Science.gov

Sample records for activity volcanic eruptions

  1. Volcanic eruptions and solar activity

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  2. Active Volcanic Eruptions on Io

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Six views of the volcanic plume named Prometheus, as seen against Io's disk and near the bright limb (edge) of the satellite by the SSI camera on the Galileo spacecraft during its second (G2) orbit of Jupiter. North is to the top of each frame. To the south-southeast of Prometheus is another bright spot that appears to be an active plume erupting from a feature named Culann Patera. Prometheus was active 17 years ago during both Voyager flybys, but no activity was detected by Voyager at Culann. Both of these plumes were seen to glow in the dark in an eclipse image acquired by the imaging camera during Galileo's first (G1) orbit, and hot spots at these locations were detected by Galileo's Near-Infrared Mapping Spectrometer.

    The plumes are thought to be driven by heating sulfur dioxide in Io's subsurface into an expanding fluid or 'geyser'. The long-lived nature of these eruptions requires that a substantial supply of sulfur dioxide must be available in Io's subsurface, similar to groundwater. Sulfur dioxide gas condenses into small particles of 'snow' in the expanding plume, and the small particles scatter light and appear bright at short wavelengths. The images shown here were acquired through the shortest-wavelength filter (violet) of the Galileo camera. Prometheus is about 300 km wide and 75 km high and Culann is about 150 km wide and less than 50 km high. The images were acquired on September 4, 1996 at a range of 2,000,000 km (20 km/pixel resolution). Prometheus is named after the Greek fire god and Culann is named after the Celtic smith god.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the

  3. Seasonality of volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Mason, B. G.; Pyle, D. M.; Dade, W. B.; Jupp, T.

    2004-04-01

    An analysis of volcanic activity during the last three hundred years reveals that volcanic eruptions exhibit seasonality to a statistically significant degree. This remarkable pattern is observed primarily along the Pacific "Ring of Fire" and locally at some individual volcanoes. Globally, seasonal fluctuations amount to 18% of the historical average monthly eruption rate. In some regions, seasonal fluctuations amount to as much as 50% of the average eruption rate. Seasonality principally reflects the temporal distribution of the smaller, dated eruptions (volcanic explosivity index of 0-2) that dominate the eruption catalog. We suggest that the pattern of seasonality correlates with the annual Earth surface deformation that accompanies the movement of surface water mass during the annual hydrological cycle and illustrate this with respect to global models of surface deformation and regional measurements of annual sea level change. For example, seasonal peaks in the eruption rate of volcanoes in Central America, the Alaskan Peninsula, and Kamchatka coincide with periods of falling regional sea level. In Melanesia, in contrast, peak numbers of volcanic eruptions occur during months of maximal regional sea level and falling regional atmospheric pressure. We suggest that the well-documented slow deformation of Earth's surface that accompanies the annual movements of water mass from oceans to continents acts to impose a fluctuating boundary condition on volcanoes, such that volcanic eruptions tend to be concentrated during periods of local or regional surface change rather than simply being distributed randomly throughout the year. Our findings have important ramifications for volcanic risk assessment and volcanoclimate feedback mechanisms.

  4. Volcanic eruption source parameters from active and passive microwave sensors

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario; Marzano, Frank S.; Cimini, Domenico; Mereu, Luigi

    2016-04-01

    It is well known, in the volcanology community, that precise information of the source parameters characterising an eruption are of predominant interest for the initialization of the Volcanic Transport and Dispersion Models (VTDM). Source parameters of main interest would be the top altitude of the volcanic plume, the flux of the mass ejected at the emission source, which is strictly related to the cloud top altitude, the distribution of volcanic mass concentration along the vertical column as well as the duration of the eruption and the erupted volume. Usually, the combination of a-posteriori field and numerical studies allow constraining the eruption source parameters for a given volcanic event thus making possible the forecast of ash dispersion and deposition from future volcanic eruptions. So far, remote sensors working at visible and infrared channels (cameras and radiometers) have been mainly used to detect, track and provide estimates of the concentration content and the prevailing size of the particles propagating within the ash clouds up to several thousand of kilometres far from the source as well as track back, a-posteriori, the accuracy of the VATDM outputs thus testing the initial choice made for the source parameters. Acoustic wave (infrasound) and microwave fixed scan radar (voldorad) were also used to infer source parameters. In this work we want to put our attention on the role of sensors operating at microwave wavelengths as complementary tools for the real time estimations of source parameters. Microwaves can benefit of the operability during night and day and a relatively negligible sensitivity to the presence of clouds (non precipitating weather clouds) at the cost of a limited coverage and larger spatial resolution when compared with infrared sensors. Thanks to the aforementioned advantages, the products from microwaves sensors are expected to be sensible mostly to the whole path traversed along the tephra cloud making microwaves particularly

  5. Volcanic Eruptions and Climate

    NASA Technical Reports Server (NTRS)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  6. Can vesicle size distributions predict eruption intensity during volcanic activity?

    NASA Astrophysics Data System (ADS)

    LaRue, A.; Baker, D. R.; Polacci, M.; Allard, P.; Sodini, N.

    2013-06-01

    We studied three-dimensional (3-D) vesicle size distributions by X-ray microtomography in scoria collected during the relatively quiescent Phase II of the 2010 eruption at Eyjafjallajökull volcano, Iceland. Our goal was to compare the vesicle size distributions (VSDs) measured in these samples with those found in Stromboli volcano, Italy. Stromboli was chosen because its VSDs are well-characterized and show a correlation with eruption intensity: typical Strombolian activity produces VSDs with power-law exponents near 1, whereas larger and more energetic Vulcanian-type explosions and Plinian eruptions produce VSDs with power-law exponents near 1.5. The hypothesis to be tested was whether or not the samples studied in this work would contain VSDs similar to normal Strombolian products, display higher power-law exponents, or be described by exponential functions. Before making this comparison we tested the hypothesis that the phreatomagmatic nature of the Eyjafjallajökull eruption might have a significant effect on the VSDs. We performed 1 atm bubble-growth experiments in which the samples were inundated with water and compared them to similar, control, experiments without water inundation. No significant differences between the VSDs of the two sets of experiments were found, and the hypothesis is not supported by the experimental evidence; therefore, VSDs of magmatic and phreatomagmatic eruptions can be directly compared. The Phase II Eyjafjallajökull VSDs are described by power law exponents of ~ 0.8, typical of normal Strombolian eruptions. The comparable VSDs and behavior of Phase II of the Eyjafjallajökull 2010 eruption to Stromboli are interpreted to be a reflection of similar conduit systems in both volcanoes that are being constantly fed by the ascent of deep magma that mixes with resident magma at shallow depths. Such behavior implies that continued activity during Phase II of the Eyjafjallajökull eruption could be expected and would have been predicted

  7. Can vesicle size distributions assess eruption intensity during volcanic activity?

    NASA Astrophysics Data System (ADS)

    LaRue, A.; Baker, D. R.; Polacci, M.; Allard, P.; Sodini, N.

    2013-10-01

    We studied three-dimensional (3-D) vesicle size distributions by X-ray microtomography in scoria collected during the relatively quiescent Phase II of the April-May 2010 eruption at Eyjafjallajökull volcano, Iceland. Our goal was to compare cumulative vesicle size distributions (VSDs) measured in these samples with those found in Stromboli volcano, Italy. Stromboli was chosen because its VSDs are well-characterized and show a correlation with eruption intensity: typical Strombolian activity produces VSDs with power-law exponents near 1, whereas larger and more energetic vulcanian-type explosions and Plinian eruptions produce VSDs with power-law exponents near 1.5. The first hypothesis to be tested was whether or not the samples studied in this work would contain VSDs similar to normal Strombolian products, display higher power-law exponents, or be described by exponential functions. Before making this comparison, we tested a second hypothesis, which was that the magma-water interactions in the Eyjafjallajökull eruption might have a significant effect on the VSDs. We performed 1 bar bubble-growth experiments in which the samples were inundated with water and compared them to similar control experiments without water inundation. No significant differences between the VSDs of the two sets of experiments were found, and the second hypothesis is not supported by the experimental evidence. The Phase II Eyjafjallajökull VSDs are described by power-law exponents of ~0.8, typical of normal Strombolian eruptions, and support the first hypothesis. The comparable VSDs and behavior of Phase II of the Eyjafjallajökull 2010 eruption to Stromboli are interpreted to be a reflection of similar conduit systems in both volcanoes that are being constantly fed by the ascent of mingled/mixed magma from depth. Such behavior implies that continued activity during Phase II of the Eyjafjallajökull eruption could be expected and would have been predicted, had our VSDs been measured in

  8. Electrical activity during the 2006 Mount St. Augustine volcanic eruptions

    USGS Publications Warehouse

    Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Edens, H. E.; Aulich, G. D.; McNutt, S.R.; Tytgat, Guy; Clark, E.

    2007-01-01

    By using a combination of radio frequency time-of-arrival and interferometer measurements, we observed a sequence of lightning and electrical activity during one of Mount St. Augustine's eruptions. The observations indicate that the electrical activity had two modes or phases. First, there was an explosive phase in which the ejecta from the explosion appeared to be highly charged upon exiting the volcano, resulting in numerous apparently disorganized discharges and some simple lightning. The net charge exiting the volcano appears to have been positive. The second phase, which followed the most energetic explosion, produced conventional-type discharges that occurred within plume. Although the plume cloud was undoubtedly charged as a result of the explosion itself, the fact that the lightning onset was delayed and continued after and well downwind of the eruption indicates that in situ charging of some kind was occurring, presumably similar in some respects to that which occurs in normal thunderstorms.

  9. Electrical activity during the 2006 Mount St. Augustine volcanic eruptions.

    PubMed

    Thomas, R J; Krehbiel, P R; Rison, W; Edens, H E; Aulich, G D; Winn, W P; McNutt, S R; Tytgat, G; Clark, E

    2007-02-23

    By using a combination of radio frequency time-of-arrival and interferometer measurements, we observed a sequence of lightning and electrical activity during one of Mount St. Augustine's eruptions. The observations indicate that the electrical activity had two modes or phases. First, there was an explosive phase in which the ejecta from the explosion appeared to be highly charged upon exiting the volcano, resulting in numerous apparently disorganized discharges and some simple lightning. The net charge exiting the volcano appears to have been positive. The second phase, which followed the most energetic explosion, produced conventional-type discharges that occurred within plume. Although the plume cloud was undoubtedly charged as a result of the explosion itself, the fact that the lightning onset was delayed and continued after and well downwind of the eruption indicates that in situ charging of some kind was occurring, presumably similar in some respects to that which occurs in normal thunderstorms. PMID:17322054

  10. Volcanic Eruptions and Climate

    NASA Astrophysics Data System (ADS)

    Robock, A.

    2012-12-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of these aerosol clouds produce responses in the climate system. Observations and numerical models of the climate system show that volcanic eruptions produce global cooling and were the dominant natural cause of climate change for the past millennium, on timescales from annual to century. Major tropical eruptions produce winter warming of Northern Hemisphere continents for one or two years, while high latitude eruptions in the Northern Hemisphere weaken the Asian and African summer monsoon. The Toba supereruption 74,000 years ago caused very large climate changes, affecting human evolution. However, the effects did not last long enough to produce widespread glaciation. An episode of four large decadally-spaced eruptions at the end of the 13th century C.E. started the Little Ice Age. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade had a small effect on global temperature trends. The June 13, 2011 Nabro eruption in Eritrea produced the largest stratospheric aerosol cloud since Pinatubo, and the most of the sulfur entered the stratosphere not by direct injection, but by slow lofting in the Asian summer monsoon circulation. Volcanic eruptions warn us that while stratospheric geoengineering could cool the surface, reducing ice melt and sea level rise, producing pretty sunsets, and increasing the CO2 sink, it could also reduce summer monsoon precipitation, destroy ozone, allowing more harmful UV at the surface, produce rapid warming when stopped, make the sky white, reduce solar power, perturb the ecology with more diffuse radiation, damage airplanes flying in the stratosphere, degrade astronomical observations, affect remote sensing, and affect

  11. Bayesian analysis of volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Ho, Chih-Hsiang

    1990-10-01

    The simple Poisson model generally gives a good fit to many volcanoes for volcanic eruption forecasting. Nonetheless, empirical evidence suggests that volcanic activity in successive equal time-periods tends to be more variable than a simple Poisson with constant eruptive rate. An alternative model is therefore examined in which eruptive rate(λ) for a given volcano or cluster(s) of volcanoes is described by a gamma distribution (prior) rather than treated as a constant value as in the assumptions of a simple Poisson model. Bayesian analysis is performed to link two distributions together to give the aggregate behavior of the volcanic activity. When the Poisson process is expanded to accomodate a gamma mixing distribution on λ, a consequence of this mixed (or compound) Poisson model is that the frequency distribution of eruptions in any given time-period of equal length follows the negative binomial distribution (NBD). Applications of the proposed model and comparisons between the generalized model and simple Poisson model are discussed based on the historical eruptive count data of volcanoes Mauna Loa (Hawaii) and Etna (Italy). Several relevant facts lead to the conclusion that the generalized model is preferable for practical use both in space and time.

  12. The Variation of Volcanic Tremor During Active Stage in the 1986 Izu-Oshima Eruption

    NASA Astrophysics Data System (ADS)

    Kurokawa, Aika; Kurita, Kei

    2014-05-01

    Izu-Oshima is one of the most active volcanoes in Japan. The latest eruption of Nov. 1986 exhibited a curious eruption sequence; the strombolian type eruption started on 15 Nov. at the central vent and it had continued for 4 days. Then after it ceased, subplinian type fissure eruptions occurred inside and outside the caldera where several hundreds meters to few kilometers away from the central vent. Lava flows were associated with these two eruption episodes. Petrologically compositions of these two kinds of lava are completely dissimilar; magma from the central vent is basaltic with narrow range of chemical composition, which is almost same as that of the previous stages while magma from the fissures is evolved one with wider variations of composition [Aramaki and Fujii, 1988]. This means that two distinct magma sources, which were chemically separated but mechanically coupled, should have existed prior to the eruption. The most important issue concerning this eruption is how the mechanical interaction between two magma sources took place and evolved. Throughout the eruption sequence, remarkable activities of seismic tremor have been observed. In this presentation we report evolution of tremor sources to characterize the interaction based on the recently recovered seismic records and we propose a reinterpretation of the eruption sequence. We analyzed volcanic tremor in Nov. 1986 on digitized seismic records of 7 stations in the Island. The aim of this analysis is to estimate the movement of two kinds of magma associated with the change of the eruption styles. Firstly root mean square amplitudes of the filtered seismic signals and their spectrum were calculated. The tremor style changed from continuous mode to intermittent, sporadic mode at the period between the summit eruption and the fissure eruptions. The dominant frequency also changed around the same time. Secondly to derive the location of tremor source, Amplitude Inversion Method [Battaglia and Aki, 2003

  13. Can rain cause volcanic eruptions?

    USGS Publications Warehouse

    Mastin, Larry G.

    1993-01-01

    Volcanic eruptions are renowned for their violence and destructive power. This power comes ultimately from the heat and pressure of molten rock and its contained gases. Therefore we rarely consider the possibility that meteoric phenomena, like rainfall, could promote or inhibit their occurrence. Yet from time to time observers have suggested that weather may affect volcanic activity. In the late 1800's, for example, one of the first geologists to visit the island of Hawaii, J.D. Dana, speculated that rainfall influenced the occurrence of eruptions there. In the early 1900's, volcanologists suggested that some eruptions from Mount Lassen, Calif., were caused by the infiltration of snowmelt into the volcano's hot summit. Most such associations have not been provable because of lack of information; others have been dismissed after careful evaluation of the evidence.

  14. Volcanic Eruptions in Kamchatka

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Sheveluch Stratovolcano Click on the image for full resolution TIFF Klyuchevskoy Stratovolcano Click on the image for full resolution TIFF

    One of the most volcanically active regions of the world is the Kamchatka Peninsula in eastern Siberia, Russia. It is not uncommon for several volcanoes to be erupting at the same time. On April 26, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radioneter (ASTER) on NASA's Terra spacecraft captured these images of the Klyuchevskoy and Sheveluch stratovolcanoes, erupting simultaneously, and 80 kilometers (50 miles) apart. Over Klyuchevskoy, the thermal infrared data (overlaid in red) indicates that two open-channel lava flows are descending the northwest flank of the volcano. Also visible is an ash-and-water plume extending to the east. Sheveluch volcano is partially cloud-covered. The hot flows highlighted in red come from a lava dome at the summit. They are avalanches of material from the dome, and pyroclastic flows.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining

  15. Monitoring Io's Volcanic Activity in the Visible and Infrared from JUICE - It's All About (Eruption) Style

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Matson, D.; McEwen, A. S.; Keszthelyi, L. P.

    2012-12-01

    The European Space Agency's Jupiter Icy Moons Explorer (JUICE) will provide many opportunities for long-range monitoring of Io's extraordinary silicate, high-temperature volcanic activity [1, 2]. A considerable amount of valuable work can be performed even with relatively low-spatial-resolution observations [2]. Techniques developed from the examination and analysis of Galileo Near Infrared Mapping Spectrometer (NIMS) data, as well as observations of terrestrial silicate volcanic activity, allows the identification of likely eruption style [2] at many locations where the entire eruption is sub-pixel. Good temporal coverage, especially for episodic eruptions (including high-energy "outburst" eruptions), is important for modelling purposes. With opportunities to observe Io on a regular basis (hours-days) during cruise/orbital reduction phases, a visible-to-near-infrared mapping spectrometer (covering ~0.4-5.5 μm) is the best instrument to chart the magnitude and variability of Io's volcanic activity, allowing comparison with an existing and constantly expanding set of Io observations [e.g. 1, 3]. The eruption temperature of Io's dominant silicate lava, a constraint on interior composition and conditions, is a major unanswered question in the wake of the Galileo mission [1]. A careful approach to instrument design is needed to ensure that observations by both imager and IR spectrometer on JUICE are capable of determining lava eruption temperature [e.g., 4] in low spatial resolution data. With an ideal thermal target (e.g., an outburst eruption, or the proposed lava lake at Pele) the imager should obtain multi-spectral data in a rapid sequence to allow stability of the thermal source to be quantified. Observations by imager and spectrometer have to be contemporaneous and unsaturated. References: [1] Davies, A. (2007) "Volcanism on Io", Cam. Univ. Press. [2] Davies, A. et al. (2010) JVGR, 194, 75-99. [3] Veeder, G. et al. (2012) Icarus, 219, 701-722. [4] Davies, A. et

  16. Models of volcanic eruption hazards

    SciTech Connect

    Wohletz, K.H.

    1992-01-01

    Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluid flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.

  17. Aurorae and Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    2001-06-01

    Thermal-IR Observations of Jupiter and Io with ISAAC at the VLT Summary Impressive thermal-infrared images have been obtained of the giant planet Jupiter during tests of a new detector in the ISAAC instrument on the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile). . They show in particular the full extent of the northern auroral ring and part of the southern aurora. A volcanic eruption was also imaged on Io , the very active inner Jovian moon. Although these observations are of an experimental nature, they demonstrate a great potential for regular monitoring of the Jovian magnetosphere by ground-based telescopes together with space-based facilities. They also provide the added benefit of direct comparison with the terrestrial magnetosphere. PR Photo 21a/01 : ISAAC image of Jupiter (L-band: 3.5-4.0 µm) . PR Photo 21b/01 : ISAAC image of Jupiter (Narrow-band 4.07 µm) . PR Photo 21c/01 : ISAAC image of Jupiter (Narrow-band 3.28 µm) . PR Photo 21d/01 : ISAAC image of Jupiter (Narrow-band 3.21 µm) . PR Photo 21e/01 : ISAAC image of the Jovian aurorae (false-colour). PR Photo 21f/01 : ISAAC image of volcanic activity on Io . Addendum : The Jovian aurorae and polar haze. Aladdin Meets Jupiter Thermal-infrared images of Jupiter and its volcanic moon Io have been obtained during a series of system tests with the new Aladdin detector in the Infrared Spectrometer And Array Camera (ISAAC) , in combination with an upgrade of the ESO-developed detector control electronics IRACE. This state-of-the-art instrument is attached to the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory. The observations were made on November 14, 2000, through various filters that isolate selected wavebands in the thermal-infrared spectral region [1]. They include a broad-band L-filter (wavelength interval 3.5 - 4.0 µm) as well as several narrow-band filters (3.21, 3.28 and 4.07 µm). The filters allow to record the light from different components of the Jovian atmosphere

  18. Aurorae and Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    2001-06-01

    Thermal-IR Observations of Jupiter and Io with ISAAC at the VLT Summary Impressive thermal-infrared images have been obtained of the giant planet Jupiter during tests of a new detector in the ISAAC instrument on the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile). . They show in particular the full extent of the northern auroral ring and part of the southern aurora. A volcanic eruption was also imaged on Io , the very active inner Jovian moon. Although these observations are of an experimental nature, they demonstrate a great potential for regular monitoring of the Jovian magnetosphere by ground-based telescopes together with space-based facilities. They also provide the added benefit of direct comparison with the terrestrial magnetosphere. PR Photo 21a/01 : ISAAC image of Jupiter (L-band: 3.5-4.0 µm) . PR Photo 21b/01 : ISAAC image of Jupiter (Narrow-band 4.07 µm) . PR Photo 21c/01 : ISAAC image of Jupiter (Narrow-band 3.28 µm) . PR Photo 21d/01 : ISAAC image of Jupiter (Narrow-band 3.21 µm) . PR Photo 21e/01 : ISAAC image of the Jovian aurorae (false-colour). PR Photo 21f/01 : ISAAC image of volcanic activity on Io . Addendum : The Jovian aurorae and polar haze. Aladdin Meets Jupiter Thermal-infrared images of Jupiter and its volcanic moon Io have been obtained during a series of system tests with the new Aladdin detector in the Infrared Spectrometer And Array Camera (ISAAC) , in combination with an upgrade of the ESO-developed detector control electronics IRACE. This state-of-the-art instrument is attached to the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory. The observations were made on November 14, 2000, through various filters that isolate selected wavebands in the thermal-infrared spectral region [1]. They include a broad-band L-filter (wavelength interval 3.5 - 4.0 µm) as well as several narrow-band filters (3.21, 3.28 and 4.07 µm). The filters allow to record the light from different components of the Jovian atmosphere

  19. Infrasound research of volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Marchetti, Emanuele; Ripepe, Maurizio

    2016-04-01

    Volcanic eruptions are efficient sources of infrasound produced by the rapid perturbation of the atmosphere by the explosive source. Being able to propagate up to large distances from the source, infrasonic waves from major (VEI 4 or larger) volcanic eruptions have been recorded for many decades with analogue micro-barometers at large regional distances. In late 1980s, near-field observations became progressively more common and started to have direct impact on the understanding and modeling of explosive source dynamics, to eventually play a primary role in volcano research. Nowadays, infrasound observation from a large variety of volcanic eruptions, spanning from VEI 0 to VEI 5 events, has shown a dramatic variability in terms of signature, excess pressure and frequency content of radiated infrasound and has been used to infer complex eruptive source mechanisms for the different kinds of events. Improved processing capability and sensors has allowed unprecedented precise locations of the explosive source and is progressively increasing the possibility to monitor volcanoes from distant records. Very broadband infrasound observations is also showing the relation between volcanic eruptions and the atmosphere, with the eruptive mass injection in the atmosphere triggering acoustic-gravity waves which eventually might control the ash dispersal and fallout.

  20. The intensities and magnitudes of volcanic eruptions

    USGS Publications Warehouse

    Sigurdsson, H.

    1991-01-01

    Ever since 1935, when C.F Richter devised the earthquake magnitude scale that bears his name, seismologists have been able to view energy release from earthquakes in a systematic and quantitative manner. The benefits have been obvious in terms of assessing seismic gaps and the spatial and temporal trends of earthquake energy release. A similar quantitative treatment of volcanic activity is of course equally desirable, both for gaining a further understanding of the physical principles of volcanic eruptions and for volcanic-hazard assessment. A systematic volcanologic data base would be of great value in evaluating such features as volcanic gaps, and regional and temporal trends in energy release.  

  1. Volcanic and seismic activity at Stromboli preceding the 2002-2003 flank eruption

    NASA Astrophysics Data System (ADS)

    Burton, M.; Calvari, S.; Spampinato, L.; Lodato, L.; Pino, N. A.; Marchetti, E.; Murè, F.

    Regular surveys with a thermal camera from both ground- and helicopter-based surveys have been carried out on Stromboli since October 2001. This data set allowed us to detect morphological changes in Stromboli's summit craters produced by major explosions and to track an increase in volcanic activity associated with a heightened magma level within the main conduit that preceded the 2002-2003 effusive eruption. Together with thermal measurements, geophysical surveys performed in May and September/October 2002 highlighted clear increases in the amplitude of very long period (VLP) events, consistent with the ascent of the magma column above the VLP source region. The increased magma level was probably induced by elevated pressure in the deep feeding system, controlled by regional tectonic stress. This, in turn, pressurized the uppermost part of the crater terrace, producing greater soil permeability and soil degassing. Eventually, the magma loading caused the NW flank of the summit craters to fracture, allowing lava to flood out at high effusion rates on 28 December 2002, starting an approximately 6-month-long effusive eruption.

  2. Volcanic eruption detection with TOMS

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J.

    1987-01-01

    The Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) is designed for mapping of the atmospheric ozone distribution. Absorption by sulfur dioxide at the same ultraviolet spectral wavelengths makes it possible to observe and resolve the size of volcanic clouds. The sulfur dioxide absorption is discriminated from ozone and water clouds in the data processing by their spectral signatures. Thus, the sulfur dioxide can serve as a tracer which appears in volcanic eruption clouds because it is not present in other clouds. The detection limit with TOMS is close to the theoretical limit due to telemetry signal quantization of 1000 metric tons (5-sigma threshold) within the instrument field of view (50 by 50 km near the nadir). Requirements concerning the use of TOMS in detection of eruptions, geochemical cycles, and volcanic climatic effects are discussed.

  3. Sub-glacial volcanic eruptions

    USGS Publications Warehouse

    White, Donald Edward

    1956-01-01

    The literature on sub-glacial volcanic eruptions and the related flood phenomena has been reviewed as a minor part of the larger problem of convective and conductive heat transfer from intrusive magma. (See Lovering, 1955, for a review of the extensive literature on this subject.) This summary of data on sub-glacial eruptions is part of a program that the U.S. Geological Survey is conducting in connection with its Investigations of Geologic Processes project on behalf of the Division of Research, U.S. Atomic Energy Commission.

  4. Large and small volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust; Mohajeri, Nahid

    2013-04-01

    Despite great progress in volcanology in the past decades, we still cannot make reliable forecasts as to the likely size (volume, mass) of an eruption once it has started. Empirical data collected from volcanoes worldwide indicates that the volumes (or masses) of eruptive materials in volcanic eruptions are heavy-tailed. This means that most of the volumes erupted from a given magma chamber are comparatively small. Yet, the same magma chamber can, under certain conditions, squeeze out large volumes of magma. To know these conditions is of fundamental importance for forecasting the likely size of an eruption. Thermodynamics provides the basis for understanding the elastic energy available to (i) propagate an injected dyke from the chamber and to the surface to feed an eruption, and (ii) squeeze magma out of the chamber during the eruption. The elastic energy consists of two main parts: first, the strain energy stored in the volcano before magma-chamber rupture and dyke injection, and, second, the work done through displacement of the flanks of the volcano (or the margins of a rift zone) and the expansion and shrinkage of the magma chamber itself. Other forms of energy in volcanoes - thermal, seismic, kinetic - are generally important but less so for squeezing magma out of a chamber during an eruption. Here we suggest that for (basaltic) eruptions in rift zones the strain energy is partly related to minor doming above the reservoir, and partly to stretching of the rift zone before rupture. The larger the reservoir, the larger is the stored strain energy before eruption. However, for the eruption to be really large, the strain energy has to accumulate in the entire crustal segment above the reservoir and there will be additional energy input into the system during the eruption which relates to the displacements of the boundary of the rift-zone segment. This is presumably why feeder dykes commonly propagate laterally at the surface following the initial fissure

  5. Localization of volcanic activity: Topographic effects on dike propagation, eruption and conduit formation

    NASA Astrophysics Data System (ADS)

    Gaffney, Edward S.; Damjanac, Branko

    2006-07-01

    Magma flow in a dike rising in a crack whose strike runs from a highland or a ridge to an adjacent lowland has been modelled to determine the effect of topography on the flow. It is found that there is a distinct tendency for the flow to be diverted away from the highland end of the strike toward the lowland. Separation of the geometric effect of the topography from its effect on lateral confining stresses on the crack indicates that both contribute to the effect but that the effect of stress is less important. Although this analysis explains a tendency for volcanic eruptions to occur in low lands, it does not preclude eruptions on highlands. The particular configuration modelled mimics topography around the proposed nuclear waste repository at Yucca Mountain, Nevada, so that the results may indicate some reduction in the volcanic hazard to the site.

  6. Localization of Volcanic Activity: Topographic Effects on Dike Propagation, Eruption and COnduit Formation

    SciTech Connect

    E.S. Gaffney; B. Damjanac

    2006-05-12

    Magma flow in a dike rising in a crack whose strike runs from a highland or a ridge to an adjacent lowland has been modeled to determine the effect of topography on the flow. It is found that there is a distinct tendency for the flow to be diverted away from the highland end of the strike toward the lowland. Separation of the geometric effect of the topography from its effect on lateral confining stresses on the crack indicates that both contribute to the effect but that the effect of stress is less important. Although this analysis explains a tendency for volcanic eruptions to occur in low lands, it does not preclude eruptions on highlands. The particular configuration modeled mimics topography around the proposed nuclear waste repository at Yucca Mountain, Nevada, so that the results may indicate some reduction in the volcanic hazard to the site.

  7. Volcanic Lightning in Eruptions of Sakurajima Volcano

    NASA Astrophysics Data System (ADS)

    Edens, Harald; Thomas, Ronald; Behnke, Sonja; McNutt, Stephen; Smith, Cassandra; Farrell, Alexandra; Van Eaton, Alexa; Cimarelli, Corrado; Cigala, Valeria; Eack, Ken; Aulich, Graydon; Michel, Christopher; Miki, Daisuke; Iguchi, Masato

    2016-04-01

    In May 2015 a field program was undertaken to study volcanic lightning at the Sakurajima volcano in southern Japan. One of the main goals of the study was to gain a better understanding of small electrical discharges in volcanic eruptions, expanding on our earlier studies of volcanic lightning at Augustine and Redoubt volcanoes in Alaska, USA, and Eyjafjallajökull in Iceland. In typical volcanic eruptions, electrical activity occurs at the onset of an eruption as a near-continual production of VHF emissions at or near to the volcanic vent. These emissions can occur at rates of up to tens of thousands of emissions per second, and are referred to as continuous RF. As the ash cloud expands, small-scale lightning flashes of several hundred meters length begin to occur while the continuous RF ceases. Later on during the eruption larger-scale lightning flashes may occur within the ash cloud that are reminiscent of regular atmospheric lightning. Whereas volcanic lightning flashes are readily observed and reasonably well understood, the nature and morphology of the events producing continuous RF are unknown. During the 2015 field program we deployed a comprehensive set of instrumentation, including a 10-station 3-D Lightning Mapping Array (LMA) that operated in 10 μs high time resolution mode, slow and fast ΔE antennas, a VHF flat-plate antenna operating in the 20-80 MHz band, log-RF waveforms within the 60-66 MHz band, an infra-red video camera, a high-sensitivity Watec video camera, two high-speed video cameras, and still cameras. We give an overview of the Sakurajima field program and present preliminary results using correlated LMA, waveforms, photographs and video recordings of volcanic lightning at Sakurajima volcano.

  8. Io Eclipse/Volcanic Eruption

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image was acquired while Io was in eclipse (in Jupiter's shadow) during Galileo's eighth orbit, and reveals several dynamic processes. The most intense features are red, while glows of lesser intensity are yellow or green, and very faint glows appear blue in this color-coded image. The small red or yellow spots mark the sites of high-temperature magma erupting onto the surface in lava flows or lava lakes.

    This image reveals a field of bright spots near Io's sub-Jupiter point (right-hand side of image). The sub-Jupiter hemisphere always faces Jupiter just as the Moon's nearside always faces Earth. There are extended diffuse glows on the equatorial limbs or edges of the planet (right and left sides). The glow on the left is over the active volcanic plume Prometheus, but whereas Prometheus appears to be 75 kilometers (46.6 miles) high in reflected light, here the diffuse glow extends about 800 kilometers (497 miles) from Io's limb. This extended glow indicates that gas or small particles reach much greater heights than the dense inner plume. The diffuse glow on the right side reaches a height of 400 kilometers (249 miles), and includes a prominence with a plume-like shape. However, no volcanic plume has been seen at this location in reflected light. This type of observation is revealing the relationships between Io's volcanism, atmosphere and exosphere.

    Taken on May 6, 1997, north is toward the top. The image was taken with the clear filter of the solid state imaging (CCD) system on NASA's Galileo spacecraft at a range of 1.8 million kilometers (1.1 million miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and

  9. Volcanic activity in the Acambay Graben: a < 25 Ka subplinian eruption from the Temascalcingo volcano and implications for volcanic hazard.

    NASA Astrophysics Data System (ADS)

    Pedrazzi, Dario; Aguirre Díaz, Gerardo; Sunyé Puchol, Ivan; Bartolini, Stefania; Geyer, Adelina

    2016-04-01

    The Trans-Mexican Volcanic Belt (TMVB) contains a large number of stratovolcanoes, some well-known, as Popocatepetl, Iztaccihuatl, Nevado de Toluca, or Colima and many others of more modest dimensions that are not well known but constitute the majority in the TMVB. Such volcanoes are, for example, Tequila, San Juan, Sangangüey, Cerro Culiacán, Cerro Grande, El Zamorano, La Joya, Palo Huerfano, Jocotitlán, Altamirano and Temascalcingo, among many others. The Temascalcingo volcano (TV) is an andesitic-dacitic stratovolcano located in the Trans-Mexican Volcanic Belt (TMVB) at the eastern part of the Acambay Graben (northwest portion of Estado de México). The TV is composed mainly by dacitic, porphyritic lavas, block and ash deposits and subordinate pumice fall deposits and ignimbrites (Roldán-Quintana et al., 2011). The volcanic structure includes a summit caldera that has a rectangular shape, 2.5×3.5 km, with the largest side oriented E-W, parallel to major normal faults affecting the edifice. The San Mateo Pumice eruption is one of the greatest paroxysmal episodes of this volcano with pumice deposits mainly exposed at the scarp of the Acambay-Tixmadeje fault and at the northern and northeastern flanks of TV. It overlies a paleosol dated at 25 Ka. A NE-trending dispersion was obtained from field data covering an area of at least 80 km2. These deposits overlie older lava flows and mud flows and are discontinuously covered and eroded by younger reworked deposits of Temascalcingo volcano. This event represents a highly explosive phase that generated a relatively thick and widespread pumice fallout deposit that may occur again in future eruptions. A similar eruption today would have a significantly impact in the region, overall due to the fact that there has been no systematic assessment of the volcanic hazard in any of the studies that have been conducted so far in the area. So, this is a pending and urgent subject that must be tackled without delay. Financed by

  10. Trigger Mechanisms for Volcanic Eruptions at Campi Flegrei caldera (Southern-Italy) in the last 5ka of activity

    NASA Astrophysics Data System (ADS)

    Arienzo, I.; D'Antonio, M.; Moretti, R.; Cavallo, A.; Civetta, L.; Orsi, G.

    2012-12-01

    Products from the 3.98 ± 0.53 ka year-old Nisida eruption have been studied in order to investigate the role of magma mingling/mixing, degassing and crystal fractionation in triggering volcanic eruptions during the last 5 ka of volcanic activity at Campi Flegrei caldera (Southern Italy). Due to persistent unrest, the explosive character of its volcanism and the large population living within the caldera and its surroundings, the volcanic risk in this nested, resurgent caldera is among the highest on Earth and demands an accurate reconstruction of processes driving recent volcanism. We present major elements and isotope data on bulk rock, glass matrix and separated phenocrysts, along with major and volatile elements on clinopyroxene-hosted melt inclusions, of products from Nisida and other Campi Flegrei eruptions occurred in the last 5 ka. The new data, together with literature data, suggest that crystal fractionation may account for the chemical variability of the extruded melt, although additional processes, such as magma mingling/mixing and/or entrapment of antecrysts into the magma prior to eruption are required to explain the large isotopic variation displayed by the analyzed products. In particular, the Nisida eruption was triggered by the arrival of isotopically distinct (87Sr/86Sr ~ 0.7073), poorly differentiated (latite), volatile-rich magma (H2O up to 4 wt.%). This is in line with what already proposed for the Agnano-Monte Spina (~ 4.1 ka) and Minopoli 2 eruptions (~ 9.7 ka), both occurred in the eastern sector of the Campi Flegrei caldera affected by extension. Noteworthy, Campi Flegrei caldera is located at the intersection of regional NE-SW and NW-SE fault systems and characterized by large caldera-forming eruptions and resurgence of the caldera floor following a simple shearing mechanism. In particular, deep, latitic magmas, rose along portions of faults of the NE-SW system, in the eastern sector of the caldera affected by extensional processes

  11. Climatic impact of volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.

    1991-01-01

    Studies have attempted to 'isolate' the volcanic signal in noisy temperature data. This assumes that it is possible to isolate a distinct volcanic signal in a record that may have a combination of forcings (ENSO, solar variability, random fluctuations, volcanism) that all interact. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on temperatures in regions where the effects of aerosol clouds may be amplified by perturbed atmospheric circulation patterns. This is especially true in subpolar and midlatitude areas affected by changes in the position of the polar front. Such climatic perturbation can be detected in proxy evidence such as decrease in tree-ring widths and frost rings, changes in the treeline, weather anomalies, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures. In low latitudes, sudden temperature drops were correlated with the passage overhead of the volcanic dust cloud (Stothers, 1984). For some eruptions, such as Tambora, 1815, these kinds of proxy and anectdotal information were summarized in great detail in a number of papers and books (e.g., Post, 1978; Stothers, 1984; Stommel and Stommel, 1986; C. R. Harrington, in press). These studies lead to the general conclusion that regional effects on climate, sometimes quite severe, may be the major impact of large historical volcanic aerosol clouds.

  12. Temporal changes in thermal waters related to volcanic activity of Tokachidake Volcano, Japan: implications for forecasting future eruptions

    NASA Astrophysics Data System (ADS)

    Takahashi, Ryo; Shibata, Tomo; Murayama, Yasuji; Ogino, Tagiru; Okazaki, Noritoshi

    2015-01-01

    In order to detect changes in volcanic activity of Tokachidake Volcano, Japan, we have continuously monitored thermal waters discharging at the western to southwestern flank of the volcano since 1986. The steam-heated waters in the Nukkakushi crater discharged with boiling temperature until 2002. Thermal waters at the Tokachidake spa area have similar compositions to fumarolic gas emitted from the summit craters, indicating that the waters formed by absorption of volcanic gas into shallow aquifers. Thermal waters at the Fukiage spa area were derived from the same aquifer as the Tokachidake spa area until early 1986. However, after that time, NaCl-type thermal water entered the Fukiage spa area during the increase in volcanic activity associated with the 1988-1989 eruption, thus leading to a clear increase in Cl concentrations and temperature. After the eruption, the supply of the NaCl-type thermal water was halted, and the Cl concentrations of the thermal waters decreased. In contrast, SO4 concentrations gradually increased in the Fukiage spa area after 1989, and the temperature has been maintained. These observations indicate that SO4-rich thermal water with a relatively high temperature entered the system instead of the NaCl-type thermal water. As was the case for the 1988-1989 eruption, the Cl concentrations at the Fukiage spa area increased in 2012 during an increase in volcanic activity, implying that the supply of the NaCl-type thermal water had resumed. However, the chemical changes in the thermal waters since 2012 are small compared with those before the 1988-1989 eruption, with oxygen and hydrogen isotopic compositions remaining nearly the same as those of meteoric waters.

  13. A comparison of active seismic source data to seismic excitations from the 2012 Tongariro volcanic eruptions, New Zealand

    NASA Astrophysics Data System (ADS)

    Jolly, Arthur; Kennedy, Ben; Keys, Harry; Lokmer, Ivan; Proctor, Jon; Lyons, John; Jolly, Gillian

    2014-05-01

    The 6 August 2012 eruption from Tongariro volcano's Te Maari vent comprised a complex sequence of events including at least 4 eruption jets, a large chasm collapse, and a debris avalanche (volume of ~7x105 m3) that propagated ~2 km beyond the eruptive vent. The eruption was poorly observed, being obscured by night time darkness, and the eruption chronology must be unravelled instead from a complex seismic record that includes discrete volcanic earthquakes, a sequence of low to moderate level spasmodic tremor and an intense burst of seismic and infrasound activity starting at 11:52:18 UTC that marked the eruption onset. We have discriminated the timing of the complex surface activity by comparing active seismic source data to the eruptive sequence. We dropped 11 high impact masses from helicopter to generate a range of active seismic sources in the vicinity of the eruption vent, chasm, and debris avalanche areas. We obtained 8 successful drops having an impact energy ranging from 3 to 9x106 joules producing seismic signals to a distance of 5 to 10 km and having good signal to noise characteristics in the 3-12 Hz range. For the 8 drops, we picked first-P arrival times and calculated amplitude spectra for a uniform set of four 3-component stations. From these, we obtained a distribution of amplitudes across the network for each drop position which varied systematically from the eruption vent and avalanche scar to the debris avalanche toe. We then compared these proxy source excitations to the natural eruption and pre-eruption data using a moving window cross-correlation approach. From the correlation processing, we found evidence for the debris avalanche a few minutes prior to the eruption in both the broad spectrum and narrow frequency (5-10 Hz) analysis. The total seismic energy release calculated from the new method is ~8x1011 joules, similar to an independently estimated calculation based on the radiated seismic energy. The inferred seismic energy release for the

  14. Potential hazards from future volcanic eruptions in California

    SciTech Connect

    Miller, C.D.

    1989-01-01

    More than 500 volcanic vents have been identified in the State of California. At least 76 of these vents have erupted, some repeatedly, during the last 10,000 yr. Past volcanic activity has ranged in scale and type from small rhyolitic and basaltic eruptions through large catastrophic rhyolitic eruptions. Volcanoes in California will erupt again, and they could have serious impacts on the health, safety, and economy of the State's citizens as well as that of neighboring states. The nature and probable distribution of potentially hazardous volcanic phenomena and their threat to people and property is described in this bulletin.

  15. Active seismic sources as a proxy for seismic surface processes: An example from the 2012 Tongariro volcanic eruptions, New Zealand

    NASA Astrophysics Data System (ADS)

    Jolly, A. D.; Lokmer, I.; Kennedy, B.; Keys, H. J. R.; Proctor, J.; Lyons, J. J.; Jolly, G. E.

    2014-10-01

    The 6 August 2012 eruption from Tongariro volcano's Te Maari vent comprised a complex sequence of events including at least 4 eruption pulses, a large chasm collapse, and a debris avalanche (volume of ~ 7 × 105 m3) that propagated ~ 2 km beyond the eruptive vent. The eruption was poorly observed, being obscured by night time darkness, and the eruption timing must be unravelled instead from a complex seismic record that includes discrete volcanic earthquakes, a sequence of low to moderate level spasmodic tremor and an intense burst of seismic and infrasound activity that marked the eruption onset. We have discriminated the evolution of the complex surface activity by comparing active seismic source data to the seismic sequence in a new cross correlation source location approach. We dropped 11 high impact masses from helicopter to generate a range of active seismic sources in the vicinity of the eruption vent, chasm, and debris avalanche areas. We obtained 8 successful drops having an impact energy ranging from 3 to 9 × 106 Nm producing observable seismic signals to a distance of 5 to 10 km and having good signal to noise characteristics in the 3-12 Hz range. For the 8 drops, we picked first-P arrival times and calculated amplitude spectra for a uniform set of four stations. We then compared these proxy source excitations to the natural eruption and pre-eruption data using a moving window cross correlation approach. From the correlation processing, we obtain a best matched source position in the near vent region for the eruption period and significant down channel excitations during both the pre and post eruption periods. The total seismic energy release calculated from the new method is ~ 8 × 1011 Nm, similar to an independently estimated calculation based on the radiated seismic energy. The new energy estimate may be more robust than those calculated from standard seismic radiation equations, which may include uncertainties about the path and site effects. The

  16. Overview Of Mount St. Helens Volcanic Eruption

    NASA Astrophysics Data System (ADS)

    Tilling, Robert I.

    Dormant since 1857, Mount St. Helens Volcano in southwestern Washington stirred from its repose to erupt on March 27, 1980, following a week of premonitory earthquake activity. The eruption was the first in the conterminous United States since the 1914-1921 activity of Lassen Peak, California. The eruptive activity through May 17 was intermittent and relatively mild, but the accompanying seismic activity remained intense. On May 18, a catastrophic eruption, triggered by a magnitude 5.0 earthquake, produced a massive landslide/debris avalanche, a devastating lateral "blast," pyroclastic flows, mudflows, and an ash column that rose more than 20 km into the stratosphere. Winds carried the ash easterly, and more than 7 cm of ash was deposited locally in parts of eastern Washington. The landslide/debris avalanche and associated mudflows caused flooding of the Toutle and Cowlitz River valleys, which carried sediment as far as the confluence with the Columbia, where it choked off the channel to navigation. Smaller but significant explosive eruptions followed in May, June, July, August, and October, 1980, with lava domes being extruded in the crater following the June, August, and October eruptions. Subsequently in December 1980 and February 1981, lava domes were extruded without significant preceding explosive activity. Except for the latter two, each dome was partly or wholly destroyed by succeeding explosive events. Scientists expect similar activity to continue for months or years--possibly even decades. The Mount St. Helens eruptions severely tested the ability of scientists to respond swiftly and effectively in assisting public officials during a geologic disaster. At the same time, they shall continue to provide an unprecedented opportunity for the systematic investigation of volcanic phenomena, and hopefully, the insight to meet possible future eruptions there and elsewhere in the Cascade Range with equal success.

  17. Two types of volcanic tremor changed with eruption style during 1986 Izu-Oshima eruption

    NASA Astrophysics Data System (ADS)

    Kurokawa, Aika; Takeo, Minoru; Kurita, Kei

    2016-04-01

    Volcanic tremor provides clues to magma migration pathways so that tremor source location is expected to be an efficient tool for tracking dynamic behavior of magma in evolution of eruptive activity. However, clear evidence, which connects between temporal variation in volcanic tremor and evolution of eruption style, is still lacking. We have analyzed volcanic tremors occurred during 1986 Izu-Oshima eruption using recently digitized data. The results present a clear link between eruption styles, waveform variations and source locations of the tremors. Moreover, precursory activity of the tremors that indicates injection of magma below fissures has been clarified 5 days prior to the fissure eruptions. This demonstrates predominance of tremor activity as an adaptive monitoring tool in volcanic eruption.

  18. Exploring a long-lasting volcanic eruption by means of in-soil radon measurements and seismic activity

    NASA Astrophysics Data System (ADS)

    Falsaperla, Susanna; Neri, Marco; Di Grazia, Giuseppe; Langer, Horst; Spampinato, Salvatore

    2016-04-01

    We analyze in-soil radon (Rn) emission and ambient parameters (barometric pressure and air temperature measurements) along with seismic activity during the longest flank eruption of this century at Mt. Etna, Italy. This eruption occurred between 14 May 2008 and 6 July 2009, from a N120-140°E eruptive fissure extending between 3050 and 2620 m above sea level. It was heralded by a short-lived (~5 hours) episode of lava fountaining three days before a dike-forming intrusion fed a lava emission, which affected the summit area of the volcano over ~15 months. The peculiar position of the station for the Rn measurement, which was at an altitude of 2950 m above sea level and near (~1 km) the summit active craters, offered us the uncommon chance: i) to explore the temporal development of the gas emission close (<2 km) to the 2008-2009 eruptive vents in the long term, and ii) to analyze the relationship between in-soil Rn fluxes and seismic signals (in particular, local earthquakes and volcanic tremor) during the uninterrupted lava emission. This approach reveals important details about the recharging phases characterizing the 2008-2009 eruption, which are not visible with other methods of investigation. Our study benefitted from the application of methods of pattern classification developed in the framework of the European MEDiterrranean Supersite Volcanoes (MED­SUV) project.

  19. Medical effects of volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Baxter, Peter J.

    1990-09-01

    Excluding famine and tsunamis, most deaths in volcanic eruptions have been from pyroclastic flows and surges (nuées ardentes) and wet debris flows (lahars). Information on the causes of death and injury in eruptions is sparse but the available literature is summarised for the benefit of volcanologists and emergency planners. In nuées, thermal injury may be at least as important as asphyxia in causing immediate deaths. The high temperature of the gases and entrained particles readily causes severe burns to the skin and the air passages and the presence of both types of injury in an individual may combine to increase the delayed mortality risk from respiratory complications or from infection of burns. Trauma from missiles or body displacement is also common, but the role of asphyxiant or irritant gases, and steam, remains unclear. The ratio of dead: injured is much higher than in other natural disasters. At the periphery of a nuée being protected inside buildings which remain intact appears to greatly increase the chances of survival. In lahars, infected wounds and crush injury are the main delayed causes of death, and the scope for preventive measures, other than evacuation, is small. The evidence from Mount St. Helens, 1980, and other major eruptions indicates that, although mortality is high within the main zone of devastation and in the open, emergency planning should concentrate on the periphery of a nuée where preventive measures are feasible and could save many lives in densely populated areas.

  20. Learning to recognize volcanic non-eruptions

    USGS Publications Warehouse

    Poland, Michael P.

    2010-01-01

    An important goal of volcanology is to answer the questions of when, where, and how a volcano will erupt—in other words, eruption prediction. Generally, eruption predictions are based on insights from monitoring data combined with the history of the volcano. An outstanding example is the A.D. 1980–1986 lava dome growth at Mount St. Helens, Washington (United States). Recognition of a consistent pattern of precursors revealed by geophysical, geological, and geochemical monitoring enabled successful predictions of more than 12 dome-building episodes (Swanson et al., 1983). At volcanic systems that are more complex or poorly understood, probabilistic forecasts can be useful (e.g., Newhall and Hoblitt, 2002; Marzocchi and Woo, 2009). In such cases, the probabilities of different types of volcanic events are quantified, using historical accounts and geological studies of a volcano's past activity, supplemented by information from similar volcanoes elsewhere, combined with contemporary monitoring information.

  1. Soil gas radon and volcanic activity at El Hierro (Canary Islands) before and after the 2011-2012 submarine eruption

    NASA Astrophysics Data System (ADS)

    Barrancos, J.; Padilla, G.; Hernandez Perez, P. A.; Padron, E.; Perez, N.; Melian Rodriguez, G.; Nolasco, D.; Dionis, S.; Rodriguez, F.; Calvo, D.; Hernandez, I.

    2012-12-01

    El Hierro is the youngest and southernmost island of the Canarian archipelago and represents the summit of a volcanic shield elevating from the surrounding seafloor at depth of 4000 m to up to 1501 m above sea level. The island is believed to be near the present hotspot location in the Canaries with the oldest subaerial rocks dated at 1.12 Ma. The subaerial parts of the El Hierro rift zones (NE, NW and S Ridges) are characterized by tightly aligned dyke complexes with clusters of cinder cones as their surface expressions. Since July 16, 2011, an anomalous seismicity at El Hierro Island was recorded by IGN seismic network. Volcanic tremor started at 05:15 hours on October 10, followed on the afternoon of October 12 by a green discolouration of seawater, strong bubbling and degassing indicating the initial stage of submarine volcanic eruption at approximately 2 km off the coast of La Restinga, El Hierro. Soil gas 222Rn and 220Rn activities were continuously measured during the period of the recent volcanic unrest occurred at El Hierro, at two different geochemical stations, HIE02 and HIE03. Significant increases in soil 222Rn activity and 222Rn/220Rn ratio from the soil were observed at both stations prior the submarine eruption off the coast of El Hierro, showing the highest increases before the eruption onset and the occurrence of the strongest seismic event (M=4.6). A statistical analysis showed that the long-term trend of the filtered data corresponded closely to the seismic energy released during the volcanic unrest. The observed increases of 222Rn are related to the rock fracturing processes (seismic activity) and the magmatic CO2 outflow increase, as observed in HIE03 station. Under these results, we find that continuous soil radon studies are important for evaluating the volcanic activity of El Hierro and they demonstrate the potential of applying continuous monitoring of soil radon to improve and optimize the detection of early warning signals of future

  2. Thermal vesiculation during volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Lavallée, Yan; Dingwell, Donald B.; Johnson, Jeffrey B.; Cimarelli, Corrado; Hornby, Adrian J.; Kendrick, Jackie E.; von Aulock, Felix W.; Kennedy, Ben M.; Andrews, Benjamin J.; Wadsworth, Fabian B.; Rhodes, Emma; Chigna, Gustavo

    2015-12-01

    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the ‘strength’ of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive

  3. Thermal vesiculation during volcanic eruptions.

    PubMed

    Lavallée, Yan; Dingwell, Donald B; Johnson, Jeffrey B; Cimarelli, Corrado; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Kennedy, Ben M; Andrews, Benjamin J; Wadsworth, Fabian B; Rhodes, Emma; Chigna, Gustavo

    2015-12-24

    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the 'strength' of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive

  4. Volcanic eruptions; energy and size

    USGS Publications Warehouse

    de la Cruz-Reyna, S.

    1991-01-01

    The Earth is a dynamic planet. Many different processes are continuously developing, creating a delicate balance between the energy stored and generated in its interior and the heat lost into space. The heat in continuously transferred through complex self-regulating convection mechanisms on a planetary scale. The distribution of terrestrial heat flow reveals some of the fine structure of the energy transport mechanisms in the outer layers of the Earth. Of these mechanisms in the outer layers of the Earth. Of these mechanisms, volcanism is indeed the most remarkable, for it allows energy to be transported in rapid bursts to the surface. In order to maintain the subtle balance of the terrestrial heat machine, one may expect that some law or principle restricts the ways in which these volcanic bursts affect the overall energy transfer of the Earth. For instance, we know that the geothermal flux of the planet amounts to 1028 erg/year. On the other hand, a single large event like the Lava Creek Tuff eruption that formed Yellowstone caldera over half a million years ago may release the same amount of energy in a very small area, over a short period of time. 

  5. Volcanic Eruptions and Climate: Outstanding Research Issues

    NASA Astrophysics Data System (ADS)

    Robock, Alan

    2016-04-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  6. Winter warming from large volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  7. Winter warming from large volcanic eruptions

    SciTech Connect

    Robock, A.; Mao, J.

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95 percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  8. Predictions of volcanic eruptions at Mt Vesuvius, Italy

    NASA Astrophysics Data System (ADS)

    Ho, Chih-Hsiang

    1992-06-01

    We present a mathematically-based model for predicting the likelihood of future eruptions of Vesuvius and, by implication, other volcanoes. The volcanic activity of Vesuvius in the period 1630-1989 is described by a compound Poisson distribution with a gamma compounding density. The frequency distribution of eruptions in any given interval of equal length follows a negative binomial distribution (NBD). The assumptions of the NBD model are less restrictive, so the observation time can be extended to include the long repose following the 1944 eruption of Vesuvius. Moreover, this exceedingly flexible model has only two parameters which can be determined easily from the eruptive count data. The future probability of x number of eruptions is predicted on the aggregate behaviour of past volcanic activity. This capability would be useful for long-term planning, such as for land-use development, although not for short-term forecasts of volcanic hazards.

  9. Victims from volcanic eruptions: a revised database

    NASA Astrophysics Data System (ADS)

    Tanguy, J.-C.; Ribière, C.; Scarth, A.; Tjetjep, W. S.

    The number of victims from volcanism and the primary cause(s) of death reported in the literature show considerable uncertainty. We present the results of investigations carried out either in contemporary accounts or in specific studies of eruptions that occurred since A.D. 1783. More than 220 000 people died because of volcanic activity during this period, which includes approximately 90% of the recorded deaths throughout history. Most of the fatalities resulted from post-eruption famine and epidemic disease (30.3%), nuées ardentes or pyroclastic flows and surges (26.8%), mudflows or lahars (17.1%), and volcanogenic tsunamis (16.9%). At present, however, international relief efforts might reduce the effects of post-eruption crop failure and disease, and at least some of the lahars could be anticipated in time by adequate scientific and social response. Thus, mitigation of hazards from pyroclastic flows and tsunamis will become of paramount importance to volcanologists and civil authorities.

  10. Assessment of the atmospheric impact of volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Sigurdsson, H.

    1988-01-01

    The dominant global impact of volcanic activity is likely to be related to the effects of volcanic gases on the Earth's atmosphere. Volcanic gas emissions from individual volcanic arc eruptions are likely to cause increases in the stratospheric optical depth that result in surface landmass temperature decline of 2 to 3 K for less than a decade. Trachytic and intermediate magmas are much more effective in this regard than high-silica magmas, and may also lead to extensive ozone depletion due to effect of halogens and magmatic water. Given the assumed relationship between arc volcanism and subduction rate, and the relatively small variation in global spreading rates in the geologic record, it is unlikely that the rates of arc volcanism have varied greatly during the Cenozoic. Hotspot related basaltic fissure eruptions in the subaerial environment have a higher mass yield of sulfur, but lofting of the valcanic aerosol to levels above the tropopause is required for a climate impact. High-latitude events, such as the Laki 1783 eruption can easily penetrate the tropopause and enter the stratosphere, but formation of a stratospheric volcanic aerosol form low-latitude effusive basaltic eruptions is problematical, due to the elevated low-latitude tropopause. Due to the high sulfur content of hotspot-derived basaltic magmas, their very high mass eruption rates and the episodic behavior, hotspots must be regarded as potentially major modifiers of Earth's climate through the action of their volcanic volatiles on the chemistry and physics of the atmosphere.

  11. Kamchatkan Volcanic Eruption Response Team (KVERT), Russia: preventing the danger of volcanic eruptions to aviation.

    NASA Astrophysics Data System (ADS)

    Girina, O.; Neal, Ch.

    2012-04-01

    The Kamchatkan Volcanic Eruption Response Team (KVERT) has been a collaborative project of scientists from the Institute of Volcanology and Seismology, the Kamchatka Branch of Geophysical Surveys, and the Alaska Volcano Observatory (IVS, KB GS and AVO). The purpose of KVERT is to reduce the risk of costly, damaging, and possibly deadly encounters of aircraft with volcanic ash clouds. To reduce this risk, KVERT collects all possible volcanic information and issues eruption alerts to aviation and other emergency officials. KVERT was founded by Institute of Volcanic Geology and Geochemistry FED RAS in 1993 (in 2004, IVGG merged with the Institute of Volcanology to become IVS). KVERT analyzes volcano monitoring data (seismic, satellite, visual and video, and pilot reports), assigns the Aviation Color Code, and issues reports on eruptive activity and unrest at Kamchatkan (since 1993) and Northern Kurile (since 2003) volcanoes. KVERT receives seismic monitoring data from KB GS (the Laboratory for Seismic and Volcanic Activity). KB GS maintains telemetered seismic stations to investigate 11 of the most active volcanoes in Kamchatka. Data are received around the clock and analysts evaluate data each day for every monitored volcano. Satellite data are provided from several sources to KVERT. AVO conducts satellite analysis of the Kuriles, Kamchatka, and Alaska as part of it daily monitoring and sends the interpretation to KVERT staff. KVERT interprets MODIS and MTSAT images and processes AVHRR data to look for evidence of volcanic ash and thermal anomalies. KVERT obtains visual volcanic information from volcanologist's field trips, web-cameras that monitor Klyuchevskoy (established in 2000), Sheveluch (2002), Bezymianny (2003), Koryaksky (2009), Avachinsky (2009), Kizimen (2011), and Gorely (2011) volcanoes, and pilots. KVERT staff work closely with staff of AVO, AMC (Airport Meteorological Center) at Yelizovo Airport and the Tokyo Volcanic Ash Advisory Center (VAAC), the

  12. Steam explosions, earthquakes, and volcanic eruptions -- what's in Yellowstone's future?

    USGS Publications Warehouse

    Lowenstern, Jacob B.; Christiansen, Robert L.; Smith, Robert B.; Morgan, Lisa A.; Heasler, Henry

    2005-01-01

    Yellowstone, one of the world?s largest active volcanic systems, has produced several giant volcanic eruptions in the past few million years, as well as many smaller eruptions and steam explosions. Although no eruptions of lava or volcanic ash have occurred for many thousands of years, future eruptions are likely. In the next few hundred years, hazards will most probably be limited to ongoing geyser and hot-spring activity, occasional steam explosions, and moderate to large earthquakes. To better understand Yellowstone?s volcano and earthquake hazards and to help protect the public, the U.S. Geological Survey, the University of Utah, and Yellowstone National Park formed the Yellowstone Volcano Observatory, which continuously monitors activity in the region.

  13. Volcview: A Web-Based Platform for Satellite Monitoring of Volcanic Activity and Eruption Response

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Randall, M.; Parker, T.

    2014-12-01

    The U.S. Geological Survey (USGS), in cooperation with University and State partners, operates five volcano observatories that employ specialized software packages and computer systems to process and display real-time data coming from in-situ geophysical sensors and from near-real-time satellite sources. However, access to these systems both inside and from outside the observatory offices are limited in some cases by factors such as software cost, network security, and bandwidth. Thus, a variety of Internet-based tools have been developed by the USGS Volcano Science Center to: 1) Improve accessibility to data sources for staff scientists across volcano monitoring disciplines; 2) Allow access for observatory partners and for after-hours, on-call duty scientists; 3) Provide situational awareness for emergency managers and the general public. Herein we describe VolcView (volcview.wr.usgs.gov), a freely available, web-based platform for display and analysis of near-real-time satellite data. Initial geographic coverage is of the volcanoes in Alaska, the Russian Far East, and the Commonwealth of the Northern Mariana Islands. Coverage of other volcanoes in the United States will be added in the future. Near-real-time satellite data from NOAA, NASA and JMA satellite systems are processed to create image products for detection of elevated surface temperatures and volcanic ash and SO2 clouds. VolcView uses HTML5 and the canvas element to provide image overlays (volcano location and alert status, annotation, and location information) and image products that can be queried to provide data values, location and measurement capabilities. Use over the past year during the eruptions of Pavlof, Veniaminof, and Cleveland volcanoes in Alaska by the Alaska Volcano Observatory, the National Weather Service, and the U.S. Air Force has reinforced the utility of shared situational awareness and has guided further development. These include overlay of volcanic cloud trajectory and

  14. Multistation alarm system for eruptive activity based on the automatic classification of volcanic tremor: specifications and performance

    NASA Astrophysics Data System (ADS)

    Langer, Horst; Falsaperla, Susanna; Messina, Alfio; Spampinato, Salvatore

    2015-04-01

    With over fifty eruptive episodes (Strombolian activity, lava fountains, and lava flows) between 2006 and 2013, Mt Etna, Italy, underscored its role as the most active volcano in Europe. Seven paroxysmal lava fountains at the South East Crater occurred in 2007-2008 and 46 at the New South East Crater between 2011 and 2013. Month-lasting lava emissions affected the upper eastern flank of the volcano in 2006 and 2008-2009. On this background, effective monitoring and forecast of volcanic phenomena are a first order issue for their potential socio-economic impact in a densely populated region like the town of Catania and its surroundings. For example, explosive activity has often formed thick ash clouds with widespread tephra fall able to disrupt the air traffic, as well as to cause severe problems at infrastructures, such as highways and roads. For timely information on changes in the state of the volcano and possible onset of dangerous eruptive phenomena, the analysis of the continuous background seismic signal, the so-called volcanic tremor, turned out of paramount importance. Changes in the state of the volcano as well as in its eruptive style are usually concurrent with variations of the spectral characteristics (amplitude and frequency content) of tremor. The huge amount of digital data continuously acquired by INGV's broadband seismic stations every day makes a manual analysis difficult, and techniques of automatic classification of the tremor signal are therefore applied. The application of unsupervised classification techniques to the tremor data revealed significant changes well before the onset of the eruptive episodes. This evidence led to the development of specific software packages related to real-time processing of the tremor data. The operational characteristics of these tools - fail-safe, robustness with respect to noise and data outages, as well as computational efficiency - allowed the identification of criteria for automatic alarm flagging. The

  15. Supercomputer modeling of volcanic eruption dynamics

    SciTech Connect

    Kieffer, S.W.; Valentine, G.A.; Woo, Mahn-Ling

    1995-06-01

    Our specific goals are to: (1) provide a set of models based on well-defined assumptions about initial and boundary conditions to constrain interpretations of observations of active volcanic eruptions--including movies of flow front velocities, satellite observations of temperature in plumes vs. time, and still photographs of the dimensions of erupting plumes and flows on Earth and other planets; (2) to examine the influence of subsurface conditions on exit plane conditions and plume characteristics, and to compare the models of subsurface fluid flow with seismic constraints where possible; (3) to relate equations-of-state for magma-gas mixtures to flow dynamics; (4) to examine, in some detail, the interaction of the flowing fluid with the conduit walls and ground topography through boundary layer theory so that field observations of erosion and deposition can be related to fluid processes; and (5) to test the applicability of existing two-phase flow codes for problems related to the generation of volcanic long-period seismic signals; (6) to extend our understanding and simulation capability to problems associated with emplacement of fragmental ejecta from large meteorite impacts.

  16. A phenomenological model for precursor volcanic eruptions.

    PubMed

    Menand, T; Tait, S R

    2001-06-01

    Intense explosions of relatively short duration frequently precede large explosive and effusive volcanic eruptions-by as much as weeks to months in the case of very viscous magmas. In some cases, such pre-eruption activity has served as a sufficient warning to those living in the vicinity to evacuate and avoid calamity. Precursor events seem to be related to the formation of a magma pathway to the surface, but their precise interpretation is a long-standing puzzle. It has been inferred from theoretical studies that exsolution of volatiles might create an almost separate gas pocket at the tip of a propagating dyke. Here we explain the role that such a process may have, using a laboratory study of the transient propagation of a liquid-filled crack with a gas pocket at its tip that grows with time. We show that once the gas pocket acquires sufficient buoyancy to overcome the fracture resistance of the host solid the dynamics of the gas pocket, rather than those of the liquid, determine the velocity of the crack tip. Furthermore, we find that the gas can ultimately separate from the liquid. We propose that fast-moving, gas-rich pockets reaching the surface ahead of the main liquid-filled fissure could be the origin of many precursor eruptions. PMID:11395766

  17. Understanding Volcanic Conduit Dynamics: from Experimental Fragmentation to Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Arciniega-Ceballos, A.; Alatorre-Ibarguengoitia, M. A.; Scheu, B.; Dingwell, D. B.

    2011-12-01

    and the effects of such process on the conduit dynamics are independent of size. We first described the very-long period (VLP) and long-period (LP) signals, observed in many active volcanoes around the world, and from comparison of waveform characteristics with their experimental analogues (eLP and eVLP signals) we found remarkable similarities and equivalent physical meaning. Based on our experimental investigations and analysis of field data recorded during volcanic eruptions we may conclude that VLP signals are caused by the inflation-deflation behavior of the volcanic conduit due to the decompression process, and that LP signals are manly associated with cracking and fragmentation of the magmatic material (ash, magma and gas) filling the conduit and ascending to the surface. In addition, we accounted for the repetitive character of LP and VLP signals, as a consequence of contraction and dilatation of a steady non-destructive source mechanism, which systematically responds to pressure changes of the volcanic system.

  18. Database for potential hazards from future volcanic eruptions in California

    USGS Publications Warehouse

    White, Melissa N.; Ramsey, David W.; Miller, C. Dan

    2011-01-01

    More than 500 volcanic vents have been identified in the State of California. At least 76 of these vents have erupted, some repeatedly, during the past 10,000 yr. Past volcanic activity has ranged in scale and type from small rhyolitic and basaltic eruptions through large catastrophic rhyolitic eruptions. Sooner or later, volcanoes in California will erupt again, and they could have serious impacts on the health and safety of the State's citizens as well as on its economy. This report describes the nature and probable distribution of potentially hazardous volcanic phenomena and their threat to people and property. It includes hazard-zonation maps that show areas relatively likely to be affected by future eruptions in California. This digital release contains information from maps of potential hazards from future volcanic eruptions in the state of California, published as Plate 1 in U.S. Geological Survey Bulletin 1847. The main component of this digital release is a spatial database prepared using geographic information systems (GIS) applications. This release also contains links to files to view or print the map plate, main report text, and accompanying hazard tables from Bulletin 1847. It should be noted that much has been learned about the ages of eruptive events in the State of California since the publication of Bulletin 1847 in 1989. For the most up to date information on the status of California volcanoes, please refer to the U.S. Geological Survey Volcano Hazards Program website.

  19. Geomorphic consequences of volcanic eruptions in Alaska: A review

    NASA Astrophysics Data System (ADS)

    Waythomas, Christopher F.

    2015-10-01

    Eruptions of Alaska volcanoes have significant and sometimes profound geomorphic consequences on surrounding landscapes and ecosystems. The effects of eruptions on the landscape can range from complete burial of surface vegetation and preexisting topography to subtle, short-term perturbations of geomorphic and ecological systems. In some cases, an eruption will allow for new landscapes to form in response to the accumulation and erosion of recently deposited volcaniclastic material. In other cases, the geomorphic response to a major eruptive event may set in motion a series of landscape changes that could take centuries to millennia to be realized. The effects of volcanic eruptions on the landscape and how these effects influence surface processes has not been a specific focus of most studies concerned with the physical volcanology of Alaska volcanoes. Thus, what is needed is a review of eruptive activity in Alaska in the context of how this activity influences the geomorphology of affected areas. To illustrate the relationship between geomorphology and volcanic activity in Alaska, several eruptions and their geomorphic impacts will be reviewed. These eruptions include the 1912 Novarupta-Katmai eruption, the 1989-1990 and 2009 eruptions of Redoubt volcano, the 2008 eruption of Kasatochi volcano, and the recent historical eruptions of Pavlof volcano. The geomorphic consequences of eruptive activity associated with these eruptions are described, and where possible, information about surface processes, rates of landscape change, and the temporal and spatial scale of impacts are discussed. A common feature of volcanoes in Alaska is their extensive cover of glacier ice, seasonal snow, or both. As a result, the generation of meltwater and a variety of sediment-water mass flows, including debris-flow lahars, hyperconcentrated-flow lahars, and sediment-laden water floods, are typical outcomes of most types of eruptive activity. Occasionally, such flows can be quite large

  20. Geomorphic Consequences of Volcanic Eruptions in Alaska: A Review

    USGS Publications Warehouse

    Waythomas, Christopher F.

    2015-01-01

    Eruptions of Alaska volcanoes have significant and sometimes profound geomorphic consequences on surrounding landscapes and ecosystems. The effects of eruptions on the landscape can range from complete burial of surface vegetation and preexisting topography to subtle, short-term perturbations of geomorphic and ecological systems. In some cases, an eruption will allow for new landscapes to form in response to the accumulation and erosion of recently deposited volcaniclastic material. In other cases, the geomorphic response to a major eruptive event may set in motion a series of landscape changes that could take centuries to millennia to be realized. The effects of volcanic eruptions on the landscape and how these effects influence surface processes has not been a specific focus of most studies concerned with the physical volcanology of Alaska volcanoes. Thus, what is needed is a review of eruptive activity in Alaska in the context of how this activity influences the geomorphology of affected areas. To illustrate the relationship between geomorphology and volcanic activity in Alaska, several eruptions and their geomorphic impacts will be reviewed. These eruptions include the 1912 Novarupta–Katmai eruption, the 1989–1990 and 2009 eruptions of Redoubt volcano, the 2008 eruption of Kasatochi volcano, and the recent historical eruptions of Pavlof volcano. The geomorphic consequences of eruptive activity associated with these eruptions are described, and where possible, information about surface processes, rates of landscape change, and the temporal and spatial scale of impacts are discussed.A common feature of volcanoes in Alaska is their extensive cover of glacier ice, seasonal snow, or both. As a result, the generation of meltwater and a variety of sediment–water mass flows, including debris-flow lahars, hyperconcentrated-flow lahars, and sediment-laden water floods, are typical outcomes of most types of eruptive activity. Occasionally, such flows can be quite

  1. Seasonal variations of volcanic eruption frequencies

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    Do volcanic eruptions have a tendency to occur more frequently in the months of May and June? Some past evidence suggests that they do. The present study, based on the new eruption catalog of Simkin et al.(1981), investigates the monthly statistics of the largest eruptions, grouped according to explosive magnitude, geographical latitude, and year. At the 2-delta level, no month-to-month variations in eruption frequency are found to be statistically significant. Examination of previously published month-to-month variations suggests that they, too, are not statistically significant. It is concluded that volcanism, at least averaged over large portions of the globe, is probably not periodic on a seasonal or annual time scale.

  2. Preventive health measures in volcanic eruptions.

    PubMed Central

    Baxter, P J; Bernstein, R S; Buist, A S

    1986-01-01

    Medical treatment has only a small role in severe volcanic eruptions and so preventive measures are paramount if injuries and loss of life are to be reduced. The health team must be incorporated in emergency planning and response at the earliest stage. Guidance on the interpretation of geological information about a volcano and the appropriate health measures that should be adopted before and after an eruption are summarized for the benefit of health workers. PMID:3946731

  3. Eruption processes and deposit characteristics at the monogenetic Mt. Gambier Volcanic Complex, SE Australia: implications for alternating magmatic and phreatomagmatic activity

    NASA Astrophysics Data System (ADS)

    van Otterloo, Jozua; Cas, Raymond A. F.; Sheard, Malcolm J.

    2013-08-01

    The ˜5 ka Mt. Gambier Volcanic Complex in the Newer Volcanics Province, Australia is an extremely complex monogenetic, volcanic system that preserves at least 14 eruption points aligned along a fissure system. The complex stratigraphy can be subdivided into six main facies that record alternations between magmatic and phreatomagmatic eruption styles in a random manner. The facies are (1) coherent to vesicular fragmental alkali basalt (effusive/Hawaiian spatter and lava flows); (2) massive scoriaceous fine lapilli with coarse ash (Strombolian fallout); (3) bedded scoriaceous fine lapilli tuff (violent Strombolian fallout); (4) thin-medium bedded, undulating very fine lapilli in coarse ash (dry phreatomagmatic surge-modified fallout); (5) palagonite-altered, cross-bedded, medium lapilli to fine ash (wet phreatomagmatic base surges); and (6) massive, palagonite-altered, very poorly sorted tuff breccia and lapilli tuff (phreato-Vulcanian pyroclastic flows). Since most deposits are lithified, to quantify the grain size distributions (GSDs), image analysis was performed. The facies are distinct based on their GSDs and the fine ash to coarse+fine ash ratios. These provide insights into the fragmentation intensities and water-magma interaction efficiencies for each facies. The eruption chronology indicates a random spatial and temporal sequence of occurrence of eruption styles, except for a "magmatic horizon" of effusive activity occurring at both ends of the volcanic complex simultaneously. The eruption foci are located along NW-SE trending lineaments, indicating that the complex was fed by multiple dykes following the subsurface structures related to the Tartwaup Fault System. Possible factors causing vent migration along these dykes and changes in eruption styles include differences in magma ascent rates, viscosity, crystallinity, degassing and magma discharge rate, as well as hydrological parameters.

  4. Indirect Climatic Effects of Major Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Hofmann, D. J.

    2007-05-01

    The direct effects on climate, related to atmospheric emissions to the atmosphere following major volcanic eruptions, are well-known although the sparseness of such eruptions make detailed study on the range of such variations difficult. In general terms, infrared absorption by volcanic emissions to the stratosphere result in local heating early in the event when gaseous sulfur compounds exist. This early period is followed by gas to particle conversion, on a time scale of 1-2 months, promoting the formation of sulfuric acid-water droplets. Coagulation and droplet growth result in the "volcanic stratospheric aerosol layer" which is related to the predominant direct climatic effect of large eruptions, the cooling of the troposphere by backscattering of solar visible radiation to space with a recovery time scale of 1-2 years. In this paper we will discuss some of the less-known "indirect" effects of the volcanic stratospheric aerosol on climate. We label them indirect as they act on climate through intermediary atmospheric constituents. The intermediaries in the volcanic indirect climatic effect are generally atmospheric greenhouse gases or other atmospheric gases and conditions which affect greenhouse gases. For example, cooling of the troposphere following major eruptions reduces the growth rate of atmospheric carbon dioxide related to respiration by the terrestrial biosphere. In addition, redirection of part of the direct solar beam into diffuse radiation by the volcanic stratospheric aerosol stimulates plant photosynthesis, further reducing the carbon dioxide growth rate. The growth rate of the second-most important atmospheric greenhouse gas, methane, is also affected by volcanic emissions. Volcanic stratospheric aerosol particles provide surface area which catalyzes heterogeneous chemical reactions thus stimulating removal of stratospheric ozone, also a greenhouse gas. Although major droughts usually related to ENSO events have opposite effects on carbon

  5. Modulations of stratospheric ozone by volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Blanchette, Christian; Mcconnell, John C.

    1994-01-01

    We have used a time series of aerosol surface based on the measurements of Hofmann to investigate the modulation of total column ozone caused by the perturbation to gas phase chemistry by the reaction N2O5(gas) + H2O(aero) yields 2HNO3(gas) on the surface of stratospheric aerosols. We have tested a range of values for its reaction probability, gamma = 0.02, 0.13, and 0.26 which we compared to unperturbed homogeneous chemistry. Our analysis spans a period from Jan. 1974 to Oct. 1994. The results suggest that if lower values of gamma are the norm then we would expect larger ozone losses for highly enhanced aerosol content that for larger values of gamma. The ozone layer is more sensitive to the magnitude of the reaction probability under background conditions than during volcanically active periods. For most conditions, the conversion of NO2 to HNO3 is saturated for reaction probability in the range of laboratory measurements, but is only absolutely saturated following major volcanic eruptions when the heterogeneous loss dominates the losses of N2O5. The ozone loss due to this heterogeneous reaction increases with the increasing chlorine load. Total ozone losses calculated are comparable to ozone losses reported from TOMS and Dobson data.

  6. Volcanic Eruption: Students Develop a Contingency Plan

    NASA Astrophysics Data System (ADS)

    Meisinger, Philipp; Wittlich, Christian

    2013-04-01

    Dangerous, loud, sensational, exciting - natural hazards have what it takes to get students attention around the globe. Arising interest is the first step to develop an intrinsic motivation to learn about the matter and endure the hardships that students might discover along the way of the unit. Natural hazards thereby establish a close-knit connection between physical and anthropological geography through analyzing the hazardous event and its consequences for the people living in the affected area. Following a general principle of didactics we start searching right on our doorsteps to offer students the possibility to gain knowledge on the familiar and later transfer it to the unknown example. Even in Southwest Germany - a region that is rather known for its wine than its volcanic activity - we can find a potentially hazardous region. The "Laacher See" volcano (a caldera lake) in northern Rhineland-Palatinate is according to Prof. H.U. Schminke a "potentially active volcano" . Its activity can be proven by seismic activities, or experienced when visiting the lake's southeastern shore, where carbondioxid and sulphur gases from the underlying magma chamber still bubble up. The Laacher See is part of a range of volcanoes (classified from 'potentially active' to 'no longer active') of the East Eifel Volcanic Field. Precariously the Laacher See is located closely to the densely populated agglomerations of Cologne (NE, distance: 45 km) and the former capital Bonn (NE: 35km), as well as Koblenz (E: 24km) and the Rhine river. Apart from that, the towns of Andernach (E: 8km ± 30 000 inhabitants) and Mayen (SW: 11km ±20 000 inhabitants) and many smaller towns and villages are nearby due to economic reasons. The number of people affected by a possible eruption easily exceeds two million people considering the range as prime measurement. The underlying danger, as projected in a simulation presented by Prof. Schminke, is a lava stream running down the Brohltal valley

  7. Critical review of a new volcanic eruption chronology

    NASA Astrophysics Data System (ADS)

    Neuhäuser, Dagmar L.; Neuhäuser, Ralph

    2016-04-01

    Sigl. et al. (2015, Nature) present historical evidence for 32 volcanic eruptions to evaluate their new polar ice core 10-Be chronology - 24 are dated within three years of sulfur layers in polar ice. Most of them can be interpreted as weather phenomena (Babylonia: disk of sun like moon, reported for only one day, e.g. extinction due to clouds), Chinese sunspot reports (pellet, black vapor, etc.), solar eclipses, normal ice-halos and coronae (ring, bow, etc.), one aurora (redness), red suns due to mist drops in wet fog or fire-smoke, etc. Volcanic dust may facilitate detections of sunspots and formation of Bishop's ring, but tend to inhibit ice-halos, which are otherwise often reported in chronicles. We are left with three reports possibly indicating volcanic eruptions, namely fulfilling genuine criteria for atmospheric disturbances due to volcanic dust, e.g. bluish or faint sun, orange sky, or fainting of stars for months (BCE 208, 44-42, and 32). Among the volcanic eruptions used to fix the chronology (CE 536, 626, 939, 1257), the reports cited for the 930s deal only with 1-2 days, at least one reports an eclipse. In the new chronology, there is a sulfur detection eight years after the Vesuvius eruption, but none in CE 79. It may appear surprising that, from BCE 500 to 1, all five northern sulfur peaks labeled in figure 2 in Sigl et al. are systematically later by 2-4 years than the (corresponding?) southern peaks, while all five southern peaks from CE 100 to 600 labeled in figure 2 are systematically later by 1-4 years than the (corresponding?) northern peaks. Furthermore, in most of their six strongest volcanic eruptions, temperatures decreased years before their sulfur dating - correlated with weak solar activity as seen in radiocarbon, so that volcanic climate forcing appears dubious here. Also, their 10-Be peaks at CE 775 and 994 are neither significant nor certain in dating.

  8. Potential hazards from future volcanic eruptions in California

    USGS Publications Warehouse

    Miller, C. Dan

    1989-01-01

    More than 500 volcanic vents have been identified in the State of California. At least 76 of these vents have erupted, some repeatedly, during the last 10,000 years. Past volcanic activity has ranged in scale and type from small rhyolitic and basaltic eruptions through large catastrophic rhyolitic eruptions. Sooner or later, volcanoes in California will erupt again, and they could have serious impacts on the health and safety of the State\\'s citizens as well as on its economy. This report describes the nature and probable distribution of potentially hazardous volcanic phenomena and their threat to people and property. It includes hazard-zonation maps that show areas relatively likely to be affected by future eruptions in California. The potentially more hazardous eruptions in the State are those that involve explosive eruption of large volumes of silicic magma. Such eruptions could occur at vents in as many as four areas in California. They could eject pumice high into the atmosphere above the volcano, produce destructive blasts, avalanches, or pyroclastic flows that reach distances of tens of kilometers from a vent, and produce mudflows and floods that reach to distances of hundreds of kilometers. Smaller eruptions produce similar, but less severe and less extensive, phenomena. Hazards are greatest close to a volcanic vent; the slopes on or near a volcano, and valleys leading away from it, are affected most often and most severely by such eruptions. In general, risk from volcanic phenomena decreases with increasing distance from a vent and, for most flowage processes, with increasing height above valley floors or fan surfaces. Tephra (ash) from explosive eruptions can affect wide areas downwind from a vent. In California, prevailing winds cause the 180-degree sector east of the volcano to be affected most often and most severely. Risk to life from ashfall decreases rapidly with increasing distance from a vent, but thin deposits of ash could disrupt communication

  9. Hydrological Disturbances Caused By Explosive Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Major, J. J.; Pierson, T. C.; Spicer, K. R.; Mark, L.; Yamakoshi, T.; Suwa, H.

    2014-12-01

    Explosive eruptions can drastically alter hydrogeomorphic regimes of drainage basins. The extent and degree of eruption-induced alteration scale with eruption magnitude, volcanic process, and basin proximity to a volcano. The most important effects of explosive eruptions on basin hydrology are ones that alter production and routing of runoff: (a) vegetation damage, which decreases (or eliminates) interception and evapotranspiration (ET); (b) reduction of surface infiltration owing to tephra deposition, which increases overland flow; (c) alteration of stream-channel hydraulics, which enables efficient transport of water and sediment; and (d) alterations to drainage networks, which accelerate or delay geomorphic response. In combination, these effects alter flood magnitude and frequency and rates of sediment transport. Vegetation loss allows more water to fall directly to the ground surface and reduces ET, which affects soil moisture, water storage and runoff pathways. Tephra fall, which typically paves the landscape with nearly impervious sediment, can reduce infiltration by as much as 2 orders of magnitude compared to pre-eruption rates and can increase direct runoff from near zero to as much as 90%. Even very thin layers (2-5 mm) of extremely fine tephra can increase runoff and decrease lag times between peak rainfall and peak runoff. Volcanic sedimentation in river valleys can increase channel gradient, reduce planform resistance, and smooth channel hydraulics, allowing for more efficient flow routing and producing larger, flashier flows. Hydrological effects of eruptive disturbance can linger for decades, but the most extreme effects typically last but a few years. However, lake formation through tributary blockage by thick deposits can delay response and extend the hydrologic legacy of eruptive disturbances. Failures of lake-impounding dams can produce large floods that renew downstream channel instability and rejuvenate headwater erosion.

  10. Volcanic hazards. A sourcebook on the effects of eruptions

    SciTech Connect

    Blong, R.J.

    1984-01-01

    This volume examines the diverse effects of volcanic eruptions on people and their activities using examples and case studies. Eight broad groups of volcanic hazards - lava flows, ash (tephra) falls, pyroclastic flows, lahars (mudflows), volcanogenic earthquakes, volcanogenic tsunami, atmospheric phenomena such as shock waves and lightening strikes, and acid rains and gases - are identified and discussed. The social effects of eruptions are discussed, including human perceptions, mental health problems, evacuation, panic, rumors, disaster relief, religious beliefs, and longer-term social changes. Attention is also given to the effects of volcanic hazards on agriculture and other forms of economic activity. Throughout the book suggestions are made indicating ways in which casualties and damage may be reduced.

  11. Eruption-induced modifications to volcanic seismicity at Ruapehu, New Zealand, and its implications for eruption forecasting

    USGS Publications Warehouse

    Bryan, C.J.; Sherburn, S.

    2003-01-01

    Broadband seismic data collected on Ruapehu volcano, New Zealand, in 1994 and 1998 show that the 1995-1996 eruptions of Ruapehu resulted in a significant change in the frequency content of tremor and volcanic earthquakes at the volcano. The pre-eruption volcanic seismicity was characterized by several independent dominant frequencies, with a 2 Hz spectral peak dominating the strongest tremor and volcanic earthquakes and higher frequencies forming the background signal. The post-eruption volcanic seismicity was dominated by a 0.8-1.4 Hz spectral peak not seen before the eruptions. The 2 Hz and higher frequency signals remained, but were subordinate to the 0.8-1.4 Hz energy. That the dominant frequencies of volcanic tremor and volcanic earthquakes were identical during the individual time periods prior to and following the 1995-1996 eruptions suggests that during each of these time periods the volcanic tremor and earthquakes were generated by the same source process. The overall change in the frequency content, which occurred during the 1995-1996 eruptions and remains as of the time of the writing of this paper, most likely resulted from changes in the volcanic plumbing system and has significant implications for forecasting and real-time assessment of future eruptive activity at Ruapehu.

  12. The largest volcanic eruptions on Earth

    NASA Astrophysics Data System (ADS)

    Bryan, Scott E.; Peate, Ingrid Ukstins; Peate, David W.; Self, Stephen; Jerram, Dougal A.; Mawby, Michael R.; Marsh, J. S. (Goonie); Miller, Jodie A.

    2010-10-01

    silicic eruptions, however, are moderately to highly explosive, producing co-current pyroclastic fountains (rarely Plinian) with discharge rates of 10 9-10 11 kg s -1 that emplace welded to rheomorphic ignimbrites. At present, durations for the large-magnitude silicic eruptions are unconstrained; at discharge rates of 10 9 kg s -1, equivalent to the peak of the 1991 Mt Pinatubo eruption, the largest silicic eruptions would take many months to evacuate > 5000 km 3 of magma. The generally simple deposit structure is more suggestive of short-duration (hours to days) and high intensity (~ 10 11 kg s -1) eruptions, perhaps with hiatuses in some cases. These extreme discharge rates would be facilitated by multiple point, fissure and/or ring fracture venting of magma. Eruption frequencies are much elevated for large-magnitude eruptions of both magma types during LIP-forming episodes. However, in basalt-dominated provinces (continental and ocean basin flood basalt provinces, oceanic plateaus, volcanic rifted margins), large magnitude (> M8) basaltic eruptions have much shorter recurrence intervals of 10 3-10 4 years, whereas similar magnitude silicic eruptions may have recurrence intervals of up to 10 5 years. The Paraná-Etendeka province was the site of at least nine > M8 silicic eruptions over an ~ 1 Myr period at ~ 132 Ma; a similar eruption frequency, although with a fewer number of silicic eruptions is also observed for the Afro-Arabian Province. The huge volumes of basaltic and silicic magma erupted in quick succession during LIP events raises several unresolved issues in terms of locus of magma generation and storage (if any) in the crust prior to eruption, and paths and rates of ascent from magma reservoirs to the surface. Available data indicate four end-member magma petrogenetic pathways in LIPs: 1) flood basalt magmas with primitive, mantle-dominated geochemical signatures (often high-Ti basalt magma types) that were either transferred directly from melting regions in

  13. Volcanic-ash hazard to aviation during the 2003-2004 eruptive activity of Anatahan volcano, Commonwealth of the Northern Mariana Islands

    USGS Publications Warehouse

    Guffanti, M.; Ewert, J.W.; Gallina, G.M.; Bluth, G.J.S.; Swanson, G.L.

    2005-01-01

    Within the Commonwealth of the Northern Mariana Islands (CNMI), Anatahan is one of nine active subaerial volcanoes that pose hazards to major air-traffic routes from airborne volcanic ash. The 2003-2004 eruptive activity of Anatahan volcano affected the region's aviation operations for 3 days in May 2003. On the first day of the eruption (10 May 2003), two international flights from Saipan to Japan were cancelled, and several flights implemented ash-avoidance procedures. On 13 May 2003, a high-altitude flight through volcanic gas was reported, with no perceptible damage to the aircraft. TOMS and MODIS analysis of satellite data strongly suggests that no significant ash and only minor amounts of SO2 were involved in the incident, consistent with crew observations. On 23 May 2003, airport operations were disrupted when tropical-cyclone winds dispersed ash to the south, dusting Saipan with light ashfall and causing flight cancellations there and at Guam 320 km south of the volcano. Operational (near-real-time) monitoring of ash clouds produced by Anatahan has been conducted since the first day of the eruption on 10 May 2003 by the Washington Volcanic Ash Advisory Center (VAAC). The VAAC was among the first groups outside of the immediate area of the volcano to detect and report on the unexpected eruption of Anatahan. After being contacted about an unusual cloud by National Weather Service forecasters in Guam at 1235 UTC on 10 May 2003, the VAAC analyzed GOES 9 images, confirming Anatahan as the likely source of an ash cloud and estimating that the eruption began at about 0730 UTC. The VAAC issued its first Volcanic Ash Advisory for Anatahan at 1300 UTC on 10 May 2003 more than 5 h after the start of the eruption, the delay reflecting the difficulty of detecting and confirming a surprise eruption at a remote volcano with no in situ real-time geophysical monitoring. The initial eruption plume reached 10.7-13.4 km (35,000-44,000 ft), well into jet cruise altitudes

  14. Volcanic-ash hazard to aviation during the 2003 2004 eruptive activity of Anatahan volcano, Commonwealth of the Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    Guffanti, Marianne; Ewert, John W.; Gallina, Gregory M.; Bluth, Gregg J. S.; Swanson, Grace L.

    2005-08-01

    Within the Commonwealth of the Northern Mariana Islands (CNMI), Anatahan is one of nine active subaerial volcanoes that pose hazards to major air-traffic routes from airborne volcanic ash. The 2003-2004 eruptive activity of Anatahan volcano affected the region's aviation operations for 3 days in May 2003. On the first day of the eruption (10 May 2003), two international flights from Saipan to Japan were cancelled, and several flights implemented ash-avoidance procedures. On 13 May 2003, a high-altitude flight through volcanic gas was reported, with no perceptible damage to the aircraft. TOMS and MODIS analysis of satellite data strongly suggests that no significant ash and only minor amounts of SO 2 were involved in the incident, consistent with crew observations. On 23 May 2003, airport operations were disrupted when tropical-cyclone winds dispersed ash to the south, dusting Saipan with light ashfall and causing flight cancellations there and at Guam 320 km south of the volcano. Operational (near-real-time) monitoring of ash clouds produced by Anatahan has been conducted since the first day of the eruption on 10 May 2003 by the Washington Volcanic Ash Advisory Center (VAAC). The VAAC was among the first groups outside of the immediate area of the volcano to detect and report on the unexpected eruption of Anatahan. After being contacted about an unusual cloud by National Weather Service forecasters in Guam at 1235 UTC on 10 May 2003, the VAAC analyzed GOES 9 images, confirming Anatahan as the likely source of an ash cloud and estimating that the eruption began at about 0730 UTC. The VAAC issued its first Volcanic Ash Advisory for Anatahan at 1300 UTC on 10 May 2003 more than 5 h after the start of the eruption, the delay reflecting the difficulty of detecting and confirming a surprise eruption at a remote volcano with no in situ real-time geophysical monitoring. The initial eruption plume reached 10.7-13.4 km (35,000-44,000 ft), well into jet cruise altitudes

  15. Explosive volcanism on Hecates Tholus, Mars - Investigation of eruption conditions

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, P. J.; Head, J. W., III; Wilson, L.

    1982-01-01

    From a reexamination of the medium and high-resolution Viking images of Amazonian and Hesperian age volcanic centers on Mars, it is believed that an excellent example of well-preserved explosive activity does indeed exist close to the summit of Hecates Tholus. A mantled region to the west of the summit caldera is seen as an example of a geologically very recent plinian air fall ash deposit. Morphological evidence is presented for describing this as explosively generated material, and numerical models of magma ascent and eruption in the Martian environment are used to estimate the physical characteristics (eruption cloud height, magma discharge rate, magma volatile content, duration of activity, and vent size) for this event. Attention is also given to the implication of this eruptive style for the composition of the erupted magma.

  16. The largest volcanic eruptions on Earth

    NASA Astrophysics Data System (ADS)

    Bryan, Scott E.; Peate, Ingrid Ukstins; Peate, David W.; Self, Stephen; Jerram, Dougal A.; Mawby, Michael R.; Marsh, J. S. (Goonie); Miller, Jodie A.

    2010-10-01

    silicic eruptions, however, are moderately to highly explosive, producing co-current pyroclastic fountains (rarely Plinian) with discharge rates of 10 9-10 11 kg s -1 that emplace welded to rheomorphic ignimbrites. At present, durations for the large-magnitude silicic eruptions are unconstrained; at discharge rates of 10 9 kg s -1, equivalent to the peak of the 1991 Mt Pinatubo eruption, the largest silicic eruptions would take many months to evacuate > 5000 km 3 of magma. The generally simple deposit structure is more suggestive of short-duration (hours to days) and high intensity (~ 10 11 kg s -1) eruptions, perhaps with hiatuses in some cases. These extreme discharge rates would be facilitated by multiple point, fissure and/or ring fracture venting of magma. Eruption frequencies are much elevated for large-magnitude eruptions of both magma types during LIP-forming episodes. However, in basalt-dominated provinces (continental and ocean basin flood basalt provinces, oceanic plateaus, volcanic rifted margins), large magnitude (> M8) basaltic eruptions have much shorter recurrence intervals of 10 3-10 4 years, whereas similar magnitude silicic eruptions may have recurrence intervals of up to 10 5 years. The Paraná-Etendeka province was the site of at least nine > M8 silicic eruptions over an ~ 1 Myr period at ~ 132 Ma; a similar eruption frequency, although with a fewer number of silicic eruptions is also observed for the Afro-Arabian Province. The huge volumes of basaltic and silicic magma erupted in quick succession during LIP events raises several unresolved issues in terms of locus of magma generation and storage (if any) in the crust prior to eruption, and paths and rates of ascent from magma reservoirs to the surface. Available data indicate four end-member magma petrogenetic pathways in LIPs: 1) flood basalt magmas with primitive, mantle-dominated geochemical signatures (often high-Ti basalt magma types) that were either transferred directly from melting regions in

  17. 1980 volcanic eruption reported on Marion Island

    NASA Astrophysics Data System (ADS)

    Verwoerd, Wilhelm J.; Russell, Shaun; Berruti, Aldo

    1981-06-01

    The first volcanic eruption in the recorded history of Marion Island (46°54'S, 37°45'E) occurred between February and October 1980 at a locality on the west coast. It was a minor event that passed unnoticed at the meteorological station 20 km distant. The discovery was made on November 4, by five expedition members who walked around the island. When examined in more detail on November 25, the lava was still warm in places and numerous fumaroles existed. Three blocky flows emanated from two adjacent cinder cones built-up on a pre-existing phreatomagmatic tuff cone known as Kaalkoppie. The largest flow covers an area of about seven hectares and a further two hectares have been inundated by ash. Another flow poured seawards to form a new beach front, blocking access to what was previously the largest elephant seal wallowing ground on the island. No earth tremors were felt and the activity seems to have ended for the time being.

  18. The Variable Climate Impact of Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Graf, H.

    2011-12-01

    The main effect of big volcanic eruptions in the climate system is due to their efficient transport of condensable gases and their precursors into the stratosphere. There the formation of aerosols leads to effects on atmospheric radiation transfer inducing a reduction of incoming solar radiation by reflection (i.e. cooling of the Earth surface) and absorption of near infrared radiation (i.e. heating) in the aerosol laden layers. In the talk processes determining the climate effect of an eruption will be illustrated by examples, mainly from numerical modelling. The amount of gases released from a magma during an eruption and the efficiency of their transport into very high altitudes depends on the geological setting (magma type) and eruption style. While mid-sized eruption plumes of Plinian style quickly can develop buoyancy by entrainment of ambient air, very large eruptions with high magma flux rates often tend to collapsing plumes and co-ignimbrite style. These cover much bigger areas and are less efficient in entraining ambient air. Vertical transport in these plumes is chaotic and less efficient, leading to lower neutral buoyancy height and less gas and particles reaching high stratospheric altitudes. Explosive energy and amount of released condensable gases are not the only determinants for the climatic effect of an eruption. The effect on shortwave radiation is not linear with the amount of aerosols formed since according to the Lambert-Beer Law atmospheric optical depth reaches a saturation limit with increased absorber concentration. In addition, if more condensable gas is available for aerosol growth, particles become larger and this affects their optical properties to less reflection and more absorption. Larger particles settle out faster, thus reducing the life time of the aerosol disturbance. Especially for big tropical eruptions the strong heating of the stratosphere in low latitudes leads to changes in atmospheric wave propagation by strengthened

  19. SO2 flux and the thermal power of volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Henley, Richard W.; Hughes, Graham O.

    2016-09-01

    A description of the dynamics, chemistry and energetics governing a volcanic system can be greatly simplified if the expansion of magmatic gas can be assumed to be adiabatic as it rises towards the surface. The conditions under which this assumption is valid are clarified by analysis of the transfer of thermal energy into the low conductivity wallrocks traversed by fractures and vents from a gas phase expanding over a range of mass flux rates. Adiabatic behavior is predicted to be approached typically within a month after perturbations in the release of source gas have stabilized, this timescale being dependent upon only the characteristic length scale on which the host rock is fractured and the thermal diffusivity of the rock. This analysis then enables the thermal energy transport due to gas release from volcanoes to be evaluated using observations of SO2 flux with reference values for the H2O:SO2 ratio of volcanic gas mixtures discharging through high temperature fumaroles in arc and mantle-related volcanic systems. Thermal power estimates for gas discharge are 101.8 to 104.1 MWH during quiescent, continuous degassing of arc volcanoes and 103.7 to 107.3 MWH for their eruptive stages, the higher value being the Plinean Pinatubo eruption in 1991. Fewer data are available for quiescent stage mantle-related volcanoes (Kilauea 102.1 MWH) but for eruptive events power estimates range from 102.8 MWH to 105.5 MWH. These estimates of thermal power and mass of gas discharges are commensurate with power estimates based on the total mass of gas ejected during eruptions. The sustained discharge of volcanic gas during quiescent and short-lived eruptive stages can be related to the hydrodynamic structure of volcanic systems with large scale gaseous mass transfer from deep in the crust coupled with episodes of high level intrusive activity and gas release.

  20. Assessing the volcanic hazard for Rome: 40Ar/39Ar and In-SAR constraints on the most recent eruptive activity and present-day uplift at Colli Albani Volcanic District

    NASA Astrophysics Data System (ADS)

    Marra, F.; Gaeta, M.; Giaccio, B.; Jicha, B. R.; Palladino, D. M.; Polcari, M.; Sottili, G.; Taddeucci, J.; Florindo, F.; Stramondo, S.

    2016-07-01

    We present new 40Ar/39Ar data which allow us to refine the recurrence time for the most recent eruptive activity occurred at Colli Albani Volcanic District (CAVD) and constrain its geographic area. Time elapsed since the last eruption (36 kyr) overruns the recurrence time (31 kyr) in the last 100 kyr. New interferometric synthetic aperture radar data, covering the years 1993-2010, reveal ongoing inflation with maximum uplift rates (>2 mm/yr) in the area hosting the most recent (<200 ka) vents, suggesting that the observed uplift might be caused by magma injection within the youngest plumbing system. Finally, we frame the present deformation within the structural pattern of the area of Rome, characterized by 50 m of regional uplift since 200 ka and by geologic evidence for a recent (<2000 years) switch of the local stress-field, highlighting that the precursors of a new phase of volcanic activity are likely occurring at the CAVD.

  1. Hubble Captures Volcanic Eruption Plume From Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Hubble Space Telescope has snapped a picture of a 400-km-high (250-mile-high) plume of gas and dust from a volcanic eruption on Io, Jupiter's large innermost moon.

    Io was passing in front of Jupiter when this image was taken by the Wide Field and Planetary Camera 2 in July 1996. The plume appears as an orange patch just off the edge of Io in the eight o'clock position, against the blue background of Jupiter's clouds. Io's volcanic eruptions blasts material hundreds of kilometers into space in giant plumes of gas and dust. In this image, material must have been blown out of the volcano at more than 2,000 mph to form a plume of this size, which is the largest yet seen on Io.

    Until now, these plumes have only been seen by spacecraft near Jupiter, and their detection from the Earth-orbiting Hubble Space Telescope opens up new opportunities for long-term studies of these remarkable phenomena.

    The plume seen here is from Pele, one of Io's most powerful volcanos. Pele's eruptions have been seen before. In March 1979, the Voyager 1 spacecraft recorded a 300-km-high eruption cloud from Pele. But the volcano was inactive when the Voyager 2 spacecraft flew by Jupiter in July 1979. This Hubble observation is the first glimpse of a Pele eruption plume since the Voyager expeditions.

    Io's volcanic plumes are much taller than those produced by terrestrial volcanos because of a combination of factors. The moon's thin atmosphere offers no resistance to the expanding volcanic gases; its weak gravity (one-sixth that of Earth) allows material to climb higher before falling; and its biggest volcanos are more powerful than most of Earth's volcanos.

    This image is a contrast-enhanced composite of an ultraviolet image (2600 Angstrom wavelength), shown in blue, and a violet image (4100 Angstrom wavelength), shown in orange. The orange color probably occurs because of the absorption and/or scattering of ultraviolet light in the plume. This light from Jupiter passes through

  2. Burst conditions of explosive volcanic eruptions recorded on microbarographs

    USGS Publications Warehouse

    Morrissey, M.M.; Chouet, B.A.

    1997-01-01

    Explosive volcanic eruptions generate pressure disturbances in the atmosphere that propagate away either as acoustic or as shock waves, depending on the explosivity of the eruption. Both types of waves are recorded on microbarographs as 1- to 0.1-hertz N-shaped signals followed by a longer period coda. These waveforms can be used to estimate burst pressures end gas concentrations in explosive volcanic eruptions and provide estimates of eruption magnitudes.

  3. A probabilistic approach to determine volcanic eruption centres of degraded volcanic edifices

    NASA Astrophysics Data System (ADS)

    Székely, B.; Karátson, D.

    2009-04-01

    It is often a difficult problem to determine the position of original eruption centres of degraded volcanic edifices. Beside of the destructive processes acting during the volcanic activity, subsequent erosion, mass movements and tectonic motions modify the spatial distribution of the volcanic features. The observations including dipping strata, clast orientations, lava flows, etc. made on the present surface are therefore biased by the post-eruptive processes making the reconstruction of the original volcanic pattern problematic. The different types of observations and their various error levels complicate the problem further. We propose a probabilistic approach to evaluate the different types of observations. Each observation type or even each observation may have their own error bars which can be taken into account in this scheme. The only assumption is that it is possible to determine the relative direction of the original volcanic centre based on the specific observation within a given angular accuracy. In our scheme a spatial probability density function (PDF) is assigned to each observation and the weighted sum of these PDFs results in a map. This integrated PDF map then can be evaluated to determine one or multiple eruption centres. In case of multiple centres further decision can be made on whether the various centres are only virtual, caused by subsequent tectonism or, on the contrary, the original setting had several eruption vents. This decision can be made on targeted grouping of PDFs of different types of observations or spatial selection. The resulting compound PDF maps may outline individual centres.

  4. Improvement forecasting of volcanic activity by applying a Kalman filter to the SSEM signal. The case of the El Hierro Island eruption (October 2011)

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Berrocoso, M.; Marrero, J. M.; Ortiz, R.

    2012-04-01

    The FFM (Failure Forecast Method) is developed from the eruption of St. Helens, being repeatedly applied to forecast eruptions and recently to the prediction of seismic activity in active volcanic areas. The underwater eruption of El Hierro Island has been monitored from three months before starting (October 10, 2011). This allowed a large catalogue of seismic events (over 11000) and continuous recording seismic signals that cover the entire period. Since the beginning of the seismic-volcanic crisis (July 2011), the FFM was applied to the SSEM signal of seismic records. Mainly because El Hierro is a very small island, the SSEM has a high noise (traffic and oceanic noise). To improve the signal / noise ratio has been used a Kalman filter. The Kalman filter coefficients are adjusted using an inversion process based on forecasting errors occurred in the twenty days preceding. The application of this filter has been a significant improvement in the reliability of forecasts. The analysis of the results shows, before the start of the eruption, that 90% of the forecasts are obtained with errors less than 10 minutes with more than 24 hours in advance. It is noteworthy that the method predicts the events of greater magnitude and especially the beginning of each swarm of seismic events. At the time the eruption starts reducing the efficiency of the forecast 50% with a dispersion of more than one hour. This fact is probably due to decreased detectability by saturation of some of the seismic stations and decreased the average magnitude. However, the events of magnitude greater than 4 were predicted with an error less than 20 minutes.

  5. [Effects of volcanic eruptions on environment and health].

    PubMed

    Zuskin, Eugenija; Mustajbegović, Jadranka; Doko Jelinić, Jagoda; Pucarin-Cvetković, Jasna; Milosević, Milan

    2007-12-01

    Volcanoes pose a threat to almost half a billion people; today there are approximately 500 active volcanoes on Earth, and every year there are 10 to 40 volcanic eruptions. Volcanic eruptions produce hazardous effects for the environment, climate, and the health of the exposed persons, and are associated with the deterioration of social and economic conditions. Along with magma and steam (H2O), the following gases surface in the environment: carbon dioxide (CO2) and sulphur dioxide (SO2), carbon monoxide (CO), hydrogen sulphide (H2S), carbon sulphide (CS), carbon disulfide (CS2), hydrogen chloride (HCl), hydrogen (H2), methane (CH4), hydrogen fluoride (HF), hydrogen bromide (HBr) and various organic compounds, as well as heavy metals (mercury, lead, gold).Their unfavourable effects depend on the distance from a volcano, on magma viscosity, and on gas concentrations. The hazards closer to the volcano include pyroclastic flows, flows of mud, gases and steam, earthquakes, blasts of air, and tsunamis. Among the hazards in distant areas are the effects of toxic volcanic ashes and problems of the respiratory system, eyes and skin, as well as psychological effects, injuries, transport and communication problems, waste disposal and water supplies issues, collapse of buildings and power outage. Further effects are the deterioration of water quality, fewer periods of rain, crop damages, and the destruction of vegetation. During volcanic eruptions and their immediate aftermath, increased respiratory system morbidity has been observed as well as mortality among those affected by volcanic eruptions. Unfavourable health effects could partly be prevented by timely application of safety measures. PMID:18063533

  6. On an Unified Scaling Law for Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Cannavo, F.; Nunnari, G.

    2014-12-01

    Volcanoes constitute dissipative systems with many degrees of freedom. Their eruptions are the result of complex processes that involve interacting chemical-physical systems. At the present, both analytical and numerical models are unable to include all the possible dynamics involved into eruptions. On the other hand, the knowledge of eruption duration can be a key factor for natural hazard estimation. In this work, analyzing a large database with most of all the known volcanic eruptions, we have determined that the duration of eruptions can be described by a unique universal distribution which fully governs eruption duration dynamics. In particular, after the well-known results proposed in literature concerning the seismicity (i.e. the Gutenberg-Richter law), we present an Earth-wise power-law distribution of durations of volcanic eruptions that holds from worldwide to local scales, for different volcanic environments and for all the considered eruption types.

  7. Forecasting the duration of volcanic eruptions: an empirical probabilistic model

    NASA Astrophysics Data System (ADS)

    Gunn, L. S.; Blake, S.; Jones, M. C.; Rymer, H.

    2014-01-01

    The ability to forecast future volcanic eruption durations would greatly benefit emergency response planning prior to and during a volcanic crises. This paper introduces a probabilistic model to forecast the duration of future and on-going eruptions. The model fits theoretical distributions to observed duration data and relies on past eruptions being a good indicator of future activity. A dataset of historical Mt. Etna flank eruptions is presented and used to demonstrate the model. The data have been compiled through critical examination of existing literature along with careful consideration of uncertainties on reported eruption start and end dates between the years 1300 AD and 2010. Data following 1600 is considered to be reliable and free of reporting biases. The distribution of eruption duration between the years 1600 and 1669 is found to be statistically different from that following it and the forecasting model is run on two datasets of Mt. Etna flank eruption durations: 1600-2010 and 1670-2010. Each dataset is modelled using a log-logistic distribution with parameter values found by maximum likelihood estimation. Survivor function statistics are applied to the model distributions to forecast (a) the probability of an eruption exceeding a given duration, (b) the probability of an eruption that has already lasted a particular number of days exceeding a given total duration and (c) the duration with a given probability of being exceeded. Results show that excluding the 1600-1670 data has little effect on the forecasting model result, especially where short durations are involved. By assigning the terms `likely' and `unlikely' to probabilities of 66 % or more and 33 % or less, respectively, the forecasting model based on the 1600-2010 dataset indicates that a future flank eruption on Mt. Etna would be likely to exceed 20 days (± 7 days) but unlikely to exceed 86 days (± 29 days). This approach can easily be adapted for use on other highly active, well

  8. Ash iron mobilization in volcanic eruption plumes

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, G.; Hort, M.; Langmann, B.

    2014-12-01

    It has been shown that volcanic ash fertilizes the Fe-limited areas of the surface ocean through releasing soluble iron. As ash iron is mostly insoluble upon the eruption, it is hypothesized that heterogeneous in-plume and in-cloud processing of the ash promote the iron solubilization. Direct evidences concerning such processes are, however, lacking. In this study, a 1-D numerical model is developed to simulate the physicochemical interactions of gas-ash-aerosol in volcanic eruption plumes focusing on the iron mobilization processes at temperatures between 600 and 0 °C. Results show that sulfuric acid and water vapor condense at ~150 and ~50 °C on the ash surface, respectively. This liquid phase then efficiently scavenges the surrounding gases (>95% of HCl, 3-20% of SO2 and 12-62% of HF) forming an extremely acidic coating at the ash surface. The low pH conditions of the aqueous film promote acid-mediated dissolution of the Fe-bearing phases present in the ash material. We estimate that 0.1 to 33% of the total iron available at the ash surface is dissolved in the aqueous phase before the freezing point is reached. The efficiency of dissolution is controlled by the halogen content of the erupted gas as well as the mineralogy of the iron at ash surface: elevated halogen concentrations and presence of Fe2+-carrying phases lead to the highest dissolution efficiency. Findings of this study are in agreement with the data obtained through leaching experiments.

  9. Unusual Volcanic Products From the 2008 Eruption at Volcan Llaima, Chile

    NASA Astrophysics Data System (ADS)

    Sweeney, D. C.; Hughes, M.; Calder, E. S.; Cortes, J.; Valentine, G.; Whelley, P.; Lara, L.

    2009-05-01

    Volcan Llaima, a snow-covered basaltic andesite stratocone in southern Chile (38 41' S, 71 44' W, 3179 m a.s.l.), erupted on 1 January 2008 with a fire fountain display lasting 14 hours. Elevated activity continues to date with mild to moderate strombolian activity occurring from two nested scoria cones in the summit crater and with occasional lava flows from crater overflow. The eruption displayed contrasting styles of activity emanating from different parts of the edifice that may provide some unique insight into the upper level plumbing system. Furthermore, the activity has provided an excellent chance to study the transition of a normally passive degassing system into a violent eruptive cycle. A field study of the eruptive products from this eruption was completed in January 2009, where sampling was carried out from the tephra fall, lava flows, lahar deposits and even small pyroclastic flow deposits. The scoria samples collected suggest a mixture of two magmas involved in the initial violent, fire fountaining activity from the summit. Additionally, they exhibit a variety of unusual textures, including rapidly-quenched, dense lava 'balls' - generated at the front of the lava flows traveling through ice, as well as cauliflower-textured tephra from explosive eruptions though ice. This presentation comprises our observations and preliminary interpretations concerning the processes that occurred during this unique eruption.

  10. Submarine Volcanic Eruptions and Potential Analogs for Venus

    NASA Technical Reports Server (NTRS)

    Wilson, L.; Mouginismark, P. J.; Fryer, P.; Gaddis, L. R.

    1985-01-01

    As part of an analysis program to better understand the diversity of volcanic processes on the terrestrial planets, an investigation of the volcanic landforms which exist on the Earth's ocean floor was initiated. In part, this analysis is focused toward gaining a better understanding of submarine volcanic landforms in their own right, but also it is hoped that these features may show similarities to volcanic landforms on Venus, due to the high ambient water (Earth) and atmospheric (Venus) pressures. A series of numerical modelling experiments was performed to investigate the relative importance of such attributes as water pressure and temperature on the eruption process, and to determine the rate of cooling and emplacement of lava flows in the submarine environment. Investigations to date show that the confining water pressure and the buoyancy effects of the surrounding water significantly affect the styles of volcanism on the ocean floor. In the case of Venusian volcanism, confining pressures will not be as great as that found at the ocean's abyssal plains, but nevertheless the general trend toward reducing magma vesiculation will hold true for Venus as well as the ocean floor. Furthermore, other analogs may also be found between submarine volcanism and Venusian activity.

  11. Small volcanic eruptions and the stratospheric sulfate aerosol burden

    NASA Astrophysics Data System (ADS)

    Pyle, David M.

    2012-09-01

    Understanding of volcanic activity and its impacts on the atmosphere has evolved in discrete steps, associated with defining eruptions. The eruption of Krakatau, Indonesia, in August 1883 was the first whose global reach was recorded through observations of atmospheric phenomena around the world (Symons 1888). The rapid equatorial spread of Krakatau's ash cloud revealed new details of atmospheric circulation, while the vivid twilights and other optical phenomena were soon causally linked to the effects of particles and gases released from the volcano (e.g. Stothers 1996, Schroder 1999, Hamilton 2012). Later, eruptions of Agung, Bali (1963), El Chichón, Mexico (1982) and Pinatubo, Philippines (1991) led to a fuller understanding of how volcanic SO2 is transformed to a long-lived stratospheric sulfate aerosol, and its consequences (e.g. Meinel and Meinel 1967, Rampino and Self 1982, Hoffman and Rosen 1983, Bekki and Pyle 1994, McCormick et al 1995). While our ability to track the dispersal of volcanic emissions has been transformed since Pinatubo, with the launch of fleets of Earth-observing satellites (e.g. NASA's A-Train; ESA's MetOp) and burgeoning networks of ground-based remote-sensing instruments (e.g. lidar and sun-photometers; infrasound and lightning detection systems), there have been relatively few significant eruptions. Thus, there have been limited opportunities to test emerging hypotheses including, for example, the vexed question of the role of 'smaller' explosive eruptions in perturbations of the atmosphere—those that may just be large enough to reach the stratosphere (of size 'VEI 3', Newhall and Self 1982, Pyle 2000). Geological evidence, from ice-cores and historical eruptions, suggests that small explosive volcanic eruptions with the potential to transport material into the stratosphere should be frequent (5-10 per decade), and responsible for a significant proportion of the long-term time-averaged flux of volcanic sulfur into the stratosphere

  12. When do Volcanic Eruptions make Lightning? Observations from Sakurajima, Japan

    NASA Astrophysics Data System (ADS)

    Behnke, S. A.; McNutt, S. R.; Thomas, R. J.; Smith, C. M.; Edens, H. E.; Van Eaton, A. R.; Cimarelli, C.; Cigala, V.; Michel, C. W.; Miki, D.; Iguchi, M.

    2015-12-01

    Previous radio frequency (RF) observations of volcanic lightning have revealed that electrical activity frequently occurs concurrent with the onset of an explosive volcanic event. Typically, a myriad of electrical impulses originating from directly above the vent are observed first and the ensemble has durations of several seconds. The impulses are distinct from those produced by typical types of thunderstorm lightning, and have earned the moniker "continuous RF" due to their high rate and long-lasting nature . Several seconds after the onset of these impulses, small (100s of meters to several kilometers) lightning discharges occur in the plume and near the vent, and have electrical signatures similar to typical thunderstorm lightning. In eruptions with plume heights reaching 8-10 km or more, large scale (10s of kilometers) lightning discharges are observed throughout the plume several minutes after the onset of an explosive event.In May 2015, a campaign began to study the various types of small-scale electrical activity, including continuous RF, during explosive eruptions of Sakurajima volcano in Kyushu, Japan. The volcano was instrumented with two seismometers, two infrasound arrays, a high sensitivity video camera, an infrared camera, two high speed video cameras, still cameras, a 10-station Lightning Mapping Array, slow and fast electric field change sensors, and a broadband very high frequency (VHF) antenna. With these instruments, a robust data set of both the volcanic activity and electrical activity was collected. The preliminary data have revealed brief (1-2 seconds) bursts of continuous RF simultaneous with the onset of the more energetic explosions. Occurrence of continuous RF may be linked to mass eruption rate, explosivity, or grain size. Due to its unique nature, detection of continuous RF is an unambiguous indicator of explosive volcanic activity and is therefore useful for real-time volcano monitoring.

  13. Ionospheric effects of the Mt. Kirishima volcanic eruption as seen from subionospheric VLF observations

    NASA Astrophysics Data System (ADS)

    Rozhnoi, A.; Hayakawa, M.; Solovieva, M.; Hobara, Y.; Fedun, V.

    2014-01-01

    Data from the Pacific network of VLF receivers have been used to study the response of the lower ionosphere to the January 2011 Mt. Kirishima (South Japan) volcanic eruption. A major explosive eruption occurred on January 27, which was preceded by several small eruptions. Perturbations of nighttime subionospheric VLF signals have been detected on the day of the first small eruption on January 18 (UT) with the maximum observed about 1.5 h after the eruption. The nighttime signal remained disturbed during the subsequent pre-eruptive and eruptive activity of Mt. Kirishima. The daytime perturbations were not observed. The frequency of the maximum spectral amplitude was found to be in the range of periods of 6-30 min, which corresponds to the periods of internal gravity waves. These results suggest that the observed VLF ionospheric effects can possibly be produced by the penetration of gravity waves caused by the volcanic activity into the ionosphere.

  14. Sulphur-rich volcanic eruptions and stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Self, S.

    1984-01-01

    Data from direct measurements of stratospheric optical depth, Greenland ice-core acidity, and volcanological studies are compared, and it is shown that relatively small but sulfur-rich volcanic eruptions can have atmospheric effects equal to or even greater than much larger sulfur-poor eruptions. These small eruptions are probably the most frequent cause of increased stratospheric aerosols. The possible sources of the excess sulfur released in these eruptions are discussed.

  15. Base surge in recent volcanic eruptions

    USGS Publications Warehouse

    Moore, J.G.

    1967-01-01

    A base surge, first identified at the Bikini thermonuclear undersea explosion, is a ring-shaped basal cloud that sweeps outward as a density flow from the base of a vertical explosion column. Base surges are also common in shallow underground test explosions and are formed by expanding gases which first vent vertically and then with continued expansion rush over the crater lip (represented by a large solitary wave in an underwater explosion), tear ejecta from it, and feed a gas-charged density flow, which is the surge cloud. This horizontally moving cloud commonly has an initial velocity of more than 50 meters per second and can carry clastic material many kilometers. Base surges are a common feature of many recent shallow, submarine and phreatic volcanic eruptions. They transport ash, mud, lapilli, and blocks with great velocity and commonly sandblast and knock down trees and houses, coat the blast side with mud, and deposit ejecta at distances beyond the limits of throw-out trajectories. Close to the eruption center, the base surge can erode radial channels and deposit material with dune-type bedding. ?? 1967 Stabilimento Tipografico Francesco Giannini & Figli.

  16. Forecasting volcanic eruptions: the narrow margin between eruption and intrusion

    NASA Astrophysics Data System (ADS)

    Steele, Alexander; Kilburn, Christopher; Wall, Richard; Charlton, Danielle

    2016-04-01

    Volcano-tectonic (VT) seismicity is one of the primary geophysical signals for monitoring volcanic unrest. It measures the brittle response of the crust to changes in stress and provides a natural proxy for gauging the stability of a pressurizing body of magma. Here we apply a new model of crustal extension to observations from the 2015 unrest of Cotopaxi, in Ecuador. The model agrees well with field data and is consistent with accelerating unrest during the pressurization and rupture of a vertically-extended magma source within the volcanic edifice. At andesitic-dacitic stratovolcanoes in subduction zones, unrest after long repose is often characterised by increases in VT event rate that change from an exponential to hyperbolic trend with time. This sequence was observed when renewed unrest was detected in April 2015 at Cotopaxi, following at least 73 years of repose. After about 80 days of elevated seismicity at an approximately steady rate, the numbers of VT events increased exponentially with time for c. 80 days, before increasing for c. 15 days along a faster, hyperbolic trend. Both trends were characterised by the same value of 2 for the ratio of maximum applied stress SF to tensile strength of the crust σT, consistent with the pressurization of an approximately vertical, cylindrical magma body. The hyperbolic trend indicated a potential rupture on 25 September. Rupture appears to have occurred on 21-22 September, when the VT rate rapidly decreased. However, no major eruption accompanied the change, suggesting that a near-surface intrusion occurred instead. Although the quantitative VT trends were consistent with the rupture of a magmatic body, they could not on their own distinguish between an eruptive or intrusive outcome. An outstanding goal remains to identify additional precursory characteristics for quantifying the probability that magma will reach the surface after escaping from a ruptured parent body. Data for this analysis were kindly made available

  17. Eruption probabilities for the Lassen Volcanic Center and regional volcanism, northern California, and probabilities for large explosive eruptions in the Cascade Range

    USGS Publications Warehouse

    Nathenson, Manuel; Clynne, Michael A.; Muffler, L.J. Patrick

    2012-01-01

    Chronologies for eruptive activity of the Lassen Volcanic Center and for eruptions from the regional mafic vents in the surrounding area of the Lassen segment of the Cascade Range are here used to estimate probabilities of future eruptions. For the regional mafic volcanism, the ages of many vents are known only within broad ranges, and two models are developed that should bracket the actual eruptive ages. These chronologies are used with exponential, Weibull, and mixed-exponential probability distributions to match the data for time intervals between eruptions. For the Lassen Volcanic Center, the probability of an eruption in the next year is 1.4x10-4 for the exponential distribution and 2.3x10-4 for the mixed exponential distribution. For the regional mafic vents, the exponential distribution gives a probability of an eruption in the next year of 6.5x10-4, but the mixed exponential distribution indicates that the current probability, 12,000 years after the last event, could be significantly lower. For the exponential distribution, the highest probability is for an eruption from a regional mafic vent. Data on areas and volumes of lava flows and domes of the Lassen Volcanic Center and of eruptions from the regional mafic vents provide constraints on the probable sizes of future eruptions. Probabilities of lava-flow coverage are similar for the Lassen Volcanic Center and for regional mafic vents, whereas the probable eruptive volumes for the mafic vents are generally smaller. Data have been compiled for large explosive eruptions (>≈ 5 km3 in deposit volume) in the Cascade Range during the past 1.2 m.y. in order to estimate probabilities of eruption. For erupted volumes >≈5 km3, the rate of occurrence since 13.6 ka is much higher than for the entire period, and we use these data to calculate the annual probability of a large eruption at 4.6x10-4. For erupted volumes ≥10 km3, the rate of occurrence has been reasonably constant from 630 ka to the present, giving

  18. Particle-water heat transfer during explosive volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Woodcock, D. C.; Gilbert, J. S.; Lane, S. J.

    2012-10-01

    Thermal interaction between volcanic particles and water during explosive eruptions has been quantified using a numerical heat transfer model for spherical particles. The model couples intraparticle conduction with heat transfer from the particle surface by boiling water in order to explore heat loss with time for a range of particle diameters. The results are combined with estimates of particle settling times to provide insight into heat removal during eruption from samples of volcanic particles produced by explosive eruption. Heat removal is restricted by resistance to heat transfer from the volcanic particles with intraparticle thermal conduction important for large particles and surface cooling by boiling dominating for small particles. In most cases, volcanic particles approach thermal equilibrium with the surrounding fluid during an explosive eruption. Application of the results to a sample from the Gjálp 1996, Iceland eruption indicates that, relative to 0○C, 70-80% of the heat is transferred from the particles to boiling water during the settling time before burial in the stratigraphic succession. The implication is that, for subglacial explosive eruptions, much of the heat content of the magma is coupled into melting ice extremely rapidly. If all particles of the Gjálp 1996 deposit were cooled to the local boiling point by the end of the eruption then approximately 78% of the initial heat content was removed from the erupting magma during the eruption. This is consistent with calorimetric calculations based on volumes of ice melted during and after the eruption.

  19. Using Infrasound and Machine Learning for Monitoring Plinian Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Ham, F. M.; Iyengar, I.; Hambebo, B. M.; Garces, M. A.; Deaton, J.; Perttu, A.; Williams, B.

    2012-12-01

    Large plinian volcanic eruptions can inject a substantial amount of volcanic gas and ash into the stratosphere. This can present a severe hazard to commercial air traffic. A hazardous Icelandic volcanic ash-eruption was reported on April 14, 2010. This resulted in London's aviation authority to issue an alert that an ash plume was moving from an eruption in Iceland towards northwestern Europe. This eruption resulted in the closure of large areas of European airspace. Large plinian volcanic eruptions radiate infrasonic signals that can be detected by a global infrasound array network. To reduce potential hazards for commercial aviation from volcanic ash, these infrasound sensor arrays have been used to detect infrasonic signals released by sustained volcanic eruptions that can inject ash into the stratosphere at aircraft's cruising altitudes, typically in the order of 10km. A system that is capable of near, real-time eruption detection and discrimination of plinian eruptions from other natural phenomena that can produce infrasound with overlapping spectral content (0.01 to 0.1 Hz) is highly desirable to provide ash-monitoring for commercial aviation. In the initial study, cepstral features were extracted from plinian volcanic eruptions and mountain associated wave infrasound signals. These feature vectors were then used to train and test a two-module neural network classifier (radial basis function neural networks were used for each module). One module is dedicated to classifying plinian volcanic eruptions, the other mountain associated waves. Using an independent validation dataset, the classifier's correct classification rate was 91.5%. Then a different two-module neural network classifier was designed to discriminate between plinian volcanic eruptions and a collection of infrasound signals that are not-of-interest but have spectral content that overlaps with the volcano signals. One module is again dedicated to classifying plinian volcanic eruptions, however, in

  20. Explosive volcanism lessons learned from Mentos and soda eruptions

    NASA Astrophysics Data System (ADS)

    Wright, H. M.; Rust, A. C.; Cashman, K. V.

    2006-12-01

    When hard Mentos candies are dropped into a bottle of carbonated beverage, the resultant rapid CO2 exsolution and gas expansion causes an impressive soda `eruption'. We explore the ways in which this simple example can be used to demonstrate explosive volcanic processes. Through hands-on experiments, students can vary the type of candy, the type of beverage, and the shape of the vent (by making a hole in the cap of the soda bottle) to understand the processes that are influencing the height and duration of the eruption column. The activity can be tailored to demonstrate basic principles of gas exsolution and expansion for young students, but can also be extended to more complex principles of heterogeneous bubble nucleation and decreasing surface tension for college students. We present results from Mentos and soda experiments by a group of college freshman in the elementary education program (with no real science background). We compare students' resultant understanding of the similarities and differences between volcanic eruptions and the experiments with the results from a similar activity performed by a group of graduate geology students. The Mentos and soda reaction is dramatic. Video clips of people, young and old, trying this experiment across the world can be found on the world wide web. We suggest that the popularity of this demonstration be used to help teach fundamental concepts in both volcanology and scientific experimentation.

  1. Modelling of Subglacial Volcanic and Geothermal Activity, during the 2014-15 Bárdarbunga-Holuhraun Eruption and Caldera Collapse

    NASA Astrophysics Data System (ADS)

    Reynolds, H. I.; Gudmundsson, M. T.; Hognadottir, T.

    2015-12-01

    Seismic unrest was observed within the subglacial caldera of Bárdarbunga on 16 August 2014, followed by seismicity tracing the path of a lateral dyke extending underneath the Vatnajökull glacier out to 45 km to the north east of the volcano. A short subaerial fissure eruption occurred at the site of the Holuhraun lavas, just north of the glacier edge on 29 August, before recommencing in earnest on 31 August with a large effusive eruption and accompanying slow caldera collapse, which lasted for approximately 6 months. The glacier surface around Bárdarbunga was monitored using aerial altimeter profiling. Several shallow depressions, known as ice cauldrons, formed around the caldera rim and on Dyngjujökull glacier above the dyke propagation path. The cauldrons range in volume from approximately 0.0003 km3 to 0.02 km3. Two types of melting were observed: high initial heat flux over a period of days which gradually disappears; and slower but more sustained melting rates. We present time series data of the development and evolution of these cauldrons, with estimates of the heat flux magnitudes involved.The nature of the heat source required to generate these cauldrons is not obvious. Two scenarios are explored: 1) small subglacial eruptions; or 2) increased geothermal activity induced by the dyke intrusion. We investigate these scenarios using numerical modelling, considering the surface heat flux produced, and timescales and spatial extent of associated surface anomalies. It is found that a magmatic intrusion into rocks where the groundwater is near the boiling point curve can cause rapid increase in geothermal activity, but even a shallow intrusion into a cold groundwater reservoir will have a muted thermal response. Thus, our results indicate that minor subglacial eruptions are the most plausible explanation for the observed rapid melting far from known geothermal areas. These results have implications for the interpretation of thermal signals observed at ice

  2. Volcanic eruptions and research drilling in the Inyo Domes Chain

    SciTech Connect

    McConnell, V.S.; Eichelberger, J.C.

    1987-07-01

    This booklet is a non-technical guide for visitors to the Inyo Craters and Sandia drilling operation, covering kinds of volcanic eruptions, research drilling into volcanoes, and environmental aspects.

  3. IPLOR performance in detecting infrasound from volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Ghica, Daniela; Popa, Mihaela

    2016-04-01

    Plostina infrasound array (IPLOR) is located in the central part of Romania, in Vrancea region, its current configuration consisting of 6 elements equipped with Chaparral Physics sensors deployed over a 2.5 km aperture. The array detectability observed after processing of more than 6 years of data has shown that IPLOR is more effective in measuring mainly infrasound signals produced by natural and anthropogenic impulsive sources. This can be explained by the sensors' characteristics (frequency response, dynamic range) and the large aperture of array. Among the types of events observed with IPLOR, an emphasis can be given to the Mt. Etna volcanic eruptions as one of the powerful infrasound source recorded by the array. Located at about 1320 km distance from volcano, the array has proved efficient in observing both large and small eruptions. In case of the most large eruptive episodes occurred lately (April and October 2013, December 2015), long duration infrasonic signals were detected, the initial impulsive signature of the volcanic explosion being followed by a long train of irregular waves with smaller amplitudes and higher frequency, extended over periods ranging from 6 hours to more than three days (in December 2015). For the purpose of assessing the IPLOR performance in detecting Etna eruptions, the signal interactive analysis was performed using WinPMCC, CEA/DASE version of PMCC software. The infrasound detections obtained were plotted in function of back-azimuth, velocity and frequency, showing that the detectability is dependent both on the diurnal variations of the noise around the array (during the night the human activity diminishes) and on the seasonally dependent stratospheric winds (westward propagation during summer and eastward propagation during winter). In case of the Etna eruptive episodes detected by IPLOR, the back azimuth observed is in good agreement with the expected value (230o), i.e. an average value of 232±2o could be resolved. The

  4. A-Train Observations of Young Volcanic Eruption Clouds

    NASA Astrophysics Data System (ADS)

    Carn, S. A.; Prata, F.; Yang, K.; Rose, W. I.

    2011-12-01

    NASA's A-Train satellite constellation (including Aqua, CloudSat, CALIPSO, and Aura) has been flying in formation since 2006, providing unprecedented synergistic observations of numerous volcanic eruption clouds in various stages of development. Measurements made by A-Train sensors include total column SO2 by the Ozone Monitoring Instrument (OMI) on Aura, upper tropospheric and stratospheric (UTLS) SO2 column by the Atmospheric Infrared Sounder (AIRS) on Aqua and Microwave Limb Sounder (MLS) on Aura, ash mass loading from AIRS and the Moderate resolution Imaging Spectroradiometer (MODIS) on Aqua, UTLS HCl columns and ice water content (IWC) from MLS, aerosol vertical profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard CALIPSO, and hydrometeor profiles from the Cloud Profiling Radar (CPR) on CloudSat. The active vertical profiling capability of CALIPSO, CloudSat and MLS sychronized with synoptic passive sensing of trace gases and aerosols by OMI, AIRS and MODIS provides a unique perspective on the structure and composition of volcanic clouds. A-Train observations during the first hours of atmospheric residence are particularly valuable, as the fallout, segregation and stratification of material in this period determines the concentration and altitude of constituents that remain to be advected downwind. This represents the eruption 'source term' essential for dispersion modeling, and hence for aviation hazard mitigation. In this presentation we show examples of A-Train data collected during recent eruptions including Chaitén (May 2008), Kasatochi (August 2008), Redoubt (March 2009), Eyjafjallajökull (April 2010) and Cordón Caulle (June 2011). We interpret the observations using the canonical three-stage view of volcanic cloud development [e.g., Rose et al., 2000] from initial rapid ash fallout to far-field dispersion of fine ash, gas and aerosol, and results from numerical modeling of volcanic plumes [e.g., Textor et al

  5. Small volcanic eruptions and the stratospheric sulfate aerosol burden

    NASA Astrophysics Data System (ADS)

    Pyle, David M.

    2012-09-01

    Understanding of volcanic activity and its impacts on the atmosphere has evolved in discrete steps, associated with defining eruptions. The eruption of Krakatau, Indonesia, in August 1883 was the first whose global reach was recorded through observations of atmospheric phenomena around the world (Symons 1888). The rapid equatorial spread of Krakatau's ash cloud revealed new details of atmospheric circulation, while the vivid twilights and other optical phenomena were soon causally linked to the effects of particles and gases released from the volcano (e.g. Stothers 1996, Schroder 1999, Hamilton 2012). Later, eruptions of Agung, Bali (1963), El Chichón, Mexico (1982) and Pinatubo, Philippines (1991) led to a fuller understanding of how volcanic SO2 is transformed to a long-lived stratospheric sulfate aerosol, and its consequences (e.g. Meinel and Meinel 1967, Rampino and Self 1982, Hoffman and Rosen 1983, Bekki and Pyle 1994, McCormick et al 1995). While our ability to track the dispersal of volcanic emissions has been transformed since Pinatubo, with the launch of fleets of Earth-observing satellites (e.g. NASA's A-Train; ESA's MetOp) and burgeoning networks of ground-based remote-sensing instruments (e.g. lidar and sun-photometers; infrasound and lightning detection systems), there have been relatively few significant eruptions. Thus, there have been limited opportunities to test emerging hypotheses including, for example, the vexed question of the role of 'smaller' explosive eruptions in perturbations of the atmosphere—those that may just be large enough to reach the stratosphere (of size 'VEI 3', Newhall and Self 1982, Pyle 2000). Geological evidence, from ice-cores and historical eruptions, suggests that small explosive volcanic eruptions with the potential to transport material into the stratosphere should be frequent (5-10 per decade), and responsible for a significant proportion of the long-term time-averaged flux of volcanic sulfur into the stratosphere

  6. Volcanic sulfur dioxide index and volcanic explosivity index inferred from eruptive volume of volcanoes in Jeju Island, Korea: application to volcanic hazard mitigation

    NASA Astrophysics Data System (ADS)

    Ko, Bokyun; Yun, Sung-Hyo

    2016-04-01

    Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS

  7. Planetary volcanism - A study of volcanic activity in the solar system

    NASA Technical Reports Server (NTRS)

    Cattermole, Peter

    1989-01-01

    The nature of volcanic activity, theoretical models of its role in planetary evolution, and the evidence for volcanism on the planets and planetary satellites are examined in an introductory overview for advanced undergraduate and graduate students. Chapters are devoted to volcanism as a planetary process, the generation and evolution of magmas, magma ascent and eruption, the properties and behavior of volcanic flows, volcanic landforms, the distribution of volcanic rocks in the solar system, and volcanic plains and their development. Consideration is given to lunar volcanism, shield volcanoes and paterae, volcanism on Io, volcanism on icy satellites, and the rheological analysis of volcanic flows.

  8. On a Possible Unified Scaling Law for Volcanic Eruption Durations

    PubMed Central

    Cannavò, Flavio; Nunnari, Giuseppe

    2016-01-01

    Volcanoes constitute dissipative systems with many degrees of freedom. Their eruptions are the result of complex processes that involve interacting chemical-physical systems. At present, due to the complexity of involved phenomena and to the lack of precise measurements, both analytical and numerical models are unable to simultaneously include the main processes involved in eruptions thus making forecasts of volcanic dynamics rather unreliable. On the other hand, accurate forecasts of some eruption parameters, such as the duration, could be a key factor in natural hazard estimation and mitigation. Analyzing a large database with most of all the known volcanic eruptions, we have determined that the duration of eruptions seems to be described by a universal distribution which characterizes eruption duration dynamics. In particular, this paper presents a plausible global power-law distribution of durations of volcanic eruptions that holds worldwide for different volcanic environments. We also introduce a new, simple and realistic pipe model that can follow the same found empirical distribution. Since the proposed model belongs to the family of the self-organized systems it may support the hypothesis that simple mechanisms can lead naturally to the emergent complexity in volcanic behaviour. PMID:26926425

  9. On a Possible Unified Scaling Law for Volcanic Eruption Durations

    NASA Astrophysics Data System (ADS)

    Cannavò, Flavio; Nunnari, Giuseppe

    2016-03-01

    Volcanoes constitute dissipative systems with many degrees of freedom. Their eruptions are the result of complex processes that involve interacting chemical-physical systems. At present, due to the complexity of involved phenomena and to the lack of precise measurements, both analytical and numerical models are unable to simultaneously include the main processes involved in eruptions thus making forecasts of volcanic dynamics rather unreliable. On the other hand, accurate forecasts of some eruption parameters, such as the duration, could be a key factor in natural hazard estimation and mitigation. Analyzing a large database with most of all the known volcanic eruptions, we have determined that the duration of eruptions seems to be described by a universal distribution which characterizes eruption duration dynamics. In particular, this paper presents a plausible global power-law distribution of durations of volcanic eruptions that holds worldwide for different volcanic environments. We also introduce a new, simple and realistic pipe model that can follow the same found empirical distribution. Since the proposed model belongs to the family of the self-organized systems it may support the hypothesis that simple mechanisms can lead naturally to the emergent complexity in volcanic behaviour.

  10. Months between rejuvenation and volcanic eruption at Yellowstone caldera, Wyoming

    USGS Publications Warehouse

    Till, Christy B.; Vazquez, Jorge A.; Boyce, Jeremy W

    2015-01-01

    Rejuvenation of previously intruded silicic magma is an important process leading to effusive rhyolite, which is the most common product of volcanism at calderas with protracted histories of eruption and unrest such as Yellowstone, Long Valley, and Valles, USA. Although orders of magnitude smaller in volume than rare caldera-forming super-eruptions, these relatively frequent effusions of rhyolite are comparable to the largest eruptions of the 20th century and pose a considerable volcanic hazard. However, the physical pathway from rejuvenation to eruption of silicic magma is unclear particularly because the time between reheating of a subvolcanic intrusion and eruption is poorly quantified. This study uses geospeedometry of trace element profiles with nanometer resolution in sanidine crystals to reveal that Yellowstone’s most recent volcanic cycle began when remobilization of a near- or sub-solidus silicic magma occurred less than 10 months prior to eruption, following a 220,000 year period of volcanic repose. Our results reveal a geologically rapid timescale for rejuvenation and effusion of ~3 km3 of high-silica rhyolite lava even after protracted cooling of the subvolcanic system, which is consistent with recent physical modeling that predict a timescale of several years or less. Future renewal of rhyolitic volcanism at Yellowstone is likely to require an energetic intrusion of mafic or silicic magma into the shallow subvolcanic reservoir and could rapidly generate an eruptible rhyolite on timescales similar to those documented here.

  11. On a Possible Unified Scaling Law for Volcanic Eruption Durations.

    PubMed

    Cannavò, Flavio; Nunnari, Giuseppe

    2016-01-01

    Volcanoes constitute dissipative systems with many degrees of freedom. Their eruptions are the result of complex processes that involve interacting chemical-physical systems. At present, due to the complexity of involved phenomena and to the lack of precise measurements, both analytical and numerical models are unable to simultaneously include the main processes involved in eruptions thus making forecasts of volcanic dynamics rather unreliable. On the other hand, accurate forecasts of some eruption parameters, such as the duration, could be a key factor in natural hazard estimation and mitigation. Analyzing a large database with most of all the known volcanic eruptions, we have determined that the duration of eruptions seems to be described by a universal distribution which characterizes eruption duration dynamics. In particular, this paper presents a plausible global power-law distribution of durations of volcanic eruptions that holds worldwide for different volcanic environments. We also introduce a new, simple and realistic pipe model that can follow the same found empirical distribution. Since the proposed model belongs to the family of the self-organized systems it may support the hypothesis that simple mechanisms can lead naturally to the emergent complexity in volcanic behaviour. PMID:26926425

  12. Io. [theories concerning volcanic activity

    NASA Technical Reports Server (NTRS)

    Johnson, T. V.; Soderblom, L. A.

    1983-01-01

    A report on the continuing investigation of Io is presented. Gravitational resonance is discussed as the cause of Io's volcanism, and the volcanic activity is explained in terms of sulfur chemistry. Theories concerning the reasons for the two main types of volcanic eruptions on Io are advanced and correlated with geographical features of the satellite. The sulfur and silicate models of the calderas are presented, citing the strengths and weaknesses of each. Problems of the gravitational resonance theory of Io's heat source are then described. Finally, observations of Io planned for the Galileo mission are summarized.

  13. Characterizing Volcanic Eruptions on Venus: Some Realistic (?) Scenarios

    NASA Technical Reports Server (NTRS)

    Stofan, E. R.; Glaze, L. S.; Grinspoon, D. H.

    2011-01-01

    When Pioneer Venus arrived at Venus in 1978, it detected anomalously high concentrations of SO2 at the top of the troposphere, which subsequently declined over the next five years. This decline in SO2 was linked to some sort of dynamic process, possibly a volcanic eruption. Observations of SO2 variability have persisted since Pioneer Venus. More recently, scientists from the Venus Express mission announced that the SPICAV (Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus) instrument had measured varying amounts of SO2 in the upper atmosphere; VIRTIS (Visible and Infrared Thermal Imaging Spectrometer) measured no similar variations in the lower atmosphere (ESA, 4 April, 2008). In addition, Fegley and Prinn stated that venusian volcanoes must replenish SO2 to the atmosphere, or it would react with calcite and disappear within 1.9 my. Fegley and Tremain suggested an eruption rate on the order of approx 1 cubic km/year to maintain atmospheric SO2; Bullock and Grinspoon posit that volcanism must have occurred within the last 20-50 my to maintain the sulfuric acid/water clouds on Venus. The abundance of volcanic deposits on Venus and the likely thermal history of the planet suggest that it is still geologically active, although at rates lower than Earth. Current estimates of resurfacing rates range from approx 0.01 cubic km/yr to approx 2 cubic km/yr. Demonstrating definitively that Venus is still volcanically active, and at what rate, would help to constrain models of evolution of the surface and interior, and help to focus future exploration of Venus.

  14. Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska

    USGS Publications Warehouse

    Sassen, Kenneth; Zhu, Jiang; Webley, Peter W.; Dean, K.; Cobb, Patrick

    2007-01-01

    During mid January to early February 2006, a series of explosive eruptions occurred at the Augustine volcanic island off the southern coast of Alaska. By early February a plume of volcanic ash was transported northward into the interior of Alaska. Satellite imagery and Puff volcanic ash transport model predictions confirm that the aerosol plume passed over a polarization lidar (0.694 mm wavelength) site at the Arctic Facility for Atmospheric Remote Sensing at the University of Alaska Fairbanks. For the first time, lidar linear depolarization ratios of 0.10 – 0.15 were measured in a fresh tropospheric volcanic plume, demonstrating that the nonspherical glass and mineral particles typical of volcanic eruptions generate strong laser depolarization. Thus, polarization lidars can identify the volcanic ash plumes that pose a threat to jet air traffic from the ground, aircraft, or potentially from Earth orbit.

  15. Systematic change in global patterns of streamflow following volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Iles, Carley E.; Hegerl, Gabriele C.

    2015-11-01

    Following large explosive volcanic eruptions, precipitation decreases over much of the globe, particularly in climatologically wet regions. Stratospheric volcanic aerosols reflect sunlight, which reduces evaporation, whilst surface cooling stabilizes the atmosphere and reduces its water-holding capacity. Circulation changes modulate this global precipitation reduction on regional scales. Despite the importance of rivers to people, it has been unclear whether volcanism causes detectable changes in streamflow, given large natural variability. Here we analyse observational records of streamflow volume for fifty large rivers from around the world that cover between two and six major volcanic eruptions in the twentieth and late nineteenth century. We find statistically significant reductions in flow following eruptions for the Amazon, Congo, Nile, Orange, Ob, Yenisey and Kolyma, amongst others. When data from neighbouring rivers are combined--based on the areas where climate models simulate either an increase or a decrease in precipitation following eruptions--a significant (p < 0.1) decrease in streamflow following eruptions is detected in northern South American, central African and high-latitude Asian rivers, and on average across wet tropical and subtropical regions. We also detect a significant increase in flow in southern South American and southwestern North American rivers. Our findings suggest that future volcanic eruptions could substantially affect global water availability.

  16. Systematic change in global patterns of streamflow following volcanic eruptions

    PubMed Central

    Iles, Carley E.; Hegerl, Gabriele C.

    2016-01-01

    Following large explosive volcanic eruptions precipitation decreases over much of the globe1–6, particularly in climatologically wet regions4,5. Stratospheric volcanic aerosols reflect sunlight, which reduces evaporation, whilst surface cooling stabilises the atmosphere and reduces its water-holding capacity7. Circulation changes modulate this global precipitation reduction on regional scales1,8–10. Despite the importance of rivers to people, it has been unclear whether volcanism causes detectable changes in streamflow given large natural variability. Here we analyse observational records of streamflow volume for fifty large rivers from around the world which cover between two and 6 major volcanic eruptions in the 20th and late 19th century. We find statistically significant reductions in flow following eruptions for the Amazon, Congo, Nile, Orange, Ob, Yenisey and Kolyma amongst others. When data from neighbouring rivers are combined - based on the areas where climate models simulate either an increase or a decrease in precipitation following eruptions – a significant (p<0.1) decrease in streamflow following eruptions is detected in northern South American, central African and high-latitude Asian rivers, and on average across wet tropical and subtropical regions. We also detect a significant increase in southern South American and SW North American rivers. This suggests that future volcanic eruptions could substantially affect global water availability. PMID:27279897

  17. Smelters as Analogs for a Volcanic Eruption at Yucca Mountain

    SciTech Connect

    Ross, Benjamin

    2004-11-15

    The distribution of trace radionuclides in secondary metal smelters provides an analog for spent fuel released from packages during a volcanic eruption. The fraction of the inventory of a radionuclide that would be released into the air in a volcanic eruption is called the dust partitioning factor. In consequence analyses of a volcanic eruption at Yucca Mountain, a value of one has been used for this parameter for all elements. This value is too high for the refractory elements. Reducing the dust partitioning factor for refractory elements to a value equal to the fraction of the magma that becomes ash would still yield conservative estimates of how much radioactivity would be released in an eruption.

  18. Eruptive modes and hiatus of volcanism at West Mata seamount, NE Lau basin: 1996-2012

    NASA Astrophysics Data System (ADS)

    Embley, Robert W.; Merle, Susan G.; Baker, Edward T.; Rubin, Kenneth H.; Lupton, John E.; Resing, Joseph A.; Dziak, Robert P.; Lilley, Marvin D.; Chadwick, William W.; Shank, T.; Greene, Ron; Walker, Sharon L.; Haxel, Joseph; Olson, Eric; Baumberger, Tamara

    2014-10-01

    present multiple lines of evidence for years to decade-long changes in the location and character of volcanic activity at West Mata seamount in the NE Lau basin over a 16 year period, and a hiatus in summit eruptions from early 2011 to at least September 2012. Boninite lava and pyroclasts were observed erupting from its summit in 2009, and hydroacoustic data from a succession of hydrophones moored nearby show near-continuous eruptive activity from January 2009 to early 2011. Successive differencing of seven multibeam bathymetric surveys of the volcano made in the 1996-2012 period reveals a pattern of extended constructional volcanism on the summit and northwest flank punctuated by eruptions along the volcano's WSW rift zone (WSWRZ). Away from the summit, the volumetrically largest eruption during the observational period occurred between May 2010 and November 2011 at ˜2920 m depth near the base of the WSWRZ. The (nearly) equally long ENE rift zone did not experience any volcanic activity during the 1996-2012 period. The cessation of summit volcanism recorded on the moored hydrophone was accompanied or followed by the formation of a small summit crater and a landslide on the eastern flank. Water column sensors, analysis of gas samples in the overlying hydrothermal plume and dives with a remotely operated vehicle in September 2012 confirmed that the summit eruption had ceased. Based on the historical eruption rates calculated using the bathymetric differencing technique, the volcano could be as young as several thousand years.

  19. Responses to, and the short and long-term impacts of, the 1957/1958 Capelinhos volcanic eruption and associated earthquake activity on Faial, Azores

    NASA Astrophysics Data System (ADS)

    Coutinho, Rui; Chester, David K.; Wallenstein, Nicolau; Duncan, Angus M.

    2010-10-01

    The 1957/58 Capelinhos eruption on Faial Island in the Azores is well known for being an excellent example of Surtseyan hydromagmatic volcanic activity. Less well known are the responses of the Portuguese authorities to the eruption and subsequent earthquake in May 1958, and the ways in which well-thought-out and generally effective recovery programmes were put in place. At the time Portugal was ruled by a dictatorship, the Estado Novo (New State). Only superficially similar to other fascist governments in Southern Europe, the Estado Novo collected huge amounts of data on the responses of the authorities to the disaster and their programmes of recovery, but never encouraged academic evaluation of policy, although it ensured that the scientific aspects of the eruption and earthquake were meticulously recorded and published. In this paper we remedy this situation by discussing the details of the immediate response to the emergency and the ways in which the island recovered in its aftermath. The study is based not only on archival sources and demographic and economic data, but also on detailed interviews with survivors some of whom were also decision makers. We argue that response, recovery and rehabilitation were generally highly successful and assess the lessons of the 1957/58 emergency which are relevant to future geophysical disasters in Faial and the wider Azores. Since the 1974 revolution Portugal has been a democratic state. We conclude that both the legislation and the civil defence infrastructure, necessary to achieve a similarly strong and successful response, are in place today.

  20. Impact of volcanic eruptions on the marine carbon cycle

    NASA Astrophysics Data System (ADS)

    Segschneider, Joachim; Ulrike, Niemeier; Martin, Wiesner; Claudia, Timmreck

    2010-05-01

    The impact of volcanic eruptions on the marine carbon cycle is investigated for the example of the Pinatubo eruption with model simulations of the distribution of the ash cloud and deposition on the ocean surface and the impact of the nutrient addition from ash leachates on the oceanic biological production and hence biological carbon pump. Natural variations of aerosols, especially due to large-magnitude volcanic eruptions, are recognized as a significant climate forcing, altering the Earth's radiation balance and thus tending to cause global temperature changes. While the impact of such events on climate and the terrestrial biosphere is relatively well documented, scientific knowledge of their effects on marine ecosystems and consequent feedbacks to the atmosphere is still very limited. In the deep sea, subaerial eruptive events of global significance are commonly recorded as widespread ash layers, which were often found to be associated with increased abundances of planktic organisms. This has led to the hypothesis that the influx of volcanic ash may provide an external nutrient source for primary production (in particular through iron fertilization) in ocean surface waters. Recent laboratory experiments have demonstrated that pristine volcanic ash indeed releases significant amounts of macronutrients and bioactive trace metals (including phosphate, iron and silica) adsorbed to the surface of the ash particles. The release of these components most likely has its largest impact in ocean regions where their availability is crucial for the growth of oceanic biomass, which are the high-nutrient but low-productivity (low-iron) areas in the Pacific and the Southern Ocean. These in turn are neighbored by most of those subaerially active volcanoes that are capable of ejecting huge amounts of aerosols into the high-velocity stratospheric wind fields. The dispersal and fallout of ash thus has a high potential to induce globally significant, transient net CO2 removal from

  1. Perception of volcanic eruption as agent of change on Merapi volcano, Central Java

    NASA Astrophysics Data System (ADS)

    Dove, Michael R.

    2008-05-01

    Events like volcanic eruptions challenge equilibrium models of nature. This is a study of the perceptions of eruptions as agents of change, taking Mt. Merapi in Central Java as a case study. Villagers living on Merapi have developed a system of religious belief, and a system of agro-ecological practices, that 'domesticates' the volcanic hazard. The villagers view eruptions as agents of change, often change for the good. The Indonesian government, on the other hand, technologizes and exoticizes the volcanic hazard, and conceptually and materially separates it from the realm of civil society. The state focuses its attention exclusively on intermittent moments of heightened volcanic activity, whereas the villagers focus their attention on the much longer interim periods when there is little or no such activity. This case study shows that not just the perception of risk, but the very concept of risk itself can vary. The cultural production of such concepts co-evolves with natural patterns of perturbation.

  2. What We Can Learn from the Next Large Volcanic Eruption

    NASA Astrophysics Data System (ADS)

    Robock, A.

    2015-12-01

    The April 1982 eruption of El Chichón in México stimulated interest in the climate response to volcanic eruptions and produced very useful observations and modeling studies. The last large volcanic eruption, the June 15, 1991 eruption of Mt. Pinatubo in the Philippines, was the best observed eruption ever, and serves as a canonical example for studies of aerosol production and transport, climate response, and deposition on ice sheets. However, many aspects of both eruptions were poorly observed, climate model simulations of the response are imperfect, and new scientific issues, such as stratospheric sulfate geoengineering, raise new scientific questions that could be answered by better observations of the next large volcanic eruption. In this talk I will summarize what we know and do not know about large volcanic eruptions, and discuss new questions that can be addressed by being prepared for the next large eruption. These include: How and how fast will SO2 convert to sulfate aerosols? How will the aerosols grow? What will be the size distribution of the resulting sulfate aerosol particles? How will the aerosols be transported throughout the stratosphere? How much fine ash gets to the stratosphere, how long does it stay there, and what are its radiative and chemical impacts? How will temperatures change in the stratosphere as a result of the aerosol interactions with shortwave (particularly near IR) and longwave radiation? Are there large stratospheric water vapor changes associated with stratospheric aerosols? Is there an initial injection of water from the eruption? Is there ozone depletion from heterogeneous reactions on the stratospheric aerosols? As the aerosols leave the stratosphere, and as the aerosols affect the upper troposphere temperature and circulation, are there interactions with cirrus and other clouds?

  3. Uranium-series disequilibria in Vanuatu arc volcanic rocks: constraints on pre-eruptive processes in contrasting volcanic systems

    NASA Astrophysics Data System (ADS)

    Handley, H. K.; Turner, S.; Reagan, M. K.; Girard, G.; Cronin, S. J.; Firth, C.

    2011-12-01

    Recent and present volcanism in the Vanuatu arc (South West Pacific Ocean) occurs at a variety of volcano types that exhibit a wide range of eruptive behaviour: from post-caldera lava-lake activity and lava flows at shield volcanoes (Ambrym), moderately explosive sub-plinian events and associated pyroclastic-flows and lava flows at stratovolcanoes (Lopevi), to persistent strombolian and vulcanian-style eruptions at scoria cones (Yasur). This precludes a generic model of magmatic and eruptive behaviour for the Vantuatu arc volcanoes and necessitates a detailed study of each system. Uranium-series disequilibria in volcanic rocks offer unique insights into pre-eruptive magmatic systems over process-relevant timescales e.g., 238U-230Th (380Ka), 230Th-226Ra (8Ka) and 226Ra-210Pb (100a). The short half-life of 210Pb (t1/2 = 22.6 years) and the volatile nature of the intermediate isotope, 222Rn, (intermediate between the 226Ra parent and 210Pb daughter) provide valuable information on magma transport, evolution and degassing over a timescale more pertinent to the processes leading up to volcanic eruptions. We present new Uranium-series isotope data (U-Th-Ra-210Pb) for young (< 100 years old) volcanic samples from Ambrym, Lopevi and Yasur volcanoes to investigate the timescales of magmatic evolution and degassing in the contrasting volcanic systems. 210Pb deficits ((210Pb/226Ra)0 < 1) in Ambrym and Yasur volcanic rocks suggest effective open-system magmatic degassing of 222Rn, consistent with the persistent lava-lakes/exposed magma and significant gas emissions observed at both volcanoes. Lopevi, on the other hand, largely displays excess 210Pb ((210Pb/226Ra)0 > 1) suggesting that 222Rn gas accumulation and fluxing preceding and/or during eruption (on a decadal timescale) is responsible for the more explosive-style of eruption witnessed at this volcano. Significant accumulation of recently crystallised plagioclase phenocrysts can also create 210Pb excesses in volcanic

  4. Global monsoon precipitation responses to large volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-04-01

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do.

  5. Global monsoon precipitation responses to large volcanic eruptions

    PubMed Central

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-01-01

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do. PMID:27063141

  6. Global monsoon precipitation responses to large volcanic eruptions.

    PubMed

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-01-01

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do. PMID:27063141

  7. Volcanic hazards from Bezymianny- and Bandai-type eruptions

    USGS Publications Warehouse

    Siebert, L.; Glicken, H.; Ui, T.

    1987-01-01

    kilometers. When not confined by valley walls, avalanches can affect wide areas beyond the volcano's flanks. Tsunamis from debris avalanches at coastal volcanoes have caused more fatalities than have the landslides themselves or associated eruptions. The probable travel distance (L) of avalanches can be estimated by considering the potential vertical drop (H). Data from a catalog of around 200 debris avalanches indicates that the H/L rations for avalanches with volumes of 0.1-1 km3 average 0.13 and range 0.09-0.18; for avalanches exceeding 1 km3, H/L ratios average 0.09 and range 0.5-0.13. Large-scale deformation of the volcanic edefice and intense local seismicity precede many slope failures and can indicate the likely failure direction and orientation of potential lateral blasts. The nature and duration of precursory activity vary widely, and the timing of slope faliure greatly affects the type of associated eruption. Bandai-type eruptions are particularly difficult to anticipate because they typically climax suddenly without precursory eruptions and may be preceded by only short periods of seismicity. ?? 1987 Springer-Verlag.

  8. Probabilities of future VEI ≥ 2 eruptions at the Central American Volcanic Arc: a statistical perspective based on the past centuries' eruption record

    NASA Astrophysics Data System (ADS)

    Dzierma, Yvonne; Wehrmann, Heidi

    2014-10-01

    A probabilistic eruption forecast is provided for seven historically active volcanoes along the Central American Volcanic Arc (CAVA), as a pivotal empirical contribution to multi-disciplinary volcanic hazards assessment. The eruption probabilities are determined with a Kaplan-Meier estimator of survival functions, and parametric time series models are applied to describe the historical eruption records. Aside from the volcanoes that are currently in a state of eruptive activity (Santa María, Fuego, and Arenal), the highest probabilities for eruptions of VEI ≥ 2 occur at Concepción and Cerro Negro in Nicaragua, which are likely to erupt to 70-85 % within the next 10 years. Poás and Irazú in Costa Rica show a medium to high eruption probability, followed by San Miguel (El Salvador), Rincón de la Vieja (Costa Rica), and Izalco (El Salvador; 24 % within the next 10 years).

  9. Large, Moderate or Small? The Challenge of Measuring Mass Eruption Rates in Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Gudmundsson, M. T.; Dürig, T.; Hognadottir, T.; Hoskuldsson, A.; Bjornsson, H.; Barsotti, S.; Petersen, G. N.; Thordarson, T.; Pedersen, G. B.; Riishuus, M. S.

    2015-12-01

    The potential impact of a volcanic eruption is highly dependent on its eruption rate. In explosive eruptions ash may pose an aviation hazard that can extend several thousand kilometers away from the volcano. Models of ash dispersion depend on estimates of the volcanic source, but such estimates are prone to high error margins. Recent explosive eruptions, including the 2010 eruption of Eyjafjallajökull in Iceland, have provided a wealth of data that can help in narrowing these error margins. Within the EU-funded FUTUREVOLC project, a multi-parameter system is currently under development, based on an array of ground and satellite-based sensors and models to estimate mass eruption rates in explosive eruptions in near-real time. Effusive eruptions are usually considered less of a hazard as lava flows travel slower than eruption clouds and affect smaller areas. However, major effusive eruptions can release large amounts of SO2 into the atmosphere, causing regional pollution. In very large effusive eruptions, hemispheric cooling and continent-scale pollution can occur, as happened in the Laki eruption in 1783 AD. The Bárdarbunga-Holuhraun eruption in 2014-15 was the largest effusive event in Iceland since Laki and at times caused high concentrations of SO2. As a result civil protection authorities had to issue warnings to the public. Harmful gas concentrations repeatedly persisted for many hours at a time in towns and villages at distances out to 100-150 km from the vents. As gas fluxes scale with lava fluxes, monitoring of eruption rates is therefore of major importance to constrain not only lava but also volcanic gas emissions. This requires repeated measurements of lava area and thickness. However, most mapping methods are problematic once lava flows become very large. Satellite data on thermal emissions from eruptions have been used with success to estimate eruption rate. SAR satellite data holds potential in delivering lava volume and eruption rate estimates

  10. Volcanic forcing of monsoonal precipitation variability in selected modern volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Yim, W. W.; Chan, J. C.

    2009-12-01

    An important characteristic of the monsoonal climate is the heavy summer precipitation and the winter drought brought about by the shift in wind circulation. For planet Earth to achieve greater future sustainability, a better understanding of precipitation variability in the densely populated monsoonal regions of the world is particularly critical. In the present study, three major modern tropical volcanic eruptions occurring over the past fifty years have been selected to investigate their influence on precipitation variability in the monsoonal region of southern China. The three eruptions are the February 1963 Agung eruption in Indonesia, the March 1982 El Chichón eruption in Mexico and the June 1991 Pinatubo eruption in the Philippines. Abnormally low annual precipitation was found in the southern China region during 1963 and 1991. Based on the annual precipitation at the Hong Kong Observatory Station, they were the driest and the tenth driest respectively since record began in 1884. In contrast, abnormally heavy precipitation was found in southern China in 1982 with the Hong Kong Observatory Station recording the second wettest year since record began. Based on the observed precipitation, near-field major volcanic eruptions located in the Indonesian-Pacific gateway may lead to abnormally dry conditions explained either by a shift and/or strengthening of predominantly offshore wind. Far-field major volcanic eruptions such as in the eastern Pacific may give rise to abnormally wet conditions through the global spread of the volcanic cloud. The El Chichón volcanic cloud was tracked by satellites across the Pacific Ocean and there is a match in the timing of heavy precipitation after the volcanic cloud entered the South China Sea about eleven days after the main eruption phase. Major volcanic eruptions are concluded to be a causative factor in monsoonal precipitation variability worthy of greater attention.

  11. Chronology and References of Volcanic Eruptions and Selected Unrest in the United States, 1980-2008

    USGS Publications Warehouse

    Diefenbach, Angela K.; Guffanti, Marianne; Ewert, John W.

    2009-01-01

    The United States ranks as one of the top countries in the world in the number of young, active volcanoes within its borders. The United States, including the Commonwealth of the Northern Mariana Islands, is home to approximately 170 geologically active (age <10,000 years) volcanoes. As our review of the record shows, 30 of these volcanoes have erupted since 1980, many repeatedly. In addition to producing eruptions, many U.S. volcanoes exhibit periods of anomalous activity, unrest, that do not culminate in eruptions. Monitoring volcanic activity in the United States is the responsibility of the U.S. Geological Survey (USGS) Volcano Hazards Program (VHP) and is accomplished with academic, Federal, and State partners. The VHP supports five Volcano Observatories - the Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Yellowstone Volcano Observatory (YVO), Long Valley Observatory (LVO), and Hawaiian Volcano Observatory (HVO). With the exception of HVO, which was established in 1912, the U.S. Volcano Observatories have been established in the past 27 years in response to specific volcanic eruptions or sustained levels of unrest. As understanding of volcanic activity and hazards has grown over the years, so have the extent and types of monitoring networks and techniques available to detect early signs of anomalous volcanic behavior. This increased capability is providing us with a more accurate gauge of volcanic activity in the United States. The purpose of this report is to (1) document the range of volcanic activity that U.S. Volcano Observatories have dealt with, beginning with the 1980 eruption of Mount St. Helens, (2) describe some overall characteristics of the activity, and (3) serve as a quick reference to pertinent published literature on the eruptions and unrest documented in this report.

  12. Satellite Observations of Atmospheric SO2 from Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Khokhar, M. F.; Platt, U.; Wagner, T.

    Volcanoes are an important source of various atmospheric trace gases. Volcanic eruptions and their emissions are sporadic and intermittent and often occur in uninhabited regions. Therefore assessing the amount and size of the gaseous and particulate emission from volcanoes is difficult. Satellite remote sensing measurements provide one well suited opportunity to overcome this difficulty. Onboard ERS-2, GOME's moderate spectral resolution enables us to apply the Differential Optical Absorption Spectroscopy (DOAS) algorithm to retrieve SO2 column densities from radiance/irradiance measurements in UV spectral region. Volcanic emissions can cause significant variations of climate on a variety of time scales; just one very large eruption can cause a measurable change in the Earth's climate with a time scale of a few years. Stratospheric aerosols produced by volcanic eruptions can influence stratospheric chemistry both through chemical reactions that take place on the surface of the aerosols and through temperature changes induced by their presence in the stratosphere. In this work we give a comprehensive overview on several volcanoes and the retrieval of SO2 column densities from GOME data for the years 1996 - 2002. The focus is on both eruption and out gassing scenarios from different volcanic eruptions in Italy, Iceland, Congo/ Zaire, Ecuador and Mexico.

  13. Prediction and monitoring of volcanic activities

    SciTech Connect

    Sudradjat, A.

    1986-07-01

    This paper summarizes the state of the art for predicting and monitoring volcanic activities, and it emphasizes the experience obtained by the Volcanological Survey Indonesia for active volcanoes. The limited available funds, the large number of active volcanoes to monitor, and the high population density of the volcanic area are the main problems encountered. Seven methods of volcano monitoring are applied to the active volcanoes of Indonesia: seismicity, ground deformation, gravity and magnetic studies, self-potential studies, petrochemistry, gas monitoring, and visual observation. Seismic monitoring augmented by gas monitoring has proven to be effective, particularly for predicting individual eruptions at the after-initial phase. However, the success of the prediction depends on the characteristics of each volcano. In general, the initial eruption phase is the most difficult phenomenon to predict. The preparation of hazard maps and the continuous awareness of the volcanic eruption are the most practical ways to mitigate volcanic danger.

  14. Impact of major volcanic eruptions on stratospheric water vapour

    NASA Astrophysics Data System (ADS)

    Löffler, Michael; Brinkop, Sabine; Jöckel, Patrick

    2016-05-01

    Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry-climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg - Modular Earth Submodel System (ECHAM/MESSy) Atmospheric Chemistry (EMAC) model, performed within the Earth System Chemistry integrated Modelling (ESCiMo) project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño-Southern Oscillation (ENSO) are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  15. Airborne stratospheric observations of major volcanic eruptions: past and future

    NASA Astrophysics Data System (ADS)

    Newman, P. A.; Aquila, V.; Colarco, P. R.

    2015-12-01

    Major volcanic eruptions (e.g. the 1991 eruption of Mt. Pinatubo) lead to a surface cooling and disruptions of the chemistry of the stratosphere. In this presentation, we will show model simulations of Mt. Pinatubo that can be used to devise a strategy for answering specific science questions. In particular, what is the initial mass injection, how is the cloud spreading, how are the stratospheric aerosols evolving, what is the impact on stratospheric chemistry, and how will climate be affected? We will also review previous stratospheric airborne observations of volcanic clouds using NASA sub-orbital assets, and discuss our present capabilities to observe the evolution of a stratospheric volcanic plume. These capabilities include aircraft such as the NASA ER-2, WB-57f, and Global Hawk. In addition, the NASA DC-8 and P-3 can be used to perform remote sensing. Balloon assets have also been employed, and new instrumentation is now available for volcanic work.

  16. Do volcanic eruptions affect climate? Sulfur gases may cause cooling

    NASA Technical Reports Server (NTRS)

    Self, Stephen; Rampino, Michael R.

    1988-01-01

    The relationship between volcanic eruptions on earth and the observed climatic changes is investigated. The results of the comparison and analyses of volcanologic and climatologic data sets for the years between 1880 and 1980 indicate that changes in temperature caused by even of the largest eruptions recorded during this time were about the same as normal variations in temperature. However, when temperature records for several months or years preceding and following a given eruption were analyzed, a statistically significant temperature decrease of 0.2-0.5 C was found for the periods of one to two years immediately following some of the 19th and 20th century explosive events that prodiced large aerosol clouds (e.g., Krakatau and Agung eruptions). It is suggested that the content of sulfur in the erupted magma determines the size of aerosol cloud producing the cooling effect.

  17. Apollo 14 crewmen near site of volcanic eruption on Hawaii

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Prime crewmen and backup crewmen of the Apollo 14 mission look over an area near the site of a volcanic eruption in Aloi Alae, Hawaii. Astronauts Alan B. Shepard Jr. (leaning with left hand on ground) and Edgar D. Mitchell (behind Shepard, wearing dark glasses) are the prime crewmen scheduled to walk on the moon. Astronauts Eugene A. Cernan (almost obscured at extreme left) and Joe H. Engle (partially visible, on Cernan's right) are back-up crew commander and lunar module pilot, respectively, for the mission. Others in the photograph are Pat Crosland (in hard hat), a geologist and a park ranger in Hawaii Volcanoes National Park; Michael C McEwen (facing Mitchell) of the Geology Branch, Lunar and Earth Sciences Division, Manned Spacecraft Center; and Astronaut Bruce McCandless II, who made the trip to serve as a spacecraft communicator during simulations of extravehicular activity (EVA) on the lunar surface.

  18. Effects of Volcanic Eruptions on Stratospheric Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Rosenfield, Joan E.

    2002-01-01

    The effects of the stratospheric sulfate aerosol layer associated with the Mt. Pinatubo volcano and future volcanic eruptions on the recovery of the ozone layer is studied with an interactive two-dimensional photochemical model. The time varying chlorine loading and the stratospheric cooling due to increasing carbon dioxide have been taken into account. The computed ozone and temperature changes associated with the Mt. Pinatubo eruption in 1991 agree well with observations. Long model runs out to the year 2050 have been carried out, in which volcanoes having the characteristics of the Mount Pinatubo volcano were erupted in the model at 10-year intervals starting in the year 2010. Compared to a non-volcanic run using background aerosol loading, transient reductions of globally averaged column ozone of 2-3 percent were computed as a result of each of these eruptions, with the ozone recovering to that computed for the non-volcanic case in about 5 years after the eruption. Computed springtime Arctic column ozone losses of from 10 to 18 percent also recovered to the non-volcanic case within 5 years. These results suggest that the long-term recovery of ozone would not be strongly affected by infrequent volcanic eruptions with a sulfur loading approximating Mt. Pinatubo. Sensitivity studies in which the Arctic lower stratosphere was forced to be 4 K and 10 K colder resulted in transient ozone losses of which also recovered to the non-volcanic case in 5 years. A case in which a volcano five times Mt. Pinatubo was erupted in the year 2010 led to maximum springtime column ozone losses of 45 percent which took 10 years to recover to the background case. Finally, in order to simulate a situation in which frequent smaller volcanic eruptions result in increasing the background sulfate loading, a simulation was made in which the background aerosol was increased by 10 percent per year. This resulted in a delay of the recovery of column ozone to 1980 values of more than 10 years.

  19. Seismological aspects of the 1988 1989 Lonquimay (Chile) volcanic eruption

    NASA Astrophysics Data System (ADS)

    Barrientos, Sergio E.; Acevedo-Aránguiz, Patricio S.

    1992-11-01

    More than 1600 earthquakes were recorded, in a four-month period, on portable seismographic stations installed in the Lonquimay area, immediately after the initiation of the volcanic eruption of December 25, 1988. Hypocentral parameters were calculated on a subset of 150 events showing clear P and S arrivals. Seismic activity was restricted to a north-south elongated region that included the main crater of the Lonquimay volcano. The new Navidad crater lies along the eastern margin of the area of seismicity. Most of the hypocenters are located at depths shallower than 6 km and none have depths exceeding 10 km. The largest earthquakes of the sequence took place on Dec. 28 ( M=4.7), Jan. 12-13 ( M= 4.8 and 5.0), and Feb. 24 ( M=5.3). The number of events per day varied; it peaked on Dec. 27 with more than 260 events, and more than 200 events were recorded on Jan. 13, both of which corresponded to the days of large earthquakes. The relation of large to small events given by the b value of the magnitude-frequency distribution Log N=a - bM is typical of volcanic sequences ( b=1.7) and much larger than the equivalent for tectonic environments. The rate of decay of the number of aftershocks of each large earthquake is proportional to t -P with p increasing from 0.63 to 1.08 as the eruption progressed in time. Initial low values of p indicate a slow stress release in the region. Larger absolute values of p are comparable with tectonic environments and might be indicators of the last stages of the eruption process. The total seismic energy release is 9.6 × 10 19 ergs , about five orders of magnitude less than the estimated thermal energy. The spatial distribution of earthquakes suggests that the sources of stress change associated with the eruption are located under, and possibly to the south of, the main crater of the Lonquimay volcano, and that the evacuation channels of magma occupied a zone of weakness in the region of the new crater.

  20. The effect of volcanic eruptions on the hydrological cycle

    NASA Astrophysics Data System (ADS)

    Iles, Carley; Hegerl, Gabriele

    2015-04-01

    Large explosive volcanic eruptions inject sulphur dioxide into the stratosphere where it is oxidised to sulphate aerosols which reflect sunlight. This causes a reduction in global temperature and precipitation lasting a few years. We investigate the robust features of this precipitation response, comparing climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) archive to three observational datasets, including one with ocean coverage. Global precipitation decreases significantly following eruptions in CMIP5 models, with the largest decrease in wet tropical regions. This also occurs in observational land data, and ocean data in the boreal cold season. In contrast, the dry tropical ocean regions show an increase in precipitation in CMIP5 models. Monsoon regions dry following eruptions in both models and observations, whilst in response to individual eruptions, the ITCZ shifts away from the hemisphere with the greater concentration of aerosols in CMIP5. The ocean response in CMIP5 is longer lasting than that over land, but observational results are too noisy to confirm this. We detect the influence of volcanism on precipitation in the boreal cold season, although the models underestimate the size of the response, whilst in the warm season the volcanic influence is marginally detectable. We then examine whether the influence of volcanoes can be seen in streamflow records for 50 major world rivers. Significant reductions in flow are found for the Amazon, Congo, Nile, Orange, Ob, Yenisey and Kolyma amongst others. When neighbouring rivers are combined into regions, informed by climate model predictions of the precipitation response to eruptions, decreases in streamflow can be detected in northern South American, central African and high-latitude Asian rivers and increases in southern South American and SW North American rivers. An improved understanding of how the hydrological cycle responds to volcanic eruptions is valuable in

  1. How many ensemble members are needed to identify a significant impact of volcanic eruptions?

    NASA Astrophysics Data System (ADS)

    Bittner, Matthias; Schmidt, Hauke; Timmreck, Claudia; Sienz, Frank

    2016-04-01

    Large tropical volcanic eruptions are assumed to cause a strengthening of the northern hemispheric stratospheric polar vortex. The downward propagation of this volcanic signal would then cause the observed winter warming pattern in Northern Eurasia. Several studies have indicate that state-of-the art climate models as represented in the recent CMIP5 activity in general fail at reproducing already the strengthening of the vortex in the first post eruption winters. Here we analyze the dynamical response of the atmosphere to large tropical volcanic eruptions as simulated in a large (100 member) ensemble of CMIP5 historical simulations (1850-2005) with the Max Planck Institute-Earth System Model (MPI-ESM). In this large ensemble, a post-volcanic vortex strengthening can easily be identified. We analyze stratospheric temperature and wind responses in the first NH winter with respect to the question how big an ensemble needs to be in order to obtain statistically significant signals. It becomes clear that the northern hemisphere winter stratosphere due to its natural and forced variability is the atmospheric time and region where the largest ensemble size is needed. Furthermore we show that using more but weaker volcanic eruptions may make the identification of signals more difficult than using few very large eruptions and confirm this by reanalyzing the multi-model CMIP5 data set

  2. Living through a volcanic eruption: Understanding the experience of survivors as a phenomenological existential phenomenon.

    PubMed

    Warsini, Sri; Mills, Jane; West, Caryn; Usher, Kim

    2016-06-01

    Mount Merapi in Indonesia is the most active volcano in the world with its 4-6-year eruption cycle. The mountain and surrounding areas are populated by hundreds of thousands of people who live near the volcano despite the danger posed to their wellbeing. The aim of this study was to explore the lived experience of people who survived the most recent eruption of Mount Merapi, which took place in 2010. Investigators conducted interviews with 20 participants to generate textual data that were coded and themed. Three themes linked to the phenomenological existential experience (temporality and relationality) of living through a volcanic eruption emerged from the data. These themes were: connectivity, disconnection and reconnection. Results indicate that the close relationship individuals have with Mount Merapi and others in their neighbourhood outweighs the risk of living in the shadow of an active volcano. This is the first study to analyze the phenomenological existential elements of living through a volcanic eruption. PMID:26892390

  3. Explosive Volcanic Eruptions from Linear Vents on Earth, Venus and Mars: Comparisons with Circular Vent Eruptions

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Baloga, Stephen M.; Wimert, Jesse

    2010-01-01

    Conditions required to support buoyant convective plumes are investigated for explosive volcanic eruptions from circular and linear vents on Earth, Venus, and Mars. Vent geometry (linear versus circular) plays a significant role in the ability of an explosive eruption to sustain a buoyant plume. On Earth, linear and circular vent eruptions are both capable of driving buoyant plumes to equivalent maximum rise heights, however, linear vent plumes are more sensitive to vent size. For analogous mass eruption rates, linear vent plumes surpass circular vent plumes in entrainment efficiency approximately when L(sub o) > 3r(sub o) owing to the larger entrainment area relative to the control volume. Relative to circular vents, linear vents on Venus favor column collapse and the formation of pyroclastic flows because the range of conditions required to establish and sustain buoyancy is narrow. When buoyancy can be sustained, however, maximum plume heights exceed those from circular vents. For current atmospheric conditions on Mars, linear vent eruptions are capable of injecting volcanic material slightly higher than analogous circular vent eruptions. However, both geometries are more likely to produce pyroclastic fountains, as opposed to convective plumes, owing to the low density atmosphere. Due to the atmospheric density profile and water content on Earth, explosive eruptions enjoy favorable conditions for producing sustained buoyant columns, while pyroclastic flows would be relatively more prevalent on Venus and Mars. These results have implications for the injection and dispersal of particulates into the planetary atmosphere and the ability to interpret the geologic record of planetary volcanism.

  4. Can Volcanic Eruptions Produce Ice Ages or Mass Extinctions?

    NASA Astrophysics Data System (ADS)

    Robock, A.; Ammann, C.; Oman, L.; Shindell, D.; Stenchikov, G.

    2006-12-01

    Volcanic eruptions are well known to be important causes of interannual and even interdecadal climate change. But can very large eruptions initiate ice ages, as has been suggested for the Toba eruption ~74,000 years ago? Could flood basalt eruptions, such as the Deccan Traps 65,000,000 years ago or the Siberian Traps 250,000,000 years ago, have produced climate change large enough and long-lasting enough, along with other atmospheric pollution, to have caused mass extinctions? Here we conduct climate model simulations of the effects of a volcanic eruption 100 times larger than the 1991 Pinatubo eruption as a test of the climatic effects of Toba. We use two different state-of-the-art climate models, CCSM 3.0 from the National Center for Atmospheric Research and ModelE from the NASA Goddard Institute for Space Studies, to investigate the dependence of the results on the climate model used. We find that although the "Toba" eruption produces very large global cooling for a couple years, of up to 10°C, the volcanic aerosols leave the atmosphere quickly and the climate largely recovers in a decade. We investigated the mechanism of vegetation response to the cold and dark, but this mechanism was not strong enough to prolong the response enough to allow ice sheets to grow. On the other hand, continuous emissions from massive flood basalt eruptions lasting several decades could make it so cold and dark at the Earth's surface that many species would find it hard to survive. On longer time scales, however, continued large greenhouse gas emissions would have a significant warming effect. With good estimates of the amount and timing of gas and particle emissions into the atmosphere, we have the climate modeling tools to calculate their impact on climate.

  5. Ocular effects following the volcanic eruptions of Mount St Helens.

    PubMed

    Fraunfelder, F T; Kalina, R E; Buist, A S; Bernstein, R S; Johnson, D S

    1983-03-01

    Three hundred thirty-two ophthalmologists examined 1,523 patients with immediate ocular complaints following the 1980 eruptions of Mount St Helens. Loggers working up to 18 months in environments with high concentrations of volcanic ash were compared with a control group of loggers without volcanic ash contact. Although the ash particles acted as ocular foreign bodies, the small particles were apparently well tolerated for the most part, except for acute irritation. Patients with contact lenses or sicca syndrome had the most frequent ocular complaints. To date, no long-term ocular effects have been noted secondary to volcanic ash exposure. PMID:6830486

  6. Impact of major volcanic eruptions on stratospheric water vapour

    NASA Astrophysics Data System (ADS)

    Löffler, M.; Brinkop, S.; Jöckel, P.

    2015-12-01

    Volcanic eruptions can have significant impact on the earth's weather and climate system. Besides the subsequent tropospheric changes also the stratosphere is influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry-climate model simulations. This study is based on two simulations with specified dynamics of the EMAC model, performed within the Earth System Chemistry integrated Modelling (ESCiMo) project, of which only one includes the volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour after the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as important sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on the tropospheric water vapour and ENSO are evident.

  7. The lateral extent of volcanic interactions during unrest and eruption

    NASA Astrophysics Data System (ADS)

    Biggs, Juliet; Robertson, Elspeth; Cashman, Katharine

    2016-04-01

    Volcanic eruptions often occur simultaneously or tap multiple magma reservoirs. Such lateral interactions between magmatic systems are attributed to stress changes or hydraulic connections but the precise conditions under which coupled eruptions occur have yet to be quantified. Here we use interferometric synthetic aperture radar satellite data to analyse the surface deformation generated by volcanic unrest in the Kenyan Rift. We identify several magma sources located at depths of 2-5 km importantly, sources that are spaced less than about 10 km apart interact, whereas those spaced more than about 25 km apart do not. However, volcanoes up to 25 km apart have interacted in the geologic past. Thus, volcanic coupling is not simply controlled by the distance between the magma reservoirs. We then consider different tectonic settings globally, including intraplate volcanoes such as Hawaii and Yellowstone, arc volcanism in Alaska and Chile, and other rift settings, such as New Zealand, Iceland and Afar. We find that the most closely spaced magmatic interactions are controlled by the extent of a shallow crystal mush layer, stress changes can couple large eruptions over distances of about 20-40 km, and only large dyke intrusions or subduction earthquakes could generate coupled eruptions over distances of about 50-100 km.

  8. Did the Nabro volcanic eruption directly overshoot the tropopause?

    NASA Astrophysics Data System (ADS)

    Biondi, Riccardo; Steiner, Andrea K.; Kirchengast, Gottfried; Brenot, Hugues; Rieckh, Therese

    2015-04-01

    During the night of 12 to 13 June 2011 an explosive eruption occurred at the Nabro volcano located in Eritrea (13.4°N, 41.7°E). This has been recognized as the largest volcanic eruption since Pinatubo 1991, ejecting ash and sulfur dioxide (SO2) into the atmosphere, spreading over more than 60 degrees in latitude and more than 100 degrees in longitude within a few days and lasting for more than 15 days. While there is agreement on the fact that the eruptive mass reached the stratosphere, the processes bringing the cloud to the lower stratosphere are still much debated. For solving this issue we used about 300 atmospheric profiles from Global Positioning System (GPS) Radio Occultation (RO) observations and analyzed the pre-eruption conditions and the impact of the eruption itself on the tropospheric and stratospheric thermal structure. The GPS RO technique enables measurements of the atmospheric parameters in nearly any meteorological condition, with global coverage, high vertical resolution and high accuracy, making RO data well suited to study the thermodynamic structure of volcanic clouds and their impact on climate. In the Nabro area there are no ground based measurements that can be used for such kind of studies and, in the period of the eruption, there are no acquisitions by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. By analyzing the RO bending angle anomaly in the volcanic cloud area, we evaluated the cloud top altitude and compared it to the tropopause altitude (also derived from RO) in the same area. Moreover, we analyzed the RO temperature profiles before and after the eruption. Our results show that the volcanic cloud directly overshoot the tropopause and that the injected SO2 warmed the lower stratosphere in an area of about 10x10 degrees in latitude and longitude for 6 months, which is consistent with the effect found on a larger scale for the Pinatubo eruption in 1991. This study shows the capabilities

  9. Steady state volcanism: Evidence from eruption histories of polygenetic volcanoes

    SciTech Connect

    Wadge, G.

    1982-05-10

    Some volcanoes erupt magma at average rates which are constant over periods of many years, even through this magma may appear in a complex series of eruptions. This constancy of output is tested by construction of a curve of cumulative volume of erupted magma, which is linear for steady state volcanism, and whose gradient defines the steady state rate Q/sub s/s. The assumption is made that Q/sub s/s is the rate at which magma is supplied to these polygenetic volcanoes. Five general types of eruptive behavior can be distinguished from the cumulative volume studied. These types are interpreted in terms of a simple model of batches of magma rising buoyantly through the crust and interacting with a small-capacity subvolcanic magma reservoir. Recognition of previous steady state behavior at a volcano may enable the cumulative volume curve to be used empirically as a constraint on the timing and volume of the next eruption. The steady state model thus has a limited predictive capability. With the exception of Kilauea (O/sub s/s = 4m/sup 3/ s/sup -1/) all the identified steady state volcanoes have values of Q/sub s/s of a few tenths of one cubic meter per second. These rates are consistent with the minimum flux rates required by theoretical cooling models of batches of magma traversing the crust. The similarity of these Q/sub s/s values of volcanoes (producing basalt, andesite, and dacite magmas) in very different tectonic settings suggests that the common factors of crustal buoyancy forces and the geotherm-controlled cooling rates control the dynamics of magma supply through the crust. Long-term dormancy at active volcanoes may be a manifestation of the steady accumulation of magma in large crustal reservoirs, a process that complements the intermittent periods of steady state output at the surface. This possibility has several implications, the most important of which is that it provides a constraint on the supply rate of new magma to the bases of plutons.

  10. Biodiversity during the Deccan volcanic eruptive episode

    NASA Astrophysics Data System (ADS)

    Khosla, A.; Sahni, A.

    2003-06-01

    This paper gives a detailed overview of biotic assemblages recovered from the Deccan trap intercalated sedimentary sequences (infra- and intertrappean beds) of peninsular India as a result of extensive research done during the last 20 years. The infra- and intertrappean beds contain remnants of Gondwanan forms such as myobatrachinae frogs, pelomedusid turtles, dinosaurs (i.e. titanosaurids and abelisaurids), and mammals. Apart from these Gondwanan elements, the infra- and intertrappean beds also contain forms of Laurasian affinity though recently doubt has been cast on such relationships. Based on previous fossil records, Laurasiatic forms were considered to be represented by a great variety of micro- and megavertebrate assemblages such as discoglossid and pelobatid frogs, anguid lizards, alligatorid crocodiles, palaeoryctid mammals, charophytes and ostracodes. The biotic assemblages show a remarkable similarity between the infra- and intertrappean beds indicating a short time period for the deposition of these Deccan volcano-sedimentary beds. The recovered biotic assemblages strongly indicate a Maastrichtian age for the initiation of Deccan volcanic activity and the sedimentary beds associated with it. The Cretaceous/Tertiary boundary as such remains to be defined in any known sections in sedimentary sequences in so far investigated localities of peninsular India. What have been identified are Maastrichtian age beds in the east-central and western Narmada river region on the basis of pollens, vertebrate assemblage and planktonic foraminiferas in infratrappean offshore sequences. A Palaeocene intertrappean bed at Lalitpur (Uttar Pradesh) that is among those lacking dinosaurian remains but having palynological assemblages similar to those from well established Palaeocene sequences, suggests the presence of Palaeocene intertrappeans, but the K/T boundary is yet to be properly defined.

  11. Characterization of fine volcanic ash from explosive eruption from Sakurajima volcano, South Japan

    NASA Astrophysics Data System (ADS)

    Nanayama, F.; Furukawa, R.; Ishizuka, Y.; Yamamoto, T.; Geshi, N.; Oishi, M.

    2013-12-01

    Explosive volcanic eruptions can affect infrastructure and ecosystem by their dispersion of the volcanic particle. Characterization of volcanic particle expelled by explosive eruption is crucial for evaluating for quantitative hazard assessment by future volcanic eruption. Especially for fine volcanic ash less than 64 micron in diameter, it can disperse vast area from the source volcano and be easily remobilized by surface wind and precipitation after the deposition. As fine volcanic ash is not preserved well at the earth surface and in strata except for enormously large scale volcanic eruption. In order to quantify quantitative characteristics of fine volcanic ash particle, we sampled volcanic ash directly falling from the eruption cloud from Showa crater, the most active vent of Sakurajima volcano, just before landing on ground. We newly adopted high precision digital microscope and particle grain size analyzer to develop hazard evaluation method of fine volcanic ash particle. Field survey was performed 5 sequential days in January, 2013 to take tamper-proof volcanic ash samples directly obtained from the eruption cloud of the Sakurajima volcano using disposable paper dishes and plastic pails. Samples were taken twice a day with time-stamp in 40 localities from 2.5 km to 43 km distant from the volcano. Japan Meteorological Agency reported 16 explosive eruptions of vulcanian style occurred during our survey and we took 140 samples of volcanic ash. Grain size distribution of volcanic ash was measured by particle grain size analyzer (Mophologi G3S) detecting each grain with parameters of particle diameter (0.3 micron - 1 mm), perimeter, length, area, circularity, convexity, solidity, and intensity. Component of volcanic ash was analyzed by CCD optical microscope (VHX-2000) which can take high resolution optical image with magnifying power of 100-2500. We discriminated each volcanic ash particle by color, texture of surface, and internal structure. Grain size

  12. Using Blogs to Promote Alternative Perspective to Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Hamane, A.

    2011-12-01

    Distance learning is becoming more common in many higher education institutions making asynchronous online tools an essential component to promote positive student outcomes. California State University Los Angeles's online Natural Disasters course implements blogs as a collaborative constructive tool to allow students to build knowledge with their peers rather than to receive a body of facts in isolation. Blogs allow participants to post a chronological series of entries that give insight to thoughts and feelings about a specific event to a broader audience. In this course, students adopt an alternate identity and create a first-person commentary or diary entry as if they witnessed a historical volcanic event. Peers are instructed to post comments to blogs by offering sympathy, advice, solutions, or encouragement. Roleplaying between participants provides the opportunity for students to be engaged through multiple perspectives - a powerful means to understand societal impacts and to gain valuable insights. The blogging activity is devised so that novice students can complete the task on their own, yet read blog posts and comments from more capable peers. Anecdotal evidence suggests students have a greater appreciation and a deeper understanding of the impacts that volcanic eruptions have on society and the environment.

  13. Influences on the variability of eruption sequences and style transitions in the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Kereszturi, Gábor; Németh, Károly; Cronin, Shane J.; Procter, Jonathan; Agustín-Flores, Javier

    2014-10-01

    Monogenetic basaltic volcanism is characterised by a complex array of eruptive behaviours, reflecting spatial and temporal variability of the magmatic properties (e.g. composition, eruptive volume, magma flux) as well as environmental factors at the vent site (e.g. availability of water, country rock geology, faulting). These combine to produce changes in eruption style over brief periods (minutes to days) in many eruption episodes. Monogenetic eruptions in some volcanic fields often start with a phreatomagmatic vent-opening phase that later transforms into "dry" magmatic explosive or effusive activity, with a strong variation in the duration and importance of this first phase. Such an eruption sequence pattern occurred in 83% of the known eruption in the 0.25 My-old Auckland Volcanic Field (AVF), New Zealand. In this investigation, the eruptive volumes were compared with the sequences of eruption styles preserved in the pyroclastic record at each volcano of the AVF, as well as environmental influencing factors, such as distribution and thickness of water-saturated semi- to unconsolidated sediments, topographic position, distances from known fault lines. The AVF showed that there is no correlation between ejecta ring volumes and environmental influencing factors that is valid for the entire AVF. In contrary, using a set of comparisons of single volcanoes with well-known and documented sequences, resultant eruption sequences could be explained by predominant patterns of the environment in which these volcanoes were erupted. Based on the spatial variability of these environmental factors, a first-order susceptibility hazard map was constructed for the AVF that forecasts areas of largest likelihood for phreatomagmatic eruptions by overlaying topographical and shallow geological information. Combining detailed phase-by-phase breakdowns of eruptive volumes and the event sequences of the AVF, along with the new susceptibility map, more realistic eruption scenarios can be

  14. Lunar Pyroclastic Eruptions: Basin Volcanism's Dying Gasps

    NASA Astrophysics Data System (ADS)

    Kramer, G. Y.; Nahm, A.; McGovern, P. J.; Kring, D. A.

    2011-12-01

    The relationship between mare volcanism and impact basins has long been recognized, although the degree of influence basin formation has on volcanism remains a point of contention. For example, did melting of magma sources result from thermal energy imparted by a basin-forming event? Did basin impacts initiate mantle overturn of the unstable LMO cumulate pile, causing dense ilmenite to sink and drag radioactive KREEPy material to provide the thermal energy to initiate melting of the mare sources? Did the dramatically altered stress states provide pathways ideally suited for magma ascent? The chemistry of sampled lunar volcanic glasses indicates that they experienced very little fractional crystallization during their ascent to the surface - they have pristine melt compositions. Volatile abundances, including recent measurements of OH [1,2] suggest that the mantle source of at least the OH-analyzed glasses have a water abundance of ~700 ppm - comparable to that of Earth's upper mantle. More recently, [3] showed that the abundance of OH and other volatiles measured in these glasses is positively correlated with trace element abundances, which is expected since water is incompatible in a magma. Volatile enrichment in a deep mantle source would lower the melting temperature and provide the thrust for magma ascent through 500 km of mantle and crust [4]. We are exploring the idea that such basin-related lunar pyroclastic volcanism may represent the last phase of basaltic volcanism in a given region. Remote sensing studies have shown volcanic glasses are fairly common, and often found along the perimeter of mare-filled basins [5]. Recent modeling of the stresses related to the basin-forming process [6,7] show that basin margins provide the ideal conduit for low-volume lunar pyroclastic volcanism (compared with the high output of mare volcanism). Schrödinger's basin floor is largely composed of a compositionally uniform impact breccia. The exceptions are two distinct and

  15. Extreme Volcanic Eruptions: return periods, impact and implications (Invited)

    NASA Astrophysics Data System (ADS)

    Sparks, R. S.

    2010-12-01

    In the very short history of civilisation, a few thousand years, there have been comparably few very large volcanic events which global effects. Such events include very large lavas flow eruptions, such as Laki (Iceland) in 1783 and major caldera-forming explosive eruptions, such as Tambora in 1815 and Tianchi around 930 AD. Much larger magnitude eruptions have happened regularly when time scales of millions of years are considered. The modern globalised world is arguably uniquely vulnerable to very large volcanic events, making the study of their return periods, possible environmental effects and consequences a key goal of volcanology. A database of Quaternary large magnitude explosive eruptions (M ≥ 4) is under development as part of the VOGRIPA project on global volcanic hazards and risk. The database, currently consisting of 1929 entries from 481 Quaternary volcanoes, can be applied to constraining the magnitude-frequency relationship of global and regional explosive volcanism. Application of extreme value statistics to a Holocene subset of data, corrected for under-recording, enables construction of a magnitude-frequency relationship for global volcanism. Return periods based on maximum likelihood statistical analysis are 7.9 years for M ≥ 4, 35 years for M ≥ 5, and 370 years for M ≥ 7.0 with uncertainty increasing with magnitude. The return periods depend on the threshold chosen between the main part of the distribution and the extreme value tail and the results cited here are for a threshold of M = 4. For the largest magnitude eruptions (M > 7.5) the Holocene period is too short to obtain a meaningful result. The effects if an eruption like Tambora 1815 (M ~ 6.9) in the modern world is likely to be dramatic as the populations in SE Asia are now well over 20 time greater and the socio-economic vulnerability has also increased. Effects will include atmospheric pollution lasting a few years, major global climate perturbations and regional disruption

  16. Forecasting volcanic ash dispersal and coeval resuspension during the April-May 2015 Calbuco eruption

    NASA Astrophysics Data System (ADS)

    Reckziegel, F.; Bustos, E.; Mingari, L.; Báez, W.; Villarosa, G.; Folch, A.; Collini, E.; Viramonte, J.; Romero, J.; Osores, S.

    2016-07-01

    Atmospheric dispersion of volcanic ash from explosive eruptions or from subsequent fallout deposit resuspension causes a range of impacts and disruptions on human activities and ecosystems. The April-May 2015 Calbuco eruption in Chile involved eruption and resuspension activities. We overview the chronology, effects, and products resulting from these events, in order to validate an operational forecast strategy for tephra dispersal. The modelling strategy builds on coupling the meteorological Weather Research and Forecasting (WRF/ARW) model with the FALL3D dispersal model for eruptive and resuspension processes. The eruption modelling considers two distinct particle granulometries, a preliminary first guess distribution used operationally when no field data was available yet, and a refined distribution based on field measurements. Volcanological inputs were inferred from eruption reports and results from an Argentina-Chilean ash sample data network, which performed in-situ sampling during the eruption. In order to validate the modelling strategy, results were compared with satellite retrievals and ground deposit measurements. Results indicate that the WRF-FALL3D modelling system can provide reasonable forecasts in both eruption and resuspension modes, particularly when the adjusted granulometry is considered. The study also highlights the importance of having dedicated datasets of active volcanoes furnishing first-guess model inputs during the early stages of an eruption.

  17. Volcanic geology and eruption frequency, São Miguel, Azores

    USGS Publications Warehouse

    Moore, Richard B.

    1990-01-01

    Six volcanic zones comprise São Miguel, the largest island in the Azores. All are Quaternary in age except the last, which is partly Pliocene. From west to east the zones are (1) the trachyte stratovolcano of Sete Cidades, (2) a field of alkali-basalt cinder cones and lava flows with minor trachyte, (3) the trachyte stratovolcano of Agua de Pau, (4) a field of alkali-basalt cinder cones and lava flows with minor trachyte and tristanite, (5) the trachyte stratovolcano of Furnas, and (6) the Nordeste shield, which includes the Povoação caldera and consists of alkali basalt, tristanite, and trachyte. New radiocarbon and K-Ar ages augment stratigraphic data obtained during recent geologic mapping of the entire island and provide improved data to interpret eruption frequency. Average dormant intervals for the past approximately 3000 years in the areas active during that time are about 400 years for Sete Cidades, 145 for zone 2, 1150 for Agua de Pau, and 370 for Furnas. However, the average dormant interval at Sete Cidades increased from 400 to about 680 years before each of the past two eruptions, and the interval at Furnas decreased from 370 to about 195 years before each of the past four eruptions. Eruptions in zone 4 occurred about once every 1000 years during latest Pleistocene and early Holocene time; none has occurred for about 3000 years. The Povoação caldera truncates part of the Nordeste shield and probably formed during the middle to late Pleistocene. Calderas formed during latest Pleistocene time at the three younger stratovolcanoes in the sequence: outer Agua de Pau (between 46 and 26.5 ka), Sete Cidades (about 22 ka), inner Agua de Pau (15.2 ka), and Furnas (about 12 ka). Normal faults are common, but many are buried by Holocene trachyte pumice. Most faults trend northwest or west-northwest and are related to the Terceira rift, whose most active segment on São Miguel passes through Sete Cidades and zone 2. A major normal fault displaces Nordeste

  18. Consistent decrease in North Atlantic Tropical Cyclone frequency following major volcanic eruptions in the last three centuries

    NASA Astrophysics Data System (ADS)

    Guevara-Murua, A.; Hendy, E. J.; Rust, A. C.; Cashman, K. V.

    2015-11-01

    Injection of sulphate aerosols into the stratosphere following major volcanic eruptions alters global climate through the absorption and scattering of solar radiation. One proposed consequence is a decrease in North Atlantic Tropical Cyclone (TC) activity, as was observed following the El Chichón (1982) and Mount Pinatubo (1991) eruptions. We test this relationship using documentary and proxy reconstructions of major volcanic eruptions and TC frequency in the North Atlantic basin over the last three centuries. We find a consistent reduction in the number of TCs formed during the 3 years following major eruptions compared to the preceding 3 years, including after eruptions located at northern high latitudes. Our findings suggest that low-latitude eruptions reduce Atlantic TC frequency by decreasing local sea surface temperatures, whereas the mechanisms for the decrease in TC frequency following high-latitude eruptions are less clear and attribution is hampered by poor identification of these events.

  19. Beyond baking soda: Demonstrating the link between volcanic eruptions and viscosity to all ages

    NASA Astrophysics Data System (ADS)

    Smithka, I. N.; Walters, R. L.; Harpp, K. S.

    2014-12-01

    Public interest in volcanic eruptions and societal relevance of volcanic hazards provide an excellent basis for successful earth science outreach. During a museum-based earth science outreach event free and open to the public, we used two new interactive experiments to illustrate the relationship between gas content, magma viscosity, and eruption style. Learning objectives for visitors are to understand: how gas drives volcanic eruptions, the differences between effusive and explosive eruption styles, viscosity's control on gas pressure within a magma reservoir, and the role of gas pressure on eruption style. Visitors apply the scientific method by asking research questions and testing hypotheses by conducting the experiments. The demonstrations are framed with real life examples of volcanic eruptions (e.g., Mt. St. Helens eruption in 1980), providing context for the scientific concepts. The first activity demonstrates the concept of fluid viscosity and how gas interacts with fluids of different viscosities. Visitors blow bubbles into water and corn syrup. The corn syrup is so viscous that bubbles are trapped, showing how a more viscous material builds up higher gas pressure. Visitors are asked which kind of magma (high or low viscosity) will produce an explosive eruption. To demonstrate an explosive eruption, visitors add an Alka-Seltzer tablet to water in a snap-top film canister. The reaction rapidly produces carbon dioxide gas, increasing pressure in the canister until the lid pops off and the canister launches a few meters into the air (tinyurl.com/nzsgfoe). Increasing gas pressure in the canister is analogous to gas pressure building within a magma reservoir beneath a volcano. The lid represents high-viscosity magma that prevents degassing, causing gas pressure to reach explosive levels. This interactive activity is combined with a display of an effusive eruption: add vinegar to baking soda in a model volcano to produce a quick-flowing eruption. These

  20. Volcanic activity: a review for health professionals

    SciTech Connect

    Newhall, C.G.; Fruchter, J.S.

    1986-03-01

    Volcanoes erupt magma (molten rock containing variable amounts of solid crystals, dissolved volatiles, and gas bubbles) along with pulverized pre-existing rock (ripped from the walls of the vent and conduit). The resulting volcanic rocks vary in their physical and chemical characteristics, e.g., degree of fragmentation, sizes and shapes of fragments, minerals present, ratio of crystals to glass, and major and trace element composition. Variability in the properties of magma, and in the relative roles of magmatic volatiles and groundwater in driving an eruption, determine to a great extent the type of an eruption; variability in the type of an eruption in turn influences the physical characteristics and distribution of the eruption products. The principal volcanic hazards are: ash and larger fragments that rain down from an explosion cloud (airfall tephra and ballistic fragments); flows of hot ash, blocks, and gases down the slopes of a volcano (pyroclastic flows); mudflows (debris flows); lava flows; and concentrations of volcanic gases in topographic depressions. Progress in volcanology is bringing improved long- and short-range forecasts of volcanic activity, and thus more options for mitigation of hazards. Collaboration between health professionals and volcanologists helps to mitigate health hazards of volcanic activity.

  1. Volcanic activity: a review for health professionals.

    PubMed Central

    Newhall, C G; Fruchter, J S

    1986-01-01

    Volcanoes erupt magma (molten rock containing variable amounts of solid crystals, dissolved volatiles, and gas bubbles) along with pulverized pre-existing rock (ripped from the walls of the vent and conduit). The resulting volcanic rocks vary in their physical and chemical characteristics, e.g., degree of fragmentation, sizes and shapes of fragments, minerals present, ratio of crystals to glass, and major and trace elements composition. Variability in the properties of magma, and in the relative roles of magmatic volatiles and groundwater in driving an eruption, determine to a great extent the type of an eruption; variability in the type of an eruption in turn influences the physical characteristics and distribution of the eruption products. The principal volcanic hazards are: ash and larger fragments that rain down from an explosion cloud (airfall tephra and ballistic fragments); flows of hot ash, blocks, and gases down the slopes of a volcano (pyroclastic flows); "mudflows" (debris flows); lava flows; and concentrations of volcanic gases in topographic depressions. Progress in volcanology is bringing improved long- and short-range forecasts of volcanic activity, and thus more options for mitigation of hazards. Collaboration between health professionals and volcanologists helps to mitigate health hazards of volcanic activity. Images FIGURE 1 FIGURE 2 FIGURE 6a-6e FIGURE 6a-6e FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 PMID:3946726

  2. Late Quaternary history of the Vakinankaratra volcanic field (central Madagascar): insights from luminescence dating of phreatomagmatic eruption deposits

    NASA Astrophysics Data System (ADS)

    Rufer, Daniel; Preusser, Frank; Schreurs, Guido; Gnos, Edwin; Berger, Alfons

    2014-05-01

    The Quaternary Vakinankaratra volcanic field in the central Madagascar highlands consists of scoria cones, lava flows, tuff rings, and maars. These volcanic landforms are the result of processes triggered by intracontinental rifting and overlie Precambrian basement or Neogene volcanic rocks. Infrared-stimulated luminescence (IRSL) dating was applied to 13 samples taken from phreatomagmatic eruption deposits in the Antsirabe-Betafo region with the aim of constraining the chronology of the volcanic activity. Establishing such a chronology is important for evaluating volcanic hazards in this densely populated area. Stratigraphic correlations of eruption deposits and IRSL ages suggest at least five phreatomagmatic eruption events in Late Pleistocene times. In the Lake Andraikiba region, two such eruption layers can be clearly distinguished. The older one yields ages between 109 ± 15 and 90 ± 11 ka and is possibly related to an eruption at the Amboniloha volcanic complex to the north. The younger one gives ages between 58 ± 4 and 47 ± 7 ka and is clearly related to the phreatomagmatic eruption that formed Lake Andraikiba. IRSL ages of a similar eruption deposit directly overlying basement laterite in the vicinity of the Fizinana and Ampasamihaiky volcanic complexes yield coherent ages of 68 ± 7 and 65 ± 8 ka. These ages provide the upper age limit for the subsequently developed Iavoko, Antsifotra, and Fizinana scoria cones and their associated lava flows. Two phreatomagmatic deposits, identified near Lake Tritrivakely, yield the youngest IRSL ages in the region, with respective ages of 32 ± 3 and 19 ± 2 ka. The reported K-feldspar IRSL ages are the first recorded numerical ages of phreatomagmatic eruption deposits in Madagascar, and our results confirm the huge potential of this dating approach for reconstructing the volcanic activity of Late Pleistocene to Holocene volcanic provinces.

  3. Compound Antidunes: a Key to Detect Catastrophic Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Nemoto, Y.

    2008-12-01

    Antidunes are common in pyroclastic flow and surge deposits. However, the compound or nested occurrence of antidunes, where smaller antidunes reside within a larger-scale antidune, has seldom been documented or discussed in both pyroclastic and siliciclastic depositional settings. Without realizing this complexity, the frequency and magnitude of volcanic eruptions estimated from pyroclastic deposits are severely unrealistic. We have documented the Holocene outcrops of the antidune-bearing pyroclastites in Niijima Island, 100 miles SSW of Tokyo, Japan. The pyroclastites were formed by the eruptions in 886 AD Along the Habushiura coast in the southeastern part of the island, these outcrops form up to 50 m high cliffs, and are laterally traceable over 5 km from the volcano crater that shed the pyroclastites in the northward (downcurrent) direction. These pyroclastites were previously interpreted as recording about 30 small eruptions, each forming a 0.5-2 meter thick subhorizontal couplet of pumice (inversely grading) and lithic (normal grading) debris, with cm-m thick antidunes. However, we postulate that each of these couplets does not record a single volcanic eruption, but a much shorter time. These couplets occur between concave-up vertical accretion surfaces, which have both upstream- and downstream-migration components, within a 5-15 meter thick compound antidune (our "rank-1" antidune). Three erosively stacked compound antidunes form the coastal cliffs in the Habushiura coast, and each compound antidune is about ten times thicker than antidunes reported by earlier workers (corresponding to our "rank-2 antidunes" that nest within a rank-1 antidune, and "rank-3 antidunes" that nest within a rank-2 antidune). Hence, the Habushiura cliffs represent only three eruption events (instead of 30 events), but each representing much larger magnitude of eruptions. The geometry of these antidunes is comparable to "sediment waves" or "cyclic steps" of siliciclastic deposits

  4. Dome collapse eruption in Tatun Volcanic Group near metropolitan Taipei, Taiwan at ~6 kyrs

    NASA Astrophysics Data System (ADS)

    Chen, C.; Lee, T.

    2010-12-01

    The Tatun Volcanic Group (TVG) is located in the north of metropolitan Taipei, Taiwan. Over 6 million inhabitants are living in Taipei City and suburban area. Another critical issue is an international airport and two nuclear power plants are lying at the foot of the TVG. If the TGV will be re-active, the serious hazard for human lives and economies in this area will definitely occur. Understanding the youngest eruption history of the TVG will be much important for prediction the future activity of eruption. The core was collected from the Dream Lake at the eastern slop of Cising Mt.. Total 21 samples from depth 190 cm to 231.5 cm have been tested. Comparison of chemical compositions of glass and minerals in the volcanic clasts with those of lava around TVG, they clearly showed that the volcanic clasts can be correlated with the eruption of the closest Cising Mt. According to the radiocarbon (C-14) age of core sample at the depth 225 cm, the age was extrapolated around 6150 yrs ca. C-14 B.P.. Moreover, the respiratory cristobalite in the volcanic clasts were firstly identified by the identical morphology, chemical composition and Laser Raman Spectrometry (LRS). The crystalline silica was produced by vapor-phase crystallization and devitrification in the andesite lava dome and volcanic ash generated by pyroclastic flows formed by lava dome collapse in Soufriere Hills volcano, Montserrat (Baxter et al.,1999). These new evidence demonstrated that there would probably have the lava dome collapse eruptions in the TVG in the last 6 kyrs. The result in this paper also sustained that the landslide caused by the weak phreatic eruption within the last 6000 yrs in the TVG (Belousov et al., 2010). It must further be noted that an efficient program of the volcanic hazard reduction should be practiced for the metropolitan Taipei and suburban area.

  5. A study of volcanic eruption characteristics using infrasound data recorded on the global IMS network

    NASA Astrophysics Data System (ADS)

    Dabrowa, Amy; Green, David; Phillips, Jeremy; Rust, Alison

    2010-05-01

    Explosive volcanic eruptions have the capability to generate sound waves with infrasonic frequencies (<20Hz). As such waves can propagate over distances of thousands of kilometres within the atmosphere, they present an opportunity to remotely monitor volcanic eruptions and potentially constrain eruptive characteristics. Though most volcanoes in sensitive areas of the world are monitored individually, many volcanoes in remote locations are not monitored directly but can still pose a threat, especially to aviation. The growing International Monitoring System (IMS) network of infrasound stations provides an opportunity to monitor these remote volcanoes. Currently comprising of 43 arrays, the network is designed to achieve global coverage for surface explosions equivalent to a few hundred tonnes of chemical explosive. In recent years work has been published on the detection of specific volcanic eruptions at IMS stations, primarily at regional ranges (< 1000 km from volcano to receiver). In contrast, work presented here looks to create a catalogue of volcanic eruptions that have been detected at IMS stations, with the aim of assessing the capability of the IMS network for use in global volcano monitoring. At this time 40 eruptive events at 19 volcanoes have been investigated from the period 2004 - 2009; however the work is on-going and it is planned to extend this catalogue. In total we document 61 individual detections that have been made on the IMS network. These range from Strombolian activity at Mount Erebus (Antarctica) recorded at a range of 25 km distance, to the Plinian eruption of Manam Volcano (Papua New Guinea) recorded at ranges of over 10,000 km distance. The observed signal frequencies for different eruptions range from less than 0.01 Hz to greater than 5 Hz, and in general, lower frequencies are generated by the larger eruptions. We provide examples of analyses for eruptions recorded at multiple stations (e.g., Manam, October 2004; Kasatochi, August 2008

  6. Volcanic eruptions on Io: Heat flow, resurfacing, and lava composition

    NASA Technical Reports Server (NTRS)

    Blaney, Diana L.; Johnson, Torrence V.; Matson, Dennis L.; Veeder, Glenn J.

    1995-01-01

    We model an infrared outburst on Io as being due to a large, erupting lava flow which increased its area at a rate of 1.5 x 10(exp 5)/sq m and cooled from 1225 to 555 K over the 2.583-hr period of observation. The inferred effusion rate of 3 x 10(exp 5) cu m/sec for this eruption is very high, but is not unprece- dented on the Earth and is similar to the high eruption rates suggested for early lunar volcanism. Eruptions occur approxi- mately 6% of the time on Io. These eruptions provide ample resurfacing to explain Io's lack of impact craters. We suggest that the large total radiometric heat flow, 10(exp 14) W, and the size and temperature distribution of the thermal anomalies (McEwen et al. 1992; Veeder et al. 1994) can be accounted for by a series of silicate lava flows in various stages of cooling. We propose that the whole suite of Io's currently observed thermal anomalies was produced by multiple, high-eruptive-rate silicate flows within the past century.

  7. Steady state volcanism - Evidence from eruption histories of polygenetic volcanoes

    NASA Technical Reports Server (NTRS)

    Wadge, G.

    1982-01-01

    Cumulative volcano volume curves are presented as evidence for steady-state behavior at certain volcanoes and to develop a model of steady-state volcanism. A minimum criteria of five eruptions over a year was chosen to characterize a steady-state volcano. The subsequent model features a constant head of magmatic pressure from a reservoir supplied from depth, a sawtooth curve produced by the magma arrivals or discharge from the subvolcanic reservoir, large volume eruptions with long repose periods, and conditions of nonsupply of magma. The behavior of Mts. Etna, Nyamuragira, and Kilauea are described and show continuous levels of plasma output resulting in cumulative volume increases. Further discussion is made of steady-state andesitic and dacitic volcanism, long term patterns of the steady state, and magma storage, and the lack of a sufficient number of steady-state volcanoes in the world is taken as evidence that further data is required for a comprehensive model.

  8. Ash Redistribution Following a Potential Volcanic Eruption at Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Pelletier, J. D.; Delong, S. B.; Cline, M. L.; Harrington, C. D.; Keating, G.

    2005-12-01

    The redistribution of contaminated tephra by hillslope, fluvial, and pedologic processes is a poorly-constrained but important aspect of evaluating the radiological dose from an unlikely volcanic eruption at Yucca Mountain (YM). To better evaluate this hazard, we developed a spatially-distributed numerical model of tephra redistribution that integrates contaminated tephra from hill slopes and active channels, mixes it with clean sediment in the channel system, distributes it on the fan, and migrates it into the soil column. The model is coupled with an atmospheric dispersion model that predicts the deposition of radioactive waste-contaminated tephra at specified grid points. The redistribution model begins in the upper Fortymile Wash drainage basin where it integrates the tephra deposited on steep slopes and active channel beds within a spatially-distributed framework. The Fortymile Wash drainage basin is the focus of this model because tephra from only this basin reaches the Fortymile Wash alluvial fan by fluvial processes, and it is on this fan where the radiological dose to a hypothetical individual is compared to the regulatory standard (via additional biosphere models). The dilution effect of flood scour, mixing, and re-deposition within the upper basin is modeled using a dilution-mixing model widely used in the contaminant-transport literature. The accuracy of this model is established by comparing the model prediction with tephra concentrations measured in channels draining the Lathrop Wells volcanic center. The model combines the contaminated tephra transported from the upper basin with the tephra deposited directly on the fan as primary fallout. On the Fortymile Wash fan, channels and interchannel-divide areas are divided on the basis of soil-geomorphic mapping according to whether they are Holocene or Pleistocene in age. This approach allows the model to incorporate the effects of channel migration on the fan within the past 10,000 yr. The model treats

  9. Demonstrating the Importance of Bubbles and Viscosity on Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Namiki, A.

    2005-12-01

    The behavior of bubbles (exsolved volatile from magma) and viscosity of magma are important parameters that influence volcanic eruptions. Exsolved volatiles increase the volume of magma and reduce its density so that magma has sufficient volume and buoyancy force to erupt. Volatiles exsolve through nucleation and growth by diffusion and bubbles can expand as pressure is reduced. The time scale of diffusion depends on the viscosity of surrounding magma, and the expansion time scale of a bubble is also depends on the viscosity of magma. These control the time scale for volume change. If bubbles segregate from magma and collapse, the magma might not able to expand sufficiently to erupt violently. Whether a bubble can segregate from the liquid part of magma is also depends on viscosity of magma. In this poster, I introduce a straightforward demonstration to show the importance of bubbles and viscosity of magma on volcanic eruptions. To make bubbles, I use baking soda (NaHCO3) and citric acid. Reaction between them generates carbon dioxide (CO2) to make bubbles. I make citric acid solution gel by using agar at the bottom of a transparent glass and pour baking soda disolved corn syrup on top of the agar. This situation is a model of basally heated magma chamber. When water disolved magma (baking soda disolved corn syrup) receives sufficient heat (citric acid) bubbles are generated. I can change viscosity of corn syrup by varying the concentration of water. This demonstration shows how viscosity controls the time scale of volume change of bubbly magma and the distribution of bubbles in the fluid. In addition it helps to understand the important physical processes in volcanic eruption: bubble nucleation, diffusion grows, expansion, and bubble driving convection. I will perform a live demonstration at the site of the poster.

  10. Significant statistically relationship between the great volcanic eruptions and the count of sunspots from 1610 to the present

    NASA Astrophysics Data System (ADS)

    Casati, Michele

    2014-05-01

    The assertion that solar activity may play a significant role in the trigger of large volcanic eruptions is, and has been discussed by many geophysicists. Numerous scientific papers have established a possible correlation between these events and the electromagnetic coupling between the Earth and the Sun, but none of them has been able to highlight a possible statistically significant relationship between large volcanic eruptions and any of the series, such as geomagnetic activity, solar wind, sunspots number. In our research, we compare the 148 volcanic eruptions with index VEI4, the major 37 historical volcanic eruptions equal to or greater than index VEI5, recorded from 1610 to 2012 , with its sunspots number. Staring, as the threshold value, a monthly sunspot number of 46 (recorded during the great eruption of Krakatoa VEI6 historical index, August 1883), we note some possible relationships and conduct a statistical test. • Of the historical 31 large volcanic eruptions with index VEI5+, recorded between 1610 and 1955, 29 of these were recorded when the SSN<46. The remaining 2 eruptions were not recorded when the SSN<46, but rather during solar maxima of the solar cycle of the year 1739 and in the solar cycle No. 14 (Shikotsu eruption of 1739 and Ksudach 1907). • Of the historical 8 large volcanic eruptions with index VEI6+, recorded from 1610 to the present, 7 of these were recorded with SSN<46 and more specifically, within the three large solar minima known : Maunder (1645-1710), Dalton (1790-1830) and during the solar minimums occurred between 1880 and 1920. As the only exception, we note the eruption of Pinatubo of June 1991, recorded in the solar maximum of cycle 22. • Of the historical 6 major volcanic eruptions with index VEI5+, recorded after 1955, 5 of these were not recorded during periods of low solar activity, but rather during solar maxima, of the cycles 19,21 and 22. The significant tests, conducted with the chi-square χ ² = 7,782, detect a

  11. The Evolving Structure of Young Volcanic Eruption Clouds

    NASA Astrophysics Data System (ADS)

    Carn, S. A.; Bursik, M. I.

    2015-12-01

    Processes acting in nascent volcanic clouds within seconds to hours of eruption (e.g., ash aggregation, ice nucleation, gravity waves) set the stage for subsequent advection and diffusion of volcanic ash, hence strongly influence aviation hazards and atmospheric impacts, but are very difficult to observe. Young plumes initially spread by gravity in the crosswind direction due to density differences with the surrounding stratified atmosphere. Subsequently, plumes lose their density contrast with the atmosphere and are advected as lenses of aerosol and gas, slowly thinning, spreading and dispersing as shearing and small scale turbulence act at their margins, and as fine ash settles out. Since 2006, satellite observations from NASA's A-Train constellation, including the CALIOP lidar and CloudSat radar, have provided tantalizing glimpses of young volcanic clouds in the first few hours of atmospheric residence. These unique observations, although spatially limited, provide insight into the evolving structure of young volcanic clouds from an optically thick, vertically extensive initial state to thin layers confined to a limited altitude range. Layered volcanic clouds may develop due to the existence of alternating turbulent and stable layers in the free troposphere and stratosphere. Turbulent layers retain particles longer than do quiescent layers because the turbulence retains particles in suspension. Particles fall more rapidly through the quiescent layers by single particle settling, or more rapidly because of convective sedimentation. The result is a distinct, banded ash cloud structure. We present A-Train satellite observations of volcanic clouds at various stages of evolution from several recent eruptions (including Kelut, Redoubt, Chaitén, Eyjafjallajökull, Okmok and Kasatochi) and also show the results of preliminary model simulations of the development of volcanic cloud layering.

  12. Classification of Volcanic Eruptions on Io and Earth Using Low-Resolution Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Davies, A. G.; Keszthelyi, L. P.

    2005-01-01

    Two bodies in the Solar System exhibit high-temperature active volcanism: Earth and Io. While there are important differences in the eruptions on Earth and Io, in low-spatial-resolution data (corresponding to the bulk of available and foreseeable data of Io), similar styles of effusive and explosive volcanism yield similar thermal flux densities. For example, a square metre of an active pahoehoe flow on Io looks very similar to a square metre of an active pahoehoe flow on Earth. If, from observed thermal emission as a function of wavelength and change in thermal emission with time, the eruption style of an ionian volcano can be constrained, estimates of volumetric fluxes can be made and compared with terrestrial volcanoes using techniques derived for analysing terrestrial remotely-sensed data. In this way we find that ionian volcanoes fundamentally differ from their terrestrial counterparts only in areal extent, with Io volcanoes covering larger areas, with higher volumetric flux. Io outbursts eruptions have enormous implied volumetric fluxes, and may scale with terrestrial flood basalt eruptions. Even with the low-spatial resolution data available it is possible to sometimes constrain and classify eruption style both on Io and Earth from the integrated thermal emission spectrum. Plotting 2 and 5 m fluxes reveals the evolution of individual eruptions of different styles, as well as the relative intensity of eruptions, allowing comparison to be made from individual eruptions on both planets. Analyses like this can be used for interpretation of low-resolution data until the next mission to the jovian system. For a number of Io volcanoes (including Pele, Prometheus, Amirani, Zamama, Culann, Tohil and Tvashtar) we do have high/moderate resolution imagery to aid determination of eruption mode from analyses based only on low spatial-resolution data.

  13. Climate Curriculum Modules on Volcanic Eruptions, Geoengineering, and Nuclear Winter

    NASA Astrophysics Data System (ADS)

    Robock, A.

    2014-12-01

    To support a climate dynamics multidisciplinary curriculum for graduate and senior university students, I will describe on-line modules on volcanic eruptions and climate, geoengineering, and nuclear winter. Each of these topics involves aerosols in the stratosphere and the response of the climate system, but each is distinct, and each is evolving as more research becomes available. As reported for the first time in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, volcanic eruptions are a natural analog for the climate impacts of potential anthropogenic aerosol injections into the stratosphere, either sulfates from potential attempts to cool the climate to counteract global warming, or smoke that would be produced from fires in cities and industrial targets in a nuclear war. The volcanic eruptions module would stand alone, and would also serve as a prerequisite for each of the other two modules, which could be taught independently of each other. Each module includes consideration of the physical climate system as well as impacts of the resulting climate change. Geoengineering includes both solar radiation management and carbon dioxide reduction. The geoengineering and nuclear winter modules also include consideration of policy and governance issues. Each module includes a slide set for use in lecturing, links to related resources, and student exercises. The modules will be regularly updated.

  14. Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins

    USGS Publications Warehouse

    Pierson, Thomas C.; Major, Jon J.

    2014-01-01

    Explosive eruptions can severely disturb landscapes downwind or downstream of volcanoes by damaging vegetation and depositing large volumes of erodible fragmental material. As a result, fluxes of water and sediment in affected drainage basins can increase dramatically. System-disturbing processes associated with explosive eruptions include tephra fall, pyroclastic density currents, debris avalanches, and lahars—processes that have greater impacts on water and sediment discharges than lava-flow emplacement. Geo-morphic responses to such disturbances can extend far downstream, persist for decades, and be hazardous. The severity of disturbances to a drainage basin is a function of the specific volcanic process acting, as well as distance from the volcano and magnitude of the eruption. Postdisturbance unit-area sediment yields are among the world's highest; such yields commonly result in abundant redeposition of sand and gravel in distal river reaches, which causes severe channel aggradation and instability. Response to volcanic disturbance can result in socioeconomic consequences more damaging than the direct impacts of the eruption itself.

  15. Building the Volcanic Oceanic Crust One Eruption at a Time (Invited)

    NASA Astrophysics Data System (ADS)

    Sinton, J. M.; Rubin, K. H.; White, S. M.; Colman, A.; Bowles, J. A.; Gronvold, K.

    2010-12-01

    The physical and chemical characteristics of lava flow fields formed during individual volcanic eruptions provides critical information on the nature of underlying magma reservoirs and the diking events that feed magma to the surface. Chemical variability of individual flow fields can constrain important parameters, such as the depth, geometry, melt percentage, and cooling rate of magma reservoirs and, in some case, whether or not dikes traveled vertically from magma reservoirs to the surface, with examples from the East Pacific Rise, Juan de Fuca Ridge and Iceland. Lava flow morphology and the length of ridge activated during individual eruptions constrain eruption rates and, in some cases, how eruption rates and magma sources vary during the course of long-lived eruptions. Although the study of submarine volcanic eruptions has historically been dominated by study of very recent flow fields or remotely detected “events”, a recent cruise to the Galápagos Spreading Center demonstrated that volcanic geology can be deciphered for areas of seafloor using the same basic methods commonly employed on-land: near-bottom geological observations, remote images at the appropriate spatial resolution, and petrologic and geochronologic study of samples. For the Galápagos study we used the AUV Sentry to obtain very high resolution (~1-m spatial scale) bathymetry, 26 Alvin dives, 17 camera-tows, and on-shore chemical and magnetic paeleointensity sample analyses to identify the areal extents, chemical variability and age constraints of at least 14 previously unknown discrete eruptive units in two areas with highly contrasting average magma supply defined by variations in crustal thickness and spreading rate. Preliminary general results of this study indicate that, at high magma supply, relatively low-volume eruptions are fed from shallow, moderately to highly differentiated, melt-dominated magma chambers to elongate fissures at relatively high average eruption rates. At low

  16. Improved Constraints on the Eruptive History of Northern Harrat Rahat Volcanic Field, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Stelten, M. E.; Downs, D. T.; Calvert, A. T.; Sherrod, D. R.; Hassan, K. H.; Muquyyim, F. A.; Ashur, M. S.

    2015-12-01

    Harrat Rahat is a large (~20,000 km2) alkalic volcanic field located in central western Saudi Arabia. A variety of eruptive products ranging from alkali basalt to trachyte have erupted at Harrat Rahat over the past ~10 m.y., with the most recent eruptions occurring at 641 CE (uncertain) and 1256 CE in the northern part of the volcanic field. Despite the field's young age and its close proximity to two major city centers, the eruptive history of Harrat Rahat remains poorly constrained. Previous researchers grouped the volcanic strata of northern Harrat Rahat into seven subunits based on limited K-Ar and 40Ar/39Ar dating, and on the degree of erosion displayed by the eruptive products. The youngest eruptive products (subunits Qm7 - Qm4) are thought to be ≤600 ka, whereas the older lavas (Qm3 - Qm1) are thought to be >600 ka. However, due to the sparse geochronologic control on the ages of the eruptive units, it remains unclear if the currently defined subunits accurately reflect the age distribution of lavas in northern Harrat Rahat. Additionally, the temporal relation between basaltic magmatism and the more evolved eruptive products has yet to be examined. To better constrain the eruptive history of Harrat Rahat we measured >50 new 40Ar/39Ar eruption ages for Qm1 through Qm5 lavas in northern Harrat Rahat. These new 40Ar/39Ar ages suggest that the majority of volcanism in the region occurred ≤400 ka and is significantly younger than previously thought, indicating that the magmatic system at Harrat Rahat has been more active over the past 400 kyr then previously recognized. Additionally, these new age data suggest that nearly all trachytic magmatism occurred <125 ka and was preceded by a pulse of more mafic magmatism. It is likely the magmatic system at Harrat Rahat reached an evolved state late in the history of the volcanic field due to increased and/or prolonged input of basaltic magmas into the crust.

  17. A Brownian model for recurrent volcanic eruptions: an application to Miyakejima volcano (Japan)

    NASA Astrophysics Data System (ADS)

    Garcia-Aristizabal, Alexander; Marzocchi, Warner; Fujita, Eisuke

    2012-03-01

    The definition of probabilistic models as mathematical structures to describe the response of a volcanic system is a plausible approach to characterize the temporal behavior of volcanic eruptions and constitutes a tool for long-term eruption forecasting. This kind of approach is motivated by the fact that volcanoes are complex systems in which a completely deterministic description of the processes preceding eruptions is practically impossible. To describe recurrent eruptive activity, we apply a physically motivated probabilistic model based on the characteristics of the Brownian passage-time (BPT) distribution; the physical process defining this model can be described by the steady rise of a state variable from a ground state to a failure threshold; adding Brownian perturbations to the steady loading produces a stochastic load-state process (a Brownian relaxation oscillator) in which an eruption relaxes the load state to begin a new eruptive cycle. The Brownian relaxation oscillator and Brownian passage-time distribution connect together physical notions of unobservable loading and failure processes of a point process with observable response statistics. The Brownian passage-time model is parameterized by the mean rate of event occurrence, μ, and the aperiodicity about the mean, α. We apply this model to analyze the eruptive history of Miyakejima volcano, Japan, finding a value of 44.2 (±6.5 years) for the μ parameter and 0.51 (±0.01) for the (dimensionless) α parameter. The comparison with other models often used in volcanological literature shows that this physically motivated model may be a good descriptor of volcanic systems that produce eruptions with a characteristic size. BPT is clearly superior to the Exponential distribution, and the fit to the data is comparable to other two-parameters models. Nonetheless, being a physically motivated model, it provides an insight into the macro-mechanical processes driving the system.

  18. Monitoring of Volcanic Eruptions and Determination of SO2 Plume Height from GOME-2 Measurements

    NASA Astrophysics Data System (ADS)

    Rix, M.; Valks, P.; Loyola, D.; Maerker, C.; Seidenberger, K.; van Gent, J.; van Roozendael, M.; Spurr, R.; Hao, N.; Emmandi, S.; Zimmer, W.

    2010-12-01

    Satellite-based remote sensing measurements of atmospheric sulphur dioxide (SO2) provide valuable information on anthropogenic pollution and volcanic activity. Sensors like GOME-2 on MetOp-A make it possible to monitor SO2 emissions on a global scale and daily basis. SO2 total column amounts are retrieved in near-real time using the UV range of backscattered sunlight making it possible to detect and track volcanic eruption plumes as a valuable tool for aviation warning. For aviation safety the correct determination of the plume height is a central issue. Therefore a novel method has been developed for the determination of the plume height in near-real time based on the operational DOAS retrieval combined with an iterative look-up table (LUT) approach. The method has been applied to the eruption of Eyjafjöll volcano, April - May 2010, and to the eruption of Kilauea, July 2008.

  19. Estimating Losses from Volcanic Ash in case of a Mt. Baekdu Eruption

    NASA Astrophysics Data System (ADS)

    Yu, Soonyoung; Yoon, Seong-Min; Kim, Sung-Wook; Choi, Eun-Kyeong

    2014-05-01

    We will present the preliminary result of economic losses in South Korea in case of a Mt. Baedu eruption. The Korean peninsula has Mt. Baekdu in North Korea, which will soon enter an active phase, according to volcanologists. The anticipated eruption will be explosive given the viscous and grassy silica-rich magma, and is expected to be one of the largest in recent millennia. We aim to assess the impacts of this eruption to South Korea and help government prepare for the volcanic disasters. In particular, the economic impact from volcanic ash is estimated given the distance from Mt. Baedu to South Korea. In order to scientifically estimate losses from volcanic ash, we need volcanic ash thickness, inventory database, and damage functions between ash thickness and damage ratios for each inventory item. We use the volcanic ash thickness calculated by other research groups in Korea, and they estimated the ash thickness for each eruption scenario using average wind fields. Damage functions are built using the historical damage data in the world, and inventory database is obtained from available digital maps in Korea. According to the preliminary results, the economic impact from volcanic ash is not significant because the ash is rarely deposited in South Korea under general weather conditions. However, the ash can impact human health and environment. Also worst case scenarios can have the significant economic impacts in Korea, and may result in global issues. Acknowledgement: This research was supported by a grant [NEMA-BAEKDUSAN-2012-1-3] from the Volcanic Disaster Preparedness Research Center sponsored by National Emergency Management Agency of Korea.

  20. Intensification of tropical Pacific biological productivity due to volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Chikamoto, Megumi O.; Timmermann, Axel; Yoshimori, Masakazu; Lehner, Flavio; Laurian, Audine; Abe-Ouchi, Ayako; Mouchet, Anne; Joos, Fortunat; Raible, Christoph C.; Cobb, Kim M.

    2016-02-01

    Major volcanic eruptions generate widespread ocean cooling, which reduces upper ocean stratification. This effect has the potential to increase nutrient delivery into the euphotic zone and boost biological productivity. Using externally forced last millennium simulations of three climate/Earth System models (Model for Interdisciplinary Research On Climate (MIROC), Community Earth System Model (CESM), and LOch-Vecode-Ecbilt-CLio-agIsm Model (LOVECLIM)), we test the hypothesis that large volcanic eruptions intensify nutrient-driven export production. It is found that strong volcanic radiative forcing enhances the likelihood of eastern Pacific El Niño-like warming in CESM and LOVECLIM. This leads to an initial reduction of nutrients and export production in the eastern equatorial Pacific. However, this initial response reverses after about 3 years in association with La Niña cooling. The resulting delayed enhancement of biological production resembles the multiyear response in MIROC. The model simulations show that volcanic impacts on tropical Pacific dynamics and biogeochemistry persist for several years, thus providing a new source for potential multiyear ecosystem predictability.

  1. Inflate, Pause, Erupt, Recharge: the 2008 Alu eruption in the Erta ‘Ale volcanic system (Ethiopia)

    NASA Astrophysics Data System (ADS)

    Pagli, C.; Wright, T. J.; Ebinger, C. J.; Barnie, T. D.; Ayele, A.

    2009-12-01

    The Alu volcano is located within the Erta ‘Ale volcanic system in northern Afar (Ethiopia), about 30 km to the north of Erta ‘Ale volcano whose summit caldera hosts a persistent lava lake. On 3rd November 2008 a fissure eruption started east of Alu volcano. An unprecedented InSAR dataset, seismic records and other space satellite imagery allow us to study the temporal and spatial evolution of magma preceding, during and after the eruption. We use InSAR images from five tracks of the Envisat satellite both in descending ad ascending orbits. Small pre-eruptive inflation 3 cm/month started at Alu in July but had ceased by September 10. There was no deformation for around a month before the eruption began on November 3, 2008 at 11:10 GMT. During the eruption over 1 m of subsidence was observed at two distinct locations: at Alu and a volcanic ridge 3 km south of Alu. The co-eruptive subsidence continued for around 16 days at Alu, before deflation reversed into inflation. A swarm of earthquakes, some with magnitude (ml) > 4, occurred along the border fault escarpment, ~ 40 km west of Alu, at 22:00 GMT on November 2, and within ~4 hours a seismic activity started around Alu, leading to the eruption. The deformation was modelled with a Mogi source under Alu and a Sill under the ridge, undergoing different undergoing different volume changes from July 2008 to June 2009. In order to find the best-fit model parameters, first we modelled few selected co-eruptive interferograms with a non-linear inversion. Then, keeping fixed the model geometries we inverted a total of ~40 interferograms for the time-dependent volume change of the Mogi source and the opening of the sill, using a least-squares inversion. Results indicate that a small magma volume was intruded into Alu July-September but a time lag of ~ 1 month occurred between intrusion and eruption. Martin et al. (2008) used petrological evidence to suggest that fresh magma intruded into a magma chamber can cause volatile

  2. Charge mechanism of volcanic lightning revealed during the Eyjafjallajökull 2010 eruption

    NASA Astrophysics Data System (ADS)

    Arason, P.; Bennett, A. J.

    2010-12-01

    The second phase of the subglacial Eyjafjallajökull volcanic eruption in Iceland, 14 April - 23 May 2010, may have revealed its charge mechanism of volcanic lightning. During these almost 40 days, the eruption went through a few phases while the conditions of the surrounding atmosphere also changed, but at different times. We have collected various measurements related to volcanic lightning in Iceland during the last volcanic eruptions: Grímsvötn 1998, Hekla 2000, Grímsvötn 2004, and Eyjafjallajökull 2010. The previous three eruptions lasted only a few days each and the main lightning activity only for 1-2 days. Several processes have been proposed to explain the electrification of volcanic plumes, such as a) Magma-water interactions. Submarine and subglacial eruptions lead to magma-water interactions and explosive volcanism. Laboratory experiments show that such processes lead to charge generation with water droplets positively charged and the ash negatively. b) Magma pulveration. The break up or internal friction and collisions of fine grained dry material may lead to charge generation. c) Dirty thunderstorm. Conditions, especially vertical temperature profiles of the atmosphere control at what height the water droplets in the volcanic plume will freeze. Processes related to the freezing of cloud droplets are thought to be responsible for charge generation in meteorological thunderclouds. Such conditions in a volcanic plume may lead to charge generation, and ash in the plume may facilitate such meteorological processes. The most surprising change in the lightning activity during the Eyjafjallajökull eruption occurred on 11 May when there was no obvious change in the physical eruption character or strength. Before 11 May there was no lightning recorded by long range networks, but 11-20 May the lightning activity in the plume was intense, with the highest activity of the entire eruption on 16 May. The change in lightning activity on 11 May coincides with a

  3. Pre-eruption deformation and seismic anomalies in 2012 in Tolbachik volcanic zone, Kamchatka

    NASA Astrophysics Data System (ADS)

    Kugaenko, Yulia; Saltykov, Vadim; Titkov, Nikolay

    2014-05-01

    Tolbachik volcanic zone (active volcano Plosky Tolbachik, dormant volcano Ostry Tolbachik and Tolbachik zone of cinder cones) is situated in the south part of Klyuchevskaya group of volcanoes in Kamchatka. All historical fissure eruptions of Tolbachik volcanic zone (1740, 1941, 1975-76 and 2012-13) were connected with one or another activity of Plosky Tolbachik volcano. In 1941 the fissure vent was occurred during the completion of 1939-41 terminal eruption of Plosky Tolbachik. In 1975 the Large Tolbachik Fissure Eruption (LTFE) was forestalled by Plosky Tolbachik terminal activity of the Hawaiian type and then was accompanied by the catastrophic collapse in the crater of Plosky Tolbachik. What events took place in the vicinity of Plosky Tolbachik in 2012 before the 2012-13 fissure eruption? In contrast of the 1975-76 LTFE the eruption 2012-13 was not preceded by intensive seismic preparation. Nowadays Klyuchevskaya group of volcanoes is under monitoring by 12 seismic stations, so we can investigate seismicity in details on the lower energy level then forty years ago. We analyzed seismicity of Plosky Tolbachik using regional catalogue 1999-2012. Anomalies of low-energy (M≥1.5) seismicity parameters (increase of seismicity rate and seismic energy) were discovered. This is evidence of seismic activization covered the whole Plosky Tolbachik volcano. The significance of this anomaly was estimated by distribution function of emitted seismic energy. Statistically significant transition of seismicity from background level to high and extremely high levels was revealed. It corresponds to multiple growth of earthquake number and seismic energy in 2012, July-November (five months before the eruption). The seismicity transition from background level to high level was happen in August 2012. During last three weeks before fissure eruption seismicity of analyzed seismoactive volume was on extremely high level. Earthquakes from fissure site directly appeared only on November 27

  4. Volcanic plume measurements using a UAV for the 2014 Mt. Ontake eruption

    NASA Astrophysics Data System (ADS)

    Mori, Toshiya; Hashimoto, Takeshi; Terada, Akihiko; Yoshimoto, Mitsuhiro; Kazahaya, Ryunosuke; Shinohara, Hiroshi; Tanaka, Ryo

    2016-03-01

    A phreatic eruption of Mt. Ontake, Japan, started abruptly on September 27, 2014, and caused the worst volcanic calamity in recent 70 years in Japan. We conducted volcanic plume surveys using an electric multirotor unmanned aerial vehicle to elucidate the conditions of Mt. Ontake's plume, which is flowing over 3000 m altitude. A plume gas composition, sulfur dioxide flux and thermal image measurements and a particle sampling were carried out using the unmanned aerial vehicle for three field campaigns on November 20 and 21, 2014, and June 2, 2015. Together with the results of manned helicopter and aircraft observations, we revealed that the plume of Mt. Ontake was not directly emitted from the magma but was influenced by hydrothermal system, and observed SO2/H2S molar ratios were decreasing after the eruption. High SO2 flux of >2000 t/d observed at least until 20 h after the onset of the eruption implies significant input of magmatic gas and the flux quickly decreased to about 130 t/d in 2 months. In contrast, H2S fluxes retrieved using SO2/H2S ratio and SO2 flux showed significantly high level of 700-800 t/d, which continued at least between 2 weeks and 2 months after the eruption. This is a peculiar feature of the 2014 Mt. Ontake eruption. Considering the trends of the flux changes of SO2 and H2S, we presume that majority of SO2 and H2S are supplied, respectively, from high-temperature magmatic fluid of a deep origin and from hydrothermal system. From the point of view of SO2/H2S ratios and fumarolic temperatures, the plume degassing trend after the 2014 eruption is following the similar course as that after the 1979 eruptions, and we speculate the 2014 eruptive activity will cease slowly similar to the 1979 eruption.

  5. UK Hazard Assessment for a Laki-type Volcanic Eruption

    NASA Astrophysics Data System (ADS)

    Witham, Claire; Felton, Chris; Daud, Sophie; Aspinall, Willy; Braban, Christine; Loughlin, Sue; Hort, Matthew; Schmidt, Anja; Vieno, Massimo

    2014-05-01

    Following the impacts of the Eyjafjallajokull eruption in 2010, two types of volcanic eruption have been added to the UK Government's National Risk Register for Civil Emergencies. One of these, a large gas-rich volcanic eruption, was identified as a high impact natural hazard, one of the three highest priority natural hazards faced by the UK. This eruption scenario is typified by the Laki eruption in Iceland in 1783-1784. The Civil Contingency Secretariat (CCS) of the UK's Cabinet Office, responsible for Civil Protection in the UK, has since been working on quantifying the risk and better understanding its potential impacts. This involves cross-cutting work across UK Government departments and the wider scientific community in order to identify the capabilities needed to respond to an effusive eruption, to exercise the response and develop increased resilience where possible. As part of its current work, CCS has been working closely with the UK Met Office and other UK agencies and academics (represented by the co-authors and others) to generate and assess the impacts of a 'reasonable worst case scenario', which can be used for decision making and preparation in advance of an eruption. Information from the literature and the findings of an expert elicitation have been synthesised to determine appropriate eruption source term parameters and associated uncertainties. This scenario is then being used to create a limited ensemble of model simulations of the dispersion and chemical conversion of the emissions of volcanic gases during such an eruption. The UK Met Office's NAME Lagrangian dispersion model and the Centre for Ecology and Hydrology's EMEP4UK Eulerian model are both being used. Modelling outputs will address the likelihood of near-surface concentrations of sulphur and halogen species being above specified health thresholds. Concentrations at aviation relevant altitudes will also be evaluated, as well as the effects of acid deposition of volcanic species on

  6. Satellite observations of lightning-generated NOx in volcanic eruption clouds

    NASA Astrophysics Data System (ADS)

    Carn, Simon; Krotkov, Nickolay; Pickering, Ken; Allen, Dale; Bucsela, Eric

    2016-04-01

    stratospheric contribution and tropospheric NO2 background and applies an appropriate air mass factor to convert the slant column LNO2 to a vertical column of LNOx. However, OMI measurements of LNOx in thunderstorms suggest that any NOx below the cloud optical centroid pressure (OCP; ~350-500 hPa) is not detected. We speculate that the OCP may be lower (i.e., at higher altitude) in fresh volcanic clouds due to higher optical depths. The observation of vLNOx in volcanic clouds is significant since it implies active convection and plume electrification close to the satellite overpass time, with implications for aviation hazards due to volcanic ash. Furthermore, the vLNOx observations may provide information on air entrainment in volcanic eruption columns, which is required for some volcanic ash dispersion models. Although vLNOx is undoubtedly a very minor fraction of global LNOx production, explosive volcanic eruptions may inject NOx into the stratosphere where it has implications for ozone chemistry.

  7. Eruptive and sedimentary evolution of the Pliocene Grad Volcanic Field, North-east Slovenia

    NASA Astrophysics Data System (ADS)

    Kralj, Polona

    2011-04-01

    Middle to Upper Pliocene (~ 3 Ma) Grad Volcanic Field (SW Pannonian basin system) encompasses an area of about 3 km 2, of which some 1.7 km 2 belong to the outcropping volcanics. Pyroclastic and syn-eruptively reworked volcaniclastic deposits are the most widespread in occurrence. Remains of an autobrecciated lava flow, a residual neck and their peperites are partially reworked by a large debris flow. Volcanic activity occurred in a continental depositional environment dominated by alluvial fan and braided river systems. Streams draining from the north-west to the south-east were infilling a rapidly subsiding Radgona Depression. The style of volcanic activity was mainly explosive and was reinforced by hydrovolcanic processes. Three volcanic centres probably existed, and they migrated spatially and temporally from the north to the south over a distance of some 5.6 km. The rocks of the northernmost volcanic centre are fairly eroded and contain abundant, up to 10 cm sized lherzolite xenoliths. The largest crater developed about 2.5 km to the south. From an early maar stage, a tuff-cone, and subsequently, a tuff-ring evolved. The crater was filled with eroded pyroclastic material and stream load. A new vent became active some 500 m to the south. Initial stage was mainly magmatic and produced pyroclastic flow and fall deposits. Late-stage eruptions were predominantly hydrovolcanic (phreatomagmatic and phreatic), and built up a small tuff-cone having some 300 m in diameter. Trachybasaltic and subordinate basanitic magmas erupting in the Grad Volcanic Field are geochemically distinguishable from the neighbouring occurrences in the South Styrian Basin and the South Burgenland Swell. Relatively lower abundance of TiO 2, MgO, Sc, V and Cu, and higher abundance of MnO, P 2O 5, Zn, Sr, Zr, Hf, Nb, Ba, Ta and U indicate somewhat different source and/or evolutionary pattern.

  8. Short-term spatial change in a volcanic tremor source during the 2011 Kirishima eruption

    NASA Astrophysics Data System (ADS)

    Matsumoto, Satoshi; Shimizu, Hiroshi; Matsushima, Takeshi; Uehira, Kenji; Yamashita, Yusuke; Nakamoto, Manami; Miyazaki, Masahiro; Chikura, Hiromi

    2013-04-01

    Volcanic tremors are indicators of magmatic behavior, which is strongly related to volcanic eruptions and activity. Detection of spatial and temporal variations in the source location is important for understanding the mechanism of volcanic eruptions. However, short-term temporal variations within a tremor event have not always been detected by seismic array observations around volcanoes. Here, we show that volcanic tremor sources were activated at both the top (i.e., the crater) and the lower end of the conduit, by analyzing seismograms from a dense seismic array 3 km from the Shinmoedake crater, Kirishima volcano, Japan. We observed changes in the seismic ray direction during a volcanic tremor sequence, and inferred two major sources of the tremor from the slowness vectors of the approaching waves. One was located in a shallow region beneath the Shinmoedake crater. The other was found in a direction N30°W from the array, pointing to a location above a pressure source. The fine spatial and temporal characteristics of volcanic tremors suggest an interaction between deep and shallow conduits.

  9. Aerosol measurements from a recent Alaskan volcanic eruption: Implications for volcanic ash transport predictions

    NASA Astrophysics Data System (ADS)

    Cahill, Catherine F.; Rinkleff, Peter G.; Dehn, Jonathan; Webley, Peter W.; Cahill, Thomas A.; Barnes, David E.

    2010-12-01

    Size and time-resolved aerosol compositional measurements conducted during the 2006 eruption of Augustine Volcano provide quantitative information on the size and concentration of the fine volcanic ash emitted during the eruption and carried and deposited downwind. These data can be used as a starting point to attempt to validate volcanic ash transport models. For the 2006 eruption of Augustine Volcano, an island volcano in south-central Alaska, size and time-resolved aerosol measurements were made using an eight-stage (0.09-0.26, 0.26-0.34, 0.34-0.56, 0.56-0.75, 0.75-1.15, 1.15-2.5, 2.5-5.0, and 5.0-35.0 μm in aerodynamic diameter) Davis Rotating Unit for Monitoring (DRUM) aerosol impactor deployed near ground level in Homer, Alaska, approximately 110 km east-northeast of the volcano. The aerosol samples collected by the DRUM impactor were analyzed for mass and elemental composition every 90 min during a four-week sampling period from January 13 to February 11, 2006, that spanned several explosive episodes during the 2006 eruption. The collected aerosols showed that the size distribution of the volcanic ash fallout changed during this period of eruption. Ash had its highest concentrations in the largest size fraction (5.0-35.0 μm) with no ash present in the less than 1.15 μm size fractions during the short-lived explosive events. In contrast, during the continuous ash emission phase, concentrations of volcanic ash were more significant in the less than 1.15 μm size fractions. Settling velocities dictate that the smaller size particles will transport far from the volcano and, unlike the larger particles, not be retained in the proximal stratigraphic record. These results show that volcanic ash transport and dispersion (VATD) model predictions based on massless tracer particles, such as the predictions from the PUFF VATD model, provide a good first-order approximation of the transport of both large and small volcanic ash particles. Unfortunately, the

  10. Bromo volcano area as human-environment system: interaction of volcanic eruption, local knowledge, risk perception and adaptation strategy

    NASA Astrophysics Data System (ADS)

    Bachri, Syamsul; Stötter, Johann; Sartohadi, Junun

    2013-04-01

    People in the Bromo area (located within Tengger Caldera) have learn to live with the threat of volcanic hazard since this volcano is categorized as an active volcano in Indonesia. During 2010, the eruption intensity increased yielding heavy ash fall and glowing rock fragments. A significant risk is also presented by mass movement which reaches areas up to 25 km from the crater. As a result of the 2010 eruption, 12 houses were destroyed, 25 houses collapsed and there were severe also effects on agriculture and the livestock sector. This paper focuses on understanding the interaction of Bromo volcanic eruption processes and their social responses. The specific aims are to 1) identify the 2010 eruption of Bromo 2) examine the human-volcano relationship within Bromo area in general, and 3) investigate the local knowledge related to hazard, risk perception and their adaptation strategies in specific. In-depth interviews with 33 informants from four districts nearest to the crater included local people and authorities were carried out. The survey focused on farmers, key persons (dukun), students and teachers in order to understand how people respond to Bromo eruption. The results show that the eruption in 2010 was unusual as it took continued for nine months, the longest period in Bromo history. The type of eruption was phreatomagmatic producing material dominated by ash to fine sand. This kind of sediment typically belongs to Tengger mountain eruptions which had produced vast explosions in the past. Furthermore, two years after the eruption, the interviewed people explained that local knowledge and their experiences with volcanic activity do not influence their risk perception. Dealing with this eruption, people in the Bromo area applied 'lumbung desa' (traditional saving systems) and mutual aid activity for surviving the volcanic eruption. Keywords: Human-environment system, local knowledge, risk perception, adaptation strategies, Bromo Volcano Indonesia

  11. Disentangling the eruption source parameters that control the climate effects of volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Marshall, Lauren; Schmidt, Anja; Mann, Graham; Carslaw, Kenneth; Dhomse, Sandip; Haywood, Jim; Jones, Andy

    2016-04-01

    Climatic cooling in the 1-2 years following a major volcanic eruption does not scale linearly with the mass of SO2 injected into the atmosphere. The injection height of the emissions, the latitude of the volcano, the season and large scale atmospheric circulations, also influence the climatic response. Complex couplings exist between stratospheric chemistry and circulations, and aerosol induced heating and aerosol microphysical processes such as condensation and evaporation. As yet, there has been no systematic assessment of these relationships when considering different eruption source parameters. A series of simulations with a global composition-climate model with interactive stratospheric chemistry and aerosol microphysics are conducted, in which the eruption latitude and injection height are varied. Parameter combinations are chosen such that injections sample areas in the atmosphere where different chemical and dynamical influences are important (e.g. tropical vs. high latitude eruptions, injections near the tropopause vs. injections in the upper stratosphere). Each experiment is repeated for varying SO2 injection magnitudes. We focus on the analysis of aerosol properties such as the stratospheric aerosol optical depth, effective radius and heating rates, and resultant perturbations to radiative fluxes. Initial results demonstrate the non-linearity in the climatic response as the injection magnitude is increased. Future work will focus on disentangling the contribution of each parameter to the climatic response with additional simulations to investigate the effect of season and the Quasi Biennial Oscillation. Results will aid in the understanding of the impact of past, present and future volcanic eruptions. By analysing sulfate deposition to the polar ice caps, we will assess the uncertainty in, and validity of, the historic volcanic radiative forcing deduced from ice cores.

  12. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Herrick, Julie; Girina, O.A.; Chibisova, Marina; Rybin, Alexander; McGimsey, Robert G.; Dixon, Jim

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  13. The Persistence of Volcanic Ash in the Tropical Stratosphere after the Kelud Eruption

    NASA Astrophysics Data System (ADS)

    Vernier, J. P.; Fairlie, T. D.; Deshler, T.; Knepp, T. N.; Natarajan, M.; Foster, K.; Trepte, C. R.; Thomason, L. W.; Bedka, K. M.; Wienhold, F.

    2014-12-01

    An increase of volcanic activity over the past decade is thought to have contributed significantly to the global warming "hiatus". Thus, it is important to improve our understanding of the microphysical and optical properties of even small volcanic plumes as well as their associated climate impacts. On February 13th, 2014, the Mt Kelud volcano, located near 4°S on the island of Java (Indonesia), injected volcanic gases and ash into the tropical stratosphere. An overpass of the CALIPSO lidar during the active phase of the eruption showed volcanic materials reaching 26 km with the main volcanic cloud near 18-19 km. This is the highest altitude volcanic injection since Mt Pinatubo in 1991. CALIPSO has tracked the dispersion of the Kelud plume throughout the tropical lower stratosphere (~20N-20S) since then. Depolarization lidar measurements (0.3-0.4) indicate that the plume was likely composed of irregularly shaped ash particles during the first few days after the eruption, and that sulfate aerosol (spherical droplets) formed thereafter, gradually lowering the mean depolarization to 0.1-0.2. In May, 2014, we mounted a 2-week campaign to Darwin (Australia) to measure several profiles of backscatter in red and blue channels, and one profile of aerosol size distribution using two optical particle counters, one with an inlet heated to 200°C. The purpose was to characterize particle sizes, optical properties, and sulfate fraction from a relatively fresh volcanic plume in the low stratosphere. Preliminary results from the campaign suggest the persistence of ash particles at the bottom of the Kelud plume 3 months after the eruption. This is significant because the climate impact of ash is neglected in most climate models.

  14. Quantifying the condition of eruption column collapse during explosive volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Koyaguchi, Takehiro; Suzuki, Yujiro

    2016-04-01

    During an explosive eruption, a mixture of pyroclasts and volcanic gas forms a buoyant eruption column or a pyroclastic flow. Generation of a pyroclastic flow caused by eruption column collapse is one of the most hazardous phenomena during explosive volcanic eruptions. The quantification of column collapse condition (CCC) is, therefore, highly desired for volcanic hazard assessment. Previously the CCC was roughly predicted by a simple relationship between magma discharge rate and water content (e.g., Carazzo et al., 2008). When a crater is present above the conduit, because of decompression/compression process inside/above the crater, the CCC based on this relationship can be strongly modified (Woods and Bower, 1995; Koyaguchi et al., 2010); however, the effects of the crater on CCC has not been fully understood in a quantitative fashion. Here, we have derived a semi-analytical expression of CCC, in which the effects of the crater is taken into account. The CCC depends on magma properties, crater shape (radius, depth and opening angle) as well as the flow rate at the base of crater. Our semi-analytical CCC expresses all these dependencies by a single surface in a parameter space of the dimensionless magma discharge rate, the dimensionless magma flow rate (per unit area) and the ratio of the cross-sectional areas at the top and the base of crater. We have performed a systematic parameter study of three-dimensional (3D) numerical simulations of eruption column dynamics to confirm the semi-analytical CCC. The results of the 3D simulations are consistent with the semi-analytical CCC, while they show some additional fluid dynamical features in the transitional state (e.g., partial column collapse). Because the CCC depends on such many parameters, the scenario towards the generation of pyroclastic flow during explosive eruptions is considered to be diverse. Nevertheless, our semi-analytical CCC together with the existing semi-analytical solution for the 1D conduit flow

  15. Recent explosive eruptions in the Rungwe Volcanic Province, Tanzania

    NASA Astrophysics Data System (ADS)

    Fontijn, K.; Ernst, G. G.; Elburg, M. A.; Williamson, D.; Jacobs, P.

    2009-12-01

    The fundamental base of volcanic hazard assessment on any volcano is the study of its most recent eruptive history. Although the presence of extensive surficial pumice deposits was long known in the Rungwe Volcanic Province (RVP, SW Tanzania, East African Rift), the recent eruptive history was never studied in detail and is presented here for the first time. The RVP had several Plinian-style explosive eruptions in its Holocene history, originating from the two main volcanoes, Rungwe and Ngozi. Field observations are combined with whole-rock major (ICP-OES) and trace (ICP-MS) element analyses as well as major element analyses (EMPA) on glass. 14C ages of paleosols constrain all recognized deposits to <10 ka. Trace element data, e.g. Zr/Y ratios, allow discriminating between Ngozi and Rungwe as deposit source. All studied samples are trachyte to phonolitic trachyte. A ~30 m long sediment core in the Masoko maar lake (26 and 42 km SSE of Rungwe and Ngozi resp.) reveals >60 tephra layers deposited during the last 50 ky. Its Holocene record shows 7 tephra layers of which 2 (10.2 and 4.35 ka calBP) contain abundant pumice lapilli. Based on chemical constraints, the oldest of these pumice layers is believed to correspond to the Kitulo Pumice, the oldest on-land deposit found, originating from Ngozi. This eruption likely formed the 3 x 3 km Ngozi caldera. The 4.35 ka calBP pumice layer in the Masoko core was correlated with a Plinian pumice fallout deposit from Rungwe, the Rungwe Pumice, based on its appearance and paleosol 14C dating. It was traced over an area of ~1,500 km2 and probably extends even further. The Rungwe Pumice postdates a debris avalanche that was generated by a flank collapse of the volcano. This collapse left an amphitheatre-shaped depression on the summit that is now filled with domes, cones and explosion craters produced by effusive and explosive eruptions. A second large explosive eruption from Rungwe, the Isongole Pumice, is underlain by a 2.0 ± 0

  16. Measurements of volcanic aerosols during the Holuhraun eruption in Iceland

    NASA Astrophysics Data System (ADS)

    María Sigurðardóttir, Guðmunda; von Löwis, Sibylle; Bergson, Baldur; Þorsteinsson, Þröstur; Jóhannsson, Þorsteinn

    2015-04-01

    Measurements of airborne particles have been made with an Optical Particle Counter (OPC) since early September 2014 in the vicinity of the volcanic lava eruption in Holuhraun, N of Vatnajökull, in NE-Iceland. Measurements close to the eruption site were made between 1 - 4 September, 19 September - 1 October, and 3 - 6 October 2014. On 12 September another OPC was installed in Möðrudalur, ~70 km NE of the eruption site, which has measured since, nearly continuously, the aerosol particle number concentration. The data from both locations, Holuhraun and Möðrudalur, show several particle concentration peaks. However, since the eruption site is located in one of Iceland's largest sandy deserts, known for large-scale dust events, it is difficult to distinguish between particles emitted by the eruption or from the sandy area. From the measurements of the SO2 concentrations in Northern and Eastern Iceland, made by the Environmental Agency of Iceland, it can be seen that enhanced particle number concentrations are correlated with high concentrations of SO2. This correlation can help to distinguish between particles originated by dust events and those with volcanic origin. The farm Svartárkot, ~ 60 km NV of the eruption site, is frequently affected by dust re-suspended from the sandy desert N of Vatnajökull. OPC data over a two month period in summer 2013 were collected in Svartárkot and will be used for comparison. Using particle size distribution and total particle number, as a function of wind direction, wind speed and precipitation, and comparing it with Möðrudalur and Holuhraun data, enables the particle origin to be estimated. In addition to the measurements close to the eruption site OPC measurements are on-going in Reykjavík, ~ 260 km SW of Holuhraun, since the 6 October 2014. First comparisons have also shown a strong correlation between increased SO2 concentration and particle number. Therefore, it may be assumed that these particles are build by gas

  17. Regional-scale forcing of precipitation in selected modern volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Yim, W. W.-S.

    2009-04-01

    Major volcanic eruptions are known to lower the Earth's surface temperature but their regional-scale forcing of precipitation is poorly understood. In this presentation, three modern volcanic eruptions have been selected for investigation. The three eruptions are the February 1963 Agung eruption in Indonesia, the March 1982 El Chichón eruption in Mexico and the June 1991 Pinatubo eruption in the Philippines. Abnormally low annual rainfall was found in the southern China region during 1963 and 1991 respectively. Based on the total annual rainfall recorded at the Hong Kong Station, the rainfall was the driest and the tenth driest since record began in 1884 respectively. In contrast, abnormally high annual rainfall was found in southern China in 1982 with the Hong Kong Station recording the second wettest year since record began. Based on the pattern of rainfall observed, near-field major volcanic eruptions located in the Indonesian-Pacific gateway may lead to abnormally dry conditions in southern China through a shift of wind direction to predominantly offshore. On the other hand, major far-field volcanic eruptions in the eastern Pacific may give rise to abnormally wet conditions through the spread of the volcanic cloud across the globe. In the El Chichón eruption, the spread of volcanic cloud across the Pacific Ocean was tracked by satellite images. Heavy rainfall occurred when the volcanic cloud reached the coastal regions of southern China. Volcanic eruptions are therefore a possible causative factor in monsoonal variability.

  18. Consequences of powerful volcanic eruptions according to dendrochronological data

    NASA Astrophysics Data System (ADS)

    Kasatkina, E. A.; Shumilov, O. I.; Timonen, M.; Kanatjev, A. G.

    2013-07-01

    For the first time we identify the peculiarities of the effect of the most powerful (VEI > 5) volcanic eruptions on the regional climate of the Murmansk region on the basis of Kola Peninsula dendrochronological data for a period of more than 560 years. The analysis was based on the tree-ring chronology covering the period from 1445 to 2005. This chronology was derived from Pinus sylvestris samples collected near the northern tree line at Loparskaya station (68°37' N; 33°14' E). The data were processed using modern techniques adopted in dendrochronology (cross dating and standardization). We reveal a significant decrease in the radial tree-ring growth over 8 years (on average) after the eruptions; then its value is restored to the normal level. This finding will help evaluate the response of the regional climate system to external climate forcings in this economically important region for Russia.

  19. Exploring the Potential Impacts of Historic Volcanic Eruptions on the Contemporary Global Food System

    NASA Technical Reports Server (NTRS)

    Puma, Michael J.; Chon, S.; Wada, Y.

    2015-01-01

    A better understanding of volcanic impacts on crops is urgently needed, as volcanic eruptions and the associated climate anomalies can cause unanticipated shocks to food production. Such shocks are a major concern given the fragility of the global food system.

  20. Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER) project and a next-generation real-time volcano hazard assessment system

    NASA Astrophysics Data System (ADS)

    Takarada, S.

    2012-12-01

    The first Workshop of Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER1) was held in Tsukuba, Ibaraki Prefecture, Japan from February 23 to 24, 2012. The workshop focused on the formulation of strategies to reduce the risks of disasters worldwide caused by the occurrence of earthquakes, tsunamis, and volcanic eruptions. More than 150 participants attended the workshop. During the workshop, the G-EVER1 accord was approved by the participants. The Accord consists of 10 recommendations like enhancing collaboration, sharing of resources, and making information about the risks of earthquakes and volcanic eruptions freely available and understandable. The G-EVER Hub website (http://g-ever.org) was established to promote the exchange of information and knowledge among the Asia-Pacific countries. Several G-EVER Working Groups and Task Forces were proposed. One of the working groups was tasked to make the next-generation real-time volcano hazard assessment system. The next-generation volcano hazard assessment system is useful for volcanic eruption prediction, risk assessment, and evacuation at various eruption stages. The assessment system is planned to be developed based on volcanic eruption scenario datasets, volcanic eruption database, and numerical simulations. Defining volcanic eruption scenarios based on precursor phenomena leading up to major eruptions of active volcanoes is quite important for the future prediction of volcanic eruptions. Compiling volcanic eruption scenarios after a major eruption is also important. A high quality volcanic eruption database, which contains compilations of eruption dates, volumes, and styles, is important for the next-generation volcano hazard assessment system. The volcanic eruption database is developed based on past eruption results, which only represent a subset of possible future scenarios. Hence, different distributions from the previous deposits are mainly observed due to the differences in

  1. Investigating the value of passive microwave observations for monitoring volcanic eruption source parameters

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario; Cimini, Domenico; Marzano, Frank

    2016-04-01

    Volcanic eruptions inject both gas and solid particles into the Atmosphere. Solid particles are made by mineral fragments of different sizes (from few microns to meters), generally referred as tephra. Tephra from volcanic eruptions has enormous impacts on social and economical activities through the effects on the environment, climate, public health, and air traffic. The size, density and shape of a particle determine its fall velocity and thus residence time in the Atmosphere. Larger particles tend to fall quickly in the proximity of the volcano, while smaller particles may remain suspended for several days and thus may be transported by winds for thousands of km. Thus, the impact of such hazards involves local as well as large scales effects. Local effects involve mostly the large sized particles, while large scale effects are caused by the transport of the finest ejected tephra (ash) through the atmosphere. Forecasts of ash paths in the atmosphere are routinely run after eruptions using dispersion models. These models make use of meteorological and volcanic source parameters. The former are usually available as output of numerical weather prediction models or large scale reanalysis. Source parameters characterize the volcanic eruption near the vent; these are mainly the ash mass concentration along the vertical column and the top altitude of the volcanic plume, which is strictly related to the flux of the mass ejected at the emission source. These parameters should be known accurately and continuously; otherwise, strong hypothesis are usually needed, leading to large uncertainty in the dispersion forecasts. However, direct observations during an eruption are typically dangerous and impractical. Thus, satellite remote sensing is often exploited to monitor volcanic emissions, using visible (VIS) and infrared (IR) channels available on both Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO) satellites. VIS and IR satellite imagery are very useful to monitor

  2. Eruptive History of the Rhyolitic Guangoche Volcano, Los Azufres Volcanic Field, Central Mexico

    NASA Astrophysics Data System (ADS)

    Rangel Granados, E.; Arce, J. L.; Macias, J. L.; Layer, P. W.

    2014-12-01

    Guangoche is a rhyolitic and polygenetic volcano with a maximum elevation of 2,760 meters above sea level. It is situated to the southwest of the Los Azufres Volcanic Field (LAVF), in the central sector of the Trans-Mexican Volcanic Belt. Guangoche volcano is the youngest volcano described within the LAVF. It shows a horseshoe shaped crater open to the south, with a central lava dome. Its eruptive history during late Pleistocene has been intense with six explosive eruptions that consists of: 1) A southwards sector collapse of the volcano that generated a debris avalanche deposit with megablocks of heterogenous composition; 2) A plinian-type eruption that generated a pumice fall deposit and pyroclastic density currents by column collapse at 30.6 ka; 3) A plinian-type eruption "White Pumice Sequence" (29 ka) that developed a 22-km-high eruptive column, with a MDR of 7.0 x 107 kg/s (vol. = 0.53 km3); 4) A dome-destruction event, "Agua Blanca Pyroclastic Sequence" at 26.7 ka, that deposited a block-and-ash flow deposit; 5) A subplinian-plinian type eruption "Ochre Pyroclastic Sequence" (<26 ka) with an important initial phreatomagmatic phase, that generated pyroclastic density currents and pumice fallouts. The subplinian-plinian event generated a 16-km-high eruptive column, with a MDR of 1.9 x 107 kg/s, and magma volume of 0.38 km3; 6) The eruptive history ended with a subplinian eruption (<<26 ka), that generated a multilayered fall deposit, that developed a 11-km-high eruptive column, with a MDR of 2.9 x 106 kg/s and a magma volume of 0.26 km3. Volcanic activity at Guangoche volcano has been intense and future activity should not be discarded. Unfortunately, the last two events have not been dated yet. Guangoche rhyolitic magma is characterized by low-Ba contents suggesting crystal mush extraction for their genesis.

  3. ASH REDISTRIBUTION FOLLOWING A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN

    SciTech Connect

    J. Pelletier; S. deLong; M.L. Cline; C. Harrington; G. Keating

    2005-08-29

    The redistribution of contaminated tephra by hillslope, fluvial, and pedologic processes is a poorly-constrained but important aspect of evaluating the radiological dose from an unlikely volcanic eruption at Yucca Mountain (YM). To better evaluate this hazard, we developed a spatially distributed, numerical model of tephra redistribution that integrates contaminated tephra from hill slopes and active channels, mixes it with clean sediment in the channel system, distributes it on the fan, and migrates it into the soil column. The model is coupled with an atmospheric dispersion model that predicts the deposition of radioactive waste-contaminated tephra at specified grid points. The redistribution model begins in the upper Fortymile Wash drainage basin where it integrates the tephra deposited on steep slopes and active channel beds within a GIS framework. The Fortymile Wash drainage basin is the focus of this model because tephra from only this basin reaches the Fortymile Wash alluvial fan by fluvial processes, and it is on this fan where the radiological dose to a hypothetical individual is compared to the regulatory standard (via additional biosphere models). The dilution effect of flood scour, mixing, and re-deposition within the upper basin is modeled using a dilution-mixing model widely used in the contaminant-transport literature. The accuracy of this model is established by comparing the model prediction with tephra concentrations measured in channels draining the Lathrop Wells volcanic center. The model combines the contaminated tephra transported from the upper basin with the tephra deposited directly on the fan as primary fallout. On the Fortymile Wash fan, channels and interchannel-divide areas are divided on the basis of soil-geomorphic mapping according to whether they are Holocene or Pleistocene in age. This approach allows the model to incorporate the effects of channel migration on the fan within the past 10,000 yr. The model treats the redistribution

  4. The large volcanic eruptions at different latitude bands and patterns of winter temperature changes over China

    NASA Astrophysics Data System (ADS)

    Hao, Zhixin; Sun, Di

    2016-04-01

    Based on the chronology of 29 large volcanic eruptions events (Volcanic Explosivity Index≥4) since 1951 and gridded temperature dataset from China Meteorological Data Sharing Service System, we identified the patterns of winter temperature changes over China after the large volcanic eruptions, comparing with the mean temperature within the five years before, then we analyzed the related dynamic mechanisms of different patterns by NCEP reanalysis data and model output data from Community Earth System Model (CESM). The results showed that the winter temperature decreased more than 1°C in East China after volcanic eruptions on middle-lower latitudes and equatorial bands. After volcanic eruptions on different latitudes, the temperature spatial patterns were summarized as two types, which included that temperature was cooling centered on Northeast and warming in Tibets, and its opposite pattern. The first pattern was usually detected after tropical volcanic eruptions in spring/summer and it also appeared after volcanic eruptions on high latitudes in spring/autumn. After middle-lower latitude volcanic eruptions, the variation of geopotential height on 500hPa showed that the positive anomaly was existed at the East of Ural mountain, which caused the temperature decreased in Northwest , Central East and Southeast when east asian trough was intensified. After high latitudes volcanic eruptions, the zonal circulation was more obvious at middle latitudes, the cold air was not easy to transport,therefore winter temperature increased in China except for the Yangtze River Basin. The result of full forcing experiments by CESM showed that temperature decreased at most regions after large volcanic eruptions on equatorial /high bands, and troughs and wedges were developed on 500 hPa. The variation of geopotential height was nearly reversed after volcanic eruptions on high latitudes, only the temperature of Tibetan Plateau decreased. But how the variation of geopotential height

  5. The large volcanic eruptions at different latitude bands and patterns of winter temperature changes over China

    NASA Astrophysics Data System (ADS)

    Sun, D.; Hao, Z.; Zheng, J.

    2015-12-01

    Based on the chronology of 29 large volcanic eruptions events (Volcanic Explosivity Index≥4) since 1951 and gridded temperature dataset from China Meteorological Data Sharing Service System, we identified the patterns of winter temperature changes over China after the large volcanic eruptions, comparing with the mean temperature within the five years before, then we analyzed the related dynamic mechanisms of different patterns by NCEP reanalysis data and model output data from Community Earth System Model (CESM). The results showed that the winter temperature decreased more than 1°C in East China after volcanic eruptions on middle-lower latitudes and equatorial bands. After volcanic eruptions on different latitudes, the temperature spatial patterns were summarized as two types, which included that temperature was cooling centered on Northeast and warming in Tibets, and its opposite pattern. The first pattern was usually detected after equatorial volcanic eruptions in spring/summer and it also appeared after volcanic eruptions on high latitudes in spring/autumn. After middle-lower latitude volcanic eruptions, the variation of geopotential height on 500hPa showed that the positive anomaly was existed at the East of Ural mountain, which caused the temperature decreased in Northwest , Central East and Southeast when east asian trough was intensified. After high latitudes volcanic eruptions, the zonal circulation was more obvious at middle latitudes, the cold air was not easy to transport therefore winter temperature increased in China except for the Yangtze River Basin. The result of full forcing experiments by CESM showed that temperature decreased at most regions after large volcanic eruptions on equatorial /high bands, and troughs and wedges were developed on 500 hPa. The variation of geopotential height was nearly reversed after volcanic eruptions on high latitudes, only the temperature of Tibetan Plateau decreased. But how the variation of geopotential height

  6. Volcanic eruptions, global change and evolution of species

    NASA Astrophysics Data System (ADS)

    Courtillot, V.

    2007-12-01

    Our group proposed in 1986 that the Deccan traps of India had been co-eval with the Cretaceous-Tertiary mass extinction, had lasted less than 800 kyears, straddling the KT. In 1995, Bhandari and colleagues showed that the iridium level marking the Chicxulub impact could be found in the Deccan and was sandwiched between flows, demonstrating that they were co-eval events but that volcanism had started first and could not be a consequence of impact. Since then, many groups have contributed to dating more precisely continental flood basalts around the world and found that there was almost a one to one correspondance between flood basalts and mass extinctions (but not impacts, except for the KT) : for a recent review see Courtillot and Renne (2003). In recent years, a number of significant advances have been made. It has been shown in the case of the historically large but geologically very small Icelandic Laki eruption of 1783 that such eruptions could inject large amounts of sulfate aerosols all the way to the stratosphere and have a global impact on climate : therefore, effusive basaltic volcanism on a large scale could alter climate (our group with Frédéric Fluteau and Anne-Lise Chenet and Steve Self with Thor Thordarson). Petrologic, volcanological, paleomagnetic, paleontological and geochronologic studies of the entire 3000m thick Deccan pile have been resumed (mainly our group, that of Self with Mike Widdowson and Anne Jay, and that of Gerta Keller). The result is that the thick lava pile actually erupted in a relatively small number of gigantic pulses (with mega-flows up to 10000 km3 in volume having erupted in decades !). Field evidence has been given that flows could extend over almost 1000km, and paleontological and K-Ar dating now reveals a history of mainly two mega-pulses having occurred, one just prior to the KT the second somewhat afterwards explaining the long delay of recovery of species from the catastrophe. There is little doubt now that the KT

  7. Lidar Observations of Stratospheric Clouds After Volcanic Eruption of Pinatubo

    NASA Technical Reports Server (NTRS)

    Sun, Jinhui; Qiu, Jinhuan; Xia, Qilin; Zhang, Jinding

    1992-01-01

    A very large increase of backscattered light from the stratospheric aerosol layer was observed by using a ruby laser in Beijing (39 degrees 54 minutes N, 116 degrees 27 minutes E) from the end of July 1991 to March 1992. It was concluded that this increase was almost certainly due to the volcanic eruption of Mt. Pinatubo in the Philippines in June 1991. The measuring instruments used are described. Information is given in graphical form for vertical profiles, fluctuation of the maximum backscattering ratio above 20 km during the nine month period, and the time variation of the integrated backscattering coefficient at a height of 15 to 30 km.

  8. Transient changes in bacterioplankton communities induced by the submarine volcanic eruption of El Hierro (Canary Islands).

    PubMed

    Ferrera, Isabel; Arístegui, Javier; González, José M; Montero, María F; Fraile-Nuez, Eugenio; Gasol, Josep M

    2015-01-01

    The submarine volcanic eruption occurring near El Hierro (Canary Islands) in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1-V3 regions for Bacteria and V3-V5 for Archaea) to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012). Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells) of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70-200 m), coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index) decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria). Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer observed. PMID

  9. Transient Changes in Bacterioplankton Communities Induced by the Submarine Volcanic Eruption of El Hierro (Canary Islands)

    PubMed Central

    Ferrera, Isabel; Arístegui, Javier; González, José M.; Montero, María F.; Fraile-Nuez, Eugenio; Gasol, Josep M.

    2015-01-01

    The submarine volcanic eruption occurring near El Hierro (Canary Islands) in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1–V3 regions for Bacteria and V3–V5 for Archaea) to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012). Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells) of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70–200 m), coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index) decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria). Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer observed

  10. Ionospheric disturbances by volcanic eruptions by GNSS-TEC: Comparison between Vulcanian and Plinian eruptions

    NASA Astrophysics Data System (ADS)

    Nakashima, Y.; Heki, K.; Takeo, A.; Cahyadi, M. N.; Aditiya, A.

    2014-12-01

    Acoustic waves from volcanic eruptions are often observed as infrasound in near fields. Part of them propagate upward and disturb the ionosphere, and can be observed in Total Electron Content (TEC) data derived by Global Navigation Satellite System (GNSS) receivers. In the past, Heki (2006 GRL) detected ionospheric disturbances by the 2004 explosion of the Asama Volcano, central Japan, and Dautermann et al. (2009 JGR) studied the 2003 eruption of the Soufriere Hills volcano in Montserrat, West Indies. Here we present new examples, and try to characterize such disturbances. We first show TEC disturbances by the 2014 February Plinian eruption (VEI 4) of the Kelud volcano, East Java, Indonesia (Figure), observed with a regional GNSS network.The 2014 Kelud eruption broke a lava dome made by 2007 eruption and created a new creator. Significant disturbances were detected with four GPS and two GLONASS satellites, and the wavelet analyses showed that harmonic oscillations started at ~16:25 UT and continued nearly one hour. The frequency of the oscillation was ~3.8 mHz, which coincides with the atmospheric fundamental mode. We also confirmed concentric wavefronts, moving outward by ~0.8m/sec (stronger signals on the northern side). These features are similar to the 2003 Soufriere Hills case, although the signals in the present Kelud case is much clearer. Next, we compare them with ionospheric disturbances by Vulcanian explosions that occurred recently in Japan, i.e. the 2004 Asama case and the 2009 Sakurajima, and the 2011 Shin-moedake eruptions. They are characterized with one-time N-shaped disturbances possibly excited by the compression of the air above the vents. On the other hand, data from nearby seismometers suggested that atmospheric oscillations of various frequencies were excited by this continuous Plinian eruption. Part of such oscillations would have grown large due to atmospheric resonance.

  11. A comparison of volcanic eruption processes on earth, moon, Mars, Io and Venus

    NASA Technical Reports Server (NTRS)

    Wilson, L.; Head, J. W., III

    1983-01-01

    The physical, chemical, and atmospheric characteristics of the silicate planets and satellites are surveyed in terms of their effects on the volcanic evolution of the surfaces of these bodies. The equations relating the parameters affecting magma ascent through the crust and eruption are analyzed, and three major types of eruption are characterized: effusive, steady explosive, and unsteady explosive. This analytical framework is then used to predict the nature of volcanic activity on each of the planets and satellites, and the predictions are compared with actual observations. Outstanding problems are discussed, with emphasis on the need for a general model of planetary interior dynamics applicable to bodies with varying degrees of interior viscosity, mantle activity, and lithospheric plate tectonics.

  12. 2011 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Maharrey, J. Zebulon; Neal, Christina A.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near three separate volcanic centers in Alaska during 2011. The year was highlighted by the unrest and eruption of Cleveland Volcano in the central Aleutian Islands. AVO annual summaries no longer report on activity at Russian volcanoes.

  13. Eruption chronology of Ciomadul, a long dormant dacitic volcanic system in the Eastern Carpathians

    NASA Astrophysics Data System (ADS)

    Molnár, Kata; Harangi, Szabolcs; Dunkl, István; Lukács, Réka; Kiss, Balázs; Schmitt, Axel K.; Seghedi, Ioan

    2016-04-01

    During the last decade, the zircon (U-Th)/He geochronology has become a promising method for dating eruption histories even in case of very young (Quaternary) volcanic products. It is proved to be particularly applicable when other dating methods such as radiocarbon, K/Ar, and 40Ar/39Ar techniques encounter analytical or interpretational difficulties often caused by a lack of appropriate materials for dating. Zircon (U-Th)/He method can be used to infer the date of the rapid cooling of the erupted magma, i.e. the eruption age. However, when the crystals formed less than ~350 ka, correction for U-series disequilibrium is necessary. The effect of the secular disequilibrium can be corrected by the U-Th zircon dates, which provides additional information also about the timescale of the magma storage. Here, we provide a detailed zircon (U-Th)/He dating approach to refine the eruption chronology of the Ciomadul dacite volcanic complex, found at the East Carpathians, eastern-central Europe. It is characterized by an intermittent precursor lava dome activity with extrusion of 0.1-0.6 km3 dacitic magma, followed by the build-up of a massive lava dome complex with two explosion craters. The erupted products are fairly homogeneous dacite with similar mineral cargo. During the field campaigns we focused on the volcanic products of the Ciomadul lava dome complex and sampled all the known localities to cover the whole volcanic period and avoid sampling bias. According to the new (U-Th)/He results the precursor lava domes were formed between ~1000 and 300 ka, during several intermittent eruption events which were separated by long repose times: Bába Laposa: 950±50 ka, Delaul Mare: 840±12 ka, Puturosul: 710±50 ka, Bálványos: 580±20 ka and Turnul Apor: 330±40 ka. After another long quiescence, volcanic activity renewed at about 200 ka and became more productive. Numerous lava domes were developed between ca. 160 and 100 ka, which form the 10-12 km3 central lava dome edifice

  14. NO2 column changes induced by volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Johnston, Paul V.; Keys, J. Gordon; Mckenzie, Richard L.

    1994-01-01

    Nitrogen dioxide slant column amounts measured by ground-based remote sensing from Lauder, New Zealand (45 deg S) and Campbell Island (53 deg S) during the second half of 1991 and early 1992 show anomalously low values that are attributed to the effects of volcanic eruptions. It is believed that the eruptions of Mount Pinatubo in the Philippines in June 1991 and possibly Mount Hudson in Chile in August 1991 are responsible for the stratospheric changes, which first became apparent in July 1991. The effects in the spring of 1991 are manifested as a reduction in the retrieved NO2 column amounts from normal levels by 35 to 45 percent, and an accompanying increase in the overnight decay of NO2. The existence of an accurate long-term record of column NO2 from the Lauder site enables us to quantify departures from the normal seasonal behavior with some confidence. Simultaneous retrievals of column ozone agree well with Dobson measurements, confirming that only part of the NO2 changes can be attributed to a modification of the scattering geometry by volcanic aerosols. Other reasons for the observed behavior are explored, including the effects of stratospheric temperature increases resulting from the aerosol loading and the possible involvement of heterogeneous chemical processes.

  15. Radiative forcing from the 1991 Mount Pinatubo volcanic eruption

    NASA Astrophysics Data System (ADS)

    Stenchikov, Georgiy L.; Kirchner, Ingo; Robock, Alan; Graf, Hans-F.; AntuñA, Juan Carlos; Grainger, R. G.; Lambert, Alyn; Thomason, Larry

    1998-06-01

    Volcanic sulfate aerosols in the stratosphere produce significant long-term solar and infrared radiative perturbations in the Earth's atmosphere and at the surface, which cause a response of the climate system. Here we study the fundamental process of the development of this volcanic radiative forcing, focusing on the eruption of Mount Pinatubo in the Philippines on June 15, 1991. We develop a spectral-, space-, and time-dependent set of aerosol parameters for 2 years after the Pinatubo eruption using a combination of SAGE II aerosol extinctions and UARS-retrieved effective radii, supported by SAM II, AVHRR, lidar and balloon observations. Using these data, we calculate the aerosol radiative forcing with the ECHAM4 general circulation model (GCM) for cases with climatological and observed sea surface temperature (SST), as well as with and without climate response. We find that the aerosol radiative forcing is not sensitive to the climate variations caused by SST or the atmospheric response to the aerosols, except in regions with varying dense cloudiness. The solar forcing in the near infrared contributes substantially to the total stratospheric heating. A complete formulation of radiative forcing should include not only changes of net fluxes at the tropopause but also the vertical distribution of atmospheric heating rates and the change of downward thermal and net solar radiative fluxes at the surface. These forcing and aerosol data are available for GCM experiments with any spatial and spectral resolution.

  16. Eruptive activity of enigmatic medium-sized volcanoes in the Michoacán-Guanajuato Volcanic Field (MGVF), Central Mexico: The case of El Metate

    NASA Astrophysics Data System (ADS)

    Chevrel, M.; Siebe, C.; Guilbaud, M. N.

    2014-12-01

    The MGVF has a total area of ca. 40,000 km2 and is well known for being the host of the only two monogenetic volcanoes in Mexico that were born in historical times: Jorullo (1759-1774) and Paricutin (1943-1952). Another particularity of the MGVF is its high number of eruptive vents with over 1000 small monogenetic cones and associated lava flows (average vol. of 0.021 km3) and ca. 400 medium-sized volcanoes (average vol. from 0.5 to 50 km3). Most of these medium-sized volcanoes may be characterized as shields that were produced dominantly by effusive activity as opposed to the small cones formed also by explosive phases of activity. The products of the small cones range from olivine basalts to andesites whereas the medium-sized volcanoes are restricted to a smaller compositional range in the andesitic domain. Although the medium-sized volcanoes are more sparsely distributed in time and space and less abundant than the small cones, the risks associated with renewal of this type of activity should not be neglected. This study focuses on El Metate which is probably the youngest shield of the MGVF (< 3,700 y. BP). Unlike a typical shield volcano composed of a succession of thin fluid basaltic flows, El Metate consists of well-preserved >60 m thick andesite flows distributed radially around a summit dome. Detailed mapping and sampling allowed us to reconstruct its eruptive activity and the time sequence of lava flow emplacement. We have identified 13 individual lava flows with lengths ranging between 3 and 15 km covering 103 km2 and average thicknesses between 60 and 150 m. Individual volumes range between 0.5 and 3.5 km3 for a total of 11 to 15 km3. Estimates of flow emplacement parameters indicate maximum average effusion rates ranging between 15 and 100 m3.s-1 and a cumulative duration from 15 to 30 years. Such a short emplacement time is comparable to the historical monogenetic eruption of nearby Paricutin volcano (9 years) but the erupted volume of lava is

  17. Katmai volcanic cluster and the great eruption of 1912

    USGS Publications Warehouse

    Hildreth, W.; Fierstein, J.

    2000-01-01

    In June 1912, the world's largest twentieth century eruption broke out through flat-lying sedimentary rocks of Jurassic age near the base of Trident volcano on the Alaska Peninsula. The 60 h ash-flow and Plinian eruptive sequence excavated and subsequently backfilled with ejecta a flaring funnel-shaped vent since called Novarupta. The vent is adjacent to a cluster of late Quaternary stratocones and domes that have released about 140 km3 of magma in the past 150 k.y. Although the 1912 vent is closest to the Trident group and is also close to Mageik and Griggs volcanoes, it was the summit of Mount Katmai, 10 km east of Novarupta, that collapsed during the eruption to form a 5.5 km3 caldera. Many earthquakes, including 14 in the range M 6-7, took place during and after the eruption, releasing 250 times more seismic energy than the 1991 caldera-forming eruption of the Philippine volcano, Pinatubo. The contrast in seismic behavior may reflect the absence of older caldera faults at Mount Katmai, lack of upward (subsidence opposing) magma flow owing to lateral magma withdrawal in 1912, and the horizontally stratified structure of the thick shale-rich Mesozoic basement. The Katmai caldera compensates for only 40% of the 13 km3 of 1912 magma erupted, which included 7-8 km3 of slightly zoned high-silica rhyolite and 4.5 km3 of crystal-rich dacite that grades continuously into 1 km3 of crystal-rich andesite. We have now mapped, sampled, and studied the products of all 20 components of the Katmai volcanic cluster. Pyroxene dacite and silicic andesite predominate at all of them, and olivine andesite is also common at Griggs, Katmai, and Trident volcanoes, but basalt and rhyodacite have erupted only at Mount Katmai. Rhyolite erupted only in 1912 and is otherwise absent among Quaternary products of the cluster. Pleistocene products of Mageik and Trident and all products of Griggs are compositionally distinguishable from those of 1912 at Novarupta. Holocene products of Mount

  18. The feeder system for the 2014 fissure eruption at Holuhraun, Bárðarbunga volcanic system, Iceland: Geodetic and seismic constraints on subsurface activity in the area north of the Vatnajökull ice cap

    NASA Astrophysics Data System (ADS)

    Dumont, Stéphanie; Parks, Michelle; Sigmundsson, Freysteinn; Hooper, Andy; Hreinsdóttir, Sigrun; Ófeigsson, Benedikt; Spaans, Karsten; Vogfjörd, Kristin; Jónsdóttir, Kristín; Hensch, Martin; Gudmundsson, Gunnar; Rafn Heimisson, Elias; Drouin, Vincent; Árnadóttir, Thóra; Pedersen, Rikke; Rut Hjartardóttir, Ásta; Magnússon, Eyjólfur

    2015-04-01

    An intense earthquake swarm began on 16 August 2014 at Bárðarbunga volcano under the Vatnajökull ice cap in Central Iceland. It marked the beginning of an intrusive activity, with a dyke propagating over 45 km northward. Such major magmatic activity has not been observed for the last three decades in Iceland, since the Krafla rifting episode 1975-1984. The dyke propagation stopped 15 days after the onset of the seismic activity, with the dyke distal end in the Holuhraun plain north of the Vatnajökull ice cap. A small 4 hour eruption marked the beginning of extrusive activity. A new fissure eruption opened up on 31 August at the northern dyke tip, with lava fountaining and feeding extensive lava flows. In January 2014 the surface covered by the lava had exceeded 80 km2, and the eruption activity does not show significant decline. We have carried out interferometric analysis of SAR data (InSAR) since the onset of the unrest. X-band satellite images from COSMO-SkyMed and TerraSAR-X satellites were acquired and analyzed to map ground surface deformation associated with the dyke emplacement. Despite most of the dyke propagation occurring under several hundreds meters of ice, the last 10 km were outside the ice cap, allowing better characterisation of the dyke-induced deformation. Here we focus on the deformation in the Holuhraun plain, in order to better understand the link between the surface deformation detected in the vicinity of the dyke by InSAR as well as GPS measurements, and the eruptive activity. The regular SAR acquisitions made over the Holuhraun area since the beginning of the unrest offer a unique opportunity to better understand the evolution of the intrusion feeding the fissure eruption. For that purpose, we focus on the faults and fissures forming the graben borders on the glacier as well as in the Holuhraun plain, initially mapped using high-resolution radar images, acquired by airborne radar. We extract movement along and perpendicular to these

  19. Active Eruptions in the NE Lau Basin

    NASA Astrophysics Data System (ADS)

    Resing, J. A.; Embley, R. W.

    2009-12-01

    NE Lau Response Team: K Rubin, E Baker, J Lupton, M Lilley, T Shank, S Merle, R Dziak, T Collasius (Jason 2 Expedition Leader), N Buck, T Baumberger, D Butterfield, D Clague, D Conlin, J Cowen, R Davis, L Evans, J Huber, M Keith, N Keller, P Michael, E Podowski, A-L Reysenbach, K Roe, H Thomas, S Walker. During a May 2009 cruise to W Mata volcano in the NE Lau Basin, we made the first observations of an active eruption on the deep-sea floor. The cruise was organized after volcanic activity was detected at two sites (W Mata volcano and NE Lau Spreading Center, NELSC) during a Nov. 2008 NOAA-PMEL expedition. At that time, both sites had elevated H2 concentrations and volcaniclastic shards in the hydrothermal plumes. Moored hydrophone data since Jan 2009 indicate that the activity at W Mata has been continuous between these expeditions. Results of our cruise and other work suggest that the NE Lau Basin hosts an unusually high level of magmatic activity, making it an ideal location to study the effects of magmatic processes on hydrothermal activity and associated ecosystems. W Mata was visited with 5 ROV Jason 2 dives and 2 dives with the MBARI autonomous mapping vehicle in May 2009. It was actively erupting at the 1200 m deep summit during each, so a hydrophone was deployed locally to collect acoustic data. Ship and shore-based analysis of HD video, molten lava, rocks, sediments, hot spring waters, and micro- and macro biological specimens collected by Jason 2 have provided a wealth of data. The eruption itself was characterized by extrusion of red, molten lava, extensive degassing, formation of large magma bubbles, explosive pyroclast ejection, and the active extrusion of pillow lavas. The erupting magmas are boninite, a relatively rare magma type found only at convergent margins. The hydrothermal fluids are generally acidic and all diffuse fluids collected were microbially active, even those at pH <3. W Mata was host to shrimp similar to those found at several other

  20. Eruptions at Chaos Crags, Lassen Volcanic National Park, California

    SciTech Connect

    Heiken, G.; Eichelberger, J.C.

    1980-05-01

    Chaos Crags are a group of silicic lava domes and associated tephra deposits composed of intermediate and silicic lavas on the edge of the central plateau of Lassen Volcanic National Park, California. The plateau coincides with a negative gravity anomaly interpreted as a large silicic magma reservoir. About 0.15 km/sup 3/ of rhyodacitic pyroclastic flows were erupted 1100 years ago from vents beneath the present Crags and flowed for 21 km down the valleys of Lost and Manzanita Creeks. Pumice pyroclasts in the flows are characterized by high phenocryst content and low vesicularity. These eruptions were followed by the extrusion of 1.25 km/sup 3/ of dacitic lava as a stubby flow and three-lobed dome. The tephra and lava appear to be products of intrusion of mostly liquid high-alumina basalt into a large, partially crystallized rhyolitic magma body with subsequent mixing. The earliest tephra contain only a minor basaltic component while the youngest portion of the Crags contain approximately 20%. This change with time reflects either a vertical zonation in the magma inherited from the mixing event or a continued admixing of basaltic magma within the chamber during the span of eruptive period.

  1. Detection and characterization of volcanic ash plumes over Lille during the Eyjafjallajökull eruption

    NASA Astrophysics Data System (ADS)

    Mortier, A.; Goloub, P.; Podvin, T.; Deroo, C.; Chaikovsky, A.; Ajtai, N.; Blarel, L.; Tanre, D.; Derimian, Y.

    2013-04-01

    Routine sun-photometer and micro-lidar measurements were performed in Lille, northern France, in April and May 2010 during the Eyjafjallajökull volcanic eruption. The impact of such an eruption emphasized significance of hazards for human activities and importance of observations of the volcanic aerosol particles. This paper presents the main results of a joint micro-lidar/sun-photometer analysis performed in Lille, where volcanic ash plumes were observed during at least 22 days, whenever weather conditions permitted. Aerosol properties retrieved from automatic sun-photometer measurements (AERONET) were strongly changed during the volcanic aerosol plumes transport over Lille. In most cases, the aerosol optical depth (AOD) increased, whereas Ångström exponent decreased, thus indicating coarse-mode dominance in the volume size distribution. Moreover, the non-spherical fraction retrieved by AERONET significantly increased. The real part of the complex refractive index was up to 1.55 at 440 nm during the eruption, compared to background data of about 1.46 before the eruption. Collocated lidar data revealed that several aerosol layers were present between 2 and 5 km, all originating from the Iceland region as confirmed by backward trajectories. The volcanic ash AOD was derived from lidar extinction profiles and sun-photometer AOD, and its maximum was estimated around 0.37 at 532 nm on 18 April 2010. This value was observed at an altitude of 1700 m and corresponds to an ash mass concentration (AMC) slightly higher than 1000 μg m-3 (±50%). An effective lidar ratio of ash particles of 48 sr was retrieved at 532 nm for 17 April during the early stages of the eruption, a value which agrees with several other studies carried out on this topic. Even though the accuracy of the retrievals is not as high as that obtained from reference multiwavelength lidar systems, this study demonstrates the opportunity of micro-lidar and sun-photometer joint data processing for deriving

  2. Detection and characterization of volcanic ash plumes over Lille during the Eyjafjallajökull eruption

    NASA Astrophysics Data System (ADS)

    Mortier, A.; Goloub, P.; Podvin, T.; Deroo, C.; Chaikovsky, A.; Ajtai, N.; Blarel, L.; Tanre, D.; Derimian, Y.

    2012-12-01

    Routine sun-photometer and micro-LIDAR measurements were performed in Lille, northern France, in April and May 2010 during the Eyjafjallajökull volcanic eruption. The impact of such an eruption emphasized significance of hazards for human activities and importance of observarions of the volcanic aerosol particles. This paper presents the main results of a joint micro-LIDAR/sun-photometer analysis performed in Lille, where volcanic ash plumes were observed during at least 22 days, weather conditions permitting. Aerosol properties retrieved from automatic sun-photometer measurements (AERONET) were strongly changed during the volcanic aerosol plumes transport over Lille. In most cases, the Aerosol Optical Depth (AOD) was increased whereas Ångström exponent decreased thus indicating coarse mode dominance in the volume size distribution. Moreover, the retrieved by AERONET non spherical fraction was significantly increased. The Real part of the complex refractive index was up to 1.55 at 440 nm during the eruption time while typically was about 1.46 before the eruption. Collocated LIDAR data revealed that several aerosol layers were present between 2 and 5 km, all originating from Iceland region as confirmed by backward-trajectories. The volcanic ash AOD was derived from LIDAR extinction profiles and sun-photometer AOD, and was estimated of around 0.37 at 532 nm on 18 April 2010. This value was observed at an altitude of 1700 m and corresponded to an Ash Mass Concentration (AMC) slightly higher than 1000 μg m3 (±50%). The effective LIDAR Ratio of ash particles was 48 sr for 18 April during the early stages of the eruption, a value which agrees with several other studies carried out on this topic. Even though the accuracy of the retrievals is not as high as that obtained from reference multi-wavelength LIDAR systems, this study demonstrates the opportunity of micro-LIDAR and sun-photometer joint data processing for deriving volcanic AMC. It also outlines the fact that

  3. Quantifying the impact of moderate volcanic eruptions on the stratosphere

    NASA Astrophysics Data System (ADS)

    Lurton, Thibaut; Jégou, Fabrice; Berthet, Gwenaël; Renard, Jean-Baptiste; Vignelles, Damien; Bègue, Nelson; Portafaix, Thierry; Bencherif, Hassan; Couté, Benoît; Duverger, Vincent; Payen, Guillaume; Metzger, Jean-Marc; Posny, Françoise

    2016-04-01

    We have investigated the impact of two recent moderate volcanic eruptions upon the sulphur dioxide and sulphate loading in the stratosphere, with the use of the CESM numerical global model. Through the use of the WACCM/CARMA module in CESM, which provides with a comprehensive modelling of the sulphur cycle, and at a ˜2° spatial resolution, we have investigated the impacts of the eruptions of the Kelud (13 February 2014, 7° S, 112° E) and Calbuco (22 April 2015, 41° S, 72° W) volcanoes on the lower stratosphere. The input SO2 quantities and altitudes of injection were estimated from satellite observations, and correspond in both cases to several hundreds of kT of SO2 injected directly at upper troposphere/lower stratosphere heights, over a few kilometres of altitude span. Our results have been compared with satellite measurements, from IASI for SO2, and the CALIOP space-borne lidar for aerosols. We also provide cross-comparisons with in-situ measurements performed above La Réunion Island (21° S, 55° E), first comparing our simulation results to the data obtained through the launch of a balloon-borne light optical aerosol counter (LOAC), and also by cross-comparison with in-situ lidar measurements. To investigate the role of dynamical barriers around those volcanic events, our simulations have been run using two different sets of meteorological forcing data (namely MERRA vs. ERA-Interim), which can differ in that respect, especially regarding the vertical advection at tropical latitudes. Our overall aim is to assess the impact of such moderate eruptions over the lower stratosphere, on the one hand chemically, and on the other hand in terms of radiative effects.

  4. Volcanic inflation of Axial Seamount since the 1998 eruption

    NASA Astrophysics Data System (ADS)

    Nooner, S. L.; Chadwick, W.

    2010-12-01

    Since 2000, ambient seawater pressure has been precisely measured at five seafloor benchmarks inside the summit caldera at Axial Seamount in order to measure their relative depth and monitor volcanic inflation that has been occurring since an eruption in 1998. A remotely operated vehicle has been used to deploy a mobile pressure recorder (MPR) in campaign-style surveys, with additional seawater pressure data collected at the caldera center with multiyear deployments of continuously recording bottom pressure recorders (BPRs). Our previous measurements at Axial Seamount have shown steady inflation of the caldera center through 2007 and the spatial pattern of uplift has been consistent with magma storage in a shallow reservoir underlying the caldera at a depth of 3.5 km. This is the only location in the world where long-term monitoring of volcanic inflation has been accomplished at a submarine volcano. Here we present the results of new pressure data (both MPR and BPR) collected during a cruise on board the R/V Thomas Thompson in August-September 2010 and using the Jason ROV. Three years have passed since the previous survey, providing enough time to distinguish between two alternative models of inflation and magma recharge for the volcano. This allows us to refine our forecast for the next eruption at Axial and estimate total uplift that has occurred since the 1998 eruption. During the 2010 survey we also deployed new concrete benchmarks to replace our original galvanized steel benchmarks. The new benchmarks are larger and much heavier, and we expect them to be much more durable and stable over long time periods and help keep measurement errors as small as possible. We installed a sixth benchmark at a new site within the caldera, near the Ashes vent field, which will help constrain our modeling of the inflation signal in future years.

  5. Subtle precursors of volcanic eruptions at Piton de la Fournaise detected by extensometers

    NASA Astrophysics Data System (ADS)

    Peltier, A.; Staudacher, T.; Catherine, P.; Ricard, L.-P.; Kowalski, P.; Bachèlery, P.

    2006-03-01

    The highly active Piton de la Fournaise volcano is an excellent field laboratory to develop and test, in a short time span, new methods for detecting volcanic precursors. Since 1995, a network of four extensometers has been installed and has detected extensional, shear and vertical movements of fractures in relation to ground deformations of the volcano. This study describes new insights in the distribution of stresses in the volcanic edifice between eruptions and during magma intrusions. Continuous measurements show that all eruptions were preceded several months before by significant fracture movements: a constant opening associated with a dextral movement on the south flank and a sinistral movement on the north flank of the volcano. These movements can be attributed to a shallow pressure source below the summit craters.

  6. Stratospheric sulfate from the Gareloi eruption, 1980: Contribution to the ''ambient'' aerosol by a poorly documented volcanic eruption

    SciTech Connect

    Sedlacek, W.A.; Mroz, E.J.; Heiken, G.

    1981-07-01

    While sampling stratospheric aerosols during July--August 1980 a plume of ''fresh'' volcanic debris was observed in the Northern hemisphere. The origin of this material seems to be a poorly documented explosive eruption of Gareloi valcano in the Aleutian Islands. The debris was sampled at an altitude of 19.2 km: almost twice the height of observed eruption clouds. Such remote, unobserved or poorly documented eruptions may be a source that helps maintain the ''ambient'' stratospheric aerosol background.

  7. The mechanisms of fine particle generation and electrification during Mount St. Helens volcanic eruption

    NASA Technical Reports Server (NTRS)

    Cheng, R. J.

    1982-01-01

    Microscopical investigation of volcanic ash collected from ground stations during Mount St. Helens eruptions reveal a distinctive bimodel size distribution with high concentrations of particle ranges at (1) 200-100 microns and (2) 20-0.1 microns. Close examination of individual particles shows that most larger ones are solidified magma particles of porous pumice with numerous gas bubbles in the interior and the smaller ones are all glassy fragments without any detectable gas bubbles. Elemental analysis demonstrates that the fine fragments all have a composition similar to that of the larger pumice particles. Laboratory experiments suggest that the formation of the fine fragments is by bursting of glassy bubbles from a partially solidified surface of a crystallizing molten magma particle. The production of gas bubbles is due to the release of absorbed gases in molten magma particles when solubility decreases during phase transition. Diffusion cloud chamber experiments strongly indicate that sub-micron volcanic fragments are highly hygroscopic and extremely active as cloud condensation nuclei. Ice crystals also are evidently formed on those fragments in a supercooled (-20 C) cloud chamber. It has been reported that charge generation from ocean volcanic eruptions is due to contact of molten lava with sea water. This seems to be insufficient to explain the observed rapid and intense lightning activities over Mount St. Helens eruptions. Therefore, a hypothesis is presented here that highly electrically charged fine solid fragments are ejected by bursting of gas bubbles from the surface of a crystallizing molten magma particles.

  8. Degassing during quiescence as a trigger of magma ascent and volcanic eruptions

    PubMed Central

    Girona, Társilo; Costa, Fidel; Schubert, Gerald

    2015-01-01

    Understanding the mechanisms that control the start-up of volcanic unrest is crucial to improve the forecasting of eruptions at active volcanoes. Among the most active volcanoes in the world are the so-called persistently degassing ones (e.g., Etna, Italy; Merapi, Indonesia), which emit massive amounts of gas during quiescence (several kilotonnes per day) and erupt every few months or years. The hyperactivity of these volcanoes results from frequent pressurizations of the shallow magma plumbing system, which in most cases are thought to occur by the ascent of magma from deep to shallow reservoirs. However, the driving force that causes magma ascent from depth remains unknown. Here we demonstrate that magma ascent can be triggered by the passive release of gas during quiescence, which induces the opening of pathways connecting deep and shallow magma reservoirs. This top-down mechanism for volcanic eruptions contrasts with the more common bottom-up mechanisms in which magma ascent is only driven by processes occurring at depth. A cause-effect relationship between passive degassing and magma ascent can explain the fact that repose times are typically much longer than unrest times preceding eruptions, and may account for the so frequent unrest episodes of persistently degassing volcanoes. PMID:26666396

  9. Degassing during quiescence as a trigger of magma ascent and volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Girona, Társilo; Costa, Fidel; Schubert, Gerald

    2015-12-01

    Understanding the mechanisms that control the start-up of volcanic unrest is crucial to improve the forecasting of eruptions at active volcanoes. Among the most active volcanoes in the world are the so-called persistently degassing ones (e.g., Etna, Italy; Merapi, Indonesia), which emit massive amounts of gas during quiescence (several kilotonnes per day) and erupt every few months or years. The hyperactivity of these volcanoes results from frequent pressurizations of the shallow magma plumbing system, which in most cases are thought to occur by the ascent of magma from deep to shallow reservoirs. However, the driving force that causes magma ascent from depth remains unknown. Here we demonstrate that magma ascent can be triggered by the passive release of gas during quiescence, which induces the opening of pathways connecting deep and shallow magma reservoirs. This top-down mechanism for volcanic eruptions contrasts with the more common bottom-up mechanisms in which magma ascent is only driven by processes occurring at depth. A cause-effect relationship between passive degassing and magma ascent can explain the fact that repose times are typically much longer than unrest times preceding eruptions, and may account for the so frequent unrest episodes of persistently degassing volcanoes.

  10. Degassing during quiescence as a trigger of magma ascent and volcanic eruptions.

    PubMed

    Girona, Társilo; Costa, Fidel; Schubert, Gerald

    2015-01-01

    Understanding the mechanisms that control the start-up of volcanic unrest is crucial to improve the forecasting of eruptions at active volcanoes. Among the most active volcanoes in the world are the so-called persistently degassing ones (e.g., Etna, Italy; Merapi, Indonesia), which emit massive amounts of gas during quiescence (several kilotonnes per day) and erupt every few months or years. The hyperactivity of these volcanoes results from frequent pressurizations of the shallow magma plumbing system, which in most cases are thought to occur by the ascent of magma from deep to shallow reservoirs. However, the driving force that causes magma ascent from depth remains unknown. Here we demonstrate that magma ascent can be triggered by the passive release of gas during quiescence, which induces the opening of pathways connecting deep and shallow magma reservoirs. This top-down mechanism for volcanic eruptions contrasts with the more common bottom-up mechanisms in which magma ascent is only driven by processes occurring at depth. A cause-effect relationship between passive degassing and magma ascent can explain the fact that repose times are typically much longer than unrest times preceding eruptions, and may account for the so frequent unrest episodes of persistently degassing volcanoes. PMID:26666396

  11. Changes in shear-wave splitting before volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Liu, Sha; Crampin, Stuart

    2015-04-01

    We have shown that observations of shear-wave splitting (SWS) monitor stress-accumulation and stress-relaxation before earthquakes which allows the time, magnitude, and in some circumstances fault-plane of impending earthquakes to be stress-forecast. (We call this procedure stress-forecasting rather than predicting or forecasting to emphasise the different formalism.) We have stress-forecast these parameters successfully three-days before a 1988 M5 earthquake in SW Iceland, and identified characteristic anomalies retrospectively before ~16 other earthquakes in Iceland and elsewhere. SWS monitors microcrack geometry and shows that microcracks are so closely spaced that they verge on fracturing and earthquakes. Phenomena verging on failure in this way are critical-systems with 'butterfly wings' sensitivity. Such critical-systems are very common. The Earth is an archetypal complex heterogeneous interactive phenomenon and must be expected to be a critical-system. We claim this critical system as a New Geophysics of a critically-microcracked rock mass. Such critical systems impose a range of fundamentally-new properties on conventional sub-critical physics/geophysics, one of which is universality. Consequently it is expected that we observe similar stress-accumulation and stress-relaxation before volcanic eruptions to those before earthquakes. There are three eruptions where appropriate changes in SWS have been observed similar to those observed before earthquakes. These are: the 1996 Gjálp fissure eruption, Vatnajökull, Iceland; a 2001 flank eruption on Mount Etna, Sicily (reported by Francesca Bianco, INGV, Naples); and the 2010 Eyjafjajökull ash-cloud eruption, SW Iceland. These will be presented in the same normalised format as is used before earthquakes. The 1996 Gjálp eruption showed a 2½-month stress-accumulation, and a ~1-year stress-relaxation (attributed to the North Atlantic Ridge adjusting to the magma injection beneath the Vatnajökull Ice Cap). The

  12. The 2011 submarine volcanic eruption of El Hierro Island (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    López, C.; Blanco, M. J.

    2012-04-01

    On 10 October 2011 a submarine volcanic eruption began 2 km SW of La Restinga village in the South coast of El Hierro Island (Spain). It became the first submarine eruption reported in 500 years of historical record in the Canary Islands. The eruption took place after three months of intensive seismic activity and ground deformation. The first signal evidencing the eruption was a harmonic tremor signal, located somewhere in the South sector of El Hierro Island and registered in every seismic station on the island. On the following day, the tremoŕs amplitude increased up enough to be felt by the residents of La Restinga. The first visual evidence of the eruption was observed during the afternoon of 12 October, a large light-green coloured area on the sea surface, 2 km to the SW of La Restinga. Three days later, steaming lava fragments were observed floating on the sea, in the area where the vent was supposed to be located. These fragments had a bomb-like shape and their sizes ranged between 10 and 40 cm long. They were bicoloured, a black outer part with a basaltic composition, and a white inner part, highly vesiculated and rich in silica content (>60%). This type of fragments was only observed during the first days of the eruption. Within the next two months further emission episodes have been observed with turbulent water, foam rings and large bubbles on the sea surface. On the 27th of November new lava fragments were observed while floating and degassing on the sea surface. Most of them were "lava balloons" or hollow fragments of lavas, with sizes between 30 and 200 cm, and highly vesiculated outer crust of basaltic-basanitic and sideromelane composition. The emission of these products continues intermitently up to date (January 2012) During the eruption, the GPS monitoring network detected episodes of inflation-deflation and a maximum vertical deformation of 4 cm. The horizontal deformation, which had reached up to 5 cm before the eruption, remains stable. The

  13. Character and timing of recent eruptions of the Tatun Volcanic Group, Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Belousova, Marina; Belousov, Alexander; Chen, Chang-Hwa; Zellmer, Georg

    2010-05-01

    The quaternary dominantly andesitic Tatun Volcanic Group (TVG) occupies 400 km² in the northern part of Taiwan Island. The group has more than 20 well-preserved volcanic edifices, multiple hot springs and fumaroles as hot as 120°C with magmatic isotopic signatures. Local seismic network has registered shallow volcano-tectonic earthquakes in the area. The TVG is surrounded by densely populated areas, the largest of which is Taipei City (7 million people), as well as by multiple industrial factories and two nuclear power plants. Therefore, the question about timing and styles of the most recent TVG eruptions is important. We report results of our investigations of TVG physical volcanology, with focus on pyroclastic stratigraphy and eruption dynamics. For the most recent TVG eruptions were common long-term extrusions of crystal-rich, viscous lava. The eruptions formed dominantly monogenetic plug domes, coulees, and lava flows. The domes have heights of 150-400 m, base diameters of 0.5-2 km, and volumes of 0.05-0.3 km³. The nine best-preserved TVG lava flows have thicknesses of 80-150 m, lengths of 1-5.6 km, and volumes of 0.07-0.6 km³. Based on morphology of the largest lava flow we estimated an effusion rate of 6.4 m³/s, eruption duration of 1100 days, lava front speed of 2-3 m/hour. The only pyroclastic edifice of the Tatun group is a tephra ring ~500 m in diameter and 40 m high formed by plinian eruption. Apart from that, few non-reworked pyroclastic deposits are currently preserved at TVG. The available data have shown that the explosive activity of TVG was weak-to-mild, but rather diverse with deposition of fallout tephra, base surges, and pyroclastic flows. Fallout deposits are represented mostly by well-sorted, crystal-rich ash layers (Md 1.0-3.4 phi, sorting 0.9-2.4 phi) left by Vulcanian-type activity. Deposits of pumice fallout (Md -4-(-2.5) phi, sorting 1.2-2.4 phi) from Plinian eruptions are less common. Many of the eruptions show evidence of water

  14. Doppler Radar Sounding of Volcanic Eruption Dynamics at Mount Etna

    NASA Astrophysics Data System (ADS)

    Dubosclard, G.; Donnadieu, F.; Allard, P.; Cordesses, R.; Hervier, C.; Kornprobst, J.; Lnat, J.; Coltelli, M.; Privitera, E.

    2001-12-01

    Based on the UHF wind profiler technique, a medium power (100 W) pulsed Doppler radar has been specifically developed for the sounding of explosive volcanic jets. Named Voldorad (Volcanological Doppler Radar), this radar can operate at medium distance ( ~0.5 - 4 km) from the active vent and is compact enough to be easily set up on a volcano. The last version of the radar is housed in one unit ( ~60x60x60 cm) and its total weight is ~50 kg. A PC is used for real-time monitoring and data storage. The radar antenna is a 2*2 array of 24 elements Yagi antenna (9° beamwidth) set up on a tripod which is steerable in azimuth and elevation. A pulsed signal (typical duration 0.75 μ s) is transmitted every 100 μ s with a wavelength of 23.5 cm. After amplification and filtering, the received signal is digitized. Each digitized sample corresponds to a received echo at a selected time (i.e. selected range), thus defining the so-called range gates. The Doppler spectrum is then computed for each gate. Three parameters characterizing the ejecta can be deduced from this spectrum: reflectivity, mean velocity and maximum velocity of the jet particles. We present results from experimental campains at Mount Etna during strombolian activity of the SE crater in October 1998 and July 2001. Quasi-continuous and powerful echoes were observed in the central gates, on either side of the jet axis, whereas echoes of side gates were weaker and more intermittent. The temporal variations of the radar signal were analyzed at two time scales. First, the time variations of reflectivity appear to be a good indicator of the long-term evolution of the eruption and also follow the overall trend of the tremor signal. Secondly, detailed analysis of the radar signal (typical integration time ~64 ms) reveals 5 s periodic outbursts during fountain activity. Moreover, the maximum velocity of the jet particles estimated from Doppler spectra might represent the velocity of the finest particles directly

  15. Explosive eruption of rhyodacitic magma at the Cordón-Caulle volcanic complex, southern Chile

    NASA Astrophysics Data System (ADS)

    Castro, J. M.; Schipper, C.

    2011-12-01

    After lying dormant for decades, the Cordón-Caulle volcanic complex (CCVC) reactivated again on 4 June, 2011 with an explosive eruption that produced a sustained vertical ash column reaching roughly 14,000 m a.s.l. This explosive phase produced a tephra plume that dispersed E-SE across the Chilean Patagonia into Argentina, and within a week encircled the globe prompting widespread disruption to air traffic and several airport closures. After about 3 weeks of fluctuating explosive activity, a lava flow began effusing from the same vent as the initial activity. We analyzed pumice and ash samples of the Plinian fall from 4 June for their major and trace element makeup, mineralogical characteristics, and 3D textural relationships within pyroclasts. The light beige, phenocryst-poor (<5 vol%) pumice contains plagioclase (~1mm) as its primary phase, and magnetite, orthopyroxene and clinopyroxene in sub-equal amounts. The crystals often form intergrowth clusters but may also be found separate and enclosed in highly vesicular microlite-free glass. As shown by XRF analyses on bulk pumice and ash samples collected from two localities southeast of the vent, the current eruptives comprise the following (in wt.%): SiO2 = 69.6, TiO2 = 0.70, Al2O3 = 14.3, Fe2O3 = 4.56, MnO = 0.11, MgO = 0.54, CaO = 2.3, Na2O = 5.14, K2O = 2.75, P2O5 = 0.11; and, (in ppm): Cr = 6.7, Ni = 2.3, Rb = 70.3, Sr = 163.3, Y = 51.7, Zr = 328, Ba = 702, Pb = 23.7. Interestingly, these compositions are virtually identical to those of magma erupted during 1960 and closely resemble rhyodacite erupted in 1921 from nearby vents. The primary difference between the present eruption and its recent predecessors is the much greater eruptive vigour of the current phase. Another distinction between the present and past historical eruptions is the presence of conspicuous mafic-felsic mingling textures in a small percentage (~0.5 vol%) of the current pumice. Textural and chemical analyses of the mafic blobs are

  16. Impacts of volcanic eruptions and geoengineering on Arctic climate

    NASA Astrophysics Data System (ADS)

    Berdahl, Mira

    Stratospheric aerosols can produce large radiative forcing and climate response, often amplified in the Arctic. Here I study the Arctic response to natural (volcanic eruptions) and potential anthropogenic (geoengineering) stratospheric sulfate aerosols. I use a regional climate model and global climate model output from two modeling intercomparison projects. First, I investigate the relative impacts of changes in radiation and advection on snow extent over Baffin Island with the Weather Research and Forecasting model. Model results show it is possible to suddenly lower the snowline by amounts comparable to those seen during the Little Ice Age with an average temperature decrease of --3.9 +/- 1.1 K from present. Further, sea ice expansion following large volcanic eruptions would have significant affects on inland temperatures, especially in the fall. Next, I analyze Last Millennium simulations from the Paleoclimate Modeling Intercomparison Project 3 to assess whether state-of-the-art global climate models produce sudden changes and persistence of cold conditions after large volcanic eruptions as inferred by geological records and previous climate modeling. North Atlantic sea ice and Baffin Island snow cover showed large-scale expansion in the simulations, but none of the models produced significant centennial-scale effects. Warm Baffin Island summer climates stunt snow expansion in some models completely, and model topography misses the critical elevations that could sustain snow on the island. This has critical consequences for ice and snow formation and persistence in regions such as the Arctic where temperatures are near freezing and small temperature changes affect the state of water. Finally, I analyze output from the Geoengineering Modeling Intercomparison Project to examine whether geoengineering by injection of sulfate aerosols into the lower stratosphere prevents the demise of minimum annual sea ice extent, or slows spring snow cover loss. Despite

  17. Predicting eruptions from precursory activity using remote sensing data hybridization

    NASA Astrophysics Data System (ADS)

    Reath, K. A.; Ramsey, M. S.; Dehn, J.; Webley, P. W.

    2016-07-01

    Many volcanoes produce some level of precursory activity prior to an eruption. This activity may or may not be detected depending on the available monitoring technology. In certain cases, precursors such as thermal output can be interpreted to make forecasts about the time and magnitude of the impending eruption. Kamchatka (Russia) provides an ideal natural laboratory to study a wide variety of eruption styles and precursory activity prior to an eruption. At Bezymianny volcano for example, a clear increase in thermal activity commonly occurs before an eruption, which has allowed predictions to be made months ahead of time. Conversely, the eruption of Tolbachik volcano in 2012 produced no discernable thermal precursors before the large scale effusive eruption. However, most volcanoes fall between the extremes of consistently behaved and completely undetectable, which is the case with neighboring Kliuchevskoi volcano. This study tests the effectiveness of using thermal infrared (TIR) remote sensing to track volcanic thermal precursors using data from both the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Advanced Very High Resolution Radiometer (AVHRR) sensors. It focuses on three large eruptions that produced different levels and durations of effusive and explosive behavior at Kliuchevskoi. Before each of these eruptions, TIR spaceborne sensors detected thermal anomalies (i.e., pixels with brightness temperatures > 2 °C above the background temperature). High-temporal, low-spatial resolution (i.e., ~ hours and 1 km) AVHRR data are ideal for detecting large thermal events occurring over shorter time scales, such as the hot material ejected following strombolian eruptions. In contrast, high-spatial, low-temporal resolution (i.e., days to weeks and 90 m) ASTER data enables the detection of much lower thermal activity; however, activity with a shorter duration will commonly be missed. ASTER and AVHRR data are combined to track low

  18. New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy)

    USGS Publications Warehouse

    de Vivo, B.; Rolandi, G.; Gans, P.B.; Calvert, A.; Bohrson, W.A.; Spera, F.J.; Belkin, H.E.

    2001-01-01

    The ???150 km3 (DRE) trachytic Campanian Ignimbrite, which is situated north-west of Naples, Italy, is one of the largest eruptions in the Mediterranean region in the last 200 ky. Despite centuries of investigation, the age and eruptive history of the Campanian Ignimbrite is still debated, as is the chronology of other significant volcanic events of the Campanian Plain within the last 200-300 ky. New 40Ar/39Ar geochronology defines the age of the Campanian Ignimbrite at 39.28 ?? 0.11 ka, about 2 ky older than the previous best estimate. Based on the distribution of the Campanian Ignimbrite and associated uppermost proximal lithic and polyclastic breccias, we suggest that the Campanian Ignimbrite magma was emitted from fissures activated along neotectonic Apennine faults rather than from ring fractures defining a Campi Flegrei caldera. Significantly, new volcanological, geochronological, and geochemical data distinguish previously unrecognized ignimbrite deposits in the Campanian Plain, accurately dated between 157 and 205 ka. These ages, coupled with a xenocrystic sanidine component >315 ka, extend the volcanic history of this region by over 200 ky. Recent work also identifies a pyroclastic deposit, dated at 18.0 ka, outside of the topographic Campi Flegrei basin, expanding the spatial distribution of post-Campanian Ignimbrite deposits. These new discoveries emphasize the importance of continued investigation of the ages, distribution, volumes, and eruption dynamics of volcanic events associated with the Campanian Plain. Such information is critical for accurate assessment of the volcanic hazards associated with potentially large-volume explosive eruptions in close proximity to the densely populated Neapolitan region.

  19. Exploring the influence of vent location and eruption style on tephra fall hazard from the Okataina Volcanic Centre, New Zealand

    NASA Astrophysics Data System (ADS)

    Thompson, Mary Anne; Lindsay, Jan M.; Sandri, Laura; Biass, Sébastien; Bonadonna, Costanza; Jolly, Gill; Marzocchi, Warner

    2015-05-01

    Uncertainties in modelling volcanic hazards are often amplified in geographically large systems which have a diverse eruption history that comprises variable eruption styles from many different vent locations. The ~700 km2 Okataina Volcanic Centre (OVC) is a caldera complex in New Zealand which has displayed a range of eruption styles and compositions over its current phase of activity (26 ka-present), including one basaltic maar-forming eruption, one basaltic Plinian eruption and nine rhyolitic Plinian eruptions. All three of these eruption styles occurred within the past 3.5 ky, and any of these styles could occur in the event of a future eruption. The location of a future eruption is also unknown. Future vents could potentially open in one of three different areas which have been activated in the past 26 ky at the OVC: the Tarawera linear vent zone (LVZ) (five eruptions), the Haroharo LVZ (five eruptions) or outside of these LVZs (one eruption). A future rhyolitic or basaltic Plinian eruption from the OVC is likely to generate widespread tephra fall in loads that will cause significant disruption and have severe socio-economic impacts. Past OVC tephra hazard studies have focused on evaluating hazard from a rhyolitic Plinian eruption at select vent locations in the OVC's Tarawera LVZ. Here, we expand upon past studies by evaluating tephra hazard for all possible OVC eruption vent areas and for both rhyolitic and basaltic Plinian eruption styles, and explore how these parameters influence tephra hazard forecasts. Probabilistic volcanic hazard model BET_VH and advection-diffusion model TEPHRA2 were used to assess the hazard of accumulating ≥10 kg m-2 of tephra from both basaltic Plinian and rhyolitic Plinian eruption styles, occurring from within the Tarawera LVZ, the Haroharo LVZ or other potential vent areas within the caldera. Our results highlight the importance of considering all the potential vent locations of a volcanic system, in order to capture the full

  20. Sedimentology, eruptive mechanism and facies architecture of basaltic scoria cones from the Auckland Volcanic Field (New Zealand)

    NASA Astrophysics Data System (ADS)

    Kereszturi, Gábor; Németh, Károly

    2016-09-01

    Scoria cones are a common type of basaltic to andesitic small-volume volcanoes (e.g. 10- 1-10- 5 km3) that results from gas-bubble driven explosive eruptive styles. Although they are small in volume, they can produce complex eruptions, involving multiple eruptive styles. Eight scoria cones from the Quaternary Auckland Volcanic Field in New Zealand were selected to define the eruptive style variability from their volcanic facies architecture. The reconstruction of their eruptive and pyroclastic transport mechanisms was established on the basis of study of their volcanic sedimentology, stratigraphy, and measurement of their pyroclast density, porosity, Scanning Electron Microscopy, 2D particle morphology analysis and Visible and Near Visible Infrared Spectroscopy. Collection of these data allowed defining three end-member types of scoria cones inferred to be constructed from lava-fountaining, transitional fountaining and Strombolian type, and explosive Strombolian type. Using the physical and field-based characteristics of scoriaceous samples a simple generalised facies model of basaltic scoria cones for the AVF is developed that can be extended to other scoria cones elsewhere. The typical AVF scoria cone has an initial phreatomagmatic phases that might reduce the volume of magma available for subsequent scoria cone forming eruptions. This inferred to have the main reason to have decreased cone volumes recognised from Auckland in comparison to other volcanic fields evolved dominantly in dry eruptive condition (e.g. no external water influence). It suggests that such subtle eruptive style variations through a scoria cone evolution need to be integrated into the hazard assessment of a potentially active volcanic field such as that in Auckland.

  1. The eruptive chronology of the Ampato-Sabancaya volcanic complex (Southern Peru)

    NASA Astrophysics Data System (ADS)

    Samaniego, Pablo; Rivera, Marco; Mariño, Jersy; Guillou, Hervé; Liorzou, Céline; Zerathe, Swann; Delgado, Rosmery; Valderrama, Patricio; Scao, Vincent

    2016-09-01

    We have reconstructed the eruptive chronology of the Ampato-Sabancaya volcanic complex (Southern Peru) on the basis of extensive fieldwork, and a large dataset of geochronological (40K-40Ar, 14C and 3He) and geochemical (major and trace element) data. This volcanic complex is composed of two successive edifices that have experienced discontinuous volcanic activity from Middle Pleistocene to Holocene times. The Ampato compound volcano consists of a basal edifice constructed over at least two cone-building stages dated at 450-400 ka and 230-200 ka. After a period of quiescence, the Ampato Upper edifice was constructed firstly during an effusive stage (80-70 ka), and then by the formation of three successive peaks: the Northern, Southern (40-20 ka) and Central cones (20-10 ka). The Southern peak, which is the biggest, experienced large explosive phases, resulting in deposits such as the Corinta plinian fallout. During the Holocene, eruptive activity migrated to the NE and constructed the mostly effusive Sabancaya edifice. This cone comprised many andesitic and dacitic blocky lava flows and a young terminal cone, mostly composed of pyroclastic material. Most samples from the Ampato-Sabancaya define a broad high-K magmatic trend composed of andesites and dacites with a mineral assemblage of plagioclase, amphibole, biotite, ortho- and clino-pyroxene, and Fe-Ti oxides. A secondary trend also exists, corresponding to rare dacitic explosive eruptions (i.e. Corinta fallout and flow deposits). Both magmatic trends are derived by fractional crystallisation involving an amphibole-rich cumulate with variable amounts of upper crustal assimilation. A marked change in the overall eruptive rate has been identified between Ampato (~ 0.1 km3/ka) and Sabancaya (0.6-1.7 km3/ka). This abrupt change demonstrates that eruptive rates have not been homogeneous throughout the volcano's history. Based on tephrochronologic studies, the Late Holocene Sabancaya activity is characterised by strong

  2. Eruptive history of the Colima volcanic complex (Mexico)

    NASA Astrophysics Data System (ADS)

    Robin, Claude; Mossand, Philippe; Camus, Guy; Cantagrel, Jean-Marie; Gourgaud, Alain; Vincent, Pierre M.

    1987-03-01

    The evolution of the Colima volcanic complex can be divided into successive periods characterized by different dynamic and magmatic processes: emission of andesitic to dacitic lava flows, acid-ash and pumice-flow deposits, fallback nuées ardentes leading to pyroclastic flows with heterogeneous magma, plinian air-fall deposits, scoriae cones of alkaline and calc-alkaline nature. Four caldera-forming events, resulting either from major ignimbrite outbursts or Mount St. Helens-type eruptions, separate the main stages of development of the complex from the building of an ancient shield volcano (25 × 30 km wide) up to two summit cones, Nevado and Fuego. The oldest caldera, C1 (7-8 km wide), related to the pouring out of dacitic ash flows, marks the transition between two periods of activity in the primitive edifice called Nevado I: the first one, which is at least 0.6 m.y. old, was mainly andesitic and effusive, whereas the second one was characterized by extrusion of domes and related pyroclastic products. A small summit caldera, C2 (3-3.5 km wide), ended the evolution of Nevado I. Two modern volcanoes then began to grow. The building of the Nevado II started about 200,000 y. ago. It settled into the C2 caldera and partially overflowed it. The other volcano, here called Paleofuego, was progressively built on the southern side of the former Nevado I. Some of its flows are 50,000 y. old, but the age of its first outbursts is not known. However, it is younger than Nevado II. These two modern volcanoes had similar evolutions. Each of them was affected by a huge Mount St. Helens-type (or Bezymianny-type) event, 10,000 y. ago for the Paleofuego, and hardly older for the Nevado II. The landslides were responsible for two horseshoe-shaped avalanche calderas, C3 (Nevado) and C4 (Paleofuego), each 4-5 km wide, opening towards the east and the south. In both cases, the activity following these events was highly explosive and produced thick air-fall deposits around the summit

  3. 1996 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.

    1997-01-01

    During 1996, the Alaska Volcano Observatory (AVO) responded to eruptive activity, anomalous seismicity, or suspected volcanic activity at 10 of the approximately 40 active volcanic centers in the state of Alaska. As part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also disseminated information about eruptions and other volcanic unrest at six volcanic centers on the Kamchatka Peninsula and in the Kurile Islands, Russia.

  4. Mount St. Helens' volcanic ash: hemolytic activity.

    PubMed

    Vallyathan, V; Mentnech, M S; Stettler, L E; Dollberg, D D; Green, F H

    1983-04-01

    Volcanic ash samples from four Mount St. Helens' volcanic eruptions were subjected to mineralogical, analytical, and hemolytic studies in order to evaluate their potential for cytotoxicity and fibrogenicity. Plagioclase minerals constituted the major component of the ash with free crystalline silica concentrations ranging from 1.5 to 7.2%. The in vitro hemolytic activity of the volcanic ash was compared to similar concentrations of cytotoxic and inert minerals. The ash was markedly hemolytic, exhibiting an activity similar to chrysotile asbestos, a known fibrogenic agent. The hemolysis of the different ash samples varied with particle size but not with crystalline silica concentration. The results of these studies taken in conjunction with the results of our animal studies indicate a fibrogenic potential of volcanic ash in heavily exposed humans. PMID:6832120

  5. Reconstructing the eruption magnitude and energy budgets for the pre-historic eruption of the monogenetic ˜5 ka Mt. Gambier Volcanic Complex, south-eastern Australia

    NASA Astrophysics Data System (ADS)

    van Otterloo, Jozua; Cas, Raymond A. F.

    2013-12-01

    Understanding explosive volcanic eruptions, especially phreatomagmatic eruptions, their intensities and energy budgets is of major importance when it comes to risk and hazard studies. With only a few historic occurrences of phreatomagmatic activity, a large amount of our understanding comes from the study of pre-historic volcanic centres, which causes issues when it comes to preservation and vegetation. In this research, we show that using 3D geometrical modelling it is possible to obtain volume estimates for different deposits of a pre-historic, complex, monogenetic centre, the Mt. Gambier Volcanic Complex, south-eastern Australia. Using these volumes, we further explore the energy budgets and the magnitude of this eruption (VEI 4), including dispersal patterns (eruption columns varying between 5 and 10 km, dispersed towards north-east to south), to further our understanding of intraplate, monogenetic eruptions involving phreatomagmatic activity. We also compare which thermodynamic model fits best in the creation of the maar crater of Mt. Gambier: the major-explosion-dominated model or the incremental growth model. In this case, the formation of most of the craters can best be explained by the latter model.

  6. Psychological aspects in a volcanic crisis: El Hierro Island eruption (October, 2011).

    NASA Astrophysics Data System (ADS)

    Lopez, P.; Llinares, A.; Garcia, A.; Marrero, J. M.; Ortiz, R.

    2012-04-01

    The recent eruption on the El Hierro Island (Canary Islands, Spain) has shown that Psychology plays an important role in the emergence management of a natural phenomenon. However, Psychology continues to have no social coverage it deserves in the mitigation of the effects before, during and after the occurrence of a natural phenomenon. Keep in mind that an unresolved psychological problem involves an individual and collective mismatch may become unrecoverable. The population of El Hierro has been under a state of alert since July 2011, when seismic activity begins, until the occurrence of submarine eruption in October 2011 that is held for more than three months. During this period the inhabitants of the small island have gone through different emotional states ranging from confusion to disappointment. A volcanic eruption occurs not unexpectedly, allowing to have a time of preparation / action before the disaster. From the psychological point of view people from El Hierro Island have responded to different stages of the same natural process. Although the island of El Hierro is of volcanic origin, the population has no historical memory since the last eruption occurred in 1793. Therefore, the educational system does not adequately address the formation in volcanic risk. As a result people feel embarrassment when the seismovolcanic crisis begins, although no earthquakes felt. As an intermediate stage, when the earthquakes are felt by the population, scientists and operational Emergency Plan care to inform and prepare actions in case of a possible eruption. The population feel safe despite the concerns expressed by not knowing where, how and when the eruption will occur. Once started the submarine eruption, taking into account that all the actions (evacuation, relocation, etc.) have worked well and that both their basic needs and security are covered there are new states of mind. These new emotional states ranging from disenchantment with the phenomenology of the

  7. Two likely stratospheric volcanic eruptions in the 1450s C.E. found in a bipolar, subannually dated 800 year ice core record

    NASA Astrophysics Data System (ADS)

    Cole-Dai, Jihong; Ferris, David G.; Lanciki, Alyson L.; Savarino, Joël.; Thiemens, Mark H.; McConnell, Joseph R.

    2013-07-01

    An 800 year volcanic record is constructed from high-resolution chemical analysis of recently obtained West Antarctica and central Greenland ice cores. The high accuracy and precision of the ice core chronologies are a result of dating by annual ice layer counting. Nineteen bipolar volcanic signals in this record represent large, explosive eruptions in the tropics with probable climatic impact. One of the two bipolar volcanic signals dated at 1453 and 1459 is probably left by the eruption of the submarine volcano Kuwae in the tropical Pacific, one of the largest volcanic eruptions in the last millennium. The discovery of the two signals in the 1450s casts doubt on the eruption year of 1452 or 1453 for Kuwae based on previous ice core records. The volcanic sulfate deposition patterns in this bipolar record suggest that the later signal is likely from the Kuwae eruption in 1458, although a firm attribution is not possible. Sulfur isotope composition in the volcanic sulfate in the central Greenland cores indicates that both eruptions in the 1450s injected sulfur gases into the stratosphere with probable impact on the global climate. These results are in agreement with tree ring records showing two short cold episodes during that decade. The bipolar volcanic record supports the hypothesis that unusually active volcanism in the thirteenth century contributed to the onset of the Little Ice Age and another active period in the mid fifteenth century may have helped to sustain the Little Ice Age.

  8. On the impact of different volcanic hot spot detection methods on eruption energy quantification

    NASA Astrophysics Data System (ADS)

    Pergola, Nicola; Coviello, Irina; Falconieri, Alfredo; Lacava, Teodosio; Marchese, Francesco; Tramutoli, Valerio

    2016-04-01

    Several studies have shown that sensors like the Advanced Very High Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) may be effectively used to identify volcanic hotspots. These sensors offer in fact some spectral channels in the Medium Infrared (MIR) and Thermal Infrared (TIR) bands together with a good compromise between spatial and temporal resolution suited to study and monitor thermal volcanic activity. Many algorithms were developed to identify volcanic thermal anomalies from space with some of them that were extensively tested in very different geographich areas. In this work, we analyze the volcanic radiative power (VRP) representing one of parameters of major interest for volcanologists that may be estimated by satellite. In particular, we compare the radiative power estimations driven by some well-established state of the art hotspot detection methods (e.g. RSTVOLC, MODVOLC, HOTSAT). Differences in terms of radiative power estimations achieved during recent Mt. Etna (Italy) eruptions will be evaluated, assessing how much the VRP retrieved during effusive eruptions is affected by the sensitivity of hotspot detection methods.

  9. Likelihood of volcanic eruption at Long Valley, California, is reduced

    USGS Publications Warehouse

    Kelly, D.

    1984-01-01

    A relatively low level of earthquake activity as well as reduced rates of ground deformation over the past year have led U.S Geological Survey scientists to conclude that the likelihood of imminent volcanic activity at Long Valley, California, is reduced from that of mid-1982 through 1983.

  10. Solar Activity and Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.

    2006-01-01

    Our Sun is a dynamic, ever-changing star. In general, its atmosphere displays major variation on an 11-year cycle. Throughout the cycle, the atmosphere occasionally exhibits large, sudden outbursts of energy. These "solar eruptions" manifest themselves in the form of solar flares, filament eruptions, coronal mass ejections (CMEs), and energetic particle releases. They are of high interest to scientists both because they represent fundamental processes that occur in various astrophysical context, and because, if directed toward Earth, they can disrupt Earth-based systems and satellites. Research over the last few decades has shown that the source of the eruptions is localized regions of energy-storing magnetic field on the Sun that become destabilized, leading to a release of the stored energy. Solar scientists have (probably) unraveled the basic outline of what happens in these eruptions, but many details are still not understood. In recent years we have been studying what triggers these magnetic eruptions, using ground-based and satellite-based solar observations in combination with predictions from various theoretical models. We will present an overview of solar activity and solar eruptions, give results from some of our own research, and discuss questions that remain to be explored.

  11. Spatio-temporal occurrence of eruptions in El Hierro (Canary Islands). Sequential steps for long-term volcanic hazard assessment.

    NASA Astrophysics Data System (ADS)

    Becerril, Laura; Bartolini, Stefania; Sobradelo, Rosa; Martí, Joan; María Morales, José; Galindo, Inés; Geyer, Adelina

    2014-05-01

    Long term volcanic hazard assessment requires the attainment of several sequential steps, including the compilation of geological and volcanological information, the characterization of past eruptions, spatial and temporal probabilistic studies, and the simulation of different eruptive scenarios to get qualitative and representative results. Volcanic hazard assessment has not been yet systematically conducted in the Canary Islands, in spite of being a densely populated active volcanic region that receives millions of visitors per year. In this paper we focus our attention on El Hierro, the youngest and latest island affected by an eruption in the Canary Islands. We analyze the past eruptive activity (how), the spatial probability (where), and the temporal probability (when) on the island. Looking at the past eruptive behavior of the island, and assuming future eruptive patterns will be similar, we try to identify the most likely set of volcanic scenarios and corresponding hazards that could occur in the future (eg. lava flows, pyroclastic fallout, and pyroclastic density currents) and estimate their probability of occurrence. The final result shows the first volcanic hazard map of the island. This study represents a step forward in the evaluation of long term volcanic hazard at El Hierro Island with regard to previous studies. The obtained results should represent the main pillars on which to build risk mitigation programs as it is required for territorial planning and to develop emergency plans. This research was partially funded by IGME, CSIC and the European Commission (FT7 Theme: ENV.2011.1.3.3-1; Grant 282759: "VUELCO"), and MINECO grant GL2011-16144-E.

  12. Volcanic eruptions and seismicity of Mt. Baekdu (Changbai) occurred in the historical time

    NASA Astrophysics Data System (ADS)

    Kang, T.; Baag, C.; Chu, K.

    2011-12-01

    Recently, it was reported that the Mt. Baekdu had large volcanic eruptions at least two times in the geological and historical times and the lake Cheonji (Tianchi in Chinese) had formed by collapse of the summit part of the mountain. The last one of the four eruptions occurred in the historical time. Geologists tried to measure the date of eruptions using carbon isotope, but the results show diversity ranging approximately form AD 8 to 14 centuries corresponding to the dates of two dynasties of Balhae (Bohai in Chinese) and Goryeo. Unfortunately, there is no distinct record of the eruptions in this period in historical literatures. In the current study, we could infer that the last great volcanic eruption occurred in the winter time with strong northwestern seasonal wind, considering the distribution of pumice on the satellite images and the thickness of the pumice layers measured at sites in relationship with the climatic environment. On the other hand, some researchers interpreted five events appearing in historical documents written in the Joseon dynasty to be related to volcanic eruptions of Mt. Baekdu. These events occurred in the years 1413, 1597, 1668, 1702, and 1903. Their interpretations have been widely cited in journals and books, However based on critical reviews of historical literature including Joseon Wangjo Sillok (Annals of the Joseon Dynasty), we find that three events of the five were not related to volcanic eruptions of the Mt. Baekdu. Events in the years 1413 and 1668 were phenomena of Asian dust. The event in 1903 recorded in a Chinese literature is found to be a shower type of rain drop with hail accompanied by thunder and lightning. Only the two events in 1597 and 1702 are confirmed to be related to volcanic activities of Mt. Baekdu. According to Joseon Wangjo Sillok, a large earthquake of maximum intensity 9 (Modified Mercalli Intensity, MMI) and its aftershocks occurred at the border region of Samsu county in Hamgyeongdo Province in the

  13. Cold decade (AD 1810-1819) caused by Tambora (1815) and another (1809) stratospheric volcanic eruption

    NASA Astrophysics Data System (ADS)

    Cole-Dai, Jihong; Ferris, David; Lanciki, Alyson; Savarino, Joël; Baroni, Mélanie; Thiemens, Mark H.

    2009-11-01

    Climate records indicate that the decade of AD 1810-1819 including “the year without a summer” (1816) is probably the coldest during the past 500 years or longer, and the cause of the climatic extreme has been attributed primarily to the 1815 cataclysmic Tambora eruption in Indonesia. But the cold temperatures in the early part of the decade and the timing of the Tambora eruption call into question the real climatic impact of volcanic eruptions. Here we present new evidence, based on sulfur isotope anomaly (Δ33S), a unique indicator of volcanic sulfuric acid produced in the stratosphere and preserved in polar snow, and on the precise timing of the volcanic deposition in both polar regions, that another large eruption in 1809 of a volcano is also stratospheric and occurred in the tropics. The Tambora eruption and the undocumented 1809 eruption are together responsible for the unusually cold decade.

  14. Evaluation of climate impacts after a large volcanic eruption during stratospheric sulfur injections

    NASA Astrophysics Data System (ADS)

    Laakso, Anton; Kokkola, Harri; Partanen, Antti-Ilari; Niemeier, Ulrike; Timmreck, Claudia; Lehtinen, Kari; Hakkarainen, Hanne; Korhonen, Hannele

    2016-04-01

    Solar radiation management (SRM) by injecting sulfur to the stratosphere is one of the most discussed geoengineering methods, because it has been suggested to be affordable and effective and its impacts have been thought to be predictable based on volcanic eruptions. Injecting sulfur to the stratosphere could be seen as an analogy of large volcanic eruptions, where large amounts of sulfur dioxide are released into the stratosphere. In the atmosphere sulfur dioxide oxidizes and forms aqueous sulfuric acid aerosols which reflect incoming solar radiation back to space. If SRM is ever used to cool the climate it is possible that a large volcanic eruption could happen also during the SRM, which would lead temporally to a very strong cooling. The simulations in this study were performed in two steps. In the first step, we used the aerosol-climate model MAECHAM5-HAM-SALSA to define global aerosol fields in scenarios with stratospheric sulfur injections and/or a volcanic eruption. In the second step of the study we performed climate simulations using Max-Planck-Institute's Earth system model (MPI-ESM) by using aerosol fields defined by MAECHAM5-HAM-SALSA. We studied scenarios of volcanic eruptions in two different locations and seasons and during the SRM sulfur injections and without injections. According to our simulations the radiative impacts of the eruption and SRM are not additive and the radiative effects and climate changes occurring after the eruption depend strongly on whether SRM is continued or suspended after the eruption. Adding to this, sulfate burden and radiative forcing after the volcanic eruption decrease significantly faster if the volcanic eruption happens during the geoengineering injections. In this situation, sulfur from the eruption does not only form new particles but it also condenses into pre-existing particles. Furthermore, the new small particles that are formed after the eruption coagulate effectively with the existing larger particles from

  15. Ground-based weather radar remote sensing of volcanic ash explosive eruptions

    NASA Astrophysics Data System (ADS)

    Marzano, F. S.; Marchiotto, S.; Barbieri, S.; Giuliani, G.; Textor, C.; Schneider, D. J.

    2009-04-01

    The explosive eruptions of active volcanoes with a consequent formation of ash clouds represent a severe threat in several regions of the urbanized world. During a Plinian or a sub-Plinian eruption the injection of large amounts of fine and coarse rock fragments and corrosive gases into the troposphere and lower stratosphere is usually followed by a long lasting ashfall which can cause a variety of damages. Volcanic ash clouds are an increasing hazard to aviation safety because of growing air traffic volumes that use more efficient and susceptible jet engines. Real-time and areal monitoring of a volcano eruption, in terms of its intensity and dynamics, is not always possible by conventional visual inspections, especially during worse visibility periods which are quite common during eruption activity. Remote sensing techniques both from ground and from space represent unique tools to be exploited. In this respect, microwave weather radars can gather three-dimensional information of atmospheric scattering volumes up several hundreds of kilometers, in all weather conditions, at a fairly high spatial resolution (less than a kilometer) and with a repetition cycle of few minutes. Ground-based radar systems represent one of the best methods for determining the height and volume of volcanic eruption clouds. Single-polarization Doppler radars can measure horizontally-polarized power echo and Doppler shift from which ash content and radial velocity can be, in principle, extracted. In spite of these potentials, there are still several open issues about microwave weather radar capabilities to detect and quantitatively retrieve ash cloud parameters. A major issue is related to the aggregation of volcanic ash particles within the eruption column of explosive eruptions which has been observed at many volcanoes. It influences the residence time of ash in the atmosphere and the radiative properties of the "umbrella" cloud. Numerical experiments are helpful to explore processes

  16. Inter-eruptive volcanism at Usu volcano: Micro-earthquakes and dome subsidence

    NASA Astrophysics Data System (ADS)

    Aoyama, H.; Onizawa, S.; Kobayashi, T.; Tameguri, T.; Hashimoto, T.; Oshima, H.; Mori, H.

    2009-12-01

    magma rising under the summit crater during the 2000 eruption stopped around a depth of 2 km below sea level, which is sufficiently deep relative to the focal area of the present seismicity. A part of magma intruded under the western foot and contributed to the 2000 eruption. We conclude that the 2000 eruption scarcely affected the shallow crustal activity under the summit crater, and that Usu-Shinzan cryptodome is continuing to subside just as it was before the 2000 eruption. The shallow volcanic earthquakes that began increasing from 1995 are closely related to the successive subsidence of the summit domes. Temporal change in fumarole temperature suggests a relationship between the shallow earthquakes and cooling of the magma that intruded under Usu-Shinzan during the 1977-1982 eruption.

  17. Inter-eruptive volcanism at Usu volcano: Micro-earthquakes and dome subsidence

    NASA Astrophysics Data System (ADS)

    Aoyama, Hiroshi; Onizawa, Shin'ya; Kobayashi, Tomokadu; Tameguri, Takeshi; Hashimoto, Takeshi; Oshima, Hiromitsu; Mori, Hitoshi Y.

    2009-11-01

    magma rising under the summit crater during the 2000 eruption stopped around a depth of 2 km below sea level, which is sufficiently deep relative to the focal area of the present seismicity. A part of the magma intruded under the western foot and contributed to the 2000 eruption. We conclude that the 2000 eruption scarcely affected the shallow crustal activity under the summit crater, and that Usu-Shinzan cryptodome is continuing to subside just as it was before the 2000 eruption. The shallow volcanic earthquakes that began increasing from 1995 are closely related to the successive subsidence of the summit domes. Temporal change in fumarole temperature suggests a relationship between the shallow earthquakes and cooling of the magma that intruded under Usu-Shinzan during the 1977-1982 eruption.

  18. Recent Eruptive History of the Tatun Volcanic Group, Northern Taiwan: Hazard-related Issues

    NASA Astrophysics Data System (ADS)

    Belousov, A.; Belousova, M.; Chen, C.

    2009-12-01

    The Quaternary dominantly andesitic Tatun Volcanic Group (TVG) occupies 400 km2 in the northern part of Taiwan Island. The group has more than 20 well-preserved volcanic edifices, multiple hot springs and fumaroles as hot as 120oC with magmatic isotopic signatures. Local seismic network has registered shallow volcano-tectonic earthquakes in the area. The TVG is surrounded by densely populated areas, the largest of which is Taipei City (7 million people), as well as by multiple industrial factories and two nuclear power plants. Therefore, the question about timing and styles of the most recent TVG eruptions is important. We report results of our investigations of TVG physical volcanology, with focus on pyroclastic stratigraphy and eruption dynamics. For the most recent TVG eruptions were common long-term extrusions of crystal-rich, viscous lava. The eruptions formed dominantly monogenetic plug domes, coulees, and lava flows. The domes have heights of 150-350 m, base diameters of 0.5-1.0 km, and volumes of 0.05-0.3 km3. The nine best-preserved TVG lava flows have thicknesses of 80-150 m, lengths of 1-7.5 km, and volumes of 0.07-0.6 km3. For the largest lava flow we estimated an effusion rate of 6.4 m3/s, eruption duration of 1100 days, lava front speed of 2-3 m/hour (method, e.g. Stevenson et al. 1994). The only pyroclastic edifice of the Tatun group is a tephra ring ~ 500 m in diameter and 40 m high formed by plinian eruption. Apart from that, few non-reworked pyroclastic deposits are currently preserved at TVG. The available data have shown that the explosive activity of TVG was weak-to-mild, but rather diverse with deposition of fallout tephra, base surges, and pyroclastic flows. Fallout deposits are represented mostly by well-sorted, crystal-rich ash layers (Md=1.0-3.4 phi, sorting = 0.9-2.4 phi) left by Vulcanian-type activity. Deposits of pumice fallout (Md = -4-(-2.5) phi, sorting = 1.2-2.4 phi) from Plinian eruptions are less common. Many of the eruptions

  19. Young volcanoes in the Chilean Southern Volcanic Zone: A statistical approach to eruption prediction based on time series

    NASA Astrophysics Data System (ADS)

    Dzierma, Y.; Wehrmann, H.

    2010-03-01

    Forecasting volcanic activity has long been an aim of applied volcanology with regard to mitigating consequences of volcanic eruptions. Effective disaster management requires both information on expected physical eruption behaviour such as types and magnitudes of eruptions as typical for the individual volcano, usually reconstructed from deposits of past eruptions, and the likelihood that a new eruption will occur within a given time. Here we apply a statistical procedure to provide a probability estimate for future eruptions based on eruption time series, and discuss the limitations of this approach. The statistical investigation encompasses a series of young volcanoes of the Chilean Southern Volcanic Zone. Most of the volcanoes considered have been active in historical times, in addition to several volcanoes with a longer eruption record from Late-Pleistocene to Holocene. Furthermore, eruption rates of neighbouring volcanoes are compared with the aim to reveal possible regional relations, potentially resulting from local to medium-scale tectonic dynamics. One special focus is directed to the two currently most active volcanoes of South America, Llaima and Villarrica, whose eruption records comprise about 50 historical eruptions over the past centuries. These two front volcanoes are considered together with Lanín Volcano, situated in the back-arc of Villarrica, for which the analysis is based on eight eruptions in the past 10 ka. For Llaima and Villarrica, affirmed tests for independence of the repose times between successive eruptions permit to assume Poisson processes; which is hampered for Lanín because of the more limited availability of documented eruptions. The assumption of stationarity reaches varying degrees of confidence depending on the time interval considered, ameliorating towards the more recent and hence probably more complete eruption record. With these pre-requisites of the time series, several distribution functions are fit and the goodness of

  20. Aerosol Measurements From Recent Alaskan Volcanic Eruptions: Implications for Volcanic Ash Transport Predictions

    NASA Astrophysics Data System (ADS)

    Cahill, C. F.; Rinkleff, P. G.; Dehn, J.; Webley, P.; Cahill, T. A.; Barnes, D. E.

    2007-12-01

    Size and time-resolved aerosol compositional measurements conducted during the 2006 Augustine Volcano and 2007 Pavlof Volcano eruptions provide ground-truth information for use in the validation of volcanic ash transport models. These measurements provide quantitative information on the size and concentration of the aerosol, which can be used to test the volcanic aerosol source profiles and transport characteristics used in volcanic ash transport models. Augustine Volcano is on an island in Cook Inlet in southern Alaska. For the 2006 Augustine Volcano eruption, the size and time-resolved aerosol measurements were made using an eight stage (35-5.0, 5.0-2.5, 2.5-1.15, 1.15- 0.75, 0.75-0.56, 0.56-0.34, 0.34-0.26 and 0.26-0.09 microns in aerodynamic diameter) DRUM aerosol impactor deployed in Homer, approximately 120 km northeast of the volcano. Aerosols from the volcano reached the sampler and showed that the size distribution of the volcanic emissions changed during the course of the eruption. For example, crustal elements were present in high concentrations in the largest size fraction (35-5.0 microns) but low concentrations in a smaller size fraction (0.75-0.56 microns) during the phreatomagmatic explosive events. However, during the magmatic emissions period, the concentrations of these elements in the large size fraction decreased, but greatly increased in the smaller size fraction. Pavlof Volcano is a volcano on the Alaska Peninsula in southwestern Alaska. During the 2007 Pavlof Volcano eruption, a network of four DRUM aerosol impactors was deployed downwind of the volcano in an attempt to characterize the change in aerosol size distribution and composition during transport away from the volcano. The samplers were located at Nelson Lagoon, approximately 80 km northeast of the volcano (eight stage DRUM impactor with a top cut point of approximately 12 microns), Sand Point approximately 90 km east of the volcano (three stage DRUM impactor with aerodynamic diameter

  1. Automated estimation of mass eruption rate of volcanic eruption on satellite imagery using a cloud pattern recognition algorithm

    NASA Astrophysics Data System (ADS)

    Pouget, Solene; Jansons, Emile; Bursik, Marcus; Tupper, Andrew; Patra, Abani; Pitman, Bruce; Carn, Simon

    2014-05-01

    The need to detect and track the position of ash in the atmosphere has been highlighted in the past few years following the eruption Eyjafjallajokull. As a result, Volcanic Ash Advisory Centers (VAACs) are using Volcanic Ash Transport and Dispersion models (VATD) to estimate and predict the whereabouts of the ash in the atmosphere. However, these models require inputs of eruption source parameters, such as the mass eruption rate (MER), and wind fields, which are vital to properly model the ash movements. These inputs might change with time as the eruption enters different phases. This implies tracking the ash movement as conditions change, and new satellite imagery comes in. Thus, ultimately, the eruption must be detectable, regardless of changing eruption source and meteorological conditions. Volcanic cloud recognition can be particularly challenging, especially when meteorological clouds are present, which is typically the case in the tropics. Given the fact that a large fraction of the eruptions in the world happen in a tropical environment, we have based an automated volcanic cloud recognition algorithm on the fact that meteorological clouds and volcanic clouds behave differently. As a result, the pattern definition algorithm detects and defines volcanic clouds as different object types from meteorological clouds on satellite imagery. Following detection and definition, the algorithm then estimates the area covered by the ash. The area is then analyzed with respect to a plume growth rate methodology to get estimation of the volumetric and mass growth with time. This way, we were able to get an estimation of the MER with time, as plume growth is dependent on MER. To test our approach, we used the examples of two eruptions of different source strength, in two different climatic regimes, and for which therefore the weather during the eruption was quite different: Manam (Papua New Guinea) January 27 2005, which produced a stratospheric umbrella cloud and was

  2. The Tolbachik volcanic massif: A review of the petrology, volcanology and eruption history prior to the 2012-2013 eruption

    NASA Astrophysics Data System (ADS)

    Churikova, T. G.; Gordeychik, B. N.; Edwards, B. R.; Ponomareva, V. V.; Zelenin, E. A.

    2015-12-01

    The primary goal of this paper is to summarize all of the published data on the Tolbachik volcanic massif in order to provide a clear framework for the geochronologic, petrologic, geochemical and to a lesser extent the geophysical and tectonic characteristics of the Tolbachik system established prior to the 2012-2013 eruption. The Tolbachik massif forms the southwestern part of the voluminous Klyuchevskoy volcanic group in Kamchatka. The massif includes two large stratovolcanoes, Ostry ("Sharp") Tolbachik and Plosky ("Flat") Tolbachik, and a 70 km long zone of the basaltic monogenetic cones that form an arcuate rift-like structure running across the Plosky Tolbachik summit. The Tolbachik massif gained international attention after the 1975-1976 Great Tolbachik Fissure Eruption (GTFE), which was one of the largest eruptions of the 20th century and one of the six largest basaltic fissure eruptions in historical time. By the end of the GTFE, 2.2 km3 of volcanic products of variable basaltic compositions with MORB-like isotopic characteristics covered an area of > 1000 km2. During the following three decades more than 700 papers on various aspects of this eruption have been published both in national and international journals. Although the recent 2012-2013 eruption, which is the main topic of this volume, was not as long as the GTFE in duration or as large in area and volume of the erupted deposits, it brought to the surface a unique volcanic material never found before. In order to understand the data from new eruptions and make significant progress towards a better understanding of the Tolbachik magmatic system it is important to be able to put the new results into the historic context of previous research.

  3. Atmospheric Dispersal and Dispostion of Tephra From a Potential Volcanic Eruption at Yucca Mountain, Nevada

    SciTech Connect

    G. Keating; W.Statham

    2004-02-12

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (ASHPLUME) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. The ASHPLUME conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The ASHPLUME mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report will improve and clarify the previous documentation of the ASHPLUME mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model.

  4. Chemical processing of volcanic ash within eruption plume and cloud: a numerical modeling approach

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, Gholam Ali; Hort, Matthias; Langmann, Baerbel; Brasseur, Guy

    2015-04-01

    Volcanic ash is recently identified as an active chemical agent in the Earth system. Generated mainly through lithospheric processes and magma fragmentation, it can pose significant impacts upon different components of the Earth system for e.g. atmosphere and hydrosphere on various temporal and spatial scales. While airborne in the atmosphere, transition metals contained in the ash can catalyze the sulfur oxidation cycle thereby indirectly affecting the volcanic radiative forcing. Moreover, upon deposition on the surface ocean, ash can release soluble iron that fertilizes Fe-limited areas of the ocean and stimulate the marine productivity and CO2 drawdown. Such impacts are provoked through interfacial processes and thus, are mainly induced by the ash surface composition. Recent studies suggest that in-plume and in-cloud processing of volcanic ash primarily control its surface composition. Direct evidences concerning such processes are, however, lacking. Here we present the results of our recent investigations on in-plume and in-cloud processing of volcanic ash. A 1D numerical model is developed that simulates the gas-ash-aerosol interactions in volcanic eruption plume and cloud at temperatures between 600 C and 0 C focusing on iron, sulfur and halogen chemistry. Results show that sulfuric acid and water vapor condense at 150 C and 50 C, respectively, generating a liquid coating at the ash surface that scavenges the surrounding gases (>95extremely acidic (pH

  5. Video Analysis of Eddy Structures from Explosive Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Fisher, M. A.; Kobs-Nawotniak, S. E.

    2013-12-01

    We present a method of analyzing turbulent eddy structures in explosive volcanic eruptions using high definition video. Film from the eruption of Sakurajima on 25 September 2011 was analyzed using a modified version of FlowJ, a Java-based toolbox released by National Institute of Health. Using the Lucas and Kanade algorithm with a Gaussian derivative gradient, it tracks the change in pixel position over a 23 image buffer to determine the optical flow. This technique assumes that the optical flow, which is the apparent motion of the pixels, is equivalent to the actual flow field. We calculated three flow fields per second for the duration of the video. FlowJ outputs flow fields in pixels per frame that were then converted to meters per second in Matlab using a known distance and video rate. We constructed a low pass filter using proper orthogonal decomposition (POD) and critical point analysis to identify the underlying eddy structure with boundaries determined by tracing the flow lines. We calculated the area of each eddy and noted its position over a series of velocity fields. The changes in shape and position were tracked to determine the eddy growth rate and overall eddy rising velocity. The eddies grow in size 1.5 times quicker than they rise vertically. Presently, this method is most successful in high contrast videos when there is little to no effect of wind on the plumes. Additionally, the pixel movement from the video images represents a 2D flow with no depth, while the actual flow is three dimensional; we are continuing to develop an algorithm that will allow 3D reprojection of the 2D data. Flow in the y-direction lessens the overall velocity magnitude as the true flow motion has larger y-direction component. POD, which only uses the pattern of the flow, and analysis of the critical points (points where flow is zero) is used to determine the shape of the eddies. The method allows for video recorded at remote distances to be used to study eruption dynamics

  6. Forecasting volcanic eruptions: the control of elastic-brittle deformation

    NASA Astrophysics Data System (ADS)

    Kilburn, Christopher; Robertson, Robert; Wall, Richard; Steele, Alexander

    2016-04-01

    At volcanoes reawakening after long repose, patterns of unrest normally reflect the elastic-brittle deformation of crust above a magma reservoir. Local fault movements, detected as volcano-tectonic (VT) earthquakes, increase in number with surface deformation, at first approximately exponentially and then linearly. The trends describe how crustal behaviour evolves from quasi-elastic deformation under an increasing stress to inelastic deformation under a constant stress. They have been quantified and verified against experiments for deformation in compression [1]. We have extended the analysis to extensional deformation. The results agree well with field data for crust being stretched by a pressurizing magmatic system [2]. They also provide new criteria for enhancing the definitions of alert levels and preferred times to eruption. The VT-deformation sequence is a field proxy for changes in deformation with applied stress. The transition from quasi-elastic to inelastic behaviour is characterised in extension by the ratio of differential failure stress SF to tensile strength σT. Unrest data from at least basaltic to andesitic stratovolcanoes, as well as large calderas, yield preferred values for SF/σT ≤ 4, coinciding with the range for tensile failure expected from established theoretical constraints (from Mohr-Coulomb-Griffiths failure). We thus associate the transition with the approach to tensile rupture at the wall of a pressurized magma reservoir. In particular, values of about 2 are consistent with the rupture of a cylindrical reservoir, such as a closed conduit within a volcanic edifice, whereas values of about 3 suggest an approximately spherical reservoir, such as may exist at deeper levels. The onset of inelastic behaviour reflects the emergence of self-accelerating crack growth under a constant stress. Applied to forecasting eruptions, it provides a new and objective criterion for raising alert levels during an emergency; it yields the classic linear

  7. Gas and hydrogen isotopic analyses of volcanic eruption clouds in Guatemala sampled by aircraft

    USGS Publications Warehouse

    Rose, W.I., Jr.; Cadle, R.D.; Heidt, L.E.; Friedman, I.; Lazrus, A.L.; Huebert, B.J.

    1980-01-01

    Gas samples were collected by aircraft entering volcanic eruption clouds of three Guatemalan volcanoes. Gas chromatographic analyses show higher H2 and S gas contents in ash eruption clouds and lower H2 and S gases in vaporous gas plumes. H isotopic data demonstrate lighter isotopic distribution of water vapor in ash eruption clouds than in vaporous gas plumes. Most of the H2O in the vaporous plumes is probably meteoric. The data are the first direct gas analyses of explosive eruptive clouds, and demonstrate that, in spite of atmospheric admixture, useful compositional information on eruptive gases can be obtained using aircraft. ?? 1980.

  8. Aborted eruptions at Mt. Etna (Italy) in spring 2007 unveiled by an integrated study of gas emission and volcanic tremor

    NASA Astrophysics Data System (ADS)

    Falsaperla, S.; Behncke, B.; Giammanco, S.; Neri, M.; Langer, H.; Pecora, E.; Salerno, G.

    2012-04-01

    In spring 2007, a sequence of paroxysmal episodes took place at the Southeast Crater of Mt. Etna, Italy. Eruptive activity, characterised by Strombolian explosions, lava fountains, emission of lava flows and tephra, were all associated with an outstanding increase in the amplitude of volcanic tremor. In periods of quiescence between the eruptive episodes, recurring phases of seismic unrest were observed in forms of small temporary enhancements of the volcanic tremor amplitude, even though none of them culminated in eruptive activity. Here, we present the results of an integrated geophysical and geochemical data analysis encompassing records of volcanic tremor, thermal data, plume SO2 flux and radon over two months. We conclude that between February and April 2007, magma triggered repeated episodes of gas pulses and rock fracturing, but failed to reach the surface. Our multidisciplinary study allowed us to unveil these 'aborted' eruptions by investigating the long-temporal evolution of gas measurements along with seismic radiation. Short-term changes were additionally highlighted using a method of pattern classification based on Kohonen Maps and Fuzzy Clustering applied to volcanic tremor and radon data.

  9. Trace element degassing patterns and volcanic fluxes to the atmosphere during the 2014 Holuhraun eruption, Iceland

    NASA Astrophysics Data System (ADS)

    Gauthier, Pierre-Jean; Sigmarsson, Olgeir; Moune, Séverine; Haddadi, Baptiste; Gouhier, Mathieu

    2015-04-01

    Trace elements are well known to be volatile at magma temperature and enriched in volcanic gases from active volcanoes worldwide. However, little is known so far regarding their volatility at Icelandic volcanoes, mostly because high temperature volcanic gases are often inaccessible. The 2014 Holuhraun eruption that began on August 29 is characterized by both high extrusion rates of lava and intensive degassing which gives rise to a volcanic plume made of volcanic gases, aerosols and fine solid particles. A unique opportunity to sample the diluted plume at the eruption site was given to us on October 2. Volcanic aerosols were collected on washed PTFE membranes by pumping through the diluted plume for 30 minutes to 1 hour. Reactive gases were simultaneously trapped on impregnated filters, yielding a SO2/HCl molar ratio at the eruption site of 29-46 and SO2 concentrations in the diluted plume up to 200 mg/m3 (Haddadi et al., EGU 2015). PTFE filters were leached in 5 ml of a diluted HNO3-HF mixture for one week at 90°C. Solutions were subsequently analyzed by ICP-MS using a synthetic reference solution at 10 ppb for external calibration. Both siderophile (Mo, W, Re) and calchophile trace metals (Cu, Zn, As, Se, Cd, In, Sn, Sb, Te, Tl, Pb, Bi) were found to be significantly enriched in the diluted volcanic plume of Holuhraun compared to the background atmosphere in Iceland. Measured concentrations range from less than 0.1 ng/m3 for W up to 400 ng/m3 of Cd. Enrichment factors (EF) relative to Mg, considered as a strictly lithophile element with extremely low volatility, were computed for all analyzed trace metals. The least volatile elements (W, Cu, Zn, Mo, Ag) have EFs in the range 50-300 while the most volatile elements (Cd, Bi, Re, Se, Te) have EFs as high as 10E6. The overall degassing pattern observed at Holuhraun is consistent with those previously reported for other mantle plume related volcanoes like Kilauea (Mather et al., Geochim. Cosmochim. Acta, 2012) and

  10. Radiative and climate impacts of a large volcanic eruption during stratospheric sulfur geoengineering

    NASA Astrophysics Data System (ADS)

    Laakso, A.; Kokkola, H.; Partanen, A.-I.; Niemeier, U.; Timmreck, C.; Lehtinen, K. E. J.; Hakkarainen, H.; Korhonen, H.

    2015-08-01

    Both explosive volcanic eruptions, which emit sulfur dioxide into the stratosphere, and stratospheric geoengineering via sulfur injections can potentially cool the climate by increasing the amount of scattering particles in the atmosphere. Here we employ a global aerosol-climate model and an earth system model to study the radiative and climate impacts of an erupting volcano during solar radiation management (SRM). According to our simulations, the radiative impacts of an eruption and SRM are not additive: in the simulated case of concurrent eruption and SRM, the peak increase in global forcing is about 40 % lower compared to a corresponding eruption into a clean background atmosphere. In addition, the recovery of the stratospheric sulfate burden and forcing was significantly faster in the concurrent case since the sulfate particles grew larger and thus sedimented faster from the stratosphere. In our simulation where we assumed that SRM would be stopped immediately after a volcano eruption, stopping SRM decreased the overall stratospheric aerosol load. For the same reasons, a volcanic eruption during SRM lead to only about 1/3 of the peak global ensemble-mean cooling compared to an eruption under unperturbed atmospheric conditions. Furthermore, the global cooling signal was seen only for 12 months after the eruption in the former scenario compared to over 40 months in the latter. In terms of the global precipitation rate, we obtain a 36 % smaller decrease in the first year after the eruption and again a clearly faster recovery in the concurrent eruption and SRM scenario. We also found that an explosive eruption could lead to significantly different regional climate responses depending on whether it takes place during geoengineering or into an unperturbed background atmosphere. Our results imply that observations from previous large eruptions, such as Mt Pinatubo in 1991, are not directly applicable when estimating the potential consequences of a volcanic eruption

  11. Speleothems as sensitive recorders of volcanic eruptions - the Bronze Age Minoan eruption recorded in a stalagmite from Turkey

    NASA Astrophysics Data System (ADS)

    Badertscher, S.; Borsato, A.; Frisia, S.; Cheng, H.; Edwards, R. L.; Tüysüz, O.; Fleitmann, D.

    2014-04-01

    Mounting evidence exists that variations in sulphur content in stalagmites are closely linked to changes in volcanic or anthropogenic atmospheric sulphur. The strong dependency of sulphur on soil pH and ecosystem storage, however, can result in a delay of several years to decades in the registration of volcanic eruptions and anthropogenic emissions by stalagmites. Here we present synchrotron-radiation based trace element analysis performed on a precisely-dated section of a stalagmite from Sofular Cave in Northern Turkey. As this section covers the time interval of the intensively studied Minoan volcanic eruption between 1600 and 1650 BC, we can test whether this vigorous eruption can be traced in a stalagmite. Of all measured trace elements, only bromine shows a clear short-lived peak at 1621±25 BC, whereas sulphur and molybdenum show peaks later at 1617±25 and 1589±25 respectively. We suggest that all trace element peaks are related to the Minoan eruption, whereas the observed phasing of bromine, molybdenum and sulphur is related to differences in their retention rates in the soil above Sofular Cave. For the first time, we can show that bromine appears to be an ideal volcanic tracer in stalagmites, as it is a prominent volatile component in volcanic eruptions, can be easily leached in soils and rapidly transferred from the atmosphere through the soil and bedrock into the cave and stalagmite respectively. Highly resolved oxygen and carbon isotope profiles indicate that the Minoan eruption had no detectable climatic and environmental impact in Northern Turkey.

  12. The response of winter Pacific North American pattern to strong volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Liu, Zhongfang; Yoshimura, Kei; Buenning, Nikolaus H.; Jian, Zhimin; Zhao, Liang

    2016-07-01

    The impact of volcanic eruptions on large-scale atmospheric circulation patterns has been well studied, but very little effort has been made on relating the response of Pacific North American (PNA) pattern to strong volcanic eruptions. Here we investigate the response of winter PNA to the largest volcanic eruptions using three different reanalysis datasets. We demonstrate a significant positive PNA circulation response to strong volcanic forcing in the first winter following the eruptions. This circulation pattern is associated with enhanced southwesterly winds advecting warm air from the tropical/subtropical Pacific into northwestern North America and leads to a significant warming in the region. However, no significant PNA signal is found for the second post-eruption winter. The PNA responses to volcanic forcing depend partly upon the modulation of the El Niño Southern Oscillation (ENSO) events. When the ENSO influence is linearly removed, this positive PNA signal is still robust during the first post-eruption winter, albeit with slightly decreased magnitude and significance. Our findings provide new evidence for volcanic forcing of the Pacific and North American climates. The results presented here may contribute to deconvolving modern and past continental-scale climate changes over North America.

  13. Volcanic unrest leading to the July-August 2001 lateral eruption at Mt. Etna: Seismological constraints

    NASA Astrophysics Data System (ADS)

    Sicali, Simona; Barberi, Graziella; Cocina, Ornella; Musumeci, Carla; Patanè, Domenico

    2015-10-01

    A close relationship between earthquake swarms, volcanic eruptions, and ground deformation at Mt. Etna was well documented shortly before the beginning of the July-August 2001 eruption. Past experiences at this volcano suggest how magma/dike intrusion in the shallow crust or in the upper part of the volcanic pile normally occurs after several years/months of internal recharging. Since seismic investigations provide a means to study the scale and origin of stress perturbations at active volcanoes, allowing to better investigating the preparation phase of an eruption, in this paper, we performed a close examination of the seismic activity recorded at Mt. Etna in the months preceding the 2001 eruption and in particular between November 2000 and July 2001. After integrating data recorded by the two networks operating during that time and run by the Istituto Internazionale di Vulcanologia and SISTEMA POSEIDON, we relocated 522 earthquakes by using the tomoDD code in a 3D velocity model, and then we computed their fault plane solutions. The application of different selection criteria enabled obtaining a good-quality revised data set consisting of 111 fault plane solutions. The high-precision locations identified well-defined seismic clusters, in different periods, suggesting a link with the magma migration from a depth of 8-13 km b.s.l. towards shallower zones. Moreover, the computed maximum compressive stress axis, as inferred from earthquake focal mechanisms, indicated a roughly W-E-oriented σ1. This findings reflect an overpressure of the mid to shallow crust due to the progressive magma uprising in central portion of the volcano and also highlighted a rotation of the local stress field with respect to the regional one N-S trending. In addition, P-axis distribution pointed out the presence of a center of pressure located to the south of the Central Craters. These results provide particularly compelling evidence for a direct causal link between pressurization of the

  14. Towards fast and routine analyses of volcanic ash morphometry for eruption surveillance applications

    NASA Astrophysics Data System (ADS)

    Leibrandt, Sébastien; Le Pennec, Jean-Luc

    2015-05-01

    The morphometry of volcanic ash produced by explosive eruptions yields ample information on fragmentation processes (e.g. magmatic vs magma-water interactions), and on transport and sedimentation mechanisms. Most previous works on volcanic clast morphometry focused on the Apparent (2D-)Projected shape of ASH grains, here termed APASH, to infer processes and eruptive styles. However, textural analyses of ash grains has remained a long and tedious task that made such approaches inappropriate for eruption surveillance duties. In this work we show that new technological advances on automated dispersion of granular materials imaged with a camera-coupled microscope and enhanced computer capabilities enable fast and high resolution image acquisition of thousands of ash grains that resolve this limitation. With a morpho-grainsizer designed for such fast and routine measurements we perform a series of APASH analyses on selected ash fractions of tephra deposits from known eruptive styles. We record the size, aspect ratio, circularity and convexity of APASH images and assess resolution, reproducibility, minimum population size, and total analytical duration, and offer recommendations for the reporting of APASH data for inter-laboratory comparisons. To avoid fractal geometry concerns, our analyses are carried out at constant size range (250-300 μm) and optical magnification (× 5) on ~ 3000 grains per samples collected from homogenized samples. Results from the andesitic 1999-ongoing eruption of Tungurahua volcano (Ecuador) show that ash particles from the moderate 2001 phase are relatively equant and convex in shape, while the stronger 2006 subplinian phase produced ash grains with more elongated, less circular and less convex APASH signatures. Ash grains from a basaltic scoria cone-forming eruption show even more ragged APASH characteristics. Overall, our protocol allows obtaining accurate and reproducible morphometric measurements that reveal subtle variations of the

  15. Towards fast and routine analyses of volcanic ash morphometry for eruption surveillance applications

    NASA Astrophysics Data System (ADS)

    Leibrandt, Sébastien; Le Pennec, Jean-Luc

    2015-04-01

    The morphometry of volcanic ash produced by explosive eruptions yields ample information on fragmentation processes (e.g. magmatic vs magma-water interactions), and on transport and sedimentation mechanisms. Most previous works on volcanic clast morphometry focused on the Apparent (2D-)Projected shape of ASH grains, here called APASH, to infer processes and eruptive styles. However, textural analyses of ash grains has remained a long and tedious task that made such approaches inappropriate for eruption surveillance duties. In this work we show that new technological advances on automated dispersion of granular materials imaged with a camera-coupled microscope and enhanced computer capabilities enable fast and high resolution image acquisition of thousands of ash grains that solve this limitation. With a morpho-grainsizer designed for such fast and routine measurements we perform a series of APASH analyses on selected ash fractions of tephra deposits from known eruptive styles. We record the size, aspect ratio, circularity and convexity of APASH images and assess resolution, reproducibility, minimum population size, and total analytical duration, and offer recommendations for the reporting of APASH data for interlaboratory comparisons. To avoid fractal geometry concerns, our analyses are carried out at constant size range (250-300 um) and optical magnification (x5) on ~3000 grains/samples collected from homogenized samples. Results from the andesitic 1999-ongoing eruption of Tungurahua volcano (Ecuador) show that ash particles from the moderate 2001 phase are relatively equant and convex in shape, while the stronger 2006 subplinian phase produced ash grains with more elongated, less circular and less convex APASH signatures. Ash grains from a basaltic scoria cone-forming eruption show even more ragged APASH characteristics. Overall, our protocol allows obtaining accurate and reproducible morphometric measurements that reveal subtle variations of the morphological

  16. Violent Explosive Eruptions in the Ararat Valley, Armenia and Associated Volcanic Hazards

    NASA Astrophysics Data System (ADS)

    Meliksetian, Khachatur; Savov, Ivan; Connor, Charles; Gevorgyan, Hripsime; Connor, Laura; Navasardyan, Gevorg; Manucharyan, Davit; Jrbashyan, Ruben; Ghukasyan, Yura

    2016-04-01

    The Anatolian-Armenian-Iranian volcanically active orogenic plateau is located in the collision zone between the Arabian and Eurasian plates. The majority of regional geodynamic and petrologic models of collision-related magmatism use the model proposed by Keskin (2003), where volcanism is driven by Neo-Tethyan slab break-off, however an updated model by Neill et al. (2015) and Skolbeltsyn et al.(2014) comprise break-off of two slabs. One of the significant (and understudied) features of the regionally extensive collision zone volcanism is the diversity of eruption styles and also the presence of large number of highly explosive (Plinian) eruptions with VEI≥5 during the Middle-Upper Pleistocene. Geological records of the Ararat depression include several generations of thick low aspect ratio Quaternary ignimbrites erupted from Aragats volcano, as well as up to 3 m thick ash and pumice fall deposit from the Holocene-historically active Ararat volcano. The Ararat tephra fall deposit is studied at 12 newly discovered outcrops covering an area ˜1000 km2. It is noteworthy, that the Ararat tephra deposits are loose and unwelded and observed only in cross-sections in small depressions or in areas where they were rapidly covered by younger, colluvium deposits, presumably of Holocene age. Therefore, the spatial extent of the explosive deposits of Ararat is much bigger but not well preserved due to rapid erosion. Whole rock elemental, isotope (Sr, Nd) and mineral chemistry data demonstrate significant difference in the magma sources of the large Aragats and Ararat stratovolcanoes. Lavas and pyroclastic products of Aragats are high K calc-alkaline, and nearly always deprived from H2O rich phases such as amphibole. In contrasts lavas and pyroclastic products from Ararat are medium K calc-alkaline and volatile-rich (>4.6 wt% H2O and amphibole bearing) magmas. Here we shall attempt to reveal possible geochemical triggers of explosive eruptions in these volcanoes and assess

  17. Radiative and climate impacts of a large volcanic eruption during stratospheric sulfur geoengineering

    NASA Astrophysics Data System (ADS)

    Laakso, A.; Kokkola, H.; Partanen, A.-I.; Niemeier, U.; Timmreck, C.; Lehtinen, K. E. J.; Hakkarainen, H.; Korhonen, H.

    2016-01-01

    Both explosive volcanic eruptions, which emit sulfur dioxide into the stratosphere, and stratospheric geoengineering via sulfur injections can potentially cool the climate by increasing the amount of scattering particles in the atmosphere. Here we employ a global aerosol-climate model and an Earth system model to study the radiative and climate changes occurring after an erupting volcano during solar radiation management (SRM). According to our simulations the radiative impacts of the eruption and SRM are not additive and the radiative effects and climate changes occurring after the eruption depend strongly on whether SRM is continued or suspended after the eruption. In the former case, the peak burden of the additional stratospheric sulfate as well as changes in global mean precipitation are fairly similar regardless of whether the eruption takes place in a SRM or non-SRM world. However, the maximum increase in the global mean radiative forcing caused by the eruption is approximately 21 % lower compared to a case when the eruption occurs in an unperturbed atmosphere. In addition, the recovery of the stratospheric sulfur burden and radiative forcing is significantly faster after the eruption, because the eruption during the SRM leads to a smaller number and larger sulfate particles compared to the eruption in a non-SRM world. On the other hand, if SRM is suspended immediately after the eruption, the peak increase in global forcing caused by the eruption is about 32 % lower compared to a corresponding eruption into a clean background atmosphere. In this simulation, only about one-third of the global ensemble-mean cooling occurs after the eruption, compared to that occurring after an eruption under unperturbed atmospheric conditions. Furthermore, the global cooling signal is seen only for the 12 months after the eruption in the former scenario compared to over 40 months in the latter. In terms of global precipitation rate, we obtain a 36 % smaller decrease in the

  18. Explosive volcanic eruptions, the El Nino-southern oscillation, and U.S. climate variability

    SciTech Connect

    Portman, D.A.

    1996-01-01

    A study was conducted to identify and separate possible signals of volcanic eruptions and of the El Nino Southern Oscillation (ENSO) in U.S. surface climate records. Anomalies of monthly mean surface air temperature and total precipitation taken from the U.S. Historical Climatology Network were composited (averaged) over years of major explosive volcanic eruptions, ENSO warm events, and ENSO cold events since the year 1900. It was assumed that volcanic eruptions and ENSO events occur independently of each other. All composite anomalies were assessed for significance with regard to several statistical and physical criteria. The composite ENSO-related anomalies were then subtracted from anomalies of temperature and precipitation associated with the volcanic eruptions. Removal of large magnitude and highly significant anomalies associated with the ENSO warm and cold events is found to facilitate detection of volcanic signals in monthly records of U.S. temperature and precipitation. Volcanic signals are strongly suggested east of the Continental Divide, for example, where positive monthly temperature anomalies exceeding 1{degrees}C occur during the first fall and winter after eruptions. Negative temperature anomalies occur west of the Continental Divide during the first winter and spring after eruptions and in the southern United States during the summer of the first post-eruption calendar year. Positive monthly precipitation anomalies exceeding 15 mm in magnitude are found in the southeastern United States during the first winter and spring after eruptions. Precipitation anomalies that are smaller in magnitude and yet significant, such as positive anomalies in the northwestern United States and negative anomalies in the central and eastern United States, are found during the summer of the first post-eruption calendar year. 62 refs., 9 figs., 4 tabs.

  19. The 2010 Eyja eruption evolution by using IR satellite sensors measurements: retrieval comparison and insights into explosive volcanic processes

    NASA Astrophysics Data System (ADS)

    Piscini, A.; Corradini, S.; Merucci, L.; Scollo, S.

    2010-12-01

    The 2010 April-May Eyja eruption caused an unprecedented disruption to economic, political and cultural activities in Europe and across the world. Because of the harming effects of fine ash particles on aircrafts, many European airports were in fact closed causing millions of passengers to be stranded, and with a worldwide airline industry loss estimated of about 2.5 billion Euros. Both security and economical issues require robust and affordable volcanic cloud retrievals that may be really improved through the intercomparison among different remote sensing instruments. In this work the Thermal InfraRed (TIR) measurements of different polar and geostationary satellites instruments as the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Very High Resolution Radiometer (AVHRR) and the Spin Enhanced Visible and Infrared Imager (SEVIRI), have been used to retrieve the volcanic ash and SO2 in the entire eruption period over Iceland. The ash retrievals (mass, AOD and effective radius) have been carried out by means of the split window BTD technique using the channels centered around 11 and 12 micron. The least square fit procedure is used for the SO2 retrieval by using the 7.3 and 8.7 micron channels. The simulated TOA radiance Look-Up Table (LUT) needed for both the ash and SO2 column abundance retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. Further, the volcanic plume column altitude and ash density have been computed and compared, when available, with ground observations. The results coming from the retrieval of different IR sensors show a good agreement over the entire eruption period. The column height, the volcanic ash and the SO2 emission trend confirm the indentified different phases occurred during the Eyja eruption. We remark that the retrieved volcanic plume evolution can give important insights into eruptive dynamics during long-lived explosive activity.

  20. A two-dimensional stratospheric model of the dispersion of aerosols from the Fuego volcanic eruption

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.; Jones, C. F.; Park, J.

    1976-01-01

    Observational data of the pre- and post-volcanic aerosols from the eruption of the Volcan de Fuego in Guatemala (15 deg N) in October 1974 were used in conjunction with predictions of a 2-D circulation model to gain better understanding of the transport, chemical and sedimentation processes which determine the stratospheric aeosol layer.

  1. Review of eruptive activity at Tianchi volcano, Changbaishan, northeast China: implications for possible future eruptions

    NASA Astrophysics Data System (ADS)

    Wei, Haiquan; Liu, Guoming; Gill, James

    2013-04-01

    One of the largest explosive eruptions in the past several thousand years occurred at Tianchi volcano, also known as Changbaishan, on the China-North Korea border. This historically active polygenetic central volcano consists of three parts: a lower basaltic shield, an upper trachytic composite cone, and young comendite ash flows. The Millennium Eruption occurred between 938 and 946 ad, and was preceded by two smaller and chemically different rhyolitic pumice deposits. There has been at least one additional, small eruption in the last three centuries. From 2002 to 2005, seismicity, deformation, and the helium and hydrogen gas contents of spring waters all increased markedly, causing regional concern. We attribute this event to magma recharge or volatile exhalation or both at depth, followed by two episodes of addition of magmatic fluids into the overlying aquifer without a phreatic eruption. The estimated present magma accumulation rate is too low by itself to account for the 2002-2005 unrest. The most serious volcanic hazards are ash eruption and flows, and lahars. The available geological information and volcano monitoring data provide a baseline for comprehensive assessment of future episodes of unrest and possible eruptive activity.

  2. Communicating likelihoods and probabilities in forecasts of volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Doyle, Emma E. H.; McClure, John; Johnston, David M.; Paton, Douglas

    2014-02-01

    The issuing of forecasts and warnings of natural hazard events, such as volcanic eruptions, earthquake aftershock sequences and extreme weather often involves the use of probabilistic terms, particularly when communicated by scientific advisory groups to key decision-makers, who can differ greatly in relative expertise and function in the decision making process. Recipients may also differ in their perception of relative importance of political and economic influences on interpretation. Consequently, the interpretation of these probabilistic terms can vary greatly due to the framing of the statements, and whether verbal or numerical terms are used. We present a review from the psychology literature on how the framing of information influences communication of these probability terms. It is also unclear as to how people rate their perception of an event's likelihood throughout a time frame when a forecast time window is stated. Previous research has identified that, when presented with a 10-year time window forecast, participants viewed the likelihood of an event occurring ‘today’ as being of less than that in year 10. Here we show that this skew in perception also occurs for short-term time windows (under one week) that are of most relevance for emergency warnings. In addition, unlike the long-time window statements, the use of the phrasing “within the next…” instead of “in the next…” does not mitigate this skew, nor do we observe significant differences between the perceived likelihoods of scientists and non-scientists. This finding suggests that effects occurring due to the shorter time window may be ‘masking’ any differences in perception due to wording or career background observed for long-time window forecasts. These results have implications for scientific advice, warning forecasts, emergency management decision-making, and public information as any skew in perceived event likelihood towards the end of a forecast time window may result in

  3. Amazonian volcanic activity at the Syrtis volcanic province, Mars

    NASA Astrophysics Data System (ADS)

    Platz, Thomas; Jodlowski, Piotr; Fawdon, Peter; Michael, Greg; Tanaka, Kenneth

    2014-05-01

    The Syrtis Major volcanic province, including the entire Syrtis Major Planum, is located near the Martian highland/lowland transitional zone west of Isidis Planitia. It covers ≡7.4×105 km2 and contains two low-shield volcanic edifices with N-S elongated calderas named Nili and Meroe Paterae. The estimated thickness of erupted material in the province ranges from approximately 0.5 km to 1.0 km with a total volume of about 1.6-3.2×105 km3 [1]. The timing of volcanic activity in the Syrtis Major volcanic province has been suggested to be restricted to the Hesperian Period [1-4]. In the geological map of Greeley and Guest [2], volcanic material of Syrtis Major was assigned an Hesperian age based on the density of observed craters larger than 5 km in diameter. Using the same crater density range, recent studies of Hiesinger et al. [1] and Tanaka et al. [3] and Tanaka et al. [4] assigned an Early Hesperian and Early to Late Hesperian age, respectively, for the entire province. In this study we mapped lava flows, lava channels, and major lava-flow margins and report model ages for lava-flow formation and caldera segments of Nili and Meroe Paterae. The objective of this ongoing survey is to better understand the eruption frequency of this volcanic province. In total, we mapped 67 lava flows, caldera segments, and intra-crater fillings of which 55 were dated. Crater size-frequency distributions (CSFD) were mapped on HRSC and CTX imagery using CraterTools [5]. CSFDs were analyzed and model ages determined in Craterstats [6] using the production and chronology functions of Ivanov [7] and Hartmann and Neukum [8], respectively. A detailed description of the utilization of the crater-counting technique and its limitations with respect to small-scale mapping is given in Platz et al. [9]. Model ages range between 838 Ma (Middle Amazonian) to 3.6 Ga (Late Hesperian). In our survey, a broad age peak occurs between 2 to 2.6 Ga, continuously declining thereafter. We note that

  4. The mechanism of polar vortex strengthening after large tropical volcanic eruptions as simulated in the MPI-ESM

    NASA Astrophysics Data System (ADS)

    Bittner, Matthias; Timmreck, Claudia; Schmidt, Hauke; Toohey, Matthew; Krueger, Kirstin

    2016-04-01

    State-of-the-art climate models that have participated in the recent CMIP5 model intercomparison activity do, on average, not produce the strengthened northern hemispheric (NH) polar vortex after historical large tropical volcanic eruptions as suggested by observations. Here, we study the impact of volcanic eruptions of different strength on the NH winter stratosphere in the MPI-ESM Earth system model. We compare the dynamical impact in ensemble simulations of a very large Tambora eruption in 1815 with the response to the two largest eruptions of the CMIP5 historical simulations (Krakatau, 1883; and Mt. Pinatubo, 1991). The mechanism, of the strengthening of the vortex can clearly be identified in the simulations for the Tambora eruption. An increased meridional stratospheric temperature gradient is often assumed to be the cause of the vortex strengthening. The position of the maximum temperature anomaly gradient is located, however, at approximately 30°N, far away from the polar vortex . Hence, the vortex strengthening is caused only indirectly by the changed temperature gradient which first produces a subtropical wind anomaly in early winter. This leads planetary waves propagating more equatorward causing finally the vortex strengthening. The simulated response to the weaker eruptions of Krakatau and Pinatubo is also a slight average strengthening of the polar vortex, but individual ensemble members differ strongly indicating that internal variability can mask the impact on the polar vortex in the NH post-eruption winter under such moderate eruption strengths. The large forcing of the Tambora eruption does not only cause a mean vortex strengthening but also a reduction of the ensemble variability of the vortex.

  5. Volcanic ash transport integrated in the WRF-Chem model: a description of the application and verification results from the 2010 Eyjafjallajökull eruption.

    NASA Astrophysics Data System (ADS)

    Stuefer, Martin; Webley, Peter; Grell, Georg; Freitas, Saulo; Kim, Chang Ki; Egan, Sean

    2013-04-01

    Regional volcanic ash dispersion models are usually offline decoupled from the numerical weather prediction model. Here we describe a new functionality using an integrated modeling system that allows simulating emission, transport, and sedimentation of pollutants released during volcanic activities. A volcanic preprocessor tool has been developed to initialize the Weather Research Forecasting model with coupled Chemistry (WRF-Chem) with volcanic ash and sulphur dioxide emissions. Volcanic ash variables were added into WRF-Chem, and the model was applied to study the 2010 eruption of Eyjafjallajökull. We evaluate our results using WRF-Chem with available ash detection data from satellite and airborne sensors, and from ground based Lidar measurements made available through the AeroCom project. The volcanic ash was distributed into 10 different bins according to the particle size ranging from 2 mm to less than 3.9 μm; different particle size distributions derived from historic eruptions were tested. An umbrella shaped initial ash cloud and an empirical relationship between mass eruption rates and eruption heights were used to initialize WRF-Chem. We show WRF-Chem model verification for the Eyjafjallajökull eruptions, which occurred during the months of April and May 2010. The volcanic ash plume dispersed extensively over Europe. Comparisons with satellite remote sensing volcanic ash retrievals showed good agreement during the events, also ground-based LIDAR compared well to the model simulations. The model sensitivity analysis of the Eyjafjallajökull event showed a considerable bias of ass mass concentrations afar from the volcano depending on initial ash size and eruption rate assumptions. However the WRF-Chem model initialized with reliable eruption source parameters produced good quality forecasts, and will be tested for operational volcanic ash transport predictions.

  6. G-EVER Activities and the Next-generation Volcanic Hazard Assessment System

    NASA Astrophysics Data System (ADS)

    Takarada, S.

    2013-12-01

    The Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER) is a consortium of Asia-Pacific geohazard research institutes that was established in 2012. G-EVER aims to formulate strategies to reduce the risks of disasters worldwide caused by the occurrence of earthquakes, tsunamis and volcanic eruptions. G-EVER is working on enhancing collaboration, sharing of resources, and making information on the risks of earthquakes and volcanic eruptions freely available and understandable. The 1st G-EVER International Symposium was held in Tsukuba, Japan in March 11, 2013. The 2nd Symposium is scheduled in Sendai, Tohoku Japan, in Oct. 19-20, 2013. Currently, 4 working groups were proposed in the G-EVER Consortium. The next-generation volcano hazard assessment WG is developing a useful system for volcanic eruption prediction, risk assessment, and evacuation at various eruption stages. The assessment system is based on volcanic eruption history datasets, volcanic eruption database, and numerical simulations. Volcanic eruption histories including precursor phenomena leading to major eruptions of active volcanoes are very important for future prediction of volcanic eruptions. A high quality volcanic eruption database, which contains compilations of eruption dates, volumes, and types, is important for the next-generation volcano hazard assessment system. Proposing international standards on how to estimate the volume of volcanic products is important to make a high quality volcanic eruption database. Spatial distribution database of volcanic products (e.g. tephra and pyroclastic flow distributions), encoded into a GIS based database is necessary for more precise area and volume estimation and risk assessments. The volcanic eruption database is developed based on past eruption results, which only represents a subset of possible future scenarios. Therefore, numerical simulations with controlled parameters are needed for more precise volcanic eruption

  7. Active Volcanic Plumes on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This color image, acquired during Galileo's ninth orbit around Jupiter, shows two volcanic plumes on Io. One plume was captured on the bright limb or edge of the moon (see inset at upper right), erupting over a caldera (volcanic depression) named Pillan Patera after a South American god of thunder, fire and volcanoes. The plume seen by Galileo is 140 kilometers (86 miles) high and was also detected by the Hubble Space Telescope. The Galileo spacecraft will pass almost directly over Pillan Patera in 1999 at a range of only 600 kilometers (373 miles).

    The second plume, seen near the terminator (boundary between day and night), is called Prometheus after the Greek fire god (see inset at lower right). The shadow of the 75-kilometer (45- mile) high airborne plume can be seen extending to the right of the eruption vent. The vent is near the center of the bright and dark rings. Plumes on Io have a blue color, so the plume shadow is reddish. The Prometheus plume can be seen in every Galileo image with the appropriate geometry, as well as every such Voyager image acquired in 1979. It is possible that this plume has been continuously active for more than 18 years. In contrast, a plume has never been seen at Pillan Patera prior to the recent Galileo and Hubble Space Telescope images.

    North is toward the top of the picture. The resolution is about 6 kilometers (3.7 miles) per picture element. This composite uses images taken with the green, violet and near infrared filters of the solid state imaging (CCD) system on NASA's Galileo spacecraft. The images were obtained on June 28, 1997, at a range of more than 600,000 kilometers (372,000 miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page

  8. Deposits, character and timing of recent eruptions and gravitational collapses in Tatun Volcanic Group, Northern Taiwan: Hazard-related issues

    NASA Astrophysics Data System (ADS)

    Belousov, Alexander; Belousova, Marina; Chen, Chang-Hwa; Zellmer, Georg F.

    2010-04-01

    Taipei City, with a population of around 8 million, as well as two nuclear power plants is located in close proximity to the Quaternary, dominantly andesitic Tatun Volcanic Group (TVG) of Northern Taiwan. We have investigated the stratigraphy of the youngest volcaniclastic deposits, as well as the morphology of lava flows and domes of the TVG in order to reconstruct the character and timing of the most recent eruptions and related hazardous events in the area. Our data indicate that recent eruptions of the group were dominated by long-term, voluminous extrusions of crystal-rich, very viscous lavas. These eruptions formed closely spaced monogenetic domes and lava flows. Based on morphological parameters of the lava flows (thicknesses 80-150 m, lengths up to 5.6 km, and volumes up to 0.6 km 3), average rates of magma effusion ranged from 1 to 10 m 3/s, eruption durations from 500 to 1800 days, and lava front speeds from 0.5 to 6 m/h. Explosive activity of TVG was diverse, ranging from weak phreatic to highly explosive (VEI 4) Plinian eruptions; vulcanian activity with deposition of lithic ashes was most common. Interaction of rising magma with ground water frequently occurred during the eruptions. This study presents the first radiocarbon dates of various volcaniclastic deposits of the TVG, which indicate that Cising, Siaoguanyin, and possibly Huangzuei volcanoes had magmatic eruptions in the period 13,000-23,000 years ago. In addition, Mt. Cising had a phreatic eruption 6000 years ago, and possibly an effusive eruption just before that. Gravitational collapses of volcanic edifices with volumes 0.01-0.1 km 3 and H/ L 0.16-0.25 were also common. They occurred on intersections with tectonic faults and may have been triggered by seismic activity. The youngest collapses occurred at Mt. Siaoguanyin (23,000 BP) and Mt. Cising (6000 BP). It is concluded that the TVG should be considered volcanically active. The results of this study provide a basis for volcanic hazard

  9. Global link between deformation and volcanic eruption quantified by satellite imagery.

    PubMed

    Biggs, J; Ebmeier, S K; Aspinall, W P; Lu, Z; Pritchard, M E; Sparks, R S J; Mather, T A

    2014-01-01

    A key challenge for volcanological science and hazard management is that few of the world's volcanoes are effectively monitored. Satellite imagery covers volcanoes globally throughout their eruptive cycles, independent of ground-based monitoring, providing a multidecadal archive suitable for probabilistic analysis linking deformation with eruption. Here we show that, of the 198 volcanoes systematically observed for the past 18 years, 54 deformed, of which 25 also erupted. For assessing eruption potential, this high proportion of deforming volcanoes that also erupted (46%), together with the proportion of non-deforming volcanoes that did not erupt (94%), jointly represent indicators with 'strong' evidential worth. Using a larger catalogue of 540 volcanoes observed for 3 years, we demonstrate how this eruption-deformation relationship is influenced by tectonic, petrological and volcanic factors. Satellite technology is rapidly evolving and routine monitoring of the deformation status of all volcanoes from space is anticipated, meaning probabilistic approaches will increasingly inform hazard decisions and strategic development. PMID:24699342

  10. Global detection of explosive volcanic eruptions with the World Wide Lightning Location Network (WWLLN) and application to aviation safety (Invited)

    NASA Astrophysics Data System (ADS)

    Ewert, J. W.; Holzworth, R. H.; Diefenbach, A. K.

    2010-12-01

    The hazards of volcanic ash to modern aviation are now widely known, and there is a concerted global effort on the part of volcano observatories, meteorological services, and civil aviation authorities to keep aircraft out of harm’s way. A major issue with providing rapid notification of dangerous eruptions is that only about 50% of the world's volcanoes that currently threaten air operations have any sort of ground-based, real-time monitoring; thus, timely detection of explosive eruptions is more difficult owing to reliance on satellite remote sensing. We have been evaluating the World Wide Lightning Location Network (WWLLN, see http://wwlln.net) as a tool to detect volcanogenic lightning associated with explosive eruptions worldwide to aid rapid eruption reporting for aviation. The WWLLN has a data latency of one minute and thus can detect and report volcanogenic lightning in near-real time. We compared explosive volcanic activity worldwide (data from the Smithsonian’s Global Volcanism Program, volcano observatory reports, Volcanic Ash Advisory Center (VAAC) reports, and ancillary data sources) with the entire catalog of WWLLN data for 2008 and 2009 to determine the eruption-detection capabilities of the system. Duration and number of WWLLN lightning detections is positively correlated with eruption magnitude. In 2008 the WWLLN detected lightning from all eruptions VEI 4 or larger (Chaiten, Chile; Kasatochi and Okmok, Alaska, USA), as well as four out of six of the ~VEI 3 and two ~VEI 2 eruptions. In 2009 the WWLLN detected the single VEI 4 eruption (Sarychev Peak, Kurile Islands, Russia), four out six of the ~VEI 3 and a single VEI 2 eruption. At volcanoes where eruption-onset times are well determined by seismic or remote sensing means, lightning flashes started within 4 to 58 minutes of eruption onset. Lightning was detected from eruptions that produced ash clouds with heights that ranged from approximately 1-15 km above the vent, with most >9 km. Detected

  11. Episodic Eruptive and Filling Dynamics as Recorded in Phenocryst Distribution Profiles in Volcanic and Intrusive Domains

    NASA Astrophysics Data System (ADS)

    Charrier, A.; Marsh, B. D.

    2013-12-01

    The sorting and capture of phenocryst populations in certain magmatic bodies leaves a record of episodic magmatic system filling dynamics that is analogous to volcanic eruptive events. While it is reasonable to assume certain similarities between volcanic and shallow-level intrusive events, learning to identify and read these phenocryst records helps to build a necessary body of evidence to more robustly investigate the scope of these similarities. Phenocryst distribution profiles from the intrusive shallow-level Ferrar Dolerites sill complex of Antarctica are here investigated and compared to distribution profiles from volcanic systems. Features common to filling dynamics seen in both the intrusive and volcanic records are established by coupling theories of particle settling in viscous flows with those of conductive cooling and solidification front advancement. There is clear evidence for episodic activity for both types of systems in their respective phenocryst records, which in the case of some of the volcanic events was also verified by direct observation. Remobilization, transport, and capture of phenocryst populations in magmatic bodies are fundamental processes that also drive crystal fractionation and thus the evolution and diversity of igneous rocks. The chemical diversity of igneous rocks has been long known and studied, but it is necessary to also study and understand the physical processes that drive such chemical evolution. The relation between phenocryst abundance and chemical diversity in these rock suites is easily and clearly demonstrated, but learning to read these phenocryst records and relate them to magma transport dynamics gives a broader understanding of the processes which are the underlying cause of such diversity in all igneous rocks, whether intrusive or volcanic.

  12. Lidar Observations of Stratospheric Aerosol Layer After the Mt. Pinatubo Volcanic Eruption

    NASA Technical Reports Server (NTRS)

    Nagai, Tomohiro; Uchino, Osamu; Fujimoto, Toshifumi

    1992-01-01

    The volcano Mt. Pinatubo located on the Luzon Island, Philippines, had explosively erupted on June 15, 1991. The volcanic eruptions such as volcanic ash, SO2 and H2O reached into the stratosphere over 30 km altitude by the NOAA-11 satellite observation and this is considered one of the biggest volcanic eruptions in this century. A grandiose volcanic eruption influences the atmosphere seriously and causes many climatic effects globally. There had been many impacts on radiation, atmospheric temperature and stratospheric ozone after some past volcanic eruptions. The main cause of volcanic influence depends on stratospheric aerosol, that stay long enough to change climate and other meteorological conditions. Therefore it is very important to watch stratospheric aerosol layers carefully and continuously. Standing on this respect, we do not only continue stratospheric aerosol observation at Tsukuba but also have urgently developed another lidar observational point at Naha in Okinawa Island. This observational station could be thought valuable since there is no lidar observational station in this latitudinal zone and it is much nearer to Mt. Pinatubo. Especially, there is advantage to link up these two stations on studying the transportation mechanism in the stratosphere. In this paper, we present the results of lidar observations at Tsukuba and Naha by lidar systems with Nd:YAG laser.

  13. A cellular automaton to model magma/crust interactions and volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Sanchez, L.; Shcherbakov, R.

    2012-12-01

    Volcanic eruptions are the outcomes of complex dynamical interactions between magma and the Earth's crust and are characterized by non-trivial temporal correlations. It is of major importance to study the processes involved in magma ascent within the crust which can lead to a better under-standing of the failure mechanism that leads to an eruption. In a previous study, we showed that the interevent time distributions of volcanic eruptions were characterized by a universal behavior, independent of the type of volcanism and geographical location. The distribution for interevent times between successive eruptions were shown to deviate from the simple Poisson statistics. Instead, occurrence of volcanic eruptions can be modeled by a log-normal distribution. In the present work, we investigate the interactions between the magma and the host rock at the microscopic level using a cellular automaton approach. We consider a two-dimensional system on a rectangular lattice consisting of the magma chamber and the overlying crust. The magma particles coming from the chamber rise through the crust by damaging it to its failure point, and eventually reach the surface resulting in an eruption. While not damaged by magma, the crust can heal with time and fractures will close. The amount of damage that a particle can afflict on a crustal site and the healing capability of the crust are two model parameters and mimic various crustal settings. We consider two different definitions of the eruption sizes: i) only the magma in the vertical fractures directly under the eruption point is considered to define the eruption; ii) the entire fracture network (vertical and horizontal) filled with magma and connected to the eruption point is considered to define the eruption. In order to investigate further what controls the explosivity of eruptions, we introduce a binary system to model the magma and dissolved gases: magma and dissolved gases which are characterized by dierent damage capacities

  14. Volcanic eruption crisis and the challenges of geoscience education in Indonesia

    NASA Astrophysics Data System (ADS)

    Hariyono, E.; Liliasari, Tjasyono, B.; Madlazim

    2016-02-01

    The study aims was to describe of the profile of geoscience education conducted at the institution of teacher education for answer challenges of volcanic eruption crisis in Indonesia. The method used is descriptive analysis based on result of test and interview to 31 students of physics pre-service teachers about volcanoes through field study. The results showed that the students have a low understanding of volcanic material and there are several problems associated with the volcanoes concept. Other facts are geoscience learning does not support to the formation of geoscience knowledge and skills, dominated by theoretical studies and less focused on effort to preparing students towards disasters particularly to the volcanic eruption. As a recommendation, this require to restructuring geoscience education so as relevant with the social needs. Through courses accordingly, we can greatly help student's physics prospective teacher to improve their participations to solve problems of volcanic eruption crisis in the society.

  15. Determining volcanic eruption styles on Earth and Mars from crystallinity measurements.

    PubMed

    Wall, Kellie T; Rowe, Michael C; Ellis, Ben S; Schmidt, Mariek E; Eccles, Jennifer D

    2014-01-01

    Both Earth and Mars possess different styles of explosive basaltic volcanism. Distinguishing phreatomagmatic eruptions, driven by magma-water interaction, from 'magmatic' explosive eruptions (that is, strombolian and plinian eruptions) is important for determining the presence of near-surface water or ice at the time of volcanism. Here we show that eruption styles can be broadly identified by relative variations in groundmass or bulk crystallinity determined by X-ray diffraction. Terrestrial analogue results indicate that rapidly quenched phreatomagmatic ejecta display lower groundmass crystallinity (<35%) than slower cooling ejecta from strombolian or plinian eruptions (>40%). Numerical modelling suggests Martian plinian eruptive plumes moderate cooling, allowing 20-30% syn-eruptive crystallization, and thus reduce the distinction between eruption styles on Mars. Analysis of Mars Curiosity rover CheMin X-ray diffraction results from Gale crater indicate that the crystallinity of Martian sediment (52-54%) is similar to pyroclastic rocks from Gusev crater, Mars, and consistent with widespread distribution of basaltic strombolian or plinian volcanic ejecta. PMID:25277152

  16. Interaction of Volcanic Forcing and El Nino: Sensitivity to the Eruption Magnitude and El Nino Intensity

    NASA Astrophysics Data System (ADS)

    Predybaylo, Evgeniya; Wittenberg, Andrew; Stenchikov, Georgiy

    2015-04-01

    Volcanic aerosols formed in the stratosphere after strong explosive eruptions influence Earth's radiative balance, affecting atmospheric and oceanic temperatures and circulation. It was observed that the recent volcanic eruptions frequently occurred in El Nino years. Analysis of the paleo data confirms that the probability of a sequent El Nino occurrence after the eruption increases. To better understand the physical mechanism of this interaction we employed ocean-atmosphere coupled climate model CM2.1, developed in the Geophysical Fluid Dynamics Laboratory, and conducted a series of numerical experiments using initial conditions with different El Nino Southern Oscillation (ENSO) strengths forced by volcanic eruptions of different magnitudes, Pinatubo of June 1991 and Tambora of April 1815: (i) strong ENSO/Pinatubo, (ii) weak ENSO/Pinatubo, (iii) strong ENSO/Tambora. The amount of ejected material from the Tambora eruption was about three times greater than that of the Pinatubo eruption. The initial conditions with El Nino were sampled from the CM2.1 long control run. Our simulations show the enhancement of El Nino in the second year after an eruption. We found that the spatial-temporal structure of model responses is sensitive to both the magnitude of an eruption and the strength of El Nino. We analyzed the ocean dynamic in the tropical Pacific for all cases to uncover the physical mechanism, resulting in the enhanced and/or prolonged El Nino.

  17. Spaceborne Synthetic Aperture Radar (SAR) Doppler anomalies due to volcanic eruption induced phenomena

    NASA Astrophysics Data System (ADS)

    de Michele, Marcello; Raucoules, Daniel; Minet, Christian

    2015-04-01

    In the frame of the EU funded "MEDSUV" supersite project, we use multiple SAR data to investigate Doppler anomalies in the SAR signal occurring during volcanic eruptions. In Synthetic Aperture Radar, variations in the Electro Magnetic Waves travel time results in a change in the Doppler frequency that adds up to the one that is naturally generated by the relative motion between the platform and the ground targets. Within the SAR system, frequencies modulations control the image focusing along the two fundamental SAR directions, the azimuth (i.e. the platform motion direction) and the range (i. e. the sensor looking direction). During the synthetic aperture process (the so called image focusing) a target on the surface is seen along different paths. In standard focusing processing it is assumed both that ground targets are stationary and that between the sensor and the target the medium is the vacuum or a totally homogeneous medium. Therefore, if there is a significant path delay variation along the paths to a specific target this can result either in image defocusing or in pixel misregistration or both. It has been shown that SAR Doppler history anomalies can occur over volcanic areas. The goal of this study is to highlight Doppler history anomalies occurring during the SAR image formation over active volcanoes on a number of test cases. To do so, we apply a sub-aperture cross correlation algorithm on Single Look Complex data. Practically, we measure any pixel misregistration between two sub-looks of the same SAR acquisition. If a pixel shift occurs, it means that the expected radar wave path has been lengthened (or shortened) during the time when ground surface scatterers were illuminated by the sensor radiation either by a ground feature velocity (e. g. water flows, vehicles) or it is refracted by a strong medium discontinuity in the air (volcanic ash plume?). If a Doppler history anomaly is detected by the sub-aperture cross correlation, we try to explore

  18. Effects of Volcanic Eruptions on Climate in Inner Asia from 600 BCE to 2015 CE

    NASA Astrophysics Data System (ADS)

    Zhu, J. L.; Hessl, A. E.; Leland, C.; Byambasuren, O.; Anchukaitis, K. J.; Pederson, N.

    2015-12-01

    Volcanic eruptions have strongly influenced regional and global climate on many time scales. However, past studies have focused solely on the temperature variability of climate due to eruptions, using modern eruptions with the aid of satellite records. By using tree-ring data from a variety of sites that are temperature or moisture limited, it may be possible to attain a more complete understanding of the climatic effects of large eruptions from the past 2600 years. We used existing tree-ring data from Mongolia to understand how volcanic eruptions influence different climatic variables (temperature, moisture, and solar irradiance) in Inner Asia. This study, part of a larger research project on human ecology of Inner Asia, focuses on past volcanic eruptions ( 600 BCE to 2015 CE) at three sites in north central Mongolia: Solongotyn Davaa (48.3°N, 98.93°E), a temperature limited site, Khorgo Lava (48.17°N, 99.87°E), and Urgaat Lava (46.40°N, 101.46°E), both moisture limited sites. We collected more than 200 tree-ring samples of Siberian pine (Pinus sibirica) from the three sites. We used the Grid Analysis and Display System to run composite analyses using Climatic Research Unit temperature and precipitation data to test how modern eruptions between 1961 and 1999 influenced temperature and precipitation regimes in Mongolia. Four eruptions were analyzed and both composite analyses suggest that each variable is altered by volcanic eruptions during the 1 to 2 years following an eruption. We then used superposed epoch analysis to evaluate how past eruptions affect regional climate in Mongolia by separating temperature and precipitation variables. Our results indicate that most of Mongolia experienced 0.5°C cooler and dryer conditions following major eruptions. This research shows that tree-ring data is invaluable to studying volcanic eruptions by extending the time range of eruptions available to study and providing a more complete understanding of how they affect

  19. Regional model studies of the atmospheric dispersion of fine volcanic ash after the eruption of Eyjafjallajoekull

    NASA Astrophysics Data System (ADS)

    Langmann, B.; Hort, M. K.

    2010-12-01

    During the eruption of Eyjafjallajoekull on Iceland in April/May 2010 air traffic over Europe was repeatedly interrupted because of volcanic ash in the atmosphere. This completely unusual situation in Europe leads to the demand of improved crisis management, e.g. European wide regulations of volcanic ash thresholds and improved forecasts of theses thresholds. However, the quality of the forecast of fine volcanic ash concentrations in the atmosphere depends to a great extent on a realistic description of the erupted mass flux of fine ash particles, which is rather uncertain. Numerous aerosol measurements (ground based and satellite remote sensing, and in situ measurements) all over Europe have tracked the volcanic ash clouds during the eruption of Eyjafjallajoekull offering the possibility for an interdisciplinary effort between volcanologists and aerosol researchers to analyse the release and dispersion of fine volcanic ash in order to better understand the needs for realistic volcanic ash forecasts. This contribution describes the uncertainties related to the amount of fine volcanic ash released from Eyjafjallajoekull and its influence on the dispersion of volcanic ash over Europe by numerical modeling. We use the three-dimensional Eulerian atmosphere-chemistry/aerosol model REMOTE (Langmann et al., 2008) to simulate the distribution of volcanic ash as well as its deposition after the eruptions of Eyjafjallajoekull during April and May 2010. The model has been used before to simulate the fate of the volcanic ash after the volcanic eruptions of Kasatochi in 2008 (Langmann et al., 2010) and Mt. Pinatubo in 1991. Comparing our model results with available measurements for the Eyjafjallajoekull eruption we find a quite good agreement with available ash concentrations data measured over Europe as well as with the results from other models. Langmann, B., K. Zakšek and M. Hort, Atmospheric distribution and removal of volcanic ash after the eruption of Kasatochi volcano

  20. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    SciTech Connect

    C. Harrington

    2004-10-25

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit by Igneous Intrusion''. This model report provides direct inputs to

  1. Speleothems as sensitive recorders of volcanic eruptions - the Bronze Age Minoan eruption recorded in a stalagmite from Turkey

    NASA Astrophysics Data System (ADS)

    Fleitmann, D.; Borsato, A.; Frisia, S.; Badertscher, S.; Cheng, H.; Edwards, R. L.; Tüysüz, O.

    2012-04-01

    Tephra layers in marine and lacustrine sediments are crucial for chronostratigraphic dating. However, tephrachronologies based on marine and lake sediments suffer from age uncertainties due to low sedimentation rates, biturbation and inherent problems associated with radiocarbon dating (e.g. hardwater effect, varying marine reservoir ages). A potential, but still underexploited, archive of local to regional paleovolcanism are precisely-dated speleothems, as changes in their sulphur concentration (incorporated as sulphate into speleothem calcite) seem to be closely related to fluctuations in atmospheric sulphur loads. The strong dependency of sulphur on soil pH and ecosystem storage, however, can result in a delay of several years to decades in the registration of volcanic eruptions and anthropogenic emissions by stalagmites. Here we present synchrotron-radiation based trace element analysis performed on a precisely-dated section of a stalagmite from Sofular Cave in Northern Turkey. As this section covers the time interval of the intensively studied Minoan volcanic eruption between 1600 and 1650 BC, we can test whether this vigorous eruption can be traced in a stalagmite. Of all measured trace elements, only bromine shows a clear short-lived peak at 1621 ± 25 BC, whereas sulphur and molybdenum peak later at 1617 ± 25 and 1589 ± 25 respectively. We suggest that all trace element peaks are related to the Minoan eruption, whereas the observed phasing of bromine, molybdenum and sulphur is related to differences in their retention rates in the soil above Sofular Cave. For the first time, we can show that bromine appears to be an ideal volcanic tracer in stalagmites, as it is a prominent volatile component in volcanic eruptions, can be easily leached in soils and rapidly transferred from the atmosphere through the soil and bedrock into the cave and stalagmite respectively. Overall, our case study reveals that sulphur and bromine contents in precisely-dated speleothems

  2. Identifying the Volcanic Eruption Depicted in a Neolithic Painting at Çatalhöyük, Central Anatolia, Turkey

    PubMed Central

    Schmitt, Axel K.; Danišík, Martin; Aydar, Erkan; Şen, Erdal; Ulusoy, İnan; Lovera, Oscar M.

    2014-01-01

    A mural excavated at the Neolithic Çatalhöyük site (Central Anatolia, Turkey) has been interpreted as the oldest known map. Dating to ∼6600 BCE, it putatively depicts an explosive summit eruption of the Hasan Dağı twin-peaks volcano located ∼130 km northeast of Çatalhöyük, and a birds-eye view of a town plan in the foreground. This interpretation, however, has remained controversial not least because independent evidence for a contemporaneous explosive volcanic eruption of Hasan Dağı has been lacking. Here, we document the presence of andesitic pumice veneer on the summit of Hasan Dağı, which we dated using (U-Th)/He zircon geochronology. The (U-Th)/He zircon eruption age of 8.97±0.64 ka (or 6960±640 BCE; uncertainties 2σ) overlaps closely with 14C ages for cultural strata at Çatalhöyük, including level VII containing the “map” mural. A second pumice sample from a surficial deposit near the base of Hasan Dağı records an older explosive eruption at 28.9±1.5 ka. U-Th zircon crystallization ages in both samples range from near-eruption to secular equilibrium (>380 ka). Collectively, our results reveal protracted intrusive activity at Hasan Dağı punctuated by explosive venting, and provide the first radiometric ages for a Holocene explosive eruption which was most likely witnessed by humans in the area. Geologic and geochronologic lines of evidence thus support previous interpretations that residents of Çatalhöyük artistically represented an explosive eruption of Hasan Dağı volcano. The magmatic longevity recorded by quasi-continuous zircon crystallization coupled with new evidence for late-Pleistocene and Holocene explosive eruptions implicates Hasan Dağı as a potential volcanic hazard. PMID:24416270

  3. Identifying the volcanic eruption depicted in a neolithic painting at Çatalhöyük, Central Anatolia, Turkey.

    PubMed

    Schmitt, Axel K; Danišík, Martin; Aydar, Erkan; Şen, Erdal; Ulusoy, İnan; Lovera, Oscar M

    2014-01-01

    A mural excavated at the Neolithic Çatalhöyük site (Central Anatolia, Turkey) has been interpreted as the oldest known map. Dating to ∼6600 BCE, it putatively depicts an explosive summit eruption of the Hasan Dağı twin-peaks volcano located ∼130 km northeast of Çatalhöyük, and a birds-eye view of a town plan in the foreground. This interpretation, however, has remained controversial not least because independent evidence for a contemporaneous explosive volcanic eruption of Hasan Dağı has been lacking. Here, we document the presence of andesitic pumice veneer on the summit of Hasan Dağı, which we dated using (U-Th)/He zircon geochronology. The (U-Th)/He zircon eruption age of 8.97±0.64 ka (or 6960±640 BCE; uncertainties 2σ) overlaps closely with (14)C ages for cultural strata at Çatalhöyük, including level VII containing the "map" mural. A second pumice sample from a surficial deposit near the base of Hasan Dağı records an older explosive eruption at 28.9±1.5 ka. U-Th zircon crystallization ages in both samples range from near-eruption to secular equilibrium (>380 ka). Collectively, our results reveal protracted intrusive activity at Hasan Dağı punctuated by explosive venting, and provide the first radiometric ages for a Holocene explosive eruption which was most likely witnessed by humans in the area. Geologic and geochronologic lines of evidence thus support previous interpretations that residents of Çatalhöyük artistically represented an explosive eruption of Hasan Dağı volcano. The magmatic longevity recorded by quasi-continuous zircon crystallization coupled with new evidence for late-Pleistocene and Holocene explosive eruptions implicates Hasan Dağı as a potential volcanic hazard. PMID:24416270

  4. Volcanic Eruptions, Landscape Disturbance, and Potential Impacts to Marine and Terrestrial Ecosystems in Alaska: An Example from the August 2008 Eruption of Kasatochi Volcano

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.; Drew, G. S.

    2011-12-01

    The magnitude, style, and sometimes-prolonged nature of volcanic activity in Alaska has had significant impact on ecological habitat. The accumulation of volcaniclastic deposits during eruptions have destroyed or altered areas important to the success of various species and it may take years to decades for landforms and surfaces to recover and become habitable again. Kasatochi volcano, in the Aleutian Islands of Alaska, erupted explosively on August 7-8, 2008 and the rich nesting habitat for several species of seabirds on the island was completely destroyed. The eruption produced thick pyroclastic fall and flow deposits and several SO2 rich ash-gas plumes that reached 14 to 18 km above sea level. Pyroclastic deposits are several tens of meters thick, blanket the entire island, and initially extended seaward to increase the diameter of the island by about 800 m. Wave and gully erosion have modified these deposits and have exhumed some pre-eruption surfaces. Analysis of surface erosional features observed in satellite and time-lapse camera images and field studies have shown that by September 2009, gully erosion removed 300,000-600,000 m3 of mostly fine-grained volcanic sediment from the volcano flanks and much of this has reached the ocean. Sediment yield estimates from two representative drainage basins are about 104 m3km-2yr-1 and are comparable to sediment yields at other active volcanoes outside of Alaska. Coastal erosion rates at Kasatochi are as high as 80-140 myr-1 and parts of the northern coastline have already been eroded back to pre-eruption positions. As of March, 2011 about 72% of the material emplaced beyond the pre-eruption coastline on the northern sector of the island has been removed by wave erosion. Parts of the southern coastline have prograded beyond the post-eruption shoreline as a result of long-shore transport of sediment from north to south. As of March 2011, the total volume of material eroded by wave action was about 107 m3. The preferred

  5. Modelling concentrations of volcanic ash encountered by aircraft in past eruptions

    NASA Astrophysics Data System (ADS)

    Witham, Claire; Webster, Helen; Hort, Matthew; Jones, Andrew; Thomson, David

    2012-03-01

    Prolonged disruption to aviation during the April-May 2010 eruption of Eyjafjallajökull, Iceland resulted in pressure to predict volcanic ash plume concentrations for the purpose of allowing aircraft to fly in regions with low ash contamination. Over the past few decades there have been a number of incidents where aircraft have encountered volcanic ash resulting in damage to the aircraft and loss of power to engines. Understanding the volcanic ash concentrations that these aircraft have encountered provides important input to determining a safe concentration limit. Aircraft encounters with six volcanic eruption plumes have been studied and ash concentrations predicted using the atmospheric dispersion model NAME. The eruptions considered are Galunggung 1982, Soputan 1985, Redoubt 1989, Pinatubo 1991, Hekla 2000 and Manam 2006. Uncertainties in the eruption source details (start time, stop time and eruption height) and in the aircraft encounter location and flight path are found to be major limitations in some cases. Errors in the driving meteorological data (which is often coarse in resolution for historic studies) and the lack of eruption plume dynamics (e.g. umbrella cloud representation) results in further uncertainties in the predicted ash concentrations. In most of the case studies, the dispersion modelling shows the presence of ash at the aircraft encounter location. Maximum ash concentrations in the vicinity of the aircraft are predicted to be at least 4000 μg m -3 although confidence in the estimated concentrations is low and uncertainties of orders of magnitude are shown to be possible.

  6. The importance of ENSO phase during volcanic eruptions for detection and attribution

    NASA Astrophysics Data System (ADS)

    Lehner, Flavio; Schurer, Andrew P.; Hegerl, Gabriele C.; Deser, Clara; Frölicher, Thomas L.

    2016-03-01

    Comparisons of the observed global-scale cooling following recent volcanic eruptions to that simulated by climate models from the Coupled Model Intercomparison Project 5 (CMIP5) indicate that the models overestimate the magnitude of the global temperature response to volcanic eruptions. Here we show that this overestimation can be explained as a sampling issue, arising because all large eruptions since 1951 coincided with El Niño events, which cause global-scale warming that partially counteracts the volcanically induced cooling. By subsampling the CMIP5 models according to the observed El Niño-Southern Oscillation (ENSO) phase during each eruption, we find that the simulated global temperature response to volcanic forcing is consistent with observations. Volcanic eruptions pose a particular challenge for the detection and attribution methodology, as their surface impacts are short-lived and hence can be confounded by ENSO. Our results imply that detection and attribution studies must carefully consider sampling biases due to internal climate variability.

  7. 2009 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.; Girina, Olga A.; Chibisova, Marina; Rybin, Alexander

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, and reports of unusual activity at or near eight separate volcanic centers in Alaska during 2009. The year was highlighted by the eruption of Redoubt Volcano, one of three active volcanoes on the western side of Cook Inlet and near south-central Alaska's population and commerce centers, which comprise about 62 percent of the State's population of 710,213 (2010 census). AVO staff also participated in hazard communication and monitoring of multiple eruptions at ten volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  8. Kawah Ijen volcanic activity: a review

    NASA Astrophysics Data System (ADS)

    Caudron, Corentin; Syahbana, Devy Kamil; Lecocq, Thomas; Van Hinsberg, Vincent; McCausland, Wendy; Triantafyllou, Antoine; Camelbeeck, Thierry; Bernard, Alain; Surono

    2015-03-01

    Kawah Ijen is a composite volcano located at the easternmost part of Java island in Indonesia and hosts the largest natural acidic lake in the world. We have gathered all available historical reports on Kawah Ijen's activity since 1770 with the purpose of reviewing the temporal evolution of its activity. Most of these observations and studies have been conducted from a geochemical perspective and in punctuated scientific campaigns. Starting in 1991, the seismic activity and a set of volcanic lake parameters began to be weekly available. We present a database of those measurements that, combined with historical reports, allow us to review each eruption/unrest that occurred during the last two centuries. As of 2010, the volcanic activity is monitored by a new multi-disciplinary network, including digital seismic stations, and lake level and temperature measurements. This detailed monitoring provides an opportunity for better classifying seismic events and forecasting volcanic unrest at Kawah Ijen, but only with the understanding of the characteristics of this volcanic system gained from the historical review presented here.

  9. A numeral model to simulate the chemical processing of volcanic ejecta in eruption plumes and clouds

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, Gholam Ali; Hort, Marthias; Brasseur, Guy

    2016-04-01

    Volcanic eruptions inject tremendous amount of gases and particles into the atmosphere that can notably affect different components of the climate system. The scale of such impacts strongly depends on the eruption magnitude as well as the physicochemical properties of the erupted material, which are mainly shaped during the atmospheric transport within the eruption plume and cloud. For instance, the radiative forcing of an eruption through backscattering the incoming solar radiation depends on the amount and properties of the sulfate aerosols formed as the result of in-cloud processes including chemical conversion of volcanic SO2 to sulfate. The rate, pathway and efficiency of this conversion can therefore significantly influence the radiative forcing posed by the eruption. Models that can simulate such in-plume and in-cloud processes are rare. Here we present the framework and initial results of a numerical model that simulates the chemical interaction of gas, ash and aerosols within the volcanic eruption plumes and clouds. The chemical mechanism takes into account the gaseous and aqueous chemistry as well as the gas-aerosol partitioning within a fully-coupled scheme. In other words, it is capable of modeling the changes in the gas, liquid and solid phase separately as well as the interactions between phases. For instance, the results show that the ash dissolution reduces the acidity of its liquid coating and thus, enhances the scavenging of SO2 and HCl. The potential application of the model in volcanology, geochemistry and atmospheric sciences are discussed.

  10. Historical evidence for a connection between volcanic eruptions and climate change

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.

    1991-01-01

    The times of historical volcanic aerosol clouds were compared with changes in atmospheric temperatures on regional, hemispheric, and global scales. These involve either a direct comparison of individual significant eruption years with temperature records, or a comparison of eruption years with composited temperature records for several years before and after chosen sets of eruptions. Some studies have challenged the connection between individual eruptions and climate change. Mass and Portman (1989) recently suggested that the volcanic signal was present, but smaller than previously thought. In a study designed to test the idea that eruptions could cause small changes in climate, Hansen and other (1978) chose one of the best monitored eruptions at the time, the 1963 eruption of Agung volcano on the island of Bali. Using a simple radiation-balance model, in which an aerosol cloud in the tropics was simulated, this basic pattern of temperature change in the tropics and subtropics was reproduced. There may be natural limits to the atmospheric effects of any volcanic eruption. Self-limiting physical and chemical effects in eruption clouds were proposed. Model results suggest that aerosol microphysical processes of condensation and coagulation produce larger aerosols as the SO2 injection rate is increased. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on regional temperatures where the effects of volcanic aerosol clouds can be amplified by perturbed atmospheric circulation patterns, especially changes in mid-latitudes where meridional circulation patterns may develop. Such climatic perturbations can be detected in proxy evidence such as decreases in tree-ring widths and frost damage rings in climatically sensitive parts of the world, changes in treelines, weather anomalies such as unusually cold summers, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures.

  11. Volcanic Ash Cloud Altitude retrievals from passive satellite sensors: the 03-09 December 2015 Etna eruption.

    NASA Astrophysics Data System (ADS)

    corradini, stefano; merucci, luca; guerrieri, lorenzo; pugnaghi, sergio; mcgarragh, greg; carboni, elisa; ventress, lucy; grainger, roy; scollo, simona; pardini, federica; zaksek, klemen; langmann, baerbel; bancalá, severin; stelitano, dario

    2016-04-01

    The volcanic ash cloud altitude is one of the most important parameter needed for the volcanic ash cloud estimations (mass, effective radius and optical depth). It is essential by modelers to initialize the ash cloud transportation models, and by volcanologists to give insights into eruption dynamics. Moreover, it is extremely important in order to reduce the disruption to flights as a result of volcanic activity whilst still ensuring safe travel. In this work, the volcanic ash cloud altitude is computed from remote sensing passive satellite data (SEVIRI, MODIS, IASI and MISR) by using the most of the existing retrieval techniques. A novel approach, based on the CO2 slicing procedure, is also shown. The comparisons among different techniques are presented and advantages and drawbacks emphasized. As test cases Etna eruptions in the period between 03 and 09 December 2015 are considered. During this time four lava fountain events occurred at the Voragine crater, forming eruption columns higher than 12 km asl and producing copious tephra fallout on volcano flanks. These events, among the biggest of the last 20 years, produced emissions that reached the stratosphere and produced a circum-global transport throughout the northern hemisphere.

  12. Integration between Satellite and Ground-Based Data for the Improvement of Volcanic Ash Retrievals and Eruption Characterization

    NASA Astrophysics Data System (ADS)

    Corradini, S.; Merucci, L.; Marzano, F. S.; Montopoli, M.; Vulpiani, G.; Ricci, M.; Guerrieri, L.; Pugnaghi, S.; Scollo, S.; Coltelli, M.; Stramondo, S.

    2014-12-01

    Due to the large emission of gas and ash particles into the atmosphere, volcanic eruptions are among the most important sources of natural pollution. The size, density and shape of volcanic ash particles determine their residence time in the atmosphere that varies from minutes (for particles with radius larger than 100 μm) to weeks (for particles smaller than 10 μm). The interest in determining the abundances of these particles is high because of their effects on the environment, climate, public health and aviation. A practical consequence after the recent 2010 Eyjafjallajökull (Iceland) eruption, was the introduction of a volcanic ash concentration threshold to reduce the level of flight disruption whilst ensuring the passenger safety. This requirement forces the scientific community to develop novel techniques to obtain reliable results in real time. On the other hand, from the research point of view, an accurate estimation of the volcanic ash emissions can also yield insights into magmatic processes which control volcanic activity during the eruptive phases.Worldwide volcanic activity is observed with a variety of ground and space-based instruments that offer advantages and drawbacks. Because doesn't exist a single system able to give a comprehensive description of a particular phenomenon, an integrated approach based on the use of different types of remote sensing data is required. This approach is the core of the Multi-platform volcanic Ash Cloud Estimation (MACE) procedure that will be developed within the European FP7-APHORISM project.In this is work the measurements obtained from the geostationary MSG-SEVIRI, the polar Terra/Aqua MODIS and the ground-based weather RADAR instruments are integrated thus blending infrared and microwave ash estimation techniques from space and ground platforms. The expected outcomes are the improvements of the volcanic ash retrievals (mass, aerosol optical depth, effective radius, concentration, size distribution, cloud

  13. Volcanic lightning and plume behavior reveal evolving hazards during the April 2015 eruption of Calbuco volcano, Chile

    NASA Astrophysics Data System (ADS)

    Van Eaton, Alexa R.; Amigo, Álvaro; Bertin, Daniel; Mastin, Larry G.; Giacosa, Raúl E.; González, Jerónimo; Valderrama, Oscar; Fontijn, Karen; Behnke, Sonja A.

    2016-04-01

    Soon after the onset of an eruption, model forecasts of ash dispersal are used to mitigate the hazards to aircraft, infrastructure, and communities downwind. However, it is a significant challenge to constrain the model inputs during an evolving eruption. Here we demonstrate that volcanic lightning may be used in tandem with satellite detection to recognize and quantify changes in eruption style and intensity. Using the eruption of Calbuco volcano in southern Chile on 22 and 23 April 2015, we investigate rates of umbrella cloud expansion from satellite observations, occurrence of lightning, and mapped characteristics of the fall deposits. Our remote sensing analysis gives a total erupted volume that is within uncertainty of the mapped volume (0.56 ± 0.28 km3 bulk). Observations and volcanic plume modeling further suggest that electrical activity was enhanced both by ice formation in the ash clouds >10 km above sea level and development of a low-level charge layer from ground-hugging currents.

  14. Volcanic lightning and plume behavior reveal evolving hazards during the April 2015 eruption of Calbuco Volcano, Chile

    DOE PAGESBeta

    Van Eaton, Alexa R.; Behnke, Sonja Ann; Amigo, Alvaro; Bertin, Daniel; Mastin, Larry G.; Giacosa, Raul E.; Gonzalez, Jeronimo; Valderrama, Oscar; Fontijn, Karen

    2016-04-12

    Soon after the onset of an eruption, model forecasts of ash dispersal are used to mitigate the hazards to aircraft, infrastructure, and communities downwind. However, it is a significant challenge to constrain the model inputs during an evolving eruption. Here we demonstrate that volcanic lightning may be used in tandem with satellite detection to recognize and quantify changes in eruption style and intensity. Using the eruption of Calbuco volcano in southern Chile on 22 and 23 April 2015, we investigate rates of umbrella cloud expansion from satellite observations, occurrence of lightning, and mapped characteristics of the fall deposits. Our remotemore » sensing analysis gives a total erupted volume that is within uncertainty of the mapped volume (0.56 ± 0.28 km3 bulk). Furthermore, observations and volcanic plume modeling further suggest that electrical activity was enhanced both by ice formation in the ash clouds >10 km above sea level and development of a low-level charge layer from ground-hugging currents.« less

  15. Estimating different eruptive style volcanic areas of Mars from NASA Martian Meteorites Compendium data

    NASA Astrophysics Data System (ADS)

    Mari, Nicola; Verrino, Miriam

    2016-04-01

    The geomorphological characteristics of the Martian surface suggest that both effusive and explosive eruptive behaviour occurred. We investigated whether data about magma viscosity could be extrapolated from Mars SNCs (Shergotty, Nakhla, and Chassigny classes) meteorites, by using available geochemical and petrographic data from the NASA Martian Meteorites Compendium. Viscosity was used to characterize how eruptive style could change in different volcanic regions of planet Mars. Data about composition and crystallinity of 41 SNCs meteorites were used and classified, avoiding meteorites with poor/incomplete database. We assumed Mars as a one-plate planet, fO2 = QFM, and H2O wt% = 0 for each sample. Collected data from the Mars Global Surveyor Thermal Emission Spectrometer (MGS TES) identified the source regions for almost all the studied SNCs meteorites. As input for thermodynamic simulations we first needed to find the depth and pressure of the magmatic source for each meteorite sample through available Thermal Emission Imaging System (THEMIS). Data about average surface temperatures was used to establish whether a magmatic source is shallow or deep. Successively, we found the magma source depth (and pressure) by using the relationship with the heights of the volcanic edifice. The subsolidus equilibration temperatures found through petrologic softwares were used to calculate viscosity. Results indicate a crystallization temperature in a range from 1,120°C to 843°C, follow by a variation in viscosity from 101,43 to 105,97 Pa s. Viscosity seems to be higher in Tharsis, Elysium, Amazonis, and Syrtis Major regions than the remnant areas. According to past experimental studies about magma viscosity, we classified the eruptive style into effusive (101-103,5 Pa s), intermediate (103,5-104,5 Pa s), and explosive (104,5-106 Pa s). The Hellas Basin, Argyre Basin, Ganges Chasma, Eos Chasma, and Nili Fossae regions show an eruptive behaviour between effusive and intermediate

  16. Using volcanic tremor for eruption forecasting at White Island volcano (Whakaari), New Zealand

    NASA Astrophysics Data System (ADS)

    Chardot, Lauriane; Jolly, Arthur D.; M. Kennedy, Ben; Fournier, Nicolas; Sherburn, Steven

    2015-09-01

    Eruption forecasting is a challenging task because of the inherent complexity of volcanic systems. Despite remarkable efforts to develop complex models in order to explain volcanic processes prior to eruptions, the material Failure Forecast Method (FFM) is one of the very few techniques that can provide a forecast time for an eruption. However, the method requires testing and automation before being used as a real-time eruption forecasting tool at a volcano. We developed an automatic algorithm to issue forecasts from volcanic tremor increase episodes recorded by Real-time Seismic Amplitude Measurement (RSAM) at one station and optimised this algorithm for the period August 2011-January 2014 which comprises the recent unrest period at White Island volcano (Whakaari), New Zealand. A detailed residual analysis was paramount to select the most appropriate model explaining the RSAM time evolutions. In a hindsight simulation, four out of the five small eruptions reported during this period occurred within a failure window forecast by our optimised algorithm and the probability of an eruption on a day within a failure window was 0.21, which is 37 times higher than the probability of having an eruption on any day during the same period (0.0057). Moreover, the forecasts were issued prior to the eruptions by a few hours which is important from an emergency management point of view. Whereas the RSAM time evolutions preceding these four eruptions have a similar goodness-of-fit with the FFM, their spectral characteristics are different. The duration-amplitude distributions of the precursory tremor episodes support the hypothesis that several processes were likely occurring prior to these eruptions. We propose that slow rock failure and fluid flow processes are plausible candidates for the tremor source of these episodes. This hindsight exercise can be useful for future real-time implementation of the FFM at White Island. A similar methodology could also be tested at other

  17. The Volcano Disaster Assistance Program: Working with International Partners to Reduce the Risk from Volcanic Eruptions Worldwide

    NASA Astrophysics Data System (ADS)

    Mayberry, G. C.; Pallister, J. S.

    2015-12-01

    The Volcano Disaster Assistance Program (VDAP) is a joint effort between USGS and the U.S. Agency for International Development's (USAID) Office of U.S. Foreign Disaster Assistance (OFDA). OFDA leads and coordinates disaster responses overseas for the U.S. government and is a unique stakeholder concerned with volcano disaster risk reduction as an international humanitarian assistance donor. One year after the tragic eruption of Nevado del Ruiz in 1985, OFDA began funding USGS to implement VDAP. VDAP's mission is to reduce the loss of life and property and limit the economic impact from foreign volcano crises, thereby preventing such crises from becoming disasters. VDAP fulfills this mission and complements OFDA's humanitarian assistance by providing crisis response, capacity-building, technical training, and hazard assessments to developing countries before, during, and after eruptions. During the past 30 years, VDAP has responded to more than 27 major volcanic crises, built capacity in 12+ countries, and helped counterparts save tens of thousands of lives and hundreds of millions of dollars in property. VDAP responses have evolved as host-country capabilities have grown, but the pace of work has not diminished; as a result of VDAP's work at 27 volcanoes in fiscal year 2014, more than 1.3 million people who could have been impacted by volcanic activity benefitted from VDAP assistance, 11 geological policies were modified, 188 scientists were trained, and several successful eruption forecasts were made. VDAP is developing new initiatives to help counterparts monitor volcanoes and communicate volcanic risk. These include developing the Eruption Forecasting Information System (EFIS) to learn from compiled crisis data from 30 years of VDAP responses, creating event trees to forecast eruptions at restless volcanoes, and exploring the use of unmanned aerial systems for monitoring. The use of these new methods, along with traditional VDAP assistance, has improved VDAP

  18. A statistical model for the timing of earthquakes and volcanic eruptions influenced by periodic processes

    NASA Astrophysics Data System (ADS)

    Jupp, Tim E.; Pyle, David M.; Mason, Ben G.; Dade, W. Brian

    2004-02-01

    Evidence of nonuniformity in the rate of seismicity and volcanicity has been sought on a variety of timescales ranging from ˜12.4 hours (tidal) to 103-104 years (climatic), but the results are mixed. Here, we propose a simple conceptual model for the influence of periodic processes on the frequency of geophysical "failure events" such as earthquakes and volcanic eruptions. In our model a failure event occurs at a "failure time" tF = tI + tR which is controlled by an "initiation event" at the "initiation time" tI and by the "response time" of the system tR. We treat each of the initiation time, the response time, and the failure time as random variables. In physical terms, we define the initiation time to be the time at which a "load function" exceeds a "strength function," and we imagine that the response time tR corresponds to a physical process such as crack propagation or the movement of magma. Assuming that the magnitude and frequency of the periodic process are known, we calculate the statistical distribution of the initiation times on the assumption that the load and strength functions are otherwise linear in time. This allows the distribution of the failure times to be calculated if the distribution of the response times is known also. The quantitative predictions of this simple theory are compared with some examples of observed periodicity in seismic and volcanic activity at tidal and annual timescales.

  19. Liquid carbon dioxide of magmatic origin and its role in volcanic eruptions

    USGS Publications Warehouse

    Chivas, A.R.; Barnes, I.; Evans, William C.; Lupton, J.E.; Stone, J.O.

    1987-01-01

    Natural liquid carbon dioxide is produced commercially from a 2.5-km-deep well near the 4,500-yr-old maar volcano, Mount Gambier, South Australia. The carbon dioxide has accumulated in a dome that is located on the extension of a linear chain of volcanic activity. A magmatic origin for the fluid is suggested by the geological setting, ??13CPDB of -4.0???, for the CO2 (where PDB represents the carbon-isotope standard), and a relatively high 3He component of the contained helium and high 3He/C ratio (6.4 x 10-10). The 3He/ 4He and He/Ne ratios are 3.0 and > 1,370 times those of air, respectively. The CO2, as collected at the Earth's surface at 29.5 ??C and 75 bar, expands more than 300-fold to form a gas at 1 atm and 22 ??C. We suggest that liquid CO2 or high-density CO2 fluid (the critical point is 31.1 ??C, 73.9 bar) of volcanic origin that expands explosively from shallow levels in the Earth's crust may be a major contributor to 'phreatic' volcanic eruptions and maar formation. Less violent release of magmatic CO2 into crater lakes may cause gas bursts with equally disastrous consequences such as occurred at Lake Nyos, Cameroon, in August 1986. ?? 1987 Nature Publishing Group.

  20. Quantifying volcanic ash dispersal and impact of the Campanian Ignimbrite super-eruption

    NASA Astrophysics Data System (ADS)

    Costa, A.; Folch, A.; Macedonio, G.; Giaccio, B.; Isaia, R.; Smith, V. C.

    2012-05-01

    We apply a novel computational approach to assess, for the first time, volcanic ash dispersal during the Campanian Ignimbrite (Italy) super-eruption providing insights into eruption dynamics and the impact of this gigantic event. The method uses a 3D time-dependent computational ash dispersion model, a set of wind fields, and more than 100 thickness measurements of the CI tephra deposit. Results reveal that the CI eruption dispersed 250-300 km3 of ash over ˜3.7 million km2. The injection of such a large quantity of ash (and volatiles) into the atmosphere would have caused a volcanic winter during the Heinrich Event 4, the coldest and driest climatic episode of the Last Glacial period. Fluorine-bearing leachate from the volcanic ash and acid rain would have further affected food sources and severely impacted Late Middle-Early Upper Paleolithic groups in Southern and Eastern Europe.

  1. Simulation of the trans-oceanic tsunami propagation due to the 1883 Krakatau volcanic eruption

    NASA Astrophysics Data System (ADS)

    Choi, B. H.; Pelinovsky, E.; Kim, K. O.; Lee, J. S.

    The 1883 Krakatau volcanic eruption has generated a destructive tsunami higher than 40 m on the Indonesian coast where more than 36 000 lives were lost. Sea level oscillations related with this event have been reported on significant distances from the source in the Indian, Atlantic and Pacific Oceans. Evidence of many manifestations of the Krakatau tsunami was a subject of the intense discussion, and it was suggested that some of them are not related with the direct propagation of the tsunami waves from the Krakatau volcanic eruption. Present paper analyzes the hydrodynamic part of the Krakatau event in details. The worldwide propagation of the tsunami waves generated by the Krakatau volcanic eruption is studied numerically using two conventional models: ray tracing method and two-dimensional linear shallow-water model. The results of the numerical simulations are compared with available data of the tsunami registration.

  2. Early evolution of a stratospheric volcanic eruption cloud as observed with TOMS and AVHRR

    USGS Publications Warehouse

    Schneider, D.J.; Rose, William I., Jr.; Coke, L.R.; Bluth, G.J.S.; Sprod, I.E.; Krueger, A.J.

    1999-01-01

    This paper is a detailed study of remote sensing data from the total ozone mapping spectrometer (TOMS) and the advanced very high resolution radiometer (AVHRR) satellite detectors, of the 1982 eruption of El Chicho??n, Mexico. The volcanic cloud/atmosphere interactions in the first four days of this eruption were investigated by combining ultraviolet retrievals to estimate the mass of sulfur dioxide in the volcanic cloud [Krueger et al., 1995] with thermal infrared retrievals of the size, optical depth, and mass of fine-grained (1-10 ??m radius) volcanic ash [Wen and Rose, 1994]. Our study provides the first direct evidence of gravitational separation of ash from a stratospheric, gas-rich, plinian eruption column and documents the marked differences in residence times of volcanic ash and sulfur dioxide in volcanic clouds. The eruption column reached as high as 32 km [Carey and Sigurdsson, 1986] and was injected into an atmosphere with a strong wind shear, which allowed for an observation of the separation of sulfur dioxide and volcanic ash. The upper, more sulfur dioxide-rich part of the cloud was transported to the west in the stratosphere, while the fine-grained ash traveled to the south in the troposphere. The mass of sulfur dioxide released was estimated at 7.1 ?? 109 kg with the mass decreasing by approximately 4% 1 day after the peak. The mass of fine-grained volcanic ash detected was estimated at 6.5 ?? 109 kg, amounting to about 0.7% of the estimated mass of the ash which fell out in the mapped ash blanket close to the volcano. Over the following days, 98% of this remaining fine ash was removed from the volcanic cloud, and the effective radius of ash in the volcanic cloud decreased from about 8 ??m to about 4 ??m. Copyright 1999 by the American Geophysical Union.

  3. Testing the reliability of the Gutenberg-Richter b-value to aid volcanic eruption forecasting

    NASA Astrophysics Data System (ADS)

    Roberts, Nick; Bell, Andrew; Main, Ian

    2014-05-01

    The distribution of earthquake magnitudes is an important additional attribute of a volcanic earthquake catalogue and analyses of properties of the "frequency-magnitude distribution" (FMD) underpins most studies of volcanic seismicity. The event rate and inter-event intervals are of primary interest as their changes can be a primary indicator of volcanic unrest. The classic model for the earthquake FMD is the Gutenberg-Richter (GR) relation (Gutenberg and Richter, 1954): log(N) = a - bM, where N is the cumulative number of earthquakes of magnitude equal to or greater than M, a is a measure of the total seismicity rate of the region and the b-value represents the relative proportion of large and small events in the catalogue. The b-value for tectonic earthquakes has been well studied with a global average of approximately 1. However, b-values in volcanic settings are often reported to be much higher, sometimes with values as high as 3. Spatial variations in the volcanic b-value have been used to map stress conditions and magma reservoirs, and it has been argued that temporal variations have the potential to forecast eruptive activity. Here we assess different methodologies for analysing properties of the FMD, and re-evaluate what we know about the FMD of volcanic earthquakes. Using synthetic models we evaluate the reliability of methods for calculating the catalogue completeness magnitude where earthquake rates fluctuate rapidly in time to simulate pre-, syn- and post- earthquake swarm activity. We also evaluate to what extent volcanic FMDs are consistent with the GR model, using earthquake data from volcanoes including El Hierro, Canary Islands and Kilauea and Mauna Loa, Hawaii. We suggest that much of the proposed variation in b-value can be attributed to uncertainty in the completeness magnitude, and FMDs not displaying GR properties. In the case where event rate is pulsing or swarming the b-value has a tendency not to stabilise with increasing completeness

  4. Pre-eruptive volatile and erupted gas phase characterization of the 2014 basalt of Bárðarbunga volcanic system, Iceland.

    NASA Astrophysics Data System (ADS)

    Haddadi, Baptiste; Moune, Séverine; Sigmarsson, Olgeir; Gauthier, Pierre-Jean; Gouhier, Mathieu

    2015-04-01

    -pack sampling of the gas plume was performed 2 October 2014 few hundred meters to the W of the active crater row. Filter packs were composed of three filters in series: one PTFE filter to collect particulate phases, followed by two impregnated filters to trap major gaseous species (SO2, HF and HCl). Sulphate (SO4) and halide (Cl- and F-) ion concentrations were determined by ion chromatography. The SO2/HCl molar ratio in the erupted gas phase at the eruption site is 29-46, only slightly higher than that estimated from the MIs. Trace element volatility and fluxes are discussed elsewhere (Gauthier et al., 2015) but the average SO2 flux calculated from lava volume estimate end of November as 1.2 km3 (Gouhier et al., 2015) is close to 1100 kg/sec. This is the highest SO2 flux ever estimated from gas plume measurements. References: Gauthier et al. (2015) Trace element degassing patterns and volcanic fluxes to the atmosphere during the 2014 Holuhraun eruption, Iceland. EGU General Assembly 2015. Gouhier et al. (2015) Retrieval of lava and SO2 long-lived emissions using MSG-SEVIRI data during the 2014 Holuhraun eruption. EGU General Assembly 2015.

  5. A decade's overview of Io's volcanic activity

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Veeder, G. J.; Johnson, T. V.; Blaney, D. L.; Goguen, J. D.

    1993-01-01

    Over the past decade some aspects of Io's volcanic activity have changed greatly, while others have essentially remained constant. This contrast has emerged from our study of multi-wavelength, infrared, observations of Io's thermal emission. From 1983 to 1992 we observed the disk integrated flux density of Io from the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. Our spectral coverage allows us to separate out the emission components due to volcanic thermal anomalies which are warmer than the background emission caused by solar heating. Our temporal coverage allows us to resolve individual eruptions and also to obtain the disk-integrated flux density as a function of longitude (or, equivalently, orbital phase angle). Characteristics that persisted over the decade involve Loki's location and intensity of emission, the leading hemisphere emission, and the average heat flow. The variable aspects of Io over the decade include Loki's hotter area(s) and the outbursts in the leading hemisphere.

  6. Nighttime Monitoring of Volcanic Eruptions with Satellite-Based Multispectral Infrared Radiometers

    NASA Astrophysics Data System (ADS)

    Zhizhin, M. N.; Trifonov, G.

    2015-12-01

    The Nightfire algorithm for detection of night-time infrared sources with multispectral radiometers from the Suomi NPP and Landsat 8 satellites can be used for global monitoring of volcanic activity. By searching the spatio-temporal database of the Nightfire detections in the vicinity of active volcanoes we can reconstruct the day-by-day history of recent eruptions, including the temperature and size of the lava flow. By correlation of the detections from different satellite zenith angles in some cases we can derive the 3D geometry of the lava lake. Potential application may be an early alert system to monitor remote volcanoes which are out of reach for permanent ground instrumentation network.

  7. The Online GVP/USGS Weekly Volcanic Activity Report: Providing Timely Information About Worldwide Volcanism

    NASA Astrophysics Data System (ADS)

    Mayberry, G. C.; Guffanti, M. C.; Luhr, J. F.; Venzke, E. A.; Wunderman, R. L.

    2001-12-01

    The awesome power and intricate inner workings of volcanoes have made them a popular subject with scientists and the general public alike. About 1500 known volcanoes have been active on Earth during the Holocene, approximately 50 of which erupt per year. With so much activity occurring around the world, often in remote locations, it can be difficult to find up-to-date information about current volcanism from a reliable source. To satisfy the desire for timely volcano-related information the Smithsonian Institution and US Geological Survey combined their strengths to create the Weekly Volcanic Activity Report. The Smithsonian's Global Volcanism Program (GVP) has developed a network of correspondents while reporting worldwide volcanism for over 30 years in their monthly Bulletin of the Global Volcanism Network. The US Geological Survey's Volcano Hazards Program studies and monitors volcanoes in the United States and responds (upon invitation) to selected volcanic crises in other countries. The Weekly Volcanic Activity Report is one of the most popular sites on both organization's websites. The core of the Weekly Volcanic Activity Report is the brief summaries of current volcanic activity around the world. In addition to discussing various types of volcanism, the summaries also describe precursory activity (e.g. volcanic seismicity, deformation, and gas emissions), secondary activity (e.g. debris flows, mass wasting, and rockfalls), volcanic ash hazards to aviation, and preventative measures. The summaries are supplemented by links to definitions of technical terms found in the USGS photoglossary of volcano terms, links to information sources, and background information about reported volcanoes. The site also includes maps that highlight the location of reported volcanoes, an archive of weekly reports sorted by volcano and date, and links to commonly used acronyms. Since the Weekly Volcanic Activity Report's inception in November 2000, activity has been reported at

  8. Observations of a stratospheric aerosol veil from a tropical volcanic eruption in December 1808: is this the "Unknown" ~1809 eruption?

    NASA Astrophysics Data System (ADS)

    Guevara-Murua, A.; Williams, C. A.; Hendy, E. J.; Rust, A. C.; Cashman, K. V.

    2014-04-01

    The "Unknown" eruption of 1808/1809 was the second most explosive SO2-rich volcanic eruption in the last two centuries, only eclipsed by the cataclysmic VEI 7 Tambora eruption in April 1815. However, no eyewitness accounts of the event, and therefore its location, or the atmospheric optical effects associated with its aerosols have been documented from historical records. Here we report on two meteorological observations dating from the end of 1808 that describe phenomena we attribute to volcanic-induced atmospheric effects caused by the Unknown eruption. The observations were made by two highly respected Latin American scientists. The first, Francisco José de Caldas, describes a stratospheric aerosol haze, a "transparent cloud that obstructs the sun's brilliance", that was visible over the city of Bogotá, Colombia, from 11 December 1808 to at least mid-February 1809. The second, made by physician José Hipólito Unanue in Lima, Peru, describes sunset after-glows (akin to well-documented examples known to be caused by stratospheric volcanic aerosols) from mid-December 1808 to February 1809. These two accounts provide direct evidence of a persistent stratospheric aerosol veil that spanned at least 2600 km into both Northern and Southern Hemispheres and establish that the source was a tropical volcano. Moreover, these observations confirm that the Unknown eruption, previously identified and tentatively assigned to February 1809 (±4 months) from analysis of ice core sulphate records, occurred in late November or early December 1808 (4 December 1808 ± 7 days). This date has important implications for the associated hemispheric climate impacts and temporal pattern of aerosol dispersal.

  9. Magma, crust and water fluid. From the imbalance of their interaction to the modeling of volcanic eruption

    NASA Astrophysics Data System (ADS)

    Nechayev, A.

    2012-12-01

    The work describes a simple physical model that provides a theoretical justification for a single origin of the different types of volcanic eruptions. The leading mechanism of this model is that a vertical column of magma under certain conditions starts to be erupted by the critical action of water vapor fluid contained by the crust under high pressure and high temperature. This fundamental mechanism of imbalance between liquid and gas was first described as a mechanism of geyser eruption (Nechayev 2012a). A generalization of this mechanism in case of volcanic eruptions is developed in (Nechayev 2012b). We assume that the acceleration of magma and its eruption results from a pressure difference between magma and fluid in the contact zone at depths exceeding 1 km. Water vapor as a fluid can be found in the subduction zones where the oceanic crust with the sedimentary layer saturated by water is pushing under the continental crust delivering water fluid in the zone of active volcanism. Water vapor fluid in the supercritical state behaves as an ideal gas. The greater the volume of fluid the smaller the decrease of its pressure during the expansion. If the fluid penetrates the magma conduit and its volume exceeds a certain critical value, the fluid starts to push magma as a piston. The critical volume is equal to γSH, where γ is the adiabatic coefficient of water vapor (γ=1,4), S is the section of the magmatic conduit, H is the bedding depth of fluid layer. The greater the volume of superheated water fluid and the distance separating it from the magma chamber, the higher may be the eruption power. During volcanic eruption the fluid does work and expands, its pressure and density decrease, the eruption ends. To be repeated and to form a stratovolcano the eruption need some time to restore the critical volume of the fluid. This can occur due to the diffusion of fluid from the periphery. Perhaps it is just the fluid diffusion time which determines the interval between

  10. Nightfire method to track volcanic eruptions from multispectral satellite images

    NASA Astrophysics Data System (ADS)

    Trifonov, Grigory; Zhizhin, Mikhail; Melnikov, Dmitry

    2016-04-01

    This work presents the first results of an application of the Nightfire hotspot algorithm towards volcano activity detection. Nightfire algorithm have been developed to play along with a Suomi-NPP polar satellite launched in 2011, which has a new generation multispectral VIIRS thermal sensor on board, to detect gas flares related to the upstream and downstream production of oil and natural gas. Simultaneously using of nighttime data in SWIR, MWIR, and LWIR sensor bands the algorithm is able to estimate the hotspot temperature, size and radiant heat. Four years of non-filtered observations have been accumulated in a spatio-temporal detection database, which currently totals 125 GB in size. The first part of this work presents results of retrospective cross-match of the detection database with the publicly available observed eruptions databases. The second part discusses how an approximate 3D shape of a lava lake could be modeled based on the apparent source size and satellite zenith angle. The third part presents the results of fusion Landsat-8 and Himawari-8 satellites data with the VIIRS Nightfire for several active volcanoes.

  11. High-resolution sulfur isotopes in ice cores identify large stratospheric volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Burke, Andrea; Sigl, Michael; Adkins, Jess; Paris, Guillaume; McConnell, Joe

    2016-04-01

    The record of the volcanic forcing of climate over the past 2500 years is reconstructed primarily from sulfate concentrations in ice cores. Of particular interest are stratospheric eruptions, as these afford sulfate aerosols the longest residence time and largest dispersion in the atmosphere, and thus the greatest impact on radiative forcing. Identification of stratospheric eruptions currently relies on the successful matching of the same volcanic sulphate peak in ice cores from both the Northern and Southern hemispheres (a "bipolar event"). These are interpreted to reflect the global distribution of sulfur aerosols by the stratospheric winds. Despite its recent success, this method relies on precise and accurate dating of ice cores, in order to distinguish between a true 'bipolar event' and two separate eruptions that occurred in close temporal succession. Sulfur isotopes can been used to distinguish between these two scenarios since stratospheric sulfur aerosols are exposed to UV radiation which imparts a mass independent fractionation (Baroni et al., 2007). Mass independent fractionation of sulfate in ice cores thus offers a novel method of fingerprinting stratospheric eruptions, and thus refining the historic record of explosive volcanism and its forcing of climate. Here we present new high-resolution (sub-annual) sulfur isotope data from the Tunu Ice core in Greenland over seven eruptions. Sulfur isotopes were measured by MC-ICP-MS, which substantially reduces sample size requirements and allows high temporal resolution from a single ice core. We demonstrate the efficacy of the method on recent, well-known eruptions (including Pinatubo and Katmai/Novarupta), and then apply it to unidentified sulfate peaks, allowing us to identify new stratospheric eruptions. Baroni, M., Thiemens, M. H., Delmas, R. J., & Savarino, J. (2007). Mass-independent sulfur isotopic compositions in stratospheric volcanic eruptions. Science, 315(5808), 84-87. http://doi.org/10

  12. Occurrence of an unknown Atlantic eruption in the Chaîne des Puys volcanic field (Massif Central, France)

    NASA Astrophysics Data System (ADS)

    Jouannic, G.; Walter-Simonnet, A. V.; Bossuet, G.; Cubizolle, H.; Boivin, P.; Devidal, J. L.; Oberlin, C.

    2014-08-01

    A volcanic ash layer, called MF1, was recently identified in Holocene sediments from the Gourgon and Molhiac peat bogs (Monts du Forez, French Massif Central). This ash layer consists of colorless shards with a heterogeneous trachytic to rhyolitic composition. The trace elements analyzed by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) attest to a local origin. Radiocarbon dating of peat samples taken within and below the ash layer indicates the best age at 6339 ± 61 cal yr BP, i.e. an age contemporaneous with the volcanic activity of Montchal, Montcineyre and Pavin volcanoes from the Chaîne des Puys volcanic field. These volcanoes are characterized by basaltic and trachytic products, thus the rhyolitic composition of MF1 tephra suggests that it is likely originated from an unknown eruption. These results again confirm the interest of studying the distal volcanic ash fallouts in order to establish or specify records of past eruptions of volcanic fields. Identification of this new tephra layer also provides an additional tephrochronological marker for Eastern French Massif Central.

  13. Geomorphic change along a gravel bed river affected by volcanic eruption: Rio Blanco - Volcan Chaiten (South Chile)

    NASA Astrophysics Data System (ADS)

    Picco, Lorenzo; Ravazzolo, Diego; Ulloa, Hector; Iroumé, Andres; Aristide Lenzi, Mario

    2014-05-01

    Gravel bed rivers are environments shaped by the balance of flow, sediment regimes, large wood (LW) and vegetation. Geomorphic changes are response to fluctuations and changes of runoff and sediment supply involving mutual interactions among these factors. Typically, many natural disasters (i.e. debris flows, floods and forest fires) can affect the river basin dynamics. Explosive volcanic eruptions present, instead, the potential of exerting severe impacts as, for example, filling river valleys or changing river network patterns thanks to massive deposition of tephra and volcanic sediment all over the main channel and over the basin. These consistent impacts can strongly affect both hydrology and sediment transport dynamics, all over the river system, producing huge geomorphic changes. During the last years there has been a consistent increase in the survey technologies that permit to monitor geomorphic changes and to estimate sediment budgets through repeat topographic surveys. The calculation of differences between subsequent DEMs (difference of DEMs, DoD) is a commonly applied method to analyze and quantify these dynamics. Typically the higher uncertainty values are registered in areas with higher topographic variability and lower point density. This research was conducted along a ~ 2.2 km-long sub-reach of the Blanco River (Southern Chile), a fourth-order stream that presents a mainly rainfall regime with winter peak flows. The May 2008 Chaitén volcanic eruption strongly affected the entire Rio Blanco basin. The entire valley was highly exposed to the pyroclastic and fluvial flows, which affected directly a consistent area of evergreen forests. Extreme runoff from the upper Blanco catchment aggraded the channel and deposited up to several meters of tephra, alluvium, and LW along the entire river system. Aims of this contribution are to define and quantify the short term evolution of the Blanco River after the big eruption event and a subsequent consistent

  14. Risk assessment of the impact of future volcanic eruptions on direct normal irradiance

    NASA Astrophysics Data System (ADS)

    Pagh Nielsen, Kristian; Blanc, Philippe; Vignola, Frank

    2016-04-01

    Stratospheric sulfate aerosols from Plinian volcanic eruptions affect the solar surface irradiance forcing by scattering the solar radiation as it passes through the Earth atmosphere. Since these aerosols have high single scattering albedos they mostly affect direct normal irradiances (DNI). The effect on global horizontal irradiance (GHI) is less because some of the scattered irradiance reaches the surface as diffuse horizontal irradiance (DHI) and adds to the GHI. DNI is the essential input to concentrating solar thermal electric power (CSP/STE) and concentrated photovoltaic (CPV) plants. Therefore, an assessment of the future potential variability in the DNI resource caused by Plinian volcanic eruptions is desirable. Based on investigations of the El Chichón and Pinatubo eruptions, the microphysical, and thereby optical, properties of the stratospheric sulfate aerosols are well known. Given these, radiative transfer computations of the DNI resource can be made. The DNI resource includes forward scattered irradiance within the acceptance angle of a given CSP/STE or CPV plant. The rarity of Plinian eruptions poses a challenge for assessing the statistical risk of future eruptions and its potential of risk in the electricity production. Here we present and discuss methods to account for these potential volcanic eruptions for technical and economical studies including scenarios with very high probability of exceedance (e.g. P99 scenarios) for risk assessment of DNI-based solar power projects.

  15. Water vapour variability in the high-latitude upper troposphere - Part 2: Impact of volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Sioris, Christopher E.; Zou, Jason; McElroy, C. Thomas; Boone, Chris D.; Sheese, Patrick E.; Bernath, Peter F.

    2016-02-01

    The impact of volcanic eruptions on water vapour in the high-latitude upper troposphere is studied using deseasonalized time series based on observations by the Atmospheric Chemistry Experiment (ACE) water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS). The two eruptions with the greatest impact on the high-latitude upper troposphere during the time frame of this satellite-based remote sensing mission are chosen. The Puyehue-Cordón Caulle volcanic eruption in June 2011 was the most explosive in the past 24 years and is shown to be able to account for the observed (50 ± 12) % increase in water vapour in the southern high-latitude upper troposphere in July 2011 after a minor adjustment for the simultaneous influence of the Antarctic oscillation. Eyjafjallajökull erupted in the spring of 2010, increasing water vapour in the upper troposphere at northern high latitudes significantly for a period of ˜ 1 month. These findings imply that extratropical volcanic eruptions in windy environments can lead to significant perturbations to high-latitude upper tropospheric humidity mostly due to entrainment of lower tropospheric moisture by wind-blown plumes. The Puyehue-Cordón Caulle eruption must be taken into account to properly determine the magnitude of the trend in southern high-latitude upper tropospheric water vapour over the last decade.

  16. Parameters influencing the location and characteristics of volcanic eruptions in a youthful extensional setting: Insights from the Virunga Volcanic Province, in the Western Branch of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Smets, Benoît; d'Oreye, Nicolas; Kervyn, Matthieu; Kervyn, François

    2016-04-01

    The East African Rift System (EARS) is often mentioned as the modern archetype for rifting and continental break-up (Calais et al., 2006, GSL Special Publication 259), showing the complex interaction between rift faults, magmatism and pre-existing structures of the basement. Volcanism in the EARS is characterized by very active volcanoes, several of them being among the most active on Earth (Wright et al., 2015, GRL 42). Such intense volcanic activity provides useful information to study the relationship between rifting, magmatism and volcanism. This is the case of the Virunga Volcanic Province (VVP) located in the central part of the Western Branch of the EARS, which hosts two of the most active African volcanoes, namely Nyiragongo and Nyamulagira. Despite the intense eruptive activity in the VVP, the spatial distribution of volcanism and its relationship with the extensional setting remain little known. Here we present a study of the interaction between tectonics, magmatism and volcanism at the scale of the Kivu rift section, where the VVP is located, and at the scale of a volcano, by studying the dense historical eruptive activity of Nyamulagira. Both the complex Precambrian basement and magmatism appear to contribute to the development of the Kivu rift. The presence of transfer zones north and south of the Lake Kivu rift basin favoured the development of volcanic provinces at these locations. Rift faults, including reactivated Precambrian structures influenced the location of volcanism within the volcanic provinces and the rift basin. At a more local scale, the historical eruptive activity of Nyamulagira highlights that, once a composite volcano developed, the gravitational stress field induced by edifice loading becomes the main parameter that influence the location, duration and lava volume of eruptions.

  17. Timing and climate forcing of volcanic eruptions for the past 2,500 years.

    PubMed

    Sigl, M; Winstrup, M; McConnell, J R; Welten, K C; Plunkett, G; Ludlow, F; Büntgen, U; Caffee, M; Chellman, N; Dahl-Jensen, D; Fischer, H; Kipfstuhl, S; Kostick, C; Maselli, O J; Mekhaldi, F; Mulvaney, R; Muscheler, R; Pasteris, D R; Pilcher, J R; Salzer, M; Schüpbach, S; Steffensen, J P; Vinther, B M; Woodruff, T E

    2015-07-30

    Volcanic eruptions contribute to climate variability, but quantifying these contributions has been limited by inconsistencies in the timing of atmospheric volcanic aerosol loading determined from ice cores and subsequent cooling from climate proxies such as tree rings. Here we resolve these inconsistencies and show that large eruptions in the tropics and high latitudes were primary drivers of interannual-to-decadal temperature variability in the Northern Hemisphere during the past 2,500 years. Our results are based on new records of atmospheric aerosol loading developed from high-resolution, multi-parameter measurements from an array of Greenland and Antarctic ice cores as well as distinctive age markers to constrain chronologies. Overall, cooling was proportional to the magnitude of volcanic forcing and persisted for up to ten years after some of the largest eruptive episodes. Our revised timescale more firmly implicates volcanic eruptions as catalysts in the major sixth-century pandemics, famines, and socioeconomic disruptions in Eurasia and Mesoamerica while allowing multi-millennium quantification of climate response to volcanic forcing. PMID:26153860

  18. Long-term eruptive activity at a submarine arc volcano

    USGS Publications Warehouse

    Embley, R.W.; Chadwick, W.W., Jr.; Baker, E.T.; Butterfield, D.A.; Resing, J.A.; De Ronde, C. E. J.; Tunnicliffe, V.; Lupton, J.E.; Juniper, S.K.; Rubin, K.H.; Stern, R.J.; Lebon, G.T.; Nakamura, K.-I.; Merle, S.G.; Hein, J.R.; Wiens, D.A.; Tamura, Y.

    2006-01-01

    Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes. ?? 2006 Nature Publishing Group.

  19. Volcanic eruptions: Atmospheric effects. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-02-01

    The bibliography contains citations concerning gaseous and particulate contributions to the Earth's atmosphere from volcanoes, and the effects these substances have on the climate and the environment. Citations cover case studies of specific volcanic eruptions, detection and measurement of volcanic gases and aerosols in the atmosphere, environmental effects on the biota, long and short term climatological effects, paleoclimatology and volcanoes, atmospheric and transport modeling, and solar radiation inhibition. (Contains a minimum of 214 citations and includes a subject term index and title list.)

  20. Counteracting the climate effects of volcanic eruptions using short-lived greenhouse gases

    NASA Astrophysics Data System (ADS)

    Fuglestvedt, Jan S.; Samset, Bjørn H.; Shine, Keith P.

    2014-12-01

    A large volcanic eruption might constitute a climate emergency, significantly altering global temperature and precipitation for several years. Major future eruptions will occur, but their size or timing cannot be predicted. We show, for the first time, that it may be possible to counteract these climate effects through deliberate emissions of short-lived greenhouse gases, dampening the abrupt impact of an eruption. We estimate an emission pathway countering a hypothetical eruption 3 times the size of Mount Pinatubo in 1991. We use a global climate model to evaluate global and regional responses to the eruption, with and without counteremissions. We then raise practical, financial, and ethical questions related to such a strategy. Unlike the more commonly discussed geoengineering to mitigate warming from long-lived greenhouse gases, designed emissions to counter temporary cooling would not have the disadvantage of needing to be sustained over long periods. Nevertheless, implementation would still face significant challenges.

  1. Direct injection of water vapor into the stratosphere by volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Sioris, Christopher E.; Malo, Alain; McLinden, Chris A.; D'Amours, Real

    2016-07-01

    While theoretical studies show that water vapor (WV) can be directly injected into the stratosphere during a volcanic eruption, few observations of such a phenomenon exist. The Microwave Limb Sounder observed stratospheric injection of WV following the 2015 Calbuco eruption. Lower stratospheric mixing ratios exceeded 10 ppmv for a few days downwind of the injection location. Plume transport is confirmed by back trajectory modeling. Due to the short duration and limited spatial extent of the enhancement, climatic impact is expected to be negligible. This letter provides spatiotemporal analysis of a volcanogenic pulse of lower stratospheric WV as it dispersed. The inferred mass of stratospheric WV from this eruption of 2 megaton (Mt) and the rapid evanescence of the enhancement are similar to what has been observed for other eruptions, suggesting that injection by moderately explosive eruptions is not an effective mechanism for large-scale stratospheric hydration.

  2. ENSO response to high-latitude volcanic eruptions: the role of the initial conditions

    NASA Astrophysics Data System (ADS)

    Pausata, Francesco S. R.; Caballero, Rodrigo; Battisti, David S.

    2016-04-01

    Large volcanic eruptions can have major impacts on global climate affecting both atmospheric and ocean circulation through changes in atmospheric chemical composition and optical properties. The residence time of volcanic aerosol from strong eruptions is around 2-3 years and attention has consequently focused on their short-term impacts, and in particular on tropical eruptions. The long-term, ocean-mediated response has been less studied and large uncertainties remain. Moreover, studies have largely focused on tropical eruptions; high-latitude eruptions have drawn less attention because their impacts have been thought to be merely hemispheric rather than global and no study has hitherto investigated the long-term effects of such eruptions. Here we use a climate model to show that large summer high-latitude eruptions in the Northern Hemisphere could cause an El Niño-like anomaly in the equatorial Pacific during the first 8-9 months after the start of the eruption owing to a strong hemispheric cooling. The hemispherically asymmetric cooling shifts the Inter-Tropical Convergence Zone southwards, triggering a weakening of the trade winds over the western and central equatorial Pacific that leads to an El Niño-like anomaly. However, the El Niño-like anomaly strongly depends on the initial ENSO state: a 3-time larger response is shown when the climate system is going towards a La Niña compared to when is going towards an El Niño. Finally, the eruption also leads to a strengthening of the Atlantic Meridional Overturning Circulation (AMOC) in the first twenty-five years after the eruption, followed by a weakening lasting at least 35 years. The long-lived changes in the AMOC strength also alter the variability of El Niño-Southern Oscillation.

  3. Monitoring eruption activity from temporal stress changes at Mt. Ontake volcano, Japan

    NASA Astrophysics Data System (ADS)

    Terakawa, T.; Kato, A.; Yamanaka, Y.; Maeda, Y.; Horikawa, S.; Matsuhiro, K.; Okuda, T.

    2015-12-01

    On 27 September 2014, Mt. Ontake in Japan produced a phreatic (steam type) eruption with a Volcanic Explosivity Index value of 2 after being dormant for seven years. The local stress field around volcanoes is the superposition of the regional stress field and stress perturbations related to volcanic activity. Temporal stress changes over periods of weeks to months are generally attributed to volcanic processes. Here we show that monitoring temporal changes in the local stress field beneath Mt. Ontake, using focal mechanism solutions of volcano-tectonic (VT) earthquakes, is an effective tool for assessing the state of volcanic activity. We estimated focal mechanism solutions of 157 VT earthquakes beneath Mt. Ontake from August 2014 to March 2015, assuming that the source was double-couple. Pre-eruption seismicity was dominated by normal faulting with east-west tension, whereas most post-eruption events were reverse faulting with east-west compression. The misfit angle between observed slip vectors and those derived theoretically from the regional (i.e., background) stress pattern is used to evaluate the deviation of the local stress field, or the stress perturbation related to volcanic activity. The moving average of misfit angles tended to exceed 90° before the eruption, and showed a marked decrease immediately after the eruption. This indicates that during the precursory period the local stress field beneath Mt. Ontake was rotated by stress perturbations caused by the inflation of magmatic/hydrothermal fluids. Post-eruption events of reverse faulting acted to shrink the volcanic edifice after expulsion of volcanic ejecta, controlled by the regional stress field. The misfit angle is a good indicator of the state of volcanic activity. The monitoring method by using this indicator is applicable to other volcanoes and may contribute to the mitigation of volcanic hazards.

  4. Applicability of statistical eruption analysis to the geological record of Villarrica and Lanín volcanoes, Southern Volcanic Zone, Chile

    NASA Astrophysics Data System (ADS)

    Wehrmann, Heidi; Dzierma, Yvonne

    2011-03-01

    Standard stochastic failure-analysis techniques are applied to the geological eruption records of Villarrica and Lanín volcanoes in the Chilean Southern Volcanic Zone. These statistical methods are used to estimate the probabilities of eruptions large enough to leave a trace in the geological record. For Villarrica, the standard lifetime distributions predict a near 100% probability that such an eruption should have occurred between 489 AD and today. If the VEI = 3 eruptions observed in the historical record are large enough to be preserved in the geological record, the probability of such a future eruption of Villarrica is about 20% in the next 100 years. In the case of Lanín, the applicability of the exponential, Weibull and log-logistic distributions to the geological record is doubtful, since the volcano appears to have experienced alternating high- and low-activity regimes. Only the mixture-of-exponentials distribution can take into account the possible dormancy descending to final extinction, resulting in a probability of about 16% that Lanín will ever erupt again in the future. The contrasting behaviour of the eruption records of these two neighbouring volcanoes in terms of the number of eruptions and the length of the repose-time intervals serves to examine to what extent the method can be applied to geological eruption records. This study contributes to directing statistical eruption analysis towards time scales long enough to investigate large-magnitude eruptions, and it includes the possibility of dormancy/extinction.

  5. Pattern classification of volcanic tremor data related to the 2007-2012 Mt. Etna (Italy) eruptive episodes

    NASA Astrophysics Data System (ADS)

    Spampinato, Salvatore; Falsaperla, Susanna; Langer, Horst; Messina, Alfio

    2013-04-01

    From March 2007 to April 2012 one of the main craters of Mt. Etna volcano, the South East Crater, was frequently active with spectacular, even though low dangerous, eruptions mainly in form of lava fountains. Thirty-three eruptive episodes occurred at that crater, encompassing thirty-two paroxysmal lava fountains (seven in 2007-2008 and twenty-five in 2011-2012), and a lava emission, started on 13 May 2008 and ended on 6 July 2009, along the upper eastern flank of the volcano. From the seismic point of view, the onset of all these eruptions was heralded by changes in the spectral characteristics of volcanic tremor recorded by digital broadband stations, which permanently monitor the volcanic region. On the basis of the tremor data collected between 2007 and 2009, some of us (Messina and Langer) developed a software which, combining unsupervised classification methods based on Kohonen Maps and the fuzzy cluster analysis, allows to identify transitions from pre-eruptive to eruptive activity through the classification of the tremor characteristics (i.e., amplitude and frequency content). Since 2010 an on-line version of this software is adopted at the Osservatorio Etneo as one of the automatic alerting tools to identify early stages of eruptive events. The software carries out the analysis of the continuous data stream of two key seismic stations, for which reference datasets were elaborated taking into account the tremor data recorded during the eruptive episodes from 2007 to 2009. The numerous paroxysmal eruptions occurred in 2011-2012 and the improved network density, in particular on the summit crater area, after 2009, lead us to extend the application of automatic volcanic tremor classification by using a larger number of stations at different elevation and distance from the summit craters. Datasets have been formed for the new stations, while for the previous key stations, the reference datasets were updated adding new patterns of the tremor signal. We discuss

  6. Large volcanic eruptions affect climate in many more ways than just cooling (Invited)

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2009-12-01

    . Each of the largest sulfur-emitting eruptions since 1600 (Huaynaputina, Laki, Tambora, Krakatau, Santa Maria, Novarupta, Pinatubo) were in the same year as moderate to strong El Niños but were typically followed by very strong El Niños within 6 to 8 years (Data: Bradley and Jones, 1992). During El Niños, warm water heats the tropical Pacific atmosphere. Many ocean currents are affected over short time scales by atmospheric teleconnections but then affect atmospheric conditions over longer time scales. The sum of these processes with different time constants varies when the rate of volcanic activity changes by orders of magnitude. Ward (2009, doi:10.1016/j.tsf.2009.01.005) presents data suggesting large eruptions occurring on average once per century (current rate) provide only short-term changes in climate, but when they occur every few decades, they supplement Milanković cycles and increment the world into ice ages, and when they occur as often as once per year, they cause rapid global warming. Volcanic-like sulfate deposited in Greenland from man burning fossil fuels between 1930 and 1980 was as high as the highest levels of sulfate deposited during rapid warming at the end of the last ice age. Man did not eject sulfur into the stratosphere, but it remained in the atmosphere long enough to be deposited in Greenland. Understanding how volcanoes caused abrupt warming in the past would help us understand how man is causing abrupt warming today.

  7. Volcanic activity at Tvashtar Catena, Io

    USGS Publications Warehouse

    Milazzo, M.P.; Keszthelyi, L.P.; Radebaugh, J.; Davies, A.G.; Turtle, E.P.; Geissler, P.; Klaasen, K.P.; Rathbun, J.A.; McEwen, A.S.

    2005-01-01

    Galileo's Solid State Imager (SSI) observed Tvashtar Catena four times between November 1999 and October 2001, providing a unique look at a distinctive high latitude volcanic complex on Io. The first observation (orbit I25, November 1999) resolved, for the first time, an active extraterrestrial fissure eruption; the brightness temperature was at least 1300 K. The second observation (orbit I27, February 2000) showed a large (??? 500 km 2) region with many, small, hot, regions of active lava. The third observation was taken in conjunction with Cassini imaging in December 2000 and showed a Pele-like, annular plume deposit. The Cassini images revealed an ???400 km high Pele-type plume above Tvashtar Catena. The final Galileo SSI observation of Tvashtar (orbit I32, October 2001), revealed that obvious (to SSI) activity had ceased, although data from Galileo's Near Infrared Mapping Spectrometer (NIMS) indicated that there was still significant thermal emission from the Tvashtar region. In this paper, we primarily analyze the style of eruption during orbit I27 (February 2000). Comparison with a lava flow cooling model indicates that the behavior of the Tvashtar eruption during I27 does not match that of simple advancing lava flows. Instead, it may be an active lava lake or a complex set of lava flows with episodic, overlapping eruptions. The highest reliable color temperature is ???1300 K. Although higher temperatures cannot be ruled out, they do not need to be invoked to fit the observed data. The total power output from the active lavas in February 2000 was at least 1011 W. ?? 2005 Elsevier Inc. All rights reserved.

  8. Hydrothermal reservoir beneath Taal Volcano (Philippines): Implications to volcanic activity

    NASA Astrophysics Data System (ADS)

    Nagao, T.; Alanis, P. B.; Yamaya, Y.; Takeuchi, A.; Bornas, M. V.; Cordon, J. M.; Puertollano, J.; Clarito, C. J.; Hashimoto, T.; Mogi, T.; Sasai, Y.

    2012-12-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The first recorded eruption was in 1573. Since then it has erupted 33 times resulting in thousands of casualties and large damages to property. In 1995, it was declared as one of the 15 Decade Volcanoes. Beginning in the early 1990s it has experienced several phases of abnormal activity, including seismic swarms, episodes of ground deformation, ground fissuring and hydrothermal activities, which continues up to the present. However, it has been noted that past historical eruptions of Taal Volcano may be divided into 2 distinct cycles, depending on the location of the eruption center, either at Main Crater or at the flanks. Between 1572-1645, eruptions occurred at the Main Crater, in 1707 to 1731, they occurred at the flanks. In 1749, eruptions moved back to the Main Crater until 1911. During the 1965 and until the end of the 1977 eruptions, eruptive activity once again shifted to the flanks. As part of the PHIVOLCS-JICA-SATREPS Project magnetotelluric and audio-magnetotelluric surveys were conducted on Volcano Island in March 2011 and March 2012. Two-dimensional (2-D) inversion and 3-D forward modeling reveals a prominent and large zone of relatively high resistivity between 1 to 4 kilometers beneath the volcano almost directly beneath the Main Crater, surrounded by zones of relatively low resistivity. This anomalous zone of high resistivity is hypothesized to be a large hydrothermal reservoir filled with volcanic fluids. The presence of this large hydrothermal reservoir could be related to past activities of Taal Volcano. In particular we believe that the catastrophic explosion described during the 1911 eruption was the result of the hydrothermal reservoir collapsing. During the cycle of Main Crater eruptions, this hydrothermal reservoir is depleted, while during a cycle of flank eruptions this reservoir is replenished with hydrothermal fluids.

  9. Observations of the loss of stratospheric NO2 following volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Coffey, M. T.; Mankin, William G.

    1993-01-01

    Observations of stratospheric column amounts of nitrogen dioxide (NO2), nitric oxide (NO) and nitric acid (HNO3) have been made following major eruptions of the El Chichon and Mt. Pintatubo volcanoes. Midlatitude abundances of NO2 and NO were reduced by as much as 70% in the months following the appearance of the volcanic aerosols as compared to volcanically quite periods. There are heterogeneous reactions which could occur on the volcanic aerosols to convert NO2 into HNO3 but no commensurate increase in HNO3 column amounts was observed at the times of NO2 decrease.

  10. Stratospheric chlorine injection by volcanic eruptions - HCl scavenging and implications for ozone

    NASA Astrophysics Data System (ADS)

    Tabazadeh, A.; Turco, R. P.

    1993-05-01

    Because the output of volatile chlorine during a major volcanic event can greatly exceed the annual anthropogenic emissions of chlorine to the atmosphere, the fate of volcanic chlorine must be known. Although numerous observations have shown that volcanoes do not significantly contribute to the stratospheric chlorine burden, no quantitative explanation has been published. Hydrogen chloride (HCl) scavenging processes during the early phases of a volcanic eruption are discussed. A plume dynamics and thermodynamics model is used to show that HCl removal in condensed supercooled water can reduce HCl vapor concentrations by up to four orders of magnitude, preventing substantial stratospheric chlorine injection.

  11. Stratospheric chlorine injection by volcanic eruptions - HCl scavenging and implications for ozone

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Turco, R. P.

    1993-01-01

    Because the output of volatile chlorine during a major volcanic event can greatly exceed the annual anthropogenic emissions of chlorine to the atmosphere, the fate of volcanic chlorine must be known. Although numerous observations have shown that volcanoes do not significantly contribute to the stratospheric chlorine burden, no quantitative explanation has been published. Hydrogen chloride (HCl) scavenging processes during the early phases of a volcanic eruption are discussed. A plume dynamics and thermodynamics model is used to show that HCl removal in condensed supercooled water can reduce HCl vapor concentrations by up to four orders of magnitude, preventing substantial stratospheric chlorine injection.

  12. Preliminary Results on the 2015 Eruption of Wolf Volcano, Isabela Island, Galápagos: Chronology, Dispersion of the Volcanic Products, and Insight into the Eruptive Dynamics

    NASA Astrophysics Data System (ADS)

    Wright, H. M. N.; Bernard, B.; Ramon, P.; Guevara, A.; Hidalgo, S.; Pacheco, D. A.; Narváez, D.; Vásconez, F.

    2015-12-01

    After 33 years of quiescence, Wolf volcano, located in the northernmost tip of Isabela Island (Galápagos Islands, Ecuador), started a new eruption on May 25, 2015. The first signs of activity were recorded at 5:50 UTC (23:50 on May 24, Local Time in Galápagos) by a seismic station installed on Fernandina island. The first visual observation was reported at 7:38 UTC (1:38 LT). Based on amateur film footage, the vent was a >800 m-long circumferential fissure that produced a >100 m-high lava curtain. The eruption also released a 15 km-high gas plume with a large amount of SO2 and minimal ash content. Lightning was observed in the plume but not near the vent. Due to complex wind directions at high altitude, the gas cloud drifted in all directions eventually coming toward the continent and producing an extremely small ashfall in Quito that was detected only through the use of homemade ashmeters. The ash sample included lava droplets, scoria, and one small fragment of reticulite, indicating high lava fountaining during the first days of the eruption. The active vents on the circumferential fissure, initially located on the SE side of the caldera outer rim, moved progressively northward, eventually extending for a total of 2 km. One week later on June 02, satellite imagery (OMI, GOME, MODIS) documented decreased volcanic activity, leaving two new lava fields covering over 17 km2 on the SE (10 km-long and up to 2 km-wide) and E (7 km-long and up to 1 km-wide, reaching the sea) flanks of the volcano. Volcanic activity resumed on June 11, and on June 13 it shifted into the caldera, apparently emerging from a fissure close to the vent from the 1982 eruption, about 4 km W of the circumferential fissure. This new lava flow covered approximately 3.5 km2 of the caldera floor. Finally, volcanic activity waned at the end of June and appeared to have ended by July 11, accounting for one of the largest eruptions in the Galápagos since 1968 based on remote sensing.

  13. Pre-eruptive storage conditions and eruption dynamics of a small rhyolite dome: Douglas Knob, Yellowstone volcanic field, USA

    NASA Astrophysics Data System (ADS)

    Befus, Kenneth S.; Zinke, Robert W.; Jordan, Jacob S.; Manga, Michael; Gardner, James E.

    2014-03-01

    The properties and processes that control the size, duration, and style of eruption of rhyolite magma are poorly constrained because of a paucity of direct observations. Here, we investigate the small-volume, nonexplosive end-member. In particular, we determine the pre-eruptive storage conditions and eruption dynamics of Douglas Knob, a 0.011-km3 obsidian dome that erupted from a 500-m-long fissure in the Yellowstone volcanic system. To determine pre-eruptive storage conditions, we analyzed compositions of phenocrysts, matrix glass, and quartz-hosted glass inclusions by electron microprobe and Fourier-transform infrared analyses. The pre-eruptive melt is a high-silica rhyolite (˜75 wt.% SiO2) and was stored at 760 ± 30 °C and 50 ± 25 MPa prior to eruption, assuming vapor saturation at depth. To investigate emplacement dynamics and kinematics, we measured number densities and orientations of microlites at various locations across the lava dome. Microlites in samples closest to the inferred fissure vent are the most aligned. Alignment does not increase with distance traveled away from the vent, suggesting microlites record conduit processes. Strains of <5 accumulated in the conduit during ascent after microlite formation, imparted by a combination of pure and simple shear. Average microlite number density in samples varies from 104.9 to 105.7 mm-3. Using the magma ascent model of Toramaru et al. (J Volcanol Geotherm Res 175:156-157, 2008), microlite number densities imply decompression rates ranging from 0.03 to 0.11 MPa h-1 (˜0.4-1.3 mm s-1 ascent rates). Such slow ascent would allow time for passive degassing at depth in the conduit, thus resulting in an effusive eruption. Using calculated melt viscosity, we infer that the dike that fed the eruption was 4-8 m in width. Magma flux through this dike, assuming fissure dimensions at the surface represent its geometry at depth, implies an eruption duration of 17-210 days. That duration is also consistent with the

  14. Communicating Uncertainty to the Public During Volcanic Unrest and Eruption -A Case Study From the 2004-2005 Eruption of Mount St. Helens, USA

    NASA Astrophysics Data System (ADS)

    Gardner, C. A.; Pallister, J. S.

    2005-12-01

    worldwide web, teleconferences, and meetings with land and emergency managers. Initial concerns revolved around the questions of if and when an eruption would occur, whether it would be explosive, and how large-all questions without definitive answers. As the eruption progresses, concerns have transformed to whether the eruptive behavior will change and how long the eruption will last-also questions lacking definitive answers. We have found it important in communicating our uncertainty to the public to articulate how we came to our conclusions and why our answers cannot be more definitive. We have also found that framing volcanic uncertainty in terms of more common analogies (e.g. knowing that conditions are right for development of a tornado, but not being able to predict exactly when a funnel cloud will form, precisely where it will touch down, or how severe the damage will be) appears to help the public and public officials understand volcanic uncertainty better. As the eruption continues and people become more accustomed to the activity, we find an increasingly more knowledgeable public who can better understand and deal with uncertainty. Also, it is clear that establishing interagency relationships by developing volcano response plans before a crisis greatly facilitates a successful response. A critical component of this planning is discussing uncertainties inherent during volcanic crises such that when unrest begins, the concept of, and reasons behind uncertainty are already well understood.

  15. Volcanic Ash Impacts on Air Traffic from the 2009 Mt. Redoubt Eruption

    NASA Astrophysics Data System (ADS)

    Murray, J. J.; Matus, A. V.; Hudnall, L. A.; Krueger, A. J.; Haynes, J. A.; Pippin, M. R.

    2009-12-01

    The dispersion of volcanic ash during the March 2009 eruption of Mt. Redoubt created the potential for major problems for aviation. Mt. Redoubt is located 110 km west-southwest of Alaska Airlines hub in Anchorage. It last erupted in 1990 and caused an estimated $101 million cost to the aviation industry (Waythomas, 1998). This study was conducted to assist in improving warning systems, policy and procedures for addressing the impact of volcanic ash on aviation. The study had two primary components. First, the altitude and extent of SO2 dispersion was determined through analysis of synoptic meteorological conditions and satellite imagery. Second, impacts on aviation from the volcanic ash dispersion were investigated. OMI SO2 column measurements were employed to assess the altitude and extent of SO2 dispersion of volcanic ash. To accomplish this, OMI data were assimilated with CALIPSO backscatter profiles, geopotential height plots, and HYSPLIT forward model trajectories. Volcanic Ash Advisories were compared to airport and pilot reports to assess aviation impacts. The eruption produced a complex dispersion of volcanic ash. Volcanic ash altitudes estimated for 23 March 2009 indicate that the majority of the plume remained at approximately 8 km, although reports indicate that the initial plume may have reached as high as18 km (60,000 ft). A low pressure system which passed over the eruption area appears to have entrained most of the ash at approximately 8 km, however the CALIPSO satellite indicates that dispersion also extended to 10 km and 16 km. Atmospheric patterns suggest dispersion at approximately 3 km near Hudson Bay. Analysis of 25 March 2009 indicates that much of the ash plume was dispersed at higher altitudes, where CALIPSO data locates the stratospheric ash plume at approximately 14 km above mean sea level. By the time the eruptions had subsided in April, Alaska Airlines had cancelled 295 flights and disrupted the flights of over 20,000 passengers. This

  16. The radiative impact of major volcanic eruptions on stratospheric water vapour

    NASA Astrophysics Data System (ADS)

    Löffler, Michael; Brinkop, Sabine; Jöckel, Patrick

    2016-04-01

    Volcanic eruptions can have significant impact on the earth's weather and climate system. Besides the subsequent tropospheric changes also the stratosphere is influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry-climate model simulations. This study is based on two simulations with specified dynamics of the EMAC model, performed within the Earth System Chemistry integrated Modelling (ESCiMo) project, of which only one includes the volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour after the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as important sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on the tropospheric water vapour and ENSO are evident.

  17. Volcanic eruptions, hazardous ash clouds and visualization tools for accessing real-time infrared remote sensing data

    NASA Astrophysics Data System (ADS)

    Webley, P.; Dehn, J.; Dean, K. G.; Macfarlane, S.

    2010-12-01

    Volcanic eruptions are a global hazard, affecting local infrastructure, impacting airports and hindering the aviation community, as seen in Europe during Spring 2010 from the Eyjafjallajokull eruption in Iceland. Here, we show how remote sensing data is used through web-based interfaces for monitoring volcanic activity, both ground based thermal signals and airborne ash clouds. These ‘web tools’, http://avo.images.alaska.edu/, provide timely availability of polar orbiting and geostationary data from US National Aeronautics and Space Administration, National Oceanic and Atmosphere Administration and Japanese Meteorological Agency satellites for the North Pacific (NOPAC) region. This data is used operationally by the Alaska Volcano Observatory (AVO) for monitoring volcanic activity, especially at remote volcanoes and generates ‘alarms’ of any detected volcanic activity and ash clouds. The webtools allow the remote sensing team of AVO to easily perform their twice daily monitoring shifts. The web tools also assist the National Weather Service, Alaska and Kamchatkan Volcanic Emergency Response Team, Russia in their operational duties. Users are able to detect ash clouds, measure the distance from the source, area and signal strength. Within the web tools, there are 40 x 40 km datasets centered on each volcano and a searchable database of all acquired data from 1993 until present with the ability to produce time series data per volcano. Additionally, a data center illustrates the acquired data across the NOPAC within the last 48 hours, http://avo.images.alaska.edu/tools/datacenter/. We will illustrate new visualization tools allowing users to display the satellite imagery within Google Earth/Maps, and ArcGIS Explorer both as static maps and time-animated imagery. We will show these tools in real-time as well as examples of past large volcanic eruptions. In the future, we will develop the tools to produce real-time ash retrievals, run volcanic ash dispersion

  18. Volcanic Eruption and Intrusion Processes on 4 Vesta: A Reappraisal

    NASA Astrophysics Data System (ADS)

    Keil, K.; Wilson, L.

    2012-03-01

    A new analysis supports our earlier predictions of sizes of lava flows and pyroclast deposits on Vesta, but argues against a magma ocean, instead suggesting eruptions were fed by magma from large sill-like intrusions at the base of the lithosphere.

  19. Enhancements in biologically effective ultraviolet radiation following volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Vogelmann, A. M.; Ackerman, T. P.; Turco, R. P.

    1992-01-01

    A radiative transfer model is used to estimate the changes in biologically effective radiation (UV-BE) at the earth's surface produced by the El Chichon (1982) and Mount Pinatubo (1991) eruptions. It is found that in both cases surface intensity can increase because the effect of ozone depletion outweighs the increased scattering.

  20. Volcanic origin of the eruptive plumes on Io

    USGS Publications Warehouse

    Cook, A.F.; Shoemaker, E.M.; Smith, B.A.; Danielson, G.E.; Johnson, T.V.; Synnott, S.P.

    1981-01-01

    A quadruple long exposure of Io in eclipse exhibits faint auroral emission from the eruptive plumes. No luminous spots in the vents, predicted by Gold, were observed. Heat from the interior of Io appears to be the predominant source of energy in the plumes. Copyright ?? 1981 AAAS.

  1. The Effect of Stratospheric Water Vapor in Large Volcanic Eruptions on Climate and Atmospheric Composition

    NASA Astrophysics Data System (ADS)

    Case, P. A.; Tsigaridis, K.; LeGrande, A. N.

    2015-12-01

    Large, explosive volcanic eruptions that inject material into the stratosphere have a significant impact on atmospheric composition and climate. Understanding and generalizing these effects is crucial to the development of climate models. Previously, volcanic forcing was crudely parameterized in all climate models which may be a source of large error in past-climate simulations. Here we investigate how water vapor, in addition to sulfur dioxide, from volcanic eruptions affect atmospheric chemistry and climate using NASA's atmospheric general circulation model GISS Model-E2. Three simulations were considered: a control run with no eruption, a run with a summertime dry eruption of 18 Tg of SO2, and a run with a summertime eruption containing 150 MT of water vapor in addition to 18 Tg of SO2.These amounts roughly approximate the mass of water and SO2 injected during the 1991 Mt. Pinatubo eruption. They were also injected at the same geographic location, directly into 10-layers of the lower to mid stratosphere. Each simulation was set in a pre-industrial atmosphere and monthly averages from the control were subtracted from the data in order to avoid signals from anthropogenic and meteorological effects, respectively. Comparing the dry and wet eruptions, there is a quicker forming but shorter lived sulfate aerosol population from the eruption containing water vapor. It was also observed that the aerosols spread more evenly between the Northern and Southern hemispheres when water was added to the eruption, compared to the dry eruption which was mostly contained in the Northern hemisphere. These differences more rapidly increase sulfate aerosol optical depth and cause a climatic effect of a quicker, shorter-lived decrease in surface temperatures and increase in stratospheric temperatures. The quicker signal from the wet eruption matches observations more closely than that of the dry eruption. This understanding will help in generalizing the climatic effects of volcanoes

  2. Contrastive research of ionospheric precursor anomalies between Calbuco volcanic eruption on April 23 and Nepal earthquake on April 25, 2015

    NASA Astrophysics Data System (ADS)

    Li, Wang; Guo, Jinyun; Yue, Jianping; Yang, Yang; Li, Zhen; Lu, Deikai

    2016-05-01

    On April 23, 2015, the VEI4 (volcanic explosive index) Calbuco volcano abruptly erupted in Chile and the Mw7.9 Nepal earthquake occurred on April 25. In order to investigate the similarities and differences between total electron content (TEC) anomalies preceding these two types of geophysical activities, the TEC time series over preparation zones before the volcanic eruption and earthquake extracted from global ionosphere map were analyzed. We used sunspot numbers (SSN), Bz, Dst, and Kp indices to represent the solar-terrestrial environment and eliminate the effects of solar and geomagnetic activities on ionosphere by the sliding interquartile range method with the 27-day window. The results indicate that TEC-negative and -positive anomalies appeared in the 14th and 6th day before the eruption, respectively. The anomalies lasted about 4-6 h with a magnitude of 15-20 TECU. The TEC anomalies were also observed on the 14th and 6th day before the Nepal earthquake with a duration of 6-8 h, and the absolute magnitude of TEC anomalies was within 12-20 TECU. These findings indicate that the magnitude of TEC anomalies preceding volcanic eruption was larger, and the duration of TEC anomalies before the earthquake was longer, which may be associated with their particular physical mechanisms. The TEC anomalies before the Nepal earthquake in the Eastern hemisphere occurred in the afternoon local time, but those before the eruption were observed in the night local time. Peak regions of TEC anomalies did not coincide with the epicenters of geophysical activities, and the TEC anomalies also appeared in the magnetic conjugated region. Both the TEC anomalies in the preparation zone and conjugated region were distributed near the boundaries of equatorial anomaly zone and moved along the boundaries. In the moving process, sometimes the extent or magnitude of TEC anomalies in the conjugated region was larger than that in the preparation zone. Many more GPS stations and receivers

  3. 2008 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Cameron, Cheryl E.; Nuzhdaev, Anton A.; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest or suspected unrest at seven separate volcanic centers in Alaska during 2008. Significant explosive eruptions at Okmok and Kasatochi Volcanoes in July and August dominated Observatory operations in the summer and autumn. AVO maintained 24-hour staffing at the Anchorage facility from July 12 through August 28. Minor eruptive activity continued at Veniaminof and Cleveland Volcanoes. Observed volcanic unrest at Cook Inlet's Redoubt Volcano presaged a significant eruption in the spring of 2009. AVO staff also participated in hazard communication regarding eruptions or unrest at nine volcanoes in Russia as part of a collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  4. Constraining the Spatial and Temporal Variability of Atmospheric Conditions to Explore the Infrasound Detection of Volcanic Eruptions in Alaska

    NASA Astrophysics Data System (ADS)

    Iezzi, A. M.; Schwaiger, H. F.; Fee, D.; Haney, M. M.

    2015-12-01

    Alaska's over 50 historically active volcanoes span 2,500 kilometers, and their eruptions pose great threats to the aviation industry. This makes both prompt observations of explosion onsets and changes in intensity a necessity. Due to their expansive range and remoteness, these volcanoes are predominantly monitored by local seismic networks, remote observations including satellite imagery and infrasound sensors. Infrasound is an especially crucial tool in this area because infrasound data collection is not obstructed by frequent cloud cover (as in satellite imagery) and infrasound waves can travel hundreds to thousands of kilometers. However, infrasound station coverage is relatively sparse and strong wind and temperature gradients in the atmosphere create multiple waveguides and shadow zones where the propagation of infrasound is enhanced and diminished, respectively. To accurately constrain volcanic source information and the long-range propagation of infrasound waves, a detailed characterization of the spatial and temporal variability of the atmosphere is vital. These properties can be constrained using a ground-to-space model similar to that of Drob et al. (2003) based upon varied meteorological observations and applied to infrasound waves to model the propagation of infrasound. Here we present the first results of a re-analysis system constructed by the Alaska Volcano Observatory to accurately characterize and model long-range infrasound propagation from volcanic eruptions. We select a number of case studies to examine infrasound detections (or lack thereof) from recent eruptions of Alaskan volcanoes, including the November 2014 eruption of Pavlof Volcano and July 2015 eruption of Cleveland Volcano. Detailed examination of the acoustic propagation conditions will provide additional insight into detection capability and eruption dynamics with future work aiming to implement real-time long-range infrasound propagation modeling.Drob, Douglas P., J. M. Picone

  5. 1995 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.

    1996-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity (SVA) at 6 volcanic centers in 1995: Mount Martin (Katmai Group), Mount Veniaminof, Shishaldin, Makushin, Kliuchef/Korovin, and Kanaga. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) on the 1995 eruptions of 2 Russian volcanoes: Bezymianny and Karymsky. This report summarizes volcanic activity in Alaska during 1995 and the AVO response, as well as information on the 2 Kamchatkan eruptions. Only those reports or inquiries that resulted in a "significant" investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of phone calls throughout the year reporting steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1995 response record.

  6. Iron fertilisation of the ocean through major volcanic eruptions. A case study of the Kasatochi eruption 2008

    NASA Astrophysics Data System (ADS)

    Lindenthal, A.; Langmann, B.; Hort, M.; Hoshyaripour, G.; Paetsch, J.; Lorkowski, I.

    2012-04-01

    Until recently it was more or less common sense that once volcanic ash enters the ocean it simply deposits into the sediments without any further impact on ocean biochemistry. This view has been notably revised after the eruption of Kasatochi volcano in 2008. During the eruption significant amounts of ash were deposited into oceanic NE Pacific. The NE Pacific is known as a high-nutrient-low-chlorophyll (HNLC) region where algae growth is limited by the bio-available, i.e. soluble iron. These bio-available iron salts residing on the volcanic ash are most likely formed by gas-ash/aerosol interactions inside the volcanic plume. The physico-chemical mechanisms behind the processes contributing to bio-available iron production in volcanic plumes, however, are still poorly constrained. As the eruption occurred in early August, the atmospheric and oceanic conditions were favourable to generate a massive phytoplankton bloom as was observed by satellite instruments and in-situ measurements. Here we investigate this event with the marine biogeochemical model ECOHAM, which is a regional scale three-dimensional ocean biogeochemistry model, coupled to the hydrodynamic model HAMSON. It has been successfully applied mainly over the NW European continental shelf area where iron limitation does not play a role. For applications of this model to the eruption of Kasatochi volcano, an iron cycle model has been implemented, which considers the influence of iron addition to the euphotic zone on diatoms, flagellates, and carbon dioxide concentrations. This model-approach assumes that all dissolved iron in the first meters of seawater is bio-available for phytoplankton uptake. It describes the limitation of phytoplankton growth rates by iron in addition to the limitation by the macro-nutrients nitrogen, phosphate and silicate as well as by light. The surface ocean iron input associated with the eruption of Kasatochi volcano has been determined by an atmospheric-aerosol model to be on the

  7. Formation of volcanic eruptions and possibilities of their prevention

    SciTech Connect

    Skobelin, E.A. )

    1990-06-01

    Magmatic sources of volcanoes are sills of basic and ultrabasic magma inside water-rich sedimentary rocks folded as closed anticlinal uplifts. Sills convert water into steam which accumulates in the hinge of the anticline. Here the strength of the oversill complex becomes weaker because of differing thickness of the sill in the hinge and limbs of the anticline. There is a very fissured and permeable zone created at the contacts of the sill and country rocks. Pyroclastic eruptions take place if a water-rich bed overlies the sill, because of accumulation of excess steam pressure that can not be withstood by the oversill complex. After a break-through, the steam moves through the fissured, very permeable zone near the sill contacts. Steam velocity increases toward the place of this breakthrough. Owing to effect of pulverizer the steam transports fragmented portions of magma, solidified rock, and country rock upward. After exhaustion of the steam, magma streams into the conduit, filling it partly or completely. In the last case, lava eruption also takes place. Lava eruptions happen if the water-rich bed is below a sill. Generated steam moves directly into the sill chamber and squeezes magma out from its upper part. After a break-through and frothing a steam-rich magma fills up the conduit and moves upward by the mechanism of gas-lift, known for oilers. Movement of steam from the undersill complex through the sill contributes to heat transfer into the conduit of a volcano and sometimes makes possible the existence of boiling lava lakes in a crater. Basic and ultrabasic sills of large thickness are able to interact intensively with country rocks, assimilating or completely melting them. The extent of interaction determines the composition of magma. There may be different combinations of conditions and mechanisms for eruptions in nature. During periods between eruptions a new accumulation of steam forms.

  8. Volcanic winter and accelerated glaciation following the Toba super-eruption

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Self, Stephen

    1992-01-01

    Model calculations that investigate the possible climatic effects of the Toba volcanic cloud are presented. The increase in atmospheric opacity might have produced a 'volcanic winter', followed by a few years with maximum estimated annual hemispheric surface-temperature decreases of 3-5 C. The eruption occurred during the stage 5a-4 transition of the oxygen isotope record, a time of rapid ice growth and falling sea level. It is suggested that the Toba eruption may have greatly accelerated the shift to glacial conditions that was already under way, by inducing perennial snow cover and increased sea-ice extent at sensitive northern latitudes. As the onset of climate change may have helped to trigger the eruption itself, it is proposed that the Toba event may exemplify a more general climate-volcano feedback mechanism.

  9. Numerical models of caldera-scale volcanic eruptions on Earth, venus, and Mars.

    PubMed

    Kieffer, S W

    1995-09-01

    Volcanic eruptions of gassy magmas on Earth, Venus, and Mars produce plumes with markedly different fluid dynamics regimes. In large part the differences are caused by the differing atmospheric pressures and ratios of volcanic vent pressure to atmospheric pressure. For each of these planets, numerical simulations of an eruption of magma containing 4 weight percent gas were run on a workstation. On Venus the simulated eruption of a pressure-balanced plume formed a dense fountain over the vent and continuous pyroclastic flows. On Earth and Mars, simulated pressure-balanced plumes produced ash columns, ash falls, and possible small pyroclastic flows. An overpressured plume, illustrated for Mars, exhibited a complex supersonic velocity structure and internal shocks. PMID:17731148

  10. The nearshore benthic community of Kasatochi Island, one year after the 2008 volcanic eruption

    USGS Publications Warehouse

    Jewett, S.C.; Bodkin, J.L.; Chenelot, H.; Esslinger, G.G.; Hoberg, M.K.

    2010-01-01

    A description is presented of the nearshore benthic community of Kasatochi Island 1012 months after a catastrophic volcanic eruption in 2008. The eruption extended the coastline of the island approximately 400 m offshore, mainly along the south, southeast, and southwest shores, to roughly the 20 m isobath. Existing canopy kelp of Eualaria (Alaria) fistulosa, as well as limited understory algal species and associated fauna (e.g., urchin barrens) on the hard substratum were apparently buried following the eruption. Samples and observations revealed the substrate around the island in 2009 was comprised almost entirely of medium and coarse sands with a depauperate benthic community, dominated by opportunistic pontogeneiid amphipods. Comparisons of habitat and biological communities with other nearby Aleutian Islands, as well as with the Icelandic volcanic island of Surtsey, confirm dramatic reductions in flora and fauna consistent with an early stage of recovery from a large-scale disturbance event. ?? 2010 Regents of the University of Colorado.

  11. Impacts of high-latitude volcanic eruptions on ENSO and AMOC

    PubMed Central

    Pausata, Francesco S. R.; Chafik, Leon; Caballero, Rodrigo; Battisti, David S.

    2015-01-01

    Large volcanic eruptions can have major impacts on global climate, affecting both atmospheric and ocean circulation through changes in atmospheric chemical composition and optical properties. The residence time of volcanic aerosol from strong eruptions is roughly 2–3 y. Attention has consequently focused on their short-term impacts, whereas the long-term, ocean-mediated response has not been well studied. Most studies have focused on tropical eruptions; high-latitude eruptions have drawn less attention because their impacts are thought to be merely hemispheric rather than global. No study to date has investigated the long-term effects of high-latitude eruptions. Here, we use a climate model to show that large summer high-latitude eruptions in the Northern Hemisphere cause strong hemispheric cooling, which could induce an El Niño-like anomaly, in the equatorial Pacific during the first 8–9 mo after the start of the eruption. The hemispherically asymmetric cooling shifts the Intertropical Convergence Zone southward, triggering a weakening of the trade winds over the western and central equatorial Pacific that favors the development of an El Niño-like anomaly. In the model used here, the specified high-latitude eruption also leads to a strengthening of the Atlantic Meridional Overturning Circulation (AMOC) in the first 25 y after the eruption, followed by a weakening lasting at least 35 y. The long-lived changes in the AMOC strength also alter the variability of the El Niño–Southern Oscillation (ENSO). PMID:26504201

  12. Impacts of high-latitude volcanic eruptions on ENSO and AMOC.

    PubMed

    Pausata, Francesco S R; Chafik, Leon; Caballero, Rodrigo; Battisti, David S

    2015-11-10

    Large volcanic eruptions can have major impacts on global climate, affecting both atmospheric and ocean circulation through changes in atmospheric chemical composition and optical properties. The residence time of volcanic aerosol from strong eruptions is roughly 2-3 y. Attention has consequently focused on their short-term impacts, whereas the long-term, ocean-mediated response has not been well studied. Most studies have focused on tropical eruptions; high-latitude eruptions have drawn less attention because their impacts are thought to be merely hemispheric rather than global. No study to date has investigated the long-term effects of high-latitude eruptions. Here, we use a climate model to show that large summer high-latitude eruptions in the Northern Hemisphere cause strong hemispheric cooling, which could induce an El Niño-like anomaly, in the equatorial Pacific during the first 8-9 mo after the start of the eruption. The hemispherically asymmetric cooling shifts the Intertropical Convergence Zone southward, triggering a weakening of the trade winds over the western and central equatorial Pacific that favors the development of an El Niño-like anomaly. In the model used here, the specified high-latitude eruption also leads to a strengthening of the Atlantic Meridional Overturning Circulation (AMOC) in the first 25 y after the eruption, followed by a weakening lasting at least 35 y. The long-lived changes in the AMOC strength also alter the variability of the El Niño-Southern Oscillation (ENSO). PMID:26504201

  13. Diverse Eruptions at Approximately 2,200 Years B.P. on the Great Rift, Idaho: Inferences for Magma Dynamics Along Volcanic Rift Zones

    NASA Technical Reports Server (NTRS)

    Hughes, S. S.; Nawotniak, S. E. Kobs; Borg, C.; Mallonee, H. C.; Purcell, S.; Neish, C.; Garry, W. B.; Haberle, C. W.; Lim, D. S. S.; Heldmann, J. L.

    2016-01-01

    Compositionally and morphologically diverse lava flows erupted on the Great Rift of Idaho approximately 2.2 ka (kilo-annum, 1000 years ago) during a volcanic "flare-up" of activity following an approximately 2 ky (kiloyear, 1000 years) hiatus in eruptions. Volcanism at Craters of the Moon (COTM), Wapi and Kings Bowl lava fields around this time included primitive and evolved compositions, separated over 75 kilometers along the approximately 85 kilometers-long rift, with striking variability in lava flow emplacement mechanisms and surface morphologies. Although the temporal associations may be coincidental, the system provides a planetary analog to better understand magma dynamics along rift systems, including that associated with lunar floor-fractured craters. This study aims to help bridge the knowledge gap between ancient rift volcanism evident on the Moon and other terrestrial planets, and active rift volcanism, e.g., at Hawai'i and Iceland.

  14. Seismicity NGV during two major fissure Tolbachik eruptions as a source of information on the structure of volcanic feeding magma system

    NASA Astrophysics Data System (ADS)

    Slavina, Lidiya; Likhodeev, Dmitry; Senyukov, Sergey

    2014-05-01

    Studying of the nature, the mechanism and communication of a volcanism and seismicity is one of the main tasks of basic scientific researches of the Russian Academy of Sciences on Kamchatka. Outstanding object of such researches is the huge Northern Group of Volcanoes (NGV) on Kamchatka. In the southern part of NGV there were two consecutive outstanding basalt eruptions: LTFE, 1975-1976, and FTE, 2012-2013. Data of detailed seismological researches show properties, development and the mechanism of activity of these eruptions and all NGV. The main source of magmas of volcanoes of NGV is the intermediate magmatic chamber being at a depth of 25-30 km under the Klyuchevsky volcano. From it movement of magmas in the bottom layers of crust on distances to 50 km to other volcanoes of NGV is possible. The subsequent lifting of magmas to active volcanoes of NGV happens in the top layers of crust in connection with their eruptions. This part of magmatic feeding systems of volcanoes is allocated on the presented vertical cuts. Eruptions of the Klyuchevsky volcano stopped during LTFE and renewed after it in 1977-1978. Emergence of strong eruptions of the Klyuchevsky volcano can be presently a sign of end of FTE. At researches of these two outstanding eruptions the major data on communication of seismic and volcanic processes, and also the mechanism of volcanic activity of NGV are received.

  15. Triggering of volcanic activity by large earthquakes

    NASA Astrophysics Data System (ADS)

    Avouris, D.; Carn, S. A.; Waite, G. P.

    2011-12-01

    Statistical analysis of temporal relationships between large earthquakes and volcanic eruptions suggests seismic waves may trigger eruptions even over great distances, although the causative mechanism is not well constrained. In this study the relationship between large earthquakes and subtle changes in volcanic activity was investigated in order to gain greater insight into the relationship between dynamic stress and volcanic response. Daily measurements from the Ozone Monitoring Instrument (OMI), onboard the Aura satellite, provide constraints on volcanic sulfur dioxide (SO2) emission rates as a measure of subtle changes in activity. An SO2 timeseries was produced from OMI data for thirteen persistently active volcanoes. Seismic surface-wave amplitudes were modeled from the source mechanisms of moment magnitude (Mw) ≥7 earthquakes, and peak dynamic stress (PDS) was calculated. The SO2 timeseries for each volcano was used to calculate a baseline threshold for comparison with post-earthquake emission. Delay times for an SO2 response following each earthquake at each volcano were analyzed and compared to a random catalog. The delay time analysis was inconclusive. However, an analysis based on the occurrence of large earthquakes showed a response at most volcanoes. Using the PDS calculations as a filtering criterion for the earthquake catalog, the SO2 mass for each volcano was analyzed in 28-day windows centered on the earthquake origin time. If the average SO2 mass after the earthquake was greater than an arbitrary percentage of pre-earthquake mass, we identified the volcano as having a response to the event. This window analysis provided insight on what type of volcanic activity is more susceptible to triggering by dynamic stress. The volcanoes with lava lakes included in this study, Ambrym, Gaua, Villarrica, and Erta Ale, showed a clear response to dynamic stress while the volcanoes with lava domes, Merapi, Semeru, and Bagana showed no response at all. Perhaps

  16. Dispersion of the Volcanic Sulfate Cloud from the Mount Pinatubo Eruption

    NASA Technical Reports Server (NTRS)

    Aquila, Valentina; Oman, Luke D.; Stolarski, Richard S.; Colarco, Peter R.; Newman, Paul A.

    2012-01-01

    We simulate the transport of the volcanic cloud from the 1991 eruption of Mount Pinatubo with the GEOS-5 general circulation model. Our simulations are in good agreement with observational data. We tested the importance of initial condition corresponding to the specific meteorological situation at the time of the eruption by employing reanalysis from MERRA. We found no significant difference in the transport of the cloud. We show how the inclusion of the interaction between volcanic sulfate aerosol and radiation is essential for a reliable simulation of the transport of the volcanic cloud. The absorption of long wave radiation by the volcanic sulfate induces a rising of the volcanic cloud up to the middle stratosphere, combined with divergent motion from the latitude of the eruption to the tropics. Our simulations indicate that the cloud diffuses to the northern hemisphere through a lower stratospheric pathway, and to mid- and high latitudes of the southern hemisphere through a middle stratospheric pathway, centered at about 30 hPa. The direction of the middle stratospheric pathway depends on the season. We did not detect any significant change of the mixing between tropics and mid- and high latitudes in the southern hemisphere.

  17. Evaluation of sulfur dioxide emissions from explosive volcanism: the 1982-1983 eruptions of Galunggung, Java, Indonesia

    USGS Publications Warehouse

    Bluth, G.J.S.; Casadevall, T.J.; Schnetzler, C.C.; Doiron, S.D.; Walter, Louis S.; Krueger, A.J.; Badruddin, M.

    1994-01-01

    Galunggung volcano, Java, awoke from a 63-year quiescence in April 1982, and erupted sporadically through January 1983. During its most violent period from April to October, the Cikasasah Volcano Observatory reported 32 large and 56 moderate to small eruptions. From April 5 through September 19 the Total Ozone Mapping Spectrometer (TOMS), carried on NASA's Nimbus-7 satellite, detected and measured 24 different sulfur dioxide clouds; an estimated 1730 kilotons (kt) of SO2 were outgassed by these explosive eruptions. The trajectories, and rapid dispersion rates, of the SO2 clouds were consistent with injection altitudes below the tropopause. An additional 300 kt of SO2 were estimated to have come from 64 smaller explosive eruptions, based on the detection limit of the TOMS instrument. For the first time, an extended period of volcanic activity was monitored by remote sensing techniques which enabled observations of both the entire SO2 clouds produced by large explosive eruptions (using TOMS), and the relatively lower levels of SO2 emissions during non-explosive outgassing (using the Correlation Spectrometer, or COSPEC). Based on COSPEC measurements from August 1982 to January 1983, and on the relationship between explosive and non-explosive degassing, approximately 400 kt of SO2 were emitted during non-explosive activity. The total sulfur dioxide outgassed from Galunggung volcano from April 1982 to January 1983 is calculated to be 2500 kt (?? 30%) from both explosive and non-explosive activity. While Galunggung added large quantities of sulfur dioxide to the atmosphere, its sporadic emissions occurred in relatively small events distributed over several months, and reached relatively low altitudes, and are unlikely to have significantly affected aerosol loading of the stratosphere in 1982 by volcanic activity. ?? 1994.

  18. Impact of explosive volcanic eruptions around Vesuvius: a story of resilience in Roman time

    NASA Astrophysics Data System (ADS)

    Scarpati, Claudio; Perrotta, Annamaria; De Simone, Girolamo Ferdinando

    2016-03-01

    Large explosive eruptions have reshaped the landscape around Vesuvius many times in prehistoric and historical times. Previous stratigraphic surveys suggested that people living in this area have probably abandoned their settlements (in the Bronze Age) or towns and villas (in the Roman period) for centuries after each major plinian eruption. New archaeological excavations on the northern slope of Vesuvius suggest a much more intriguing scenario. At Pollena Trocchia, an ongoing excavation has shown the superimposition of three different Roman structures, sandwiched between the deposits of the AD 79, AD 472, and AD 512 Vesuvius eruptions. Each of these eruptions more or less completely destroyed and buried the buildings under meters of volcanic products. Surprisingly, after a few years or decades, a new settlement was established exactly on the top of the buried one, indicating the immediate recovery of part of the devastated area. Our research documents the destruction of Roman buildings by volcanic eruptions over a period of five centuries (first to sixth century AD) and provides new insight into human behavior after major explosive eruptions.

  19. Sulfur isotopic characteristics of volcanic products from the September 2014 Mount Ontake eruption, Japan

    NASA Astrophysics Data System (ADS)

    Ikehata, Kei; Maruoka, Teruyuki

    2016-07-01

    Components and sulfur isotopic compositions of pyroclastic materials from the 2014 Mt. Ontake eruption were investigated. The volcanic ash samples were found to be composed of altered volcanic fragments, alunite, anhydrite, biotite, cristobalite, gypsum, ilmenite, kaolin minerals, native sulfur, orthopyroxene, plagioclase, potassium feldspar, pyrite, pyrophyllite, quartz, rutile, and smectite, and most of these minerals were likely derived from the acidic alteration zones of Mt. Ontake. The absence of juvenile material in the eruptive products indicates that the eruption was phreatic. The sulfur isotopic compositions of the water-leached sulfate, hydrochloric acid-leached sulfate, acetone-leached native sulfur, and pyrite of the samples indicate that these sulfur species were produced by disproportionation of magmatic SO2 in the hydrothermal system at temperatures of 270-281 °C. This temperature range is consistent with that inferred from the hydrothermal mineral assemblage (e.g., pyrophyllite and rutile) in the 2014 pyroclastic materials (200-300 °C). Except for the sulfur isotopic compositions of anhydrite, which may have been altered by incorporation of sulfate minerals in a fumarolic area with lower sulfur isotopic values into the underground materials during the 1979 eruption, no significant differences in the mineral assemblages and sulfur isotopic compositions of the pyroclastic materials were identified between the products of the 2014 and 1979 Ontake phreatic eruptions, which suggests geochemical similarities in the underlying hydrothermal systems before the 2014 and 1979 eruptions.

  20. The 2006 Eruption of Raoul Volcano (Kermadecs): A Phreato-magmatic Event From a Hydrothermally-Sealed Volcanic Conduit System.

    NASA Astrophysics Data System (ADS)

    Christenson, B. W.; Reyes, A. G.; Werner, C. A.

    2006-12-01

    The March 17, 2006 eruption from Raoul volcano (Kermadec Islands, NZ), which tragically claimed the life of NZ Department of Conservation staff member Mark Kearney, is being interpreted as a magmatic-hydrothermal event triggered by shaking associated with regional earthquake swarm activity. Although the eruption released ca. 200 T of SO2, thus confirming its magmatic nature, it occurred without significant precursory volcanic seismicity, and without any of the precursory responses of the volcanic hydrothermal system which were observed prior to the last eruption in 1964. Raoul Island has a long and varied eruption history dating back > 1.4 ma, and has been hydrothermally active throughout historic time. Present day fumarolic and hotspring discharges within Raoul caldera point to the existence of a small but well established, mixed meteoric - seawater hydrothermal system within the volcano. Magmatic signatures are apparent in fumarolic gas discharges, but are heavily masked by their interaction with hydrothermal system fluids (eg. near complete scrubbing of sulphur and halogen gases from the boiling point fumarolic discharges). A diffuse degassing study conducted in 2004 revealed that ca. 80 T/d CO2 is passively discharged from the volcano, suggesting that ongoing (albeit low level) convective degassing of magma occurs at depth. Interestingly, vent locations from the 2006 eruption correspond to areas of relatively low CO2 discharge on the crater floor in 2004. This, in conjunction with the preliminary findings of abundant hydrothermal mineralisation (calcite, anhydrite, quartz) in eruption ejecta, suggests that the main volcanic conduits had become effectively sealed during the interval since the last eruption. Calcite-hosted fluid inclusions are CO2 clathrate-bearing, and have relatively low homogenisation temperatures (165-180 °C), suggesting that the seal environment was both gas-charged and shallowly seated (< 200 m). Shaking associated with the regional

  1. Constraining timescales of pre-eruptive events within large silicic volcanic centers

    NASA Astrophysics Data System (ADS)

    Rubin, A. E.; Cooper, K. M.; Kent, A. J.; Costa Rodriguez, F.; Till, C. B.

    2015-12-01

    Large silicic volcanic centers produce catastrophic supervolcanic eruptions. As a result it is necessary to understand what's happening within these centers, and on what timescales, in order to anticipate and prepare for such eruptions. A widely accepted model for many rhyolitic volcanic systems is that of a long-lived mush from which melt is periodically extracted and erupted. However, what remains unclear are 1) the specific processes by which melt is amalgamated and extracted from this mush and 2) the timescales over which these occur. Processes occurring close to eruption likely include amalgamation (and potentially homogenization) of melt, melt extraction, crystallization of major phases, and final magma ascent. Numerical and geochemical models have been used to constrain timescales of mush rejuvenation, and contrast between short timescales for mush reactivation (e.g., <<1000 years, depending on the reservoir) and others demonstrating much longer timescales at super-solidus conditions (e.g., 100s of kyrs). Timescales calculated from intra-crystalline diffusion profiles suggest that many crystals spend very short amounts of time (decades to centuries) at near-solidus temperatures prior to eruption. At the Okataina Volcanic Center (OVC) in New Zealand, geochemical and isotopic data suggest that melts are extracted from a long-lived, heterogeneous mush prior to eruption. Despite this protracted existence, combined U-series ages and diffusion profiles in OVC zircon and plagioclase crystals suggest that crystallization often occurs within the final hundreds to thousands of years prior to eruption, and at most, a few percent of a crystal's total history is spent at above-solidus conditions. Within these brief amounts of time, diffusion techniques can be linked to specific pre-eruptive processes in order to constrain timescales of melt extraction from a mush (likely decades to centuries), intrusions of new melt and/or magma mixing (likely years to decades), and

  2. Volcanic Ash and Aviation - the 2014 Eruptions of Kelut and Sangeang Api, Indonesia

    NASA Astrophysics Data System (ADS)

    Tupper, A. C.; Jansons, E.

    2014-12-01

    Two significant eruptions in Indonesia during the first part of 2014 have highlighted the continuing challenges of safe air traffic management around volcanic ash clouds. The stratospheric eruption of Kelut (also known as Kelud) in Java late on 13 February 2014 resulted in widespread aviation disruption over Indonesia and at least one serious volcanic ash encounter from an international airline. An upper-tropospheric eruption of Sangeang Api in the Lesser Sunda Islands on 30 May 2014 did not result in any known aircraft encounters, but did result in many delays and flight cancellations between Indonesia and Australia. In both cases, the eruption and resultant ash clouds were relatively well observed, if subject to the usual issues in characterising such clouds. For example, as tropical eruptions frequently reach 15 km amsl and above due to the height of the tropical tropopause, it is frequently very difficult to provide an accurate estimation of conditions at the cruising levels of aircraft, at 10-11 km (or lower for shorter domestic routes). More critically, the challenge of linking operational results from two scientific professions (volcanology and meteorology) with real-time aviation users remains strongly evident. Situational awareness of domestic and international airlines, ground-based monitoring and communications prior to and during the eruption, receiving and sharing pilot reports of volcanic ash, and appropriate flight responses all remain inadequate even in relatively fine conditions, with an unacceptable ongoing risk of serious aviation encounters should improvements not be made. Despite the extensive efforts of the International Civil Aviation Organization, World Meteorological Organization, and all partners in the International Airways Volcano Watch, and despite the acceleration of work on the issue since 2010, volcanic ash management remains sub-optimal.

  3. Classifying Volcanic Activity Using an Empirical Decision Making Algorithm

    NASA Astrophysics Data System (ADS)

    Junek, W. N.; Jones, W. L.; Woods, M. T.

    2012-12-01

    Detection and classification of developing volcanic activity is vital to eruption forecasting. Timely information regarding an impending eruption would aid civil authorities in determining the proper response to a developing crisis. In this presentation, volcanic activity is characterized using an event tree classifier and a suite of empirical statistical models derived through logistic regression. Forecasts are reported in terms of the United States Geological Survey (USGS) volcano alert level system. The algorithm employs multidisciplinary data (e.g., seismic, GPS, InSAR) acquired by various volcano monitoring systems and source modeling information to forecast the likelihood that an eruption, with a volcanic explosivity index (VEI) > 1, will occur within a quantitatively constrained area. Logistic models are constructed from a sparse and geographically diverse dataset assembled from a collection of historic volcanic unrest episodes. Bootstrapping techniques are applied to the training data to allow for the estimation of robust logistic model coefficients. Cross validation produced a series of receiver operating characteristic (ROC) curves with areas ranging between 0.78-0.81, which indicates the algorithm has good predictive capabilities. The ROC curves also allowed for the determination of a false positive rate and optimum detection for each stage of the algorithm. Forecasts for historic volcanic unrest episodes in North America and Iceland were computed and are consistent with the actual outcome of the events.

  4. Storage conditions and eruptive dynamics of central versus flank eruptions in volcanic islands: The case of Tenerife (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Andújar, Joan; Costa, Fidel; Scaillet, Bruno

    2013-06-01

    We report the results of phase equilibrium experiments on a phonolite produced during one of the most voluminous flank eruptions (ca. 1 km3) of the Teide-Pico Viejo complex (Tenerife Island). Combined with previous experimental and volcanological data we address the factors that control the structure of the phonolitic plumbing system of Teide-Pico Viejo stratovolcanoes. The Roques Blancos phonolite erupted ca 1800 BP and contains ~ 14 wt.% phenocrysts, mainly anorthoclase, biotite, magnetite, diopside and lesser amounts of ilmenite. Crystallization experiments were performed at temperatures of 900 °C, 850 °C and 800 °C, in the pressure range 200 MPa to 50 MPa. The oxygen fugacity (fO2) was varied between NNO + 0.3 (0.3 log units above to the Ni-NiO solid buffer) to NNO-2, whilst dissolved water contents varied from 7 wt.% to 1.5 wt.%. The comparison between natural and experimental phase proportions and compositions, including glass, indicates that the phonolite magma was stored prior to eruption at 900 ± 15 °C, 50 ± 15 MPa, with about 2.2 wt.% H2O dissolved in the melt, at an oxygen fugacity of NNO-0.5 (± 0.5). The difference in composition between the rim and the cores of the natural anorthoclase phenocrysts suggests that the phonolite was heated by about 50 °C before the eruption, upon intrusion of a hotter tephriphonolitic magma. The comparison between the storage conditions of Roques Blancos and those inferred for other phonolites of the Teide-Pico Viejo volcanic complex shows that flank eruptions are fed by reservoirs located at relatively shallow depths (1-2 km) compared to those feeding Teide central eruptions (5 km).

  5. Triboelectric charging of volcanic ash from the 2011 Grímsvötn eruption.

    PubMed

    Houghton, Isobel M P; Aplin, Karen L; Nicoll, Keri A

    2013-09-13

    The plume from the 2011 eruption of Grímsvötn was highly electrically charged, as shown by the considerable lightning activity measured by the United Kingdom Met Office's low-frequency lightning detection network. Previous measurements of volcanic plumes have shown that ash particles are electrically charged up to hundreds of kilometers away from the vent, which indicates that the ash continues to charge in the plume [R. G. Harrison, K. A. Nicoll, Z. Ulanowski, and T. A. Mather, Environ. Res. Lett. 5, 024004 (2010); H. Hatakeyama J. Meteorol. Soc. Jpn. 27, 372 (1949)]. In this Letter, we study triboelectric charging of different size fractions of a sample of volcanic ash experimentally. Consistently with previous work, we find that the particle size distribution is a determining factor in the charging. Specifically, our laboratory experiments demonstrate that the normalized span of the particle size distribution plays an important role in the magnitude of charging generated. The influence of the normalized span on plume charging suggests that all ash plumes are likely to be charged, with implications for remote sensing and plume lifetime through scavenging effects. PMID:24074123

  6. Coupled evolution of magma chambers and flow in conduits during large volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Karlstrom, L.; Manga, M.; Rudolph, M. L.

    2010-12-01

    The largest silicic and mafic volcanic eruptions in the geologic record, Supervolcano and Large Igneous Province (LIP) eruptions, are distinguished by differences in surface emplacement mode, geologic context, magma volatile content, viscosity, and reservoir depth. However, these large eruptions also share several common features. Individual eruptions of both types emplace roughly the same total volume (10^3 - 10^4 km^3) of remarkably homogeneous magma that likely comes from a single reservoir. In addition, they both release large quantities of volatiles, and hence individual eruptions may significantly perturb global climate. We have developed a model that couples conduit flow and magma chamber deformation, allowing us to study both eruption types. Steady, one-dimensional multiphase flow of magma containing crystals, exsolved water, and CO_2 in a cylindrical conduit is coupled to pressure evolution within an ellipsoidal magma chamber beneath a free surface. LIP eruptions are characterized by gas-driven flow of mafic lava that may be sustained past the cessation of chamber overpressure, much like a siphon. Eruptions cease when the yield strength of the country rocks is reached and the (generally Moho-level) chamber or the conduit implodes, resulting in steady discharge and atmospheric volatile loading. In contrast, more shallow silicic lavas such as the Fish Canyon Tuff erupt through rapid mobilization of a long-lived crystal-rich mush. The crystal-rich mush is a yield strength fluid, which we model using the von Mises criterion for mobilization. If the trigger for mobilization of the mush leads directly to eruption, time-progressive yielding due to mass removal results in a fluid magma chamber that grows as the eruption proceeds, until free-surface stresses induce roof collapse and caldera formation. Chamber pressure evolution may be buffered by the mobilization of the mush, maintaining overpressure and high discharge throughout the eruption. This model suggests

  7. Multi-decadal satellite measurements of passive and eruptive volcanic SO2 emissions

    NASA Astrophysics Data System (ADS)

    Carn, Simon; Yang, Kai; Krotkov, Nickolay; Prata, Fred; Telling, Jennifer

    2015-04-01

    Periodic injections of sulfur gas species (SO2, H2S) into the stratosphere by volcanic eruptions are among the most important, and yet unpredictable, drivers of natural climate variability. However, passive (lower tropospheric) volcanic degassing is the major component of total volcanic emissions to the atmosphere on a time-averaged basis, but is poorly constrained, impacting estimates of global emissions of other volcanic gases (e.g., CO2). Stratospheric volcanic emissions are very well quantified by satellite remote sensing techniques, and we report ongoing efforts to catalog all significant volcanic SO2 emissions into the stratosphere and troposphere since 1978 using measurements from the ultraviolet (UV) Total Ozone Mapping Spectrometer (TOMS; 1978-2005), Ozone Monitoring Instrument (OMI; 2004 - present) and Ozone Mapping and Profiler Suite (OMPS; 2012 - present) instruments, supplemented by infrared (IR) data from HIRS, MODIS and AIRS. The database, intended for use as a volcanic forcing dataset in climate models, currently includes over 600 eruptions releasing a total of ~100 Tg SO2, with a mean eruption discharge of ~0.2 Tg SO2. Sensitivity to SO2 emissions from smaller eruptions greatly increased following the launch of OMI in 2004, but uncertainties remain on the volcanic flux of other sulfur species other than SO2 (H2S, OCS) due to difficulty of measurement. Although the post-Pinatubo 1991 era is often classified as volcanically quiescent, many smaller eruptions (Volcanic Explosivity Index [VEI] 3-4) since 2000 have injected significant amounts of SO2 into the upper troposphere - lower stratosphere (UTLS), peaking in 2008-2011. We also show how even smaller (VEI 2) tropical eruptions can impact the UTLS and sustain above-background stratospheric aerosol optical depth, thus playing a role in climate forcing on short timescales. To better quantify tropospheric volcanic degassing, we use ~10 years of operational SO2 measurements by OMI to identify the

  8. Remote observations of eruptive clouds and surface thermal activity during the 2009 eruption of Redoubt volcano

    NASA Astrophysics Data System (ADS)

    Webley, P. W.; Lopez, T. M.; Ekstrand, A. L.; Dean, K. G.; Rinkleff, P.; Dehn, J.; Cahill, C. F.; Wessels, R. L.; Bailey, J. E.; Izbekov, P.; Worden, A.

    2013-06-01

    Volcanoes often erupt explosively and generate a variety of hazards including volcanic ash clouds and gaseous plumes. These clouds and plumes are a significant hazard to the aviation industry and the ground features can be a major hazard to local communities. Here, we provide a chronology of the 2009 Redoubt Volcano eruption using frequent, low spatial resolution thermal infrared (TIR), mid-infrared (MIR) and ultraviolet (UV) satellite remote sensing data. The first explosion of the 2009 eruption of Redoubt Volcano occurred on March 15, 2009 (UTC) and was followed by a series of magmatic explosive events starting on March 23 (UTC). From March 23-April 4 2009, satellites imaged at least 19 separate explosive events that sent ash clouds up to 18 km above sea level (ASL) that dispersed ash across the Cook Inlet region. In this manuscript, we provide an overview of the ash clouds and plumes from the 19 explosive events, detailing their cloud-top heights and discussing the variations in infrared absorption signals. We show that the timing of the TIR data relative to the event end time was critical for inferring the TIR derived height and true cloud top height. The ash clouds were high in water content, likely in the form of ice, which masked the negative TIR brightness temperature difference (BTD) signal typically used for volcanic ash detection. The analysis shown here illustrates the utility of remote sensing data during volcanic crises to measure critical real-time parameters, such as cloud-top heights, changes in ground-based thermal activity, and plume/cloud location.

  9. Magmatic vapor source for sulfur dioxide released during volcanic eruptions: Evidence from Mount Pinatubo

    SciTech Connect

    Wallace, P.J. ); Gerlach, T.M. )

    1994-07-22

    Sulfur dioxide (SO[sub 2]) released by the explosive eruption of Mount Pinatubo of 15 June 1991 had an impact on climate and stratospheric ozone. The total mass of SO[sub 2] released was much greater than the amount dissolved in the magma before the eruption, and thus an additional source for the excess SO[sub 2] is required. Infrared spectroscopic analyses of dissolved water and carbon dioxide in glass inclusions from quartz phenocrysts demonstrate that before eruption the magma contained a separate, SO[sub 2]-bearing vapor phase. Data for gas emissions from other volcanoes in subduction-related arcs suggest that preeruptive magmatic vapor is a major source of the SO[sub 2] that is released during many volcanic eruptions.

  10. Magmatic vapor source for sulfur dioxide released during volcanic eruptions: Evidence from Mount Pinatubo

    USGS Publications Warehouse

    Wallace, P.J.; Gerlach, T.M.

    1994-01-01

    Sulfur dioxide (SO2) released by the explosive eruption of Mount Pinatubo on 15 June 1991 had an impact on climate and stratospheric ozone. The total mass of SO2 released was much greater than the amount dissolved in the magma before the eruption, and thus an additional source for the excess SO2 is required. Infrared spectroscopic analyses of dissolved water and carbon dioxide in glass inclusions from quartz phenocrysts demonstrate that before eruption the magma contained a separate, SO2-bearing vapor phase. Data for gas emissions from other volcanoes in subduction-related arcs suggest that preeruptive magmatic vapor is a major source of the SO2 that is released during many volcanic eruptions.

  11. Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions.

    PubMed

    Swingedouw, Didier; Ortega, Pablo; Mignot, Juliette; Guilyardi, Eric; Masson-Delmotte, Valérie; Butler, Paul G; Khodri, Myriam; Séférian, Roland

    2015-01-01

    While bidecadal climate variability has been evidenced in several North Atlantic paleoclimate records, its drivers remain poorly understood. Here we show that the subset of CMIP5 historical climate simulations that produce such bidecadal variability exhibits a robust synchronization, with a maximum in Atlantic Meridional Overturning Circulation (AMOC) 15 years after the 1963 Agung eruption. The mechanisms at play involve salinity advection from the Arctic and explain the timing of Great Salinity Anomalies observed in the 1970s and the 1990s. Simulations, as well as Greenland and Iceland paleoclimate records, indicate that coherent bidecadal cycles were excited following five Agung-like volcanic eruptions of the last millennium. Climate simulations and a conceptual model reveal that destructive interference caused by the Pinatubo 1991 eruption may have damped the observed decreasing trend of the AMOC in the 2000s. Our results imply a long-lasting climatic impact and predictability following the next Agung-like eruption. PMID:25818017

  12. Sulfur and halogen chemistry of the stratosphere and of volcanic eruption plumes

    NASA Technical Reports Server (NTRS)

    Lazrus, A. L.; Cadle, R. D.; Gandrud, B. W.; Greenberg, J. P.; Huebert, B. J.; Rose, W. I., Jr.

    1979-01-01

    The major eruption of Volcan de Fuego caused an enhancement of 1.6 x 10 to the 9 kg of SO4(-) in the stratosphere 6 months after the eruption. Measurable changes in nitric acid vapor and particulate chloride were not observed. Subsequent data suggests that HCl was not injected into the stratosphere. The first simultaneous measurement of halogen and sulfur content of gases and particles in explosive eruption plumes is reported. The average percents of elements in particles were sulfur, 2.5 + or - 2.1; chlorine, 18 + or - 12; and fluorine, 38 + or - 29. The average molecular ratio of HCl/SO2 and HCl/HF were 0.41 + or - 0.26 and 14 + or - 12 in the Guatemalan eruption plumes.

  13. Retrieving eruptive vent conditions from dynamical properties of unsteady volcanic plume using high-speed imagery and numerical simulations

    NASA Astrophysics Data System (ADS)

    Tournigand, Pierre-Yves; Taddeucci, Jacopo; José Peña Fernandez, Juan; Gaudin, Damien; Sesterhenn, Jörn; Scarlato, Piergiorgio; Del Bello, Elisabetta

    2016-04-01

    Vent conditions are key parameters controlling volcanic plume dynamics and the ensuing different hazards, such as human health issues, infrastructure damages, and air traffic disruption. Indeed, for a given magma and vent geometry, plume development and stability over time mainly depend on the mass eruption rate, function of the velocity and density of the eruptive mixture at the vent, where direct measurements are impossible. High-speed imaging of eruptive plumes and numerical jet simulations were here non-dimensionally coupled to retrieve eruptive vent conditions starting from measurable plume parameters. High-speed videos of unsteady, momentum-driven volcanic plumes (jets) from Strombolian to Vulcanian activity from three different volcanoes (Sakurajima, Japan, Stromboli, Italy, and Fuego, Guatemala) were recorded in the visible and the thermal spectral ranges by using an Optronis CR600x2 (1280x1024 pixels definition, 500 Hz frame rate) and a FLIR SC655 (640x480 pixels definition, 50 Hz frame rate) cameras. Atmospheric effects correction and pre-processing of the thermal videos were performed to increase measurement accuracy. Pre-processing consists of the extraction of the plume temperature gradient over time, combined with a temperature threshold in order to remove the image background. The velocity and the apparent surface temperature fields of the plumes, and their changes over timescales of tenths of seconds, were then measured by particle image velocimetry and thermal image analysis, respectively, of the pre-processed videos. The parameters thus obtained are representative of the outer plume surface, corresponding to its boundary shear layer at the interface with the atmosphere, and may significantly differ from conditions in the plume interior. To retrieve information on the interior of the plume, and possibly extrapolate it even at the eruptive vent level, video-derived plume parameters were non-dimensionally compared to the results of numerical

  14. Multiple dendrochronological responses to the eruption of Cinder Cone, Lassen Volcanic National Park, California

    USGS Publications Warehouse

    Sheppard, P.R.; Ort, M.H.; Anderson, K.C.; Clynne, M.A.; May, E.M.

    2009-01-01

    Two dendrochronological properties – ring width and ring chemistry – were investigated in trees near Cinder Cone in Lassen Volcanic National Park, northeastern California, for the purpose of re-evaluating the date of its eruption. Cinder Cone is thought to have erupted in AD 1666 based on ring-width evidence, but interpreting ring-width changes alone is not straightforward because many forest disturbances can cause changes in ring width. Old Jeffrey pines growing in Cinder Cone tephra and elsewhere for control comparison were sampled. Trees growing in tephra show synchronous ring-width changes at AD 1666, but this ring-width signal could be considered ambiguous for dating the eruption because changes in ring width can be caused by other events. Trees growing in tephra also show changes in ring phosphorus, sulfur, and sodium during the late 1660s, but inter-tree variability in dendrochemical signals makes dating the eruption from ring chemistry alone difficult. The combination of dendrochemistry and ring-width signals improves confidence in dating the eruption of Cinder Cone over the analysis of just one ring-growth property. These results are similar to another case study using dendrochronology of ring width and ring chemistry at Parícutin, Michoacán, Mexico, a cinder cone that erupted beginning in 1943. In both cases, combining analysis with ring width and ring chemistry improved confidence in the dendro-dating of the eruptions.

  15. Global link between deformation and volcanic eruption quantified by satellite imagery

    NASA Astrophysics Data System (ADS)

    Biggs, J.; Ebmeier, S. K.; Aspinall, W. P.; Lu, Z.; Pritchard, M. E.; Sparks, R. S. J.; Mather, T. A.

    2014-04-01

    A key challenge for volcanological science and hazard management is that few of the world’s volcanoes are effectively monitored. Satellite imagery covers volcanoes globally throughout their eruptive cycles, independent of ground-based monitoring, providing a multidecadal archive suitable for probabilistic analysis linking deformation with eruption. Here we show that, of the 198 volcanoes systematically observed for the past 18 years, 54 deformed, of which 25 also erupted. For assessing eruption potential, this high proportion of deforming volcanoes that also erupted (46%), together with the proportion of non-deforming volcanoes that did not erupt (94%), jointly represent indicators with ‘strong’ evidential worth. Using a larger catalogue of 540 volcanoes observed for 3 years, we demonstrate how this eruption-deformation relationship is influenced by tectonic, petrological and volcanic factors. Satellite technology is rapidly evolving and routine monitoring of the deformation status of all volcanoes from space is anticipated, meaning probabilistic approaches will increasingly inform hazard decisions and strategic development.

  16. On the Generation of Multiple Atmospheric Pressure Waves Observed During Violent Volcanic Eruptions.

    NASA Astrophysics Data System (ADS)

    Medici, E. F.; Waite, G. P.

    2015-12-01

    One or more atmospheric pressure waves followed by a supersonic jet may be generated during the over pressurized vapor-solid-liquid mixture ejection of a violent volcanic eruption. The source of these multiple atmospheric pressure waves could have different origins. Among the physical mechanisms that could explain these behaviors are pulsating eruptions, the dynamics of shock waves, coupled pressure wave-supersonic jet interaction, or a combination of all these factors. In order to elucidate the causes of these complex fluid flow dynamics, a series of analog volcanic eruption experiments using an atmospheric shock tube were performed. During the testing, single and multiple pressure waves and the subsequent supersonic jet were generated. The controlled laboratory conditions enable studies of the most relevant variables potentially responsible for the formation of the multiple pressure waves. The tests were performed using dry, compressed nitrogen at standard room temperature that was free of particles. Yet, under this idealization of a real volcanic eruption, multiple pressure waves were observed on the high-speed video imaging and recorded on the pressure transducer. The amount of energy being released on each test was varied to achieve different discharge dynamics and the formation of single and multiple pressure waves. The preliminary experimental observations indicate a coupled pressure wave-jet interaction as source of multiple pressure waves.

  17. Native gold from volcanic gases at Tolbachik 1975-76 and 2012-13 Fissure Eruptions, Kamchatka

    NASA Astrophysics Data System (ADS)

    Chaplygin, Ilya; Yudovskaya, Marina; Vergasova, Lidiya; Mokhov, Andrey

    2015-12-01

    Aggregates and euhedral crystals of native gold were found in sublimates formed during New Tolbachik Fissure Eruption in 2012-2013 (NTFE). Gold-bearing sublimate samples were taken from a red-hot (690 °C) degassing fracture in the roof of an active lava tunnel 1.5 km from active Naboko cinder cone in May 2013. The gas condensate collected at 690 °C in this site contains 16 ppb Au, 190 ppb Ag and 1180 ppm Cu compared to 3 ppb Au, 39 ppb Ag and 9.7 ppm Cu in the condensate of pristine magmatic gas sampled at 1030 °C. The 690 °C volcanic gas is most likely a mix of magmatic gas and local snow buried under the lava flows as indicated by oxygen and hydrogen isotope compositions of the condensate. The lower-temperature gas enrichment in gold, copper and chlorine is resulted from evaporation of the 690 °C condensate during forced gas pumping at sampling. Native gold was also found in fumarolic encrustations collected from caverns in basalt lava flows with temperature up to 600 °C in June 2014, in a year after eruption finished. The native gold precipitation in newly formed Cu-rich sublimates together with the well known gold occurrences in cinder cones of 1975-1976 Large Tolbachik Fissure Eruption manifest a transport capability of oxidized volcanic gas.

  18. Bombs, flyin' high. In-flight dynamics of volcanic bombs from Strombolian to Vulcanian eruptions.

    NASA Astrophysics Data System (ADS)

    Taddeucci, Jacopo; Alatorre, Miguel; Cruz Vázquez, Omar; Del Bello, Elisabetta; Ricci, Tullio; Scarlato, Piergiorgio; Palladino, Danilo

    2016-04-01

    Bomb-sized (larger than 64 mm) pyroclasts are a common product of explosive eruptions and a considerable source of hazard, both from directly impacting on people and properties and from wildfires associated with their landing in vegetated areas. The dispersal of bombs is mostly modeled as purely ballistic trajectories controlled by gravity and drag forces associated with still air, and only recently other effects, such as the influence of eruption dynamics, the gas expansion, and in-flight collisions, are starting to be quantified both numerically and observationally. By using high-speed imaging of explosive volcanic eruptions here we attempt to calculate the drag coefficient of free-flying volcanic bombs during an eruption and at the same time we document a wide range of in-flight processes affecting bomb trajectories and introducing deviations from purely ballistic emplacement. High-speed (500 frames per second) videos of explosions at Stromboli and Etna (Italy), Fuego (Gatemala), Sakurajima (Japan), Yasur (Vanuatu), and Batu Tara (Indonesia) volcanoes provide a large assortment of free-flying bombs spanning Strombolian to Vulcanian source eruptions, basaltic to andesitic composition, centimeters to meters in size, and 10 to 300 m/s in fly velocity. By tracking the bombs during their flying trajectories we were able to: 1) measure their size, shape, and vertical component of velocity and related changes over time; and 2) measure the different interactions with the atmosphere and with other bombs. Quantitatively, these data allow us to provide the first direct measurement of the aerodynamic behavior and drag coefficient of volcanic bombs while settling, also including the effect of bomb rotation and changes in bomb shape and frontal section. We also show how our observations have the potential to parameterize a number of previously hypothesized and /or described but yet unquantified processes, including in-flight rotation, deformation, fragmentation, agglutination

  19. Immediate public health concerns and actions in volcanic eruptions: lessons from the Mount St. Helens eruptions, May 18-October 18, 1980

    SciTech Connect

    Bernstein, R.S.; Baxter, P.J.; Falk, H.; Ing, R.; Foster, L.; Frost, F.

    1986-03-01

    The Centers for Disease Control in collaboration with affected state and local health departments, clinicians, and private institutions carried out a compulsive epidemiologic evaluation of mortality and morbidity associated with volcanic activity following the 1980 eruption of Mount St. Helens. Excession morbidity were limited to transient increases to emergency room visits and hospital admissions for troumatic injuries and respiratory problems. Excessive mortality due to suffocation (76%) thermal injuries (12%), or trauma (12%) by ash and other volcanic hazards was directly proportional to the degree of environmental damage. De novo appearance of asthma was not observed, but excess adverse respiratory effects were observed in persons with preexisting respiratory disease and in heavy smokers. The volcanic ash had a mild to moderate fibrogenic potential. Community exposures to resuspended ash only transiently exceeded health limits normally applied to entire working lifetime exposures to free silica. There were no excessive exposures to toxic metals, fibrous minerals, organic chemicals, radon, or toxic gases of volcanic origin in community water supplies on air.

  20. The eruption history of the quaternary Eifel volcanic fields: Implications from the ELSA - Tephra - Stack

    NASA Astrophysics Data System (ADS)

    Förster, Michael; Sirocko, Frank

    2015-04-01

    Numerous tephra layers occur in maar sediments in the quaternary Eifel volcanic fields. The sediments were systematically drilled and cored since 1998 by the Eifel Laminated Sediment Archive project (ELSA) (Sirocko et al. 2013). These maar sediments are laminated and the tephra is easily recognizeable by a coarser grain size. Additionaly, tephra layers appear dark grey to black in color. The ashes were sieved to a fraction of 250 - 100 µm and sorted into grains of: reddish and greyish sandstone, quartz, amphibole, pyroxene, scoria and pumice, sanidine, leucite and biotite. A minimum of 100 grains for each tephra layer were used for a sediment petrographic tephra characterisation (SPTC). The grain counts resemble the vol. -% of each grain species. Three types of tephra could be identified by their distinctive grain pattern: (1) phreatomagmatic tephra, rich in basement rocks like greyish/reddish sandstone and quartz. (2) Strombolian tephra, rich in scoria and mafic minerals like pyroxene. (3) evolved tephra, rich in sanidine and pumice. 16 drill-cores, covering the last 500 000 years have been examined. Younger cores were dated by 14C ages and older cores by optical stimulated luminescence. Independently from this datings, the drill-cores were cross-correlated by pollen and the occurences of specific marker-tephra layers, comprising characteristic grain-types. These marker-tephra layers are especially thick and of evolved composition with a significant abundance of sanidine and pumice. The most prominent tephra layers of this type are the Laacher See tephra, dated to 12 900 b2k by Zolitschka (1998), the 40Ar/39Ar dated tephra layers of Dümpelmaar, Glees and Hüttenberg, dated to 116 000 b2k, 151 000 b2k and 215 000 b2k by van den Bogaard & Schmincke (1990), van den Bogaard et al. (1989). These datings set the time-frame for the eruption-phases of the quaternary Eifel Volcanic Fields. Our study refines these findings and shows that phases of activity are very

  1. Volcanic ash hazard climatology for an eruption of Hekla Volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Leadbetter, Susan J.; Hort, Matthew C.

    2011-01-01

    Ash produced by a volcanic eruption on Iceland can be hazardous for both the transatlantic flight paths and European airports and airspace. In order to begin to quantify the risk to aircraft, this study explored the probability of ash from a short explosive eruption of Hekla Volcano (63.98°N, 19.7°W) reaching European airspace. Transport, dispersion and deposition of the ash cloud from a three hour 'explosive' eruption with an initial plume height of 12 km was simulated using the Met Office's Numerical Atmospheric-dispersion Modelling Environment, NAME, the model used operationally by the London Volcanic Ash Advisory Centre. Eruptions were simulated over a six year period, from 2003 until 2008, and ash clouds were tracked for four days following each eruption. Results showed that a rapid spread of volcanic ash is possible, with all countries in Europe facing the possibility of an airborne ash concentration exceeding International Civil Aviation Organization (ICAO) limits within 24 h of an eruption. An additional high impact, low probability event which could occur is the southward spread of the ash cloud which would block transatlantic flights approaching and leaving Europe. Probabilities of significant concentrations of ash are highest to the east of Iceland, with probabilities exceeding 20% in most countries north of 50°N. Deposition probabilities were highest at Scottish and Scandinavian airports. There is some seasonal variability in the probabilities; ash is more likely to reach southern Europe in winter when the mean winds across the continent are northerly. Ash concentrations usually remain higher for longer during summer when the mean wind speeds are lower.

  2. The influence of tropical volcanic eruptions on the climate of South America during the last millennium

    NASA Astrophysics Data System (ADS)

    Colose, C. M.; LeGrande, A. N.; Vuille, M.

    2015-07-01

    Currently, little is known on how volcanic eruptions impact large-scale climate phenomena such as paleo-ITCZ position or South American summer monsoon behavior. In this paper, an analysis of observations and model simulations is employed to assess the influence of large volcanic eruptions on the climate of South America. This problem is considered both for historically recent volcanic episodes, for which more comprehensive global observations exist, as well as reconstructed volcanic events for the period 850 C.E. to present that are incorporated into the NASA GISS ModelE2-R simulation of the Last Millennium. An advantage of this model is its ability to explicitly track water isotopologues throughout the hydrologic cycle and simulating the isotopic imprint following a large eruption. This effectively removes a degree of uncertainty associated with error-prone conversion of isotopic signals into climate variables, and allows for a direct comparison between GISS simulations and paleoclimate proxy archives. Our analysis reveals that both precipitation and oxygen isotope variability respond with a distinct seasonal and spatial structure across South America following an eruption. During austral winter, the heavy oxygen isotope in precipitation is enriched, likely due to reduced moisture convergence in the ITCZ domain and reduced rainfall over northern South America. During austral summer, however, precipitation is depleted in heavy isotopes over Amazonia, despite reductions in rainfall, suggesting that the isotopic response is not a simple function of the "amount effect". During the South American monsoon season, the amplitude of the temperature response to volcanic forcing is larger than the rather weak and spatially less coherent precipitation signal, potentially masking the isotopic response to changes in the hydrologic cycle.

  3. Climate responses to volcanic eruptions assessed from observations and CMIP5 multi-models

    NASA Astrophysics Data System (ADS)

    Paik, Seungmok; Min, Seung-Ki

    2016-04-01

    This study analyzes climate responses to four volcanic eruptions that occurred since 1960s using observations (including reanalyses) and CMIP5 multi-model simulations. Changes in surface air temperature, specific humidity, and precipitation over the global land are examined during pre- to post-eruption years using a composite analysis. Observations exhibit consistent decreases in temperature, humidity, and precipitation following eruptions, which are reasonably captured by CMIP5 multi-models simulated including volcanic forcing. The observed and simulated decreases in temperature and humidity are stronger than the internal variability ranges (estimated from pre-industrial control simulations), indicating robust responses. On the other hand, the observed precipitation decrease is significant but the CMIP5 models considerably underestimate it, as reported by previous studies. In order to explore important physical processes determining climate responses to volcanic forcing, a surface energy budget is analyzed together with inter-model relationship between variables. A strong inter-model correlation (r = 0.89) appears between temperature and humidity, representing the Clausius-Clapeyron relation. Interestingly, precipitation is found to be closely related with latent heat flux (r = -0.50) and vertical motion (ω) at 500 hPa level (r = -0.68), changes of which are also underestimated by models. Further, by comparing estimates of precipitation minus evaporation between land and ocean, which is significantly correlated with vertical motion (r = -0.73), it is found that monsoon circulation weakens after volcanic eruptions but CMIP5 models substantially underestimate it. Our results suggest that this dynamic response via monsoon circulation weakening can be a critical factor for models' underestimation of precipitation reduction to volcanic forcing.

  4. Solar Eruptions Initiated in Sigmoidal Active Regions

    NASA Astrophysics Data System (ADS)

    Savcheva, Antonia

    2016-07-01

    active regions that have been shown to possess high probability for eruption. They present a direct evidence of the existence of flux ropes in the corona prior to the impulsive phase of eruptions. In order to gain insight into their eruptive behavior and how they get destabilized we need to know their 3D magnetic field structure. First, we review some recent observations and modeling of sigmoidal active regions as the primary hosts of solar eruptions, which can also be used as useful laboratories for studying these phenomena. Then, we concentrate on the analysis of observations and highly data-constrained non-linear force-free field (NLFFF) models over the lifetime of several sigmoidal active regions, where we have captured their magnetic field structure around the times of major flares. We present the topology analysis of a couple of sigmoidal regions pointing us to the probable sites of reconnection. A scenario for eruption is put forward by this analysis. We demonstrate the use of this topology analysis to reconcile the observed eruption features with the standard flare model. Finally, we show a glimpse of how such a NLFFF model of an erupting region can be used to initiate a CME in a global MHD code in an unprecedented realistic manner. Such simulations can show the effects of solar transients on the near-Earth environment and solar system space weather.

  5. Constraining explosive volcanism: subjective choices during estimates of eruption magnitude

    USGS Publications Warehouse

    Klawonn, Malin; Houghton, Bruce F.; Swanson, Don; Fagents, Sarah A.; Wessel, Paul; Wolfe, Cecily J.

    2014-01-01

    When estimating the magnitude of explosive eruptions from their deposits, individuals make three sets of critical choices with respect to input data: the spacing of sampling sites, the selection of contour intervals to constrain the field measurements, and the hand contouring of thickness/isomass data, respectively. Volcanologists make subjective calls, as there are no accepted published protocols and few accounts of how these choices will impact estimates of eruption magnitude. Here, for the first time, we took a set of unpublished thickness measurements from the 1959 Kīlauea Iki pyroclastic fall deposit and asked 101 volcanologists worldwide to hand contour the data. First, there were surprisingly consistent volume estimates across maps with three different sampling densities. Second, the variability in volume calculations imparted by individuals’ choices of contours is also surprisingly low and lies between s = 5 and 8 %. Third, volume estimation is insensitive to the extent to which different individuals “smooth” the raw data in constructing contour lines. Finally, large uncertainty is associated with the construction of the thinnest isopachs, which is likely to underestimate the actual trend of deposit thinning. The net result is that researchers can have considerable confidence in using volume or dispersal data from multiple authors and different deposits for comparative studies. These insights should help volcanologists around the world to optimize design and execution of field-based studies to characterize accurately the volume of pyroclastic deposits.

  6. Paleoenvironmental impact of volcanic eruptions indicated by diatoms

    SciTech Connect

    Brant, L.A.; Bahls, L.L.

    1985-01-01

    Cores of postglacial sediment obtained from small ponds/marshes in west central Montana include several tephra layers representing the series of eruptions of Glacier Peak of about 11,200 years B.P. and of Mount Mazama of about 6600 years B.P. The sediment consists of a basal unit of rock flour overlain by diatomite and other biogenic sediment. Analysis of the palynoflora and the diverse diatom flora indicate that the water was very low in dissolved solid and slightly acid from the time of the beginning of biogenic sedimentation until the present except for times immediately following deposition of each of the two layers of Glacier Peak tephra. Large numbers of Navicula simplex Krasske occur immediately above each of these layers of tephra. This halophilous and alkaliphilous diatom species indicates a short-term change in the chemistry of the pond. After a short period, the solutes carried to the pond by the tephra were washed out of the system allowing it to return to its normal condition, and the halophilous species disappeared. No occurrence of such indicator species was found associated with the younger Mazama tephra. The diatom flora at this site appears to have recorded a paleoenvironmental impact of the eruptions of Glacier Peak hundreds of kilometers from the volcano.

  7. Radiocarbon Dates from Volcanic Deposits of the Chaos Crags and Cinder Cone Eruptive Sequences and Other Deposits, Lassen Volcanic National Park and Vicinity, California

    USGS Publications Warehouse

    Clynne, Michael A.; Christiansen, Robert L.; Trimble, Deborah A.; McGeehin, John P.

    2008-01-01

    This contribution reports radiocarbon ages obtained from charcoal, wood and other samples collected between 1979 and 2001 in Lassen Volcanic National Park and vicinity and a few samples from other nearby localities. Most of the samples are from the Chaos Crags and Cinder Cone eruptive sequences. Brief summaries are given of the Chaos Crags and Cinder Cone eruptive sequences.

  8. Possible effects on the stratosphere of the 1963 Mt. Agung volcanic eruption.

    NASA Technical Reports Server (NTRS)

    Mcinturff, R. M.; Miller, A. J.; Angell, J. K.; Korshover , J.

    1971-01-01

    Previous studies of atmospheric pollution resulting from the 1963 eruption of Mt. Agung have shown that the volcanic dust caused temperature increases in the lower stratosphere over Australia. The present study provides time series of monthly-mean lower stratospheric temperatures for eight tropical stations on both sides of the equator. The data have been smoothed by taking 12-month running means. The results suggest that any effect of the eruption may be impossible to isolate. Some features of the quasi-biennial oscillation in zonal winds and temperatures are pointed out which must be considered in any attempt to explain the peculiarities in the curves of monthly mean temperatures.

  9. Characterization of organic contaminants in environmental samples associated with mount St. Helens 1980 volcanic eruption

    USGS Publications Warehouse

    Pereira, W.E.

    1982-01-01

    Volcanic ash, surface-water, and bottom-material samples obtained in the vicinity of Mount St. Helens after the May 18, 1980, eruption were analyzed for organic contaminants by using capillary gas chromatography-mass spectrometry-computer techniques. Classes of compounds identified include n-alkanes, fatty acids, dicarboxylic acids, aromatic acids and aldehydes, phenols, resin acids, terpenes, and insect juvenile hormones. The most probable source of these compounds is from pyrolysis of plant and soil organic matter during and after the eruption. The toxicity of selected compounds and their environmental significance are discussed.

  10. Airborne studies of the emissions from the volcanic eruptions of Mount St. Helens

    SciTech Connect

    Hobbs, P.V.; Radke, L.F.; Eltgroth, M.W.; Hegg, D.A.

    1981-01-01

    The concentrations of particles less than 10 micrometers in diameter in the ash emissions from Mount St. Helens have been more than 1000 times greater than those in the ambient air. Mass loadings of particles less than 2 micrometers in diameter were generally several hundred micrograms per cubic meter. In the ash clouds, produced by the large eruption on 18 May 1980, the concentrations of several trace gases generally were low. In other emissions, significant, but variable, concentrations of sulfur gases were measured. The 18 May eruption produced nuees ardentes, lightning flashes, and volcanic hail.

  11. A novel reactor for the simulation of gas and ash interactions in volcanic eruption plumes

    NASA Astrophysics Data System (ADS)

    Ayris, Paul M.; Cimarelli, Corrado; Delmelle, Pierre; Dingwell, Donald B.

    2014-05-01

    The chemical interactions between volcanic ash and the atmosphere, hydrosphere, pedosphere, cryosphere and biosphere are initially the result of rapid mobilisation of soluble salts and aqueous acids from wetted particle surfaces. Such surface features are attributable to the scavenging of sulphur and halide species by ash during its transport through the eruption plume and volcanic cloud. It has been historically considered (e.g., Rose, 1977) that the primary mechanism driving scavenging of sulphur and halide species is via condensation of acid aerosols onto ash surfaces within the cold volcanic cloud. However, for large explosive eruptions, insights from new experimental highlight the potential for scavenging via adsorption onto ash within the high-temperature eruption plume. In previous investigations on simple SO2 (Ayris et al. 2013a) and HCl systems (Ayris et al. 2013b), we identified ash composition, and the duration and temperature of gas-ash interaction as key determinants of adsorption-mode scavenging. However, the first generation of gas-ash reactors could not fully investigate the interactions between ash and the hydrous volcanic atmosphere; we have therefore developed an Advanced Gas Ash Reactor (AGAR), which can be fluxed with varying proportions of H2O, CO2, SO2 and HCl. The AGAR consists of a longitudinally-rotating quartz glass reaction bulb contained within a horizontal, three-stage tube furnace operating at temperatures of 25-900° C. A sample mass of up to 100 g can traverse a thermal gradient via manual repositioning of the reaction bulb within the furnace. In combination with existing melt synthesis capabilities in our laboratories, this facility permits a detailed investigation of the effects of ash and gas composition, and temperature on in-plume scavenging of SO2 and HCl. Additionally, the longitudinal rotation enables particle-particle interaction under an 'in-plume' atmosphere, and may yield insight into the effects of gas-ash interaction

  12. Reconstruction of eruption column model based on the 3D numerical simulation of volcanic plume for 2011 Shinmoe-dake eruption

    NASA Astrophysics Data System (ADS)

    Hashimoto, A.; Suzuki, Y.; Shimbori, T.; Ishii, K.; Takagi, A.

    2014-12-01

    The result of volcanic ash transport simulation strongly depends on an eruption column model, that gives a profile of discharging rate of ash particles, for a predictability of dispersion of ash particles. Simple eruption column models, such as proposed by Suzuki (1983), have been adopted in volcanic ash transport simulations for its simplicity and convenience. However, such a model sometimes brings erroneous results especially when an environmental wind field considerably affects the behavior of eruption column. The distortion of eruption column and enhancement of turbulent mixing due to wind shear should be taken into account in an eruption column model for the improvement of its applicability. The authors have conducted the three-dimensional simulation of volcanic plume for the 2011 Shinmoe-dake eruption, assuming the vertically-sheared wind field actually observed in the event, and have taken statistics of the locations and mobile vectors of the ash particles getting out of the simulated volcanic plume to establish the profile of discharging rate. The resulted profile is distinctly different from that based on a usual eruption column model. The new profile is characterized by the relatively large discharge of micron-sized ash particles from the middle level of the plume, comparing to the usual one. The authors plan to validate the new model in the simulation of long-range transport of volcanic ash, based on satellite observation data. This work will be a basis for a future improvement of the volcanic ash fall forecast by Japan Meteorological Agency, which is established with the Suzuki's model. The characteristics and validity of new model will be discussed in the presentation. Acknowledgement This study was supported by the Earthquake Research Institute cooperative research program. References Suzuki, T., 1983: A theoretical model for dispersion of tephra. Arc Volcanism: Physics and Tectonics. TERRAPUB, 95-113.

  13. Recent volcanic activity on Venus - Evidence from radiothermal emissivity measurements

    NASA Technical Reports Server (NTRS)

    Robinson, Cordula A.; Wood, John A.

    1993-01-01

    Radiothermal emissivity measurements are analyzed in order to study large volcanic constructs on Venus and to correlate details of the reflectivity/emissivity patterns with geological landforms and stratigraphy visible in corresponding SAR images. There appears to be a correlation between locations on Venus where high emissivity at high altitudes and low emissivity at low altitudes are observed. These phenomena are attributed here to relatively recent volcanic activity: the former to summit eruptions that have not had time to weather to the low-emissivity state, the latter to continuing emission of volcanic gases from neighboring small plains volcanoes. The pattern of reflectivity and emissivity on Maat Mons is examined in the light of these findings. It is concluded that Maat Mons has undergone the most recent episo