor agree well with the field strength calculated from the ideal equations. The translation from the measurement data to the 3-D location and orientation requires a numerical technique because the equations are in nonclosed forms. The algorithm of tracking is implemented using MATLAB. Each calculation of the position along the target trajectory takes 30 ms, which makes the proposed system suitable for real-time tracking of the transponder for radiation assessment and delivery. An error of less than 2 mm is achieved in the demonstration.

  17. NCAR Earth Observing Laboratory's Data Tracking System

    NASA Astrophysics Data System (ADS)

    Cully, L. E.; Williams, S. F.

    2014-12-01

    The NCAR Earth Observing Laboratory (EOL) maintains an extensive collection of complex, multi-disciplinary datasets from national and international, current and historical projects accessible through field project web pages (https://www.eol.ucar.edu/all-field-projects-and-deployments). Data orders are processed through the EOL Metadata Database and Cyberinfrastructure (EMDAC) system. Behind the scenes is the institutionally created EOL Computing, Data, and Software/Data Management Group (CDS/DMG) Data Tracking System (DTS) tool. The DTS is used to track the complete life cycle (from ingest to long term stewardship) of the data, metadata, and provenance for hundreds of projects and thousands of data sets. The DTS is an EOL internal only tool which consists of three subsystems: Data Loading Notes (DLN), Processing Inventory Tool (IVEN), and Project Metrics (STATS). The DLN is used to track and maintain every dataset that comes to the CDS/DMG. The DLN captures general information such as title, physical locations, responsible parties, high level issues, and correspondence. When the CDS/DMG processes a data set, IVEN is used to track the processing status while collecting sufficient information to ensure reproducibility. This includes detailed "How To" documentation, processing software (with direct links to the EOL Subversion software repository), and descriptions of issues and resolutions. The STATS subsystem generates current project metrics such as archive size, data set order counts, "Top 10" most ordered data sets, and general information on who has ordered these data. The DTS was developed over many years to meet the specific needs of the CDS/DMG, and it has been successfully used to coordinate field project data management efforts for the past 15 years. This paper will describe the EOL CDS/DMG Data Tracking System including its basic functionality, the provenance maintained within the system, lessons learned, potential improvements, and future developments.

  18. Deficiency tracking system, conceptual business process requirements

    SciTech Connect

    Hermanson, M.L.

    1997-04-18

    The purpose of this document is to describe the conceptual business process requirements of a single, site-wide, consolidated, automated, deficiency management tracking, trending, and reporting system. This description will be used as the basis for the determination of the automated system acquisition strategy including the further definition of specific requirements, a ''make or buy'' determination and the development of specific software design details.

  19. Communication and tracking system evolution study

    NASA Technical Reports Server (NTRS)

    Culpepper, William

    1990-01-01

    The communications and tracking (C&T) techniques and equipment to support evolutionary space station concepts are being analyzed. Evolutionary space station configurations and operational concepts were used in the analysis to derive the results to date. A description of the C&T system based on future capability needs is presented. Included are the 'hooks and scars' currently identified to support the future growth. Technology transparency and impact of growth on other systems are also addressed.

  20. K band tracking system for the domestic satellite communication system

    NASA Astrophysics Data System (ADS)

    Kaitsuka, T.; Inoue, T.

    1980-09-01

    The paper is concerned with system design and operational results of a tracking system for an earth station antenna operating in the 20 and 30 GHz bands. The antenna is either an 11.5-m-diam axisymmetrical Cassegrain antenna or an equivalent offset Cassegrain antenna. Monopulse tracking technique using higher-order waveguide modes is utilized. An investigation was conducted to clarify the rainfall effect and the effect of oscillator phase noise on the tracking receiver. The result is that the tracking system can be operated normally even when rain attenuation reaches 20 dB. Experiments were performed using the Medium Capacity Communications Satellite. No cross coupling was seen in the pull-in patterns. Sufficiently good results were obtained in tracking accuracy - less than 0.005 deg (peak value) under normal conditions, and less than 0.01 deg under an average wind velocity of more than 20 m/s.

  1. Hazardous chemical tracking system (HAZ-TRAC)

    SciTech Connect

    Bramlette, J D; Ewart, S M; Jones, C E

    1990-07-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) developed and implemented a computerized hazardous chemical tracking system, referred to as Haz-Trac, for use at the Idaho Chemical Processing Plant (ICPP). Haz-Trac is designed to provide a means to improve the accuracy and reliability of chemical information, which enhances the overall quality and safety of ICPP operations. The system tracks all chemicals and chemical components from the time they enter the ICPP until the chemical changes form, is used, or becomes a waste. The system runs on a Hewlett-Packard (HP) 3000 Series 70 computer. The system is written in COBOL and uses VIEW/3000, TurboIMAGE/DBMS 3000, OMNIDEX, and SPEEDWARE. The HP 3000 may be accessed throughout the ICPP, and from remote locations, using data communication lines. Haz-Trac went into production in October, 1989. Currently, over 1910 chemicals and chemical components are tracked on the system. More than 2500 personnel hours were saved during the first six months of operation. Cost savings have been realized by reducing the time needed to collect and compile reporting information, identifying and disposing of unneeded chemicals, and eliminating duplicate inventories. Haz-Trac maintains information required by the Superfund Amendment Reauthorization Act (SARA), the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Occupational Safety and Health Administration (OSHA).

  2. Communications and tracking expert systems study

    NASA Technical Reports Server (NTRS)

    Leibfried, T. F.; Feagin, Terry; Overland, David

    1987-01-01

    The original objectives of the study consisted of five broad areas of investigation: criteria and issues for explanation of communication and tracking system anomaly detection, isolation, and recovery; data storage simplification issues for fault detection expert systems; data selection procedures for decision tree pruning and optimization to enhance the abstraction of pertinent information for clear explanation; criteria for establishing levels of explanation suited to needs; and analysis of expert system interaction and modularization. Progress was made in all areas, but to a lesser extent in the criteria for establishing levels of explanation suited to needs. Among the types of expert systems studied were those related to anomaly or fault detection, isolation, and recovery.

  3. Hacker tracking Security system for HMI

    NASA Astrophysics Data System (ADS)

    Chauhan, Rajeev Kumar

    2011-12-01

    Conventional Supervisory control and data Acquisition (SCADA) systems use PC, notebook, thin client, and PDA as a Client. Nowadays the Process Industries are following multi shift system that's why multi- client of different category have to work at a single human Machine Interface (HMI). They may hack the HMI Display and change setting of the other client. This paper introduces a Hacker tracking security (HTS) System for HMI. This is developed by using the conventional and Biometric authentication. HTS system is developed by using Numeric passwords, Smart card, biometric, blood flow and Finger temperature. This work is also able to identify the hackers.

  4. Robot motion tracking system with multiple views

    NASA Astrophysics Data System (ADS)

    Yamano, Hiroshi; Saito, Hideo

    2001-10-01

    In such a space where human workers and industrial robots work together, it has become necessary to monitor a robot motion for the safety. For such robot surveillance, we propose a robot tracking system from multiple view images. In this system, we treat tracking robot movement problem as an estimation problem of each pose parameter through all frames. This tracking algorithm consists of four stages, image generating stage, estimation stage, parameter searching stage, and prediction stage. At the first stage, robot area of real image is extracted by background subtraction. Here, Yuv color system is used because of reducing the change of lighting condition. By calibrating extrinsic and intrinsic parameters of all cameras with Tsai's method, we can project 3D model of the robot onto each camera. In the next stage, correlation of the input image and projected model image is calculated, which is defined by the area of robots in real and 3D images. At third stage, the pose parameters of the robot are estimated by maximizing the correlation. For computational efficiency, a high dimensional pose parameter space is divided into many low dimensional sub-spaces in accordance with the predicted pose parameters in the previous flame. We apply the proposed system for pose estimation of 5-axis robot manipulator. The estimated pose parameters are successfully matched with the actual pose of the robots.

  5. Ultrawideband asynchronous tracking system and method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Phan, Chau T. (Inventor); Gross, Julia A. (Inventor); Ni, Jianjun (Inventor); Dusl, John (Inventor)

    2012-01-01

    A passive tracking system is provided with a plurality of ultrawideband (UWB) receivers that is asynchronous with respect to a UWB transmitter. A geometry of the tracking system may utilize a plurality of clusters with each cluster comprising a plurality of antennas. Time Difference of Arrival (TDOA) may be determined for the antennas in each cluster and utilized to determine Angle of Arrival (AOA) based on a far field assumption regarding the geometry. Parallel software communication sockets may be established with each of the plurality of UWB receivers. Transfer of waveform data may be processed by alternately receiving packets of waveform data from each UWB receiver. Cross Correlation Peak Detection (CCPD) is utilized to estimate TDOA information to reduce errors in a noisy, multipath environment.

  6. Advances in automatic electro-optical tracking systems

    NASA Astrophysics Data System (ADS)

    Hughes, Andrew D.; Moy, Anthony J. E.

    1992-11-01

    British Aerospace (Systems & Equipment) Ltd (BASE) has been working in the field of automatic electro-optical tracking (Autotrack) systems for more than 12 years. BASE Autotrack systems carry out the automatic detection, tracking and classification of missiles and targets using image processing techniques operating on data received from electro-optical sensors. Typical systems also produce control data to move the sensor platform, enabling moving targets to be tracked accurately over a wide range of conditions. BASE Autotrack systems have been well proven in land, sea and air applications. This paper discusses the relevance of Autotrack systems to modern high-technology warfare and charts the progress of their development with BASE, both with respect to current products and active research programs. Two third generation BASE Autotrack systems are described, one of which provided a sophisticated air-to-ground tracking capability in the recent Gulf War. The latest Autotrack product is also described; this uses ASIC and Transputer technology to provide a high-performance, compact, missile and target tracker. Reference is also made to BASE's research work. Topics include an ASIC correlator, point target detection and, in particular, the use of neural networks for real-time target classification.

  7. Advances in automatic electro-optical tracking systems

    NASA Astrophysics Data System (ADS)

    Moy, Anthony J. E.; Hughes, Andrew D.

    1992-11-01

    British Aerospace (Systems & Equipment) Ltd (BASE) has been working in the field of automatic electro-optical tracking (Autotrack) systems for more than 12 years. BASE Autotrack systems carry out the automatic detection, tracking and classification of missiles and targets using image processing techniques operating on data received from electro-optical sensors. Typical systems also produce control data to move the sensor platform, enabling moving targets to be tracked accurately over a wide range of conditions. BASE Autotrack systems have been well proven in land, sea and air applications. This paper discusses the relevance of Autotrack systems to modern high-technology warfare and charts the progress of their development within BASE, both with respect to current products and active research programs. Two third generation BASE Autotrack systems are described, one of which provided a sophisticated air-to-ground tracking capability in the recent Gulf War. The latest Autotrack product is also described; this uses ASIC and Transputer technology to provide a high-performance, compact, missile and target tracker. Reference is also made to BASE's research work. Topics include an ASIC correlator, point target detection and, in particular, the use of neural networks for real-time target classification.

  8. Commitment Tracking System Version 3.5

    1992-06-01

    The Commitment Tracking System (CTS) was developed to standardize data input and report output. A CTS administrator is responsible for data entry, updating, reporting, and record keeping. The administrator will produce reports as required for actionee/manager information and update. In addition, the administrator will process uploads to the Office Vision Company Action Log (CAL) of all required issues addressed in the Company Procedure.

  9. Advanced tracking and data relay satellite system

    NASA Technical Reports Server (NTRS)

    Stern, Daniel

    1992-01-01

    The purpose of this communication satellite system are as follows: to provide NASA needs for satellite tracking and communications through the year 2012; to maintain and augment the current TDRS system when available satellite resources are expended in the latter part of the decade; to provide the necessary ground upgrade to support the augmented services; and to introduce new technology to reduce the system life cycle cost. It is concluded that no ATDRS spacecraft requirement for new modulation techniques, that data rate of 650 MBps is required, and that Space Station Freedom requirement is for 650 MBps data some time after the year 2000.

  10. GROUNDWATER INFORMATION TRACKING SYSTEM/STATISTICAL ANALYSIS SYSTEM

    EPA Science Inventory

    The Groundwater Information Tracking System with STATistical analysis capability (GRITS/STAT) is a tool designed to facilitate the storage, analysis, and reporting of data collected through groundwater monitoring programs at RCRA, CERCLA, and other regulated facilities an...

  11. 40 CFR 97.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false NOX Allowance Tracking System accounts... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Allowance Tracking System § 97.50 NOX Allowance Tracking System accounts. (a) Nature and function of...

  12. 40 CFR 96.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false NOX Allowance Tracking System accounts... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO 2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.50 NOX Allowance Tracking System accounts. (a) Nature...

  13. 40 CFR 96.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Allowance Tracking System accounts... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.50 NOX Allowance Tracking System accounts. (a) Nature...

  14. 40 CFR 96.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false NOX Allowance Tracking System accounts... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.50 NOX Allowance Tracking System accounts. (a) Nature...

  15. 40 CFR 97.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Allowance Tracking System accounts... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Allowance Tracking System § 97.50 NOX Allowance Tracking System accounts. (a) Nature and function of...

  16. 40 CFR 96.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false NOX Allowance Tracking System accounts... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.50 NOX Allowance Tracking System accounts. (a) Nature...

  17. 40 CFR 97.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false NOX Allowance Tracking System accounts... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Allowance Tracking System § 97.50 NOX Allowance Tracking System accounts. (a) Nature and function of...

  18. 40 CFR 97.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false NOX Allowance Tracking System accounts... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Allowance Tracking System § 97.50 NOX Allowance Tracking System accounts. (a) Nature and function of...

  19. 47 CFR 64.1320 - Payphone call tracking system audits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Payphone call tracking system audits. 64.1320... call tracking system audits. (a) Unless it has entered into an alternative compensation arrangement pursuant to § 64.1310(a) that relieves it of its § 64.1310(a)(1) tracking system obligation,...

  20. 47 CFR 64.1320 - Payphone call tracking system audits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Payphone call tracking system audits. 64.1320... call tracking system audits. (a) Unless it has entered into an alternative compensation arrangement pursuant to § 64.1310(a) that relieves it of its § 64.1310(a)(1) tracking system obligation,...

  1. 47 CFR 64.1320 - Payphone call tracking system audits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Payphone call tracking system audits. 64.1320... call tracking system audits. (a) Unless it has entered into an alternative compensation arrangement pursuant to § 64.1310(a) that relieves it of its § 64.1310(a)(1) tracking system obligation,...

  2. 47 CFR 64.1320 - Payphone call tracking system audits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Payphone call tracking system audits. 64.1320... call tracking system audits. (a) Unless it has entered into an alternative compensation arrangement pursuant to § 64.1310(a) that relieves it of its § 64.1310(a)(1) tracking system obligation,...

  3. 47 CFR 64.1320 - Payphone call tracking system audits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Payphone call tracking system audits. 64.1320... call tracking system audits. (a) Unless it has entered into an alternative compensation arrangement pursuant to § 64.1310(a) that relieves it of its § 64.1310(a)(1) tracking system obligation,...

  4. 40 CFR 96.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Allowance Tracking System accounts... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.50 NOX Allowance Tracking System accounts. (a) Nature...

  5. 40 CFR 97.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Allowance Tracking System accounts... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Allowance Tracking System § 97.50 NOX Allowance Tracking System accounts. (a) Nature and function of...

  6. Discovering Activities to Recognize and Track in a Smart Environment

    PubMed Central

    Rashidi, Parisa; Cook, Diane J.; Holder, Lawrence B.; Schmitter-Edgecombe, Maureen

    2011-01-01

    The machine learning and pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to monitor the functional health of smart home residents, we need to design technologies that recognize and track activities that people normally perform as part of their daily routines. Although approaches do exist for recognizing activities, the approaches are applied to activities that have been pre-selected and for which labeled training data is available. In contrast, we introduce an automated approach to activity tracking that identifies frequent activities that naturally occur in an individual’s routine. With this capability we can then track the occurrence of regular activities to monitor functional health and to detect changes in an individual’s patterns and lifestyle. In this paper we describe our activity mining and tracking approach and validate our algorithms on data collected in physical smart environments. PMID:21617742

  7. Tracking Behavioral Progress within a Children's Mental Health System: The Vermont Community Adjustment Tracking System.

    ERIC Educational Resources Information Center

    Bruns, Eric J.; Burchard, John D.; Froelich, Peter; Yoe, James T.; Tighe, Theodore

    1998-01-01

    Describes the Vermont Community Adjustment Tracking System (VT-CATS), which utilizes four behavioral instruments to allow intensive, ongoing, and interpretable behavioral assessment of a service system's most challenging children and adolescents. Also explains the adjustment indicator checklists and the ability of VT-CATS to address agencies'…

  8. Cabling for an SSC silicon tracking system

    SciTech Connect

    Ziock, H.; Boissevain, J.; Cooke, B.; Miller, W.

    1990-01-01

    As part of the Superconducting Super Collider Laboratory (SSCL) funded silicon tracking subsystem R D program, we examine the problems associated with cabling such a system. Different options for the cabling plant are discussed. A silicon microstrip tracking detector for an SSC experiment is an extremely complex system. The system consists of approximately 10{sup 7} detector channels, each of which requires a communication link with the outside world and connections to the detector bias voltage supply, to a DC power supply for the onboard electronics, and to an adjustable discrimination level. The large number of channels and the short time between beam interactions (16 nanoseconds) dictates the need for high speed and large bandwidth communication channels, and a power distribution system that can handle the high current draw of the electronics including the large AC component due to their switching. At the same time the constraints imposed by the physics measurements require that the cable plant have absolutely minimal mass and radiation length. 4 refs., 2 figs.

  9. Using DNA devices to track anticancer drug activity.

    PubMed

    Kahanda, Dimithree; Chakrabarti, Gaurab; Mcwilliams, Marc A; Boothman, David A; Slinker, Jason D

    2016-06-15

    It is beneficial to develop systems that reproduce complex reactions of biological systems while maintaining control over specific factors involved in such processes. We demonstrated a DNA device for following the repair of DNA damage produced by a redox-cycling anticancer drug, beta-lapachone (β-lap). These chips supported ß-lap-induced biological redox cycle and tracked subsequent DNA damage repair activity with redox-modified DNA monolayers on gold. We observed drug-specific changes in square wave voltammetry from these chips at therapeutic ß-lap concentrations of high statistical significance over drug-free control. We also demonstrated a high correlation of this change with the specific ß-lap-induced redox cycle using rational controls. The concentration dependence of ß-lap revealed significant signal changes at levels of high clinical significance as well as sensitivity to sub-lethal levels of ß-lap. Catalase, an enzyme decomposing peroxide, was found to suppress DNA damage at a NQO1/catalase ratio found in healthy cells, but was clearly overcome at a higher NQO1/catalase ratio consistent with cancer cells. We found that it was necessary to reproduce key features of the cellular environment to observe this activity. Thus, this chip-based platform enabled tracking of ß-lap-induced DNA damage repair when biological criteria were met, providing a unique synthetic platform for uncovering activity normally confined to inside cells. PMID:26901461

  10. Bar-code automated waste tracking system

    SciTech Connect

    Hull, T.E.

    1994-10-01

    The Bar-Code Automated Waste Tracking System was designed to be a site-Specific program with a general purpose application for transportability to other facilities. The system is user-friendly, totally automated, and incorporates the use of a drive-up window that is close to the areas dealing in container preparation, delivery, pickup, and disposal. The system features ``stop-and-go`` operation rather than a long, tedious, error-prone manual entry. The system is designed for automation but allows operators to concentrate on proper handling of waste while maintaining manual entry of data as a backup. A large wall plaque filled with bar-code labels is used to input specific details about any movement of waste.

  11. The Mesa Arizona Pupil Tracking System

    NASA Technical Reports Server (NTRS)

    Wright, D. L.

    1973-01-01

    A computer-based Pupil Tracking/Teacher Monitoring System was designed for Mesa Public Schools, Mesa, Arizona. The established objectives of the system were to: (1) facilitate the economical collection and storage of student performance data necessary to objectively evaluate the relative effectiveness of teachers, instructional methods, materials, and applied concepts; and (2) identify, on a daily basis, those students requiring special attention in specific subject areas. The system encompasses computer hardware/software and integrated curricula progression/administration devices. It provides daily evaluation and monitoring of performance as students progress at class or individualized rates. In the process, it notifies the student and collects information necessary to validate or invalidate subject presentation devices, methods, materials, and measurement devices in terms of direct benefit to the students. The system utilizes a small-scale computer (e.g., IBM 1130) to assure low-cost replicability, and may be used for many subjects of instruction.

  12. SATS: Small, Automated Tracking System - - Elements of a Better System for Satellite Tracking and Telemetry

    NASA Technical Reports Server (NTRS)

    Srinivasan, Jeffrey M.; Lichten, Stephen M.; Haines, Bruce J.; Young, Lawrence E.

    1994-01-01

    JPL has been exploring applications of precise Global Positioning System (GPS) techniques to navigation and data communication for Earth orbiting spacecraft. GPS tracking can be exploited in several different ways, depending on the orbital altitude of the spacecraft of interest, to support orbit and trajectory determination. At low-Earth orbits below 3000 km, 'upwards-looking' GPS tracking analogous to ground-based GPS tracking can be used to provide real-time orbit determination for navigation. At Earth orbiting altitudes between 3000 km and 8000 km, visibility of GPS rapidly decreases and it becomes advantageous to add a nadir pointing antenna in order to continuously see enough GPS signals to navigate an orbiter. For orbits above 8000 km, JPL has developed the GPS-like tracking (GLT) technique which dispenses with the on-board GPS receiver in favor of a transmitting beacon whose phase is tracked, simultaneously with normal GPS signals, by a ground network of 'enhanced' GPS receivers. The systems referred to above all have the potential to provide inexpensive and autonomous navigation/orbit production and, in some cases, integrated data communication for a wide class of Earth orbiters and should be of interest to designers of NASA, military, and commercial space systems.

  13. How Can I Keep Track of Physical Activity and Eating?

    MedlinePlus

    ... ANSWERS by heart Lifestyle + Risk Reduction Fitness + Weight Management How Can I Keep Track of Physical Activity and Healthy Eating? Food Diary — Once you’ve set your eating goals, use this sample chart to track your efforts. WEEK: ________________________ DAY: ________________________ Food or Beverage Amount Number of Calories Grams of Saturated Fat ...

  14. A System for Tracking Interventional Devices using Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Rosas-Trigueros, Jorge L.; Wright, Steven M.

    2002-08-01

    MRI guidance of surgical and diagnostic tools is a topic of active research. This paper describes a system being developed in a collaborative effort between BioTex Inc., the MD Anderson Cancer Center and Texas A&M to monitor the position and orientation of a straight, rigid interventional device. Tracking is needed to determine the position and orientation of the device outside the brain for insertion, locate and orient a catheter tip inside the brain, detect movement of an optical fiber placed inside the brain for laser based thermal therapy, and detect patient movement. The position tracking is based on the detection of one or two fiducial coils. Using two fiducial coils, experiments show successful tracking of the position of the device with a MSE of 0.202mm and with an update speed presently set to 1.5s. The developments have been made using National Instruments' (Austin, Texas) LabVIEW and PCI-6034E DAQ Board. The MR system consists of a 4.7 T/33 cm bore superconducting magnet and an Omega MRI system. Keywords: Interventional MRI, catheter tracking.

  15. Thermal tracking in mobile robots for leak inspection activities.

    PubMed

    Ibarguren, Aitor; Molina, Jorge; Susperregi, Loreto; Maurtua, Iñaki

    2013-10-09

    Maintenance tasks are crucial for all kind of industries, especially in extensive industrial plants, like solar thermal power plants. The incorporation of robots is a key issue for automating inspection activities, as it will allow a constant and regular control over the whole plant. This paper presents an autonomous robotic system to perform pipeline inspection for early detection and prevention of leakages in thermal power plants, based on the work developed within the MAINBOT (http://www.mainbot.eu) European project. Based on the information provided by a thermographic camera, the system is able to detect leakages in the collectors and pipelines. Beside the leakage detection algorithms, the system includes a particle filter-based tracking algorithm to keep the target in the field of view of the camera and to avoid the irregularities of the terrain while the robot patrols the plant. The information provided by the particle filter is further used to command a robot arm, which handles the camera and ensures that the target is always within the image. The obtained results show the suitability of the proposed approach, adding a tracking algorithm to improve the performance of the leakage detection system.

  16. Thermal Tracking in Mobile Robots for Leak Inspection Activities

    PubMed Central

    Ibarguren, Aitor; Molina, Jorge; Susperregi, Loreto; Maurtua, Iñaki

    2013-01-01

    Maintenance tasks are crucial for all kind of industries, especially in extensive industrial plants, like solar thermal power plants. The incorporation of robots is a key issue for automating inspection activities, as it will allow a constant and regular control over the whole plant. This paper presents an autonomous robotic system to perform pipeline inspection for early detection and prevention of leakages in thermal power plants, based on the work developed within the MAINBOT (http://www.mainbot.eu) European project. Based on the information provided by a thermographic camera, the system is able to detect leakages in the collectors and pipelines. Beside the leakage detection algorithms, the system includes a particle filter-based tracking algorithm to keep the target in the field of view of the camera and to avoid the irregularities of the terrain while the robot patrols the plant. The information provided by the particle filter is further used to command a robot arm, which handles the camera and ensures that the target is always within the image. The obtained results show the suitability of the proposed approach, adding a tracking algorithm to improve the performance of the leakage detection system. PMID:24113684

  17. Thermal tracking in mobile robots for leak inspection activities.

    PubMed

    Ibarguren, Aitor; Molina, Jorge; Susperregi, Loreto; Maurtua, Iñaki

    2013-01-01

    Maintenance tasks are crucial for all kind of industries, especially in extensive industrial plants, like solar thermal power plants. The incorporation of robots is a key issue for automating inspection activities, as it will allow a constant and regular control over the whole plant. This paper presents an autonomous robotic system to perform pipeline inspection for early detection and prevention of leakages in thermal power plants, based on the work developed within the MAINBOT (http://www.mainbot.eu) European project. Based on the information provided by a thermographic camera, the system is able to detect leakages in the collectors and pipelines. Beside the leakage detection algorithms, the system includes a particle filter-based tracking algorithm to keep the target in the field of view of the camera and to avoid the irregularities of the terrain while the robot patrols the plant. The information provided by the particle filter is further used to command a robot arm, which handles the camera and ensures that the target is always within the image. The obtained results show the suitability of the proposed approach, adding a tracking algorithm to improve the performance of the leakage detection system. PMID:24113684

  18. Covariance tracking: architecture optimizations for embedded systems

    NASA Astrophysics Data System (ADS)

    Romero, Andrés; Lacassagne, Lionel; Gouiffès, Michèle; Zahraee, Ali Hassan

    2014-12-01

    Covariance matching techniques have recently grown in interest due to their good performances for object retrieval, detection, and tracking. By mixing color and texture information in a compact representation, it can be applied to various kinds of objects (textured or not, rigid or not). Unfortunately, the original version requires heavy computations and is difficult to execute in real time on embedded systems. This article presents a review on different versions of the algorithm and its various applications; our aim is to describe the most crucial challenges and particularities that appeared when implementing and optimizing the covariance matching algorithm on a variety of desktop processors and on low-power processors suitable for embedded systems. An application of texture classification is used to compare different versions of the region descriptor. Then a comprehensive study is made to reach a higher level of performance on multi-core CPU architectures by comparing different ways to structure the information, using single instruction, multiple data (SIMD) instructions and advanced loop transformations. The execution time is reduced significantly on two dual-core CPU architectures for embedded computing: ARM Cortex-A9 and Cortex-A15 and Intel Penryn-M U9300 and Haswell-M 4650U. According to our experiments on covariance tracking, it is possible to reach a speedup greater than ×2 on both ARM and Intel architectures, when compared to the original algorithm, leading to real-time execution.

  19. Object tracking with stereo vision

    NASA Technical Reports Server (NTRS)

    Huber, Eric

    1994-01-01

    A real-time active stereo vision system incorporating gaze control and task directed vision is described. Emphasis is placed on object tracking and object size and shape determination. Techniques include motion-centroid tracking, depth tracking, and contour tracking.

  20. Stability of miniature electromagnetic tracking systems

    NASA Astrophysics Data System (ADS)

    Schicho, Kurt; Figl, Michael; Donat, Markus; Birkfellner, Wolfgang; Seemann, Rudolf; Wagner, Arne; Bergmann, Helmar; Ewers, Rolf

    2005-05-01

    This study aims at a comparative evaluation of two recently introduced electromagnetic tracking systems under reproducible simulated operating-room (OR) conditions: the recently launched Medtronic StealthStation™ Treon-EM™ and the NDI Aurora™. We investigate if and to what extent these systems provide improved performance and stability in the presence of surgical instruments as possible sources of distortions compared with earlier reports on electromagnetic tracking technology. To investigate possible distortions under pseudo-realistic OR conditions, a large Langenbeck hook, a dental drill with its handle and an ultrasonic (US) scanhead are fixed on a special measurement rack at variable distances from the navigation sensor. The position measurements made by the Treon-EM™ were least affected by the presence of the instruments. The lengths of the mean deviation vectors were 0.21 mm for the Langenbeck hook, 0.23 mm for the drill with handle and 0.56 mm for the US scanhead. The Aurora™ was influenced by the three sources of distortion to a higher degree. A mean deviation vector of 1.44 mm length was observed in the vicinity of the Langenbeck hook, 0.53 mm length with the drill and 2.37 mm due to the US scanhead. The maximum of the root mean squared error (RMSE) for all coordinates in the presence of the Langenbeck hook was 0.3 mm for the Treon™ and 2.1 mm for the Aurora™ the drill caused a maximum RMSE of 0.2 mm with the Treon™ and 1.2 mm with the Aurora™. In the presence of the US scanhead, the maximum RMSE was 1.4 mm for the Treon™ and 5.1 mm for the Aurora™. The new generation of electromagnetic tracking systems has significantly improved compared to common systems that were available in the middle of the 1990s and has reached a high level of technical development. We conclude that, in general, both systems are suitable for routine clinical application.

  1. Muon tracking system with Silicon Photomultipliers

    NASA Astrophysics Data System (ADS)

    Arneodo, F.; Benabderrahmane, M. L.; Dahal, S.; Di Giovanni, A.; Pazos Clemens, L.; Candela, A.; D`Incecco, M.; Sablone, D.; Franchi, G.

    2015-11-01

    We report the characterisation and performance of a low cost muon tracking system consisting of plastic scintillator bars and Silicon Photomultipliers equipped with a customised front-end electronics based on a fast preamplifier network. This system can be used as a detector test bench for astroparticle physics and for educational and outreach purposes. We investigated the device behaviour in self-trigger and coincidence mode, without using LED and pulse generators, showing that with a relatively simple set up a complete characterisation work can be carried out. A high definition oscilloscope, which can easily be found in many university physics or engineering departments, has been used for triggering and data acquisition. Its capabilities have been exploited to discriminate real particles from the background.

  2. Theory of tracking accuracy of laser systems

    NASA Astrophysics Data System (ADS)

    Kazovsky, L.

    1983-06-01

    The peformance of the quadrant detector-based laser tracking system is theoretically evaluated. Measurement span, estimation bias, and estimation variance are analyzed, with the emphasis on the quantitative evaluation of the estimation bias and variance. It is found that the measurement span does not exceed the radius of the light spot. If system specifications restrict estimation bias, then the measurement span must be limited even further, to a fraction of the light spot. The systematic error component of estimation bias is rather large but may be cancelled. Signal-dependent bias decreases when the SNR increases, and increases rapidly when the light spot approaches the end of the measurement span. Estimation variance decreases when the SNR increases, and remains approximately constant as the light spot moves over the measurement span.

  3. The CDF-II silicon tracking system

    SciTech Connect

    Timothy K. Nelson

    2001-12-07

    The CDF silicon tracking system for Run II of the Fermilab Tevatron consists of eight layers arranged in cylinders spanning radii from 1.35cm to 28cm, and lengths from 90cm to nearly two meters for a total of six square meters of silicon and 722,000 readout channels. With an innermost layer (Layer 00) utilizing radiation tolerant p{sup +}-in-n silicon and low-mass readout cables between the sensors and readout electronics, double-sided vertexing layers (SVXII) designed for use with a deadtimeless secondary-vertex trigger, and outermost layers (ISL) utilizing mass-producible modules attached to a carbon fiber spaceframe, this system is a starting point for the next generation of silicon trackers for the LHC and Tevatron.

  4. Visually Exploring Worldwide Incidents Tracking System Data

    SciTech Connect

    Chhatwal, Shree D.; Rose, Stuart J.

    2008-01-27

    This paper presents refinements of an existing analytic tool, Juxter, which was developed for the visualization of multi-dimensional categorical data, and explores its application to support exploration and interaction with open source Worldwide Incidents Tracking System (WITS) data. The volume and complexity of data available on terrorism makes it hard to analyze. Information systems that can efficiently and effectively collect, access, analyze, and report terrorist incidents can help in further studies focused on preventing, detecting, and responding to terrorist attacks. Existing interfaces to the WITS data support advanced search capabilities, and geolocation but lack functionality for identifying patterns and trends. To better support efficient browsing we have refined Juxter’s existing capabilities for filtering, selecting, and sorting elements and categories within the visualization.

  5. Ultra-Wideband Tracking System Design for Relative Navigation

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun David; Arndt, Dickey; Bgo, Phong; Dekome, Kent; Dusl, John

    2011-01-01

    This presentation briefly discusses a design effort for a prototype ultra-wideband (UWB) time-difference-of-arrival (TDOA) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being designed for use in localization and navigation of a rover in a GPS deprived environment for surface missions. In one application enabled by the UWB tracking, a robotic vehicle carrying equipments can autonomously follow a crewed rover from work site to work site such that resources can be carried from one landing mission to the next thereby saving up-mass. The UWB Systems Group at JSC has developed a UWB TDOA High Resolution Proximity Tracking System which can achieve sub-inch tracking accuracy of a target within the radius of the tracking baseline [1]. By extending the tracking capability beyond the radius of the tracking baseline, a tracking system is being designed to enable relative navigation between two vehicles for surface missions. A prototype UWB TDOA tracking system has been designed, implemented, tested, and proven feasible for relative navigation of robotic vehicles. Future work includes testing the system with the application code to increase the tracking update rate and evaluating the linear tracking baseline to improve the flexibility of antenna mounting on the following vehicle.

  6. Real-time reconfigurable foveal target acquisition and tracking system

    NASA Astrophysics Data System (ADS)

    Stack, David J.; Bandera, Cesar; Wrigley, Christopher J.; Pain, Bedabrata

    1999-07-01

    This paper presents a target acquisition and tracking system based on the biomimetic concept of foveal vision. The system electronically reconfigures the resolution, sizes, shape, and focal plane position of visual acuity to meet time- varying operational requirements while maximizing the relevance of acquired video. A reconfigurable multiresolution active pixel CMOS imaging array is integrated in a closed-loop fashion with video processing and configuration control. Imager and algorithm configuration is updated frame-by-frame and reactively to target and scene conditions. By dynamically tailoring the visual acuity of the senor itself, the relevance and acquired visual information is maximized and a fast update rate is achieved with reduced communications bandwidth and processing requirements throughout the entire system. The system also features small size and less power consumption, and does not require a pointing mechanism. The distinguishing features of reconfigurable foveal machine vision are presented, and the hardware and software architecture of the target acquisition and tracking system is discussed. Real-time experimental result for automated target search, detection, interrogation, and tracking are then presented.

  7. Tracking and activity recognition through consensus in distributed camera networks.

    PubMed

    Song, Bi; Kamal, Ahmed T; Soto, Cristian; Ding, Chong; Farrell, Jay A; Roy-Chowdhury, Amit K

    2010-10-01

    Camera networks are being deployed for various applications like security and surveillance, disaster response and environmental modeling. However, there is little automated processing of the data. Moreover, most methods for multicamera analysis are centralized schemes that require the data to be present at a central server. In many applications, this is prohibitively expensive, both technically and economically. In this paper, we investigate distributed scene analysis algorithms by leveraging upon concepts of consensus that have been studied in the context of multiagent systems, but have had little applications in video analysis. Each camera estimates certain parameters based upon its own sensed data which is then shared locally with the neighboring cameras in an iterative fashion, and a final estimate is arrived at in the network using consensus algorithms. We specifically focus on two basic problems-tracking and activity recognition. For multitarget tracking in a distributed camera network, we show how the Kalman-Consensus algorithm can be adapted to take into account the directional nature of video sensors and the network topology. For the activity recognition problem, we derive a probabilistic consensus scheme that combines the similarity scores of neighboring cameras to come up with a probability for each action at the network level. Thorough experimental results are shown on real data along with a quantitative analysis.

  8. Long range position and orientation tracking system

    SciTech Connect

    Armstrong, G.A.; Jansen, J.F.; Burks, B.L.; Bernacki, B.E.; Nypaver, D.J.

    1995-12-31

    The long range position and orientation tracking system (LRPOTS) will consist of two measurement pods, a VME-based computer system, and a detector array. The system is used to measure the position and orientation of a target that may be attached to a robotic arm, teleoperated manipulator, or autonomous vehicle. The pods have been designed to be mounted in the man-ways of the domes of the Fernald K-65 waste silos. Each pod has two laser scanner subsystems as well as lights and camera systems. One of the laser scanners will be oriented to scan in the pan direction, the other in the tilt direction. As the lasers scan across the detector array, the angles of incidence with each detector are recorded. Combining measurements from each of the four lasers yields sufficient data for a closed-form solution of the transform describing the location and orientation of the Content Mobilization System (CMS). Redundant detectors will be placed on the CMS to accommodate occlusions, to provide improved measurement accuracy, and to determine the CMS orientation.

  9. Emissions tracking system (ETS-PC) software

    SciTech Connect

    Weatherbee, J. Jr.; Kress, T.

    1997-12-31

    The U.S. EPA Acid Rain Division developed and is maintaining the Emissions Tracking System (ETS) to receive, store and analyze data from continuous emissions monitors (CEMs) submitted by utilities affected by the 1990 Clean Air Act. This paper will describe ETS-PC, a PC application developed by EPA to assist utilities in analyzing and submitting emission data files each quarter. ETS-PC includes quality assurance software which helps utilities identify possible errors in their quarterly data files (QDFs) prior to submission. It also includes communications software which allows utilities to transfer QDFs via modem directly to the EPA mainframe computer located in Research Triangle Park, NC. After a file is transferred, users are provided with immediate feedback from the mainframe in the form of a file transfer receipt and summary.

  10. Drift chambers for the PHENIX central tracking system

    NASA Astrophysics Data System (ADS)

    Riabov, V. G.

    1998-12-01

    The Drift Chamber (DC) is part of the central tracking system of the PHENIX detector. The DC construction consists of two independent arcs. Each of them covers an active area of ±0.35 in pseudorapidity and 90° in azimuthal angle ϕ. The DC subsystem accurately measures charged particle trajectories to determine the pt of particles and ultimately the invariant mass of pairs of particles. The DCs also participate in pattern recognition. The unique feature of the DC lies in its cell geometry. The focusing geometry eliminates the left-right ambiguity, the sensitive track sample length for each sense wire is adjusted by changing the wire's potential due to the presence of gate (channel) wires. Back (guard) wires screen the sense wire from charged particle ionisation on the side opposite the channel wires. To reduce the count rate per readout channel, sense wires are cut in the center and attached to a light kapton support. Both ends of the sense-wire are readout. The chamber gas is a 50-50 mixture of argon-ethane. A spatial resolution of 150 μm in r- ϕ and a two-track separation of better than 1.5 mm at single-track efficiency >99% is obtainable. Small angle stereo wires provide a spatial resolution of ˜2 mm in the z-direction. There are 12 544 channels of electronics in the DC.

  11. PAT1.1; Pinellas Action Tracking System; Tracks Audit Findings and Corrective Actions

    SciTech Connect

    Mellican, P.L.

    1993-04-09

    PAT was derived from a system that began at the Rocky Flats Plant and was further enhanced at the Mound Plant. Pinellas Plant obtained this system in 1990 to track Tiger Team Findings; it has been expanded to include new modules which encompass a wide range of related functions. Functionality includes tracking of findings and associated corrective actions from various sources such as line operations, self-assessments, oversight assessments, and external organizations. Other functionality includes Management Walk-About tracking, NEPA prioritization, Occurrence/incident Report corrective action tracking, and Management Action Item Tracking. The system utilizes state of the art relational database technology with pop-up windows for table lookups and entry of descriptive text. Standards such as assessment identification numbers, area designations, and finding category codes have been developed to provide enhanced query capabilities and the ability to group findings for trending purposes on a plant-wide basis.

  12. Gaze Tracking System for User Wearing Glasses

    PubMed Central

    Gwon, Su Yeong; Cho, Chul Woo; Lee, Hyeon Chang; Lee, Won Oh; Park, Kang Ryoung

    2014-01-01

    Conventional gaze tracking systems are limited in cases where the user is wearing glasses because the glasses usually produce noise due to reflections caused by the gaze tracker's lights. This makes it difficult to locate the pupil and the specular reflections (SRs) from the cornea of the user's eye. These difficulties increase the likelihood of gaze detection errors because the gaze position is estimated based on the location of the pupil center and the positions of the corneal SRs. In order to overcome these problems, we propose a new gaze tracking method that can be used by subjects who are wearing glasses. Our research is novel in the following four ways: first, we construct a new control device for the illuminator, which includes four illuminators that are positioned at the four corners of a monitor. Second, our system automatically determines whether a user is wearing glasses or not in the initial stage by counting the number of white pixels in an image that is captured using the low exposure setting on the camera. Third, if it is determined that the user is wearing glasses, the four illuminators are turned on and off sequentially in order to obtain an image that has a minimal amount of noise due to reflections from the glasses. As a result, it is possible to avoid the reflections and accurately locate the pupil center and the positions of the four corneal SRs. Fourth, by turning off one of the four illuminators, only three corneal SRs exist in the captured image. Since the proposed gaze detection method requires four corneal SRs for calculating the gaze position, the unseen SR position is estimated based on the parallelogram shape that is defined by the three SR positions and the gaze position is calculated. Experimental results showed that the average gaze detection error with 20 persons was about 0.70° and the processing time is 63.72 ms per each frame. PMID:24473283

  13. Green electricity: Tracking systems for environmental disclosure

    SciTech Connect

    Biewald, B.E.; Ramey, J.A.

    1997-12-31

    For the first time, electricity consumers in the US are beginning to choose their generation providers. One of the opportunities created by the introduction of retail choice in electricity is the chance for customers to influence the mix of generating resources through their purchasing decisions. Some environmentally aware consumers will want {open_quotes}clean,{close_quotes} {open_quotes}green,{close_quotes} or renewable power. While some suppliers will attempt to differentiate themselves according to their environmental performance, such claims for green electricity can be particularly difficult to verify given the complexity of the interconnected electric system. Because electricity is delivered over an integrated transmission grid and kilowatt-hours at the point of retail sale are indistinguishable from each other; disclosure requires tracking protocols to attribute generation at power plants to sales at the customers` meters. Fortunately, it is possible to implement a workable disclosure system. Some states have already included disclosure requirements in their electric industry restructuring orders and legislation. In this paper, a set of design criteria for an environmental disclosure system are presented along with two methods for disclosure: the company approach and the product approach. In addition, the authors discuss of power pools, data availability issues, and propose a company-based disclosure system using a {open_quotes}wholesale sales first{close_quotes} approach to transaction accounting.

  14. UWB Tracking System Design for Free-Flyers

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Phan, Chan; Ngo, Phong; Gross, Julia; Dusl, John

    2004-01-01

    This paper discusses an ultra-wideband (UWB) tracking system design effort for Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A tracking algorithm TDOA (Time Difference of Arrival) that operates cooperatively with the UWB system is developed in this research effort. Matlab simulations show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. Lab experiments demonstrate the UWB tracking capability with fine resolution.

  15. Automated Root Tracking with "Root System Analyzer"

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    identification number, the distance between branching point to the parent root base, the root length, the root radius and the nodes that belong to each individual root path. This information is relevant for the analysis of dynamic root system development as well as the parameterisation of root architecture models. Here, we show results of Root System Analyzer applied to analyse the root systems of wheat plants grown in rhizotrons. Different treatments with respect to soil moisture and apatite concentrations were used to test the effects of those conditions on root system development. Photographs of the root systems were taken at high spatial and temporal resolution and root systems are automatically tracked.

  16. Wire chamber requirements and tracking simulation studies for tracking systems at the superconducting super collider

    SciTech Connect

    Hanson, G.G.; Niczyporuk, B.B.; Palounek, A.P.T.

    1989-02-01

    Limitations placed on wire chambers by radiation damage and rate requirements in the SSC environment are reviewed. Possible conceptual designs for wire chamber tracking systems which meet these requirements are discussed. Computer simulation studies of tracking in such systems are presented. Simulations of events from interesting physics at the SSC, including hits from minimum bias background events, are examined. Results of some preliminary pattern recognition studies are given. Such computer simulation studies are necessary to determine the feasibility of wire chamber tracking systems for complex events in a high-rate environment such as the SSC. 11 refs., 9 figs., 1 tab.

  17. THE TRACK SYSTEM IN WASHINGTON, D.C.

    ERIC Educational Resources Information Center

    BLACKE, EVIAS, JR.

    THE FOUR AREAS PRESENTED ARE GROUP AND INDIVIDUAL INTELLIGENCE TESTS, ACHIEVEMENT TESTS, EDUCATIONAL GROUPING PROCEDURES, AND FACTORS ASSOCIATED WITH LOW INCOME. A TRACK SYSTEM, OR ANY SYSTEM OF GROUPING, SHOULD PROMOTE RATHER THAN HINDER THE ACHIEVEMENT OF BOTH THE LOW-INCOME GROUPS AND THE HIGHER-INCOME GROUPS. THE PRESENT TRACK SYSTEM IN…

  18. Precision CW laser automatic tracking system investigated

    NASA Technical Reports Server (NTRS)

    Lang, K. T.; Lucy, R. F.; Mcgann, E. J.; Peters, C. J.

    1966-01-01

    Precision laser tracker capable of tracking a low acceleration target to an accuracy of about 20 microradians rms is being constructed and tested. This laser tracking has the advantage of discriminating against other optical sources and the capability of simultaneously measuring range.

  19. Standardized accuracy assessment of the calypso wireless transponder tracking system.

    PubMed

    Franz, A M; Schmitt, D; Seitel, A; Chatrasingh, M; Echner, G; Oelfke, U; Nill, S; Birkfellner, W; Maier-Hein, L

    2014-11-21

    Electromagnetic (EM) tracking allows localization of small EM sensors in a magnetic field of known geometry without line-of-sight. However, this technique requires a cable connection to the tracked object. A wireless alternative based on magnetic fields, referred to as transponder tracking, has been proposed by several authors. Although most of the transponder tracking systems are still in an early stage of development and not ready for clinical use yet, Varian Medical Systems Inc. (Palo Alto, California, USA) presented the Calypso system for tumor tracking in radiation therapy which includes transponder technology. But it has not been used for computer-assisted interventions (CAI) in general or been assessed for accuracy in a standardized manner, so far. In this study, we apply a standardized assessment protocol presented by Hummel et al (2005 Med. Phys. 32 2371-9) to the Calypso system for the first time. The results show that transponder tracking with the Calypso system provides a precision and accuracy below 1 mm in ideal clinical environments, which is comparable with other EM tracking systems. Similar to other systems the tracking accuracy was affected by metallic distortion, which led to errors of up to 3.2 mm. The potential of the wireless transponder tracking technology for use in many future CAI applications can be regarded as extremely high.

  20. Standardized accuracy assessment of the calypso wireless transponder tracking system

    NASA Astrophysics Data System (ADS)

    Franz, A. M.; Schmitt, D.; Seitel, A.; Chatrasingh, M.; Echner, G.; Oelfke, U.; Nill, S.; Birkfellner, W.; Maier-Hein, L.

    2014-11-01

    Electromagnetic (EM) tracking allows localization of small EM sensors in a magnetic field of known geometry without line-of-sight. However, this technique requires a cable connection to the tracked object. A wireless alternative based on magnetic fields, referred to as transponder tracking, has been proposed by several authors. Although most of the transponder tracking systems are still in an early stage of development and not ready for clinical use yet, Varian Medical Systems Inc. (Palo Alto, California, USA) presented the Calypso system for tumor tracking in radiation therapy which includes transponder technology. But it has not been used for computer-assisted interventions (CAI) in general or been assessed for accuracy in a standardized manner, so far. In this study, we apply a standardized assessment protocol presented by Hummel et al (2005 Med. Phys. 32 2371-9) to the Calypso system for the first time. The results show that transponder tracking with the Calypso system provides a precision and accuracy below 1 mm in ideal clinical environments, which is comparable with other EM tracking systems. Similar to other systems the tracking accuracy was affected by metallic distortion, which led to errors of up to 3.2 mm. The potential of the wireless transponder tracking technology for use in many future CAI applications can be regarded as extremely high.

  1. Standardized accuracy assessment of the calypso wireless transponder tracking system.

    PubMed

    Franz, A M; Schmitt, D; Seitel, A; Chatrasingh, M; Echner, G; Oelfke, U; Nill, S; Birkfellner, W; Maier-Hein, L

    2014-11-21

    Electromagnetic (EM) tracking allows localization of small EM sensors in a magnetic field of known geometry without line-of-sight. However, this technique requires a cable connection to the tracked object. A wireless alternative based on magnetic fields, referred to as transponder tracking, has been proposed by several authors. Although most of the transponder tracking systems are still in an early stage of development and not ready for clinical use yet, Varian Medical Systems Inc. (Palo Alto, California, USA) presented the Calypso system for tumor tracking in radiation therapy which includes transponder technology. But it has not been used for computer-assisted interventions (CAI) in general or been assessed for accuracy in a standardized manner, so far. In this study, we apply a standardized assessment protocol presented by Hummel et al (2005 Med. Phys. 32 2371-9) to the Calypso system for the first time. The results show that transponder tracking with the Calypso system provides a precision and accuracy below 1 mm in ideal clinical environments, which is comparable with other EM tracking systems. Similar to other systems the tracking accuracy was affected by metallic distortion, which led to errors of up to 3.2 mm. The potential of the wireless transponder tracking technology for use in many future CAI applications can be regarded as extremely high. PMID:25332308

  2. Real-Time Tumor Tracking in the Lung Using an Electromagnetic Tracking System

    SciTech Connect

    Shah, Amish P.; Kupelian, Patrick A.; Waghorn, Benjamin J.; Willoughby, Twyla R.; Rineer, Justin M.; Mañon, Rafael R.; Vollenweider, Mark A.; Meeks, Sanford L.

    2013-07-01

    Purpose: To describe the first use of the commercially available Calypso 4D Localization System in the lung. Methods and Materials: Under an institutional review board-approved protocol and an investigational device exemption from the US Food and Drug Administration, the Calypso system was used with nonclinical methods to acquire real-time 4-dimensional lung tumor tracks for 7 lung cancer patients. The aims of the study were to investigate (1) the potential for bronchoscopic implantation; (2) the stability of smooth-surface beacon transponders (transponders) after implantation; and (3) the ability to acquire tracking information within the lung. Electromagnetic tracking was not used for any clinical decision making and could only be performed before any radiation delivery in a research setting. All motion tracks for each patient were reviewed, and values of the average displacement, amplitude of motion, period, and associated correlation to a sinusoidal model (R{sup 2}) were tabulated for all 42 tracks. Results: For all 7 patients at least 1 transponder was successfully implanted. To assist in securing the transponder at the tumor site, it was necessary to implant a secondary fiducial for most transponders owing to the transponder's smooth surface. For 3 patients, insertion into the lung proved difficult, with only 1 transponder remaining fixed during implantation. One patient developed a pneumothorax after implantation of the secondary fiducial. Once implanted, 13 of 14 transponders remained stable within the lung and were successfully tracked with the tracking system. Conclusions: Our initial experience with electromagnetic guidance within the lung demonstrates that transponder implantation and tracking is achievable though not clinically available. This research investigation proved that lung tumor motion exhibits large variations from fraction to fraction within a single patient and that improvements to both transponder and tracking system are still necessary

  3. Efficient Multiple Object Tracking Using Mutually Repulsive Active Membranes

    PubMed Central

    Deng, Yi; Coen, Philip; Sun, Mingzhai; Shaevitz, Joshua W.

    2013-01-01

    Studies of social and group behavior in interacting organisms require high-throughput analysis of the motion of a large number of individual subjects. Computer vision techniques offer solutions to specific tracking problems, and allow automated and efficient tracking with minimal human intervention. In this work, we adopt the open active contour model to track the trajectories of moving objects at high density. We add repulsive interactions between open contours to the original model, treat the trajectories as an extrusion in the temporal dimension, and show applications to two tracking problems. The walking behavior of Drosophila is studied at different population density and gender composition. We demonstrate that individual male flies have distinct walking signatures, and that the social interaction between flies in a mixed gender arena is gender specific. We also apply our model to studies of trajectories of gliding Myxococcus xanthus bacteria at high density. We examine the individual gliding behavioral statistics in terms of the gliding speed distribution. Using these two examples at very distinctive spatial scales, we illustrate the use of our algorithm on tracking both short rigid bodies (Drosophila) and long flexible objects (Myxococcus xanthus). Our repulsive active membrane model reaches error rates better than per fly per second for Drosophila tracking and comparable results for Myxococcus xanthus. PMID:23799046

  4. UWB Two-Cluster AOA Tracking Prototype System Design

    NASA Technical Reports Server (NTRS)

    Ngo, Phong H.; Arndt, D.; Phan, C.; Gross, J.; Jianjun; Rafford, Melinda

    2006-01-01

    This presentation discusses a design effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar/Mars rovers during early exploration missions when satellite navigation systems are not available. The UWB technology is exploited to implement the tracking system due to its properties such as fine time resolution, low power spectral density and multipath immunity. A two cluster prototype design using commercially available UWB radios is employed to implement the Angle of Arrival (AOA) tracking methodology in this design effort. In order to increase the tracking range, low noise amplifiers (LNA) and high gain horns are used at the receiving sides. Field tests were conducted jointly with the Science and Crew Operation Utility Testbed (SCOUT) vehicle near the Meteor Crater in Arizona to test the tracking capability for a moving target in an operational environment. These tests demonstrate that the UWB tracking system can co-exist with other on-board radio frequency (RF) communication systems (such as Global Positioning System (GPS), video, voice and telemetry systems), and that a tracking resolution less than 1% of the range can be achieved.

  5. A Novel Architecture of Radio Tracking System Based on Photonics

    NASA Astrophysics Data System (ADS)

    Cong, Bo; Jin, Xiaofeng; Yu, Xinfeng

    2016-02-01

    We propose a photonics-based novel architecture of radio tracking system in space applications. This system can operate in multiple frequency bands, implement various functions, and realize integrated, generalized, frequency-independent design. This new scheme can meet the needs of future space missions, and especially suitable for space tracking ship.

  6. System matrix modelling of externally tracked motion

    PubMed Central

    Rahmim, Arman; Cheng, Ju-Chieh; Dinelle, Katie; Shilov, Mikhail; Segars, W. Paul; Rousset, Olivier G.; Tsui, Benjamin M.W.; Wong, Dean F.; Sossi, Vesna

    2010-01-01

    Background and aim In high-resolution emission tomography imaging, even small patient movements can considerably degrade image quality. The aim of this work was to develop a general approach to motion-corrected reconstruction of motion-contaminated data in the case of rigid motion (particularly brain imaging) which would be applicable to any PET scanner in the field, without specialized data-acquisition requirements. Methods Assuming the ability to externally track subject motion during scanning (e.g., using the Polaris camera), we proposed to incorporate the measured rigid motion information into the system matrix of the expectation maximization reconstruction algorithm. Furthermore, we noted and developed a framework to incorporate the additional effect of motion on modifying the attenuation factors. A new mathematical brain phantom was developed and used along with elaborate combined Simset/GATE simulations to compare the proposed framework with the cases of no motion correction. Results and conclusion Clear qualitative and quantitative improvements were observed when incorporating the proposed framework. The method is very practical to implement for any scanner in the field, not requiring any hardware modifications or access to the list-mode acquisition capability. PMID:18458606

  7. Automatic Tracking of Active Regions and Detection of Solar Flares in Solar EUV Images

    NASA Astrophysics Data System (ADS)

    Caballero, C.; Aranda, M. C.

    2014-05-01

    Solar catalogs are frequently handmade by experts using a manual approach or semi-automated approach. The appearance of new tools is very useful because the work is automated. Nowadays it is impossible to produce solar catalogs using these methods, because of the emergence of new spacecraft that provide a huge amount of information. In this article an automated system for detecting and tracking active regions and solar flares throughout their evolution using the Extreme UV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) spacecraft is presented. The system is quite complex and consists of different phases: i) acquisition and preprocessing; ii) segmentation of regions of interest; iii) clustering of these regions to form candidate active regions which can become active regions; iv) tracking of active regions; v) detection of solar flares. This article describes all phases, but focuses on the phases of tracking and detection of active regions and solar flares. The system relies on consecutive solar images using a rotation law to track the active regions. Also, graphs of the evolution of a region and solar evolution are presented to detect solar flares. The procedure developed has been tested on 3500 full-disk solar images (corresponding to 35 days) taken from the spacecraft. More than 75 % of the active regions are tracked and more than 85 % of the solar flares are detected.

  8. Laminated track design for inductrack maglev systems

    DOEpatents

    Post, Richard F.

    2004-07-06

    A magnet configuration comprising a pair of Halbach arrays magnetically and structurally connected together are positioned with respect to each other so that a first component of their fields substantially cancels at a first plane between them, and a second component of their fields substantially adds at this first plane. A track is located between the pair of Halbach arrays and a propulsion mechanism is provided for moving the pair of Halbach arrays along the track. When the pair of Halbach arrays move along the track and the track is not located at the first plane, a current is induced in the windings and a restoring force is exerted on the pair of Halbach arrays.

  9. The upgrade of the Inner Tracking System of ALICE

    NASA Astrophysics Data System (ADS)

    Siddhanta, Sabyasachi

    2014-11-01

    ALICE has devised a comprehensive upgrade strategy to enhance its physics capabilities and to exploit the LHC running conditions after the second long shutdown of the LHC scheduled in 2018-2019. Within this upgrade programme, the upgrade of the Inner Tracking System (ITS) forms an important part. The upgraded ITS will have a barrel geometry consisting of seven layers of Monolithic Active Pixel Sensors (MAPS) with high granularity, which would fulfil the material budget, readout and radiation hardness requirements for the upgrade. In this contribution, an overview of the upgraded ITS, its technology and performance studies are presented.

  10. The Development of Sun-Tracking System Using Image Processing

    PubMed Central

    Lee, Cheng-Dar; Huang, Hong-Cheng; Yeh, Hong-Yih

    2013-01-01

    This article presents the development of an image-based sun position sensor and the algorithm for how to aim at the Sun precisely by using image processing. Four-quadrant light sensors and bar-shadow photo sensors were used to detect the Sun's position in the past years. Nevertheless, neither of them can maintain high accuracy under low irradiation conditions. Using the image-based Sun position sensor with image processing can address this drawback. To verify the performance of the Sun-tracking system including an image-based Sun position sensor and a tracking controller with embedded image processing algorithm, we established a Sun image tracking platform and did the performance testing in the laboratory; the results show that the proposed Sun tracking system had the capability to overcome the problem of unstable tracking in cloudy weather and achieve a tracking accuracy of 0.04°. PMID:23615582

  11. Readiness Certification Assurance Process Tracking System

    2011-06-08

    Without the use of an electronic system for managing Readiness activities, the effort to complete large Readiness reviews would be overwhelming. This system is intended to replace or supplement paper-based administrative tasks performed by Readiness personnel and other involved organizations. RCAPTS helps manage issues and affirmations pertaining to Readiness projects and reviews. This is accomplished through a series of web scripts and a Microsoft Access database.

  12. Linear tracking systems with applications to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Lee, W. H.; Athans, M.; Castanon, D.; Bacchioloni, F.

    1977-01-01

    A class of optimal linear time invariant tracking systems, both in continuous time and discrete time, of which the number of inputs (which are restricted to be step functions) is equal to the number of system outputs, is studied. Along with derivation of equations and design procedures, two discretization schemes are presented, constraining either the control or its time derivative, to be a constant over each sampling period. Descriptions are given for the linearized model of the F-8C aircraft longitudinal dynamics, and the C* handling qualities criterion, which then serve as an illustration of the applications of these linear tracking designs. A suboptimal reduced state design is also presented. Numerical results are given for both the continuous time and discrete time designs.

  13. Goal Representations Dominate Superior Colliculus Activity during Extrafoveal Tracking

    PubMed Central

    Hafed, Ziad M.; Krauzlis, Richard J.

    2009-01-01

    The primate superior colliculus (SC) has long been known to be involved in saccade generation. However, SC neurons also exhibit fixation-related and smooth-pursuit-related activity. A parsimonious explanation for these seemingly disparate findings is that the SC contains a map of behaviorally relevant goal locations, rather than just a motor map for saccades and fixation. This explanation predicts that SC activity should reflect the behavioral goal, even when the behavioral response is not fixation or saccades, and even if the goal does not correspond to a visual stimulus. We tested this prediction by employing a tracking task that dissociates the stimulus and goal locations. In this task, monkeys tracked the invisible midpoint between two peripheral bars, such that the visual stimuli were peripheral but the goal was foveal/parafoveal. We recorded from SC neurons representing peripheral locations associated with the stimulus or central locations associated with the goal. Most neurons with peripheral response fields did not respond differently during tracking than during passive viewing of the stimulus under fixation; most neurons with central response fields responded more during tracking than during fixation, despite the lack of a visual stimulus. Moreover, the spatial distribution of activity during tracking was larger than that during fixation or tracking of a foveal stimulus, suggesting that the greater spatial uncertainty about the invisible goal corresponded to more widespread SC activity. These results demonstrate the flexibility with which activity across the SC represents the location - and also the spatial precision - of behaviorally relevant goals for multiple eye movements. PMID:18799675

  14. Hydraulic system provides smooth control of large tracking and antenna drive systems at very low tracking rates

    NASA Technical Reports Server (NTRS)

    Parker, G. L.

    1967-01-01

    Hydraulic system provides smooth control of large tracking and antenna drive systems at very low tracking rates. This configuration modifies a series connection of the drive motors with compensating orifices to offset the effects of drain line loss. Linearization of response by eliminating cogging or cyclic operation is thus obtained.

  15. Actively learning to distinguish suspicious from innocuous anomalies in a batch of vehicle tracks

    NASA Astrophysics Data System (ADS)

    Qiu, Zhicong; Miller, David J.; Stieber, Brian; Fair, Tim

    2014-06-01

    We investigate the problem of actively learning to distinguish between two sets of anomalous vehicle tracks, innocuous" and suspicious", starting from scratch, without any initial examples of suspicious" and with no prior knowledge of what an operator would deem suspicious. This two-class problem is challenging because it is a priori unknown which track features may characterize the suspicious class. Furthermore, there is inherent imbalance in the sizes of the labeled innocuous" and suspicious" sets, even after some suspicious examples are identified. We present a comprehensive solution wherein a classifier learns to discriminate suspicious from innocuous based on derived p-value track features. Through active learning, our classifier thus learns the types of anomalies on which to base its discrimination. Our solution encompasses: i) judicious choice of kinematic p-value based features conditioned on the road of origin, along with more explicit features that capture unique vehicle behavior (e.g. U-turns); ii) novel semi-supervised learning that exploits information in the unlabeled (test batch) tracks, and iii) evaluation of several classifier models (logistic regression, SVMs). We find that two active labeling streams are necessary in practice in order to have efficient classifier learning while also forwarding (for labeling) the most actionable tracks. Experiments on wide-area motion imagery (WAMI) tracks, extracted via a system developed by Toyon Research Corporation, demonstrate the strong ROC AUC performance of our system, with sparing use of operator-based active labeling.

  16. The topography of alpha-band activity tracks the content of spatial working memory.

    PubMed

    Foster, Joshua J; Sutterer, David W; Serences, John T; Vogel, Edward K; Awh, Edward

    2016-01-01

    Working memory (WM) is a system for the online storage of information. An emerging view is that neuronal oscillations coordinate the cellular assemblies that code the content of WM. In line with this view, previous work has demonstrated that oscillatory activity in the alpha band (8-12 Hz) plays a role in WM maintenance, but the exact contributions of this activity have remained unclear. Here, we used an inverted spatial encoding model in combination with electroencephalography (EEG) to test whether the topographic distribution of alpha-band activity tracks spatial representations held in WM. Participants in three experiments performed spatial WM tasks that required them to remember the precise angular location of a sample stimulus for 1,000-1,750 ms. Across all three experiments, we found that the topographic distribution of alpha-band activity tracked the specific location that was held in WM. Evoked (i.e., activity phase-locked to stimulus onset) and total (i.e., activity regardless of phase) power across a range of low-frequency bands transiently tracked the location of the sample stimulus following stimulus onset. However, only total power in the alpha band tracked the content of spatial WM throughout the memory delay period, which enabled reconstruction of location-selective channel tuning functions (CTFs). These findings demonstrate that alpha-band activity is directly related to the coding of spatial representations held in WM and provide a promising method for tracking the content of this online memory system.

  17. The topography of alpha-band activity tracks the content of spatial working memory.

    PubMed

    Foster, Joshua J; Sutterer, David W; Serences, John T; Vogel, Edward K; Awh, Edward

    2016-01-01

    Working memory (WM) is a system for the online storage of information. An emerging view is that neuronal oscillations coordinate the cellular assemblies that code the content of WM. In line with this view, previous work has demonstrated that oscillatory activity in the alpha band (8-12 Hz) plays a role in WM maintenance, but the exact contributions of this activity have remained unclear. Here, we used an inverted spatial encoding model in combination with electroencephalography (EEG) to test whether the topographic distribution of alpha-band activity tracks spatial representations held in WM. Participants in three experiments performed spatial WM tasks that required them to remember the precise angular location of a sample stimulus for 1,000-1,750 ms. Across all three experiments, we found that the topographic distribution of alpha-band activity tracked the specific location that was held in WM. Evoked (i.e., activity phase-locked to stimulus onset) and total (i.e., activity regardless of phase) power across a range of low-frequency bands transiently tracked the location of the sample stimulus following stimulus onset. However, only total power in the alpha band tracked the content of spatial WM throughout the memory delay period, which enabled reconstruction of location-selective channel tuning functions (CTFs). These findings demonstrate that alpha-band activity is directly related to the coding of spatial representations held in WM and provide a promising method for tracking the content of this online memory system. PMID:26467522

  18. Renewable Energy Certificate (REC) Tracking Systems: Costs & Verification Issues (Presentation)

    SciTech Connect

    Heeter, J.

    2013-10-01

    This document provides information on REC tracking systems: how they are used in the voluntary REC market, a comparison of REC systems fees and information regarding how they treat environmental attributes.

  19. Autonomous antenna tracking system for mobile symphonie ground stations

    NASA Technical Reports Server (NTRS)

    Ernsberger, K.; Lorch, G.; Waffenschmidt, E.

    1982-01-01

    The implementation of a satellite tracking and antenna control system is described. Due to the loss of inclination control for the symphonie satellites, it became necessary to equip the parabolic antennas of the mobile Symphonie ground station with tracking facilities. For the relatively low required tracking accuracy of 0.5 dB, a low cost, step track system was selected. The step track system developed for this purpose and tested over a long period of time in 7 ground stations is based on a search step method with subsequent parabola interpolation. As compared with the real search step method, the system has the advantage of a higher pointing angle resolution, and thus a higher tracking accuracy. When the pilot signal has been switched off for a long period of time, as for instance after the eclipse, the antenna is repointed towards the satellite by an automatically initiated spiral search scan. The function and design of the tracking system are detailed, while easy handling and tracking results.

  20. Tracked Active Region Patches for MDI and HMI

    NASA Astrophysics Data System (ADS)

    Turmon, Michael; Hoeksema, J. Todd; Bobra, Monica

    2014-06-01

    We describe tracked active-region patch data products that have been developed for HMI (HMI Active Region Patches, or HARPs) and for MDI (MDI Tracked Active Region Patches, or MDI TARPs). Both data products consist of tracked magnetic features on the scale of solar active regions. The now-released HARP data product covers 2010-present (>2000 regions to date). Like the HARPs, the MDI TARP data set is a catalog of active regions (ARs), indexed by a region ID number, analogous to a NOAA AR number, and time. The TARPs contain 6170 regions spanning 72000 images taken over 1996-2010, and will be availablein the MDI resident archive (RA).MDI TARPs are computed based on the 96-minute synoptic magnetograms and intensitygrams. As with the related HARP data product, the approximate threshold for significance is 100G. Use of both image types together allows faculae and sunspots to be separated out as sub-classes of activity, in addition to identifying the overall active region that they are in. After being identified in single images, the magnetically-active patches are grouped and tracked from image to image. Merges among growing active regions, as well as faint active regions hovering at the threshold of detection, are handled automatically. Regions are tracked from their inception until they decay within view, or transit off the visible disk. For each active region and for each time, a bitmap image is stored containing the precise outline of the active region. Also, metadata such as areas and integrated fluxes are stored for each AR and for each time. Because there is a cross-calibration between the HMI and MDI magnetograms (Liu et al. 2012), it is straightforward to use the same classification and tracking rules for the HMI HARPs and the MDI TARPs. We show results demonstrating region correspondence, region boundary agreement, and agreement of flux metadata using the approximately 140 regions in the May 2010-October 2010 time period. We envision several uses for these data

  1. Dosimetric precision of an ion beam tracking system

    PubMed Central

    2010-01-01

    Background Scanned ion beam therapy of intra-fractionally moving tumors requires motion mitigation. GSI proposed beam tracking and performed several experimental studies to analyse the dosimetric precision of the system for scanned carbon beams. Methods A beam tracking system has been developed and integrated in the scanned carbon ion beam therapy unit at GSI. The system adapts pencil beam positions and beam energy according to target motion. Motion compensation performance of the beam tracking system was assessed by measurements with radiographic films, a range telescope, a 3D array of 24 ionization chambers, and cell samples for biological dosimetry. Measurements were performed for stationary detectors and moving detectors using the beam tracking system. Results All detector systems showed comparable data for a moving setup when using beam tracking and the corresponding stationary setup. Within the target volume the mean relative differences of ionization chamber measurements were 0.3% (1.5% standard deviation, 3.7% maximum). Film responses demonstrated preserved lateral dose gradients. Measurements with the range telescope showed agreement of Bragg peak depth under motion induced range variations. Cell survival experiments showed a mean relative difference of -5% (-3%) between measurements and calculations within the target volume for beam tracking (stationary) measurements. Conclusions The beam tracking system has been successfully integrated. Full functionality has been validated dosimetrically in experiments with several detector types including biological cell systems. PMID:20591160

  2. PMU Placement for Dynamic State Tracking of Power Systems

    SciTech Connect

    Sun, Yannan; Du, Pengwei; Huang, Zhenyu; Kalsi, Karanjit; Diao, Ruisheng; Anderson, Kevin K.; Li, Yulan; Lee, Barry

    2011-08-04

    Accurately tracking the state variables (rotor angle and speed) is a necessity for monitoring system stability conditions and assessing the risks of large-scale system collapse. This paper explores how the number and locations of PMUs installed in the system are determined to ensure satisfactory state tracking performance. A search algorithm is presented for determining PMU placement (location and quantity). The algorithm determines a placement that gives small tracking error in polynomial time. A modified, scalable algorithm is also presented. Observability in the presence of faults is considered. Simulation results for a 16-machine and a 50-machine system are provided.

  3. Development of a multitarget tracking system for paramecia.

    PubMed

    Yeh, Yu-Sing; Huang, Ke-Nung; Jen, Sun-Lon; Li, Yan-Chay; Young, Ming-Shing

    2010-07-01

    This investigation develops a multitarget tracking system for the motile protozoa, paramecium. The system can recognize, track, and record the orbit of swimming paramecia within a 4 mm diameter of a circular experimental pool. The proposed system is implemented using an optical microscope, a charge-coupled device camera, and a software tool, Laboratory Virtual Instrumentation Engineering Workbench (LABVIEW). An algorithm for processing the images and analyzing the traces of the paramecia is developed in LABVIEW. It focuses on extracting meaningful data in an experiment and recording them to elucidate the behavior of paramecia. The algorithm can also continue to track paramecia even if they are transposed or collide with each other. The experiment demonstrates that this multitarget tracking design can really track more than five paramecia and simultaneously yield meaningful data from the moving paramecia at a maximum speed of 1.7 mm/s.

  4. Development of a multitarget tracking system for paramecia

    NASA Astrophysics Data System (ADS)

    Yeh, Yu-Sing; Huang, Ke-Nung; Jen, Sun-Lon; Li, Yan-Chay; Young, Ming-Shing

    2010-07-01

    This investigation develops a multitarget tracking system for the motile protozoa, paramecium. The system can recognize, track, and record the orbit of swimming paramecia within a 4 mm diameter of a circular experimental pool. The proposed system is implemented using an optical microscope, a charge-coupled device camera, and a software tool, Laboratory Virtual Instrumentation Engineering Workbench (LABVIEW). An algorithm for processing the images and analyzing the traces of the paramecia is developed in LABVIEW. It focuses on extracting meaningful data in an experiment and recording them to elucidate the behavior of paramecia. The algorithm can also continue to track paramecia even if they are transposed or collide with each other. The experiment demonstrates that this multitarget tracking design can really track more than five paramecia and simultaneously yield meaningful data from the moving paramecia at a maximum speed of 1.7 mm/s.

  5. Fission track length distributions in multi-system thermochronology (Invited)

    NASA Astrophysics Data System (ADS)

    Gleadow, A. J.; Seiler, C.

    2013-12-01

    Fission track length distributions contain a unique record of past temperature variations and therefore play a key role in low-temperature thermochronology, for which there is no exact equivalent in any other method. Confined track lengths closely approximate the true etchable ranges of latent fission tracks [1] and are therefore favoured for fission track studies, but they still have a number of practical limitations. These include small numbers of suitable tracks, especially when only horizontal confined tracks are measured. Using only track-in-track events for measurement further limits the sample size. These restrictions become acute for low track-density samples, where length measurements may be impossible. Irradiating the surface with 252Cf tracks [2] can substantially increase the number of confined tracks, but many researchers do not have access to a Cf source. An even more significant issue has emerged from inter-laboratory comparison experiments that demonstrate a disturbingly poor reproducibility of length measurements between observers [3], a problem compounded by a lack of standardisation in measurement techniques. As a result, individual observers may measure different positions for the end of a track, contributing significantly to variability, and consequently blurring the thermal histories obtained. New digital microscopes open up important opportunities for improved track length measurements by reducing restrictions on sample size, and eliminating some sources of inter-observer bias. We have developed a track length measurement system that enables precise determination of vertical as well as horizontal track dimensions, allowing 3D lengths to be obtained. Lengths are measured on captured image stacks that can be analysed easily and may also be shared, for greater standardisation between laboratories. Length measurements are highly reproducible between different observers using this system, suggesting that at least one source of variability can be

  6. UWB Tracking System Design for Lunar/Mars Exploration

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Gross, Julia

    2006-01-01

    This paper describes a design effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar/Mars rovers during early exploration missions when satellite navigation systems are not available. The UWB technology is exploited to implement the tracking system due to its properties such as high data rate, fine time resolution, low power spectral density, and multipath immunity. A two-cluster prototype design using commercially available UWB products is proposed to implement the Angle Of Arrival (AOA) tracking methodology in this research effort. An AOA technique using the Time Difference Of Arrival (TDOA) information is utilized for location estimation in the prototype system, not only to exploit the precise time resolution possible with UWB signals, but also to eliminate the need for synchronization between the transmitter and the receiver. After the UWB radio at each cluster is used to obtain the TDOA estimates from the UWB signal sent from the target, the TDOA data is converted to AOA data to find the angle of arrival, assuming this is a far field application. Since the distance between two clusters is known, the target position is computed by a simple triangulation. Simulations show that the average tracking error at a range of 610 meters is 2.7595 meters, less than 0.5% of the tracking range. Outdoor tests to track the SCOUT vehicle (The Science Crew Operations and Utility Testbed) near the Meteor Crater, Flagstaff, Arizona were performed on September 12-13, 2005. The tracking performance was obtained with less than 1% tracking error at ranges up to 2000 feet. No RF interference with on-board GPS, video, voice and telemetry systems was detected. Outdoor tests demonstrated the UWB tracking capability.

  7. Tracking of physical activity and fitness during the early years.

    PubMed

    Caldwell, Hilary A T; Proudfoot, Nicole A; King-Dowling, Sara; Di Cristofaro, Natascja A; Cairney, John; Timmons, Brian W

    2016-05-01

    The early years are characterized by rapid physical growth and the development of behaviours such as physical activity. The objectives of this study were to assess the 12-month changes in and the tracking of physical activity and fitness in 400 preschoolers (201 boys, 4.5 ± 0.9 years of age). Physical activity data, expressed as minutes per day and as the percentage of time spent at various intensities while wearing an accelerometer, were collected in 3-s epochs for 7 days. Short-term muscle power, assessed with a 10-s modified Wingate Anaerobic Test, was expressed as absolute (W) and relative (W/kg) peak power (PP) and mean power (MP). Aerobic fitness, assessed with the Bruce Protocol progressive treadmill test, was expressed as maximal treadmill time and heart rate recovery (HRR). Light physical activity decreased by 3.2 min/day (p < 0.05), whereas vigorous physical activity increased by 3.7 min/day (p < 0.001), from year 1 to year 2. Physical activity exhibited moderate tracking on the basis of Spearman correlations (r = 0.45-0.59, p < 0.001) and fair tracking on the basis of κ statistics (κ = 0.26-0.38). PP and MP increased from year 1 (PP, 94.1 ± 37.3 W; MP, 84.1 ± 30.9 W) to year 2 (PP, 125.6 ± 36.2 W; MP, 112.3 ± 32.2 W) (p < 0.001) and tracked moderately to substantially (PP, r = 0.89, κ = 0.61; MP, r = 0.86, κ = 0.56). Time to exhaustion on the treadmill increased from 9.4 ± 2.3 min to 11.8 ± 2.3 min (p < 0.001) and tracked strongly (r = 0.82, κ = 0.56). HRR was unchanged at 65 ± 14 beats/min (p = 0.297) and tracked fairly (r = 0.52, κ = 0.23). The findings indicate that fitness tracks better than physical activity over a 12-month period during the early years. PMID:27045869

  8. An MEG-Compatible Electromagnetic-Tracking System for Monitoring Orofacial Kinematics.

    PubMed

    Alves, Natasha; Jobst, Cecilia; Hotze, Fanny; Ferrari, Paul; Lalancette, Marc; Chau, Tom; van Lieshout, Pascal; Cheyne, Douglas

    2016-08-01

    We describe a novel motion-tracking system, called MASK (magnetoarticulography for the assessment of speech kinematics) designed to track detailed orofacial movements during magnetoencephalographic (MEG) measures of human brain activity. A three-dimensional electromagnetic-tracking method was employed using lightweight coils energized with high-frequency sinusoidal currents, creating magnetic dipoles that can be continuously localized by the MEG sensors. In addition to being compatible with commercial MEG devices, this system has advantages over optical or video methods in that it can record nonline-of-sight movements (e.g., tongue movements) and advantages over surface electromyographic recordings, which are prone to movement-related artifacts and signal crosstalk. Static and dynamic tracking accuracy was evaluated using calibration devices with fixed intercoil distances. MEG data were collected in two healthy adult volunteers to test feasibility of tracking movements during tongue and facial movement, and during overt speech. The MASK system was shown to have sufficient static and dynamic accuracy to track orofacial movements within the MEG helmet. We successfully acquired spatially precise kinematic information time-locked to brain activity with high temporal resolution. We demonstrated successful tracking of oromotor and speech movements together with brain activity using the MASK system. This novel technology will provide an innovative tool in support of research and clinical applications for individuals with speech and other oromotor disorders.

  9. Tonopah Test Range EGS graphics tracking display system: HP370

    SciTech Connect

    Meyer, R.H.; Bauhs, K.C.

    1994-08-01

    This report describes the HP370 component of the Enhanced Graphics System (EGS) used at Tonopah Test Range (TTR). Selected Radar data is fed into the computer systems and the resulting tracking symbols are displayed on high-resolution video monitors in real time. These tracking symbols overlay background maps and are used for monitoring/controlling various flight vehicles. This report discusses both the operational aspects and the internal configuration of the HP370 Workstation portion of the EGS system.

  10. Tracking "Large" or "Smal": Boundaries and their Consequences for Veterinary Students within the Tracking System

    NASA Astrophysics Data System (ADS)

    Vermilya, Jenny R.

    In this dissertation, I use 42 in-depth qualitative interviews with veterinary medical students to explore the experience of being in an educational program that tracks students based on the species of non-human animals that they wish to treat. Specifically, I examine how tracking produces multiple boundaries for veterinary students. The boundaries between different animal species produce consequences for the treatment of those animals; this has been well documented. Using a symbolic interactionist perspective, my research extends the body of knowledge on species boundaries by revealing other consequences of this boundary work. For example, I analyze the symbolic boundaries involved in the gendering of animals, practitioners, and professions. I also examine how boundaries influence the collective identity of students entering an occupation segmented into various specialties. The collective identity of veterinarian is one characterized by care, thus students have to construct different definitions of care to access and maintain the collective identity. The tracking system additionally produces consequences for the knowledge created and reproduced in different areas of animal medicine, creating a system of power and inequality based on whose knowledge is privileged, how, and why. Finally, socially constructed boundaries generated from tracking inevitably lead to cases that do not fit. In particular, horses serve as a "border species" for veterinary students who struggle to place them into the tracking system. I argue that border species, like other metaphorical borders, have the potential to challenge discourses and lead to social change.

  11. A technology transfer tracking system for NREL: Overview and results

    SciTech Connect

    Chapman, R.L.; Chapman, M.J.

    1996-07-01

    The purpose of this study has been to assess the National Renewable Energy Laboratory`s (NREL) technology, transfer--both the activities and the system, with the objective of developing a system to track the benefits of NREL-sponsored or conducted research. There were two factors which facilitated this study and which were important in the ability to make a detailed analysis and series of recommendations. First, was the nature of the lab, being one which, from its beginning, has worked closely with industry and, therefore has been directed toward research which would be of value to industry and hopefully commercialized. Second, the size of the laboratory made it relatively more easy to address issues and to become familiar with the organization and with the scientists themselves.

  12. Implantable acoustic-beacon automatic fish-tracking system

    NASA Technical Reports Server (NTRS)

    Mayhue, R. J.; Lovelady, R. W.; Ferguson, R. L.; Richards, C. E.

    1977-01-01

    A portable automatic fish tracking system was developed for monitoring the two dimensional movements of small fish within fixed areas of estuarine waters and lakes. By using the miniature pinger previously developed for this application, prototype tests of the system were conducted in the York River near the Virginia Institute of Marine Science with two underwater listening stations. Results from these tests showed that the tracking system could position the miniature pinger signals to within + or - 2.5 deg and + or - 135 m at ranges up to 2.5 km. The pingers were implanted in small fish and were successfully tracked at comparable ranges. No changes in either fish behavior or pinger performance were observed as a result of the implantation. Based on results from these prototype tests, it is concluded that the now commercially available system provides an effective approach to underwater tracking of small fish within a fixed area of interest.

  13. Multi Admin/System Tracking-Environment Resource

    2011-02-01

    Master stores information about each node in a computer cluster, similar to an asset tracking program. Records changes and events happening on the system. Master is a networked client/server with a database backend.

  14. The role of gravitation-dependent systems in visual tracking.

    PubMed

    Kornilova, L N

    2004-10-01

    The effects of prolonged microgravity conditions on the performance of visual tracking functions such as fixational rotations of the eyes (saccades), smooth tracking of linear and curved movements of a foveal point stimulus, and following a vertical pendulum-like movement of foveoretinal optokinetic stimuli were studied. Experiments were performed on 31 cosmonauts in freefall conditions, in ten cases followed by additional studies after a cycle of head movements and in 14 after resting. These experiments showed that while intrinsic visual functions were retained in microgravity conditions, there were decreases in the precision and speed measures of all types of visual tracking (fixational rotations of the eyes, smooth tracking) and, in some cases, complete degradation of the smooth tracking reflex, an increase in the time taken to fix the gaze on a target (by factors of 2 or more), and decreases in the frequency of stimulus tracking. During the initial period of adaptation to the altered gravitational conditions and periodically during prolonged flight, the system of smooth visual tracking was found to undergo a transition to a strategy of saccadic approximation, in which gaze tracks the movement of the target using a set of macro- or microsaccadic movements. These impairments, seen in virtually all the cosmonauts, resulted from vestibular deprivation (functional deafferentation of the otolith input) in conditions of weightlessness, while in cosmonauts conceptualizing space on the basis of perceiving the positions of the feet and head additionally showed support-tactile deprivation.

  15. Brain Activation of Identity Switching in Multiple Identity Tracking Task.

    PubMed

    Lyu, Chuang; Hu, Siyuan; Wei, Liuqing; Zhang, Xuemin; Talhelm, Thomas

    2015-01-01

    When different objects switch identities in the multiple identity tracking (MIT) task, viewers need to rebind objects' identity and location, which requires attention. This rebinding helps people identify the regions targets are in (where they need to focus their attention) and inhibit unimportant regions (where distractors are). This study investigated the processing of attentional tracking after identity switching in an adapted MIT task. This experiment used three identity-switching conditions: a target-switching condition (where the target objects switched identities), a distractor-switching condition (where the distractor objects switched identities), and a no-switching condition. Compared to the distractor-switching condition, the target-switching condition elicited greater activation in the frontal eye fields (FEF), intraparietal sulcus (IPS), and visual cortex. Compared to the no-switching condition, the target-switching condition elicited greater activation in the FEF, inferior frontal gyrus (pars orbitalis) (IFG-Orb), IPS, visual cortex, middle temporal lobule, and anterior cingulate cortex. Finally, the distractor-switching condition showed greater activation in the IFG-Orb compared to the no-switching condition. These results suggest that, in the target-switching condition, the FEF and IPS (the dorsal attention network) might be involved in goal-driven attention to targets during attentional tracking. In addition, in the distractor-switching condition, the activation of the IFG-Orb may indicate salient change that pulls attention away automatically.

  16. Marine asset security and tracking (MAST) system

    DOEpatents

    Hanson, Gregory Richard; Smith, Stephen Fulton; Moore, Michael Roy; Dobson, Eric Lesley; Blair, Jeffrey Scott; Duncan, Christopher Allen; Lenarduzzi, Roberto

    2008-07-01

    Methods and apparatus are described for marine asset security and tracking (MAST). A method includes transmitting identification data, location data and environmental state sensor data from a radio frequency tag. An apparatus includes a radio frequency tag that transmits identification data, location data and environmental state sensor data. Another method includes transmitting identification data and location data from a radio frequency tag using hybrid spread-spectrum modulation. Another apparatus includes a radio frequency tag that transmits both identification data and location data using hybrid spread-spectrum modulation.

  17. Video tracking algorithm of long-term experiment using stand-alone recording system.

    PubMed

    Chen, Yu-Jen; Li, Yan-Chay; Huang, Ke-Nung; Jen, Sun-Lon; Young, Ming-Shing

    2008-08-01

    Many medical and behavioral applications require the ability to monitor and quantify the behavior of small animals. In general these animals are confined in small cages. Often these situations involve very large numbers of cages. Modern research facilities commonly monitor simultaneously thousands of animals over long periods of time. However, conventional systems require one personal computer per monitoring platform, which is too complex, expensive, and increases power consumption for large laboratory applications. This paper presents a simplified video tracking algorithm for long-term recording using a stand-alone system. The feature of the presented tracking algorithm revealed that computation speed is very fast data storage requirements are small, and hardware requirements are minimal. The stand-alone system automatically performs tracking and saving acquired data to a secure digital card. The proposed system is designed for video collected at a 640 x 480 pixel with 16 bit color resolution. The tracking result is updated every 30 frames/s. Only the locomotive data are stored. Therefore, the data storage requirements could be minimized. In addition, detection via the designed algorithm uses the Cb and Cr values of a colored marker affixed to the target to define the tracked position and allows multiobject tracking against complex backgrounds. Preliminary experiment showed that such tracking information stored by the portable and stand-alone system could provide comprehensive information on the animal's activity.

  18. Video tracking algorithm of long-term experiment using stand-alone recording system

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jen; Li, Yan-Chay; Huang, Ke-Nung; Jen, Sun-Lon; Young, Ming-Shing

    2008-08-01

    Many medical and behavioral applications require the ability to monitor and quantify the behavior of small animals. In general these animals are confined in small cages. Often these situations involve very large numbers of cages. Modern research facilities commonly monitor simultaneously thousands of animals over long periods of time. However, conventional systems require one personal computer per monitoring platform, which is too complex, expensive, and increases power consumption for large laboratory applications. This paper presents a simplified video tracking algorithm for long-term recording using a stand-alone system. The feature of the presented tracking algorithm revealed that computation speed is very fast data storage requirements are small, and hardware requirements are minimal. The stand-alone system automatically performs tracking and saving acquired data to a secure digital card. The proposed system is designed for video collected at a 640×480 pixel with 16 bit color resolution. The tracking result is updated every 30 frames/s. Only the locomotive data are stored. Therefore, the data storage requirements could be minimized. In addition, detection via the designed algorithm uses the Cb and Cr values of a colored marker affixed to the target to define the tracked position and allows multiobject tracking against complex backgrounds. Preliminary experiment showed that such tracking information stored by the portable and stand-alone system could provide comprehensive information on the animal's activity.

  19. Tracking Epithelial Cell Junctions in C. elegans Embryogenesis With Active Contours Guided by SIFT Flow

    PubMed Central

    Lee, Chen-Yu; Gonçalves, Monira; Chisholm, Andrew D.; Cosman, Pamela C.

    2015-01-01

    Quantitative analysis of cell shape in live samples is an important goal in developmental biology. Automated or semiautomated segmentation and tracking of cell nuclei has been successfully implemented in several biological systems. Segmentation and tracking of cell surfaces has been more challenging. Here, we present a new approach to tracking cell junctions in the developing epidermis of C. elegans embryos. Epithelial junctions as visualized with DLG-1::GFP form lines at the subapical circumference of differentiated epidermal cells and delineate changes in epidermal cell shape and position. We develop and compare two approaches for junction segmentation. For the first method (projection approach), 3-D cell boundaries are projected into 2D for segmentation using active contours with a nonintersecting force, and subsequently tracked using scale-invariant feature transform (SIFT) flow. The resulting 2-D tracked boundaries are then back-projected into 3-D space. The second method (volumetric approach) uses a 3-D extended version of active contours guided by SIFT flow in 3-D space. In both methods, cell junctions are manually located at the first time point and tracked in a fully automated way for the remainder of the video. Using these methods, we have generated the first quantitative description of ventral epidermal cell movements and shape changes during epidermal enclosure. PMID:24771564

  20. An improved algorithm for tracking multiple, freely moving particles in a Positron Emission Particle Tracking system

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Fryer, P. J.; Bakalis, S.; Fan, X.; Parker, D. J.; Seville, J. P. K.

    2007-07-01

    Positron Emission Particle Tracking (PEPT) is a powerful technique and capable of following a single tracer accurately and non-invasively in flow and mixing processes. It has been recently extended to observe the rotation of a large particle via tracking three small positron-emitting tracers mounted, with fixed separation distances, on the surface. The Multiple-Positron Emission Particle Tracking technique has been successfully used to study the rotational and translational behaviours of a large particle in a multiphase flow; however, it was not capable of following multiple freely moving particles. This paper presents an improved Multiple-Positron Emission Particle Tracking technique that is able to track more than one particle without constraint in separation distance between the particles. It consists of an improved algorithm for location calculation, particle identification and time reconstruction. The information obtained can be used to understand the interactions and relative motions of particles with different sizes, densities and material textures in multiphase systems, and is particularly useful in pharmaceutical, chemical and metallurgical engineering studies.

  1. Tracking moving targets in complex environments by fusing active and passive sensors

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Ben G.; Liu, Li; Wang, Yun; Cheng, Zhanqi

    2007-04-01

    We present a novel algorithm for tracking with ladar sensors to aid in navigation, guidance and control systems, suitable for applications to unmanned air vehicles. The methods we employ are based on Bayesian segmentation, optical flow, active contour and Bayesian particle tracking. The algorithm herein holds several significant advantages over traditional tracking methods. The first step in the process is the optimal segmentation of images to enhance the targets and extract them from background clutter and noise. The Bayesian approach to segmentation allows the use of intensity (passive) and range (active) imagery to find targets. Optical flow generalizes and improves correlation techniques for locating objects within a frame, allowing for aspect angle and range changes. With optical flow, we may infer relative velocities on a pixel-by-pixel basis. Active contours are ideally suited to both target-sparse and target-rich environments. The energy approach to determining contours allows the merging and separating of potential targets in an automatic manner. Bayesian particle tracking techniques are used to track the contours over time. The algorithm is tested successfully on experimental and simulated ladar data (using both intensity and range data) as well as sequences of video imageries. The streamlined processing, from obtaining the image data (of size 805x148 pixels) to detecting the moving target to wrapping an active contour on the target, takes less than one second of clock time and provides very accurate predictions of the target location in future frames.

  2. TARPs: Tracked Active Region Patches from SoHO/MDI

    NASA Astrophysics Data System (ADS)

    Turmon, M.; Hoeksema, J. T.; Bobra, M.

    2013-12-01

    We describe progress toward creating a retrospective MDI data product consisting of tracked magnetic features on the scale of solar active regions, abbreviated TARPs (Tracked Active Region Patches). The TARPs are being developed as a backward-looking extension (covering approximately 3500 regions spanning 1996-2010) to the HARP (HMI Active Region Patch) data product that has already been released for HMI (2010-present). Like the HARPs, the MDI TARP data set is designed to be a catalog of active regions (ARs), indexed by a region ID number, analogous to a NOAA AR number, and time. TARPs from MDI are computed based on the 96-minute synoptic magnetograms and pseudo-continuum intensitygrams. As with the related HARP data product, the approximate threshold for significance is 100G. Use of both image types together allows faculae and sunspots to be separated out as sub-classes of activity, in addition to identifying the overall active region that the faculae/sunspots are part of. After being identified in single images, the magnetically-active patches are grouped and tracked from image to image. Merges among growing active regions, as well as faint active regions hovering at the threshold of detection, are handled automatically. Regions are tracked from their inception until they decay within view, or transit off the visible disk. The final data product is indexed by a nominal AR number and time. For each active region and for each time, a bitmap image is stored containing the precise outline of the active region. Additionaly, metadata such as areas and integrated fluxes are stored for each AR and for each time. Because there is a calibration between the HMI and MDI magnetograms (Liu, Hoeksema et al. 2012), it is straightforward to use the same classification and tracking rules for the HARPs (from HMI) and the MDI TARPs. We anticipate that this will allow a consistent catalog spanning both instruments. We envision several uses for the TARP data product, which will be

  3. Feedforward Tracking Control of Flat Recurrent Fuzzy Systems

    NASA Astrophysics Data System (ADS)

    Gering, Stefan; Adamy, Jürgen

    2014-12-01

    Flatness based feedforward control has proven to be a feasible solution for the problem of tracking control, which may be applied to a broad class of nonlinear systems. If a flat output of the system is known, the control is often based on a feedforward controller generating a nominal input in combination with a linear controller stabilizing the linearized error dynamics around the trajectory. We show in this paper that the very same idea may be incorporated for tracking control of MIMO recurrent fuzzy systems. Their dynamics is given by means of linguistic differential equations but may be converted into a hybrid system representation, which then serves as the basis for controller synthesis.

  4. The OSU 275 system of satellite tracking station coordinates

    NASA Technical Reports Server (NTRS)

    Mueller, I. I.; Kumar, M.

    1975-01-01

    A brief review of the methods and data used in the OSU 275 geodetic system is given along with the summary of the results. Survey information regarding the tracking stations in the system is given in tabular form along with the geodetic and geophysical parameters, origin and orientation, Cartisian coordinates, and systematic differences with global and nonglobal geodetic systems.

  5. Navigation and geo-tracking system of UAV EO payload

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Zhen, Kang; Xue, Yuanyuan; Zhang, Xiajiang; Li, Yingjuan; Tang, Chao

    2016-01-01

    A multi-function system based on inertial measurement unit (IMU) is introduced, which can fulfill navigation, attitude measurement of LOS in payload, platform stabilization and tracking control. The IMU is integrated with electro-optical sensors and a laser range finder on gimbals, which performs attitude calculation and navigation by constructing navigation coordinates in a mathematic platform, and the platform navigation information is obtained by transformation matrix between platform and gimbal coordinates. The platform comprising of gyros, electro-optical sensors and servo mechanism is capable of stabilizing line of sight and could be used to geo-tracking in the relevant field of view (FOV).The system can determine geography coordinates of the host platform and target only with navigation information and laser ranging data. The geo-tracking system always locked the target image at the center of FOV by calculating spatial geometry and adjusting LOS attitude. This tracking is different from TV tracking and geographical reference image tracking, which may be influenced by fog and obscurant. When the UAV is flying over urban or mountain areas for rescue missions, it can avoid the loss of targets due to strong maneuver or LOS obscuration, and reduce the operation load and improve rescue efficiency.

  6. GPS-based tracking system for TOPEX orbit determination

    NASA Technical Reports Server (NTRS)

    Melbourne, W. G.

    1984-01-01

    A tracking system concept is discussed that is based on the utilization of the constellation of Navstar satellites in the Global Positioning System (GPS). The concept involves simultaneous and continuous metric tracking of the signals from all visible Navstar satellites by approximately six globally distributed ground terminals and by the TOPEX spacecraft at 1300-km altitude. Error studies indicate that this system could be capable of obtaining decimeter position accuracies and, most importantly, around 5 cm in the radial component which is key to exploiting the full accuracy potential of the altimetric measurements for ocean topography. Topics covered include: background of the GPS, the precision mode for utilization of the system, past JPL research for using the GPS in precision applications, the present tracking system concept for high accuracy satellite positioning, and results from a proof-of-concept demonstration.

  7. Impurity profile tracking for active pharmaceutical ingredients: case reports.

    PubMed

    Zhou, Lili; Mao, Bing; Reamer, Robert; Novak, Tom; Ge, Zhihong

    2007-06-28

    Tracking the impurity profile of an active pharmaceutical ingredient (API) is a very important task for all stages of drug development. A systematic approach for tracking impurity profile of API is described. Various real pharmaceutical applications are presented through successful examples of impurity profile tracking for three different novel APIs. These include MK-0969, an M3 antagonist; MK-0677, an oral-active growth hormone secretagogue and API-A, a cathepsin K inhibitor. A general strategy including selection of a reversed phase high performance liquid chromatographic (RP-HPLC) impurity profile method based on screening various stationary phases and changing the pH of the mobile phase and elucidation of impurity structures through the utilization of LC-MS, preparative-LC and NMR is demonstrated. A series of studies were conducted on the peak purity check by using the LC-UV diode-array and LC-MS detections. The advantages and disadvantages of each technique in the evaluation of peak purity are discussed. PMID:17142001

  8. Study of a Tracking and Data Acquisition System (TDAS) in the 1990's

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Progress in concept definition studies, operational assessments, and technology demonstrations for the Tracking and Data Acquisition System (TDAS) is reported. The proposed TDAS will be the follow-on to the Tracking and Data Relay Satellite System and will function as a key element of the NASA End-to-End Data System, providing the tracking and data acquisition interface between user accessible data ports on Earth and the user's spaceborne equipment. Technical activities of the "spacecraft data system architecture' task and the "communication mission model' task are emphasized. The objective of the first task is to provide technology forecasts for sensor data handling, navigation and communication systems, and estimate corresponding costs. The second task is concerned with developing a parametric description of the required communication channels. Other tasks with significant activity include the "frequency plan and radio interference model' and the "Viterbi decoder/simulator study'.

  9. NGSI: FUNCTION REQUIREMENTS FOR A CYLINDER TRACKING SYSTEM

    SciTech Connect

    Branney, S.

    2012-06-06

    While nuclear suppliers currently track uranium hexafluoride (UF{sub 6}) cylinders in various ways, for their own purposes, industry practices vary significantly. The NNSA Office of Nonproliferation and International Security's Next Generation Safeguards Initiative (NGSI) has begun a 5-year program to investigate the concept of a global monitoring scheme that uniquely identifies and tracks UF{sub 6} cylinders. As part of this effort, NGSI's multi-laboratory team has documented the 'life of a UF{sub 6} cylinder' and reviewed IAEA practices related to UF{sub 6} cylinders. Based on this foundation, this paper examines the functional requirements of a system that would uniquely identify and track UF{sub 6} cylinders. There are many considerations for establishing a potential tracking system. Some of these factors include the environmental conditions a cylinder may be expected to be exposed to, where cylinders may be particularly vulnerable to diversion, how such a system may be integrated into the existing flow of commerce, how proprietary data generated in the process may be protected, what a system may require in terms of the existing standard for UF{sub 6} cylinder manufacture or modifications to it and what the limiting technology factors may be. It is desirable that a tracking system should provide benefit to industry while imposing as few additional constraints as possible and still meeting IAEA safeguards objectives. This paper includes recommendations for this system and the analysis that generated them.

  10. Tracking variations in the alpha activity in an electroencephalogram

    NASA Technical Reports Server (NTRS)

    Prabhu, K. S.

    1971-01-01

    The problem of tracking Alpha voltage variations in an electroencephalogram is discussed. This problem is important in encephalographic studies of sleep and effects of different stimuli on the brain. Very often the Alpha voltage is tracked by passing the EEG signal through a bandpass filter centered at the Alpha frequency, which hopefully will filter out unwanted noise from the Alpha activity. Some alternative digital techniques are suggested and their performance is compared with the standard technique. These digital techniques can be used in an environment where an electroencephalograph is interfaced with a small digital computer via an A/D convertor. They have the advantage that statistical statements about their variability can sometimes be made so that the effect sought can be assessed correctly in the presence of random fluctuations.

  11. Tracking dynamics of magma migration in open-conduit systems

    NASA Astrophysics Data System (ADS)

    Valade, Sébastien; Lacanna, Giorgio; Coppola, Diego; Laiolo, Marco; Pistolesi, Marco; Donne, Dario Delle; Genco, Riccardo; Marchetti, Emanuele; Ulivieri, Giacomo; Allocca, Carmine; Cigolini, Corrado; Nishimura, Takeshi; Poggi, Pasquale; Ripepe, Maurizio

    2016-11-01

    Open-conduit volcanic systems are typically characterized by unsealed volcanic conduits feeding permanent or quasi-permanent volcanic activity. This persistent activity limits our ability to read changes in the monitored parameters, making the assessment of possible eruptive crises more difficult. We show how an integrated approach to monitoring can solve this problem, opening a new way to data interpretation. The increasing rate of explosive transients, tremor amplitude, thermal emissions of ejected tephra, and rise of the very-long-period (VLP) seismic source towards the surface are interpreted as indicating an upward migration of the magma column in response to an increased magma input rate. During the 2014 flank eruption of Stromboli, this magma input preceded the effusive eruption by several months. When the new lateral effusive vent opened on the Sciara del Fuoco slope, the effusion was accompanied by a large ground deflation, a deepening of the VLP seismic source, and the cessation of summit explosive activity. Such observations suggest the drainage of a superficial magma reservoir confined between the crater terrace and the effusive vent. We show how this model successfully reproduces the measured rate of effusion, the observed rate of ground deflation, and the deepening of the VLP seismic source. This study also demonstrates the ability of the geophysical network to detect superficial magma recharge within an open-conduit system and to track magma drainage during the effusive crisis, with a great impact on hazard assessment.

  12. Improving process and system for EUV coat-develop track

    NASA Astrophysics Data System (ADS)

    Harumoto, Masahiko; Stokes, Harold; Thouroude, Yan; Miyagi, Tadashi; Kaneyama, Koji; Pieczulewski, Charles; Asai, Masaya

    2015-03-01

    EUV lithography (EUVL) is well known to be a strong candidate for next generation, single exposure sub-30nm half-pitch lithography.[1] Furthermore, a high-NA EUV exposure tool released two years ago gave a strong impression for finer pattern results. On one hand, it seems that the coat develop track process remains very similar and in many aspects returns to KrF or ArF dry process fundamentals, but in practice the 26-32nm pitch patterning coat-develop track process also has challenges with EUV resist. As access to EUV lithography exposures has become more readily available over the last five (5) years, several challenges and accomplishments in the track process have been reported, such as the improvement of ultra-thin film coating, CD uniformity, defectivity, line width roughness (LWR) and so on.[2-6] The coat-develop track process has evolved along with novel materials and metrology capability improvements. Line width roughness (LWR) and defect control are demonstrated utilizing the SOKUDO DUO coat-develop track system with an ASML NXE:3100 in the IMEC (Leuven, Belgium) clean room environment. Additionally, we will show the latest lithographic results obtained by novel processing approaches in an EUV coat-develop track system.

  13. LWR and defectivity improvement on EUV track system

    NASA Astrophysics Data System (ADS)

    Harumoto, Masahiko; Stokes, Harold; Thouroude, Yan; Kaneyama, Koji; Pieczulewski, Charles; Asai, Masaya

    2016-03-01

    EUV lithography (EUVL) is well known to be a strong candidate for next generation, single exposure sub-30nm halfpitch lithography.[1] Furthermore, high-NA EUV exposure tool(s) released two years ago gave a strong impression by finer pattern results. On the other hand, it seems that the coat-develop track process remains very similar and in many aspects returns to KrF or ArF dry process fundamentals, but in practice a 26-32nm pitch patterning coat develop track process also has challenges with EUV resists. As access to EUV lithography exposures has become more readily available over the last five (5) years, several challenges and accomplishments in the track process have been reported, such as the improvement of ultra-thin film coating, CD uniformity, defectivity, line width roughness (LWR), and so on.[2-8] The coat-develop track process has evolved along with novel materials and metrology capability. Line width roughness (LWR) control and defect reduction are demonstrated utilizing the SOKUDO DUO coat-develop track system with ASML NXE:3100 and NXE:3300 exposures in the IMEC (Leuven, Belgium) cleanroom environment. Additionally, we will show the latest lithographic results obtained by novel processing approaches in the EUV coat develop track system.

  14. Motion tracking and analysis system for magnetotactic bacteria

    NASA Astrophysics Data System (ADS)

    Mankiewicz, Martin; Martel, Sylvain

    2007-10-01

    The possibility to conceive a nanorobot propelled by flagellated magnetotactic bacteria is becoming a reality. But the development of such complex systems requires the implementation of various functionalities, one of which being the tracking of such devices with sufficient speed and accuracy. In this paper, we present an automated tracking system developed with modern computational and microscopy equipment designed to follow a bacterium through various swimming paths. The results obtained with such system are presented in order to asses the platform real-time performance in tracking MC-1 magnetotactic bacteria. This system is also used to record data related to the movement of the bacteria which may prove to be useful in other field of research besides nanorobotics.

  15. Acquisition, tracking, and pointing system for self-protection applications

    NASA Astrophysics Data System (ADS)

    Hammer, Steven J.; Stockum, Larry A.; Chesser, Douglas E.; Miller, John E.

    1998-07-01

    A state-of-the-art acquisition/tracking/positioning (ATP) system for vehicle protection and area defense application is presently being developed. The ATP system, referred to as the high performance laser fire control system, has been designed to automatically acquire, track, rangefind and designate top attack weapons, such as mortars and artillery, as well as line-of-sight type weapons, such as anti-tank guided missiles and anti-tank projectiles. The ATP mission scenario requires full hemispherical coverage, extremely high acceleration capabilities, precision stabilization, and precision pointing.

  16. Ranging/tracking system for proximity operations

    NASA Technical Reports Server (NTRS)

    Nilsen, P.; Udalov, S.

    1982-01-01

    The hardware development and testing phase of a hand held radar for the ranging and tracking for Shuttle proximity operations are considered. The radar is to measure range to a 3 sigma accuracy of 1 m (3.28 ft) to a maximum range of 1850 m (6000 ft) and velocity to a 3 sigma accuracy of 0.03 m/s (0.1 ft/s). Size and weight are similar to hand held radars, frequently seen in use by motorcycle police officers. Meeting these goals for a target in free space was very difficult to obtain in the testing program; however, at a range of approximately 700 m, the 3 sigma range error was found to be 0.96 m. It is felt that much of this error is due to clutter in the test environment. As an example of the velocity accuracy, at a range of 450 m, a 3 sigma velocity error of 0.02 m/s was measured. The principles of the radar and recommended changes to its design are given. Analyses performed in support of the design process, the actual circuit diagrams, and the software listing are included.

  17. Tracking and location technologies for the criminal justice system

    NASA Astrophysics Data System (ADS)

    Murphy, John H.

    1995-05-01

    Electronic monitoring systems are being used by the criminal justice system to effect behavioral modifications of persons in pre-release prgrams, on parole, and on probation. State-of-the-art electronic monitoring systems are merely radio frequency proximity detection systems that operate over limited ranges, on the order of 45 to 70 meters. One major defect with proximity detection systems is that when the clients leave the area being monitored, there is no way to ensure that the clients are behaving properly. As a result, electronic monitoring systems are only applied to a restricted number of cases of low risk criminal offenders. There is a growing need for community-wide tracking and location technologies to increase the safety and security provided by the electronic monitoring systems, and to expand the number of cliets monitored by these systems. In this paper, a review is made of the tracking and location technologies that are currently available or under development. Also presented is a brief overview of Westinghouse's program with the National Institute of Justice. This program aims to demonstrate the practicality of one possible tracking and location technology, spread spectrum based time-of-arrival location systems, for intelligently tracking people on probation and parole.

  18. Tracking and Data Relay Satellite System (TDRSS) frequency plan

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The functions of the Tracking and Data Relay Satellite System (TDRSS) are discussed. The primary purpose of the system is to transmit signals to and receive signals from earth orbiting user spacecraft, and provide data from which user spacecraft ephemerides can be calculated. The system configuration is described and illustrated. The frequency plan is analyzed to show the frequency coverage and the signal handling capability of the system. The characteristics of the components of the system are tabulated.

  19. Active Fish Tracking Sonar (AFTS) for Assessing Fish Behavior

    SciTech Connect

    Hedgepeth, J; Johnson, Gary E. ); Skalski, John R.; Burczynski, J

    2002-11-01

    Active fish tracking sonars (AFTS) were used in 2001 to study fish movement in response to intake occlusion plates at The Dalles Dam on the Columbia River. AFTS provides three-dimensional fish tracks by aligning the axis of a split-beam transducer with a fish target. High-speed stepper motors move the transducer so that a tracked target remains on-axis. Occlusion plates with lateral extensions covered the top half of the turbine intakes to produce a fish friendly near-dam environment. Two AFTS were positioned at the center of Main Unit 1, one each for monitoring installed and removed plate conditions. A regression analysis showed that occlusion plates had pronounced effects on fish movement along the dam. The plates appeared to inhibit movement toward the spillway, movement toward the dam (especially in front of the turbine intake), and movement downward toward the turbines. Fish fate (as opposed to movement directions from regression slopes) into particular areas was determined using Markov-chain analysis. The sluiceway (a safer passage route above the turbine intake) zone of influence was larger with the occlusion plates installed, contrary to the regression results. In addition, the probability of passage out the near turbine and bottom sides of the sample volume was about 50% lower with occlusion plates installed.

  20. Monitoring the Development of At-Risk and Disabled Infants: The District of Columbia Tracking System.

    ERIC Educational Resources Information Center

    Winborne, Duvon; And Others

    This paper describes the District of Columbia's system for tracking at-risk and disabled infants during their first 3 years of life. The project involves a computerized system for following the developmental progress of at-risk infants identified at birth or other times. The project monitors the activities of children within various service…

  1. TILT. Trip Information Log Tracking System

    SciTech Connect

    Jones, J.F.

    1992-06-01

    The system is focused on the Employee Business Travel Event. The system must be able to CRUD (Create, Retrieve, Update, Delete) instances of the Travel Event as well as the ability to CRUD frequent flyer milage associated with airline travel. Additionally the system must provide for a compliance reporting system to monitor reductions in travel costs and lost opportunity costs (i.e., not taking advantage of business class or 7 day advance tickets).

  2. An MRI-Compatible Robotic System With Hybrid Tracking for MRI-Guided Prostate Intervention

    PubMed Central

    Krieger, Axel; Iordachita, Iulian I.; Guion, Peter; Singh, Anurag K.; Kaushal, Aradhana; Ménard, Cynthia; Pinto, Peter A.; Camphausen, Kevin; Fichtinger, Gabor

    2012-01-01

    This paper reports the development, evaluation, and first clinical trials of the access to the prostate tissue (APT) II system—a scanner independent system for magnetic resonance imaging (MRI)-guided transrectal prostate interventions. The system utilizes novel manipulator mechanics employing a steerable needle channel and a novel six degree-of-freedom hybrid tracking method, comprising passive fiducial tracking for initial registration and subsequent incremental motion measurements. Targeting accuracy of the system in prostate phantom experiments and two clinical human-subject procedures is shown to compare favorably with existing systems using passive and active tracking methods. The portable design of the APT II system, using only standard MRI image sequences and minimal custom scanner interfacing, allows the system to be easily used on different MRI scanners. PMID:22009867

  3. Vehicle Tracking System using Nanotechnology Satellites and Tags

    NASA Technical Reports Server (NTRS)

    Lorenzini, Dino A.; Tubis, Chris

    1995-01-01

    This paper describes a joint project to design, develop, and deploy a satellite based tracking system incorporating micro-nanotechnology components. The system consists of a constellation of 'nanosats', a satellite command station and data collection sites, and a large number of low-cost electronic 'tags'. Both government and commercial applications are envisioned for the satellite based tracking system. The projected low price for the tracking service is made possible by the lightweight nanosats and inexpensive electronic tags which use high production volume single chip transceivers and microprocessor devices. The nanosat consists of a five inch aluminum cube with body mounted solar panels (GaAs solar cells) on all six faces. A UHF turnstile antenna and a simple, spring release mechanism complete the external configuration of the spacecraft.

  4. Accurate object tracking system by integrating texture and depth cues

    NASA Astrophysics Data System (ADS)

    Chen, Ju-Chin; Lin, Yu-Hang

    2016-03-01

    A robust object tracking system that is invariant to object appearance variations and background clutter is proposed. Multiple instance learning with a boosting algorithm is applied to select discriminant texture information between the object and background data. Additionally, depth information, which is important to distinguish the object from a complicated background, is integrated. We propose two depth-based models that can compensate texture information to cope with both appearance variants and background clutter. Moreover, in order to reduce the risk of drifting problem increased for the textureless depth templates, an update mechanism is proposed to select more precise tracking results to avoid incorrect model updates. In the experiments, the robustness of the proposed system is evaluated and quantitative results are provided for performance analysis. Experimental results show that the proposed system can provide the best success rate and has more accurate tracking results than other well-known algorithms.

  5. Synchronization using pulsed edge tracking in optical PPM communication system

    NASA Technical Reports Server (NTRS)

    Gagliardi, R.

    1972-01-01

    A pulse position modulated (PPM) optical communication system using narrow pulses of light for data transmission requires accurate time synchronization between transmitter and receiver. The presence of signal energy in the form of optical pulses suggests the use of a pulse edge tracking method of maintaining the necessary timing. The edge tracking operation in a binary PPM system is examined, taking into account the quantum nature of the optical transmissions. Consideration is given first to pure synchronization using a periodic pulsed intensity, then extended to the case where position modulation is present and auxiliary bit decisioning is needed to aid the tracking operation. Performance analysis is made in terms of timing error and its associated statistics. Timing error variances are shown as a function of system signal to noise ratio.

  6. Tethered Vehicle Control and Tracking System

    NASA Technical Reports Server (NTRS)

    North, David D. (Inventor); Aull, Mark J. (Inventor)

    2014-01-01

    A kite system includes a kite and a ground station. The ground station includes a sensor that can be utilized to determine an angular position and velocity of the kite relative to the ground station. A controller utilizes a fuzzy logic control system to autonomously fly the kite. The system may include a ground station having powered winding units that generate power as the lines to the kite are unreeled. The control system may be configured to fly the kite in a crosswind trajectory to increase line tension for power generation. The sensors for determining the position of the kite are preferably ground-based.

  7. Space Shuttle/TDRSS communication and tracking systems analysis

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Chie, C. M.; Cideciyan, R.; Dessouky, K.; Su, Y. T.; Tsang, C. S.

    1986-01-01

    In order to evaluate the technical and operational problem areas and provide a recommendation, the enhancements to the Tracking and Data Delay Satellite System (TDRSS) and Shuttle must be evaluated through simulation and analysis. These enhancement techniques must first be characterized, then modeled mathematically, and finally updated into LinCsim (analytical simulation package). The LinCsim package can then be used as an evaluation tool. Three areas of potential enhancements were identified: shuttle payload accommodations, TDRSS SSA and KSA services, and shuttle tracking system and navigation sensors. Recommendations for each area were discussed.

  8. Tracking studies of the Compact Linear Collider collimation system

    SciTech Connect

    Agapov, I.; Burkhardt, H.; Schulte, D.; Latina, A.; Blair, G.A.; Malton, S.; Resta-Lopez, J.; /Oxford U., JAI

    2009-08-01

    A collimation system performance study includes several types of computations performed by different codes. Optics calculations are performed with codes such as MADX, tracking studies including additional effects such as wakefields, halo and tail generation, and dynamical machine alignment are done with codes such as PLACET, and energy deposition can be studied with BDSIM. More detailed studies of hadron production in the beam halo interaction with collimators are better performed with GEANT4 and FLUKA. A procedure has been developed that allows one to perform a single tracking study using several codes simultaneously. In this paper we study the performance of the Compact Linear Collider collimation system using such a procedure.

  9. Segmentation and Tracking of Cytoskeletal Filaments Using Open Active Contours

    PubMed Central

    Smith, Matthew B.; Li, Hongsheng; Shen, Tian; Huang, Xiaolei; Yusuf, Eddy; Vavylonis, Dimitrios

    2010-01-01

    We use open active contours to quantify cytoskeletal structures imaged by fluorescence microscopy in two and three dimensions. We developed an interactive software tool for segmentation, tracking, and visualization of individual fibers. Open active contours are parametric curves that deform to minimize the sum of an external energy derived from the image and an internal bending and stretching energy. The external energy generates (i) forces that attract the contour toward the central bright line of a filament in the image, and (ii) forces that stretch the active contour toward the ends of bright ridges. Images of simulated semiflexible polymers with known bending and torsional rigidity are analyzed to validate the method. We apply our methods to quantify the conformations and dynamics of actin in two examples: actin filaments imaged by TIRF microscopy in vitro, and actin cables in fission yeast imaged by spinning disk confocal microscopy. PMID:20814909

  10. Tumor tracking and motion compensation with an adaptive tumor tracking system (ATTS): System description and prototype testing

    SciTech Connect

    Wilbert, Juergen; Meyer, Juergen; Baier, Kurt; Guckenberger, Matthias; Herrmann, Christian; Hess, Robin; Janka, Christian; Ma Lei; Mersebach, Torben; Richter, Anne; Roth, Michael; Schilling, Klaus; Flentje, Michael

    2008-09-15

    A novel system for real-time tumor tracking and motion compensation with a robotic HexaPOD treatment couch is described. The approach is based on continuous tracking of the tumor motion in portal images without implanted fiducial markers, using the therapeutic megavoltage beam, and tracking of abdominal breathing motion with optical markers. Based on the two independently acquired data sets the table movements for motion compensation are calculated. The principle of operation of the entire prototype system is detailed first. In the second part the performance of the HexaPOD couch was investigated with a robotic four-dimensional-phantom capable of simulating real patient tumor trajectories in three-dimensional space. The performance and limitations of the HexaPOD table and the control system were characterized in terms of its dynamic behavior. The maximum speed and acceleration of the HexaPOD were 8 mm/s and 34.5 mm/s{sup 2} in the lateral direction, and 9.5 mm/s and 29.5 mm/s{sup 2} in longitudinal and anterior-posterior direction, respectively. Base line drifts of the mean tumor position of realistic lung tumor trajectories could be fully compensated. For continuous tumor tracking and motion compensation a reduction of tumor motion up to 68% of the original amplitude was achieved. In conclusion, this study demonstrated that it is technically feasible to compensate breathing induced tumor motion in the lung with the adaptive tumor tracking system.

  11. Getting Youth Started Tracking and Stalking: Sample Activities for Ages 6 to 17.

    ERIC Educational Resources Information Center

    Rain, Dan

    2002-01-01

    Presents activities on tracking and stalking wildlife that can be incorporated into the elementary secondary education curriculum. Includes activities such as Tracking and Questioning, Trail Detectives, Magic Tracking Stick, Trailing, Cast Collecting, Animal Forms Relay, Firekeeper, Bat and Moth, Grazing Deer, and Sneaking. (YDS)

  12. A Novel Open-Loop Tracking Strategy for Photovoltaic Systems

    PubMed Central

    Alexandru, Cătălin

    2013-01-01

    This paper approaches a dual-axis equatorial tracking system that is used to increase the photovoltaic efficiency by maximizing the degree of use of the solar radiation. The innovative aspect in the solar tracker design consists in considering the tracking mechanism as a perturbation for the DC motors. The goal is to control the DC motors, which are perturbed with the motor torques whose computation is based on the dynamic model of the mechanical structure on which external forces act. The daily and elevation angles of the PV module represent the input parameters in the mechanical device, while the outputs transmitted to the controller are the motor torques. The controller tuning is approached by a parametric optimization process, using design of experiments and response surface methodology techniques, in a multiple regression. The simulation and experimental results demonstrate the operational performance of the tracking system. PMID:24327803

  13. A novel open-loop tracking strategy for photovoltaic systems.

    PubMed

    Alexandru, Cătălin

    2013-01-01

    This paper approaches a dual-axis equatorial tracking system that is used to increase the photovoltaic efficiency by maximizing the degree of use of the solar radiation. The innovative aspect in the solar tracker design consists in considering the tracking mechanism as a perturbation for the DC motors. The goal is to control the DC motors, which are perturbed with the motor torques whose computation is based on the dynamic model of the mechanical structure on which external forces act. The daily and elevation angles of the PV module represent the input parameters in the mechanical device, while the outputs transmitted to the controller are the motor torques. The controller tuning is approached by a parametric optimization process, using design of experiments and response surface methodology techniques, in a multiple regression. The simulation and experimental results demonstrate the operational performance of the tracking system.

  14. CMOS VLSI Active-Pixel Sensor for Tracking

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Sun, Chao; Yang, Guang; Heynssens, Julie

    2004-01-01

    An architecture for a proposed active-pixel sensor (APS) and a design to implement the architecture in a complementary metal oxide semiconductor (CMOS) very-large-scale integrated (VLSI) circuit provide for some advanced features that are expected to be especially desirable for tracking pointlike features of stars. The architecture would also make this APS suitable for robotic- vision and general pointing and tracking applications. CMOS imagers in general are well suited for pointing and tracking because they can be configured for random access to selected pixels and to provide readout from windows of interest within their fields of view. However, until now, the architectures of CMOS imagers have not supported multiwindow operation or low-noise data collection. Moreover, smearing and motion artifacts in collected images have made prior CMOS imagers unsuitable for tracking applications. The proposed CMOS imager (see figure) would include an array of 1,024 by 1,024 pixels containing high-performance photodiode-based APS circuitry. The pixel pitch would be 9 m. The operations of the pixel circuits would be sequenced and otherwise controlled by an on-chip timing and control block, which would enable the collection of image data, during a single frame period, from either the full frame (that is, all 1,024 1,024 pixels) or from within as many as 8 different arbitrarily placed windows as large as 8 by 8 pixels each. A typical prior CMOS APS operates in a row-at-a-time ( grolling-shutter h) readout mode, which gives rise to exposure skew. In contrast, the proposed APS would operate in a sample-first/readlater mode, suppressing rolling-shutter effects. In this mode, the analog readout signals from the pixels corresponding to the windows of the interest (which windows, in the star-tracking application, would presumably contain guide stars) would be sampled rapidly by routing them through a programmable diagonal switch array to an on-chip parallel analog memory array. The

  15. FAST TRACK COMMUNICATION: Complexified dynamical systems

    NASA Astrophysics Data System (ADS)

    Bender, Carl M.; Holm, Darryl D.; Hook, Daniel W.

    2007-08-01

    Many dynamical systems, such as the Lotka-Volterra predator-prey model and the Euler equations for the free rotation of a rigid body, are {{\\cal P}}{{\\cal T}} symmetric. The standard and well-known real solutions to such dynamical systems constitute an infinitessimal subclass of the full set of complex solutions. This paper examines a subset of the complex solutions that contains the real solutions, namely those having {{\\cal P}}{{\\cal T}} symmetry. The condition of {{\\cal P}}{{\\cal T}} symmetry selects out complex solutions that are periodic.

  16. Track-to-track association for object matching in an inter-vehicle communication system

    NASA Astrophysics Data System (ADS)

    Yuan, Ting; Roth, Tobias; Chen, Qi; Breu, Jakob; Bogdanovic, Miro; Weiss, Christian A.

    2015-09-01

    Autonomous driving poses unique challenges for vehicle environment perception due to the complex driving environment the autonomous vehicle finds itself in and differentiates from remote vehicles. Due to inherent uncertainty of the traffic environments and incomplete knowledge due to sensor limitation, an autonomous driving system using only local onboard sensor information is generally not sufficiently enough for conducting a reliable intelligent driving with guaranteed safety. In order to overcome limitations of the local (host) vehicle sensing system and to increase the likelihood of correct detections and classifications, collaborative information from cooperative remote vehicles could substantially facilitate effectiveness of vehicle decision making process. Dedicated Short Range Communication (DSRC) system provides a powerful inter-vehicle wireless communication channel to enhance host vehicle environment perceiving capability with the aid of transmitted information from remote vehicles. However, there is a major challenge before one can fuse the DSRC-transmitted remote information and host vehicle Radar-observed information (in the present case): the remote DRSC data must be correctly associated with the corresponding onboard Radar data; namely, an object matching problem. Direct raw data association (i.e., measurement-to-measurement association - M2MA) is straightforward but error-prone, due to inherent uncertain nature of the observation data. The uncertainties could lead to serious difficulty in matching decision, especially, using non-stationary data. In this study, we present an object matching algorithm based on track-to-track association (T2TA) and evaluate the proposed approach with prototype vehicles in real traffic scenarios. To fully exploit potential of the DSRC system, only GPS position data from remote vehicle are used in fusion center (at host vehicle), i.e., we try to get what we need from the least amount of information; additional feature

  17. Research on application of several tracking detectors in APT system

    NASA Astrophysics Data System (ADS)

    Liu, Zhi

    2005-01-01

    APT system is the key technology in free space optical communication system, and acquisition and tracking detector is the key component in PAT system. There are several candidate detectors that can be used in PAT system, such as CCD, QAPD and CMOS Imager etc. The characteristics of these detectors are quite different, i.e., the structures and the working schemes. This paper gives thoroughly compare of the usage and working principle of CCD and CMOS imager, and discusses the key parameters like tracking error, noise analyses, power analyses etc. Conclusion is given at the end of this paper that CMOS imager is a good candidate detector for PAT system in free space optical communication system.

  18. Non-tracking solar energy collector system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1978-01-01

    A solar energy collector system characterized by an improved concentrator for directing incident rays of solar energy on parallel vacuum-jacketed receivers or absorbers is described. Numerous individually mounted reflector modules of a common asymmetrical triangular cross-sectional configuration are supported for independent reorientation. Asymmetric vee-trough concentrators are defined.

  19. Optical communication system performance with tracking error induced signal fading.

    NASA Technical Reports Server (NTRS)

    Tycz, M.; Fitzmaurice, M. W.; Premo, D. A.

    1973-01-01

    System performance is determined for an optical communication system using noncoherent detection in the presence of tracking error induced signal fading assuming (1) binary on-off modulation (OOK) with both fixed and adaptive threshold receivers, and (2) binary polarization modulation (BPM). BPM is shown to maintain its inherent 2- to 3-dB advantage over OOK when adaptive thresholding is used, and to have a substantially greater advantage when the OOK system is restricted to a fixed decision threshold.

  20. Nondynamic Tracking Using The Global Positioning System

    NASA Technical Reports Server (NTRS)

    Yunck, T. P.; Wu, Sien-Chong

    1988-01-01

    Report describes technique for using Global Positioning System (GPS) to determine position of low Earth orbiter without need for dynamic models. Differential observing strategy requires GPS receiver on user vehicle and network of six ground receivers. Computationally efficient technique delivers decimeter accuracy on orbits down to lowest altitudes. New technique nondynamic long-arc strategy having potential for accuracy of best dynamic techniques while retaining much of computational simplicity of geometric techniques.

  1. Miniature six-DOF inertial system for tracking HMDs

    NASA Astrophysics Data System (ADS)

    Foxlin, Eric M.; Harrington, Michael; Altshuler, Yury

    1998-08-01

    Current HMD applications are hampered by the limitations of head-tracking technologies now in use. Commercially available magnetic, optical, acoustic, and mechanical head- trackers suffer form various problems such as vulnerability to interference, line-of-sight restrictions, jitter, latency, small range, and high cost. This paper presents inertial-sensor-based hybrid tracking technology that was developed to combat all these problems. Two commercially available products, the IS-300 and the IS-600, are described, both based on the same miniature triaxial inertial sensor device. The IS-300 is a sourceless 3-DOF orientation tracker, using gravimetric tilt-sensing to prevent any gyroscopic drift in pitch and roll, and optical geo-magnetic compassing to prevent any gyroscopic drift in yaw. The IS-600 is a hybrid acousto-inertial 6-DOF position and orientation tracking system. It tracks changes in orientation and position by integrating the outputs of its gyros and accelerometers, and corrects drift using a room- referenced ultrasonic time-of-flight range measuring system. The is paper overviews the theory of operation of both systems, and reports bench-testing results designed to evaluate the resolution, accuracy, and latency of each system.

  2. 40 CFR 73.30 - Allowance tracking system accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accounts. (a) Nature and function of unit accounts. The Administrator will establish compliance accounts... account. (b) Nature and function of general accounts. Transfers of allowances held for any person other... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Allowance tracking system accounts....

  3. Student Tracking Systems in Community Colleges. ERIC Digest, September 1989.

    ERIC Educational Resources Information Center

    Quimbita, Grace

    Student tracking systems are enabling increasing numbers of community colleges to respond to external demands for accountability with tangible measurements of student progress and institutional outcomes. Several recent trends in marketing, accountability, communications with students, and internal competition for resources have prompted interest…

  4. 40 CFR 73.30 - Allowance tracking system accounts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Allowance tracking system accounts. 73... accounts. (a) Nature and function of unit accounts. The Administrator will establish compliance accounts... account. (b) Nature and function of general accounts. Transfers of allowances held for any person...

  5. Nonwearable Gaze Tracking System for Controlling Home Appliance

    PubMed Central

    Jung, Dongwook

    2014-01-01

    A novel gaze tracking system for controlling home appliances in 3D space is proposed in this study. Our research is novel in the following four ways. First, we propose a nonwearable gaze tracking system containing frontal viewing and eye tracking cameras. Second, our system includes three modes: navigation (for moving the wheelchair depending on the direction of gaze movement), selection (for selecting a specific appliance by gaze estimation), and manipulation (for controlling the selected appliance by gazing at the control panel). The modes can be changed by closing eyes during a specific time period or gazing. Third, in the navigation mode, the signal for moving the wheelchair can be triggered according to the direction of gaze movement. Fourth, after a specific home appliance is selected by gazing at it for more than predetermined time period, a control panel with 3 × 2 menu is displayed on laptop computer below the gaze tracking system for manipulation. The user gazes at one of the menu options for a specific time period, which can be manually adjusted according to the user, and the signal for controlling the home appliance can be triggered. The proposed method is shown to have high detection accuracy through a series of experiments. PMID:25298966

  6. 77 FR 33489 - Draft Offender Tracking System Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Office of Justice Programs Draft Offender Tracking System Standard AGENCY: National Institute of Justice.... Department of Justice, Office of Justice Programs, National Institute of Justice will make available to...

  7. North Dakota Early Childhood Tracking System - Background Memorandum.

    ERIC Educational Resources Information Center

    North Dakota State Legislative Council, Bismarck.

    This report responds to a North Dakota legislative mandate to study the state's early childhood tracking system for children who are at risk for developmental delays. Introductory sections summarize critical definitions and relevant federal legislation (specifically Part H of Public Law 99-457). The North Dakota program is then reviewed. Nineteen…

  8. Nonwearable gaze tracking system for controlling home appliance.

    PubMed

    Heo, Hwan; Lee, Jong Man; Jung, Dongwook; Lee, Ji Woo; Park, Kang Ryoung

    2014-01-01

    A novel gaze tracking system for controlling home appliances in 3D space is proposed in this study. Our research is novel in the following four ways. First, we propose a nonwearable gaze tracking system containing frontal viewing and eye tracking cameras. Second, our system includes three modes: navigation (for moving the wheelchair depending on the direction of gaze movement), selection (for selecting a specific appliance by gaze estimation), and manipulation (for controlling the selected appliance by gazing at the control panel). The modes can be changed by closing eyes during a specific time period or gazing. Third, in the navigation mode, the signal for moving the wheelchair can be triggered according to the direction of gaze movement. Fourth, after a specific home appliance is selected by gazing at it for more than predetermined time period, a control panel with 3 × 2 menu is displayed on laptop computer below the gaze tracking system for manipulation. The user gazes at one of the menu options for a specific time period, which can be manually adjusted according to the user, and the signal for controlling the home appliance can be triggered. The proposed method is shown to have high detection accuracy through a series of experiments. PMID:25298966

  9. Resource Tracking and Workflow System - part of the CORE system

    2009-10-02

    Resource management and workflow capability applied to engineering design situational awareness, providing the ability to make assignments and track progress through the construction and maintenance life cycle of an engineered structure.

  10. An eddy tracking algorithm based on dynamical systems theory

    NASA Astrophysics Data System (ADS)

    Conti, Daniel; Orfila, Alejandro; Mason, Evan; Sayol, Juan Manuel; Simarro, Gonzalo; Balle, Salvador

    2016-11-01

    This work introduces a new method for ocean eddy detection that applies concepts from stationary dynamical systems theory. The method is composed of three steps: first, the centers of eddies are obtained from fixed points and their linear stability analysis; second, the size of the eddies is estimated from the vorticity between the eddy center and its neighboring fixed points, and, third, a tracking algorithm connects the different time frames. The tracking algorithm has been designed to avoid mismatching connections between eddies at different frames. Eddies are detected for the period between 1992 and 2012 using geostrophic velocities derived from AVISO altimetry and a new database is provided for the global ocean.

  11. A simple fuzzy logic real-time camera tracking system

    NASA Technical Reports Server (NTRS)

    Magee, Kevin N.; Cheatham, John B., Jr.

    1993-01-01

    A fuzzy logic control of camera pan and tilt has been implemented to provide real-time camera tracking of a moving object. The user clicks a mouse button to identify the object that is to be tracked. A rapid centroid estimation algorithm is used to estimate the location of the moving object, and based on simple fuzzy membership functions, fuzzy x and y values are input into a six-rule fuzzy logic rule base. The output of this system is de-fuzzified to provide pan and tilt velocities required to keep the image of the object approximately centered in the camera field of view.

  12. Delivery system reform tracking: a framework for understanding change.

    PubMed

    Tollen, Laura; Enthoven, Alain; Crosson, Francis J; Taylor, Nancy; Audet, Anne-Marie; Schoen, Cathy; Ross, Murray

    2011-06-01

    The health care delivery system is changing rapidly, with providers forming patient-centered medical homes and exploring the creation of accountable care organizations. Enactment of the Affordable Care Act will likely accelerate these changes. Significant delivery system reforms will simultaneously affect the structures, capabilities, incentives, and outcomes of the delivery system. With so many changes taking place at once, there is a need for a new tool to track progress at the community level. Many of the necessary data elements for a delivery system reform tracking tool are already being collected in various places and by different stakeholders. The authors propose that all elements be brought together in a unified whole to create a detailed picture of delivery system change. This brief provides a rationale for creating such a tool and presents a framework for doing so. PMID:21638935

  13. Space Shuttle program communication and tracking systems interface analysis

    NASA Technical Reports Server (NTRS)

    Dodds, J. G.; Holmes, J. K.; Huth, G. K.; Iwasaki, R. S.; Nilsen, P. W.; Polydoros, A.; Sampaio, D. R.; Udalov, S.

    1984-01-01

    The Space Shuttle Program Communications and Tracking Systems Interface Analysis began April 18, 1983. During this time, the shuttle communication and tracking systems began flight testing. Two areas of analysis documented were a result of observations made during flight tests. These analyses involved the Ku-band communication system. First, there was a detailed analysis of the interface between the solar max data format and the Ku-band communication system including the TDRSS ground station. The second analysis involving the Ku-band communication system was an analysis of the frequency lock loop of the Gunn oscillator used to generate the transmit frequency. The stability of the frequency lock loop was investigated and changes to the design were reviewed to alleviate the potential loss of data due the loop losing lock and entering the reacquisition mode. Other areas of investigation were the S-band antenna analysis and RF coverage analysis.

  14. GPS-based satellite tracking system for precise positioning

    NASA Technical Reports Server (NTRS)

    Yunck, T. P.; Melbourne, W. G.; Thornton, C. L.

    1985-01-01

    NASA is developing a Global Positioning System (GPS) based measurement system to provide precise determination of earth satellite orbits, geodetic baselines, ionospheric electron content, and clock offsets between worldwide tracking sites. The system will employ variations on the differential GPS observing technique and will use a network of nine fixed ground terminals. Satellite applications will require either a GPS flight receiver or an on-board GPS beacon. Operation of the system for all but satellite tracking will begin by 1988. The first major satellite application will be a demonstration of decimeter accuracy in determining the altitude of TOPEX in the early 1990's. By then the system is expected to yield long-baseline accuracies of a few centimeters and instantaneous time synchronization to 1 ns.

  15. High-Speed Noninvasive Eye-Tracking System

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; LaBaw, Clayton; Michael-Morookian, John; Monacos, Steve; Serviss, Orin

    2007-01-01

    The figure schematically depicts a system of electronic hardware and software that noninvasively tracks the direction of a person s gaze in real time. Like prior commercial noninvasive eye-tracking systems, this system is based on (1) illumination of an eye by a low-power infrared light-emitting diode (LED); (2) acquisition of video images of the pupil, iris, and cornea in the reflected infrared light; (3) digitization of the images; and (4) processing the digital image data to determine the direction of gaze from the centroids of the pupil and cornea in the images. Relative to the prior commercial systems, the present system operates at much higher speed and thereby offers enhanced capability for applications that involve human-computer interactions, including typing and computer command and control by handicapped individuals,and eye-based diagnosis of physiological disorders that affect gaze responses.

  16. Indoor Tracking to Understand Physical Activity and Sedentary Behaviour: Exploratory Study in UK Office Buildings

    PubMed Central

    Spinney, Richard; Smith, Lee; Ucci, Marcella; Fisher, Abigail; Konstantatou, Marina; Sawyer, Alexia; Wardle, Jane; Marmot, Alexi

    2015-01-01

    Little is known of the patterns of physical activity, standing and sitting by office workers. However, insight into these behaviours is of growing interest, notably in regard to public health priorities to reduce non-communicable disease risk factors associated with high levels of sitting time and low levels of physical activity. With the advent and increasing availability of indoor tracking systems it is now becoming possible to build detailed pictures of the usage of indoor spaces. This paper reports initial results of indoor tracking used in conjunction with the ActivPAL activity monitoring device. In this paper we give an overview of the usage of the tracking system and its installation and illustrate some of the resultant data. We also provide preliminary results that investigate the relationship between location, light physical activity and sitting in a small sample of office workers (n=33) from two separate office environments in order to demonstrate the relevance and explanatory power of the technique. PMID:25993515

  17. Indoor Tracking to Understand Physical Activity and Sedentary Behaviour: Exploratory Study in UK Office Buildings.

    PubMed

    Spinney, Richard; Smith, Lee; Ucci, Marcella; Fisher, Abigail; Konstantatou, Marina; Sawyer, Alexia; Wardle, Jane; Marmot, Alexi

    2015-01-01

    Little is known of the patterns of physical activity, standing and sitting by office workers. However, insight into these behaviours is of growing interest, notably in regard to public health priorities to reduce non-communicable disease risk factors associated with high levels of sitting time and low levels of physical activity. With the advent and increasing availability of indoor tracking systems it is now becoming possible to build detailed pictures of the usage of indoor spaces. This paper reports initial results of indoor tracking used in conjunction with the ActivPAL activity monitoring device. In this paper we give an overview of the usage of the tracking system and its installation and illustrate some of the resultant data. We also provide preliminary results that investigate the relationship between location, light physical activity and sitting in a small sample of office workers (n=33) from two separate office environments in order to demonstrate the relevance and explanatory power of the technique. PMID:25993515

  18. Accuracy of the LPM tracking system considering dynamic position changes.

    PubMed

    Ogris, Georg; Leser, Roland; Horsak, Brian; Kornfeind, Philipp; Heller, Mario; Baca, Arnold

    2012-01-01

    This study investigates the accuracy of the tracking system LPM (local position measurement). The goal was to determine detailed error values of the system in the context of sports performance analyses. Six moderately trained male soccer players (amateur level) performed 276 runs on three different courses at six different speeds. Additionally, ten small-sided game plays were carried out. All runs and game plays were recorded with the LPM tracking system and the motion capture system VICON simultaneously. VICON served as the reference system. The absolute error of all LPM position estimations was on average 23.4±20.7 cm. The estimation for average velocities varied between 0.01 km h(-1) and 0.23 km h(-1), the maximum speed estimations differed by up to 2.71 km h(-1). In addition, the results showed that the accuracy of the LPM system is highly dependent on the instantaneous dynamics of the player and decreases in the margins of the observation field. These dependencies were quantified. Considering commonly used applications of position tracking systems in sports (Leser, Ogris, & Baca, 2011), the accuracy of LPM is acceptable for position and velocity estimations. The system provides valuable results for average velocities but seems to be far less reliable when dealing with high dynamic movements and measuring instantaneous velocities.

  19. Design of a retinal tracking system for jumping spiders

    NASA Astrophysics Data System (ADS)

    Canavesi, Cristina; Long, Skye; Fantone, Dennis; Jakob, Elizabeth; Jackson, Robert R.; Harland, Duane; Rolland, Jannick P.

    2011-10-01

    We designed an optical system for tracking the retinal movement of a jumping spider as a stimulus is presented to it. The system, using all off-the-shelf optical components except for one custom aspheric plate, consists of three sub-systems that share a common path: a visible stimuli presentation sub-system, a NIR illumination sub-system, and a NIR retinal imaging sub-system. A 25 mm clearance between the last element and the spider ensures a stable positioning of the spider. The stimuli presentation system relays an image from a display to the spider eye, matching the 15 arcmin resolution of the two principal eyes and producing a virtual image at a distance of 255 mm from the spider, with a visual full field of view of 52°. When viewing a stimulus, the spider moves its retinas, which cover a full field of view of only 0.6°, and directs them to view different places in the visual field. The retinal imaging system uses a NIR camera to track changes of 0.5° in the field of view seen by the spider. By tracking retinal movement across images presented to spiders, we will learn how they search for visual cues to identify prey, rivals, and potential mates.

  20. Health Track System—An Automated Occupational Medical System

    PubMed Central

    Compton, Jack E.; Hartridge, Anne D.; Maluish, Andrew G.

    1980-01-01

    The development of an automated occupational health and hazards system is being undertaken at the Department of Energy by Electronic Data Systems. This system, called the Health Track System (HTS), involves the integration and collection of data from the fields of occupational medicine, industrial hygiene, health physics, safety and personnel. This in itself is an exciting prospect, however, the scope of the system calls for it to be installed throughout DOE and contractor organizations across the country, which is even more exciting. Presented here are the main ideas behind the system, and how state of the art technology can be applied to this task.

  1. Full-time equivalency tracking system

    USGS Publications Warehouse

    Klesert, Stephen

    1982-01-01

    To help meet the goals of the Surface-Mining Control and Reclamation Act of 1977, the U.S. Geological Survey is assessing the physical, chemical, and biological characteristics of surface water within the coal-mining region of southwestern Indiana. This report discussed benthic-invertebrate and periphytic-algal communities in streams draining homogeneous agricultural, forested, active/reclaimed-mine, and unreclaimed mine watersheds, and relates the biological communities to the physical and chemical characteristics of the streams. Alkalinity and pH were lower and the concentrations of dissolved solids, calcium, magnesium, sodium, potassium, sulfate, iron, manganese, aluminum, and zinc were higher in unreclaimed-mine watersheds than in the other land-use watersheds. Numbers and community diversity of benthic invertebrates were less at sites affected by mining than at agricultural or forested sites, owing to (1) synergistic effects of pH, metals, and unsuitable habitat and (2) lack of colonizing drift organisms because of the small drainage area upstream from the mined area. Only a few organisms , such as the caddisflies Cheumatopsyche and Hydrosyche and the chironomids Chironomus and Cricotopus were found in streams draining mine areas. (USGS)

  2. An Information System for Children Tracking on the Way to and Back from School

    NASA Astrophysics Data System (ADS)

    Okamura, Yukio; Yamano, Toru; Kubota, Hiroaki; Doumen, Takeshi

    The Hiroshima City Children Tracking System has been developed. This model system consists of mobile ad-hoc network, high performance location detection system and children tracking server system. The children tracking server system provides the information for safety of the children to their parents. Specially the system indicate group number of their children.

  3. Using geographic information systems to track polio vaccination team performance: pilot project report.

    PubMed

    Gammino, Victoria M; Nuhu, Adamu; Chenoweth, Paul; Manneh, Fadinding; Young, Randall R; Sugerman, David E; Gerber, Sue; Abanida, Emmanuel; Gasasira, Alex

    2014-11-01

    The application of geospatial data to public health problems has expanded significantly with increased access to low-cost handheld global positioning system (GPS) receivers and free programs for geographic information systems analysis. In January 2010, we piloted the application of geospatial analysis to polio supplementary immunization activities (SIAs) in northern Nigeria. SIA teams carried GPS receivers to compare hand-drawn catchment area route maps with GPS tracks of actual vaccination teams. Team tracks overlaid on satellite imagery revealed that teams commonly missed swaths of contiguous households and indicated that geospatial data can improve microplanning and provide nearly real-time monitoring of team performance. PMID:25316882

  4. Using geographic information systems to track polio vaccination team performance: pilot project report.

    PubMed

    Gammino, Victoria M; Nuhu, Adamu; Chenoweth, Paul; Manneh, Fadinding; Young, Randall R; Sugerman, David E; Gerber, Sue; Abanida, Emmanuel; Gasasira, Alex

    2014-11-01

    The application of geospatial data to public health problems has expanded significantly with increased access to low-cost handheld global positioning system (GPS) receivers and free programs for geographic information systems analysis. In January 2010, we piloted the application of geospatial analysis to polio supplementary immunization activities (SIAs) in northern Nigeria. SIA teams carried GPS receivers to compare hand-drawn catchment area route maps with GPS tracks of actual vaccination teams. Team tracks overlaid on satellite imagery revealed that teams commonly missed swaths of contiguous households and indicated that geospatial data can improve microplanning and provide nearly real-time monitoring of team performance.

  5. Gamma-ray tracking method for pet systems

    DOEpatents

    Mihailescu, Lucian; Vetter, Kai M.

    2010-06-08

    Gamma-ray tracking methods for use with granular, position sensitive detectors identify the sequence of the interactions taking place in the detector and, hence, the position of the first interaction. The improved position resolution in finding the first interaction in the detection system determines a better definition of the direction of the gamma-ray photon, and hence, a superior source image resolution. A PET system using such a method will have increased efficiency and position resolution.

  6. Real-time surface tracking system using common-path spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kim, Keo-Sik; Park, Hyoung-Jun; Kang, Hyun Seo; Kang, Jin U.; Song, Chul-Gyu

    2012-11-01

    An enhanced surface tracking system based on optical coherence tomography (OCT) modality has been developed and tested for use in a surgical guidance system. A surface detection algorithm based on a Savitzky-Golay filter of A-scan data and thresholding was applied to real-time depth tracking. The algorithm output controlled a motorized stage to adjust the probe position according to the sample's topological variance in real-time. As a result, the root mean square error (RMSE: 4.2 μm) of our algorithm was relatively lower than the conventional method (RMSE: 16.6 μm). Also, OCT images obtained using the algorithm showed a significantly extended imaging range and active surface tracking in real time. Consequently, the devised method demonstrated potential for use in systems for guiding surgical robots and endoscopic OCT.

  7. Three-Dimensional Concentration Measurements around Actively Tracking Blue Crabs

    NASA Astrophysics Data System (ADS)

    Dickman, B. D.; Jackson, J. L.; Weissburg, M. J.; Webster, D. R.

    2006-11-01

    Many aquatic arthropods locate food, suitable habitats, and mates solely through information extracted by chemical signals in their environment. Chemical plumes detected by larger animals are influenced by turbulence that creates an intermittent and unpredictable chemical stimulus environment. To link the stimulus pattern to behavior, we have developed a measurement system to quantify the instantaneous odor concentration surrounding a freely tracking blue crab through three-dimensional laser-induced fluorescence (3DLIF). A blue crab receives chemical stimulus at several locations, including the antennules near the mouth region and the distal tips of the legs and claws. Hence, three-dimensional measurements of the concentration field are required to link behavior to plume structure. During trials, crabs began their search 150 cm downstream of a source, and walking kinematics were recording simultaneously. The crabs were reversibly ``blindfolded'' during tracking to prevent aversive reactions to the intense laser light. Our experiments allow us to examine how hypothesized navigational cues, such as concentration bursts at the antennules and spatial asymmetry in concentration at the distributed chemosensory organs on the legs and claws, results in particular decisions during navigation.

  8. Experimental monitoring of geotechnical response of railway track systems

    NASA Astrophysics Data System (ADS)

    Alsabhan, Abdullah H.

    An important issue that compromises rail track operations and safety is ballast fouling. Ballast fouling may lead to track deformation, reduction of track load capacity and train speed, and ultimately train derailment. This problem is quite costly for the railway industry thus, assessing and controlling ballast fouling and then preventing train derailment while optimizing maintenance operation is very important for reducing the overall cost of freight and passenger transportation. This study presents a proposed holistic methodology that extends assessing fouling while monitoring rail track deformation. The techniques uses deformation monitoring instruments (e.g., fiber optic (FO) sensors and LVDTs) coupled with Electromagnetic (EM) surveying: Ground penetrating radar (GPR) and a time domain reflectometry (TDR). The methodology aims at gathering data to create an early warning system that would allow railway engineers to develop a symptomatic approach to ballast maintenance procedures. This proposed methodology was tested on a full scale track model (FSTM). This model comprises 2.45 m rail supported by five ties embedded in ballast layer that was fouled under controlled conditions. The testing program considered three common types of fouling: mineral fouling, clay fouling, and silica sand fouling. A comparison between rail settlement measurements measured by LVDTs and rail bending strain measurement measured by FO sensors showed that FO sensors do not provide an indication of track deterioration due to cyclic loading, moisture content, and fouling depth. In addition, results showed a high correlation between rate of plastic settlement and amount of fouling detected by EM survey. Experimental results also showed that EM survey results can be used to determine depth and type of fouling.

  9. Ultra-Wideband Angle-of-Arrival Tracking Systems

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey; Ngo, Phong H.; Phan, Chau T.; Gross, Julia; Ni, Jianjun; Dusl, John

    2010-01-01

    Systems that measure the angles of arrival of ultra-wideband (UWB) radio signals and perform triangulation by use of those angles in order to locate the sources of those signals are undergoing development. These systems were originally intended for use in tracking UWB-transmitter-equipped astronauts and mobile robots on the surfaces of remote planets during early stages of exploration, before satellite-based navigation systems become operational. On Earth, these systems could be adapted to such uses as tracking UWB-transmitter-equipped firefighters inside buildings or in outdoor wildfire areas obscured by smoke. The same characteristics that have made UWB radio advantageous for fine resolution ranging, covert communication, and ground-penetrating radar applications in military and law-enforcement settings also contribute to its attractiveness for the present tracking applications. In particular, the waveform shape and the short duration of UWB pulses make it possible to attain the high temporal resolution (of the order of picoseconds) needed to measure angles of arrival with sufficient precision, and the low power spectral density of UWB pulses enables UWB radio communication systems to operate in proximity to other radio communication systems with little or no perceptible mutual interference.

  10. Differential Flatness and Cooperative Tracking in the Lorenz System

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.

    2002-01-01

    In this paper the control of the Lorenz system for both stabilization and tracking problems is studied via feedback linearization and differential flatness. By using the Rayleigh number as the control, only variable physically tunable, a barrier in the controllability of the system is incidentally imposed. This is reflected in the appearance of a singularity in the state transformation. Composite controllers that overcome this difficulty are designed and evaluated. The transition through the manifold defined by such a singularity is achieved by inducing a chaotic response within a boundary layer that contains it. Outside this region, a conventional feedback nonlinear control is applied. In this fashion, the authority of the control is enlarged to the whole. state space and the need for high control efforts is mitigated. In addition, the differential parametrization of the problem is used to track nonlinear functions of one state variable (single tracking) as well as several state variables (cooperative tracking). Control tasks that lead to integrable and non-integrable differential equations for the nominal flat output in steady-state are considered. In particular, a novel numerical strategy to deal with the non-integrable case is proposed. Numerical results validate very well the control design.

  11. Masseter Muscle Activity in Track and Field Athletes: A Pilot Study

    PubMed Central

    Nukaga, Hideyuki; Takeda, Tomotaka; Nakajima, Kazunori; Narimatsu, Keishiro; Ozawa, Takamitsu; Ishigami, Keiichi; Funato, Kazuo

    2016-01-01

    Teeth clenching has been shown to improve remote muscle activity (by augmentation of the Hoffmann reflex), and joint fixation (by decreased reciprocal inhibition) in the entire body. Clenching could help maintain balance, improve systemic function, and enhance safety. Teeth clenching from a sports dentistry viewpoint was thought to be important and challenging. Therefore, it is quite important to investigate mastication muscles’ activity and function during sports events for clarifying a physiological role of the mastication muscle itself and involvement of mastication muscle function in whole body movement. Running is a basic motion of a lot of sports; however, a mastication muscles activity during this motion was not clarified. Throwing and jumping operation were in a same situation. The purpose of this study was to investigate the presence or absence of masseter muscle activity during track and field events. In total, 28 track and field athletes took part in the study. The Multichannel Telemetry system was used to monitor muscle activity, and the electromyograms obtained were synchronized with digital video imaging. The masseter muscle activity threshold was set 15% of maximum voluntary clenching. As results, with few exceptions, masseter muscle activity were observed during all analyzed phases of the 5 activities, and that phases in which most participants showed masseter muscle activity were characterized by initial acceleration, such as in the short sprint, from the commencement of throwing to release in both the javelin throw and shot put, and at the take-off and landing phases in both jumps. PMID:27708727

  12. Solid Waste Information and Tracking System (SWITS) Software Requirements Specification

    SciTech Connect

    MAY, D.L.

    2000-03-22

    This document is the primary document establishing requirements for the Solid Waste Information and Tracking System (SWITS) as it is converted to a client-server architecture. The purpose is to provide the customer and the performing organizations with the requirements for the SWITS in the new environment. This Software Requirement Specification (SRS) describes the system requirements for the SWITS Project, and follows the PHMC Engineering Requirements, HNF-PRO-1819, and Computer Software Qualify Assurance Requirements, HNF-PRO-309, policies. This SRS includes sections on general description, specific requirements, references, appendices, and index. The SWITS system defined in this document stores information about the solid waste inventory on the Hanford site. Waste is tracked as it is generated, analyzed, shipped, stored, and treated. In addition to inventory reports a number of reports for regulatory agencies are produced.

  13. Development of an improved positron emission particle tracking system

    NASA Astrophysics Data System (ADS)

    Stellema, C. S.; Vlek, J.; Mudde, R. F.; de Goeij, J. J. M.; van den Bleek, C. M.

    1998-02-01

    An improved Positron Emission Particle Tracking (PEPT) system has been developed for the non-intrusive investigation of solids flow in a gas-solids Interconnected Fluidised Bed (IFB) reactor. This system tracks continuously the 3D location of a single positron emitting particle. This particle has the same size and density as the solids and can be made as small as 500 μm. The system performance was improved through the use of graded absorbers which enable to filter valuable information from the Compton spectrum. A radiotracer particle moving at 1 m s -1 can be located with a 3D resolution better than 15 mm in a continuous trajectory. For a velocity of 0.1 m s -1 the 3D resolution is better than 5 mm. The obtained results are presented through ensemble-averaged solids' velocity patterns.

  14. A passive integrated transponder system for tracking animal movements

    USGS Publications Warehouse

    Boarman, W.I.; Beigel, M.L.; Goodlett, G.C.; Sazaki, M.

    1999-01-01

    We describe an automated system that uses passive integrated transponder (PIT) tags to track movements of animals past specific locations. The system was designed to operate maintenance free for several months, be secure from vandalism and environmental damage, and record the identity, date, and time of passage of animals past a 2.4-m wide area. We used the system to monitor effectively the movements of 172 desert tortoises (Gopherus agassizii) through 2 storm drain culverts that pass beneath a state highway in the Mojave Desert, California. Four tortoises entered or passed through the culverts on 60 occasions. The system can be easily adapted to other species.

  15. A real-time tracking system for monitoring shipments of hazardous materials

    NASA Astrophysics Data System (ADS)

    Womble, Phillip; Paschal, Jon; Hopper, Lindsay; Pinson, Dudley; Schultz, Frederick; Whitfield Humphrey, Melinda

    2007-04-01

    Due to the ever increasing use of radioactive materials in day to day living from the treatment of cancer patients and irradiation of food for preservation to industrial radiography to check for defects in the welding of pipelines and buildings there is a growing concern over the tracking and monitoring of these sources in transit prior to use as well as the waste produced by such use. The prevention of lost sealed sources is important in reducing the environmental and health risk posed by direct exposure, co-mingling in the metal recycling stream, use in contaminated consumer products, and use in terrorist activities. Northwest Nuclear, LLC (NWN) and the Applied Physics Institute (API) at Western Kentucky University have developed a tracking technology using active radio frequency identification (RFID) tags. This system provides location information by measuring the time of arrival of packets from a set of RFID tags to a set of location receivers. The system can track and graphically display the location on maps, drawings or photographs of tagged items on any 802.11- compliant device (PDAs, laptops, computers, WiFi telephones) situated both outside and inside structures. This location information would be vital for tracking the location of high level radiological sources while in transit. RFID technology would reduce the number of lost sources by tracking them from origination to destination. Special tags which indicate tampering or sudden movement have also been developed.

  16. Evaluation of a BGO-Based PET System for Single-Cell Tracking Performance by Simulation and Phantom Studies.

    PubMed

    Ouyang, Yu; Kim, Tae Jin; Pratx, Guillem

    2016-01-01

    A recent method based on positron emission was reported for tracking moving point sources using the Inveon PET system. However, the effect of scanner background noise was not further explored. Here, we evaluate tracking with the Genisys4, a bismuth germanate-based PET system, which has no significant intrinsic background and may be better suited to tracking lower and/or faster activity sources. Position-dependent sensitivity of the Genisys4 was simulated in Geant4 Application for Tomographic Emission (GATE) using a static (18)F point source. Trajectories of helically moving point sources with varying activity and rotation speed were reconstructed from list-mode data as described previously. Simulations showed that the Inveon's ability to track sources within 2 mm of localization error is limited to objects with a velocity-to-activity ratio < 0.13 mm/decay, compared to < 0.29 mm/decay for the Genisys4. Tracking with the Genisys4 was then validated using a physical phantom of helically moving [(18)F] fluorodeoxyglucose-in-oil droplets (< 0.24 mm diameter, 139-296 Bq), yielding < 1 mm localization error under the tested conditions, with good agreement between simulated sensitivity and measured activity (Pearson correlation R = .64, P < .05 in a representative example). We have investigated the tracking performance with the Genisys4, and results suggest the feasibility of tracking low activity, point source-like objects with this system. PMID:27175009

  17. Remote Gaze Tracking System on a Large Display

    PubMed Central

    Lee, Hyeon Chang; Lee, Won Oh; Cho, Chul Woo; Gwon, Su Yeong; Park, Kang Ryoung; Lee, Heekyung; Cha, Jihun

    2013-01-01

    We propose a new remote gaze tracking system as an intelligent TV interface. Our research is novel in the following three ways: first, because a user can sit at various positions in front of a large display, the capture volume of the gaze tracking system should be greater, so the proposed system includes two cameras which can be moved simultaneously by panning and tilting mechanisms, a wide view camera (WVC) for detecting eye position and an auto-focusing narrow view camera (NVC) for capturing enlarged eye images. Second, in order to remove the complicated calibration between the WVC and NVC and to enhance the capture speed of the NVC, these two cameras are combined in a parallel structure. Third, the auto-focusing of the NVC is achieved on the basis of both the user's facial width in the WVC image and a focus score calculated on the eye image of the NVC. Experimental results showed that the proposed system can be operated with a gaze tracking accuracy of ±0.737°∼±0.775° and a speed of 5∼10 frames/s. PMID:24105351

  18. Remote gaze tracking system on a large display.

    PubMed

    Lee, Hyeon Chang; Lee, Won Oh; Cho, Chul Woo; Gwon, Su Yeong; Park, Kang Ryoung; Lee, Heekyung; Cha, Jihun

    2013-01-01

    We propose a new remote gaze tracking system as an intelligent TV interface. Our research is novel in the following three ways: first, because a user can sit at various positions in front of a large display, the capture volume of the gaze tracking system should be greater, so the proposed system includes two cameras which can be moved simultaneously by panning and tilting mechanisms, a wide view camera (WVC) for detecting eye position and an auto-focusing narrow view camera (NVC) for capturing enlarged eye images. Second, in order to remove the complicated calibration between the WVC and NVC and to enhance the capture speed of the NVC, these two cameras are combined in a parallel structure. Third, the auto-focusing of the NVC is achieved on the basis of both the user's facial width in the WVC image and a focus score calculated on the eye image of the NVC. Experimental results showed that the proposed system can be operated with a gaze tracking accuracy of ±0.737°~±0.775° and a speed of 5~10 frames/s. PMID:24105351

  19. On-track tests of active vertical suspension on a passenger train

    NASA Astrophysics Data System (ADS)

    Qazizadeh, Alireza; Persson, Rickard; Stichel, Sebastian

    2015-06-01

    The classic way to design the suspension of a rail vehicle is to use passive elements such as dampers and springs; however, as sensors and actuators are getting more affordable and reliable, their potential benefit in the suspension system is increasingly studied. Active suspension can be used to keep ride comfort at an acceptable level or even improve it, while allowing tougher operation conditions or usage of lighter carbodies. Tougher conditions could be interpreted as higher speed or lower track quality, and lighter carbody means higher level of elastic vibrations. This paper is focused on the implementation and tests of active vertical suspension on the secondary suspension of a high-speed passenger electric multiple unit using hydraulic actuators and the skyhook method as the controller. Results from on-track tests indicate large ride comfort improvements.

  20. Development of a Water Recovery System Resource Tracking Model

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Stambaugh, Imelda; Sargusingh, Miriam; Shull, Sarah; Moore, Michael

    2015-01-01

    A simulation model has been developed to track water resources in an exploration vehicle using Regenerative Life Support (RLS) systems. The Resource Tracking Model (RTM) integrates the functions of all the vehicle components that affect the processing and recovery of water during simulated missions. The approach used in developing the RTM enables its use as part of a complete vehicle simulation for real time mission studies. Performance data for the components in the RTM is focused on water processing. The data provided to the model has been based on the most recent information available regarding the technology of the component. This paper will describe the process of defining the RLS system to be modeled, the way the modeling environment was selected, and how the model has been implemented. Results showing how the RLS components exchange water are provided in a set of test cases.

  1. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    SciTech Connect

    Anderson, Robert Stephen

    2001-02-01

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of management flexibility.

  2. Alignment of the ATLAS inner detector tracking system

    NASA Astrophysics Data System (ADS)

    Moles-Valls, Regina

    2010-05-01

    The CERN's Large Hadron Collider (LHC) is the world largest particle accelerator. ATLAS (A Toroidal LHC ApparatuS) is one of the two general purpose experiments equipped with a charged particle tracking system built on two technologies: silicon and drift tube based detectors, composing the ATLAS Inner Detector (ID). The alignment of the tracking system poses a challenge as one should solve a linear equation with almost 36 000 degrees of freedom. The required precision for the alignment of the most sensitive coordinates of the silicon sensors is just few microns. This limit comes from the requirement that the misalignment should not worsen the resolution of the track parameter measurements by more than 20%. Therefore the alignment of the ATLAS ID requires complex algorithms with extensive CPU and memory usage. So far the proposed alignment algorithms are exercised on several applications. We will present the outline of the alignment approach and results from Cosmic Ray runs and large scale computing simulation of physics samples mimicking the ATLAS operation during real data taking. For the later application the trigger of the experiment is simulated and the event filter is applied in order to produce an alignment input data stream. The full alignment chain is tested using that stream and alignment constants are produced and validated within 24 h. Cosmic ray data serves to produce an early alignment of the real ATLAS Inner Detector even before the LHC start up. Beyond all tracking information, the assembly survey database contains essential information in order to determine the relative position of one module with respect to its neighbors. Finally a hardware system measuring an array of grid lines in the modules support structure with a Frequency Scan Interferometer monitors short time system deformations.

  3. Passive optical computerized tracking system with graphic replay

    NASA Astrophysics Data System (ADS)

    Johnston, Donald R.

    1993-01-01

    The system has been designed for instant sports replay. The passive unit utilizes two video cameras, an image processor, and a graphics computer to track the baseball pitch and provide an instant graphic replay of the pitch, showing the ball's trajectory, speed, and movement. Shown on the 1991 World Series, it has applications for both team training and game broadcasting as well as other sports.

  4. Quantifying the tracking capability of space-based AIS systems

    NASA Astrophysics Data System (ADS)

    Skauen, Andreas Nordmo

    2016-01-01

    The Norwegian Defence Research Establishment (FFI) has operated three Automatic Identification System (AIS) receivers in space. Two are on dedicated nano-satellites, AISSat-1 and AISSat-2. The third, the NORAIS Receiver, was installed on the International Space Station. A general method for calculating the upper bound on the tracking capability of a space-based AIS system has been developed and the results from the algorithm applied to AISSat-1 and the NORAIS Receiver individually. In addition, a constellation of AISSat-1 and AISSat-2 is presented. The tracking capability is defined as the probability of re-detecting ships as they move around the globe and is explained to represent and upper bound on a space-based AIS system performance. AISSat-1 and AISSat-2 operates on the nominal AIS1 and AIS2 channels, while the NORAIS Receiver data used are from operations on the dedicated space AIS channels, AIS3 and AIS4. The improved tracking capability of operations on the space AIS channels is presented.

  5. The tracking control system of the VLT Survey Telescope.

    PubMed

    Schipani, P; Arcidiacono, C; Argomedo, J; Dall'Ora, M; D'Orsi, S; Farinato, J; Magrin, D; Marty, L; Ragazzoni, R; Umbriaco, G

    2012-09-01

    The VLT survey telescope is the latest telescope installed at European Southern Observatory's Paranal observatory that is considered one of the best sites for optical astronomy for the excellent seeing conditions. The exceptional quality of the site imposes tight requirements for the telescope tracking system that shall perform very well to fully exploit the extreme sharpness of the Chilean sky. We describe the specific solutions adopted for pointing, servo and guiding systems and the results obtained during the commissioning of the telescope. The hardware implementation relies on industry components and the control solutions privilege both the performance and the future maintainability of the system. PMID:23020397

  6. The tracking control system of the VLT Survey Telescope.

    PubMed

    Schipani, P; Arcidiacono, C; Argomedo, J; Dall'Ora, M; D'Orsi, S; Farinato, J; Magrin, D; Marty, L; Ragazzoni, R; Umbriaco, G

    2012-09-01

    The VLT survey telescope is the latest telescope installed at European Southern Observatory's Paranal observatory that is considered one of the best sites for optical astronomy for the excellent seeing conditions. The exceptional quality of the site imposes tight requirements for the telescope tracking system that shall perform very well to fully exploit the extreme sharpness of the Chilean sky. We describe the specific solutions adopted for pointing, servo and guiding systems and the results obtained during the commissioning of the telescope. The hardware implementation relies on industry components and the control solutions privilege both the performance and the future maintainability of the system.

  7. Quantifying the 3D Odorant Concentration Field Used by Actively Tracking Blue Crabs

    NASA Astrophysics Data System (ADS)

    Webster, D. R.; Dickman, B. D.; Jackson, J. L.; Weissburg, M. J.

    2007-11-01

    Blue crabs and other aquatic organisms locate food and mates by tracking turbulent odorant plumes. The odorant concentration fluctuates unpredictably due to turbulent transport, and many characteristics of the fluctuation pattern have been hypothesized as useful cues for orienting to the odorant source. To make a direct linkage between tracking behavior and the odorant concentration signal, we developed a measurement system based the laser induced fluorescence technique to quantify the instantaneous 3D concentration field surrounding actively tracking blue crabs. The data suggest a correlation between upstream walking speed and the concentration of the odorant signal arriving at the antennule chemosensors, which are located near the mouth region. More specifically, we note an increase in upstream walking speed when high concentration bursts arrive at the antennules location. We also test hypotheses regarding the ability of blue crabs to steer relative to the plume centerline based on the signal contrast between the chemosensors located on their leg appendages. These chemosensors are located much closer to the substrate compared to the antennules and are separated by the width of the blue crab. In this case, it appears that blue crabs use the bilateral signal comparison to track along the edge of the plume.

  8. Whole-rock uranium analysis by fission track activation

    NASA Technical Reports Server (NTRS)

    Weiss, J. R.; Haines, E. L.

    1974-01-01

    We report a whole-rock uranium method in which the polished sample and track detector are separated in a vacuum chamber. Irradiation with thermal neutrons induces uranium fission in the sample, and the detector records the integrated fission track density. Detection efficiency and geometric factors are calculated and compared with calibration experiments.

  9. Tracking Accuracy of a Real-Time Fiducial Tracking System for Patient Positioning and Monitoring in Radiation Therapy

    SciTech Connect

    Shchory, Tal; Schifter, Dan; Lichtman, Rinat; Neustadter, David; Corn, Benjamin W.

    2010-11-15

    Purpose: In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. Methods and Materials: The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive tracking system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. Results: The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. Conclusions: This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy.

  10. Technical manual: description and operation Slaved Tracking System

    SciTech Connect

    Bauhs, K.C.

    1984-08-01

    This manual contains physical and functional descriptions, operating procedures, and safety precautions for the Slaved Tracking System (STS). The STS is a mobile unit designed to provide close-up, high-quality motion pictures and video tapes of laydown bombs and rockets during the final phase of their trajectory to impact point. Radiometer devices mounted with the optics can also be used to track rocket exhaust emissions. The STS receives binary range and encoder information from Sandia's Laser Tracker System (LTS) to provide the STS with steering signals to track vehicle. These signals are transmitted by microwave or hard-wire communications lines. The communications link is shown in Figure 1-1. The STS yields optimum photographic coverage with a field-of-view of +-5 ft on targets traveling up to 2000 f/s at a cross range of 1500 ft. The boresight of the fixed optics points directly at a 12-in. gimballed tracking mirror that provides satisfactory photographic lighting under most conditions. A 75-mm-square flat-plate beamsplitter is used on the optical table to divide the gimbal mirror view between a 500-frame-per-second (FPS) motion picture camera and a shuttered, color, 60-field-per-second (fps) television camera. A video cassette recorder provides for immediate posttest analysis. The gimbal mirror and optical table are mounted on a steel pedestal weighing approx. 2 tons for maximum stability. The pedestal is leveled with three motor-driven screw jacks with lifting speed resolution of 0.002 to 0.05 in.-per-second.

  11. Video and film analysis with correlation tracking and active result presentation (Abstract Only)

    NASA Astrophysics Data System (ADS)

    Rowa, Per

    1990-08-01

    Experience with a turnkey analysis system featuring high resolution video input and display, a modular video disc system and a 16 mm cine film scanner with 2600-point resolution, is presented. Tracking is performed with a high-speed correlation process, requiring no special markers. Software packages for evaluating two and three-dimensional results are interactively accessible. Combining the original image sequence with real-time graphic overlays and active drawing of graphic diagrams, provides for an excellent understanding and documentation of the motion sequences.

  12. Design analysis tracking and data relay satellite simulation system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design and development of the equipment necessary to simulate the S-band multiple access link between user spacecraft, the Tracking and Data Relay Satellite, and a ground control terminal are discussed. The core of the S-band multiple access concept is the use of an Adaptive Ground Implemented Phased Array. The array contains thirty channels and provides the multiplexing and demultiplexing equipment required to demonstrate the ground implemented beam forming feature. The system provided will make it possible to demonstrate the performance of a desired user and ten interfering sources attempting to pass data through the multiple access system.

  13. A Customized Vision System for Tracking Humans Wearing Reflective Safety Clothing from Industrial Vehicles and Machinery

    PubMed Central

    Mosberger, Rafael; Andreasson, Henrik; Lilienthal, Achim J.

    2014-01-01

    This article presents a novel approach for vision-based detection and tracking of humans wearing high-visibility clothing with retro-reflective markers. Addressing industrial applications where heavy vehicles operate in the vicinity of humans, we deploy a customized stereo camera setup with active illumination that allows for efficient detection of the reflective patterns created by the worker's safety garments. After segmenting reflective objects from the image background, the interest regions are described with local image feature descriptors and classified in order to discriminate safety garments from other reflective objects in the scene. In a final step, the trajectories of the detected humans are estimated in 3D space relative to the camera. We evaluate our tracking system in two industrial real-world work environments on several challenging video sequences. The experimental results indicate accurate tracking performance and good robustness towards partial occlusions, body pose variation, and a wide range of different illumination conditions. PMID:25264956

  14. Multimode damage tracking and failure prognosis in electromechanical systems

    NASA Astrophysics Data System (ADS)

    Chelidze, David

    2002-07-01

    In this paper a modification to a general-purpose machinery diagnostic/prognostic algorithm that can handle two or more simultaneously occurring failure processes is described. The method is based on a theory that views damage as occurring in a hierarchical dynamical system where slowly evolving, hidden failure processes are causing nonstationarity in a fast, directly observable system. The damage variable tracking is based on statistics calculated using data-based local linear models constructed in the reconstructed phase space of the fast system. These statistics are designed to measure a local change in the fast systems flow caused by the slow-time failure processes. The method is applied to a mathematical model of an experimental electromechanical system consisting of a beam vibrating in a potential field crated by two electromagnets. Two failure modes are introduced through discharging batteries supplying power to these electromagnets. Open circuit terminal voltage of these batteries is a two-dimensional damage variable. Using computer simulations, it is demonstrated both analytically and experimentally that the proposed method can accurately track both damage variables using only a displacement measurements from the vibrating beam. The accurate estimates of remaining time to failure for each battery are given well ahead of actual breakdowns.

  15. Mobile gaze tracking system for outdoor walking behavioral studies.

    PubMed

    Tomasi, Matteo; Pundlik, Shrinivas; Bowers, Alex R; Peli, Eli; Luo, Gang

    2016-01-01

    Most gaze tracking techniques estimate gaze points on screens, on scene images, or in confined spaces. Tracking of gaze in open-world coordinates, especially in walking situations, has rarely been addressed. We use a head-mounted eye tracker combined with two inertial measurement units (IMU) to track gaze orientation relative to the heading direction in outdoor walking. Head movements relative to the body are measured by the difference in output between the IMUs on the head and body trunk. The use of the IMU pair reduces the impact of environmental interference on each sensor. The system was tested in busy urban areas and allowed drift compensation for long (up to 18 min) gaze recording. Comparison with ground truth revealed an average error of 3.3° while walking straight segments. The range of gaze scanning in walking is frequently larger than the estimation error by about one order of magnitude. Our proposed method was also tested with real cases of natural walking and it was found to be suitable for the evaluation of gaze behaviors in outdoor environments.

  16. Mobile gaze tracking system for outdoor walking behavioral studies.

    PubMed

    Tomasi, Matteo; Pundlik, Shrinivas; Bowers, Alex R; Peli, Eli; Luo, Gang

    2016-01-01

    Most gaze tracking techniques estimate gaze points on screens, on scene images, or in confined spaces. Tracking of gaze in open-world coordinates, especially in walking situations, has rarely been addressed. We use a head-mounted eye tracker combined with two inertial measurement units (IMU) to track gaze orientation relative to the heading direction in outdoor walking. Head movements relative to the body are measured by the difference in output between the IMUs on the head and body trunk. The use of the IMU pair reduces the impact of environmental interference on each sensor. The system was tested in busy urban areas and allowed drift compensation for long (up to 18 min) gaze recording. Comparison with ground truth revealed an average error of 3.3° while walking straight segments. The range of gaze scanning in walking is frequently larger than the estimation error by about one order of magnitude. Our proposed method was also tested with real cases of natural walking and it was found to be suitable for the evaluation of gaze behaviors in outdoor environments. PMID:26894511

  17. Mobile gaze tracking system for outdoor walking behavioral studies

    PubMed Central

    Tomasi, Matteo; Pundlik, Shrinivas; Bowers, Alex R.; Peli, Eli; Luo, Gang

    2016-01-01

    Most gaze tracking techniques estimate gaze points on screens, on scene images, or in confined spaces. Tracking of gaze in open-world coordinates, especially in walking situations, has rarely been addressed. We use a head-mounted eye tracker combined with two inertial measurement units (IMU) to track gaze orientation relative to the heading direction in outdoor walking. Head movements relative to the body are measured by the difference in output between the IMUs on the head and body trunk. The use of the IMU pair reduces the impact of environmental interference on each sensor. The system was tested in busy urban areas and allowed drift compensation for long (up to 18 min) gaze recording. Comparison with ground truth revealed an average error of 3.3° while walking straight segments. The range of gaze scanning in walking is frequently larger than the estimation error by about one order of magnitude. Our proposed method was also tested with real cases of natural walking and it was found to be suitable for the evaluation of gaze behaviors in outdoor environments. PMID:26894511

  18. Understanding Enzyme Activity Using Single Molecule Tracking (Poster)

    SciTech Connect

    Liu, Y.-S.; Zeng, Y.; Luo, Y.; Xu, Q.; Himmel, M.; Smith S.; Wei, H.; Ding, S.-Y.

    2009-06-01

    This poster describes single-molecule tracking and total internal reflection fluorescence microscopy. It discusses whether the carbohydrate-binding module (CBM) moves on cellulose, how the CBM binds to cellulose, and the mechanism of cellulosome assembly.

  19. Tracker: Image-Processing and Object-Tracking System Developed

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Wright, Theodore W.

    1999-01-01

    extracting numerical instrumentation data that are embedded in images. All the results are saved in files for further data reduction and graphing. There are currently three Tracking Systems (workstations) operating near the laboratories and offices of Lewis Microgravity Science Division researchers. These systems are used independently by students, scientists, and university-based principal investigators. The researchers bring their tapes or films to the workstation and perform the tracking analysis. The resultant data files generated by the tracking process can then be analyzed on the spot, although most of the time researchers prefer to transfer them via the network to their offices for further analysis or plotting. In addition, many researchers have installed Tracker on computers in their office for desktop analysis of digital image sequences, which can be digitized by the Tracking System or some other means. Tracker has not only provided a capability to efficiently and automatically analyze large volumes of data, saving many hours of tedious work, but has also provided new capabilities to extract valuable information and phenomena that was heretofore undetected and unexploited.

  20. Model tracking system for low-level radioactive waste disposal facilities: License application interrogatories and responses

    SciTech Connect

    Benbennick, M.E.; Broton, M.S.; Fuoto, J.S.; Novgrod, R.L.

    1994-08-01

    This report describes a model tracking system for a low-level radioactive waste (LLW) disposal facility license application. In particular, the model tracks interrogatories (questions, requests for information, comments) and responses. A set of requirements and desired features for the model tracking system was developed, including required structure and computer screens. Nine tracking systems were then reviewed against the model system requirements and only two were found to meet all requirements. Using Kepner-Tregoe decision analysis, a model tracking system was selected.

  1. CERBEROS: A tracking system for secondary pion beams at the HADES spectrometer

    NASA Astrophysics Data System (ADS)

    Wirth, J.; Fabbietti, L.; Lalik, R.; Maier, L.; Scordo, A.

    2016-07-01

    In 2014 the HADES collaboration performed two successful physics production runs with secondary pion beams. Since secondary pion beams are strongly defocussed in position and momentum, two fast tracking stations were installed along the pion beam chicane following the pion production target providing the momentum measurement of each individual pion. The momentum is reconstructed using the position information of every hit detected by the tracking stations and the beam optics transport calculation with a resolution below 0.5% playing an important role in terms of the exclusive analysis of investigated reactions. Both tracking stations consist of a double-sided silicon strip sensor with a large active area (10 × 10cm2). To guarantee fast tracking, the sensors are read out with the n-XYTER ASIC chip. Due to its self-triggering architecture and local storage capability, the chip enables on-line tracking at high rates (dN / dt >106 part / s). The TRB3 read out board on which the trigger logic is implemented integrates the system into the HADES DAQ. In this report we are showing the results obtained during the calibration experiment with a monochromatic proton beam set at seven different momenta centred around 2.68 GeV/c. Also the excellent performance achieved during the production campaign with a pion beam are presented.

  2. Using Student Tracking Systems Effectively. New Directions for Community Colleges, Number 66.

    ERIC Educational Resources Information Center

    Bers, Trudy H., Ed.

    1989-01-01

    This collection of essays discusses some of the general concerns and issues related to tracking the flow of community college students through higher education. The chapters in the volume include: (1) "Tracking Systems and Student Flow," by Trudy H. Bers; (2) "Beyond the College: State Policy Impact on Student Tracking Systems," by Ann Kieffer…

  3. SCATS: SRB Cost Accounting and Tracking System handbook

    NASA Technical Reports Server (NTRS)

    Zorv, R. B.; Stewart, R. D.; Coley, G.; Higginbotham, M.

    1978-01-01

    The Solid Rocket Booster Cost Accounting and Tracking System (SCATS) which is an automatic data processing system designed to keep a running account of the number, description, and estimated cost of Level 2, 3, and 4 changes is described. Although designed specifically for the Space Shuttle Solid Rocket Booster Program, the ADP system can be used for any other program that has a similar structure for recording, reporting, and summing numbers and costs of changes. The program stores the alpha-numeric designators for changes, government estimated costs, proposed costs, and negotiated value in a MIRADS (Marshall Information Retrieval and Display System) format which permits rapid access, manipulation, and reporting of current change status. Output reports listing all changes, totals of each level, and totals of all levels, can be derived for any calendar interval period.

  4. Software systems testing of a closed loop tracking system using a SIMULINK-based simulation

    NASA Astrophysics Data System (ADS)

    Robinson, Brendan; Sasaki, Doreen M.

    2000-07-01

    This paper discuses a simulation approach that has streamlined the real-time software development process for a closed loop image-based tracking system. The MATLAB/SIMULINK simulation consists of elements constructed from common source modules shared with the deliverable system. The simulation has provided a tool to support algorithm development for the fundamental system components, including a system controller, a servo controller, and an image processor. In addition, the simulation has provided a testbed for verification of system performance. The context for this application is the low rate initial production phase of a tactical airborne avionics system that includes an image-based tracking system.

  5. ARIADNE: a Tracking System for Relationships in LHCb Metadata

    NASA Astrophysics Data System (ADS)

    Shapoval, I.; Clemencic, M.; Cattaneo, M.

    2014-06-01

    The data processing model of the LHCb experiment implies handling of an evolving set of heterogeneous metadata entities and relationships between them. The entities range from software and databases states to architecture specificators and software/data deployment locations. For instance, there is an important relationship between the LHCb Conditions Database (CondDB), which provides versioned, time dependent geometry and conditions data, and the LHCb software, which is the data processing applications (used for simulation, high level triggering, reconstruction and analysis of physics data). The evolution of CondDB and of the LHCb applications is a weakly-homomorphic process. It means that relationships between a CondDB state and LHCb application state may not be preserved across different database and application generations. These issues may lead to various kinds of problems in the LHCb production, varying from unexpected application crashes to incorrect data processing results. In this paper we present Ariadne - a generic metadata relationships tracking system based on the novel NoSQL Neo4j graph database. Its aim is to track and analyze many thousands of evolving relationships for cases such as the one described above, and several others, which would otherwise remain unmanaged and potentially harmful. The highlights of the paper include the system's implementation and management details, infrastructure needed for running it, security issues, first experience of usage in the LHCb production and potential of the system to be applied to a wider set of LHCb tasks.

  6. Laser illuminated etched track scattering (LITES) dosimetry system.

    PubMed

    Moore, M E; Gepford, H J; Hermes, R E; Hertel, N E; Devine, R T

    2002-01-01

    Los Alamos National Labs (LANL) has developed an etched track foil (CR-39) reader for neutron dose between 0 and 50.0 mSv. Currently, the US Department of Energy mandates general employee annual exposure not to exceed 50.0 mSv (5 rem). At LANL, due to a non-linear response at higher exposures. accepted practice only uses an Autoscan 60 system up to 3 mSv. The LITES system, however, has demonstrated linear response to 50 mSv, where the proprietary design measures the amount of laser light scattered by the etched tracks, proportional to dose. A collection of calibrated foils was counted by an Autoscan 60 and the LITES prototype, and the Autoscan 60 showed good linearity when counting exposure up to about 15 mSv, but not for higher exposures. From 0 to 50 mSv, the Autoscan 60 had a correlation coefficient of R2 = 0.941 and the LITES system had R2 = 0.991. PMID:12382702

  7. Integrating Multiple Space Ground Sensors to Track Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Davies, Ashley; Doubleday, Joshua; Tran, Daniel; Jones, Samuel; Kjartansson, Einar; Thorsteinsson, Hrobjartur; Vogfjord, Kristin; Guomundsson, Magnus; Thordarson, Thor; Mandl, Daniel

    2011-01-01

    Volcanic activity can occur with little or no warning. Increasing numbers of space borne assets can enable coordinated measurements of volcanic events to enhance both scientific study and hazard response. We describe the use of space and ground measurements to target further measurements as part of a worldwide volcano monitoring system. We utilize a number of alert systems including the MODVOLC, GOESVOLC, US Air Force Weather Advisory, and Volcanic Ash Advisory Center (VAAC) alert systems. Additionally we use in-situ data from ground instrumentation at a number of volcanic sites, including Iceland.

  8. Tracking Data Acquisition System (TDAS) for the 1990's. Volume 6: TDAS navigation system architecture

    NASA Technical Reports Server (NTRS)

    Elrod, B. D.; Jacobsen, A.; Cook, R. A.; Singh, R. N. P.

    1983-01-01

    One-way range and Doppler methods for providing user orbit and time determination are examined. Forward link beacon tracking, with on-board processing of independent navigation signals broadcast continuously by TDAS spacecraft; forward link scheduled tracking; with on-board processing of navigation data received during scheduled TDAS forward link service intervals; and return link scheduled tracking; with ground-based processing of user generated navigation data during scheduled TDAS return link service intervals are discussed. A system level definition and requirements assessment for each alternative, an evaluation of potential navigation performance and comparison with TDAS mission model requirements is included. TDAS satellite tracking is also addressed for two alternatives: BRTS and VLBI tracking.

  9. Mobile system for locating and tracking vehicles in distress

    NASA Astrophysics Data System (ADS)

    Landi, Giuliano; Stoica, Axente D.

    2000-02-01

    This report relates to a mobile system for tracking and protection of vehicles owned by some banking organizations, security institutions or by some social service for fire, medical rescue or taxicabs, by an operator placed also aboard of a vehicle in which he has at his disposal all the necessary means for precise determination of the position and the state of each vehicle from the fleet that is under his surveying. Therefore in contrast to the operating mode of the localization systems known in present and which have in its composition a stable center for permanent surveying, the operator of the system presented in this report can intervene personally and in an efficient mode in the aid of the vehicle in distress.

  10. Mobile Aerial Tracking and Imaging System (MATRIS) for Aeronautical Research

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Blanchard, R. C.; Miller, G. M.

    2004-01-01

    A mobile, rapidly deployable ground-based system to track and image targets of aeronautical interest has been developed. Targets include reentering reusable launch vehicles (RLVs) as well as atmospheric and transatmospheric vehicles. The optics were designed to image targets in the visible and infrared wavelengths. To minimize acquisition cost and development time, the system uses commercially available hardware and software where possible. The conception and initial funding of this system originated with a study of ground-based imaging of global aerothermal characteristics of RLV configurations. During that study NASA teamed with the Missile Defense Agency/Innovative Science and Technology Experimentation Facility (MDA/ISTEF) to test techniques and analysis on two Space Shuttle flights.

  11. Unequal error correction strategy for magnetic recording systems with multi-track processing

    NASA Astrophysics Data System (ADS)

    Myint, L. M. M.; Supnithi, P.

    2012-04-01

    In multi-track detection, the simultaneous recovery of user data of all tracks is obtained from multi-head or single-head reader with buffer. Due to incomplete inter-track interference (ITI) information of the outer tracks, unequal error rates exist among tracks. For a system with three-track processing, the center track exhibits a better performance than the others. In this work, we propose the unequal error protection (UEP) schemes to improve the overall system performance of a 2-D interference bit-patterned recording system with multi-track detection. The performances of the proposed schemes are investigated for the BPM channels with and without the media noise. Based on the simulation results, the proposed schemes offer the gain of about 0.2-0.3 dB over the equal error protection (EEP) scheme at a bit error rate of 10-4.

  12. Space tracking and data systems; Proceedings of the Symposium, Arlington, VA, June 16-18, 1981

    NASA Astrophysics Data System (ADS)

    Grey, J.; Hamdan, L. A.

    The AIAA/NASA Symposium on Space Tracking and Data Systems, held in Pentagon City, Virginia, on June 16-18, 1981, had the purpose of reviewing international activities in space tracking and data systems for civil use in the 1980-2000 time frame. Participants included 225 representatives from industrial and government organizations in eight nations. The nations represented include the United States, France, Germany, India, Japan, Norway, Spain, and Sweden. The major functions of the systems described at the Symposium are related to the initial downlink of telemetry and spacecraft status data, attendant tracking activities, and uplink of spacecraft commands; communication between the associated acquisition sites and central processing and control stations; formulation and implementation of commands that control the spacecraft and its payload; and processing of spacecraft data needed to make command decisions. Attention is given to an overview of current activities and plans, and supporting developments, taking into account the time from 1980 to 1990. New developments are also considered.

  13. Performance of a Motion Tracking System During Cyberknife Robotic Radiosurgery

    SciTech Connect

    Cavedon, Carlo; Francescon, Paolo; Cora, Stefania; Moschini, Giuliano; Rossi, Paolo

    2009-03-10

    Cyberknife (Accuracy Inc., Ca) is a robotic radio-surgery system that includes a compact 6 MV linac delivering up to 800 cGy per minute, and an automate arm to aim at any part of the body from any angle. An essential tool is the guidance system based on x-ray imaging cameras located on supports around the patient. A Cyberknife system has been operational at the Vicenza (Italy) Hospital for years and is mainly employed for treating benign and malignant tumors, and Arterior-Venous Malformations. In radiation therapy, delivery of high doses to targets that move with respiration is challenging because of possible spatial inaccuracies. The purpose of this work was to estimate the accuracy of the prediction algorithm used to compensate for system latency in a real-time respiratory tracking system. We have analyzed respiratory signals of 30 patients who had lung or liver Cyberknife treatments. The 'Synchrony'(Accuracy Inc.) motion tracking system we use is based on the correlation between the position of LED markers, detected in real time, and the position of internal markers, sampled through x-ray imaging. The position of the external LED signals, though read in real time, must be predicted to compensate for a few hundred ms time lag in the feedback loop that redirects the beam to the current target position. The respiratory signals were described by employing their frequency power spectrum, as recently proposed by other authors. Prediction errors above 1.5 mm, lasting for periods longer than 5 seconds were observed for irregular breathers. These episodes correlate to the presence of a bimodal distribution in the power spectral density, and of very low frequencies contribution. A more refined approach would include a personalized choice of the prediction algorithm based on the very first minutes of treatment. Patient training aimed at reducing breathing irregularities might also result in improved spatial accuracy.

  14. TrAVis to Enhance Online Tutoring and Learning Activities: Real-Time Visualization of Students Tracking Data

    ERIC Educational Resources Information Center

    May, Madeth; George, Sebastien; Prevot, Patrick

    2011-01-01

    Purpose: This paper presents a part of our research work that places an emphasis on Tracking Data Analysis and Visualization (TrAVis) tools, a web-based system, designed to enhance online tutoring and learning activities, supported by computer-mediated communication (CMC) tools. TrAVis is particularly dedicated to assist both tutors and students…

  15. Satellite-Tracking Millimeter-Wave Reflector Antenna System For Mobile Satellite-Tracking

    NASA Technical Reports Server (NTRS)

    Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)

    2001-01-01

    A miniature dual-band two-way mobile satellite-tracking antenna system mounted on a movable vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  16. A satellite-tracking millimeter-wave reflector antenna system for mobile satellite-tracking

    NASA Technical Reports Server (NTRS)

    Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)

    1995-01-01

    A miniature dual-band two-way mobile satellite tracking antenna system mounted on a movable ground vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  17. Tracking and data system support for the Viking 1975 mission to Mars. Volume 2: Launch through landing of Viking 1

    NASA Technical Reports Server (NTRS)

    Mudgway, D. J.; Traxler, M. R.

    1977-01-01

    Problems inherent in the deployment and management of a worldwide tracking and data acquisition network to support the two Viking Orbiters and two Viking Landers simultaneously over 320 million kilometers (200 million miles) of deep space are discussed. Activities described include tracking coverage of the launch phase, the deep space operations during the long cruise phase that occupied approximately 11 months, and the implementation of the a vast worldwide network of tracking sttions and global communications systems. The performance of the personnel, hardware, and software involved in this vast undertaking are evaluated.

  18. Tracking of EEG activity using motion estimation to understand brain wiring.

    PubMed

    Nisar, Humaira; Malik, Aamir Saeed; Ullah, Rafi; Shim, Seong-O; Bawakid, Abdullah; Khan, Muhammad Burhan; Subhani, Ahmad Rauf

    2015-01-01

    The fundamental step in brain research deals with recording electroencephalogram (EEG) signals and then investigating the recorded signals quantitatively. Topographic EEG (visual spatial representation of EEG signal) is commonly referred to as brain topomaps or brain EEG maps. In this chapter, full search full search block motion estimation algorithm has been employed to track the brain activity in brain topomaps to understand the mechanism of brain wiring. The behavior of EEG topomaps is examined throughout a particular brain activation with respect to time. Motion vectors are used to track the brain activation over the scalp during the activation period. Using motion estimation it is possible to track the path from the starting point of activation to the final point of activation. Thus it is possible to track the path of a signal across various lobes.

  19. Flux Tensor Constrained Geodesic Active Contours with Sensor Fusion for Persistent Object Tracking

    PubMed Central

    Bunyak, Filiz; Palaniappan, Kannappan; Nath, Sumit Kumar; Seetharaman, Gunasekaran

    2007-01-01

    This paper makes new contributions in motion detection, object segmentation and trajectory estimation to create a successful object tracking system. A new efficient motion detection algorithm referred to as the flux tensor is used to detect moving objects in infrared video without requiring background modeling or contour extraction. The flux tensor-based motion detector when applied to infrared video is more accurate than thresholding ”hot-spots”, and is insensitive to shadows as well as illumination changes in the visible channel. In real world monitoring tasks fusing scene information from multiple sensors and sources is a useful core mechanism to deal with complex scenes, lighting conditions and environmental variables. The object segmentation algorithm uses level set-based geodesic active contour evolution that incorporates the fusion of visible color and infrared edge informations in a novel manner. Touching or overlapping objects are further refined during the segmentation process using an appropriate shape-based model. Multiple object tracking using correspondence graphs is extended to handle groups of objects and occlusion events by Kalman filter-based cluster trajectory analysis and watershed segmentation. The proposed object tracking algorithm was successfully tested on several difficult outdoor multispectral videos from stationary sensors and is not confounded by shadows or illumination variations. PMID:19096530

  20. A deformable lung tumor tracking method in fluoroscopic video using active shape models: a feasibility study.

    PubMed

    Xu, Qianyi; Hamilton, Russell J; Schowengerdt, Robert A; Jiang, Steve B

    2007-09-01

    A dynamic multi-leaf collimator (DMLC) can be used to track a moving target during radiotherapy. One of the major benefits for DMLC tumor tracking is that, in addition to the compensation for tumor translational motion, DMLC can also change the aperture shape to conform to a deforming tumor projection in the beam's eye view. This paper presents a method that can track a deforming lung tumor in fluoroscopic video using active shape models (ASM) (Cootes et al 1995 Comput. Vis. Image Underst. 61 38-59). The method was evaluated by comparing tracking results against tumor projection contours manually edited by an expert observer. The evaluation shows the feasibility of using this method for precise tracking of lung tumors with deformation, which is important for DMLC-based real-time tumor tracking.

  1. Office of Tracking and Data Acquisition. [deep space network and spacecraft tracking

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Office of Tracking and Data Acquisition (OTDA) and its two worldwide tracking network facilities, the Spaceflight Tracking and Data Network and the Deep Space Network, are described. Other topics discussed include the NASA communications network, the tracking and data relay satellite system, other OTDA tracking activities, and OTDA milestones.

  2. ESTL tracking and data relay satellite /TDRSS/ simulation system

    NASA Technical Reports Server (NTRS)

    Kapell, M. H.

    1980-01-01

    The Tracking Data Relay Satellite System (TDRSS) provides single access forward and return communication links with the Shuttle/Orbiter via S-band and Ku-band frequency bands. The ESTL (Electronic Systems Test Laboratory) at Lyndon B. Johnson Space Center (JSC) utilizes a TDRS satellite simulator and critical TDRS ground hardware for test operations. To accomplish Orbiter/TDRSS relay communications performance testing in the ESTL, a satellite simulator was developed which met the specification requirements of the TDRSS channels utilized by the Orbiter. Actual TDRSS ground hardware unique to the Orbiter communication interfaces was procured from individual vendors, integrated in the ESTL, and interfaced via a data bus for control and status monitoring. This paper discusses the satellite simulation hardware in terms of early development and subsequent modifications. The TDRS ground hardware configuration and the complex computer interface requirements are reviewed. Also, special test hardware such as a radio frequency interference test generator is discussed.

  3. Oceanic Situational Awareness Over the Western Atlantic Track Routing System

    NASA Technical Reports Server (NTRS)

    Welch, Bryan; Greenfeld, Israel

    2005-01-01

    Air traffic control (ATC) mandated, aircraft separations over the oceans impose a limitation on traffic capacity for a given corridor, given the projected traffic growth over the Western Atlantic Track Routing System (WATRS). The separations result from a lack of acceptable situational awareness over oceans where radar position updates are not available. This study considers the use of Automatic Dependent Surveillance (ADS) data transmitted over a commercial satellite communications system as an approach to provide ATC with the needed situational awareness and thusly allow for reduced aircraft separations. This study uses Federal Aviation Administration data from a single day for the WATRS corridor to analyze traffic loading to be used as a benchmark against which to compare several approaches for coordinating data transmissions from the aircraft to the satellites.

  4. Development of a Water Recovery System Resource Tracking Model

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Stambaugh, Imelda; Sarguishm, Miriam; Shull, Sarah; Moore, Michael

    2014-01-01

    A simulation model has been developed to track water resources in an exploration vehicle using regenerative life support (RLS) systems. The model integrates the functions of all the vehicle components that affect the processing and recovery of water during simulated missions. The approach used in developing the model results in the RTM being a part of of a complete vehicle simulation that can be used in real time mission studies. Performance data for the variety of components in the RTM is focused on water processing and has been defined based on the most recent information available for the technology of the component. This paper will describe the process of defining the RLS system to be modeled and then the way the modeling environment was selected and how the model has been implemented. Results showing how the variety of RLS components exchange water are provided in a set of test cases.

  5. Tracking Vehicle in GSM Network to Support Intelligent Transportation Systems

    NASA Astrophysics Data System (ADS)

    Koppanyi, Z.; Lovas, T.; Barsi, A.; Demeter, H.; Beeharee, A.; Berenyi, A.

    2012-07-01

    The penetration of GSM capable devices is very high, especially in Europe. To exploit the potential of turning these mobile devices into dynamic data acquisition nodes that provides valuable data for Intelligent Transportation Systems (ITS), position information is needed. The paper describes the basic operation principles of the GSM system and provides an overview on the existing methods for deriving location data in the network. A novel positioning solution is presented that rely on handover (HO) zone measurements; the zone geometry properties are also discussed. A new concept of HO zone sequence recognition is introduced that involves application of Probabilistic Deterministic Finite State Automata (PDFA). Both the potential commercial applications and the use of the derived position data in ITS is discussed for tracking vehicles and monitoring traffic flow. As a practical cutting edge example, the integration possibility of the technology in the SafeTRIP platform (developed in an EC FP7 project) is presented.

  6. Functional design specification for Stowage List And Hardware Tracking System (SLAHTS). [space shuttles

    NASA Technical Reports Server (NTRS)

    Keltner, D. J.

    1975-01-01

    This functional design specification defines the total systems approach to meeting the requirements stated in the Detailed Requirements Document for Stowage List and Hardware Tracking System for the space shuttle program. The stowage list and hardware tracking system is identified at the system and subsystem level with each subsystem defined as a function of the total system.

  7. Long-Range Gaze Tracking System for Large Movements.

    PubMed

    Cho, Dong-Chan; Kim, Whoi-Yul

    2013-12-01

    In the vision-based remote gaze tracking systems, the most challenging topics are to allow natural movement of a user and to increase the working volume and distance of the system. Several eye gaze estimation methods considering the natural movement of a user have been proposed. However, their working volume and distance are narrow and close. In this paper, we propose a novel 2-D mapping-based gaze estimation method that allows large-movement of user. Conventional 2-D mapping-based methods utilize mapping function between calibration points on the screen and pupil center corneal reflection (PCCR) vectors obtained in user calibration step. However, PCCR vectors and their associated mapping function are only valid at or near to the position where the user calibration is performed. The proposed movement mapping function, complementing the user's movement, estimates scale factors between two PCCR vector sets: one obtained at the user calibration position and another obtained at the new user position. The proposed system targets a longer range gaze tracking which operates from 1.4 to 3 m. A narrow-view camera mounted on a pan and tilt unit is used by the proposed system to capture high-resolution eye image, providing a wide and long working volume of about 100 cm × 40 cm × 100 cm. The experimental results show that the proposed method successfully compensated the poor performance due to user's large movement. Average angular error was 0.8° and only 0.07° of angular error was increased while the user moved around 81 cm. PMID:23751947

  8. Ultra-Wideband Time-Difference-of-Arrival High Resolution 3D Proximity Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dekome, Kent; Dusl, John

    2010-01-01

    This paper describes a research and development effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar./Mars rovers and astronauts during early exploration missions when satellite navigation systems are not available. U IATB impulse radio (UWB-IR) technology is exploited in the design and implementation of the prototype location and tracking system. A three-dimensional (3D) proximity tracking prototype design using commercially available UWB products is proposed to implement the Time-Difference- Of-Arrival (TDOA) tracking methodology in this research effort. The TDOA tracking algorithm is utilized for location estimation in the prototype system, not only to exploit the precise time resolution possible with UWB signals, but also to eliminate the need for synchronization between the transmitter and the receiver. Simulations show that the TDOA algorithm can achieve the fine tracking resolution with low noise TDOA estimates for close-in tracking. Field tests demonstrated that this prototype UWB TDOA High Resolution 3D Proximity Tracking System is feasible for providing positioning-awareness information in a 3D space to a robotic control system. This 3D tracking system is developed for a robotic control system in a facility called "Moonyard" at Honeywell Defense & System in Arizona under a Space Act Agreement.

  9. A new system for three-dimensional tracking of motile microorganisms.

    PubMed

    Thar, R; Blackburn, N; Kühl, M

    2000-05-01

    A new three-dimensional (3D)-tracking system with optimized dark-field illumination is presented. It allows simultaneous 3D tracking of several free-swimming microorganisms with diameters of >10 microm. Resolution limits and illumination efficiencies for different size classes of microorganisms are treated analytically. First applications for 3D tracking of protists are demonstrated.

  10. Development of the Inventory Management and Tracking System (IMATS) to Track the Availability of Public Health Department Medical Countermeasures During Public Health Emergencies

    PubMed Central

    Sahar, Liora; Faler, Guy; Hristov, Emil; Hughes, Susan; Lee, Leslie; Westnedge, Caroline; Erickson, Benjamin; Nichols, Barbara

    2015-01-01

    Objective To bridge gaps identified during the 2009 H1N1 influenza pandemic by developing a system that provides public health departments improved capability to manage and track medical countermeasures at the state and local levels and to report their inventory levels to the Centers for Disease Control and Prevention (CDC). Materials and Methods The CDC Countermeasure Tracking Systems (CTS) program designed and implemented the Inventory Management and Tracking System (IMATS) to manage, track, and report medical countermeasure inventories at the state and local levels. IMATS was designed by CDC in collaboration with state and local public health departments to ensure a “user-centered design approach.” A survey was completed to assess functionality and user satisfaction. Results IMATS was deployed in September 2011 and is provided at no cost to public health departments. Many state and local public health departments nationwide have adopted IMATS and use it to track countermeasure inventories during public health emergencies and daily operations. Discussion A successful response to public health emergencies requires efficient, accurate reporting of countermeasure inventory levels. IMATS is designed to support both emergency operations and everyday activities. Future improvements to the system include integrating barcoding technology and streamlining user access. To maintain system readiness, we continue to collect user feedback, improve technology, and enhance its functionality. Conclusion IMATS satisfies the need for a system for monitoring and reporting health departments’ countermeasure quantities so that decision makers are better informed. The “user-centered design approach” was successful, as evident by the many public health departments that adopted IMATS. PMID:26392843

  11. A GPS measurement system for precise satellite tracking and geodesy

    NASA Technical Reports Server (NTRS)

    Yunck, T. P.; Wu, S.-C.; Lichten, S. M.

    1985-01-01

    NASA is pursuing two key applications of differential positioning with the Global Positioning System (GPS): sub-decimeter tracking of earth satellites and few-centimeter determination of ground-fixed baselines. Key requirements of the two applications include the use of dual-frequency carrier phase data, multiple ground receivers to serve as reference points, simultaneous solution for use position and GPS orbits, and calibration of atmospheric delays using water vapor radiometers. Sub-decimeter tracking will be first demonstrated on the TOPEX oceanographic satellite to be launched in 1991. A GPS flight receiver together with at least six ground receivers will acquire delta range data from the GPS carriers for non-real-time analysis. Altitude accuracies of 5 to 10 cm are expected. For baseline measurements, efforts will be made to obtain precise differential pseudorange by resolving the cycle ambiguity in differential carrier phase. This could lead to accuracies of 2 or 3 cm over a few thousand kilometers. To achieve this, a high-performance receiver is being developed, along with improved calibration and data processing techniques. Demonstrations may begin in 1986.

  12. An Optical Pen Tracking System as Alternative Pointing Device

    NASA Astrophysics Data System (ADS)

    Seeliger, Ingmar; Schwanecke, Ulrich; Barth, Peter

    A webcam together with a pen can replace a mouse as pointing device for many common user interaction tasks. We have implemented an image-processing component integrated in a tool that acts as mouse alternative. The image-processing component tracks the head of a pen based on shape and colour information retrieved in a quick, integrated initial pen-calibration phase using Hough transform triggered by a motion detection cycle. The tracked 2D position of the pen-head seen by the webcam is used to smoothly position the mouse cursor. Combined with auto-clicking we can replace mouse-based user interaction. The system tolerates changing lighting conditions, does not need time-consuming camera calibration and works with off-the-shelf webcams. First user experiences show that this technology can partially replace mouse interaction for Repetitive Strain Injury (RSI) patients as well as completely replace mouse interaction within dedicated environments such as presentation booths or simple games.

  13. Multitarget tracking system based on an infrared fish-eye lens.

    PubMed

    Li, Gang; Li, Li; Shen, Hongbin; He, Yongqiang; Huang, Jingxia; Mao, Shaojuan; Wang, Yuanbo

    2013-11-20

    A multitarget tracking system based on an infrared (IR) fish-eye lens is built to satisfy urgent requirements of large-field IR, multitarget, real-time reconnaissance and tracking. Utilizing an IR fish-eye lens and a 512×512 pixel PtSi detector, the system can detect threatening targets at the whole space domain and the whole time domain. The hardware of the system based on a dual-digital signal processor is designed to implement data processing for multitarget tracking algorithms, which include a track initiation algorithm and a modified generalized probability data association algorithm. We also carried out a tracking experiment for two aerial maneuvering targets. Comparing the theoretical and experimental tracks, the availability of the system and the real-time capability of multitarget tracking are validated.

  14. A Remote Characterization System and a fault-tolerant tracking system for subsurface mapping of buried waste sites

    SciTech Connect

    Sandness, G.A.; Bennett, D.W. ); Martinson, L. ); Bingham, D.N.; Anderson, A.A. )

    1992-08-01

    This paper describes two closely related projects that will provide new technology for characterizing hazardous waste burial sites. The first project, a collaborative effort by five of the national laboratories, involves the development and demonstration of a remotely controlled site characterization system. The Remote Characterization System (RCS) includes a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for noninvasive inspection of the surface and subsurface. The second project, conducted by the Idaho National Engineering Laboratory (INEL), involves the development of a position sensing system that can track a survey vehicle or instrument in the field. This system can coordinate updates at a rate of 200/s with an accuracy better than 0.1% of the distance separating the target and the sensor. It can employ acoustic or electromagnetic signals in a wide range of frequencies and can be operated as a passive or active device.

  15. The Silicon Tracking System of the CBM Experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Heuser, Johann M.

    The Compressed Baryonic Matter (CBM) experiment at FAIR will conduct a systematic research program to explore the phase diagram of strongly interacting matter at highest net baryon densities and moderate temperatures. These conditions are to be created in collisions of heavy-ion beams with nuclear targets in the projectile beam energy range of 2 to 45 GeV/nucleon, initially coming from the SIS 100 synchrotron (up to 14 GeV/nucleon) and in a next step from SIS 300 enabling studies at the highest net baryon densities. Collision rates up to 107 per second are required to produce very rare probes with unprecedented statistics in this energy range. Their signatures are complex. These conditions call for detector systems designed to meet the extreme requirements in terms of rate capability, momentum and spatial resolution, and a novel data acquisition and trigger concept which is not limited by latency but by throughput. In the paper we describe the concept and development status of CBM's central detector, the Silicon Tracking System (STS). The detector realizes a large, highly granular and redundant detector system with fast read-out, and lays specific emphasis on low material budget in its physics aperture to achieve for charged particle tracks a momentum resolution of δp/p ≈ 1% at p > 1 GeV/c, at >95% track reconstruction efficiency. The detector employs 1220 highly segmented double-sided silicon micro-strip sensors of 300 µm thickness, mounted into 896 modular structures of various types that are aggregated on 106 low-mass carbon fiber ladders of different sizes that build up the tracking stations. The read-out electronics with its supply and cooling infrastructure is arranged at the periphery of the ladders, and provides a total channel count of 1.8 million. The signal transmission from the silicon sensors to the electronics is realized through ultra-thin multi-line aluminum-polyimide cables of up to half a meter length. The electronics generates a free

  16. Tracking Vaccination Teams During Polio Campaigns in Northern Nigeria by Use of Geographic Information System Technology: 2013–2015

    PubMed Central

    Touray, Kebba; Mkanda, Pascal; Tegegn, Sisay G.; Nsubuga, Peter; Erbeto, Tesfaye B.; Banda, Richard; Etsano, Andrew; Shuaib, Faisal; Vaz, Rui G.

    2016-01-01

    Introduction. Nigeria is among the 3 countries in which polio remains endemic. The country made significant efforts to reduce polio transmission but remains challenged by poor-quality campaigns and poor team performance in some areas. This article demonstrates the application of geographic information system technology to track vaccination teams to monitor settlement coverage, reduce the number of missed settlements, and improve team performance. Methods. In each local government area where tracking was conducted, global positioning system–enabled Android phones were given to each team on a daily basis and were used to record team tracks. These tracks were uploaded to a dashboard to show the level of coverage and identify areas missed by the teams. Results. From 2012 to June 2015, tracking covered 119 immunization days. A total of 1149 tracking activities were conducted. Of these, 681 (59%) were implemented in Kano state. There was an improvement in the geographic coverage of settlements and an overall reduction in the number of missed settlements. Conclusions. The tracking of vaccination teams provided significant feedback during polio campaigns and enabled supervisors to evaluate performance of vaccination teams. The reports supported other polio program activities, such as review of microplans and the deployment of other interventions, for increasing population immunity in northern Nigeria. PMID:26609004

  17. Multi-agent system for target-adaptive radar tracking

    NASA Astrophysics Data System (ADS)

    O'Connor, Alan C.

    2012-06-01

    Sensor systems such as distributed sensor networks and radar systems are potentially agile - they have parameters that can be adjusted in real-time to improve the quality of data obtained for state-estimation and decision-making. The integration of such sensors with cyber systems involving many users or agents permits greater flexibility in choosing measurement actions. This paper considers the problem of selecting radar waveforms to minimize uncertainty about the state of a tracked target. Past work gave a tractable method for optimizing the choice of measurements when an accurate dynamical model is available. However, prior knowledge about a system is often not precise, for example, if the target under observation is an adversary. A multiple agent system is proposed to solve the problem in the case of uncertain target dynamics. Each agent has a different target model and the agents compete to explain past data and select the parameters of future measurements. Collaboration or competition between these agents determines which obtains access to the limited physical sensing resources. This interaction produces a self-aware sensor that adapts to changing information requirements.

  18. Individual Module Maximum Power Point Tracking for Thermoelectric Generator Systems

    NASA Astrophysics Data System (ADS)

    Vadstrup, Casper; Schaltz, Erik; Chen, Min

    2013-07-01

    In a thermoelectric generator (TEG) system the DC/DC converter is under the control of a maximum power point tracker which ensures that the TEG system outputs the maximum possible power to the load. However, if the conditions, e.g., temperature, health, etc., of the TEG modules are different, each TEG module will not produce its maximum power. If each TEG module is controlled individually, each TEG module can be operated at its maximum power point and the TEG system output power will therefore be higher. In this work a power converter based on noninverting buck-boost converters capable of handling four TEG modules is presented. It is shown that, when each module in the TEG system is operated under individual maximum power point tracking, the system output power for this specific application can be increased by up to 8.4% relative to the situation when the modules are connected in series and 16.7% relative to the situation when the modules are connected in parallel.

  19. Long-range position and orientation tracking system

    SciTech Connect

    Armstrong, G.A.; Jansen, J.F.; Burks, B.L.

    1995-12-31

    The long-range position and orientation tracking system will consist of two measurement pods, a VME-based computer system, and a detector array. The system is used to measure the position and orientation of a target that may be attached to a robotic arm, teleoperated manipulator, or autonomous vehicle. The pods have been designed to be mounted in the manways of the domes of the Fernald K-65 waste silos. Each pod has two laser scanner subsystems as well as lights and camera systems. One of the laser scanners will be oriented to scan in the pan direction, the other in the tilt direction. As the lasers scan across the detector array, the angles of incidence with each detector are recorded. Combining measurements from each of the four lasers yields sufficient data for a closed-form solution of the transform describing the location and orientation of the content mobilization system (CMS). Redundant detectors will be placed on the CMS to accommodate occlusions, to provide improved measurement accuracy, and to determine the CMS orientation.

  20. Space station communications and tracking equipment management/control system

    NASA Technical Reports Server (NTRS)

    Kapell, M. H.; Seyl, J. W.

    1982-01-01

    Design details of a communications and tracking (C and T) local area network and the distribution system requirements for the prospective space station are described. The hardware will be constructed of LRUs, including those for baseband, RF, and antenna subsystems. It is noted that the C and T equipment must be routed throughout the station to accommodate growth of the station. Configurations of the C and T modules will therefore be dependent on the function of the space station module where they are located. A block diagram is provided of a sample C and T hardware distribution configuration. A topology and protocol will be needed to accommodate new terminals, wide bandwidths, bidirectional message transmission, and distributed functioning. Consideration will be given to collisions occurring in the data transmission channels.

  1. Reliability measurement during software development. [for a multisensor tracking system

    NASA Technical Reports Server (NTRS)

    Hecht, H.; Sturm, W. A.; Trattner, S.

    1977-01-01

    During the development of data base software for a multi-sensor tracking system, reliability was measured. The failure ratio and failure rate were found to be consistent measures. Trend lines were established from these measurements that provided good visualization of the progress on the job as a whole as well as on individual modules. Over one-half of the observed failures were due to factors associated with the individual run submission rather than with the code proper. Possible application of these findings for line management, project managers, functional management, and regulatory agencies is discussed. Steps for simplifying the measurement process and for use of these data in predicting operational software reliability are outlined.

  2. Alignment of the ATLAS inner detector tracking system

    NASA Astrophysics Data System (ADS)

    Kollár, Daniel; ATLAS Collaboration

    2010-04-01

    The Large Hadron Collider (LHC) at CERN is the world's largest particle accelerator. ATLAS is one of the two general purpose experiments. The inner tracking system of ATLAS, the Inner Detector, is built on two technologies: silicon detectors and drift tube based detectors. The required precision for the alignment of the most sensitive coordinates of the Silicon sensors is just a few microns. Therefore the alignment of the ATLAS Inner Detector is performed using complex algorithms requiring extensive CPU and memory usage. The proposed alignment algorithms were exercised on several applications. This proceedings present the outline of the alignment approach and results from Cosmic Ray runs and large scale computing simulation of physics samples mimicking the ATLAS operation during real data-taking. The full alignment chain was tested using these samples and alignment constants were produced and validated within 24 hours. Early alignment of the ATLAS Inner Detector is provided even before the LHC start up by analysing Cosmic Ray data.

  3. Data processing for LISA's laser interferometer tracking system (LITS)

    NASA Astrophysics Data System (ADS)

    Hellings, Ronald W.

    2001-10-01

    In this paper, we present results on the subject of data processing for LISA. We present, for the first time, time-domain algorithms for the elimination of clock jitter noise algorithms that avoid the singularities of the previous frequency-domain method. We also discuss how to generate the data averages that each spacecraft will eventually need to telemeter to the ground, thereby inferring what a realistic scientific data rate will be for LISA. Finally, we argue, based partly on these results, that a laser interferometer tracking system (LITS) that employs independent lasers in each spacecraft is preferable, for reasons of simplicity, to one in which the lasers in two of the spacecraft are locked to the incoming beam from the third.

  4. Visual tracking in stereo. [by computer vision system

    NASA Technical Reports Server (NTRS)

    Saund, E.

    1981-01-01

    A method is described for visual object tracking by a computer vision system using TV cameras and special low-level image processing hardware. The tracker maintains an internal model of the location, orientation, and velocity of the object in three-dimensional space. This model is used to predict where features of the object will lie on the two-dimensional images produced by stereo TV cameras. The differences in the locations of features in the two-dimensional images as predicted by the internal model and as actually seen create an error signal in the two-dimensional representation. This is multiplied by a generalized inverse Jacobian matrix to deduce the error in the internal model. The procedure repeats to update the internal model of the object's location, orientation and velocity continuously.

  5. 77 FR 1697 - Agency Information Collection Activities: Fast Track Generic Clearance for the Collection of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... HUMAN SERVICES Indian Health Service Agency Information Collection Activities: Fast Track Generic Clearance for the Collection of Qualitative Feedback on Agency Service Delivery: IHS Web Site Customer... on Agency Service Delivery: IHS Web site Customer Service Satisfaction Survey. Abstract:...

  6. Cortical fMRI activation produced by attentive tracking of moving targets.

    PubMed

    Culham, J C; Brandt, S A; Cavanagh, P; Kanwisher, N G; Dale, A M; Tootell, R B

    1998-11-01

    Attention can be used to keep track of moving items, particularly when there are multiple targets of interest that cannot all be followed with eye movements. Functional magnetic resonance imaging (fMRI) was used to investigate cortical regions involved in attentive tracking. Cortical flattening techniques facilitated within-subject comparisons of activation produced by attentive tracking, visual motion, discrete attention shifts, and eye movements. In the main task, subjects viewed a display of nine green "bouncing balls" and used attention to mentally track a subset of them while fixating. At the start of each attentive-tracking condition, several target balls (e.g., 3/9) turned red for 2 s and then reverted to green. Subjects then used attention to keep track of the previously indicated targets, which were otherwise indistinguishable from the nontargets. Attentive-tracking conditions alternated with passive viewing of the same display when no targets had been indicated. Subjects were pretested with an eye-movement monitor to ensure they could perform the task accurately while fixating. For seven subjects, functional activation was superimposed on each individual's cortically unfolded surface. Comparisons between attentive tracking and passive viewing revealed bilateral activation in parietal cortex (intraparietal sulcus, postcentral sulcus, superior parietal lobule, and precuneus), frontal cortex (frontal eye fields and precentral sulcus), and the MT complex (including motion-selective areas MT and MST). Attentional enhancement was absent in early visual areas and weak in the MT complex. However, in parietal and frontal areas, the signal change produced by the moving stimuli was more than doubled when items were tracked attentively. Comparisons between attentive tracking and attention shifting revealed essentially identical activation patterns that differed only in the magnitude of activation. This suggests that parietal cortex is involved not only in discrete

  7. Ground Data System Analysis Tools to Track Flight System State Parameters for the Mars Science Laboratory (MSL) and Beyond

    NASA Technical Reports Server (NTRS)

    Allard, Dan; Deforrest, Lloyd

    2014-01-01

    Flight software parameters enable space mission operators fine-tuned control over flight system configurations, enabling rapid and dynamic changes to ongoing science activities in a much more flexible manner than can be accomplished with (otherwise broadly used) configuration file based approaches. The Mars Science Laboratory (MSL), Curiosity, makes extensive use of parameters to support complex, daily activities via commanded changes to said parameters in memory. However, as the loss of Mars Global Surveyor (MGS) in 2006 demonstrated, flight system management by parameters brings with it risks, including the possibility of losing track of the flight system configuration and the threat of invalid command executions. To mitigate this risk a growing number of missions have funded efforts to implement parameter tracking parameter state software tools and services including MSL and the Soil Moisture Active Passive (SMAP) mission. This paper will discuss the engineering challenges and resulting software architecture of MSL's onboard parameter state tracking software and discuss the road forward to make parameter management tools suitable for use on multiple missions.

  8. The degree of observability's analysis for satellite-to-user Orbiter Tracking System

    NASA Astrophysics Data System (ADS)

    Hu, X.

    1985-10-01

    Tracking schemes of the High Altitude Satellite to Low-Altitude User Orbiter Tracking (SOT) system are objectively appraised using the Degree of Observability (DOB) index. An extended Kalman filtering algorithm applicable to the SOT system for estimating the state of the user orbiter is given. A DOB method for analyzing the effects of various tracking schemes on the SOT system orbit determination accuracy is presented.

  9. Decoupling directed and passive motion in dynamic systems: particle tracking microrheology of sputum.

    PubMed

    Fong, Erika J; Sharma, Yasha; Fallica, Brian; Tierney, Dylan B; Fortune, Sarah M; Zaman, Muhammad H

    2013-04-01

    Probing the physical properties of heterogeneous materials is essential to understand the structure, function and dynamics of complex fluids including cells, mucus, and polymer solutions. Particle tracking microrheology is a useful method to passively probe viscoelastic properties on micron length scales by tracking the thermal motion of beads embedded in the sample. However, errors associated with active motion have limited the implementation to dynamic systems. We present a simple method to decouple active and Brownian motion, enabling particle tracking to be applied to fluctuating heterogeneous systems. We use the movement perpendicular to the major axis of motion in time to calculate rheological properties. Through simulated data we demonstrate that this method removes directed motion and performs equally well when there is no directed motion, with an average percent error of <1%. We use this method to measure glycerol-water mixtures to show the capability to measure a range of materials. Finally, we use this technique to characterize the compliance of human sputum. We also investigate the effect of a liquefaction agent used to prepare sputum for diagnostic purposes. Our results suggest that the addition of high concentration sodium hydroxide increases sample heterogeneity by increasing the maximum observed creep compliance. PMID:23271563

  10. Decoupling directed and passive motion in dynamic systems: particle tracking microrheology of sputum

    PubMed Central

    Fong, Erika J.; Sharma, Yasha; Fallica, Brian; Tierney, Dylan B.; Fortune, Sarah M.; Zaman, Muhammad H.

    2013-01-01

    Probing the physical properties of heterogeneous materials is essential to understand the structure, function and dynamics of complex fluids including cells, mucus, and polymer solutions. Particle tracking microrheology is a useful method to passively probe viscoelastic properties on micron length scales by tracking the thermal motion of beads embedded in the sample. However, errors associated with active motion have limited the implementation to dynamic systems. We present a simple method to decouple active and Brownian motion, enabling particle tracking to be applied to fluctuating heterogeneous systems. We use the movement perpendicular to the major axis of motion in time to calculate rheological properties. Through simulated data we demonstrate that this method removes directed motion and performs equally well when there is no directed motion, with an average percent error of <1%. We use this method to measure glycerol-water mixtures to show the capability to measure a range of materials. Finally, we use this technique to characterize the compliance of human sputum. We also investigate the effect of a liquefaction agent used to prepare sputum for diagnostic purposes. Our results suggest that the addition of high concentration sodium hydroxide increases sample heterogeneity by increasing the maximum observed creep compliance. PMID:23271563

  11. Motion Tracking Of A Handheld Scanner With An Infrared Vision System

    SciTech Connect

    Seppi, Jeremy H.; Hatchell, Brian K.; McMakin, Douglas L.

    2011-08-07

    Handheld scanners are used in a large number of applications to inspect walls, floors, tanks, and other large structures. Measurements are made to characterize physical properties, uncover defects, detect evidence of tampering, quantify surface contamination, and so forth. Handheld scanning suffers from a number of drawbacks. The relationship between the data collected and scanned location is difficult or impossible to track. Humans using handheld scanners can unintentionally scan the same area multiple times or entirely overlook an area of interest. An automated scanner tracking system could improve upon current inspection practices with a handheld scanner in terms of efficiency, accuracy, and quality. The authors have developed a handheld scanner tracking system that will allow users to visualize previously scanned areas, highlight areas where important or unusual data are acquired, and store scanning location with acquired data. The scanned regions are saved in real time and projected back on the scanned area using a projector. The system currently utilizes the Smoothboard software, which has already been designed to interpret the location of a captured infrared source from a Wii Remote controller to create an interactive whiteboard. This software takes advantage of the Wii Remote’s ability to track the location of an infrared source, and when proper calibration of the Wii Remote orientation is complete, any surface can become a virtual whiteboard. In addition to recording and projecting scan pathways, the system developed by the authors can be used to make notes on the scanning process and project acquired data on top of the scanned area. This latter capability can be used to guide sample acquisition or demolition activities. This paper discusses development of the system and potential benefits to wall scanning with handheld scanners.

  12. Determination of the System Mass and the Individual Masses of the Pluto System from New Horizons Radio Tracking

    NASA Astrophysics Data System (ADS)

    Hahn, Matthias; Pätzold, Martin; Andert, Tom; Bird, Michael K.; Tyler, Leonard G.; Linscott, Ivan; Hinson, Dave P.; Stern, Alan; Weaver, Hal; Olkin, Cathrin; Young, Leslie; Ennico, Kimberly

    2015-11-01

    One objective of the New Horizons Radio Science Experiment REX is the determination of the system mass and the individual masses of Pluto and Charon. About four weeks of two-way radio tracking centered around the closest approach of New Horizons to the Pluto system were processed. Major problems during the processing were caused by the small net forces of the spacecraft thruster activity, which produce extra Δv on the spacecraft motion superposed onto the continuously perturbed motion caused by the attracting forces of the Pluto system. The times of spacecraft thruster activity are known but the applied Δv needs to be specifically adjusted. No two-way tracking was available for the day of the flyby, but slots of REX one-way uplink tracking are used to cover the most important times near closest approach, e.g. during occultation entries and exits. This will help to separate the individual masses of Pluto and Charon from the system mass.

  13. Comparative study of tracking performance in an airborne tracking radar simulator using global positioning system versus monopulse radar techniques

    NASA Astrophysics Data System (ADS)

    Nguyen, Joseph H.; Holley, William D.; Gagnon, Garry

    1993-10-01

    This paper attempts to address the tracking accuracy between the two systems under test. A monopulse radar model was developed to theoretically calculate the would-be measured angle and angle variances. Essentially, measurements of the target's angle, angle variances, range and range rate from the monopulse radar receiver of an aircraft are assessed against the tracking performance of an airborne simulator which uses the time, space, position information (TSPI) delivered from a global positioning system (GPS) system. The accuracy of measurements from a monopulse radar primarily depends on the signal-to-noise ratio (SNR), distance from target in this case, but information received from the GPS Space Vehicle would be virtually jamfree, and independent of distance. Tracking using GPS data however requires good data link between airborne participants. The simulation fidelity becomes an issue when the target is in close range track. The monopulse random slope error and target glint become significant, while the resolution from GPS data links remains the same.

  14. A Portable Low-Power Harmonic Radar System and Conformal Tag for Insect Tracking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harmonic radar systems provide an effective modality for tracking insect behavior. This paper presents a harmonic radar system proposed to track the migration of the Emerald Ash Borer (EAB). The system offers a unique combination of portability, low power and small tag design. It is comprised of a...

  15. 28 CFR 16.105 - Exemption of Foreign Terrorist Tracking Task Force System.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Exemption of Foreign Terrorist Tracking Task Force System. 16.105 Section 16.105 Judicial Administration DEPARTMENT OF JUSTICE PRODUCTION OR... of Foreign Terrorist Tracking Task Force System. (a) The following system of records is exempt from...

  16. 28 CFR 16.105 - Exemption of Foreign Terrorist Tracking Task Force System.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Exemption of Foreign Terrorist Tracking Task Force System. 16.105 Section 16.105 Judicial Administration DEPARTMENT OF JUSTICE PRODUCTION OR... of Foreign Terrorist Tracking Task Force System. (a) The following system of records is exempt from...

  17. 28 CFR 16.105 - Exemption of Foreign Terrorist Tracking Task Force System.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Exemption of Foreign Terrorist Tracking Task Force System. 16.105 Section 16.105 Judicial Administration DEPARTMENT OF JUSTICE PRODUCTION OR... of Foreign Terrorist Tracking Task Force System. (a) The following system of records is exempt from...

  18. 28 CFR 16.105 - Exemption of Foreign Terrorist Tracking Task Force System.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Exemption of Foreign Terrorist Tracking Task Force System. 16.105 Section 16.105 Judicial Administration DEPARTMENT OF JUSTICE PRODUCTION OR... of Foreign Terrorist Tracking Task Force System. (a) The following system of records is exempt from...

  19. 28 CFR 16.105 - Exemption of Foreign Terrorist Tracking Task Force System.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Exemption of Foreign Terrorist Tracking Task Force System. 16.105 Section 16.105 Judicial Administration DEPARTMENT OF JUSTICE PRODUCTION OR... of Foreign Terrorist Tracking Task Force System. (a) The following system of records is exempt from...

  20. A Laminated Track for the Inductrack System: Theory and Experiment

    SciTech Connect

    Post, R F; Hoburg, J F

    2004-01-12

    A laminated structure, composed of stacks of thin conducting sheets, has several advantages over a litz-wire ladder as the ''track'' wherein levitating currents are induced by a permanent magnet array on a moving vehicle. Modeling and experimental results for the laminated track are described and evaluated in this paper.

  1. Differenced Range Versus Integrated Doppler (DRVID) ionospheric analysis of metric tracking in the Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Radomski, M. S.; Doll, C. E.

    1995-01-01

    The Differenced Range (DR) Versus Integrated Doppler (ID) (DRVID) method exploits the opposition of high-frequency signal versus phase retardation by plasma media to obtain information about the plasma's corruption of simultaneous range and Doppler spacecraft tracking measurements. Thus, DR Plus ID (DRPID) is an observable independent of plasma refraction, while actual DRVID (DR minus ID) measures the time variation of the path electron content independently of spacecraft motion. The DRVID principle has been known since 1961. It has been used to observe interplanetary plasmas, is implemented in Deep Space Network tracking hardware, and has recently been applied to single-frequency Global Positioning System user navigation This paper discusses exploration at the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) of DRVID synthesized from simultaneous two-way range and Doppler tracking for low Earth-orbiting missions supported by the Tracking and Data Relay Satellite System (TDRSS) The paper presents comparisons of actual DR and ID residuals and relates those comparisons to predictions of the Bent model. The complications due to the pilot tone influence on relayed Doppler measurements are considered. Further use of DRVID to evaluate ionospheric models is discussed, as is use of DRPID in reducing dependence on ionospheric modeling in orbit determination.

  2. An expert system for processing uncorrelated satellite tracks

    NASA Astrophysics Data System (ADS)

    Hecker, Michael A.

    1992-12-01

    Through an array of ground based radar sights and optical cameras, the United States military tracks objects in near and far Earth orbit. The sensors provide epoch and ephemeris information that is used to update a database of known objects. While a majority of the sensor observations are matched to their corresponding satellites, a small percentage are beyond the capabilities of current software and cannot be correlated. These uncorrelated targets, UCT's, must be manually fitted by orbital analysts in a labor intensive process. As an alternative to this human intervention, the use of artificial intelligence techniques to augment the present computer code was explored. Specifically, an expert system for processing UCT's at the Naval Space Surveillance Command was developed. Rules were generated through traditional knowledge engineering methods and by a novel application of machine learning. The initial results are very good with the operational portions of the system matching the performance of the experts with an accuracy of 99%. Although not yet complete, the code developed in this research definitely shows the potential of using artificial intelligence to process UCT'S.

  3. A drift chamber tracking system for muon scattering tomography applications

    NASA Astrophysics Data System (ADS)

    Burns, J.; Quillin, S.; Stapleton, M.; Steer, C.; Snow, S.

    2015-10-01

    Muon scattering tomography (MST) allows the identification of shielded high atomic number (high-Z) materials by measuring the scattering angle of cosmic ray muons passing through an inspection region. Cosmic ray muons scatter to a greater degree due to multiple Coulomb scattering in high-Z materials than low-Z materials, which can be measured as the angular difference between the incoming and outgoing trajectories of each muon. Measurements of trajectory are achieved by placing position sensitive particle tracking detectors above and below the inspection volume. By localising scattering information, the point at which a series of muons scatter can be used to reconstruct an image, differentiating high, medium and low density objects. MST is particularly useful for differentiating between materials of varying density in volumes that are difficult to inspect visually or by other means. This paper will outline the experimental work undertaken to develop a prototype MST system based on drift chamber technology. The planar drift chambers used in this prototype measure the longitudinal interaction position of an ionising particle from the time taken for elections, liberated in the argon (92.5%), carbon dioxide (5%), methane (2.5%) gas mixture, to reach a central anode wire. Such a system could be used to enhance the detection of shielded radiological material hidden within regular shipping cargo.

  4. Interactive Diet and Activity Tracking in AARP (IDATA) Study Data | Division of Cancer Prevention

    Cancer.gov

    The Interactive Diet and Activity Tracking in AARP (IDATA) Study is a methodologic study of device-based, internet-based, and conventional self-report instruments for assessing physical activity and diet in epidemiologic research. | Device-based and intensive self-report physical activity and diet data with biomarkers

  5. Algorithms for High-Speed Noninvasive Eye-Tracking System

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Morookian, John-Michael; Lambert, James

    2010-01-01

    Two image-data-processing algorithms are essential to the successful operation of a system of electronic hardware and software that noninvasively tracks the direction of a person s gaze in real time. The system was described in High-Speed Noninvasive Eye-Tracking System (NPO-30700) NASA Tech Briefs, Vol. 31, No. 8 (August 2007), page 51. To recapitulate from the cited article: Like prior commercial noninvasive eyetracking systems, this system is based on (1) illumination of an eye by a low-power infrared light-emitting diode (LED); (2) acquisition of video images of the pupil, iris, and cornea in the reflected infrared light; (3) digitization of the images; and (4) processing the digital image data to determine the direction of gaze from the centroids of the pupil and cornea in the images. Most of the prior commercial noninvasive eyetracking systems rely on standard video cameras, which operate at frame rates of about 30 Hz. Such systems are limited to slow, full-frame operation. The video camera in the present system includes a charge-coupled-device (CCD) image detector plus electronic circuitry capable of implementing an advanced control scheme that effects readout from a small region of interest (ROI), or subwindow, of the full image. Inasmuch as the image features of interest (the cornea and pupil) typically occupy a small part of the camera frame, this ROI capability can be exploited to determine the direction of gaze at a high frame rate by reading out from the ROI that contains the cornea and pupil (but not from the rest of the image) repeatedly. One of the present algorithms exploits the ROI capability. The algorithm takes horizontal row slices and takes advantage of the symmetry of the pupil and cornea circles and of the gray-scale contrasts of the pupil and cornea with respect to other parts of the eye. The algorithm determines which horizontal image slices contain the pupil and cornea, and, on each valid slice, the end coordinates of the pupil and cornea

  6. Finite interval tracking algorithm for nonlinear multi-agent systems with communication delays

    NASA Astrophysics Data System (ADS)

    Dong, Lijing; Chai, Senchun; Zhang, Baihai; Li, Xiangshun; Kiong Nguang, Sing

    2016-11-01

    We propose an iterative learning control (ILC) tracking strategy to solve the tracking problem of multi-agent systems with nonlinear dynamics and time-varying communication delays. The distributed tracking strategy, in which each tracking agent only utilises its own and neighbours' information, enables the tracking agents successfully track a maneuvering target in a finite time interval although with presence of time delays. Compared with the existing related work, the quantitative relationship between the boundary of tracking errors and the estimation of time delays is derived. Furthermore, in many practical control problems, identical initialisation condition may not be satisfied, which is called initial-shift problem. Hence, a forgetting factor is introduced to deal with that problem. It is proved that the presented results are effective via conducting numerical examples.

  7. Study on Sensor Design Technique for Real-Time Robotic Welding Tracking System

    NASA Astrophysics Data System (ADS)

    Liu, C. J.; Li, Y. B.; Zhu, J. G.; Ye, S. H.

    2006-10-01

    Based on visual measurement techniques, the real-time robotic welding tracking system achieves real-time adjustment for robotic welding according to the position and shape changes of a workpiece. In system design, the sensor design technique is so important that its performance directly affects the precision and stability of the tracking system. Through initiative visual measurement technology, a camera unit for real-time sampling is built with multiple-strip structured light and a high-performance CMOS image sensor including 1.3 million pixels; to realize real-time data process and transmission, an image process unit is built with FPGA and DSP. Experiments show that the precision of this sensor reaches 0.3mm, and band rate comes up to 10Mbps, which effectively improves robot welding quality.With the development of advanced manufacturing technology, it becomes an inexorable trend to realize the automatic, flexible and intelligent welding product manufacture. With the advantage of interchangeability and reliability, robotic welding can boost productivity, improve work condition, stabilize and guarantee weld quality, and realize welding automation of the short run products [1]. At present, robotic welding has already become the application trend of automatic welding technology. Traditional welding robots are play-back ones, which cannot adapt environment and weld distortion. Especially in the more and more extensive arc-welding course, the deficiency and limitation of play-back welding technology becomes more prominent because of changeable welding condition. It becomes one of the key technology influencing the development of modern robotic welding technology to eliminate or decrease uncertain influence on quality of welding such as changing welding condition etc [2]. Based on visual measuring principle, this text adopts active visual measuring technology, cooperated with high-speed image process and transmission technology to structure a tracking sensor, to realize

  8. Comparison of road load simulator test results with track tests on electric vehicle propulsion system

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.

    1983-01-01

    A special-purpose dynamometer, the road load simulator (RLS), is being used at NASA's Lewis Research Center to test and evaluate electric vehicle propulsion systems developed under DOE's Electric and Hybrid Vehicle Program. To improve correlation between system tests on the RLS and track tests, similar tests were conducted on the same propulsion system on the RLS and on a test track. These tests are compared in this report. Battery current to maintain a constant vehicle speed with a fixed throttle was used for the comparison. Scatter in the data was greater in the track test results. This is attributable to variations in tire rolling resistance and wind effects in the track data. It also appeared that the RLS road load, determined by coastdown tests on the track, was lower than that of the vehicle on the track. These differences may be due to differences in tire temperature.

  9. Technical Design Report for the Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    ALICE Collaboration; Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Masoodi, A. Ahmad; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Anderssen, E. C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badala, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bairathi, V.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J..; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastian Van Beelen, J.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Battistin, M.; Batyunya, B.; Batzing, P. C.; Baudot, J.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Benettoni, M.; Benotto, F.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Besson, A.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhatti, A.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Boehmer, F. V.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bornschein, J.; Borshchov, V. N.; Bortolin, C.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Carena, F.; Carena, W.; Cariola, P.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Caudron, T.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Claus, G.; Cleymans, J.; Colamaria, F.; Colella, D.; Coli, S.; Colledani, C.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Da Riva, E.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Decosse, C.; DelagrangeI, H.; Deloff, A.; Déenes, E.; D'Erasmo, G.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Robertis, G.; De Roo, K.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Divia, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dorheim, S.; Dorokhov, A.; Doziere, G.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dulinski, W.; Dupieux, P.; Dutta Majumdar, A. K.; Ehlers, R. J., III; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernádez Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fiorenza, G.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Franco, M.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gajanana, D.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubilato, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Gomez Marzoa, M.; Gonzáalez-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Greiner, L. C.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grondin, D.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Hennes, E.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hicks, B.; Hillemanns, H.; Himmi, A.; Hippolyte, B.; Hladky, J.; Hristov, P.; Huang, M.; Hu-Guo, C.; Humanic, T. J.; Hutter, D.; Hwang, D. S.; Igolkin, S.; Ijzermans, P.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G. M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Ivanytskyi, O.; Jachołkowski, A.; Jadlovsky, J.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Junique, A.; Jusko, A.; Kalcher, S.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keil, M.; Ketzer, B.; Khan, M. Mohisin.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. W.; Kim, D. J.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Krymov, E. B.; Kryshen, E.; Krzewicki, M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kweon, M. J.; Kwon, Y.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; La Pointe, S. L.; La Rocca, P.; Lea, R.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenhardt, M.; Lenti, V.; Leogrande, E.; Leoncino, M.; León Monzón, I.; Lesenechal, Y.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Listratenko, O. M.; Ljunggren, H. M.; Lodato, D. F.; Loddo, F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Lopez, X.; López Torres, E.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luzzi, C.; Gago, A. M.; Jacobs, P. M.; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'kevich, D.; Maltsev, N. A.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Mapelli, A.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Marin Tobon, C. A.; Markert, C.; Marquard, M.; Marras, D.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Blanco, J. Martin; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Maslov, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Mattiazzo, S.; Matyja, A.; Mayer, C.; Mazer, J.; Mazumder, R.; Mazza, G.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitu, C. M.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Mongelli, M.; Montanõ Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Morel, F.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Bhopal, F. Muhammad; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paíc, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Panati, S.; Pant, D.; Pantano, D.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Pastore, C.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Peryt, I. W.; Pesci, A.; Pestov, Y.; Petagna, P.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Pham, H.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Pohjoisaho, E. H. O.; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Protsenko, M. A.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Puggioni, C.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rasson, J. E.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossegger, S.; Rossewij, M. J.; Rossi, A.; Roudier, S.; Rousset, J.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sacchetti, M.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Santoro, R.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schipper, J. D.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Seger, J. E.; Selyuzhenkov, I.; Senyukhov, S.; Seo, J.; Serradilla, E.; Sevcenco, A.; Sgura, I.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J. M.; Snoeys, W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, V. Sooden F.; Sorensen, S.; Spacek, M.; Špalek, J.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A. P.; Subieta Vasquez, M. A.; Sugitate, T.; Suire, C.; Suleymanov, M.; Šuljić, M.; Sultanov, R.; Šumbera, M.; Sun, X.; Susa, T.; Symons, T. J. M.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Ter Minasyan, A.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turchetta, R.; Turrisi, R.; Tveter, T. S.; Tymchuk, I. T.; Ulery, J.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Palomo, L. Valencia; Valentino, V.; Valin, I.; Vallero, S.; Vande Vyvre, P.; Vannucci, L.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vasta, P.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Verlaat, B.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Winter, M.; Xiang, C.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.-K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, F.; Zhang, H.; Zhang, X.

    2014-08-01

    ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma (QGP), using proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018-2019. A key element of the ALICE upgrade is the construction of a new, ultra-light, high-resolution Inner Tracking System (ITS) based on monolithic CMOS pixel detectors. The primary focus of the ITS upgrade is on improving the performance for detection of heavy-flavour hadrons, and of thermal photons and low-mass di-electrons emitted by the QGP. With respect to the current detector, the new Inner Tracking System will significantly enhance the determination of the distance of closest approach to the primary vertex, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a 50 μm thick CMOS pixel sensor with a pixel pitch of about 30×30 μm2. This document, submitted to the LHCC (LHC experiments Committee) in September 2013, presents the design goals, a summary of the R&D activities, with focus on the technical implementation of the main detector components, and the projected detector and physics performance.

  10. Adaptive tracking for complex systems using reduced-order models

    NASA Technical Reports Server (NTRS)

    Carignan, Craig R.

    1990-01-01

    Reduced-order models are considered in the context of parameter adaptive controllers for tracking workspace trajectories. A dual-arm manipulation task is used to illustrate the methodology and provide simulation results. A parameter adaptive controller is designed to track the desired position trajectory of a payload using a four-parameter model instead of a full-order, nine-parameter model. Several simulations with different payload-to-arm mass ratios are used to illustrate the capabilities of the reduced-order model in tracking the desired trajectory.

  11. Demonstration (DEMO) of Radio Frequency Identification (RFID) system for tracking and monitoring of nuclear materials.

    SciTech Connect

    Tsai, H. C.; Chen, K.; Liu, Y. Y.; Shuler, J.

    2010-01-01

    The US Department of Energy (DOE) [Environmental Management (EM), Office of Packaging and Transportation (EM-45)] Packaging Certification Program (PCP) has developed a radiofrequency identification (RFID) tracking and monitoring system for the management of nuclear materials packages during storage and transportation. The system, developed by the PCP team at Argonne National Laboratory, involves hardware modification, application software development, secured database and web server development, and irradiation experiments. In April 2008, Argonne tested key features of the RFID tracking and monitoring system in a weeklong, 1700 mile (2736 km) demonstration employing 14 empty type B fissile material drums of three designs (models 9975, 9977 and ES-3100) that have been certified for shipment by the DOE and the US Nuclear Regulatory Commission. The demonstration successfully integrated global positioning system (GPS) technology for vehicle tracking, satellite/cellular (general packet radio service, or GPRS) technologies for wireless communication, and active RFID tags with multiple sensors (seal integrity, shock, temperature, humidity and battery status) on drums. In addition, the demonstration integrated geographic information system (GIS) technology with automatic alarm notifications of incidents and generated buffer zone reports for emergency response and management of staged incidents. The demonstration was sponsored by EM and the US National Nuclear Security Administration, with the participation of Argonne, Savannah River and Oak Ridge National Laboratories. Over 50 authorised stakeholders across the country observed the demonstration via secured Internet access. The DOE PCP and national laboratories are working on several RFID system implementation projects at selected DOE sites, as well as continuing device and systems development and widening applications beyond DOE sites and possibly beyond nuclear materials to include other radioactive materials.

  12. Optimal Configuration of Human Motion Tracking Systems: A Systems Engineering Approach

    NASA Technical Reports Server (NTRS)

    Henderson, Steve

    2005-01-01

    Human motion tracking systems represent a crucial technology in the area of modeling and simulation. These systems, which allow engineers to capture human motion for study or replication in virtual environments, have broad applications in several research disciplines including human engineering, robotics, and psychology. These systems are based on several sensing paradigms, including electro-magnetic, infrared, and visual recognition. Each of these paradigms requires specialized environments and hardware configurations to optimize performance of the human motion tracking system. Ideally, these systems are used in a laboratory or other facility that was designed to accommodate the particular sensing technology. For example, electromagnetic systems are highly vulnerable to interference from metallic objects, and should be used in a specialized lab free of metal components.

  13. Capability of patch antennas in a portable harmonic radar system to track insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monitoring technologies are needed to track insects and gain a better understanding of their behavior, population, migration and movement. A portable microwave harmonic-radar tracking system that utilizes antenna miniaturization techniques was investigated to achieve this goal. The system mainly con...

  14. 76 FR 22919 - National Institute of Justice Offender Tracking System Standard Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Office of Justice Programs National Institute of Justice Offender Tracking System Standard Workshop AGENCY: National Institute of Justice, DOJ. ACTION: Notice of Meeting of the NIJ Offender Tracking System...

  15. Solid waste information and tracking system server conversion project management plan

    SciTech Connect

    MAY, D.L.

    1999-04-12

    The Project Management Plan governing the conversion of Solid Waste Information and Tracking System (SWITS) to a client-server architecture. The Solid Waste Information and Tracking System Project Management Plan (PMP) describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents.

  16. Tenure Track Career System as a Strategic Instrument for Academic Leaders

    ERIC Educational Resources Information Center

    Pietilä, Maria

    2015-01-01

    This study examines the purposes for which leaders in universities use academic career systems. It focuses on the tenure track system which is new to Finland. Tenure track represents a newly established internal career path in a situation in which Finnish universities' organizational autonomy increased via new legislation from 2010. Drawing…

  17. 21 CFR 821.25 - Device tracking system and content requirements: manufacturer requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Device tracking system and content requirements: manufacturer requirements. 821.25 Section 821.25 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... all modifications or changes to the tracking system or to the data collected and maintained under...

  18. A cabled acoustic telemetry system for detecting and tracking juvenile salmon: part 2. Three-dimensional tracking and passage outcomes.

    PubMed

    Deng, Z Daniel; Weiland, Mark A; Fu, Tao; Seim, Tom A; LaMarche, Brian L; Choi, Eric Y; Carlson, Thomas J; Eppard, M Brad

    2011-01-01

    In Part 1 of this paper, we presented the engineering design and instrumentation of the Juvenile Salmon Acoustic Telemetry System (JSATS) cabled system, a nonproprietary sensing technology developed by the U.S. Army Corps of Engineers, Portland District (Oregon, USA) to meet the needs for monitoring the survival of juvenile salmonids through the hydroelectric facilities within the Federal Columbia River Power System. Here in Part 2, we describe how the JSATS cabled system was employed as a reference sensor network for detecting and tracking juvenile salmon. Time-of-arrival data for valid detections on four hydrophones were used to solve for the three-dimensional (3D) position of fish surgically implanted with JSATS acoustic transmitters. Validation tests demonstrated high accuracy of 3D tracking up to 100 m upstream from the John Day Dam spillway. The along-dam component, used for assigning the route of fish passage, had the highest accuracy; the median errors ranged from 0.02 to 0.22 m, and root mean square errors ranged from 0.07 to 0.56 m at distances up to 100 m. For the 2008 case study at John Day Dam, the range for 3D tracking was more than 100 m upstream of the dam face where hydrophones were deployed, and detection and tracking probabilities of fish tagged with JSATS acoustic transmitters were higher than 98%. JSATS cabled systems have been successfully deployed on several major dams to acquire information for salmon protection and for development of more "fish-friendly" hydroelectric facilities. PMID:22163919

  19. A cabled acoustic telemetry system for detecting and tracking juvenile salmon: part 2. Three-dimensional tracking and passage outcomes.

    PubMed

    Deng, Z Daniel; Weiland, Mark A; Fu, Tao; Seim, Tom A; LaMarche, Brian L; Choi, Eric Y; Carlson, Thomas J; Eppard, M Brad

    2011-01-01

    In Part 1 of this paper, we presented the engineering design and instrumentation of the Juvenile Salmon Acoustic Telemetry System (JSATS) cabled system, a nonproprietary sensing technology developed by the U.S. Army Corps of Engineers, Portland District (Oregon, USA) to meet the needs for monitoring the survival of juvenile salmonids through the hydroelectric facilities within the Federal Columbia River Power System. Here in Part 2, we describe how the JSATS cabled system was employed as a reference sensor network for detecting and tracking juvenile salmon. Time-of-arrival data for valid detections on four hydrophones were used to solve for the three-dimensional (3D) position of fish surgically implanted with JSATS acoustic transmitters. Validation tests demonstrated high accuracy of 3D tracking up to 100 m upstream from the John Day Dam spillway. The along-dam component, used for assigning the route of fish passage, had the highest accuracy; the median errors ranged from 0.02 to 0.22 m, and root mean square errors ranged from 0.07 to 0.56 m at distances up to 100 m. For the 2008 case study at John Day Dam, the range for 3D tracking was more than 100 m upstream of the dam face where hydrophones were deployed, and detection and tracking probabilities of fish tagged with JSATS acoustic transmitters were higher than 98%. JSATS cabled systems have been successfully deployed on several major dams to acquire information for salmon protection and for development of more "fish-friendly" hydroelectric facilities.

  20. A Cabled Acoustic Telemetry System for Detecting and Tracking Juvenile Salmon: Part 2. Three-Dimensional Tracking and Passage Outcomes

    SciTech Connect

    Deng, Zhiqun; Weiland, Mark A.; Fu, Tao; Seim, Thomas A.; Lamarche, Brian L.; Choi, Eric Y.; Carlson, Thomas J.; Eppard, Matthew B.

    2011-05-26

    In Part 1 of this paper [1], we presented the engineering design and instrumentation of the Juvenile Salmon Acoustic Telemetry System (JSATS) cabled system, a nonproprietary technology developed by the U.S. Army Corps of Engineers, Portland District, to meet the needs for monitoring the survival of juvenile salmonids through the 31 dams in the Federal Columbia River Power System. Here in Part 2, we describe how the JSATS cabled system was employed as a reference sensor network for detecting and tracking juvenile salmon. Time-of-arrival data for valid detections on four hydrophones were used to solve for the three-dimensional (3D) position of fish surgically implanted with JSATS acoustic transmitters. Validation tests demonstrated high accuracy of 3D tracking up to 100 m from the John Day Dam spillway. The along-dam component, used for assigning the route of fish passage, had the highest accuracy; the median errors ranged from 0.06 to 0.22 m, and root mean square errors ranged from 0.05 to 0.56 m at distances up to 100 m. For the case study at John Day Dam during 2008, the range for 3D tracking was more than 100 m upstream of the dam face where hydrophones were deployed, and detection and tracking probabilities of fish tagged with JSATS acoustic transmitters were higher than 98%. JSATS cabled systems have been successfully deployed on several major dams to acquire information for salmon protection and for development of more “fish-friendly” hydroelectric facilities.

  1. A Cabled Acoustic Telemetry System for Detecting and Tracking Juvenile Salmon: Part 2. Three-Dimensional Tracking and Passage Outcomes

    PubMed Central

    Deng, Z. Daniel; Weiland, Mark A.; Fu, Tao; Seim, Tom A.; LaMarche, Brian L.; Choi, Eric Y.; Carlson, Thomas J.; Eppard, M. Brad

    2011-01-01

    In Part 1 of this paper, we presented the engineering design and instrumentation of the Juvenile Salmon Acoustic Telemetry System (JSATS) cabled system, a nonproprietary sensing technology developed by the U.S. Army Corps of Engineers, Portland District (Oregon, USA) to meet the needs for monitoring the survival of juvenile salmonids through the hydroelectric facilities within the Federal Columbia River Power System. Here in Part 2, we describe how the JSATS cabled system was employed as a reference sensor network for detecting and tracking juvenile salmon. Time-of-arrival data for valid detections on four hydrophones were used to solve for the three-dimensional (3D) position of fish surgically implanted with JSATS acoustic transmitters. Validation tests demonstrated high accuracy of 3D tracking up to 100 m upstream from the John Day Dam spillway. The along-dam component, used for assigning the route of fish passage, had the highest accuracy; the median errors ranged from 0.02 to 0.22 m, and root mean square errors ranged from 0.07 to 0.56 m at distances up to 100 m. For the 2008 case study at John Day Dam, the range for 3D tracking was more than 100 m upstream of the dam face where hydrophones were deployed, and detection and tracking probabilities of fish tagged with JSATS acoustic transmitters were higher than 98%. JSATS cabled systems have been successfully deployed on several major dams to acquire information for salmon protection and for development of more “fish-friendly” hydroelectric facilities. PMID:22163919

  2. Scheduler software for tracking and data relay satellite system loading analysis: User manual and programmer guide

    NASA Technical Reports Server (NTRS)

    Craft, R.; Dunn, C.; Mccord, J.; Simeone, L.

    1980-01-01

    A user guide and programmer documentation is provided for a system of PRIME 400 minicomputer programs. The system was designed to support loading analyses on the Tracking Data Relay Satellite System (TDRSS). The system is a scheduler for various types of data relays (including tape recorder dumps and real time relays) from orbiting payloads to the TDRSS. Several model options are available to statistically generate data relay requirements. TDRSS time lines (representing resources available for scheduling) and payload/TDRSS acquisition and loss of sight time lines are input to the scheduler from disk. Tabulated output from the interactive system includes a summary of the scheduler activities over time intervals specified by the user and overall summary of scheduler input and output information. A history file, which records every event generated by the scheduler, is written to disk to allow further scheduling on remaining resources and to provide data for graphic displays or additional statistical analysis.

  3. The Environmental-Data Automated Track Annotation (Env-DATA) System: Linking Animal Tracks with Environmental Data

    NASA Astrophysics Data System (ADS)

    Bohrer, G.; Dodge, S.; Weinzierl, R.; Davidson, S. C.; Kays, R.; Douglas, D. C.; Brandes, D.; Bildstein, K.; Wikelski, M.

    2013-12-01

    The movement of animals is strongly influenced by external factors in their surrounding environment such as weather, habitat types, and human land use. With the advances in positioning and sensor technologies, it is now possible to capture data of animal locations at high spatial and temporal granularities. Likewise, modern technology provides us with an increasing access to large volumes of environmental data, some of which changes on an hourly basis. Although there have been strong developments in computational methods for the analysis of movement in its environmental context, there remain challenges in efficiently linking the spatiotemporal locations of animals with the appropriate environmental conditions along their trajectories. To this end, our new Environmental-Data Automated Track Annotation (Env-DATA) system enhances Movebank, an open portal of animal tracking data, by automating access to environmental variables from global remote sensing, weather, and ecosystem products. The system automates the download and decryption of the data from open web resources of remote sensing and weather data, and provides several interpolation methods from the native grid resolution and structure to a global regular grid linked with the movement tracks in space and time. The system is open and free to any user with movement data. The aim is to facilitate new understanding and predictive capabilities of spatiotemporal patterns of animal movement in response to dynamic and changing environments from local to global scales. The system is illustrated with a series of case studies of pan-American migrations of turkey vultures, and foraging flights of Galapagos Albatross.

  4. The ARGOS system used for tracking gray whales

    NASA Technical Reports Server (NTRS)

    Mate, B. R.; Beaty, D.; Hoisington, C.; Kutz, R.; Mate, M. L.

    1983-01-01

    The development of satellite whale tags used to track gray whales in the eastern north Pacific Ocean is summarized. Two gray whales were radio-tagged in San Ignacio Lagoon (Mexico) and tracked on their northbound migration. One of the transmitters was modified to record and relay depth-of-dive information at 15 sec intervals throughout the course of the dive. Technical elements of data acquisition and analysis are outlined. The major biological findings are discussed.

  5. Phytotracker, an information management system for easy recording and tracking of plants, seeds and plasmids

    PubMed Central

    2012-01-01

    Background A large number of different plant lines are produced and maintained in a typical plant research laboratory, both as seed stocks and in active growth. These collections need careful and consistent management to track and maintain them properly, and this is a particularly pressing issue in laboratories undertaking research involving genetic manipulation due to regulatory requirements. Researchers and PIs need to access these data and collections, and therefore an easy-to-use plant-oriented laboratory information management system that implements, maintains and displays the information in a simple and visual format would be of great help in both the daily work in the lab and in ensuring regulatory compliance. Results Here, we introduce ‘Phytotracker’, a laboratory management system designed specifically to organise and track plasmids, seeds and growing plants that can be used in mixed platform environments. Phytotracker is designed with simplicity of user operation and ease of installation and management as the major factor, whilst providing tracking tools that cover the full range of activities in molecular genetics labs. It utilises the cross-platform Filemaker relational database, which allows it to be run as a stand-alone or as a server-based networked solution available across all workstations in a lab that can be internet accessible if desired. It can also be readily modified or customised further. Phytotracker provides cataloguing and search functions for plasmids, seed batches, seed stocks and plants growing in pots or trays, and allows tracking of each plant from seed sowing, through harvest to the new seed batch and can print appropriate labels at each stage. The system enters seed information as it is transferred from the previous harvest data, and allows both selfing and hybridization (crossing) to be defined and tracked. Transgenic lines can be linked to their plasmid DNA source. This ease of use and flexibility helps users to reduce their

  6. Using a low-noise interferometric fiber optic gyro in a pointing, acquisition, and tracking system

    NASA Astrophysics Data System (ADS)

    Kaufmann, John; Hakimi, Farhad; Boroson, Don

    2013-03-01

    Heritage pointing, acquisition, and tracking (PAT) systems have relied on optical tracking with a cooperative remote terminal to stabilize the line-of-sight of optical communications links. A hybrid approach, using new interferometric fiberoptic gyro (IFOG) technology to sense and correct local angular disturbances, blended with optical tracking, is shown to yield two significant advantages over traditional all-optical tracking: (1) line-of-sight stabilization over a very wide disturbance frequency range, down to extremely low frequencies (<<1 Hz), without the need for any optical signal power or cooperation from the remote terminal, and (2) a significant reduction in signal power required for the optical tracker. This paper will present fundamental performance analyses of a hybrid IFOG/optical tracking system and will derive simple design rules that the system designer can use to architect an optimal hybrid IFOG/optical PAT system. In addition, flow-down benefits that can simplify PAT system hardware will be discussed.

  7. Geometric calibration of a coordinate measuring machine using a laser tracking system

    NASA Astrophysics Data System (ADS)

    Umetsu, Kenta; Furutnani, Ryosyu; Osawa, Sonko; Takatsuji, Toshiyuki; Kurosawa, Tomizo

    2005-12-01

    This paper proposes a calibration method for a coordinate measuring machine (CMM) using a laser tracking system. The laser tracking system can measure three-dimensional coordinates based on the principle of trilateration with high accuracy and is easy to set up. The accuracy of length measurement of a single laser tracking interferometer (laser tracker) is about 0.3 µm over a length of 600 mm. In this study, we first measured 3D coordinates using the laser tracking system. Secondly, 21 geometric errors, namely, parametric errors of the CMM, were estimated by the comparison of the coordinates obtained by the laser tracking system and those obtained by the CMM. As a result, the estimated parametric errors agreed with those estimated by a ball plate measurement, which demonstrates the validity of the proposed calibration system.

  8. A Formative Program Evaluation of Electronic Clinical Tracking System Documentation to Meet National Core Competencies.

    PubMed

    Smith, Lynette S; Branstetter, M Laurie

    2016-09-01

    Electronic clinical tracking systems are used in many educational institutions of higher learning to document advanced practice registered nursing students' clinical experiences. Students' clinical experiences are constructed according to the National Organization of Nurse Practitioner Faculties core competencies. These competencies form a basis for evaluation of advanced practice registered nursing programs. However, no previous studies have evaluated the use of electronic clinical tracking systems to validate students' clinical experiences in meeting national core competencies. Medatrax, an electronic clinical tracking system, is evaluated using a formative program evaluation approach to determine if students' clinical documentations meet Family/Across the Lifespan Nurse Practitioner Competencies in a midsouthern family nurse practitioner program. This formative program evaluation supports the use of an electronic clinical tracking system in facilitating accreditation and program outcome goals. The significance of this study is that it provides novel evidence to support the use of an electronic clinical tracking system to assist a midsouthern school of nursing in meeting national core competencies.

  9. Pointing, acquisition, and tracking system for the free-space laser communication system SILEX

    NASA Astrophysics Data System (ADS)

    Nielsen, Toni Tolker

    1995-04-01

    The flight hardware for the European Semiconductor laser Intersatellite Link EXperiment, SILEX, is presently under integration. Qualification at equipment level has been performed during 1994 and performance testing at subsystem level is being undertaken. This paper describes the design requirements, the actual design, and the tests of the Pointing Acquisition and Tracking subsystem. It can be summarized in the following headlines: Mission overview, system tracking and pointing strategy, terminal design, PAT subsystem requirements, PAT equipment design, PAT subsystem design, and on ground verification approach.

  10. Decrease in gamma-band activity tracks sequence learning

    PubMed Central

    Madhavan, Radhika; Millman, Daniel; Tang, Hanlin; Crone, Nathan E.; Lenz, Fredrick A.; Tierney, Travis S.; Madsen, Joseph R.; Kreiman, Gabriel; Anderson, William S.

    2015-01-01

    Learning novel sequences constitutes an example of declarative memory formation, involving conscious recall of temporal events. Performance in sequence learning tasks improves with repetition and involves forming temporal associations over scales of seconds to minutes. To further understand the neural circuits underlying declarative sequence learning over trials, we tracked changes in intracranial field potentials (IFPs) recorded from 1142 electrodes implanted throughout temporal and frontal cortical areas in 14 human subjects, while they learned the temporal-order of multiple sequences of images over trials through repeated recall. We observed an increase in power in the gamma frequency band (30–100 Hz) in the recall phase, particularly in areas within the temporal lobe including the parahippocampal gyrus. The degree of this gamma power enhancement decreased over trials with improved sequence recall. Modulation of gamma power was directly correlated with the improvement in recall performance. When presenting new sequences, gamma power was reset to high values and decreased again after learning. These observations suggest that signals in the gamma frequency band may play a more prominent role during the early steps of the learning process rather than during the maintenance of memory traces. PMID:25653598

  11. Ground Simulation of an Autonomous Satellite Rendezvous and Tracking System Using Dual Robotic Systems

    NASA Technical Reports Server (NTRS)

    Trube, Matthew J.; Hyslop, Andrew M.; Carignan, Craig R.; Easley, Joseph W.

    2012-01-01

    A hardware-in-the-loop ground system was developed for simulating a robotic servicer spacecraft tracking a target satellite at short range. A relative navigation sensor package "Argon" is mounted on the end-effector of a Fanuc 430 manipulator, which functions as the base platform of the robotic spacecraft servicer. Machine vision algorithms estimate the pose of the target spacecraft, mounted on a Rotopod R-2000 platform, relay the solution to a simulation of the servicer spacecraft running in "Freespace", which performs guidance, navigation and control functions, integrates dynamics, and issues motion commands to a Fanuc platform controller so that it tracks the simulated servicer spacecraft. Results will be reviewed for several satellite motion scenarios at different ranges. Key words: robotics, satellite, servicing, guidance, navigation, tracking, control, docking.

  12. Global Positioning System Synchronized Active Light Autonomous Docking System

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor); Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor); Bell, Joseph L. (Inventor)

    1996-01-01

    A Global Positioning System Synchronized Active Light Autonomous Docking System (GPSSALADS) for automatically docking a chase vehicle with a target vehicle comprising at least one active light emitting target which is operatively attached to the target vehicle. The target includes a three-dimensional array of concomitantly flashing lights which flash at a controlled common frequency. The GPSSALADS further comprises a visual tracking sensor operatively attached to the chase vehicle for detecting and tracking the target vehicle. Its performance is synchronized with the flash frequency of the lights by a synchronization means which is comprised of first and second internal clocks operatively connected to the active light target and visual tracking sensor, respectively, for providing timing control signals thereto, respectively. The synchronization means further includes first and second Global Positioning System receivers operatively connected to the first and second internal clocks, respectively, for repeatedly providing simultaneous synchronization pulses to the internal clocks, respectively. In addition, the GPSSALADS includes a docking process controller means which is operatively attached to the chase vehicle and is responsive to the visual tracking sensor for producing commands for the guidance and propulsion system of the chase vehicle.

  13. Global Positioning System Synchronized Active Light Autonomous Docking System

    NASA Technical Reports Server (NTRS)

    Howard, Richard (Inventor)

    1994-01-01

    A Global Positioning System Synchronized Active Light Autonomous Docking System (GPSSALADS) for automatically docking a chase vehicle with a target vehicle comprises at least one active light emitting target which is operatively attached to the target vehicle. The target includes a three-dimensional array of concomitantly flashing lights which flash at a controlled common frequency. The GPSSALADS further comprises a visual tracking sensor operatively attached to the chase vehicle for detecting and tracking the target vehicle. Its performance is synchronized with the flash frequency of the lights by a synchronization means which is comprised of first and second internal clocks operatively connected to the active light target and visual tracking sensor, respectively, for providing timing control signals thereto, respectively. The synchronization means further includes first and second Global Positioning System receivers operatively connected to the first and second internal clocks, respectively, for repeatedly providing simultaneous synchronization pulses to the internal clocks, respectively. In addition, the GPSSALADS includes a docking process controller means which is operatively attached to the chase vehicle and is responsive to the visual tracking sensor for producing commands for the guidance and propulsion system of the chase vehicle.

  14. Global Positioning System Synchronized Active Light Autonomous Docking System

    NASA Astrophysics Data System (ADS)

    Howard, Richard

    1994-08-01

    A Global Positioning System Synchronized Active Light Autonomous Docking System (GPSSALADS) for automatically docking a chase vehicle with a target vehicle comprises at least one active light emitting target which is operatively attached to the target vehicle. The target includes a three-dimensional array of concomitantly flashing lights which flash at a controlled common frequency. The GPSSALADS further comprises a visual tracking sensor operatively attached to the chase vehicle for detecting and tracking the target vehicle. Its performance is synchronized with the flash frequency of the lights by a synchronization means which is comprised of first and second internal clocks operatively connected to the active light target and visual tracking sensor, respectively, for providing timing control signals thereto, respectively. The synchronization means further includes first and second Global Positioning System receivers operatively connected to the first and second internal clocks, respectively, for repeatedly providing simultaneous synchronization pulses to the internal clocks, respectively. In addition, the GPSSALADS includes a docking process controller means which is operatively attached to the chase vehicle and is responsive to the visual tracking sensor for producing commands for the guidance and propulsion system of the chase vehicle.

  15. A Simulation Study of a Radiofrequency Localization System for Tracking Patient Motion in Radiotherapy

    PubMed Central

    Ostyn, Mark; Kim, Siyong; Yeo, Woon-Hong

    2016-01-01

    One of the most widely used tools in cancer treatment is external beam radiotherapy. However, the major risk involved in radiotherapy is excess radiation dose to healthy tissue, exacerbated by patient motion. Here, we present a simulation study of a potential radiofrequency (RF) localization system designed to track intrafraction motion (target motion during the radiation treatment). This system includes skin-wearable RF beacons and an external tracking system. We develop an analytical model for direction of arrival measurement with radio frequencies (GHz range) for use in a localization estimate. We use a Monte Carlo simulation to investigate the relationship between a localization estimate and angular resolution of sensors (signal receivers) in a simulated room. The results indicate that the external sensor needs an angular resolution of about 0.03 degrees to achieve millimeter-level localization accuracy in a treatment room. This fundamental study of a novel RF localization system offers the groundwork to design a radiotherapy-compatible patient positioning system for active motion compensation. PMID:27089342

  16. A Simulation Study of a Radiofrequency Localization System for Tracking Patient Motion in Radiotherapy.

    PubMed

    Ostyn, Mark; Kim, Siyong; Yeo, Woon-Hong

    2016-01-01

    One of the most widely used tools in cancer treatment is external beam radiotherapy. However, the major risk involved in radiotherapy is excess radiation dose to healthy tissue, exacerbated by patient motion. Here, we present a simulation study of a potential radiofrequency (RF) localization system designed to track intrafraction motion (target motion during the radiation treatment). This system includes skin-wearable RF beacons and an external tracking system. We develop an analytical model for direction of arrival measurement with radio frequencies (GHz range) for use in a localization estimate. We use a Monte Carlo simulation to investigate the relationship between a localization estimate and angular resolution of sensors (signal receivers) in a simulated room. The results indicate that the external sensor needs an angular resolution of about 0.03 degrees to achieve millimeter-level localization accuracy in a treatment room. This fundamental study of a novel RF localization system offers the groundwork to design a radiotherapy-compatible patient positioning system for active motion compensation. PMID:27089342

  17. The Schisto Track: A System for Gathering and Monitoring Epidemiological Surveys by Connecting Geographical Information Systems in Real Time

    PubMed Central

    2014-01-01

    Background Using the Android platform as a notification instrument for diseases and disorders forms a new alternative for computerization of epidemiological studies. Objective The objective of our study was to construct a tool for gathering epidemiological data on schistosomiasis using the Android platform. Methods The developed application (app), named the Schisto Track, is a tool for data capture and analysis that was designed to meet the needs of a traditional epidemiological survey. An initial version of the app was finished and tested in both real situations and simulations for epidemiological surveys. Results The app proved to be a tool capable of automation of activities, with data organization and standardization, easy data recovery (to enable interfacing with other systems), and totally modular architecture. Conclusions The proposed Schisto Track is in line with worldwide trends toward use of smartphones with the Android platform for modeling epidemiological scenarios. PMID:25099881

  18. Actin Filament Tracking Based on Particle Filters and Stretching Open Active Contour Models

    PubMed Central

    Li, Hongsheng; Shen, Tian; Vavylonis, Dimitrios; Huang, Xiaolei

    2010-01-01

    We introduce a novel algorithm for actin filament tracking and elongation measurement. Particle Filters (PF) and Stretching Open Active Contours (SOAC) work cooperatively to simplify the modeling of PF in a one-dimensional state space while naturally integrating filament body constraints to tip estimation. Existing microtubule (MT) tracking methods track either MT tips or entire bodies in high-dimensional state spaces. In contrast, our algorithm reduces the PF state spaces to one-dimensional spaces by tracking filament bodies using SOAC and probabilistically estimating tip locations along the curve length of SOACs. Experimental evaluation on TIRFM image sequences with very low SNRs demonstrates the accuracy and robustness of the proposed approach. PMID:20426170

  19. Ionospheric refraction effects on TOPEX orbit determination accuracy using the Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Radomski, M. S.; Doll, C. E.

    1991-01-01

    This investigation concerns the effects on Ocean Topography Experiment (TOPEX) spacecraft operational orbit determination of ionospheric refraction error affecting tracking measurements from the Tracking and Data Relay Satellite System (TDRSS). Although tracking error from this source is mitigated by the high frequencies (K-band) used for the space-to-ground links and by the high altitudes for the space-to-space links, these effects are of concern for the relatively high-altitude (1334 kilometers) TOPEX mission. This concern is due to the accuracy required for operational orbit-determination by the Goddard Space Flight Center (GSFC) and to the expectation that solar activity will still be relatively high at TOPEX launch in mid-1992. The ionospheric refraction error on S-band space-to-space links was calculated by a prototype observation-correction algorithm using the Bent model of ionosphere electron densities implemented in the context of the Goddard Trajectory Determination System (GTDS). Orbit determination error was evaluated by comparing parallel TOPEX orbit solutions, applying and omitting the correction, using the same simulated TDRSS tracking observations. The tracking scenarios simulated those planned for the observation phase of the TOPEX mission, with a preponderance of one-way return-link Doppler measurements. The results of the analysis showed most TOPEX operational accuracy requirements to be little affected by space-to-space ionospheric error. The determination of along-track velocity changes after ground-track adjustment maneuvers, however, is significantly affected when compared with the stringent 0.1-millimeter-per-second accuracy requirements, assuming uncoupled premaneuver and postmaneuver orbit determination. Space-to-space ionospheric refraction on the 24-hour postmaneuver arc alone causes 0.2 millimeter-per-second errors in along-track delta-v determination using uncoupled solutions. Coupling the premaneuver and postmaneuver solutions

  20. Preliminary Orbit Determination System (PODS) for Tracking and Data Relay Satellite System (TDRSS)-tracked target Spacecraft using the homotopy continuation method

    NASA Astrophysics Data System (ADS)

    Kirschner, S. M.; Samii, M. V.; Broaddus, S. R.; Doll, C. E.

    1988-09-01

    The Preliminary Orbit Determination System (PODS) provides early orbit determination capability in the Trajectory Computation and Orbital Products System (TCOPS) for a Tracking and Data Relay Satellite System (TDRSS)-tracked spacecraft. PODS computes a set of orbit states from an a priori estimate and six tracking measurements, consisting of any combination of TDRSS range and Doppler tracking measurements. PODS uses the homotopy continuation method to solve a set of nonlinear equations, and it is particularly effective for the case when the a priori estimate is not well known. Since range and Doppler measurements produce multiple states in PODS, a screening technique selects the desired state. PODS is executed in the TCOPS environment and can directly access all operational data sets. At the completion of the preliminary orbit determination, the PODS-generated state, along with additional tracking measurements, can be directly input to the differential correction (DC) process to generate an improved state. To validate the computational and operational capabilities of PODS, tests were performed using simulated TDRSS tracking measurements for the Cosmic Background Explorer (COBE) satellite and using real TDRSS measurements for the Earth Radiation Budget Satellite (ERBS) and the Solar Mesosphere Explorer (SME) spacecraft. The effects of various measurement combinations, varying arc lengths, and levels of degradation of the a priori state vector on the PODS solutions were considered.

  1. A Space Based Internet Protocol System for Sub-Orbital Tracking and Control

    NASA Technical Reports Server (NTRS)

    Bull, Barton; Grant, Charles; Morgan, Dwayne; Streich, Ron; Bauer, Frank (Technical Monitor)

    2001-01-01

    Personnel from the Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF) in Virginia are responsible for the overall management of the NASA Sounding Rocket Program. Payloads are generally in support of NASA's Space Science Enterprise's missions and return a variety of scientific data as well as providing a reasonably economical means of conducting engineering tests for instruments and devices used on satellites and other spacecraft. The fifteen types of sounding rockets used by NASA can carry payloads of various weights to altitudes from 50 km to more than 1,300 km. Launch activities are conducted not only from established missile ranges, but also from remote locations worldwide requiring mobile tracking and command equipment to be transported and set up at considerable expense. The advent of low earth orbit (LEO) commercial communications satellites provides an opportunity to dramatically reduce tracking and control costs of launch vehicles and Unpiloted Aerial Vehicles (UAVs) by reducing or eliminating this ground infrastructure. Additionally, since data transmission is by packetized Internet Protocol (IP), data can be received and commands initiated from practically any location. A low cost Commercial Off The Shelf (COTS) system is currently under development for sounding rockets which also has application to UAVs and scientific balloons. Due to relatively low data rate (9600 baud) currently available, the system will first be used to provide GPS data for tracking and vehicle recovery. Range safety requirements for launch vehicles usually stipulate at least two independent tracking sources. Most sounding rockets flown by NASA now carry GPS receivers that output position data via the payload telemetry system to the ground station. The Flight Modem can be configured as a completely separate link thereby eliminating requirement for tracking radar. The system architecture which integrates antennas, GPS receiver, commercial satellite packet data modem, and a

  2. A Space Based Internet Protocol System for Launch Vehicle Tracking and Control

    NASA Technical Reports Server (NTRS)

    Bull, Barton; Grant, Charles; Morgan, Dwayne; Streich, Ron; Bauer, Frank (Technical Monitor)

    2001-01-01

    Personnel from the Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF) in Virginia are responsible for the overall management of the NASA Sounding Rocket and Scientific Balloon Programs. Payloads are generally in support of NASA's Space Science Enterprise's missions and return a variety of scientific data as well as providing a reasonably economical means of conducting engineering tests for instruments and devices used on satellites and other spacecraft. Sounding rockets used by NASA can carry payloads of various weights to altitudes from 50 km to more than 1,300 km. Scientific balloons can carry a payload weighing as much as 3,630 Kg to an altitude of 42 km. Launch activities for both are conducted not only from established ranges, but also from remote locations worldwide requiring mobile tracking and command equipment to be transported and set up at considerable expense. The advent of low earth orbit (LEO) commercial communications satellites provides an opportunity to dramatically reduce tracking and control costs of these launch vehicles and Unpiloted Aerial Vehicles (UAVs) by reducing or eliminating this ground infrastructure. Additionally, since data transmission is by packetized Internet Protocol (IP), data can be received and commands initiated from practically any location. A low cost Commercial Off The Shelf (COTS) system is currently under development for sounding rockets that also has application to UAVs and scientific balloons. Due to relatively low data rate (9600 baud) currently available, the system will first be used to provide GPS data for tracking and vehicle recovery. Range safety requirements for launch vehicles usually stipulate at least two independent tracking sources. Most sounding rockets flown by NASA now carry GP receivers that output position data via the payload telemetry system to the ground station. The Flight Modem can be configured as a completely separate link thereby eliminating the requirement for tracking radar. The

  3. Designing and Implementing a System for Tracking Functional Status after Stroke: a Feasibility Study

    PubMed Central

    Sandel, M. Elizabeth; Jette, Alan M.; Appelman, Jed; Terdiman, Joseph; TeSelle, Marian; Delmonico, Richard L.; Wang, Hua; Camicia, Michelle; Rasch, Elizabeth K.; Brandt, Diane E.; Chan, Leighton

    2014-01-01

    Objective To determine the feasibility of tracking stroke patients’ functional outcomes in an integrated health system across a care continuum using the computer version of the Activity Measure of Post-Acute Care (AM-PAC). Setting A large integrated healthcare system in northern California. Participants 222 stroke patients (aged 18 or older) hospitalized after an acute cerebrovascular accident. Methods An AM-PAC assessment was made at discharge from sites of care, including acute hospital, inpatient rehabilitation hospital, skilled nursing facility, home during home care, and in outpatient settings. Assessments were also completed in the patient’s home at six months. Data from the AM-PAC program was integrated with the health care system’s databases. Main Outcome Measurements 1) AM-PAC administration time at the various sites of care; 2) assessment of a floor or a ceiling effect, 3) administrative burden of tracking participants Results AM-PAC assessment sessions averaged 7.9 minutes for data acquisition in 3 domains: Basic Mobility, Activities of Daily Living, and Applied Cognition. Participants answered, on average, 27 AM-PAC questions per session. A small ceiling effect was observed at 6 months and there was a larger ceiling effect when the instrument was administered in an institution, i.e., using the AM-PAC institutional item bank, rather than the community item bank. It was feasible to track patients and assess their function using the AM-PAC instrument from institutional to community settings. Implementation of the AM-PAC in clinical environments, and success of the project was influenced by instrumental, technological, operational, resource, and cultural factors. Conclusions This study demonstrates the feasibility of implementing a single functional outcome instrument in clinical and community settings to measure rehabilitation functional outcomes of stroke patients. Integrating the AM-PAC measurement system into clinical workflows and the electronic

  4. Automatic association of chats and video tracks for activity learning and recognition in aerial video surveillance.

    PubMed

    Hammoud, Riad I; Sahin, Cem S; Blasch, Erik P; Rhodes, Bradley J; Wang, Tao

    2014-01-01

    We describe two advanced video analysis techniques, including video-indexed by voice annotations (VIVA) and multi-media indexing and explorer (MINER). VIVA utilizes analyst call-outs (ACOs) in the form of chat messages (voice-to-text) to associate labels with video target tracks, to designate spatial-temporal activity boundaries and to augment video tracking in challenging scenarios. Challenging scenarios include low-resolution sensors, moving targets and target trajectories obscured by natural and man-made clutter. MINER includes: (1) a fusion of graphical track and text data using probabilistic methods; (2) an activity pattern learning framework to support querying an index of activities of interest (AOIs) and targets of interest (TOIs) by movement type and geolocation; and (3) a user interface to support streaming multi-intelligence data processing. We also present an activity pattern learning framework that uses the multi-source associated data as training to index a large archive of full-motion videos (FMV). VIVA and MINER examples are demonstrated for wide aerial/overhead imagery over common data sets affording an improvement in tracking from video data alone, leading to 84% detection with modest misdetection/false alarm results due to the complexity of the scenario. The novel use of ACOs and chat Sensors 2014, 14 19844 messages in video tracking paves the way for user interaction, correction and preparation of situation awareness reports. PMID:25340453

  5. Automatic Association of Chats and Video Tracks for Activity Learning and Recognition in Aerial Video Surveillance

    PubMed Central

    Hammoud, Riad I.; Sahin, Cem S.; Blasch, Erik P.; Rhodes, Bradley J.; Wang, Tao

    2014-01-01

    We describe two advanced video analysis techniques, including video-indexed by voice annotations (VIVA) and multi-media indexing and explorer (MINER). VIVA utilizes analyst call-outs (ACOs) in the form of chat messages (voice-to-text) to associate labels with video target tracks, to designate spatial-temporal activity boundaries and to augment video tracking in challenging scenarios. Challenging scenarios include low-resolution sensors, moving targets and target trajectories obscured by natural and man-made clutter. MINER includes: (1) a fusion of graphical track and text data using probabilistic methods; (2) an activity pattern learning framework to support querying an index of activities of interest (AOIs) and targets of interest (TOIs) by movement type and geolocation; and (3) a user interface to support streaming multi-intelligence data processing. We also present an activity pattern learning framework that uses the multi-source associated data as training to index a large archive of full-motion videos (FMV). VIVA and MINER examples are demonstrated for wide aerial/overhead imagery over common data sets affording an improvement in tracking from video data alone, leading to 84% detection with modest misdetection/false alarm results due to the complexity of the scenario. The novel use of ACOs and chat messages in video tracking paves the way for user interaction, correction and preparation of situation awareness reports. PMID:25340453

  6. Tracking small mountainous river derived terrestrial organic carbon across the active margin marine environment

    NASA Astrophysics Data System (ADS)

    Childress, L. B.; Blair, N. E.; Orpin, A. R.

    2015-12-01

    Active margins are particularly efficient in the burial of organic carbon due to the close proximity of highland sources to marine sediment sinks and high sediment transport rates. Compared with passive margins, active margins are dominated by small mountainous river systems, and play a unique role in marine and global carbon cycles. Small mountainous rivers drain only approximately 20% of land, but deliver approximately 40% of the fluvial sediment to the global ocean. Unlike large passive margin systems where riverine organic carbon is efficiently incinerated on continental shelves, small mountainous river dominated systems are highly effective in the burial and preservation of organic carbon due to the rapid and episodic delivery of organic carbon sourced from vegetation, soil, and rock. To investigate the erosion, transport, and burial of organic carbon in active margin small mountainous river systems we use the Waipaoa River, New Zealand. The Waipaoa River, and adjacent marine depositional environment, is a system of interest due to a large sediment yield (6800 tons km-2 yr-1) and extensive characterization. Previous studies have considered the biogeochemistry of the watershed and tracked the transport of terrestrially derived sediment and organics to the continental shelf and slope by biogeochemical proxies including stable carbon isotopes, lignin phenols, n-alkanes, and n-fatty acids. In this work we expand the spatial extent of investigation to include deep sea sediments of the Hikurangi Trough. Located in approximately 3000 m water depth 120 km from the mouth of the Waipaoa River, the Hikurangi Trough is the southern extension of the Tonga-Kermadec-Hikurangi subduction system. Piston core sediments collected by the National Institute of Water and Atmospheric Research (NIWA, NZ) in the Hikurangi Trough indicate the presence of terrestrially derived material (lignin phenols), and suggest a continuum of deposition, resuspension, and transport across the margin

  7. Tracking and data relay satellite system - NASA's new spacecraft data acquisition system

    NASA Technical Reports Server (NTRS)

    Schneider, W. C.; Garman, A. A.

    1979-01-01

    This paper describes NASA's new spacecraft acquisition system provided by the Tracking and Data Relay Satellite System (TDRSS). Four satellites in geostationary orbit and a ground terminal will provide complete tracking, telemetry, and command service for all of NASA's orbital satellites below a 12,000 km altitude. Western Union will lease the system, operate the ground terminal and provide operational satellite control. NASA's network control center will be the focal point for scheduling user services and controlling the interface between TDRSS and the NASA communications network, project control centers, and data processing. TDRSS single access user spacecraft data systems will be designed for time shared data relay support, and reimbursement policy and rate structure for non-NASA users are being developed.

  8. Exploitation of inter-track interference in a shingled replay system

    NASA Astrophysics Data System (ADS)

    Jermey, P. M.; Shute, H. A.; Ahmed, M. Z.; Wilton, D. T.

    2009-10-01

    The expected increase in areal density in hard drives will require very narrow tracks. Tracks which are of a similar width to the read head and which are not separated by guardbands normally suffer from large inter-track interference (ITI) or crosstalk. Here, we show that it is possible to read from tracks which are not separated by guardbands and that are narrower than the head. In addition to the significant increase in areal density obtainable by reducing the unrecorded area of the disk and narrowing the tracks, such a system would also lead to a decrease in data retrieval times. We have identified across-track magnetization constraints for future coding across three adjacent tracks so that it will be possible to read from tracks which are only 73% as wide as the read head. Reading from tracks not separated by guardbands which have been written under these constraints yields an increase in track density of at least 47% greater than that possible in conventional drives.

  9. Bioluminescence imaging to track real-time armadillo promoter activity in live Drosophila embryos.

    PubMed

    Akiyoshi, Ryutaro; Kaneuch, Taro; Aigaki, Toshiro; Suzuki, Hirobumi

    2014-09-01

    We established a method for bioluminescence imaging (BLI) to track real-time gene expression in live Drosophila embryos. We constructed a transgenesis vector containing multiple cloning sites and enhanced green-emitting luciferase (ELuc; Emerald Luc), a brighter and pH-insensitive luciferase for promoter analysis. To evaluate the utility of BLI using an ELuc reporter together with an optimized microscope system, we visualized the expression pattern of armadillo (arm), a member of the Wnt pathway in Drosophila, throughout embryogenesis. We generated transgenic flies carrying the arm:: ELuc fusion gene, and successfully performed BLI continuously for 22 h in the same embryos. Our study showed, for the first time, that arm::Eluc expression was dramatically increased in the anterior midgut rudiment, myoblasts of the dorsal/lateral musculature, and the posterior spiracle after stage 13, and the cephalic region at stage 17. To further demonstrate the application of our BLI system, we revealed that arm transcriptional activity in embryos was modulated inversely by treatment with ionomycin or 6-bromoindirubin-3-oxime (BIO), an inhibitor and activator of Wnt/β-catenin signaling, respectively. Therefore, our microscopic BLI system is useful for monitoring gene expression in live Drosophila embryos, and for investigating regulatory mechanisms by using chemicals and mutations that might affect expression. PMID:25023969

  10. Active optical zoom system

    DOEpatents

    Wick, David V.

    2005-12-20

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  11. Getting on Track: Physical Activity and Healthy Eating for Men

    MedlinePlus

    ... online physical activity and nutrition trackers for this purpose. See the "Additional Resources" section at the end ... Information Strategic Plans & Reports Advisory & Coordinating Committees Research Areas Jobs at NIDDK FAQs Visit Us News NIDDK ...

  12. Global tracking control of strict-feedback systems using neural networks.

    PubMed

    Huang, Jeng-Tze

    2012-11-01

    Most existing adaptive neural controllers ensure semiglobally uniform ultimately bounded stability on the condition that the neural approximation remains valid for all time. However, such a condition is difficult to verify beforehand. As a result, deterioration of tracking performance or even instability may occur in real applications. A common recourse is to activate an extra robust controller outside the neural active region to pull back the transient. Such an approach, however, has been restricted to dynamic systems with matched uncertainty. We extend it to strict-feedback systems with mismatched uncertainties via multiswitching-based backstepping methodology. Each virtual and actual controller of the proposed design switches between an adaptive neural controller and a robust controller, with the switching algorithm being sufficiently smooth and, hence, able to be incorporated with the backstepping tool. The overall controller ensures globally uniform ultimate boundedness while simultaneously avoiding the possible control singularity. Simulation results demonstrate the validity of the proposed designs.

  13. Tracking parameter simulation for the Turkish accelerator center particle factory tracker system

    NASA Astrophysics Data System (ADS)

    Tapan, I.; Pilicer, E.; Pilicer, F. B.

    2016-09-01

    The silicon tracker part of the Turkish Accelerator Center super charm particle factory detector was designed for effectively tracking charged particles with momentum values up to 2.0 GeV/c. In this work, the FLUKA simulation code has been used to estimate the track parameters and their resolutions in the designed tracker system. These results have been compared with those obtained by the tkLayout software package. The simulated track parameter resolutions are compatible with the physics goals of the tracking detector.

  14. System and method for tracking a signal source. [employing feedback control

    NASA Technical Reports Server (NTRS)

    Mogavero, L. N.; Johnson, E. G.; Evans, J. M., Jr.; Albus, J. S. (Inventor)

    1978-01-01

    A system for tracking moving signal sources is disclosed which is particularly adaptable for use in tracking stage performers. A miniature transmitter is attached to the person or object to be tracked and emits a detectable signal of a predetermined frequency. A plurality of detectors positioned in a preset pattern sense the signal and supply output information to a phase detector which applies signals representing the angular orientation of the transmitter to a computer. The computer provides command signals to a servo network which drives a device such as a motor driven mirror reflecting the beam of a spotlight, to track the moving transmitter.

  15. A fast assistant decision-making system on the emergent maneuver of the tracking ship

    NASA Astrophysics Data System (ADS)

    Huang, Qiong; Xue, G. H.; Ni, X. Q.

    2016-02-01

    This paper studies a fast assistant decision-making system on the emergent maneuver of the tracking ship, adopting the design method of the emergent working state of the tracking ship based on the meteorological prediction, the virtual display technology based on the multi-stage mapping, and the 2-dimension area algorithm based on the line-scanning. It solves problems that the tracking ship met during working, such as the long TT&C time, the dense crucial observation arc, the complicated working flow, and the changeful scheme. It established the hard basement for the fast design of the emergency working state when the tracking ship in the awful sea conditions.

  16. TRANSCOM: The US Department of Energy (DOE) system for tracking shipments

    SciTech Connect

    Boes, K.S.; Joy, D.S.; Pope, R.B.; Thomas, T.M.; Lester, P.B.

    1994-06-01

    The US Department of energy (DOE) Transportation Management Division (TMD) has developed a system which allows communications with and near real-time tracking of high-visibility shipments of hazardous materials. This system, which is known as TRANSCOM (Transportation Tracking and Communications System), is currently in operation. This paper summarizes the current status of TRANSCOM, its history, the experience associated with its use, and the future plans for its growth and enhancement. during the first half of fiscal year (FY) 1994, 38 shipments were tracked by the TRANSCOM system. These shipments included two Mark-42 spent fuel shipments, one BUSS cask shipment, and one waterway shipment (the Seawolf shipment).

  17. Development and evaluation of a prototype tracking system using the treatment couch

    SciTech Connect

    Lang, Stephanie Riesterer, Oliver; Klöck, Stephan; Zeimetz, Jörg; Ochsner, Gregor; Schmid Daners, Marianne

    2014-02-15

    Purpose: Tumor motion increases safety margins around the clinical target volume and leads to an increased dose to the surrounding healthy tissue. The authors have developed and evaluated a one-dimensional treatment couch tracking system to counter steer respiratory tumor motion. Three different motion detection sensors with different lag times were evaluated. Methods: The couch tracking system consists of a motion detection sensor, which can be the topometrical system Topos (Cyber Technologies, Germany), the respiratory gating system RPM (Varian Medical Systems) or a laser triangulation system (Micro Epsilon), and the Protura treatment couch (Civco Medical Systems). The control of the treatment couch was implemented in the block diagram environment Simulink (MathWorks). To achieve real time performance, the Simulink models were executed on a real time engine, provided by Real-Time Windows Target (MathWorks). A proportional-integral control system was implemented. The lag time of the couch tracking system using the three different motion detection sensors was measured. The geometrical accuracy of the system was evaluated by measuring the mean absolute deviation from the reference (static position) during motion tracking. This deviation was compared to the mean absolute deviation without tracking and a reduction factor was defined. A hexapod system was moving according to seven respiration patterns previously acquired with the RPM system as well as according to a sin{sup 6} function with two different frequencies (0.33 and 0.17 Hz) and the treatment table compensated the motion. Results: A prototype system for treatment couch tracking of respiratory motion was developed. The laser based tracking system with a small lag time of 57 ms reduced the residual motion by a factor of 11.9 ± 5.5 (mean value ± standard deviation). An increase in delay time from 57 to 130 ms (RPM based system) resulted in a reduction by a factor of 4.7 ± 2.6. The Topos based tracking system

  18. Intelligent adaptive control of the vehicle-span/track system

    NASA Astrophysics Data System (ADS)

    Dyniewicz, Bartłomiej; Konowrocki, Robert; Bajer, Czesław I.

    2015-06-01

    This paper presents the strategy of semi-active damping of vibrations of a beam span subjected to a moving load. Intermediate supports as controlled dampers significantly decrease transverse displacements in comparison with a system with permanently active dampers. The gain can reach 40% in the case of high speed loads. In a real structure with a load moving at 3 m/s, considered in this paper, the improvement is about 10%. The control is determined by a minimization procedure. Numerical simulations are confirmed experimentally on a stand with a length of 4 m. Controlled dampers can be replaced with an intelligent material. The potential applications are in transport or robotics.

  19. Multimodality image guidance system integrating X-ray fluoroscopy and ultrasound image streams with electromagnetic tracking

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Luis F.; Shechter, Guy; Stanton, Douglas; Dalal, Sandeep; Elgort, Daniel; Manzke, Robert; Chan, Raymond C.; Zagorchev, Lyubomir

    2007-03-01

    This work presents an integrated system for multimodality image guidance of minimally invasive medical procedures. This software and hardware system offers real-time integration and registration of multiple image streams with localization data from navigation systems. All system components communicate over a local area Ethernet network, enabling rapid and flexible deployment configurations. As a representative configuration, we use X-ray fluoroscopy (XF) and ultrasound (US) imaging. The XF imaging system serves as the world coordinate system, with gantry geometry derived from the imaging system, and patient table position tracked with a custom-built measurement device using linear encoders. An electromagnetic (EM) tracking system is registered to the XF space using a custom imaging phantom that is also tracked by the EM system. The RMS fiducial registration error for the EM to X-ray registration was 2.19 mm, and the RMS target registration error measured with an EM-tracked catheter was 8.81 mm. The US image stream is subsequently registered to the XF coordinate system using EM tracking of the probe, following a calibration of the US image within the EM coordinate system. We present qualitative results of the system in operation, demonstrating the integration of live ultrasound imaging spatially registered to X-ray fluoroscopy with catheter localization using electromagnetic tracking.

  20. National Diffusion Network's Evaluation of the Fast Track Music System 1992-93.

    ERIC Educational Resources Information Center

    Szymczuk, Michael

    This document reports on an evaluation project to determine the effectiveness of the Fast Track method of instrumental music instruction as applied to beginning band instruction. The Fast Track music system is unique because it simultaneously aids both visual and aural learning by using a book and cassette tape approach to instruction. Traditional…

  1. School Tracking and Educational Inequality: A Comparison of 12 Education Systems in Switzerland

    ERIC Educational Resources Information Center

    Felouzis, Georges; Charmillot, Samuel

    2013-01-01

    Using data from the super-sample of the "PISA Suisse" 2003 assessment, this article examines the relationship between the characteristics of education systems (made up of homogeneous or heterogeneous tracks) and their consequences in terms of effectiveness and equity. Our results indicate that it is not so much the official structure of tracks as…

  2. LONESTAR: Texas Community Colleges Student Tracking System. Pilot Test Version 1.2. Data Element Dictionary.

    ERIC Educational Resources Information Center

    National Center for Higher Education Management Systems, Boulder, CO.

    This manual contains descriptions of all required and optional data elements used by LONESTAR, the computer-based student follow-up and tracking system developed for Texas community colleges. For each element, the following information is provided: (1) element title (i.e., the official name used in all references to the element in tracking system…

  3. H(infinity) output tracking control for nonlinear systems via T-S fuzzy model approach.

    PubMed

    Lin, Chong; Wang, Qing-Guo; Lee, Tong Heng

    2006-04-01

    This paper studies the problem of H(infinity) output tracking control for nonlinear time-delay systems using Takagi-Sugeno (T-S) fuzzy model approach. An LMI-based design method is proposed for achieving the output tracking purpose. Illustrative examples are given to show the effectiveness of the present results.

  4. Tracking Active Region NOAA 12192 in Multiple Carrington Rotations

    NASA Astrophysics Data System (ADS)

    Jain, Kiran; Tripathy, Sushant C.; Hill, Frank

    2015-04-01

    Active region NOAA 12192 appeared on the visible solar disk on October 18, 2014 and grew rapidly into the largest such region since 1990. During its entire transit across the Earth facing side of the Sun, it produced a significant number of X- and M-class flares. The combination of front-side and helioseismic far-side images clearly indicated that it lived through several Carrington rotations. In this paper, using Dopplergrams from GONG and HMI, we present a study on mode parameters, viz. oscillation frequencies, amplitude, and sub-surface flows and investigate how these vary with the evolution of active region in multiple rotations. We also present a detailed comparison between NOAA 10486 (the biggest active region in cycle 23) and NOAA 12192, and discuss the similarities/differences between them.

  5. From forager tracks to prey distributions: an application to tuna vessel monitoring systems (VMS).

    PubMed

    Walker, Emily; Rivoirard, Jacques; Gaspar, Philippe; Bez, Nicolas

    2015-04-01

    In the open ocean, movements of migratory fish populations are typically surveyed using tagging methods that are subject to low sample sizes for archive tags, except for a few notable examples, and poor temporal resolution for conventional tags. Alternatively, one can infer patterns of movement of migratory fish by tracking movements of their predators, i.e., fishing vessels, whose navigational systems (e.g., GPS) provide accurate and frequent VMS (vessel monitoring system) records of movement in pursuit of prey. In this paper, we develop a state-space model that infers the foraging activities of fishing vessels from their tracks. Second, we link foraging activities to probabilities of tuna presence. Finally, using multivariate geostatistical interpolation (cokriging) we map the probability of tuna presence together with their estimation variances and produce a time series of indices of abundance. While the segmentation of the trajectories is validated by observers' data, the present VMS-index is compared to catch rate and proved to be useful for management perspectives. The approach reported in this manuscript extends beyond the case study considered. It can be applied to any foragers that engage in an attempt of capture when they see prey and for whom this attempt is linked to a tractable change in behavior. PMID:26214926

  6. From forager tracks to prey distributions: an application to tuna vessel monitoring systems (VMS).

    PubMed

    Walker, Emily; Rivoirard, Jacques; Gaspar, Philippe; Bez, Nicolas

    2015-04-01

    In the open ocean, movements of migratory fish populations are typically surveyed using tagging methods that are subject to low sample sizes for archive tags, except for a few notable examples, and poor temporal resolution for conventional tags. Alternatively, one can infer patterns of movement of migratory fish by tracking movements of their predators, i.e., fishing vessels, whose navigational systems (e.g., GPS) provide accurate and frequent VMS (vessel monitoring system) records of movement in pursuit of prey. In this paper, we develop a state-space model that infers the foraging activities of fishing vessels from their tracks. Second, we link foraging activities to probabilities of tuna presence. Finally, using multivariate geostatistical interpolation (cokriging) we map the probability of tuna presence together with their estimation variances and produce a time series of indices of abundance. While the segmentation of the trajectories is validated by observers' data, the present VMS-index is compared to catch rate and proved to be useful for management perspectives. The approach reported in this manuscript extends beyond the case study considered. It can be applied to any foragers that engage in an attempt of capture when they see prey and for whom this attempt is linked to a tractable change in behavior.

  7. Active microcoil tracking in the lungs using a semisolid rubber as signal source.

    PubMed

    Alt, Stefan; Homagk, Ann-Kathrin; Umathum, Reiner; Semmler, Wolfhard; Bock, Michael

    2010-07-01

    A new method to localize and track medical devices in air-filled body cavities is proposed that uses active microcoils with a semisolid filling. In air spaces, e.g., the lung, microcoils require an independent signal source, which should be made of a biocompatible, solid and sterilizable material with a long shelf time. In a measurement of the T(1) and T*(2) and the relative spin density of several semisolid materials, latex was identified as a suitable material from which a prototype catheter was constructed with a microcoil at its tip. In a dual-echo tracking pulse sequence, the very short T*(2) of the rubber material allowed suppressing the background signal from surrounding tissue with a subtraction technique and additional dephasing gradients. With a roadmapping reconstruction, the microcoil's trajectory could be visualized on a previously acquired reference image set with a tracking rate of up to 60 Hz at a spatial resolution of better than 2mm. In a real-time tracking implementation, an image update rate of 4 Hz was achieved by combining the tracking with a fast real-time imaging sequence. Both methods were successfully applied in vivo to track the catheter in the lung of a pig. PMID:20572154

  8. A Classroom Activity: Tracking El Niño

    ERIC Educational Resources Information Center

    Ribbe, Joachim

    2016-01-01

    This paper aims to introduce an activity for teachers to assist in meeting learning outcomes as defined in the earth and environmental science units of the Australian Curriculum. The focus of the classroom tasks is on a global ocean feature referred to as El Niño. This phenomenon is part of the El Niño Southern Oscillation, which is largely…

  9. Investigating the Potential of Activity Tracking App Data to Estimate Cycle Flows in Urban Areas

    NASA Astrophysics Data System (ADS)

    Haworth, J.

    2016-06-01

    Traffic congestion and its associated environmental effects pose a significant problem for large cities. Consequently, promoting and investing in green travel modes such as cycling is high on the agenda for many transport authorities. In order to target investment in cycling infrastructure and improve the experience of cyclists on the road, it is important to know where they are. Unfortunately, investment in intelligent transportation systems over the years has mainly focussed on monitoring vehicular traffic, and comparatively little is known about where cyclists are on a day to day basis. In London, for example, there are a limited number of automatic cycle counters installed on the network, which provide only part of the picture. These are supplemented by surveys that are carried out infrequently. Activity tracking apps on smart phones and GPS devices such as Strava have become very popular over recent years. Their intended use is to track physical activity and monitor training. However, many people routinely use such apps to record their daily commutes by bicycle. At the aggregate level, these data provide a potentially rich source of information about the movement and behaviour of cyclists. Before such data can be relied upon, however, it is necessary to examine their representativeness and understand their potential biases. In this study, the flows obtained from Strava Metro (SM) are compared with those obtained during the 2013 London Cycle Census (LCC). A set of linear regression models are constructed to predict LCC flows using SM flows along with a number of dummy variables including road type, hour of day, day of week and presence/absence of cycle lane. Cross-validation is used to test the fitted models on unseen LCC sites. SM flows are found to be a statistically significant (p<0.0001) predictor of total flows as measured by the LCC and the models yield R squared statistics of ~0.7 before considering spatio-temporal variation. The initial results indicate

  10. An animal tracking system for behavior analysis using radio frequency identification.

    PubMed

    Catarinucci, Luca; Colella, Riccardo; Mainetti, Luca; Patrono, Luigi; Pieretti, Stefano; Secco, Andrea; Sergi, Ilaria

    2014-09-01

    Evaluating the behavior of mice and rats has substantially contributed to the progress of research in many scientific fields. Researchers commonly observe recorded video of animal behavior and manually record their observations for later analysis, but this approach has several limitations. The authors developed an automated system for tracking and analyzing the behavior of rodents that is based on radio frequency identification (RFID) in an ultra-high-frequency bandwidth. They provide an overview of the system's hardware and software components as well as describe their technique for surgically implanting passive RFID tags in mice. Finally, the authors present the findings of two validation studies to compare the accuracy of the RFID system versus commonly used approaches for evaluating the locomotor activity and object exploration of mice.

  11. Arizona State University: Student Tracking in a University System.

    ERIC Educational Resources Information Center

    Porter, John D.; Gebel, Melinda A.

    1995-01-01

    Arizona State University has created longitudinal student files capable of tracking each student's curricular and financial aid history from entry until graduation. The structure of the files, their creation and maintenance, and their evolution over the years are described. Uses of the files to conduct different kinds of studies to inform…

  12. Tracking system options for future altimeter satellite missions

    NASA Technical Reports Server (NTRS)

    Davis, G. W.; Rim, H. J.; Ries, J. C.; Tapley, B. D.

    1994-01-01

    Follow-on missions to provide continuity in the observation of the sea surface topography once the successful TOPEX/POSEIDON (T/P) oceanographic satellite mission has ended are discussed. Candidates include orbits which follow the ground tracks of T/P GEOSAT or ERS-1. The T/P precision ephemerides, estimated to be near 3 cm root-mean-square, demonstrate the radial orbit accuracy that can be achieved at 1300 km altitude. However, the radial orbit accuracy which can be achieved for a mission at the 800 km altitudes of GEOSAT and ERS-1 has not been established, and achieving an accuracy commensurate with T/P will pose a great challenge. This investigation focuses on the radial orbit accuracy that can be achieved for a mission in the GEOSAT orbit. Emphasis is given to characterizing the effects of force model errors on the estimated radial orbit accuracy, particularly those due to gravity and drag. The importance of global, continuous tracking of the satellite for reduction in these sources of orbit error is demonstrated with simulated GPS tracking data. A gravity tuning experiment is carried out to show how the effects of gravity error may be reduced. Assuming a GPS flight receiver with a full-sky tracking capability, the simulation results indicate that a 5 cm radial orbit accuracy for an altimeter satellite in GEOSAT orbit should be achievable during low-drag atmospheric conditions and after an acceptable tuning of the gravity model.

  13. 49 CFR 213.345 - Vehicle/track system qualification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the wheel/rail force safety limits and the carbody and truck acceleration criteria specified in § 213... representative of the route. (3) Carbody acceleration. For vehicle types intended to operate at track Class 6... not exceed the carbody lateral and vertical acceleration safety limits specified in § 213.333....

  14. 49 CFR 213.345 - Vehicle/track system qualification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the wheel/rail force safety limits and the carbody and truck acceleration criteria specified in § 213... representative of the route. (3) Carbody acceleration. For vehicle types intended to operate at track Class 6... not exceed the carbody lateral and vertical acceleration safety limits specified in § 213.333....

  15. Analyzing Instructional Software Using a Computer-Tracking System.

    ERIC Educational Resources Information Center

    Mills, Robert J.

    2001-01-01

    Computer tracking data were used to determine the relationship between effectiveness and efficiency of 94 students using a database program for instructional tasks. Performance was enhanced by review of rules and presentation forms; additional practice opportunities also benefitted performance. (Copntains 19 references.) (JOW)

  16. Tracking Systems for Virtual Rehabilitation: Objective Performance vs. Subjective Experience. A Practical Scenario

    PubMed Central

    Lloréns, Roberto; Noé, Enrique; Naranjo, Valery; Borrego, Adrián; Latorre, Jorge; Alcañiz, Mariano

    2015-01-01

    Motion tracking systems are commonly used in virtual reality-based interventions to detect movements in the real world and transfer them to the virtual environment. There are different tracking solutions based on different physical principles, which mainly define their performance parameters. However, special requirements have to be considered for rehabilitation purposes. This paper studies and compares the accuracy and jitter of three tracking solutions (optical, electromagnetic, and skeleton tracking) in a practical scenario and analyzes the subjective perceptions of 19 healthy subjects, 22 stroke survivors, and 14 physical therapists. The optical tracking system provided the best accuracy (1.074 ± 0.417 cm) while the electromagnetic device provided the most inaccurate results (11.027 ± 2.364 cm). However, this tracking solution provided the best jitter values (0.324 ± 0.093 cm), in contrast to the skeleton tracking, which had the worst results (1.522 ± 0.858 cm). Healthy individuals and professionals preferred the skeleton tracking solution rather than the optical and electromagnetic solution (in that order). Individuals with stroke chose the optical solution over the other options. Our results show that subjective perceptions and preferences are far from being constant among different populations, thus suggesting that these considerations, together with the performance parameters, should be also taken into account when designing a rehabilitation system. PMID:25808765

  17. Tracking systems for virtual rehabilitation: objective performance vs. subjective experience. A practical scenario.

    PubMed

    Lloréns, Roberto; Noé, Enrique; Naranjo, Valery; Borrego, Adrián; Latorre, Jorge; Alcañiz, Mariano

    2015-03-19

    Motion tracking systems are commonly used in virtual reality-based interventions to detect movements in the real world and transfer them to the virtual environment. There are different tracking solutions based on different physical principles, which mainly define their performance parameters. However, special requirements have to be considered for rehabilitation purposes. This paper studies and compares the accuracy and jitter of three tracking solutions (optical, electromagnetic, and skeleton tracking) in a practical scenario and analyzes the subjective perceptions of 19 healthy subjects, 22 stroke survivors, and 14 physical therapists. The optical tracking system provided the best accuracy (1.074 ± 0.417 cm) while the electromagnetic device provided the most inaccurate results (11.027 ± 2.364 cm). However, this tracking solution provided the best jitter values (0.324 ± 0.093 cm), in contrast to the skeleton tracking, which had the worst results (1.522 ± 0.858 cm). Healthy individuals and professionals preferred the skeleton tracking solution rather than the optical and electromagnetic solution (in that order). Individuals with stroke chose the optical solution over the other options. Our results show that subjective perceptions and preferences are far from being constant among different populations, thus suggesting that these considerations, together with the performance parameters, should be also taken into account when designing a rehabilitation system.

  18. Symplectic analysis of vertical random vibration for coupled vehicle track systems

    NASA Astrophysics Data System (ADS)

    Lu, F.; Kennedy, D.; Williams, F. W.; Lin, J. H.

    2008-10-01

    A computational model for random vibration analysis of vehicle-track systems is proposed and solutions use the pseudo excitation method (PEM) and the symplectic method. The vehicle is modelled as a mass, spring and damping system with 10 degrees of freedom (dofs) which consist of vertical and pitching motion for the vehicle body and its two bogies and vertical motion for the four wheelsets. The track is treated as an infinite Bernoulli-Euler beam connected to sleepers and hence to ballast and is regarded as a periodic structure. Linear springs couple the vehicle and the track. Hence, the coupled vehicle-track system has only 26 dofs. A fixed excitation model is used, i.e. the vehicle does not move along the track but instead the track irregularity profile moves backwards at the vehicle velocity. This irregularity is assumed to be a stationary random process. Random vibration theory is used to obtain the response power spectral densities (PSDs), by using PEM to transform this random multiexcitation problem into a deterministic harmonic excitation one and then applying symplectic solution methodology. Numerical results for an example include verification of the proposed method by comparing with finite element method (FEM) results; comparison between the present model and the traditional rigid track model and; discussion of the influences of track damping and vehicle velocity.

  19. Evaluation of a video-based head motion tracking system for dedicated brain PET

    NASA Astrophysics Data System (ADS)

    Anishchenko, S.; Beylin, D.; Stepanov, P.; Stepanov, A.; Weinberg, I. N.; Schaeffer, S.; Zavarzin, V.; Shaposhnikov, D.; Smith, M. F.

    2015-03-01

    Unintentional head motion during Positron Emission Tomography (PET) data acquisition can degrade PET image quality and lead to artifacts. Poor patient compliance, head tremor, and coughing are examples of movement sources. Head motion due to patient non-compliance can be an issue with the rise of amyloid brain PET in dementia patients. To preserve PET image resolution and quantitative accuracy, head motion can be tracked and corrected in the image reconstruction algorithm. While fiducial markers can be used, a contactless approach is preferable. A video-based head motion tracking system for a dedicated portable brain PET scanner was developed. Four wide-angle cameras organized in two stereo pairs are used for capturing video of the patient's head during the PET data acquisition. Facial points are automatically tracked and used to determine the six degree of freedom head pose as a function of time. The presented work evaluated the newly designed tracking system using a head phantom and a moving American College of Radiology (ACR) phantom. The mean video-tracking error was 0.99±0.90 mm relative to the magnetic tracking device used as ground truth. Qualitative evaluation with the ACR phantom shows the advantage of the motion tracking application. The developed system is able to perform tracking with accuracy close to millimeter and can help to preserve resolution of brain PET images in presence of movements.

  20. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    NASA Technical Reports Server (NTRS)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  1. Assessment of design parameters of a slab track railway system from a dynamic viewpoint

    NASA Astrophysics Data System (ADS)

    Steenbergen, M. J. M. M.; Metrikine, A. V.; Esveld, C.

    2007-09-01

    The development of the ballastless slab track, with applications especially on soft soil in combination with loading by high-speed trains, puts several specific engineering demands. One of these is how to provide the required vertical stiffness of the track system. According to the most common approach massive soil improvements are applied. An alternative to this would be to increase the bending stiffness of the slab, e.g. by applying an eccentric reinforcement. Both solutions have consequences for the dynamic track and ground response. In this contribution, the classical model of a beam on elastic half-space subject to a moving load is employed to assess effectiveness of these engineering solutions by analysis of their influence on the generalized dynamic track stiffness. The aim is to minimize the level of slab vibrations, in order to prevent deterioration. The effect of variation of other track properties is also evaluated. It is shown that for high frequencies an increase of the track stiffness is most effective, whereas for low frequencies soil improvement is a better solution. It is further shown that a relatively high track mass generally decreases track vibrations in the relevant frequency domain and that the width of the slab is an important parameter to control the level of track vibrations.

  2. Tracking mesenchymal stromal cells using an ultra-bright TAT-functionalized plasmonic-active nanoplatform.

    PubMed

    Yuan, Hsiangkuo; Gomez, Jose A; Chien, Jennifer S; Zhang, Lunan; Wilson, Christy M; Li, Shuqin; Fales, Andrew M; Liu, Yang; Grant, Gerald A; Mirotsou, Maria; Dzau, Victor J; Vo-Dinh, Tuan

    2016-04-01

    High-resolution tracking of stem cells remains a challenging task. An ultra-bright contrast agent with extended intracellular retention is suitable for in vivo high-resolution tracking of stem cells following the implantation. Here, a plasmonic-active nanoplatform was developed for tracking mesenchymal stromal cells (MSCs) in mice. The nanoplatform consisted of TAT peptide-functionalized gold nanostars (TAT-GNS) that emit ultra-bright two-photon photoluminescence capable of tracking MSCs under high-resolution optical imaging. In vitro experiment showed TAT-GNS-labeled MSCs retained a similar differentiability to that of non-labeled MSCs controls. Due to their star shape, TAT-GNS exhibited greater intracellular retention than that of commercial Q-Tracker. In vivo imaging of TAT-GNS-labeled MSCs five days following intra-arterial injections in mice kidneys showed possible MSCs implantation in juxta-glomerular (JG) regions, but non-specifically in glomeruli and afferent arterioles as well. With future design to optimize GNS labeling specificity and clearance, plasmonic-active nanoplatforms may be a useful intracellular tracking tool for stem cell research. An ultra-bright intracellular contrast agent is developed using TAT peptide-functionalized gold nanostars (TAT-GNS). It poses minimal influence on the stem cell differentiability. It exhibits stronger two-photon photoluminescence and superior labeling efficiency than commercial Q-Tracker. Following renal implantation, some TAT-GNS-labeled MSCs permeate blood vessels and migrate to the juxta-glomerular region. PMID:27095616

  3. Two interacting active dimers on a rigid track

    NASA Astrophysics Data System (ADS)

    Mayett, David; Das, Moumita; Schwarz, J. M.

    Cell migration in morphogenesis and cancer metastasis typically involves an interplay between different cell types. The rules governing such interplay remain largely unknown; however, a recent experiment studying the interaction between neural crest (NC) cells and placodal cells reveals an example of such rules. The study found that NC cells chase the placodal cells by chemotaxis, while placodal cells run away from NC cells when contacted by them. Motivated by this observation, we construct and study a minimal one-dimensional cell-cell model comprised of two cells with each cell represented by two-beads-connected-by-an-active spring. The active spring for each moving cell models the stress fibers with their myosin-driven Contractility (and alpha-actinin extendability), while the friction coefficients of the beads describe the catch/slip bond behavior of the integrins in focal adhesions. We also include a dynamic contact interaction between the two cells to decipher the chase-and-run dynamics observed in the experiment. We then use our model to construct a ''phase diagram'' consisting of chase-and-run behavior, clumping (of the two cells) with repolarization behavior and clumping with no repolarization behavior that can be qualitatively compared to experiments.

  4. Cooperative multisensor system for real-time face detection and tracking in uncontrolled conditions

    NASA Astrophysics Data System (ADS)

    Marchesotti, Luca; Piva, Stefano; Turolla, Andrea; Minetti, Deborah; Regazzoni, Carlo S.

    2005-03-01

    The presented work describes an innovative architecture for multi-sensor distributed video surveillance applications. The aim of the system is to track moving objects in outdoor environments with a cooperative strategy exploiting two video cameras. The system also exhibits the capacity of focusing its attention on the faces of detected pedestrians collecting snapshot frames of face images, by segmenting and tracking them over time at different resolution. The system is designed to employ two video cameras in a cooperative client/server structure: the first camera monitors the entire area of interest and detects the moving objects using change detection techniques. The detected objects are tracked over time and their position is indicated on a map representing the monitored area. The objects" coordinates are sent to the server sensor in order to point its zooming optics towards the moving object. The second camera tracks the objects at high resolution. As well as the client camera, this sensor is calibrated and the position of the object detected on the image plane reference system is translated in its coordinates referred to the same area map. In the map common reference system, data fusion techniques are applied to achieve a more precise and robust estimation of the objects" track and to perform face detection and tracking. The work novelties and strength reside in the cooperative multi-sensor approach, in the high resolution long distance tracking and in the automatic collection of biometric data such as a person face clip for recognition purposes.

  5. Design and Performance Evaluation on Ultra-Wideband Time-Of-Arrival 3D Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Dusl, John

    2012-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time--of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide and felt upset. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested in the Wireless Habitat Testbed which simulates the ISS module environment. In this presentation, we discuss the 3D TOA tracking algorithm and the performance evaluation based on different tracking baseline configurations. The simulation results show that two configurations of the tracking baseline are feasible. With 100 picoseconds standard deviation (STD) of TOA estimates, the average tracking error 0.2392 feet (about 7 centimeters) can be achieved for configuration Twisted Rectangle while the average tracking error 0.9183 feet (about 28 centimeters) can be achieved for configuration Slightly-Twisted Top Rectangle . The tracking accuracy can be further improved with the improvement of the STD of TOA estimates. With 10 picoseconds STD of TOA estimates, the average tracking error 0.0239 feet (less than 1 centimeter) can be achieved for configuration "Twisted Rectangle".

  6. HARPs: Tracked Active Region Patch Data Product from SDO/HMI

    NASA Astrophysics Data System (ADS)

    Turmon, M.; Hoeksema, J. T.; Sun, X.; Bobra, M.

    2012-12-01

    We describe an HMI data product consisting of tracked magnetic features on the scale of solar active regions, abbreviated HARPs (HMI Active Region Patches). The HARP data series has been helpful for subsetting individual active regions, for development of near-real-time (NRT) space weather indices for individual active regions, and for defining closed magnetic structures for computationally-intensive algorithms like vector field disambiguation. The data series builds upon the 720s cadence activity masks, which identify large-scale instantaneously-observed magnetic features. Using these masks as a starting point, large spatially-coherent structures are identified using convolution with a longitudinally-extended kernel on a spherical domain. The resulting set of identified regions is then tracked from image to image. The metric for inter-image association is area of overlap between the best current estimate of AR location, as predicted by temporally extrapolating each currently tracked object, and the set of instantaneously-observed magnetic structures. Once completed tracks have been extracted, they are made into a standardized HARP data series by finding the smallest constant-angular-velocity box, of constant width in latitude and longitude, that encompasses all appearances of the active region. This data product is currently available, in definitive and near-real-time forms, with accompanying region-strength, location, and NOAA-AR metadata, on HMI's Joint Science Operations Center (JSOC) data portal.; HARP outlines for three days (2001 February 14, 15, and 16, 00:00 TAI, flipped N-S, selected from the 12-minute cadence original data product). HARPs are shown in the same color (some colors repeated) with a thin white box surrounding each HARP. HARPs are tracked and associated from image to image. HARPs, such as the yellow one in the images above, need not be connected regions. Merges and splits, such as the light blue region, are accounted for automatically.

  7. Making Tracks 1.0: Action Researching an Active Transportation Education Program

    ERIC Educational Resources Information Center

    Robinson, Daniel; Foran, Andrew; Robinson, Ingrid

    2014-01-01

    This paper reports on the results of the first cycle of an action research project. The objective of this action research was to examine the implementation of a school-based active transportation education program (Making Tracks). A two-cycle action research design was employed in which elementary school students' (ages 7-9), middle school…

  8. Using EPA`s allowance tracking system to assess the allowance market

    SciTech Connect

    Dean, M.; Kruger, J.

    1997-12-31

    The development of a credible framework for analyzing private allowance transfers recorded in EPA`s Allowance Tracking System (ATS) is essential for effective assessment of the sulfur dioxide (SO{sub 2}) allowance market. The ATS began recording transfers of allowances in March, 1994, and since then has served as an automated record of allowance holdings and transfers of ownership. Though primarily concerned with determining compliance, the ATS contains details of private allowance transfers representing what is believed to be a significant portion of overall SO{sub 2} allowance market activity. This paper will analyze these private transfers recorded in ATS and will develop relevant categories for classification purposes. The resulting categorization will enable consistent analysis of the SO{sub 2} allowance market and provide substantial insight into the level and type of allowance trading activity under the Acid Rain Program.

  9. Design and Performance Evaluation of a UWB Communication and Tracking System for Mini-AERCam

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.

    2005-01-01

    NASA Johnson Space Center (JSC) is developing a low-volume, low-mass, robotic free-flying camera known as Mini-AERCam (Autonomous Extra-vehicular Robotic Camera) to assist the International Space Station (ISS) operations. Mini-AERCam is designed to provide astronauts and ground control real-time video for camera views of ISS. The system will assist ISS crewmembers and ground personnel to monitor ongoing operations and perform visual inspections of exterior ISS components without requiring extravehicular activity (EAV). Mini-AERCam consists of a great number of subsystems. Many institutions and companies have been involved in the R&D for this project. A Mini-AERCam ground control system has been studied at Texas A&M University [3]. The path planning and control algorithms that direct the motions of Mini-AERCam have been developed through the joint effort of Carnegie Mellon University and the Texas Robotics and Automation Center [5]. NASA JSC has designed a layered control architecture that integrates all functions of Mini-AERCam [8]. The research described in this report is part of a larger effort focused on the communication and tracking subsystem that is designed to perform three major tasks: 1. To transmit commands from ISS to Mini-AERCam for control of robotic camera motions (downlink); 2. To transmit real-time video from Mini-AERCam to ISS for inspections (uplink); 3. To track the position of Mini-AERCam for precise motion control. The ISS propagation environment is unique due to the nature of the ISS structure and multiple RF interference sources [9]. The ISS is composed of various truss segments, solar panels, thermal radiator panels, and modules for laboratories and crew accommodations. A tracking system supplemental to GPS is desirable both to improve accuracy and to eliminate the structural blockage due to the close proximity of the ISS which could at times limit the number of GPS satellites accessible to the Mini-AERCam. Ideally, the tracking system will

  10. Integration of an On-Axis General Sun-Tracking Formula in the Algorithm of an Open-Loop Sun-Tracking System

    PubMed Central

    Chong, Kok-Keong; Wong, Chee-Woon; Siaw, Fei-Lu; Yew, Tiong-Keat; Ng, See-Seng; Liang, Meng-Suan; Lim, Yun-Seng; Lau, Sing-Liong

    2009-01-01

    A novel on-axis general sun-tracking formula has been integrated in the algorithm of an open-loop sun-tracking system in order to track the sun accurately and cost effectively. Sun-tracking errors due to installation defects of the 25 m2 prototype solar concentrator have been analyzed from recorded solar images with the use of a CCD camera. With the recorded data, misaligned angles from ideal azimuth-elevation axes have been determined and corrected by a straightforward changing of the parameters' values in the general formula of the tracking algorithm to improve the tracking accuracy to 2.99 mrad, which falls below the encoder resolution limit of 4.13 mrad. PMID:22408483

  11. Integration of an on-axis general sun-tracking formula in the algorithm of an open-loop sun-tracking system.

    PubMed

    Chong, Kok-Keong; Wong, Chee-Woon; Siaw, Fei-Lu; Yew, Tiong-Keat; Ng, See-Seng; Liang, Meng-Suan; Lim, Yun-Seng; Lau, Sing-Liong

    2009-01-01

    A novel on-axis general sun-tracking formula has been integrated in the algorithm of an open-loop sun-tracking system in order to track the sun accurately and cost effectively. Sun-tracking errors due to installation defects of the 25 m(2) prototype solar concentrator have been analyzed from recorded solar images with the use of a CCD camera. With the recorded data, misaligned angles from ideal azimuth-elevation axes have been determined and corrected by a straightforward changing of the parameters' values in the general formula of the tracking algorithm to improve the tracking accuracy to 2.99 mrad, which falls below the encoder resolution limit of 4.13 mrad.

  12. A feasibility study of stationary and dual-axis tracking grid-connected photovoltaic systems in the Upper Midwest

    NASA Astrophysics Data System (ADS)

    Warren, Ryan Duwain

    Three primary objectives were defined for this work. The first objective was to determine, assess, and compare the performance, heat transfer characteristics, economics, and feasibility of real-world stationary and dual-axis tracking grid-connected photovoltaic (PV) systems in the Upper Midwest. This objective was achieved by installing two grid-connected PV systems with different mounting schemes in central Iowa, implementing extensive data acquisition systems, monitoring operation of the PV systems for one full year, and performing detailed experimental performance and economic studies. The two PV systems that were installed, monitored, and analyzed included a 4.59 kWp roof-mounted stationary system oriented for maximum annual energy production, and a 1.02 kWp pole-mounted actively controlled dual-axis tracking system. The second objective was to demonstrate the actual use and performance of real-world stationary and dual-axis tracking grid-connected PV systems used for building energy generation applications. This objective was achieved by offering the installed PV systems to the public for demonstration purposes and through the development of three computer-based tools: a software interface that has the ability to display real-time and historical performance and meteorological data of both systems side-by-side, a software interface that shows real-time and historical video and photographs of each system, and a calculator that can predict performance and economics of stationary and dual-axis tracking grid-connected PV systems at various locations in the United States. The final objective was to disseminate this work to social, professional, scientific, and academic communities in a way that is applicable, objective, accurate, accessible, and comprehensible. This final objective will be addressed by publishing the results of this work and making the computer-based tools available on a public website (www.energy.iastate.edu/Renewable/solar). Detailed experimental

  13. A bibliography of wildlife movements and tracking systems

    NASA Technical Reports Server (NTRS)

    Werber, M.

    1970-01-01

    A bibliography is presented consisting of 1,005 references concerned with animal orientation, homing, navigation, migration, and home range movements, and the various methods of tracking and monitoring such behavior through biotelemetry, radar, and various banding and tagging techniques. A majority of the publications appeared between 1950 and 1970, although the most intensive search was made of the 1965-1970 period. A small number of older articles and books were included because they appeared to have some special or unusual value. The references have been organized in two ways. First, they are grouped in primary categories on the basis of the behavior involved such as orientation, homing, etc., and the methods of tracking. Second, within each of the resulting major areas, the items are arranged in terms of the species of animal. This sequence is maintained throughout the bibliography and in many cases represents a rank order according to the number of publications found.

  14. Tracking the cellulolytic activity of Clostridium thermocellum biofilms

    PubMed Central

    2013-01-01

    Background Microbial cellulose conversion by Clostridium thermocellum 27405 occurs predominantly through the activity of substrate-adherent bacteria organized in thin, primarily single cell-layered biofilms. The importance of cellulosic surface exposure to microbial hydrolysis has received little attention despite its implied impact on conversion kinetics. Results We showed the spatial heterogeneity of fiber distribution in pure cellulosic sheets, which made direct measurements of biofilm colonization and surface penetration impossible. Therefore, we utilized on-line measurements of carbon dioxide (CO2) production in continuous-flow reactors, in conjunction with confocal imaging, to observe patterns of biofilm invasion and to indirectly estimate microbial accessibility to the substrate’s surface and the resulting limitations on conversion kinetics. A strong positive correlation was found between cellulose consumption and CO2 production (R2 = 0.996) and between surface area and maximum biofilm activity (R2 = 0.981). We observed an initial biofilm development rate (0.46 h-1, 0.34 h-1 and 0.33 h-1) on Whatman sheets (#1, #598 and #3, respectively) that stabilized when the accessible surface was maximally colonized. The results suggest that cellulose conversion kinetics is initially subject to a microbial limitation period where the substrate is in excess, followed by a substrate limitation period where cellular mass, in the form of biofilms, is not limiting. Accessible surface area acts as an important determinant of the respective lengths of these two distinct periods. At end-point fermentation, all sheets were digested predominantly under substrate accessibility limitations (e.g., up to 81% of total CO2 production for Whatman #1). Integration of CO2 production rates over time showed Whatman #3 underwent the fastest conversion efficiency under microbial limitation, suggestive of best biofilm penetration, while Whatman #1 exhibited the least recalcitrance

  15. Actin filament tracking based on particle filters and stretching open active contour models.

    PubMed

    Li, Hongsheng; Shen, Tian; Vavylonis, Dimitrios; Huang, Xiaolei

    2009-01-01

    We introduce a novel algorithm for actin filament tracking and elongation measurement. Particle Filters (PF) and Stretching Open Active Contours (SOAC) work cooperatively to simplify the modeling of PF in a one-dimensional state space while naturally integrating filament body constraints to tip estimation. Our algorithm reduces the PF state spaces to one-dimensional spaces by tracking filament bodies using SOAC and probabilistically estimating tip locations along the curve length of SOACs. Experimental evaluation on TIRFM image sequences with very low SNRs demonstrates the accuracy and robustness of this approach. PMID:20426170

  16. Sun-tracking optical element realized using thermally activated transparency-switching material.

    PubMed

    Apostoleris, Harry; Stefancich, Marco; Lilliu, Samuele; Chiesa, Matteo

    2015-07-27

    We present a proof of concept demonstration of a novel optical element: a light-responsive aperture that can track a moving light beam. The element is created using a thermally-activated transparency-switching material composed of paraffin wax and polydimethylsiloxane (PDMS). Illumination of the material with a focused beam causes the formation of a localized transparency at the focal spot location, due to local heating caused by absorption of a portion of the incident light. An application is proposed in a new design for a self-tracking solar collector. PMID:26367692

  17. Labelling a single particle for positron emission particle tracking using direct activation and ion-exchange techniques

    NASA Astrophysics Data System (ADS)

    Fan, X.; Parker, D. J.; Smith, M. D.

    2006-06-01

    Positron emission particle tracking (PEPT) is a non-invasive technique used for obtaining dynamic information within multiphase systems. It involves tracking a single radioactively labelled tracer particle. The tracking efficiency and representative of PEPT data are crucially dependent on the amount of radioactivity labelled in a single particle, as well as the physical and chemical properties of a tracer. This paper will discuss the effect of tracer properties on PEPT data and two labelling techniques, direct activation and ion-exchange, in detail. In direct activation, particles are directly bombarded using a 33 MeV 3He beam. A few of the oxygen atoms in the particles are then converted into 18F radioisotope. Direct activation can be used to label a particle with a size range from 1 to 10 mm, but the material must be able to resist a high temperature. The ion-exchange technique can be used to label smaller resin particles with a size ranging from 60 to 1000 μm. The radioactivity labelled in a single resin bead is controlled by ion-exchange properties of the resin material, anions present in the radioactive water and processing time.

  18. Instantaneous high-resolution focus tracking and a vibrometery system using parallel phase shift interferometry

    NASA Astrophysics Data System (ADS)

    Ney, Michael; Safrani, Avner; Abdulhlaim, Ibrahim

    2016-09-01

    High resolution fast focus tracking and vibrometery system based on parallel phase shift polarization interferometry using three detectors is presented. The basic design and algorithm are described, followed by an experimental demonstration showing sub nm resolution of different controlled motion profiles instantaneously monitored at a feedback rate of 100 kHz. The fact that the method does not rely on active optical components, potentially allows extremely high vibration rates to be measured; limited only by the detector bandwidth and sampling rate. In addition, the relatively simple design relies only on standard optical equipment, combined with the simple algorithm, makes the task of setting up a high performance vibrometry system cheap and readily available.

  19. Research on shaftless fast-steering mirror used in a precision tracking-aiming system

    NASA Astrophysics Data System (ADS)

    Zhou, Jianmin; Yin, Hongyan; Wang, Yonghui; Guo, Jin

    2007-12-01

    Based on the analysis of principle of tracking and aiming system, some important factors to design the structure of tracking-aiming system and the layout of optical system are discussed. Besides, the paper gives the present developing situation of fast-steering mirror at home and abroad, analyzes the advantages and disadvantages of FSM with axis, and presents a novel design of flexible axis FSM. The main axis of composite axis system is tracked by motor to drive the frame, and the sub-axis is tracked by voice coil motor (VCM) to drive FSM. The structure of FSM and designing principle of VCM are introduced, and the emulation analyses of inherent frequency and deformation under load of the FSM with software COSMOS are also given.

  20. A Distributed Many-Camera System for Multi-person Tracking

    NASA Astrophysics Data System (ADS)

    Lenz, Claus; Röder, Thorsten; Eggers, Martin; Amin, Sikandar; Kisler, Thomas; Radig, Bernd; Panin, Giorgio; Knoll, Alois

    This article presents a modular, distributed and scalable many-camera system designed towards tracking multiple people simultaneously in a natural human-robot interaction scenario set in an apartment mock-up. The described system employs 40 high-resolution cameras networked to 15 computers, redundantly covering an area of approximately 100 square meters. The unique scale and set-up of the system require novel approaches for vision-based tracking, especially with respect to the transfer of targets between the different tracking processes while preserving the target identities. We propose an integrated approach to cope with these challenges, and focus on the system architecture, the target information management, the calibration of the cameras and the applied tracking methodologies themselves.

  1. The evolution of electronic tracking, optical, telemetry, and command systems at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Mcmurran, W. R. (Editor)

    1973-01-01

    A history is presented of the major electronic tracking, optical, telemetry, and command systems used at ETR in support of Apollo-Saturn and its forerunner vehicles launched under the jurisdiction of the Kennedy Space Center and its forerunner organizations.

  2. Performance of a 10 Gbps FSO System Implementing Novel Beam Tracking a Dynamic Buffering Modem

    NASA Technical Reports Server (NTRS)

    Kiriazes, John; Valencia, J. Emilio; Peach, Robert; Visone, Chris; Burdge, Geoffrey; Vickers, John; Leclerc, Troy; Sauer, Paul; Andrews, Larry; Phillips, Ron

    2012-01-01

    A 10 Gbps Free space optical (FSO) system implements beam tracking, a high dynamic range optical receiver, and a dynamic buffering packet modem. Performance was characterized at the 4.5 km Shuttle Landing Facility at Kennedy Space Center Florida.

  3. Three-dimensional tracking of cardiac catheters using an inverse geometry x-ray fluoroscopy system

    SciTech Connect

    Speidel, Michael A.; Tomkowiak, Michael T.; Raval, Amish N.; Van Lysel, Michael S.

    2010-12-15

    Purpose: Scanning beam digital x-ray (SBDX) is an inverse geometry fluoroscopic system with high dose efficiency and the ability to perform continuous real-time tomosynthesis at multiple planes. This study describes a tomosynthesis-based method for 3D tracking of high-contrast objects and present the first experimental investigation of cardiac catheter tracking using a prototype SBDX system. Methods: The 3D tracking algorithm utilizes the stack of regularly spaced tomosynthetic planes that are generated by SBDX after each frame period (15 frames/s). Gradient-filtered versions of the image planes are generated, the filtered images are segmented into object regions, and then a 3D coordinate is calculated for each object region. Two phantom studies of tracking performance were conducted. In the first study, an ablation catheter in a chest phantom was imaged as it was pulled along a 3D trajectory defined by a catheter sheath (10, 25, and 50 mm/s pullback speeds). SBDX tip tracking coordinates were compared to the 3D trajectory of the sheath as determined from a CT scan of the phantom after the registration of the SBDX and CT coordinate systems. In the second study, frame-to-frame tracking precision was measured for six different catheter configurations as a function of image noise level (662-7625 photons/mm{sup 2} mean detected x-ray fluence at isocenter). Results: During catheter pullbacks, the 3D distance between the tracked catheter tip and the sheath centerline was 1.0{+-}0.8 mm (mean {+-}one standard deviation). The electrode to centerline distances were comparable to the diameter of the catheter tip (2.3 mm), the confining sheath (4 mm outside diameter), and the estimated SBDX-to-CT registration error ({+-}0.7 mm). The tip position was localized for all 332 image frames analyzed and 83% of tracked positions were inside the 3D sheath volume derived from CT. The pullback speeds derived from the catheter trajectories were within 5% of the programed pullback speeds

  4. Hand, belt, pocket or bag: Practical activity tracking with mobile phones.

    PubMed

    Antos, Stephen A; Albert, Mark V; Kording, Konrad P

    2014-07-15

    For rehabilitation and diagnoses, an understanding of patient activities and movements is important. Modern smartphones have built in accelerometers which promise to enable quantifying minute-by-minute what patients do (e.g. walk or sit). Such a capability could inform recommendations of physical activities and improve medical diagnostics. However, a major problem is that during everyday life, we carry our phone in different ways, e.g. on our belt, in our pocket, in our hand, or in a bag. The recorded accelerations are not only affected by our activities but also by the phone's location. Here we develop a method to solve this kind of problem, based on the intuition that activities change rarely, and phone locations change even less often. A hidden Markov model (HMM) tracks changes across both activities and locations, enabled by a static support vector machine (SVM) classifier that probabilistically identifies activity-location pairs. We find that this approach improves tracking accuracy on healthy subjects as compared to a static classifier alone. The obtained method can be readily applied to patient populations. Our research enables the use of phones as activity tracking devices, without the need of previous approaches to instruct subjects to always carry the phone in the same location.

  5. AUTOMATED ACTIN FILAMENT SEGMENTATION, TRACKING AND TIP ELONGATION MEASUREMENTS BASED ON OPEN ACTIVE CONTOUR MODELS.

    PubMed

    Li, Hongsheng; Shen, Tian; Smith, Matthew B; Fujiwara, Ikuko; Vavylonis, Dimitrios; Huang, Xiaolei

    2009-06-28

    This paper presents an automated method for actin filament segmentation and tracking for measuring tip elongation rates in Total Internal Reflection Fluorescence Microscopy (TIRFM) images. The main contributions of the paper are: (i) we use a novel open active contour model for filament segmentation and tracking, which is fast and robust against noise; (ii) different strategies are proposed to solve the filament intersection problem, which is shown to be the main difficulty in filament tracking; and (iii) this fully automated method avoids the need of human interaction and thus reduces required time for the entire elongation measurement process on an image sequence. Application to experimental results demonstrated the robustness and effectiveness of this method.

  6. Adaptive back-stepping tracking control for rotor shaft tilting of active magnetically suspended momentum wheel.

    PubMed

    Yu, Yuan-jin; Fang, Jian-cheng; Xiang, Biao; Wang, Chun-e

    2014-11-01

    Two-dimensional gyroscopic torque can be produced by tilting the rotor shaft of the active magnetically suspended momentum wheel. The nonlinear magnetic torque is analyzed and then an adaptive back-stepping tracking method is proposed to deal with the nonlinearity and uncertainty. The nonlinearity of magnetic torque is represented as bounded unknown uncertainty stiffness, and an adaptive law is proposed to estimate the stiffness. Combined with back-stepping method, the proposed method can deal with the uncertainty. This method is designed by Lyapunov stability theory to ensure the stability, and its effectiveness is validated by simulations and experiments. These results indicate that this method can realize higher tracking precision and faster tracking velocity than the conventional cross feedback method to provide high precision and wide bandwidth outputting torque. PMID:25104645

  7. Tracking C. elegans and its neuromuscular activity using NemaFlex

    NASA Astrophysics Data System (ADS)

    van Bussel, Frank; Rahman, Mizanur; Hewitt, Jennifer; Blawzdziewicz, Jerzy; Driscoll, Monica; Szewczyk, Nathaniel; Vanapalli, Siva

    Recently, a novel platform has been developed for studying the behavior and physical characteristics of the nematode C. elegans. This is NemaFlex, developed by the Vanapalli group at Texas Tech University to analyze movement and muscular strength of crawling C. elegans. NemaFlex is a microfluidic device consisting of an array of deformable PDMS pillars, with which the C. elegans interacts in the course of moving through the system. Deflection measurements then allow us to calculate the force exerted by the worm via Euler-Bernoulli beam theory. For the procedure to be fully automated a fairly sophisticated software analysis has to be developed in tandem with the physical device. In particular, the usefulness of the force calculations is highly dependent on the accuracy and volume of the deflection measurements, which would be prohibitively time-consuming if carried out by hand/eye. In order to correlate the force results with muscle activations the C. elegans itself has to be tracked simultaneously, and pillar deflections precisely associated with mechanical-contact on the worm's body. Here we will outline the data processing and analysis routines that have been implemented in order to automate the calculation of these forces and muscular activations.

  8. Radiation-hardened fast acquisition/weak signal tracking system and method

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke (Inventor); Boegner, Gregory J. (Inventor); Sirotzky, Steve (Inventor)

    2009-01-01

    A global positioning system (GPS) receiver and method of acquiring and tracking GPS signals comprises an antenna adapted to receive GPS signals; an analog radio frequency device operatively connected to the antenna and adapted to convert the GPS signals from an analog format to a digital format; a plurality of GPS signal tracking correlators operatively connected to the analog RF device; a GPS signal acquisition component operatively connected to the analog RF device and the plurality of GPS signal tracking correlators, wherein the GPS signal acquisition component is adapted to calculate a maximum vector on a databit correlation grid; and a microprocessor operatively connected to the plurality of GPS signal tracking correlators and the GPS signal acquisition component, wherein the microprocessor is adapted to compare the maximum vector with a predetermined correlation threshold to allow the GPS signal to be fully acquired and tracked.

  9. Modeling of the internal tracking system of the NICA/MPD detector

    NASA Astrophysics Data System (ADS)

    Zinchenko, A. I.; Murin, Yu. A.; Kondrat'ev, V. P.; Prokof'ev, N. A.

    2016-07-01

    The internal tracking system of the NICA/MPD detector is aimed at efficiently detecting the short-lived products of nucleus-nucleus collisions. We consider various geometries of the internal tracking system based on microstrip silicon sensors and simulate its identification power in reconstructing the Λ0 hyperons formed in central Au + Au collisions at √ {{S_{NN}}} = 9GeV.

  10. Tracking a closing volcanic system using repeating earthquakes

    NASA Astrophysics Data System (ADS)

    Buurman, H.; West, M. E.; Grapenthin, R.

    2011-12-01

    Repeating, volcano-tectonic (VT) earthquakes were recorded at the end of the explosive phase of the 2009 eruption of Redoubt Volcano, Alaska. The events cluster into several families which exhibit cross-correlation values greater than 0.8 and are distributed between 0-10 km below the edifice. The earthquake magnitudes decline gradually with time, and the events also appear to shallow as the sequence progresses. This activity continued for over 2 months and accompanied steady dome growth, which halted around the same time that the last of the repeating VTs were recorded. The repetitive nature of these earthquakes, their relatively deep locations and their occurrence following 3 weeks of major explosive eruptions suggest that they are related to changes around the conduit system and/or the magma storage area as the last of the magma was removed from the mid-crustal storage area. Geodetic data indicate that the deflation of the edifice, which had been continuous throughout the explosive activity, ceased coincident with the onset of the repeating VT earthquakes. We use evidence from earthquake relocations and earthquake focal mechanisms to investigate the source for the repeating VT earthquakes. We propose a model in which the repeating earthquakes are closely related to the adjustment of the conduit system and mid crustal storage area in response to the last of the ascending magma.

  11. The Integrated Waste Tracking Systems (IWTS) - A Comprehensive Waste Management Tool

    SciTech Connect

    Robert S. Anderson

    2005-09-01

    The US Department of Energy (DOE) Idaho National Laboratory (INL) site located near Idaho Falls, ID USA, has developed a comprehensive waste management and tracking tool that integrates multiple operational activities with characterization data from waste declaration through final waste disposition. The Integrated Waste Tracking System (IWTS) provides information necessary to help facility personnel properly manage their waste and demonstrate a wide range of legal and regulatory compliance. As a client?server database system, the IWTS is a proven tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of flexibility. This paper describes some of the history involved with the development and current use of IWTS as a comprehensive waste management tool as well as a discussion of IWTS deployments performed by the INL for outside clients. Waste management spans a wide range of activities including: work group interactions, regulatory compliance management, reporting, procedure management, and similar activities. The IWTS documents these activities and performs tasks in a computer-automated environment. Waste characterization data, container characterization data, shipments, waste processing, disposals, reporting, and limit compliance checks are just a few of the items that IWTS documents and performs to help waste management personnel perform their jobs. Throughout most hazardous and radioactive waste generating, storage and disposal sites, waste management is performed by many different groups of people in many facilities. Several organizations administer their areas of waste management using their own procedures and documentation independent of other organizations. Files are kept, some of which are treated as quality records, others not as stringent. Quality records maintain a history of: changes performed after approval, the reason for the change(s), and a record of whom and when

  12. Incorporating system latency associated with real-time target tracking radiotherapy in the dose prediction step

    NASA Astrophysics Data System (ADS)

    Roland, Teboh; Mavroidis, Panayiotis; Shi, Chengyu; Papanikolaou, Nikos

    2010-05-01

    System latency introduces geometric errors in the course of real-time target tracking radiotherapy. This effect can be minimized, for example by the use of predictive filters, but cannot be completely avoided. In this work, we present a convolution technique that can incorporate the effect as part of the treatment planning process. The method can be applied independently or in conjunction with the predictive filters to compensate for residual latency effects. The implementation was performed on TrackBeam (Initia Ltd, Israel), a prototype real-time target tracking system assembled and evaluated at our Cancer Institute. For the experimental system settings examined, a Gaussian distribution attributable to the TrackBeam latency was derived with σ = 3.7 mm. The TrackBeam latency, expressed as an average response time, was deduced to be 172 ms. Phantom investigations were further performed to verify the convolution technique. In addition, patient studies involving 4DCT volumes of previously treated lung cancer patients were performed to incorporate the latency effect in the dose prediction step. This also enabled us to effectively quantify the dosimetric and radiobiological impact of the TrackBeam and other higher latency effects on the clinical outcome of a real-time target tracking delivery.

  13. Using a partnership barometer to evaluate environmental public health tracking activities.

    PubMed

    Bekkedal, Marni Y V; Malecki, Kristen M; Werner, Mark A; Anderson, Henry A

    2008-01-01

    High-quality environmental health surveillance is challenged by a system in which environmental and health agencies often function with insufficient coordination to routinely address critical issues. The Environmental Public Health Tracking program is working to build a more cohesive system with the capacity for integrated data and information. This work requires a significant amount of effort dedicated to establishing strong partnerships between agencies. Such a task requires skills and activities that differ significantly from the more technical skills needed to physically link data and information from environmental and health resources. Although the work to link people is different from linking data, it is of primary importance because the development of strong partnerships almost invariably provides the necessary foundation for the future integration of data and expertise. As such, the development of partnerships between environmental and health agencies needs to be recognized as a priority product. One approach for moving partnerships into the fore is the creation of assessment tools, or "partnership barometers," that objectively quantify the collaborative process for monitoring progress between and within partners over time. Such measurement would provide a realistic indicator of progress toward tangible products but more importantly emphasizes the importance of building sustainable relationships.

  14. Using a partnership barometer to evaluate environmental public health tracking activities.

    PubMed

    Bekkedal, Marni Y V; Malecki, Kristen M; Werner, Mark A; Anderson, Henry A

    2008-01-01

    High-quality environmental health surveillance is challenged by a system in which environmental and health agencies often function with insufficient coordination to routinely address critical issues. The Environmental Public Health Tracking program is working to build a more cohesive system with the capacity for integrated data and information. This work requires a significant amount of effort dedicated to establishing strong partnerships between agencies. Such a task requires skills and activities that differ significantly from the more technical skills needed to physically link data and information from environmental and health resources. Although the work to link people is different from linking data, it is of primary importance because the development of strong partnerships almost invariably provides the necessary foundation for the future integration of data and expertise. As such, the development of partnerships between environmental and health agencies needs to be recognized as a priority product. One approach for moving partnerships into the fore is the creation of assessment tools, or "partnership barometers," that objectively quantify the collaborative process for monitoring progress between and within partners over time. Such measurement would provide a realistic indicator of progress toward tangible products but more importantly emphasizes the importance of building sustainable relationships. PMID:18849780

  15. Multi radar tracking and multi sensor tracking in air defence systems

    NASA Astrophysics Data System (ADS)

    Berle, F. J.

    1983-10-01

    The netting of radars and the integration of other complementary sensors provide advantages with respect to system survivability and achieve a better quality air picture because of the resulting higher data rate. The paper describes an MST concept resulting from an extension of an operational MRT system and presents the results of a computer evaluation of the concept, emphasizing the processing of data from passive sensors and radars operating in passive mode. Three examples of different target density and number indicate the difficulties of processing sensor data in a jamming situation. Several possibilities of improvements are indicated.

  16. 76 FR 13647 - Proposed Collection; Comment Request-Interactive Diet and Activity Tracking in AARP (iDATA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... Activity Tracking in AARP (iDATA): Biomarker Based Validation Study Summary: In compliance with the... comment on proposed data collection projects, the National Cancer Institute (NCI), the National Institutes... Activity Tracking in AARP (iDATA): Biomarker Based Validation Study. Type of Information Collection...

  17. Modeling of the Mode S tracking system in support of aircraft safety research

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.

    1982-01-01

    This report collects, documents, and models data relating the expected accuracies of tracking variables to be obtained from the FAA's Mode S Secondary Surveillance Radar system. The data include measured range and azimuth to the tracked aircraft plus the encoded altitude transmitted via the Mode S data link. A brief summary is made of the Mode S system status and its potential applications for aircraft safety improvement including accident analysis. FAA flight test results are presented demonstrating Mode S range and azimuth accuracy and error characteristics and comparing Mode S to the current ATCRBS radar tracking system. Data are also presented that describe the expected accuracy and error characteristics of encoded altitude. These data are used to formulate mathematical error models of the Mode S variables and encoded altitude. A brief analytical assessment is made of the real-time tracking accuracy available from using Mode S and how it could be improved with down-linked velocity.

  18. Survey of tracking systems and rotary joints for coolant piping. Final report, August 15, 1978-August 14, 1978. [Includes patents

    SciTech Connect

    Furaus, J P; Gruchalla, M E; Sower, G D

    1980-01-01

    Problems were surveyed and evaluated with respect to solar tracking mechanisms and rotary joints for coolant piping. An analytical development of celestial mechanics, one- and two-axis tracking configurations and the effect of tracking accuracy versus collector efficiency are reported. Daily operational requirements and tracking modes were defined and evaluated. A literature and patent search on solar tracking technology was performed. Tracking system and control system performance specifications were determined. Alternative conceptual tracking approaches were defined and a cost and performance evaluation of a mechanical tracking concept was performed. Fluid coupling service specifications were determined. The cost and performance of several types of actuators and error detectors were evaluated with respect to solar tracking mechanisms.

  19. 77 FR 6949 - Tracking and Data Relay Satellite System (TDRSS) Rates for Non-U.S. Government Customers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... Science Foundation. For a fee, commercial users can also have access to TDRSS for tracking and data... SPACE ADMINISTRATION 14 CFR Part 1215 RIN 2700-AD72 Tracking and Data Relay Satellite System (TDRSS... the Tracking and Data Relay Satellite System (TDRSS) services provided to non-U.S. Government...

  20. Tracking human activity and well-being in natural environments using wearable sensors and experience sampling.

    PubMed

    Doherty, Sean T; Lemieux, Christopher J; Canally, Culum

    2014-04-01

    A growing range of studies have begun to document the health and well-being benefits associated with contact with nature. Most studies rely on generalized self-reports following engagement in the natural environment. The actual in-situ experience during contact with nature, and the environmental features and factors that evoke health benefits have remained relatively unexplored. Smartphones offer a new opportunity to monitor and interact with human subjects during everyday life using techniques such as Experience Sampling Methods (ESM) that involve repeated self-reports of experiences as they occur in-situ. Additionally, embedded sensors in smartphones such as Global Positioning Systems (GPS) and accelerometers can accurately trace human activities. This paper explores how these techniques can be combined to comprehensively explore the perceived health and well-being impacts of contact with nature. Custom software was developed to passively track GPS and accelerometer data, and actively prompt subjects to complete an ESM survey at regular intervals throughout their visit to a provincial park in Ontario, Canada. The ESM survey includes nine scale questions concerning moods and emotions, followed by a series of open-ended experiential questions that subjects provide recorded audio responses to. Pilot test results are used to illustrate the nature, quantity and quality of data obtained. Participant activities were clearly evident from GPS maps, including especially walking, cycling and sedate activities. From the ESM surveys, participants reported an average of 25 words per question, taking an average of 15 s to record them. Further qualitative analysis revealed that participants were willing to provide considerable insights into their experiences and perceived health impacts. The combination of passive and interactive techniques is sure to make larger studies of this type more affordable and less burdensome in the future, further enhancing the ability to understand

  1. Robust neural network motion tracking control of piezoelectric actuation systems for micro/nanomanipulation.

    PubMed

    Liaw, Hwee Choo; Shirinzadeh, Bijan; Smith, Julian

    2009-02-01

    This paper presents a robust neural network motion tracking control methodology for piezoelectric actuation systems employed in micro/nanomanipulation. This control methodology is proposed for tracking of desired motion trajectories in the presence of unknown system parameters, nonlinearities including the hysteresis effect and external disturbances in the control systems. In this paper, the related control issues are investigated, and a control methodology is established including the neural networks and a sliding control scheme. In particular, the radial basis function (RBF) neural networks are chosen for function approximations. The stability of the closed-loop system, as well as the convergence of the position and velocity tracking errors to zero, is assured by the control methodology in the presence of the aforementioned conditions. An offline learning procedure is also proposed for the improvement of the motion tracking performance. Precise tracking results of the proposed control methodology for a desired motion trajectory are demonstrated in the experimental study. With such a motion tracking capability, the proposed control methodology promises the realization of high-performance piezoelectric actuated micro/nanomanipulation systems.

  2. Dynamic region-of-interest acquisition and face tracking for intelligent surveillance system

    NASA Astrophysics Data System (ADS)

    Kim, Young-Ouk; Kim, Sangjin; Park, Chang-Woo; Sung, Ha-Gyeong; Paik, Joonki

    2004-05-01

    Recently, surveillance systems gain more attraction than simple CCTV systems, especially for complicated security environment. The major purpose of the proposed system is to monitor and track intruders. More specifically, accurate identification of each intruder is more important than simply recording what they are doing. Most existing surveillance systems simply keep recording the fixed viewing area, and some others adopt the tracking technique for wider coverage. Although panning and tilting the camera can extend the viewing area, only a few automatic zoom control techniques for acquiring the optimum ROI has been proposed. This paper describes a system for tracking multiple faces from input video sequences using facial convex hull-based facial segmentation and robust hausdorff distance. The proposed algorithm adapts skin color reference map in the YCbCr color space and hair color reference map in the RGB color space for classifying face region. Then, we obtain an initial face model with preprocessing and convex hull. For tracking, this algorithm computes displacement of the point set between frames using a robust hausdorff distance and the best possible displacement is selected. Finally, the initial face model is updated using the displacement. We provide experimental result to demonstrate the performance of the proposed tracking algorithm, which efficiently tracks rotating, and zooming faces as well as multiple faces in video sequences obtained from at CCD camera.

  3. Influence of uneven rail irregularities on the dynamic response of the railway track using a three-dimensional model of the vehicle-track system

    NASA Astrophysics Data System (ADS)

    Naeimi, Meysam; Zakeri, Jabbar Ali; Esmaeili, Morteza; Shadfar, Morad

    2015-01-01

    A mathematical model of the vehicle-track interaction is developed to investigate the coupled behaviour of vehicle-track system, in the presence of uneven irregularities at left/right rails. The railway vehicle is simplified as a 3D multi-rigid-body model, and the track is treated as the two parallel beams on a layered discrete support system. Besides the car-body, the bogies and the wheel sets, the sleepers are assumed to have roll degree of freedom, in order to simulate the in-plane rotation of the components. The wheel-rail interface is treated using a nonlinear Hertzian contact model, coupling the mathematical equations of the vehicle-track systems. The dynamic interaction of the entire system is numerically studied in time domain, employing Newmark's integration method. The track irregularity spectra of both the left/right rails are taken into account, as the inputs of dynamic excitations. The dynamic responses of the track system induced by such irregularities are obtained, particularly in terms of the vertical (bounce) and roll displacements. The numerical model of the present research is validated using several benchmark models reported in the literature, for both the smooth and unsmooth track conditions. Four sample profiles of the measured rail irregularities are considered as the case studies of excitation sources, examining their influences on the dynamic behaviour of the coupled system. The results of numerical simulations demonstrate that the motion of track system is significantly influenced by the presence of uneven irregularities in left/right rails. Dynamic response of the sleepers in the roll direction becomes more sensitive to the rail irregularities, as the unevenness severity of the parallel profiles (quantitative difference between left and right rail spectra) is increased. The severe geometric deformation of the track in the bounce-pitch-roll directions is mainly related to such profile unevenness (cross-level) in left/right rails.

  4. Greater Than Class C Tracking, Inventory and Projections System

    1993-06-28

    The GTIPS was developed as part of the National Low-Level Waste Management Program''s effort to characterize GTCC waste. The primary purpose of this system is to store the Energy Information Administration''s (EIA) 1985 survey information (as well as future surveys by the program) in a central location; retrieve data with specific attributes or logical combinations of attributes; generate output in a textual or tabular form to aid in the preparation of reports and other documentsmore » required by the user; project a trend of disposal GTCC volumes and activities into the future to aid the user in decision making for the storage and disposal of GTCC waste.« less

  5. Segmentation and tracking in echocardiographic sequences: active contours guided by optical flow estimates

    NASA Technical Reports Server (NTRS)

    Mikic, I.; Krucinski, S.; Thomas, J. D.

    1998-01-01

    This paper presents a method for segmentation and tracking of cardiac structures in ultrasound image sequences. The developed algorithm is based on the active contour framework. This approach requires initial placement of the contour close to the desired position in the image, usually an object outline. Best contour shape and position are then calculated, assuming that at this configuration a global energy function, associated with a contour, attains its minimum. Active contours can be used for tracking by selecting a solution from a previous frame as an initial position in a present frame. Such an approach, however, fails for large displacements of the object of interest. This paper presents a technique that incorporates the information on pixel velocities (optical flow) into the estimate of initial contour to enable tracking of fast-moving objects. The algorithm was tested on several ultrasound image sequences, each covering one complete cardiac cycle. The contour successfully tracked boundaries of mitral valve leaflets, aortic root and endocardial borders of the left ventricle. The algorithm-generated outlines were compared against manual tracings by expert physicians. The automated method resulted in contours that were within the boundaries of intraobserver variability.

  6. Optimal tracking performance of MIMO control systems with communication constraints and a code scheme

    NASA Astrophysics Data System (ADS)

    Zhan, Xi-Sheng; Guan, Zhi-Hong; Zhang, Xian-He; Yuan, Fu-Shun

    2015-02-01

    This paper investigates the issue of the optimal tracking performance for multiple-input multiple-output linear time-invariant continuous-time systems with power constrained. An H2 criterion of the error signal and the signal of the input channel are used as a measure for the tracking performance. A code scheme is introduced as a means of integrating controller and channel design to obtain the optimal tracking performance. It is shown that the optimal tracking performance index consists of two parts, one depends on the non-minimum phase zeros and zero direction of the given plant, as well as the reference input signal, while the other depends on the unstable poles and pole direction of the given plant, as well as on the bandwidth and additive white noise of a communication channel. It is also shown that when the communication does not exist, the optimal tracking performance reduces to the existing normal tracking performance of the control system. The results show how the optimal tracking performance is limited by the bandwidth and additive white noise of the communication channel. A typical example is given to illustrate the theoretical results.

  7. Ciliary muscle contraction force and trapezius muscle activity during manual tracking of a moving visual target.

    PubMed

    Domkin, Dmitry; Forsman, Mikael; Richter, Hans O

    2016-06-01

    Previous studies have shown an association of visual demands during near work and increased activity of the trapezius muscle. Those studies were conducted under stationary postural conditions with fixed gaze and artificial visual load. The present study investigated the relationship between ciliary muscle contraction force and trapezius muscle activity across individuals during performance of a natural dynamic motor task under free gaze conditions. Participants (N=11) tracked a moving visual target with a digital pen on a computer screen. Tracking performance, eye refraction and trapezius muscle activity were continuously measured. Ciliary muscle contraction force was computed from eye accommodative response. There was a significant Pearson correlation between ciliary muscle contraction force and trapezius muscle activity on the tracking side (0.78, p<0.01) and passive side (0.64, p<0.05). The study supports the hypothesis that high visual demands, leading to an increased ciliary muscle contraction during continuous eye-hand coordination, may increase trapezius muscle tension and thus contribute to the development of musculoskeletal complaints in the neck-shoulder area. Further experimental studies are required to clarify whether the relationship is valid within each individual or may represent a general personal trait, when individuals with higher eye accommodative response tend to have higher trapezius muscle activity. PMID:26746010

  8. Real-time skeleton tracking for embedded systems

    NASA Astrophysics Data System (ADS)

    Coleca, Foti; Klement, Sascha; Martinetz, Thomas; Barth, Erhardt

    2013-03-01

    Touch-free gesture technology is beginning to become more popular with consumers and may have a significant future impact on interfaces for digital photography. However, almost every commercial software framework for gesture and pose detection is aimed at either desktop PCs or high-powered GPUs, making mobile implementations for gesture recognition an attractive area for research and development. In this paper we present an algorithm for hand skeleton tracking and gesture recognition that runs on an ARM-based platform (Pandaboard ES, OMAP 4460 architecture). The algorithm uses self-organizing maps to fit a given topology (skeleton) into a 3D point cloud. This is a novel way of approaching the problem of pose recognition as it does not employ complex optimization techniques or data-based learning. After an initial background segmentation step, the algorithm is ran in parallel with heuristics, which detect and correct artifacts arising from insufficient or erroneous input data. We then optimize the algorithm for the ARM platform using fixed-point computation and the NEON SIMD architecture the OMAP4460 provides. We tested the algorithm with two different depth-sensing devices (Microsoft Kinect, PMD Camboard). For both input devices we were able to accurately track the skeleton at the native framerate of the cameras.

  9. The tracking of active travel and its relationship with body composition in UK adolescents

    PubMed Central

    Falconer, Catherine L.; Leary, Sam D.; Page, Angie S.; Cooper, Ashley R

    2015-01-01

    Background To examine the tracking of active travel through adolescence, and its association with body mass index (BMI) and fat mass at age 17 in a UK cohort. Methods We analysed data collected from the Avon Longitudinal Study of Parents and Children (ALSPAC). The analyses include all participants with self-reported travel mode to school at ages 12, 14 and 16 years, and measured height, weight and body composition at age 17 (n=2,026). Tracking coefficients were calculated for individual travel behaviours (including walking and cycling) through adolescence using Generalised Estimating Equations. Linear regression analyses examined associations between travel pattern (consistently passive, consistently active, active at two time points or active at one time point), BMI, and DXA-measured fat mass (expressed as internally derived standard deviation scores) at 17 years. Analyses were adjusted for height (where appropriate), sex, age, parental social class, and maternal education with interaction terms to assess sex differences. Results There was substantial tracking in active travel through adolescence, with 38.5% of males and 32.3% of females consistently walking or cycling to school. In males, a consistently or predominantly active travel pattern was associated with a lower BMI SD score at age 17 (consistently active: adjusted β=−0.23; 95% CI −0.40, −0.06; active at two time points: adjusted β−0.30; 95% CI −0.50, −0.10) compared to those with a consistently passive pattern. No associations were seen in females. Conclusions Maintenance of active travel behaviours throughout adolescence may help to protect against the development of excess BMI in males. In addition to encouraging the adoption of active travel to school, public health messages should aim to prevent drop out from active travel to promote good health in youth. PMID:26740922

  10. Accuracy of optical navigation systems for automatic head surgery: optical tracking versus optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Díaz Díaz, Jesús; Riva, Mauro H.; Majdani, Omid; Ortmaier, Tobias

    2014-03-01

    The choice of a navigation system highly depends on the medical intervention and its accuracy demands. The most commonly used systems for image guided surgery (IGS) are based on optical and magnetic tracking systems. This paper compares two optical systems in terms of accuracy: state of the art triangulation-based optical tracking (OT) and optical coherence tomography (OCT). We use an experimental setup with a combined OCT and cutting laser, and an external OT. We simulate a robotic assisted surgical intervention, including planning, navigation, and processing, and compare the accuracies reached at a specific target with each navigation system.

  11. Classification of team sport activities using a single wearable tracking device.

    PubMed

    Wundersitz, Daniel W T; Josman, Casey; Gupta, Ritu; Netto, Kevin J; Gastin, Paul B; Robertson, Sam

    2015-11-26

    Wearable tracking devices incorporating accelerometers and gyroscopes are increasingly being used for activity analysis in sports. However, minimal research exists relating to their ability to classify common activities. The purpose of this study was to determine whether data obtained from a single wearable tracking device can be used to classify team sport-related activities. Seventy-six non-elite sporting participants were tested during a simulated team sport circuit (involving stationary, walking, jogging, running, changing direction, counter-movement jumping, jumping for distance and tackling activities) in a laboratory setting. A MinimaxX S4 wearable tracking device was worn below the neck, in-line and dorsal to the first to fifth thoracic vertebrae of the spine, with tri-axial accelerometer and gyroscope data collected at 100Hz. Multiple time domain, frequency domain and custom features were extracted from each sensor using 0.5, 1.0, and 1.5s movement capture durations. Features were further screened using a combination of ANOVA and Lasso methods. Relevant features were used to classify the eight activities performed using the Random Forest (RF), Support Vector Machine (SVM) and Logistic Model Tree (LMT) algorithms. The LMT (79-92% classification accuracy) outperformed RF (32-43%) and SVM algorithms (27-40%), obtaining strongest performance using the full model (accelerometer and gyroscope inputs). Processing time can be reduced through feature selection methods (range 1.5-30.2%), however a trade-off exists between classification accuracy and processing time. Movement capture duration also had little impact on classification accuracy or processing time. In sporting scenarios where wearable tracking devices are employed, it is both possible and feasible to accurately classify team sport-related activities. PMID:26472301

  12. Classification of team sport activities using a single wearable tracking device.

    PubMed

    Wundersitz, Daniel W T; Josman, Casey; Gupta, Ritu; Netto, Kevin J; Gastin, Paul B; Robertson, Sam

    2015-11-26

    Wearable tracking devices incorporating accelerometers and gyroscopes are increasingly being used for activity analysis in sports. However, minimal research exists relating to their ability to classify common activities. The purpose of this study was to determine whether data obtained from a single wearable tracking device can be used to classify team sport-related activities. Seventy-six non-elite sporting participants were tested during a simulated team sport circuit (involving stationary, walking, jogging, running, changing direction, counter-movement jumping, jumping for distance and tackling activities) in a laboratory setting. A MinimaxX S4 wearable tracking device was worn below the neck, in-line and dorsal to the first to fifth thoracic vertebrae of the spine, with tri-axial accelerometer and gyroscope data collected at 100Hz. Multiple time domain, frequency domain and custom features were extracted from each sensor using 0.5, 1.0, and 1.5s movement capture durations. Features were further screened using a combination of ANOVA and Lasso methods. Relevant features were used to classify the eight activities performed using the Random Forest (RF), Support Vector Machine (SVM) and Logistic Model Tree (LMT) algorithms. The LMT (79-92% classification accuracy) outperformed RF (32-43%) and SVM algorithms (27-40%), obtaining strongest performance using the full model (accelerometer and gyroscope inputs). Processing time can be reduced through feature selection methods (range 1.5-30.2%), however a trade-off exists between classification accuracy and processing time. Movement capture duration also had little impact on classification accuracy or processing time. In sporting scenarios where wearable tracking devices are employed, it is both possible and feasible to accurately classify team sport-related activities.

  13. Satellite height determination using satellite-to-satellite tracking and ground laser systems

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.

    1972-01-01

    The height of the GEOS-C spacecraft was utilized as measured by the onboard radar altimeter, for an improved determination of the earth's gravitational field and for the determination of the variation of the physical surface of the oceans. Two tracking system approaches to accurately determine the spacecraft height (orbit) are described and their results stated. These are satellite-to-satellite tracking (SST) and ground laser tracking (GLT). Height variations can be observed in the dm-regions using SST and in the m-region using present GLT.

  14. Satellite height determination using satellite-to-satellite tracking and ground laser systems

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.

    1972-01-01

    An attempt was made to use GEOS-C spacecraft height, as measured by the onboard radar altimeter, for an improved determination of the earth's gravitational field and for the determination of the variation of the physical surface of the oceans. Two tracking system approaches to accurately determine the spacecraft height (orbit) are described and their results stated. These are satellite-to-satellite tracking (SST) and ground-laser tracking (GLT). Height variations can be observed in the dm-regions using SST and in the m-region using present GLT.

  15. Study of a tracking and data acquisition system for the 1990's. Volume 3: TDAS Communication Mission Model

    NASA Technical Reports Server (NTRS)

    Mccreary, T.

    1983-01-01

    A parametric description of the communication channels required between the user spacecraft to be supported and the user ground data systems is developed. Scenarios of mission models, which reflect a range of free flyers vs space platform usage as well as levels of NASA activity and potential support for military missions, and potential channel requirements which identify: (1) bounds on TDAS forward and return link data communication demand, and (2) the additional demand for providing navigation/tracking support are covered.

  16. NetState : a network version tracking system.

    SciTech Connect

    Van Randwyk, Jamie A.; Durgin, Nancy Ann; Mai, Yuqing

    2005-02-01

    Network administrators and security analysts often do not know what network services are being run in every corner of their networks. If they do have a vague grasp of the services running on their networks, they often do not know what specific versions of those services are running. Actively scanning for services and versions does not always yield complete results, and patch and service management, therefore, suffer. We present Net-State, a system for monitoring, storing, and reporting application and operating system version information for a network. NetState gives security and network administrators the ability to know what is running on their networks while allowing for user-managed machines and complex host configurations. Our architecture uses distributed modules to collect network information and a centralized server that stores and issues reports on that collected version information. We discuss some of the challenges to building and operating NetState as well as the legal issues surrounding the promiscuous capture of network data. We conclude that this tool can solve some key problems in network management and has a wide range of possibilities for future uses.

  17. Field test results of the three-dimensional acquisition and tracking (3DATA) sensor system

    NASA Astrophysics Data System (ADS)

    Fairchild, Paul W.; Lilly, David; Matkin, William B.

    2004-01-01

    Trex has developed two innovative MWIR tracking systems, the Rapid Optical Beam Steering (ROBS) system and the Fast InfraRed Sniper Tracker (FIRST). ROBS was developed by Trex in the mid 1980"s for BMDO and the Navy as a prototype 0.5 meter aperture, wide-angle, multiple target detection, tracking, and imaging system with laser ranging. The smaller FIRST system was developed in the mid 1990"s by Trex for DARPA to acquire and track small caliber bullets. Both systems utilize innovative fast steering methods for achieving very high acceleration rates, ~ 1,000 radians/sec2 for ROBS and ~ 40,000 radians/sec2 for the FIRST system. Each can provide high precision 3D tracking over a large field of regard and both have been demonstrated in field tests. Presently the capabilities of these systems are being expanded. A newer version of the ROBS, 3DATA, is being completed which will provide a capability to precisely track in three dimensions up to 20 targets per second, simultaneously. In addition, an upgraded FIRST system is being designed and built which will handle multiple slow targets in addition to the faster bullets.

  18. A small-scale study of magneto-rheological track vibration isolation system

    NASA Astrophysics Data System (ADS)

    Li, Rui; Mu, Wenjun; Zhang, Luyang; Wang, Xiaojie

    2016-04-01

    A magneto-rheological bearing (MRB) is proposed to improve the vibration isolation performance of a floating slab track system. However, it's difficult to carry out the test for the full-scale track vibration isolation system in the laboratory. In this paper, the research is based on scale analysis of the floating slab track system, from the point view of the dimensionless of the dynamic characteristics of physical quantity, to establish a small scale test bench system for the MRBs. A small scale MRB with squeeze mode using magneto-rheological grease is designed and its performance is tested. The major parameters of a small scale test bench are obtained according to the similarity theory. The force transmissibility ratio and the relative acceleration transmissibility ratio are selected as evaluation index of system similarity. Dynamics of these two similarity systems are calculated by MATLAB experiment. Simulation results show that the dynamics of the prototype and scale models have good similarity. Further, a test bench is built according to the small-scale model parameter analysis. The experiment shows that the bench testing results are consistency with that of theoretical model in evaluating the vibration force and acceleration. Therefore, the small-scale study of magneto-rheological track vibration isolation system based on similarity theory reveals the isolation performance of a real slab track prototype system.

  19. Target-Tracking Camera for a Metrology System

    NASA Technical Reports Server (NTRS)

    Liebe, Carl; Bartman, Randall; Chapsky, Jacob; Abramovici, Alexander; Brown, David

    2009-01-01

    An analog electronic camera that is part of a metrology system measures the varying direction to a light-emitting diode that serves as a bright point target. In the original application for which the camera was developed, the metrological system is used to determine the varying relative positions of radiating elements of an airborne synthetic aperture-radar (SAR) antenna as the airplane flexes during flight; precise knowledge of the relative positions as a function of time is needed for processing SAR readings. It has been common metrology system practice to measure the varying direction to a bright target by use of an electronic camera of the charge-coupled-device or active-pixel-sensor type. A major disadvantage of this practice arises from the necessity of reading out and digitizing the outputs from a large number of pixels and processing the resulting digital values in a computer to determine the centroid of a target: Because of the time taken by the readout, digitization, and computation, the update rate is limited to tens of hertz. In contrast, the analog nature of the present camera makes it possible to achieve an update rate of hundreds of hertz, and no computer is needed to determine the centroid. The camera is based on a position-sensitive detector (PSD), which is a rectangular photodiode with output contacts at opposite ends. PSDs are usually used in triangulation for measuring small distances. PSDs are manufactured in both one- and two-dimensional versions. Because it is very difficult to calibrate two-dimensional PSDs accurately, the focal-plane sensors used in this camera are two orthogonally mounted one-dimensional PSDs.

  20. Design of a holographic tracking module for long-range retroreflector free-space systems.

    PubMed

    Quintana, C; Erry, G; Gomez, A; Thueux, Y; Faulkner, G E; O'Brien, D C

    2016-09-01

    Weight reduction and low power consumption are key requirements in the next generation of unmanned aerial vehicles (UAVs). To communicate with an operator, a secured link between the UAV and a ground-based station is desirable. To realize these links, retroreflecting free-space optics is potentially attractive as it offers light weight and low complexity at the UAV. However, the base station requires a high-performance tracking module to enable a steady illumination of the UAV retroreflector. In this paper, we present the design and implementation of a tracking system, which consists of coarse tracking and holographic fine tracking modules working cooperatively. Using this system, experimental field trials were carried out by mounting a multiple-quantum-well-based modulated retroreflector on a commercial UAV. A 2 Mbps optical link was achieved with a bit error rate of ∼2×10-4 at a link range of 300 m.